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The Myth of Power Control in Routing

Abstract

Energy management remains a critical problem in ad hoc networks since battery technology cannot
keep up with rising expectations in wireless communications. Current approaches to energy conservation
focus on reducing the energy consumption of the wireless interface either for a given communication task
or during idling. However, these communication-time and idle-time approaches are not necessarily com-
plementary. Therefore, we explore the interactions between the two approaches and their impact on the
design of a complete solution to energy conservation. Essentially, a complete solution requires minimiz-
ing the energy spent in communication (i.e., for data and control overhead) and in idling while satisfying
communication needs. This problem can be expressed as an energy-efficient network design problem,
which is, not surprisingly, NP-hard. Therefore, we study several heuristic approaches. Our study shows
that minimizing energy consumed in data transmissions as a primary goal does not save energy. Further-
more, jointly reducing energy consumed for both data and in idling becomes cost-prohibitive when the
energy spent in control overhead is considered. Hence, we propose a two-stage approach that prioritizes
idling energy consumption over energy spent for data transmissions. Due to its low control overhead,
this two-stage approach provides an effective way to meet the challenge of operating the network with
low energy cost.

1 Introduction

Energy management is one of the greatest challenges in wireless networks due to the continuous increase
in the energy requirements of wireless devices and the slow advancement of battery technology. Therefore,
it is essential to incorporate energy efficiency into the design of network protocols. Current research has
focused on communication-time energy conservation, which aims to optimize the use of the wireless inter-
face for a given communication task, or idle-time energy conservation, which aims to optimize the energy
consumption when the wireless interface is idle. Obviously, a complete solution needs to conserve energy
during both communication and idle times. However, the complex interactions between communication-
time and idle-time energy conservation techniques present a significant challenge. To this end, this paper
explores the limits of traditional stand-alone approaches and exposes some commonly held myths about
energy conservation.

Since communication and idle times are disjoint, communication-time and idle-time approaches are
typically considered to be complementary [1, 2]. Unfortunately, joint utilization of these two approaches is
likely to exhibit negative interactions. Consider two techniques: energy-aware routing using transmission
power control (TPC) and power management. TPC allows tuning the transmission power level based on the
distance between the sender and the receiver. Due to non-linear power attenuation, transmitting via more
short hops may result in a lower energy consumption than via one long hop. Hence, energy-aware routing
exploits TPC and routes through multiple short hops to reduce communication energy. Power management,
on the other hand, saves idle-time energy by allowing nodes to switch to a power-save mode (PSM), in
which a node spends most of its time in a low-power sleep state [3, 4]. The negative interaction occurs since
energy-aware routing saves energy at the expense of using more relay nodes and power management saves
energy by eliminating the use of redundant relay nodes. In this paper, we expose such interactions and show
how these interactions impact the design of a complete solution to energy conservation.

Minimizing energy consumption due to both communication (i.e., data and control overhead) and idling
while satisfying network traffic constraints is an energy-efficient network design problem, which is, not sur-
prisingly, NP-hard [5, 6]. Furthermore, designing approximation algorithms that allow distributed and online
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implementations is extremely challenging [5], leaving a heuristic approach as the only option. The main con-
tribution of our research is an in-depth analysis of three such approaches: (1) minimizing communication-
time energy use as a primary goal, (2) jointly optimizing for both communication-time and idle-time energy
use and (3) minimizing idle-time energy use as a primary goal. Our analysis shows that the first approach
is not practical for current wireless cards and the control overhead of the second approach does not support
scalable solutions. As a result, we propose a new two-stage approach to energy-efficient network design that
reduces idling costs as a primary goal and communication costs as a secondary goal. Our extensive evalua-
tion verifies that the two-stage approach meets the challenge of operating the network with low energy cost
without degrading communication performance.

The rest of the paper is organized as follows. In the next section, we present an energy model that
supports the evaluation of the energy-efficiency of communication-time and idle-time energy conservation.
In Section 3, we formally define the energy-efficient network design problem and in Section 4, we describe
the three heuristic approaches to this problem in detail. Performance evaluation results are presented in
Section 5. Finally, Section 6 presents concluding remarks and gives possible directions for future work.

2 Energy-Aware Operation in Ad Hoc Networks

To support energy-awareness in ad hoc networks, it is essential to understand the energy trade-offs in wire-
less communication. To this end, we present an energy model based on the energy characteristics of wireless
cards and node participation in the network. Next, we use this model to highlight the limitations of two
prominent techniques for communication-time and idle-time energy conservation.

2.1 Energy Model

The energy consumption of a network is determined by the amount of energy spent by all nodes. The energy
consumption of each node i is the sum of its communication-time energy (i.e., when it is transmitting or
receiving), Eactive(i), and its idle-time energy (i.e., when it is not engaged in communication), Epassive(i).
Obviously, Eactive(i) and Epassive(i) are strongly tied to the energy characteristics of a wireless card and
the node’s participation in the network.

The energy characteristics of a wireless card are determined by its operating modes: transmit, receive,
idle and sleep. While transmit is the most power-hungry mode, to compensate for this, current wireless cards
support a range of transmit power levels. Sleep power is typically negligible. Idle power is as large as receive
power and is identified as the dominating factor for energy consumption in wireless communication [7]. In
addition to the power for each radio mode, Eactive(i) and Epassive(i) are also a function of the time spent
in each state, which in turn depends on many factors, including traffic load, routing decisions and packet
failures.

For each node i, Eactive(i) is the sum of the energy consumed for data and control overhead, Edata(i)
and Econtrol(i), respectively. Given the total time spent in data reception, tdata

rx (i), and the time spent
transmitting to each node j, tdata

tx (i, j), Edata(i) is:

Edata(i) = tdata
rx (i) · Prx +

∑
j∈NextHop

tdata
tx (i, j) · Ptx(i, j), (1)

where the receive power is Prx and the transmission power, Ptx(i, j), is determined by the transmit power
level to reach node j. More formally, Ptx(i, j) = Pbase + Pt(i, j), where Pbase is the base transmitter cost
and Pt(i, j) is the transmit power level. Pt(i, j) attenuates with the nth power of the distance between nodes
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i and j, where n is the path loss exponent and 2 ≤ n ≤ 4 depending on channel characteristics. Since Prx

and Pbase are fixed costs, Edata(i) is determined by how much data a node relays and the transmission costs
defined by the Ptx(i, j)’s.

Given the time spent in receiving and transmitting control packets, tctrl
rx and tctrl

tx , respectively, Econtrol(i)
is:

Econtrol(i) = tctrl
rx (i) · Prx + tctrl

tx (i) · Pmax
tx . (2)

We assume that control packets are transmitted with maximum power level, Pmax
t , and so use Pmax

tx for
transmission. From (2), it is easy to see that Econtrol can only be reduced by limiting control overhead.

Epassive(i) represents the energy consumed when a node is not involved in reception or transmission.
During this time, the wireless interface of a node can be in a sleep state with sleep power, Psleep, for a
duration of tsleep or in an idle state with idle power, Pidle, for a duration of tidle. Therefore,

Epassive(i) = tidle(i) · Pidle + tsleep(i) · Psleep + Eswitch, (3)

where Eswitch captures the energy cost involved in deciding when to switch to a sleep state. Obviously,
Epassive(i) is minimized if the network interface switches to a sleep state as soon as the node becomes idle.

Based on this node-based energy model, the network energy consumption, Enetwork is defined as:

Enetwork =
m∑

i=1

Eactive(i) + Epassive(i), (4)

where m is the number of nodes. Using this energy model, we next evaluate the impact of communication-
time and idle-time energy conservation on total energy consumption.

2.2 Communication-Time vs. Idle-Time Energy Conservation

Energy conservation approaches in wireless networks target energy spent in specific modes of a wireless
card. Due to the high power of transmit mode, much research has been directed at minimizing the per-hop
transmit power level, Pt(i, j), via transmission power control. Since Pt(i, j) increases with the nth power of
the distance, even though node i and node j can communicate directly, it is less energy consuming to send
from node i to node j through multiple hops with shorter distances. Therefore, energy-aware routing (e.g.,
PARO [8], MTPR [9]) uses Pt(i, j) as a cost metric to discover such routes. However, the main goal is
saving energy from

∑
i Edata(i), and the effects on

∑
i Econtrol(i) and

∑
i Epassive(i) are ignored.

Since Epassive(i) is the dominating energy consumer when there is no communication [10], power
management is a well-adopted idle-time energy conservation technique. Using power management, a node
can be in one of two modes, power-save mode (PSM) and active mode (AM). In PSM, a node keeps its
wireless card mostly in sleep state and switches it to idle to check for data (e.g., IEEE PSM [11]). In AM, a
node is either transmitting, receiving or idling. While PSM may benefit lightly-loaded networks, it severely
limits network capacity as the load increases [4]. Therefore, power management approaches enforce a
AM/PSM duty cycle on nodes. Transitions between PSM and AM can be triggered based on traffic duration
(e.g., ODPM [4]) or topology (e.g., Span [3]) or both (e.g., TITAN [12]). However, power management only
optimizes for

∑
i Epassive(i) and ignores

∑
i Eactive(i).

Both energy-aware routing and power management optimize for different radio states in isolation, which
prohibits obtaining the full benefits of energy conservation. Therefore, we next study the joint utilization of
these approaches as an energy-efficient network design problem.
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Figure 3: Steiner Tree 2.

3 Energy-Efficient Network Design

The energy-efficient network design problem is similar to traditional network design problems, which,
given a weighted graph, ask for a subgraph of minimum total weight satisfying some connectivity require-
ments [13]. In this section, we give a formal definition of the problem, which is NP-hard. Although a
constant-bound approximation applies to a simplified version of this problem [5], we show through a sim-
ple example that the quality of solutions found might deviate significantly, necessitating the design of new
solutions.

We model a wireless network as a weighted undirected graph G = (V,E, c(v), w(e)), where V is the
set of nodes, and E is the set of undirected edges (i.e., (u, v) ∈ E if u can transmit to v, and vice versa).
Node and edge weights are c(v) and w(e), respectively. Essentially, c(v) is either Pidle or Psleep based on
the power management state of a node v, whereas w(e) is determined by the power to transmit over link
(u, v), Ptx(u, v) and the power for receiving, Prx.

Connectivity requirements of source and destination nodes can be represented by a traffic demand matrix
T , where T = {(si, di, ri)|(si, di) ∈ S} and S is a set of source-destination pairs. Hence, associated with
each pair (si, di), there is a nonnegative, real valued traffic demand ri. Essentially, this demand matrix
provides the flexibility to represent multicast, broadcast and unicast traffic.

Based on this notation, the energy-efficient network design problem can be defined as follows:

Definition 1 Given a network G = (V,E, c(v), w(e)), the goal of energy-efficient network design is to find
a subgraph F , such that:

1. ∀(si, di, ri > 0) si is connected to di in F (i.e., there is a path from si to di in F )

2. Enetwork is minimized.

We simplify the definition of Enetwork to represent only idling and data transmission and reception costs:

Enetwork =
∑

u,e∈F

tidle(u) · c(u) + tdata(e) · w(e), (5)

where tdata(e) is the time spent in data communication. Energy costs from control overhead, sleeping and
Eswitch are ignored. (This simplification is only made for the analysis and not in the rest of paper.) While
the energy spent in sleeping is negligible, Eswitch can be amortized using reasonable a sleep scheduling
mechanism. The energy cost of control overhead is determined by the complexity of the algorithm that finds
the optimal solution to energy-efficient network design, if it exists.

Essentially, energy-efficient network design is the problem of constructing a node-weighted Steiner
forest (considering node and edge disjoint routes) and hence, is NP-hard [14]. A constant approximation
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algorithm, MPC (Minimum Power Configuration), has been proposed for a simplified version of this problem
for multiple sources and a single sink [5]. Essentially, a constant-bound approximation is possible if link
cost, w(e), is bounded by node cost, c(u) (i.e., w(e) ≤ α ·c(u)) and c(u) is constant. Executing a minimum-
weight Steiner tree approximation algorithm in this graph, with no node weights and with edge weights equal
to c(u), leads to an algorithm with an approximation ratio of 1 + α. However, even within this constant
bound, the quality of solutions generated by MPC might deviate significantly in terms of Enetwork. We next
illustrate this through a simple example.

In the network depicted in Fig. 1, there is one sink node, k sources, and nodes i and j. Two minimum-
weight Steiner trees in the network for k sources, denoted ST1 and ST2, are shown in Figs. 2 and 3. Both
trees are potential output of MPC. We next evaluate ST1 and ST2 based on their respective Enetwork.

Consider the case where each source generates one packet to send to the sink, link activity for one
packet lasts tdata and each node stays idle for a duration of tidle. Given Ptx(u, v) = α · z, Prx = Pidle = z,
Enetwork of ST1, EST1, is:

EST1 = (k + 1) · tidle · z + k · (k + 3)
2

· tdata · (α + 1) · z. (6)

The second term of the equation is calculated by observing that node k transmits 1 packet, node k − 1
transmits 2 packets, and node l transmits k− l +1 packets. The relay node i transmits k packets. Therefore,
there is a total of k · k+3

2 transmissions.
Similarly, Enetwork of ST2, EST2, is:

EST2 = (k + 1) · tidle · z + 2 · k · tdata · (α + 1) · z. (7)

Again, the second term of the equation is calculated by observing that k sources transmit one packet and the
relay node j transmits k packets.

Comparing EST1 to EST2,

EST1

EST2
=

(k + 1) · tidle + k · (k+3)
2 · (α + 1) · tdata

(k + 1) · tidle + 2 · k · (α + 1) · tdata
. (8)

The ratio of EST1 to EST2 is affected by tidle and tdata. It is easy to see that EST1 and EST2 are equivalent
if tidle is the dominating factor (e.g., when nodes do not use power management and traffic load is low). If
we assume that nodes switch immediately to sleep after each transmission, tidle = 0 and EST1 and EST2

are determined by transmission costs. In this case, EST1
EST2

= k+3
4 . Therefore, the Enetwork performance of

MPC can deviate with the number of sources. This shows that the structure of a Steiner tree and its impact
on communication needs to be considered in addition to the number of nodes and links on this tree.

In this section, we showed that even when traffic demands are restricted to many-to-one communication,
current approximation algorithms might produce solutions that differ significantly in terms of Enetwork. We
made several assumptions to simplify the analysis. In ad hoc networks, packet transmissions are not perfect,
the traffic demand, typically, cannot be determined in advance and a centralized solution is not acceptable.
However, designing distributed and online approximation algorithms for this problem is, obviously, chal-
lenging. Therefore, next, we systematically study three heuristic approaches that are not limited by these
assumptions.

4 Heuristic Approaches

Interpreting energy-efficient network design as a multi-objective optimization problem opens the door for
different heuristic approaches. Given the two objectives of minimizing communication-time energy and
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Figure 4: Power management state transition in ODPM.

idle-time energy, we can either prioritize one objective over the other or fuse the two objectives into one.
In this section, we study three natural heuristics: (1) minimize communication-time energy first, (2) jointly
optimize communication-time and idle-time energy and (3) minimize idle-time energy first. In this section,
we present the design details of these approaches highlighting their benefits and drawbacks, and present
their performance evaluation in Section 5.

4.1 Minimize Communication-Time Energy First

Since transmission power attenuates polynomially with distance, multiple transmissions over short distances
are expected to save energy in comparison to one direct transmission. Therefore, we first consider energy-
aware routing using power control as the primary optimization technique for energy-efficient network de-
sign. Once the relay nodes that minimize transmission costs are chosen, the rest of the nodes switch to a
power-save mode through power management.

We implement this approach using MTPR (Minimum Transmission Power Routing) for routing and
using ODPM for power management. Once a node is chosen as a relay by MTPR, ODPM keeps this node
in active mode using a keep-alive timer as long as the node is forwarding traffic (see Fig. 4). We experiment
with two flavors of MTPR: MTPR and MTPR+. While MTPR uses purely transmit power level as the
routing metric, MTPR+ also takes base transmit and receive power costs into account. More formally, the
cost functions used in MTPR and MTPR+ are as follows:

MPTR : f(u, v) = Ptx(u, v) (9)

MPTR+ : f(u, v) = Pbase + Ptx(u, v) + Prx (10)

MTPR is implemented as a reactive routing protocol. Different than traditional MANET protocols, in
MTPR route requests (RREQs) need an extra field to store the sum of f(u, v)’s along the route. When a
node receives a RREQ for the first time, it updates the cost of the route using the transmit power level and
rebroadcasts the packet. Duplicate RREQ packets may be rebroadcast and multiple route replies may be
sent, if they advertise a lower energy cost. In addition to route discovery, routing tables must be modified
to store the energy cost of each route. We implement the proposed changes over DSR. The route snooping
option of DSR is disabled due to potential inefficiencies from not having a list of f(u, v)’s for each hop.

This approach tries to find routes with lower communication costs at the cost of increased routing over-
head. However, in addition to this trade-off, idling energy is also expected to increase, which might impair
the beneficiality of this approach.

4.2 Heuristic for Joint Optimization

Incorporating both power control and power management into a routing protocol might enable higher energy
savings by minimizing both node and links costs. Essentially, given two routes with the same number
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of relay nodes, total energy consumption is minimized when the route with minimum link cost, which is
determined by the Pt(i, j)’s, is chosen. To construct routes based on both node and link costs, a natural cost
function is h(u, v) [5]:

h(u, v) =

{
(Ptx(uv) + Prx − 2 · Pidle) · ri

B , if i in AM

(Ptx(uv) + Prx − 2 · Pidle) · ri

B + Pidle, if i in PSM
(11)

where the rate of a flow between a source si and destination di is ri and bandwidth is B. Ptx(u, v) is
determined at transmission time using the RTS-CTS exchange at the MAC layer. When the rate information
is not available, h(u, v) is modified by setting ri

B = 1, which, however, does not capture the impact of traffic
rate on link costs. Next, we describe how h(u, v) can be applied to proactive and reactive routing.

Proactive routing using h(u, v): To use the h(u, v) metric, it is necessary to modify the routing table
structure and the route look-up. Each node needs to keep information about the power management state
of its neighbors and the transmit power levels to reach each neighbor. If available, si includes ri in each
packet header, and so, there is no need to maintain this information in the routing tables. Obviously, based
on different node and link costs, multiple entries for each destination might exist. When forwarding a packet
for source si, node u chooses the best next-hop node by finding an entry with minimum node cost + ri ·
link cost. We implement these modifications based on DSDV [15], similar to MPC [5]. However, MPC
implements the h(u, v) heuristic for a many-to-one scenario and proposes a different routing table structure,
which requires a route update whenever the rate of a flow changes. In our implementation, a route update
only needs to be triggered when the quality of a link or the power management state of a node changes.
Hence, our approach to using h(u, v) in DSDV for a many-to-many scenario incurs less control overhead.
Therefore, we do not consider MPC in our evaluations.

Reactive routing using h(u, v): To accommodate the h(u, v) metric, it is necessary to modify route dis-
covery and routing table maintenance. The modifications are similar to ones in MTPR; however, different
than MTPR, when a node receives a RREQ for the first time, it updates the cost of the route using the trans-
mit power level and its power management state information and rebroadcasts the packet.

In both reactive and proactive implementations, the joint-optimization approach tries to explore paths
with less energy consumption at the cost of increased routing messages. Therefore, in a dynamic network
environment, this approach is susceptible to producing an overwhelming amount of control traffic to track
link cost changes.

4.3 Power Management as Primary Optimization

Since link costs are prone to rapid fluctuations due to environmental factors, using such costs as a part of a
routing metric may result in unstable routes, which in turn results in high routing overhead. Therefore, the
final approach first minimizes node costs and second link costs. To support power management as a primary
optimization, we propose a two-stage protocol design. The goal of the first stage is to minimize the number
of relay nodes. In the second stage, selected nodes stay active and use TPC to minimize the link costs to
reach their neighbors.

We implement two prototypes of our two-stage approach based on two different protocols for node
selection. In the first prototype, the relay nodes are simply determined by a reactive shortest-path routing
algorithm, which is DSR in our implementation. Once a node is chosen as a relay, ODPM maintains the
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power management state of the node based on its current participation in routing. In the second prototype,
an on-demand topology management protocol, TITAN [12], is used to select relay nodes. ODPM might
activate redundant nodes and TITAN addresses this shortcoming by maintaining a backbone of nodes. The
basic idea is to favor nodes that are already in active mode as good candidates for routing, so that the nodes
in power-save mode can continue sleeping. When route diversity in the network is low, both protocols are
expected to behave similarly. However, as route diversity increases, TITAN reduces the number of relay
nodes.

Essentially, our two-stage approach provides a low-complexity solution to energy-efficient network de-
sign. Through this low complexity, it is possible to obtain low communication costs, which is the key to
achieving high energy savings without degrading communication performance.

5 Performance Evaluation

In this section, we present the first comprehensive study of energy-efficient network design by investigating
three heuristic approaches introduced in Section 4. Through analytical study, we first rule out the first
approach (i.e., minimize communication-time energy first) showing that it does not provide energy savings
for current wireless cards. Next, we evaluate second and third approaches (i.e., joint optimization and
power management as primary optimazation, respectively) via a simulation study. Finally, we extend our
simulation study to a hypothetical wireless card to evaluate if the first approach provides any energy savings
in comparison to the second and third approaches.

5.1 Analytical Study

To understand the effectiveness of power control as a primary optimization, it is necessary to analyze if
and when energy savings can be obtained by using relays between a source and a destination that are in
transmission range of each other rather than direct transmission. Obviously, the degree to which energy
efficiency can be attained is limited by radio design. Hence, based on the radio parameters, we determine
the optimal hop count that justifies using the transmission power level as a routing metric. The steps to derive
this optimal hop count are similar to [16, 17], where characteristic distance is introduced as the optimal hop
distance that minimizes the energy cost of end-to-end transmission. However, the derivation of characteristic
distance ignores Epassive(i), and therefore, is only a function of transmission power, Ptx(i, j), reception
power, Prx, and the path loss exponent [16]. This omission is addressed in [17]. However, the relationship
between transmission range and characteristic distance is not considered. Essentially, characteristic distance
might be greater than the transmission range, in which case only direct transmission is feasible. To capture
this effect of transmission range on optimal hop count, we define the characteristic hop count as the optimal
number of hops between two nodes that are in transmission range of each other.

To derive characteristic hop count, we analyze the total energy consumption from an end-to-end trans-
mission, Eroute. Using equations from Section 2.1,

Eroute =
m+1∑

i

Eactive(i) + Epassive(i), (12)

where i = 1 is the source and i = m + 1 is the destination, and there are m − 1 relays. We assume that the
nodes on the route are in active mode, and hence, tsleep = 0 and Eswitch = 0. Ignoring Econtrol(i),

Eroute =
m∑

i=1

tdata
tx (i) · Ptx(i, i + 1) + tdata

rx (i) · Prx + tidle(i) · Pidle. (13)
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Table 1: Radio parameters for current cards (mW )
Cards Pidle Prx Ptx(d)
Aironet 350 [18] 1350 1350 2165 + 3.63 · 10−7 · d4

Cabletron [3] 830 1000 1118.2 + 7.2 · 10−8 · d4

Hypothetical 1118.2 + 5.16 · 10−6 · d4

Mica2 mote [19] 21 21 10.2 + 9.44 · 10−7 · d4

LEACH (1Mb/s)
x · 50 50 50 + 1.3 · 10−6 · d4

50 + 10−2 · d2

For a given rate R, bandwidth B, and time t, tdata
rx (i) = tdata

tx (i) = R
B · t, except tdata

rx (1) = 0 and tdata
tx (m +

1) = 0. The remainder of t is spent in idling. Since Ptx(i, i + 1) is a function of the distance, di, between
node i and node i + 1, Ptx(i, i + 1) can be replaced with Ptx(di). Hence,

Eroute =
R

B
· t · (

m∑
i=1

Ptx(di) + m · Prx) + [(m + 1) − 2 · m · R

B
] · t · Pidle. (14)

Assuming a 1/dn path loss, Ptx(d) can be modeled as Ptx(d) = Pbase +α2 ·dn, where α2 ·dn represents the
transmit power level, Pt(i, j), and α2 accounts for the power to drive the transmitter amplifier [16]. Without
loss of generality, we assume a uniform transmission range, D. However, the analysis of characteristic hop
count can easily be extended to the non-uniform case. Since Eroute is convex, it is minimized when all hop
distances are equal. Therefore, using di = D/m,

Eroute =
R

B
· t · m · (Ptx(D/m) + Prx) + [(m + 1) − 2 · m · R

B
] · t · Pidle. (15)

To find the hop count that minimizes Eroute, mopt, we solve ∂Eroute
∂m = 0, which results in:

mopt = n

√√√√ (n − 1) · α2

Pbase + Prx + 1−2(R/B)
R/B · Pidle

· D. (16)

Since the characteristic hop count is an integral value, it is �mopt� if mopt < 1, and �mopt� if mopt ≥ 1.
By definition, relay-based communication saves energy if the characteristic hop count satisfies �mopt� ≥

2. Therefore, we plot mopt for four current wireless cards as R/B increases (see Fig. 7). The radio model
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for each wireless card is given in Table 1. We use the existing models for Cabletron [20] and the first
order radio model, denoted as LEACH, proposed in [21]. The transmission power models for Aironet 350
and Mica2 [19] are derived using polynomial curve fitting on existing measurement studies (see Fig. 5 and
Fig. 6). In Fig. 7, since mopt < 2 for all rates, only direct transmission achieves optimal energy savings for
current cards. The case when the bandwidth is fully utilized (i.e., R/B = 0.5) corresponds to the case when
Pidle has no effect. Therefore, even when the nodes can wake-up neighbors at the exact required time (i.e.,
when there is no idling), current cards do not save energy through relay-based communication.

Power control as an optimization metric is meaningful only for cards with certain characteristics. For
instance, setting α2 high, such as α2 ≥ 5.16 · 10−6, for Cabletron satisfies mopt ≥ 2 for R/B = 0.25
(see Hypothetical Cabletron in Fig. 7). Consequently, the transmit power to reach the same transmission
range, D = 250m also increases up to 20W . However, this transmission range cannot be supported due to
transmit power limits of 1W by the FCC for the USA [22], and 100mW by ETSI for Europe [23]. Given
these limitations, we are not aware of any wireless card that satisfies mopt ≥ 2. Furthermore, new wireless
radios consume less energy in transmit mode than receive mode [24], which makes using relays between
two nodes in transmission range even more questionable. Nevertheless, in Section 5, we also evaluate the
Hypothetical Cabletron card to provide a thorough study of the trade-offs between power control and power
management.

In this section, we have shown that energy-aware routing protocols that introduce additional relays
between a source and a destination (like PARO [8]) actually use more energy when the energy characteristics
of the radios are ignored. Unlike previous work that considers overhead from collisions and overhearing as
a disadvantage to utilizing intermediate hops [25], our results indicate that multi-relay communication is not
beneficial even in ideal channel conditions. It must be noted that direct long links, which are more favorable
in terms of energy use, are used as long as they provide some reliability and otherwise, multi-hop routes
might need to be discovered. Furthermore, we have evaluated power control only from an energy perspective
and not considered its impact on spatial reuse. While power control improves spatial reuse, especially when
the communication in the network consists mostly of one-hop flows, its advantage in the presence of multi-
hop flows is not obvious. We will study the trade-off between energy and spatial reuse due to relay-based
communication as future work.

5.2 Simulation Study

The goal of our performance evaluation is to understand the effectiveness of the heuristic approaches for
energy-efficient network design. We use delivery ratio to measure communication performance, which is
the ratio of the number of received data packets to the number of sent data packets. The performance in
terms of energy is evaluated by energy goodput, which is the ratio of total application bits delivered to the
total energy consumed (i.e., Enetwork).

We use ns2 [26] for our simulations. In Sections 5.2.1 and 5.2.2, we present results with the Ca-
bletron [3] card (see Table 1). We simulate the following protocols: proactive joint optimization (DSDVH-
ODPM), reactive joint optimization with and without traffic rate information (DSRH-ODPM(rate) and
DSRH-ODPM(norate), respectively), and the two-stage approaches with DSR and TITAN (DSR-ODPM-PC
and TITAN-PC). As indicated in the labels, the underlying power management protocol is ODPM, which
uses IEEE-802.11 PSM for sleep scheduling. (We omit the pure PSM results, where all protocols show poor
performance since PSM limits network capacity as traffic load increases.) For PSM, the beacon interval is
0.3s and the ATIM window is 0.02s, as suggested in [3]. Both the beacon and the ATIM intervals are long
enough to compensate for the cost of switching between sleep and idle states. For ODPM, the keep-alive
timers are set to 10s for RREPs and 5s for data messages.
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Figure 8: Delivery ratio for 500 × 500 network.
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Figure 9: Energy goodput for 500×500 network.

Section 5.2.3 presents results with the Hypothetical Cabletron card, described in Section 4.1. The goal
of this study is to understand the performance of power control as a primary optimization technique. We
simulate two flavors of MTPR: MTPR and MTPR+. While MTPR uses transmit power level as the routing
metric, MTPR+ also takes base transmit and receive power costs into account.

For both cards, transmit power levels are assumed to be infinitely adjustable. Although a continuous
transmit power control model (instead of discrete transmit power levels) is optimistic, it permits us to con-
centrate on the trade-offs in energy-efficient network design.

5.2.1 Static Networks

In the first set of simulations, static networks with different network sizes and node densities are studied to
understand pure protocol performance without mobility.

Small Networks In these simulations, 50 nodes are placed, uniformly at random, in a 500m × 500m
static network. There are 10 CBR flows. The start time for each flow is determined randomly between
20s and 25s. Each simulation runs for 900s. Each graph depicts an average of 5 runs and 95% confidence
intervals. Similar performance trends are observed with traffic demands based on exponentially distributed
inter-arrival times, which are not presented for brevity.

To understand the impact of traffic load, we evaluate performance as the traffic rate of each flow in-
creases. The energy goodput performance of all approaches except DSDVH-ODPM is similar (see Fig. 9).
Essentially, idling energy is the dominating factor since data communication consumes a small percentage
of a node’s energy. Since all approaches except DSDVH-ODPM use approximately the same number of
nodes for communication (≈ 26 nodes), their energy goodput performance is similar in a small network.

Due to periodic and triggered routing table updates, DSDVH-ODPM performs significantly worse in
terms of energy goodput (e.g., ≈ 85% lower compared to TITAN-PC). Furthermore, since the sleep schedul-
ing mechanism is IEEE 802.11 PSM, these updates keep all nodes awake for an entire beacon interval,
increasing idling energy consumption. To reduce this adverse effect of routing table updates, we evaluate
the following improvements for IEEE 802.11 PSM [3]: (1) individually advertising each broadcast message
and (2) using an advertised traffic window so that a node can sleep after it receives all advertised messages.
Additionally, we reduce the keep-alive timer for data packets to 0.6s (i.e., two beacon intervals) and RREPs
to 1.2s. This version of DSDVH-ODPM is labeled DSDVH-ODPM(0.6,1.2)-Span in Figs. 8 and 9. As
expected, the energy goodput of DSDVH-ODPM improves with these parameters (e.g., now only 10%-49%
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Figure 10: Delivery ratio for 1300x1300 net-
work.
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Figure 11: Energy goodput for 1300x1300 net-
work.

Table 2: Performance as node density increases
# of nodes DSR-ODPM-PC TITAN-PC

Delivery Ratio
300 0.933± 0.056 0.993 ± 0.004
400 0.405± 0.093 0.922 ± 0.102

Energy Goodput (bit/J)
300 429.600± 210.264 654.294± 55.216
400 79.420± 31.776 763.700± 443.013

worse than TITAN-PC). However, since the advertised traffic window limits the amount of traffic updates
that can be sent, the delivery ratio of DSDVH-ODPM(0.6,1.2)-Span is 74%-92%, while the rest perform
with 100% delivery ratio (see Fig. 8).

These results show that the extra overhead for route discovery in joint optimization approaches is not
worth its cost even in small networks. Essentially, the energy savings obtained are minimal in comparison
to the two-stage protocols even if the energy cost of routing is ignored.

Large Networks To evaluate the scalability of the protocols, we next present simulation results in larger
networks. We simulate 200 nodes placed uniformly at random, in a 1300m × 1300m static network. There
are 20 CBR flows. The start time for each flow is determined randomly between 20s and 25s. Each simula-
tion runs for 600s. Each graph depicts an average of 10 runs and 95% confidence intervals.

In contrast to small networks, the differences in communication and energy conservation of the differ-
ent approaches are now evident (see Figs. 10 and 11). First, the performance of the two-stage protocols,
DSR-ODPM-PC and TITAN-PC are comparable. Second, The two-stage protocols perform significantly
better than joint optimization protocols. There is a threshold per-flow rate, 3.5Kb/s, where the performance
of the joint optimization protocols starts degrading and shows high deviation. Essentially, as the rate in-
creases, the control overhead of joint optimization protocols, proactive or reactive, starts interfering with
data communication.

The evaluations up to this point show that DSR-ODPM-PC and TITAN-PC perform similarly. Therefore,
we further evaluate these two protocols in a 1300x1300 network with different node densities, setting the
per-flow traffic rate to 4Kb/s and without changing the positions of source and destination nodes. Essentially,
routing overhead of DSR-ODPM-PC explodes with network density, and therefore, limits the time a node
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Figure 12: Delivery ratio as mobility increases.
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Figure 13: Energy goodput as mobility increases.

can sleep. Since, in TITAN, the already active nodes dominate route discovery, TITAN-PC can scale to
denser networks in comparison to DSR-ODPM-PC (see Table 2).

These results show that two-stage approaches outperform joint optimization approaches in terms of
scalability. Furthermore, as the network density increases, TITAN-PC is the only protocol that can maintain
high network performance.

5.2.2 Mobile Networks

An important characteristic of ad hoc networks is the mobility of nodes, which determines how fast the link
characteristics change. In this section, our goal is to evaluate how necessary it is to adapt to such dynamics
to provide energy conservation. In these simulations, 50 nodes are distributed uniformly at random in a
600m× 600m network. There are 10 source and destination pairs. The traffic is CBR, and the start time for
each flow is determined randomly between 20s and 25s. Each graph represents an average of five runs.

We use the extended random waypoint mobility model [27]. To evaluate the impact of increasing mobil-
ity, we simulate node speed uniformly distributed between x-19m/s, where x is 1, 5, 10, 18. The pause times
are uniformly distributed between 0-20s. Each run is 900s, which results in steady-state average speeds of
5.11m/s, 7.85m/s, 9.68m/s, 10.98m/s and 11.63m/s.

Simulation results show that as the mobility rates increase, DSDVH-ODPM is infeasible since it cannot
keep up with the changes in the topology (see Fig. 12). Essentially, in the presence of mobility, a proac-
tive protocol spends a large capacity of the network and the energy of nodes for exchanging routing table
information. As expected, the two-stage approaches achieve the best delivery ratio and energy goodput
performance since they are less susceptible to link cost changes compared to joint optimization approaches.
Furthermore, since route discoveries are triggered more often due to frequent route changes, the overhead
from route discovery reduces the energy goodput for the joint optimization approaches (see Fig. 13).

5.2.3 Hypothetical Networks

In this section, we evaluate all protocols with the Hypothetical Cabletron card, which provides energy sav-
ings from relay-based communication when the bandwidth utilization hits 25%. The goal of our study is to
understand the trade-offs between all three heuristics when power control as a primary optimization tech-
nique is also feasible. For the sake of clarity of graphs, we omit the results for DSR-PC and DSRH(rate).
DSR-PC performs worse than TITAN-PC but with similar trends, whereas DSRH(rate) is comparable to
DSRH(norate).
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Figure 14: Energy goodput with perfect sleep scheduling.
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Figure 15: Energy goodput with ODPM-like scheduling.

To allow all protocols to exhibit their characteristic behavior (e.g., MTPR favors short hops and TITAN
focuses traffic on single nodes), we simulate a grid topology, where nodes are closely spaced. Specifically,
49 nodes are placed on a 7 × 7 grid, in a 300m × 300m static network. There are 7 CBR flows, where a
source on the left side sends to a destination on the right side. The start time for each flow is determined
randomly between 20s and 25s. Each simulation is 900s.

To understand when link cost as a routing metric pays off, we simulate per-flow traffic rates between
2K-200K (above 200K is beyond node capacity). To understand the potential of each approach without the
side effects of high rates (e.g., packet losses due to buffer overflows or contention), we find the time when
the routes stabilize for the 2K rate and use these routes to calculate Enetwork for higher rates.

Fig. 14 shows the results with perfect sleep scheduling, where nodes wake up only when they are needed.
As expected, with no idling costs, TITAN-PC achieves lower energy goodput compared to other approaches.
Essentially, using longer links becomes more expensive as the traffic rate increases, although it does not
hurt the performance for low rates. Furthermore, since the optimal hop count is 2 with the Hypothetical
Cabletron, MTPR, which finds longer routes, performs worse than MTPR+. Fig. 15 shows the energy
goodput when active nodes are always idling in the expectation of traffic, while the rest of the nodes are
in sleep (like in ODPM). In this case, TITAN-PC performs better, and MTPR+ and DSRH(norate) take
over only at 200Kb/s. Furthermore, the difference in performance at 200K is less pronounced compared to
Fig. 14.

These results show that even with a hypothetical card and ideal scenarios, power control as a primary
optimization and joint optimization provide high energy savings only with perfect sleep scheduling. When
idling costs are taken into account, these approaches outperform the two-stage approach for only very high
bandwidth utilization. However, it is not even clear if such high flow rates can be supported in multi-hop
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wireless networks due to potentially high contention and delay. While the performance of the two-stage
approach degrades with high rates for perfect sleep scheduling, higher or comparable energy savings are
achieved with more realistic sleep scheduling. Therefore, our two-stage approach will remain valuable
unless the characteristics of wireless cards change and perfect sleep scheduling becomes more feasible.

6 Conclusion

To save energy from wireless communication, an energy-efficient network design needs to reduce energy
consumption for all radio states. In this paper, we explore the complex interactions between techniques that
minimize energy consumption in each radio state and study three heuristic approaches. Evaluation results
show that a two-stage approach that gives priority to idle-time energy consumption achieves the desired
property of being both bandwidth and energy-efficient. Furthermore, our study exposes a commonly held
myth about the potential energy savings from power control as a primary energy conservation technique.

In this work, we mainly consider minimizing instantaneous network energy consumption, which does
not necessarily translate into longer network lifetime. The lifetime of a wireless network is dependent on
many factors such as the type of application, network traffic, number of nodes, available energy, path loss
and radio energy parameters [16]. Due to the complexity of energy-efficient network design, incorporating
such lifetime constraints defined by the application is part of our future work. Additionally, we have not
considered the congestion and contention effects from limiting the number of relay nodes. Furthermore,
TPC is considered only from an energy conservation perspective. However, short-range communication
also impacts spatial reuse in the network. We believe that the two-stage approach offers the potential for
both energy savings and spatial reuse from TPC. Essentially, energy savings are obtained since TPC is only
used for choosing an appropriate power level between two relays without affecting the number of relays,
which also allows spatial reuse for one-hop flows. Nevertheless, we leave the study of such congestion and
spatial reuse effects on routing and energy conservation as future work.
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