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Abstract

We show how one can use rewriting logic to faithfully capture (not implement) various operational se-
mantic frameworks as rewrite logic theories, namely big-step and small-step semantics, reduction seman-
tics using evaluation contexts, and continuation-based semantics. There is a one-to-one correspondence
between an original operational semantics and its associated rewrite logic theory, both notationally and
computationally. Once an operational semantics is defined as a rewrite logic theory, one can use standard,
off-the-shelf context-insensitive rewrite engines to “execute” programs directly within their semantics;
in other words, one gets interpreters for free for the defined languages, directly from their semantic
definitions. Experiments show that the resulting correct-by-definition interpreters are also reasonably
efficient.

1 Introduction

Various operational semantics of programming languages have been introduced in the literature, build-
ing upon the intuition that executions of programs can be regarded as context-sensitive reductions. The
context-sensitive nature of operational semantics apparently precludes their execution on standard, context-
insensitive term rewriting engines. Typically, one gives a semantics to a language on paper following one or
more operational semantics styles, and then, to “execute” it, one implements an interpretor for the desired
language following “in principle” its operational semantics, but using one’s favorite programming language
and specific tricks and optimizations for the implementation. This way, in practice there is a gap between
the formal operational semantics of the language and its implementation. We argue that such a gap can be
eliminated if one uses rewriting logic as a semantic infrastructure for reduction-based operational semantics
of languages, in the sense that the semantic definition of a language actually is its interpretor. All one needs
to do is to execute the language definition on standard existing context-insensitive term rewrite engines.

This paper is part of the rewriting logic semantics project [MR06, MR04]. The broad goal of the project
is to develop a tool supported computational logic framework for modular programming language design,
semantics, formal analysis and implementation, based on rewriting logic [Mes92]. In this paper we focus on
only two aspects of the project: (1) the computational relationships between various operational semantics
and their corresponding rewrite logic theories, and (2) experiments showing the practical feasibility of our
approach. Regarding (1), we show that for a particular language formalized using any of the big-step, small-
step or reduction-based using evaluation contexts semantics, say L , one can devise a rewrite logic theory,
say RL, which is precisely the intended original language definition L, not an artificial encoding of it : there
is a one-to-one correspondence between derivations using L and rewrite logic derivations using RL (modulo
different but minor and ultimately irrelevant notational conventions).
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In a nutshell, rewriting logic is a framework that gives complete semantics (that is, models that make
the expected rewrite relation, or “deduction”, complete) to the otherwise usual and standard term rewriting
modulo equations. If one is not interested in the model-theoretical semantic dimension of the proposed
framework, but only in its operational (including executability, proof theoretical, model checking and, in
general, formal verification) aspects, then one can safely think of it as a framework to define programming
languages as standard term rewrite systems modulo equations. The semantic counterpart is achieved at
no additional cost (neither conceptual nor notational), by just regarding rewrite systems as rewrite logic
theories. An immediate advantage of defining a language as a theory in an existing logic (as opposed to as a
new logic in which one can derive precisely the intended computations), is that one can use the entire arsenal
of techniques and tools developed for the underlying logic to obtain corresponding techniques and tools for
the particular programming language defined as a theory. For example, the LTL model checker obtained for
Java 1.4 from its rewrite logic definition in Maude [CDE+02] compares favorably with state-of-the-art model
checkers developed specifically for Java [MR06]. In this paper we also show that rewrite engines capable of
executing rewrite logic theories translate into reasonably effective “interpreters” for the defined languages.

The three major contributions of this paper are: (1) a definition of (context-sensitive) reduction se-
mantics using (context-insensitive) rewriting logic; (2) a continuation-based definitional style based on a
first-order representation of continuations in rewriting logic, together with its computational equivalence
with reduction semantics using evaluation contexts; and (3) experiments showing that the resulting rewrite
logic definitions, when executed on rewrite engines, lead to reasonably efficient interpreters. An auxiliary,
less major contribution is a small-step operational semantics in rewriting logic in which one can control the
number of small-steps to be applied. The methodological and educational contribution is to show, from var-
ious perspectives, that rewriting logic can serve as a unifying algebraic framework for operational semantics
of programming languages.

2 Rewriting Logic

We here informally recall some basic notions of rewriting logic and of its important sublogic called equational
logic, together with operational intuitions of term rewriting modulo equations.
Equational logic is perhaps the simplest logic having the full expressivity of computability [BT95]. One
can think of it as a logic of “term replacement”: terms can be replaced by equal terms in any context.
An equational specification is a pair (Σ, E), where Σ is a set of “uninterpreted” operations, also called its
“syntax”, and E is a set of equations of the form (∀X) t = t′ constraining the syntax, where X is some set
of variables and t, t′ are well-formed terms over variables in X and operations in Σ. Equational logics can
be many-sorted [GM82] (operations in Σ have arguments of specific sorts), or even order-sorted [GM92], i.e.,
sorts come with a partial order on them; we use order-sorted specifications in this paper. Also, equations
can be conditional, where the condition is a (typically finite) set of pairs u = u′ over the same variables X.
We write conditional equations (of finite condition) as (∀X) t = t′ ⇐ u1 = u′1 ∧ · · · ∧ un = u′n. As usual,
we drop the quantification in front of the equations and assume universal quantification over all variables
occurring in the equation. In equational specifications meant to reason about ground terms, one can add the
special condition otherwise to an equation, with the meaning that the equation can be used only when other
equations have failed at the current position. It is shown in [CDE+02], for example, that this attribute can
be easily eliminated by slightly transforming the specification.
Term rewriting is a related approach in which equations are oriented left-to-right, written (∀X) l→ r ⇐
u1 → u′1 ∧ · · · ∧ un → u′n and called rewrite rules. It is crucial in our approach that rewrite rules allow
matching in conditions; in other words, u′1, ..., u′n can incrementally add new variables to those of l, which
can be used sequentially in the subsequent conditions and in r. A rewrite rule can be applied to a term t at
any position where l matches as follows: find some subterm t′ of t, that is, t = c[t′] for some context c, which
is an instance of the left-hand-side term (lhs), that is t′ = θ1(l) for some variable assignment θ1, then verify
that θi(ui)→∗ θi+1(u′i) by recursively calling the rewriting engine, where θi+1 extends θi with substitutions
for the variables in u′i but not bound yet by θi; when all conditions are satisfied, replace t′ by θn(r) in t.
This way, the term t can be continuously transformed, or rewritten. A pair (Σ, R), where R is a set of such
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oriented rewrite rules, is called a rewrite system. The corresponding term rewriting relation is written →R.
If no rule in R can rewrite a Σ-term, than that term is said to be in normal form w.r.t. R.

Term rewriting can be used as an operational mechanism to perform equational deduction; we say that
equational specifications can be executed by rewriting. There are many software systems that either specif-
ically implement term rewriting efficiently, known also as rewrite engines, or support term rewriting as part
of a more complex functionality. Any of these systems can be used as an underlying platform for execution
and analysis of programming languages defined using the techniques proposed in this paper. Without at-
tempting to be exhaustive, we here only mention (alphabetically) some engines that we are more familiar
with, noting that many functional languages and theorem provers provide support for term rewriting as well:
ASF+SDF [vdBHKO02], CafeOBJ [DF98], Elan [BCD+00], Maude [CDE+02], OBJ [GWM+93], Stratego
[Vis03]. Some of these can achieve remarkable speeds on today’s machines, in the order of tens of millions
of rewrite steps per second.

Because of the forward chaining executability of term rewriting and also because of these efficient rewrite
engines, equational specifications are often called executable. As programming languages tend to be increas-
ingly more abstract due to the higher speeds of processors, and as specification languages tend to be provided
with faster execution engines, the gap between executable specifications and implementations, in case there
has ever been any, is becoming visibly narrower, that is, the pragmatic, semantics-reluctant language de-
signer, can safely regard the subsequent semantic definitions of language features as implementations, in
spite of their conciseness and mathematical flavor.

While equational logic and its execution via term rewriting provide as powerful computational properties
as one can get in a sequential setting, these were not designed to specify or reason about transitions. The
initial algebra model of an equational specification collapses all the computationally equivalent terms, but it
does not say anything about evolution of terms.
Rewriting logic [Mes92], which should not be confused with term rewriting, is a logic for concurrency. A
rewrite theory is a triple (Σ, E, R), where (Σ, E) is an equational specification and R is a set of rewrite rules.
Rewriting logic therefore extends equational logic with rewrite rules, allowing one to derive both equations
and rewrites (or transitions). Deduction remains the same for equations, but the symmetry rule is dropped
for rewrite rules. Models of rewrite theories are (Σ, E)-algebras enriched with transitions satisfying all the
rewrite rules in R. The distinction between equations and rewrite rules is only semantic. They are both
executed as rewrite rules by rewrite engines, following the simple, uniform and parallelizable principle of
term rewriting. Therefore, if one is interested in just a dynamic semantics of a language, one needs to make
no distinction between equations and rewrite rules. Rewriting logic is a framework for true concurrency :
the locality of rules, given by their context-insensitiveness, allows multiple rules to apply at the same time
provided they don’t modify the shared part.

2.1 Rewriting Logic Deduction

Given R = (Σ, E ∪ A,R), the sentences that R proves are universally quantified rewrites of the form
(∀X) t −→ t′, with t, t′ ∈ TΣ(X)k, for some kind k, which are obtained by finite application of the following
rules of deduction:

• Reflexivity. For each t ∈ TΣ(X), (∀X) t −→ t

• Equality. (∀X) u −→ v E ∪A ` (∀X)u = u′ E ∪A ` (∀X)v = v′

(∀X) u′ −→ v′

• Congruence. For each f : s1 . . . sn −→ s in Σ, with ti ∈ TΣ(X)si , 1 ≤ i ≤ n, and with t′jl
∈ TΣ(X)sjl

,
1 ≤ l ≤ m,

(∀X) tj1 −→ t′j1 . . . (∀X) tjm
−→ t′jm

(∀X) f(t1, . . . , tj1 , . . . , tjm , . . . , tn) −→ f(t1, . . . , t′j1 , . . . , t
′
jm

, . . . , tn)
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Figure 1: Visual representation of rewriting logic deduction.

• Replacement. For each θ : X −→ TΣ(Y ) and for each rule in R of the form

(∀X) t −→ t′ if (
∧
i

ui = u′i) ∧ (
∧
j

wj −→ w′
j),

(
∧

x(∀Y ) θ(x) −→ θ′(x)) ∧ (
∧

i(∀Y ) θ(ui) = θ(u′i)) ∧ (
∧

j(∀Y ) θ(wj) −→ θ(w′
j))

(∀Y ) θ(t) −→ θ′(t′)

• Transitivity
(∀X) t1 −→ t2 (∀X) t2 −→ t3

(∀X) t1 −→ t3

We can visualize the above inference rules as in Figure 1.
The notation R ` t −→ t′ states that the sequent t −→ t′ is provable in the theory R using the above

inference rules. Intuitively, we should think of the inference rules as different ways of constructing all the
(finitary) concurrent computations of the concurrent system specified by R. The “Reflexivity” rule says
that for any state t there is an idle transition in which nothing changes. The “Equality” rule specifies
that the states are in fact equivalence classes modulo the equations E. The “Congruence” rule is a very
general form of “sideways parallelism,” so that each operator f can be seen as a parallel state constructor,
allowing its nonfrozen arguments to evolve in parallel. The “Replacement” rule supports a different form
of parallelism, which could be called “parallelism under one’s feet,” since besides rewriting an instance of
a rule’s lefthand side to the corresponding righthand side instance, the state fragments in the substitution
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of the rule’s variables can also be rewritten, provided the variables involved are not frozen. Finally, the
“Transitivity” rule allows us to build longer concurrent computations by composing them sequentially.

When doing proofs, is it usually easier to work with a “one step” relation →1, defined on ground terms.
By abuse of notation, we say that R ` t→1 t′ iff t and t′ satisfy the following:

1. R ` t→ t′;

2. For any t′′ such that R ` t→ t′′ and R ` t′′ → t′ we have that E ∪A ` t′′ = t or E ∪A ` t′′ = t′; and

3. E ∪A 6` t = t′′.

The relation →≤1 is defined requiring all but the last condition. Similarly, one can define relations →n (or
→≤n) by requiring the existence of terms (ti)0≤i≤n such that E ∪ A ` t0 = t, E ∪ A ` tn = t′ and for
0 ≤ i < n, R ` ti →1 ti+1 (or R ` ti →≤1 ti+1). Note that, the above convention also defines →0 as the
pairs of terms provable without using rules.

We define programming languages as rewrite logic theories. Specifically, in this approach, we use the fact
that rewriting logic deduction is done modulo equations to faithfully capture the computational granularity of
a language by making rewriting rules all intended computational steps, while using equations for convenient
equivalent structural transformations of the state which should not be regarded as computation steps. Since
rewriting logic is a computational logical framework, “execution” of programs becomes logical deduction.
That means that one can formally analyze programs or their executions directly within the semantic definition
of their programming language. In particular, executions can be regarded as proofs, so one can log and check
them, thus obtaining a framework for certifiable execution of programs. Moreover, generic analysis tools for
rewrite logic specifications can translate into analysis tools for the defined programming languages. For
example, Maude provides a BFS reachability analyzer and an LTL model checker for rewrite logic theories;
these translate immediately into corresponding BFS reachability analysis and LTL model checking tools for
the defined languages, also for free. In this paper we only stress the capability of rewrite engines to execute
rewrite logic theories, thus yielding language interpreters. All our definitions are interpreted by rewrite
engines as deterministic conditional rewrite systems for execution purposes. A conditional term rewrite
system is deterministic if any rule r0 → ln+1 ⇐ l1 → r1 ∧ . . . ∧ ln → rn satisfies vars(lj) ⊆

⋃j−1
k=0 vars(rk). A

rewrite engine supporting deterministic conditional term rewrite systems solves conditions from left to right,
accumulating the substitution. Most currently available rewriting engines support this very general form of
rewriting. We will also make use of it when presenting various semantics as rewriting logic theories.

3 A Simple Imperative Language

To illustrate the various operational semantics, we have chosen a small imperative language having arith-
metic and boolean expressions with side effects (increment expression), short-circuited boolean operations,
assignment, conditional, loop, sequential composition, blocks and halt. Here is its syntax:

AExp ::= Var |# Int |AExp +AExp|AExp -AExp|AExp *AExp|
AExp /AExp| ++ Var

BExp ::= # Bool |AExp <=AExp|AExp >=AExp|AExp ==AExp|
BExp andBExp|BExp orBExp| notBExp

Stmt ::= skip |Var :=AExp|Stmt ;Stmt | {Stmt } |
ifBExp thenStmt elseStmt | whileBExp Stmt | haltAExp

Pgm ::= Stmt .AExp

The semantics of ++x is that of incrementing the value of x in the store and then returning the new value.
The increment is done at the moment of evaluation, not after the end of the statement as in C/C++. Also,
we assume short-circuit semantics for boolean operations.

This BNF syntax is entirely equivalent with an algebraic signature having one (mixfix) operation definition
per production, terminals giving the name of the operation and non-terminals the arity. For example, the
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production defining if-then-else can be seen as an operation

if then else : BExp× Stmt× Stmt→ Stmt

We will use the following conventions for variables throughout the remaining of the paper: X ∈ Var,
A ∈ AExp, B ∈ BExp, St ∈ Stmt, P ∈ Pgm, I ∈ Int, T ∈ Bool = {true, false}, S ∈ Store, any of them primed
or indexed.

The next sections will present rewriting logic definitions of various operational semantics ( big step, small
step and reduction using evaluation contexts styles) for this simple language as well as their corresponding
standard operational semantics definitions, stating the relation between them and pointing a set of strengths
and weaknesses for each framework. The reader is referred to [Kah87, Plo04, WF94] for further details on
the described operational semantics.

We assume equational definitions for basic operations on booleans and integers, and assume that any
other theory defined from here on includes them. One of the reasons for which we wrapped booleans and
integers in the syntax is precisely to distinguish them from the corresponding values, and thus to prevent the
“builtin” equations from reducing expressions like 3 + 5 directly in the syntax (we wish to have full control
over the computational granularity of the language), since we aim for the same computational granularity.

4 Store

Unlike in various operational semantics, which usually abstract stores as functions, in rewriting logic we
explicitly define the store as an abstract datatype: a store is a set of bindings from variables to values,
together with two operations on them, one for retrieving a value, another for setting a value. We argue that
well formed stores correspond to partially defined functions. Having this abstraction in place, we can regard
them as functions for all practical purposes from now on.

To define the store, we assume a pairing “binding” constructor “ 7→ ”, associating values to variables,
and an associative and commutative operation “ ” of unit ∅ to put together such bindings. Equational
definitions EStore of operations [ ] to retrieve the value of a variable in the store and [ ← ] to update the
value of a variable are:

(S X 7→ I)[X] = I
(S X 7→ I)[X′] = S[X′]⇐ X 6= X′

(S X 7→ I)[X ← I′] = S X 7→ I′

(S X 7→ I)[X′ ← I′] = S[X′ ← I′] X 7→ I ⇐ X 6= X′

∅[X ← I] = X 7→ I

Since this definitions are equational, from a rewriting logic semantic point of view they are atomic:
transitions are done modulo these equations. This way we can maintain a coarser computation granularity,
while making use of helping functions defined using equations.

A store s is well-formed if EStore ` s = x1 7→ i1 . . . xn 7→ in for some xj ∈ Var, ij ∈ Int, such that xi 6= xj

for any i 6= j. We say that a store s is equivalent to a partial function σ : Var ◦→ Int, written s ' σ, if s is
well-formed and behaves as σ, that is, if for any x ∈ Var, i ∈ Int, σ(x) = i iff EStore ` s[x] = i. We recall
that, given a store-function σ, σ[i/x] is defined as the function mapping x to i and other variables y to σ(y).

Proposition 1 Let x, x′ ∈ Var, i, i′ ∈ Int, s, s′ ∈ Store and σ, σ′ : Var ◦→ Int.

1. ∅ '⊥ where ⊥ is the function undefined everywhere.

2. (s x 7→ i) ' σ implies that s ' σ[⊥ /x].

3. If s ' σ then also s[x← i] ' σ[i/x].

Proof.

1. Trivial, since EStore 6` ∅[x] = i for any x ∈ Var, i ∈ Int.
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2. Consider an arbitrary x′. If x′ = x, then EStore 6` s[x′] = i′ for any i′, since otherwise we would
have EStore ` s = s′ x 7→ i′ which contradicts the well definedness of s x 7→ i. If x′ 6= x, then
EStore ` s[x′] = (s x 7→ i)[x′].

3. Suppose s ' σ. We distinguish two cases - if σ is defined on x or if it is not. If it is, then let
us say that σ(x) = i′; in that case we must have that EStore ` s[x] = i′ which can only happen if
EStore ` s = s′ x 7→ i′, whence EStore ` s[x← i] = s′ x 7→ i. Let x′ be an arbitrary variable in Var. If
x′ = x then

EStore ` (s[x← i])[x′] = (s′ x 7→ i)[x′] = i.

If x′ 6= x then

EStore ` (s[x← i])[x′] = (s′ x 7→ i)[x′] = s′[x′] = (s′ x 7→ i′)[x′] = s[x′].

If σ is not defined for x, it means that EStore 6` s[x] = i for any i, whence EStore 6` s = s′ x 7→ i. If
EStore ` s = ∅ then we are done, since EStore ` (x 7→ i)[x′] = i′ iff x = x′ and i = i′. If EStore 6` s = ∅,
it must be that EStore ` s = x1 7→ i1 . . . xn 7→ in with xi 6= x. This leads to EStore ` s[x ← i] = · · · =
(x1 7→ i1 . . . xi 7→ ii)[x← i](xi+1 7→ ii+1 . . . xn 7→ in) = · · · = ∅[x← i]s = (x 7→ i)s = s(x 7→ i).

�

5 Big-Step Operational Semantics

Introduced as natural semantics in [Kah87], also named relational semantics [MTHM97] or evaluation se-
mantics, big-step semantics is “the most denotational” of the operational semantics. One can view big-step
definitions as definitions of functions interpreting each language construct in an appropriate domain.

Big step semantics can be easily represented within rewriting logic.
For example, consider the big-step rule defining integer division:

〈A1, σ〉 ⇓ 〈I1, σ1〉, 〈A2, σ1〉 ⇓ 〈I2, σ2〉
〈A1/A2, σ〉 ⇓ 〈I1/IntI2, σ2〉

, if I2 6= 0.

This rule can be automatically translated into the rewrite rule:

〈A1/A2, S〉 → 〈I1/IntI2, S2〉 ⇐ 〈A1, S〉 → 〈I1, S1〉 ∧ 〈A2, S1〉 → 〈I2, S2〉 ∧ I2 6= 0

The complete1 big-step operational semantics definition for our simple language except its halt statement
(which is discussed at the end of this section), say BigStep, is presented in Table 1. To give a rewriting
logic theory for the big-step semantics, above, one needs to first define the various configuration constructs
which are assumed by default in BigStep, as corresponding operations extending the signature. Then one
can define the rewriting logic theory RBigStep corresponding to the big-step operational semantics BigStep
entirely automatically as shown by Table 2.

Due to the one-to-one correspondence between big-step rules in BigStep and rewrite rules in RBigStep,
one could fairly easy prove by induction on the length of derivations the following result:

Proposition 2 For any p ∈ Pgm and i ∈ Int, the following are equivalent:

1. BigStep ` 〈p〉 ⇓ 〈i〉

2. RBigStep ` 〈p〉 → 〈i〉
1Yet, we don’t present semantics for equivalent constructs, such as −, ∗, /, or.
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·
〈#I, σ〉 ⇓ 〈I, σ〉

·
〈X, σ〉 ⇓ 〈σ(X), σ〉

·
〈++X, σ〉 ⇓ 〈I, σ[I/X]〉 , if I = σ(X) + 1

〈A1, σ〉 ⇓ 〈I1, σ1〉, 〈A2, σ1〉 ⇓ 〈I2, σ2〉
〈A1 + A2, σ〉 ⇓ 〈I1 +Int I2, σ2〉

·
〈#T, σ〉 ⇓ 〈T, σ〉

〈A1, σ〉 ⇓ 〈I1, σ1〉, 〈A2, σ1〉 ⇓ 〈I2, σ2〉
〈A1<=A2, σ〉 ⇓ 〈(I1 ≤Int I2), σ2〉

〈B1, σ〉 ⇓ 〈true, σ1〉, 〈B2, σ1〉 ⇓ 〈T, σ2〉
〈B1 and B2, σ〉 ⇓ 〈T, σ2〉

〈B1, σ〉 ⇓ 〈false, σ1〉
〈B1 and B2, σ〉 ⇓ 〈false, σ1〉

〈B, σ〉 ⇓ 〈T, σ′〉
〈not B, σ〉 ⇓ 〈not (T ), σ′〉

·
〈skip, σ〉 ⇓ 〈σ〉

〈A, σ〉 ⇓ 〈I, σ′〉
〈X:=A, σ〉 ⇓ 〈σ′[I/X]〉

〈St1, σ〉 ⇓ 〈σ′′〉, 〈St2, σ
′′〉 ⇓ 〈σ′〉

〈St1; St2, σ〉 ⇓ 〈σ′〉

〈St, σ〉 ⇓ 〈σ′〉
〈{St}, σ〉 ⇓ 〈σ′〉

〈B, σ〉 ⇓ 〈true, σ1〉, 〈St1, σ1〉 ⇓ 〈σ2〉
〈if B then St1 else St2, σ〉 ⇓ 〈σ2〉

〈B, σ〉 ⇓ 〈false, σ1〉, 〈St2, σ1〉 ⇓ 〈σ2〉
〈if B then St1 else St2, S〉 ⇓ 〈σ2〉

〈B, σ〉 ⇓ 〈false, σ′〉
〈while B St, σ〉 ⇓ 〈σ′〉

〈B, σ〉 ⇓ 〈true, σ1〉, 〈St, σ1〉 ⇓ 〈σ2〉, 〈while B St, σ2〉 ⇓ 〈σ′〉
〈while B St, σ〉 ⇓ 〈σ′〉

〈St,⊥〉 ⇓ 〈σ〉, 〈A, σ〉 ⇓ 〈I, σ′〉
〈St.A〉 ⇓ 〈I〉

Table 1: The BigStep language definition
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〈X, S〉 → 〈S[X], S〉
〈#I, S〉 → 〈I, S〉

〈++X, S〉 → 〈I, S[X ← I]〉 ⇐ I = S[X] + 1
〈A1 + A2, S〉 → 〈I1 +Int I2, S2〉 ⇐ 〈A1, S〉 → 〈I1, S1〉 ∧ 〈A2, S1〉 → 〈I2, S2〉

〈#T, S〉 → 〈T, S〉
〈A1<=A2, S〉 → 〈(I1 ≤Int I2), S2〉 ⇐ 〈A1, S〉 → 〈I1, S1〉 ∧ 〈A2, S1〉 → 〈I2, S2〉

〈B1 and B2, S〉 → 〈T, S2〉 ⇐ 〈B1, S〉 → 〈true, S1〉 ∧ 〈B2, S1〉 → 〈T, S2〉
〈B1 and B2, S〉 → 〈false, S1〉 ⇐ 〈B1, S〉 → 〈false, S1〉
〈not B,S〉 → 〈not(T ), S′〉 ⇐ 〈B,S〉 → 〈T, S′〉

〈skip, S〉 → 〈S〉
〈X:=A,S〉 → 〈S′[X ← I]〉 ⇐ 〈A,S〉 → 〈I, S′〉

〈St1;St2, S〉 → 〈S′〉 ⇐ 〈St1, S〉 → 〈S′′〉 ∧ 〈St2, S
′′〉 → 〈S′〉

〈{St}, S〉 → 〈S′〉 ⇐ 〈St, S〉 → 〈S′〉
〈if B then St1 else St2, S〉 → 〈S2〉 ⇐ 〈B,S〉 → 〈true, S1〉 ∧ 〈St1, S1〉 → 〈S2〉
〈if B then St1 else St2, S〉 → 〈S2〉 ⇐ 〈B,S〉 → 〈false, S1〉 ∧ 〈St2, S1〉 → 〈S2〉

〈while B St, S〉 → 〈S′〉 ⇐ 〈B,S〉 → 〈false, S′〉
〈while B St, S〉 → 〈S′〉 ⇐ 〈B,S〉 → 〈true, S1〉 ∧ 〈St, S1〉 → 〈S2〉 ∧ 〈while B St, S2〉 → 〈S′〉

〈St.A〉 → 〈I〉 ⇐ 〈St, ∅〉 → 〈S〉 ∧ 〈A,S〉 → 〈I, S′〉

Table 2: RBigStep rewriting logic theory

Proof. A first thing to notice is that, since all rules involve configurations, rewriting can only occur at the
top, thus the general application of term rewriting under contexts is disabled by definitional style. Another
thing to notice here is that all configurations in the right hand sides are normal forms, thus the transitivity
rule for rewriting logic also becomes ineffective. Suppose s ∈ Store and σ : Var ◦→ Int such that s ' σ. We
prove the following affirmations:

1. BigStep ` 〈a, σ〉 ⇓ 〈i, σ′〉 iff RBigStep ` 〈a, s〉 → 〈i, s′〉 and s′ ' σ′,
for any a ∈ AExp, i ∈ Int, σ′ : Var ◦→ Int and s′ ∈ Store.

2. BigStep ` 〈b, σ〉 ⇓ 〈t, σ′〉 iff RBigStep ` 〈b, s〉 → 〈t, s′〉 and s′ ' σ′,
for any b ∈ AExp, t ∈ Bool, σ′ : Var ◦→ Int and s′ ∈ Store.

3. BigStep ` 〈st, σ〉 ⇓ 〈σ′〉 iff RBigStep ` 〈st, s〉 → 〈s′〉 and s′ ' σ′,
for any st ∈ Stmt, σ′ : Var ◦→ Int and s′ ∈ Store.

4. BigStep ` 〈p〉 ⇓ 〈i〉 iff RBigStep ` 〈p〉 → 〈i〉,
for any p ∈ Pgm and i ∈ Int.

Each can be proved by induction on the size of the derivation tree. To avoid lengthy and repetitive details,
we discuss the corresponding proof of only language construct in each category:

1. BigStep ` 〈x++, σ〉 ⇓ 〈i, σ[i/x]〉 iff
i = σ(x) + 1 iff
EStore ⊆ RBigStep ` i = s[x] + 1 iff
RBigStep ` 〈x++, s〉 → 〈i, s[x← i]〉.
This completes the proof, since s[x← i] ' σ[i/x], by 3 in Proposition 1.

2. BigStep ` 〈b1 and b2, σ〉 ⇓ 〈t, σ′〉 iff
(BigStep ` 〈b1, σ〉 ⇓ 〈false, σ′〉 and t = false
or BigStep ` 〈b1, σ〉 ⇓ 〈true, σ′′〉 and BigStep ` 〈b2, σ

′′〉 ⇓ 〈t, σ′〉 ) iff
(RBigStep ` 〈b1, s〉 → 〈false, s′〉, s′ ' σ′ and t = false
or RBigStep ` 〈b1, s〉 → 〈true, s′′〉, s′′ ' σ′′, RBigStep ` 〈b2, s

′′〉 → 〈t, σ′〉 and s′ ' σ′ ) iff
RBigStep ` 〈b1 and b2, s〉 → 〈t, s′〉 and s′ ' σ′.
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3. BigStep ` 〈while b st, σ〉 ⇓ 〈σ′〉 iff
(BigStep ` 〈b, σ〉 ⇓ 〈false, σ′〉
or BigStep ` 〈b, σ〉 ⇓ 〈true, σ1〉

and BigStep ` 〈st, σ1〉 ⇓ 〈σ2〉
and BigStep ` 〈while b st, σ2〉 ⇓ 〈σ′〉 ) iff

(RBigStep ` 〈b, s〉 → 〈false, s′〉 and s′ ' σ′

or RBigStep ` 〈b, s〉 → 〈true, s1〉, s1 ' σ1

and RBigStep ` 〈st, s1〉 → 〈s2〉, s2 ' σ2

and RBigStep ` 〈while b st, s2〉 → 〈s′〉 and s′ ' σ′ ) iff
RBigStep ` 〈while b st, s〉 → 〈s′〉 and s′ ' σ′.

4. BigStep ` 〈st.a〉 ⇓ 〈i〉 iff
BigStep ` 〈st,⊥〉 ⇓ 〈σ〉 and BigStep ` 〈a, σ〉 ⇓ 〈i, σ′〉 iff
RBigStep ` 〈st, ∅〉 → 〈s〉, s ' σ, RBigStep ` 〈a, s〉 → 〈i, s′〉 and s′ ' σ′ iff
RBigStep ` 〈st.a〉 → 〈i〉

This completes the proof. �

The only apparent difference between BigStep and RBigStep is the different notational conventions they
use. However, there is a one-to-one correspondence also between their corresponding “computations” (or
executions, or derivations). Therefore, RBigStep actually is the big-step operational semantics BigStep, not
an “encoding” of it. Note that RBigStep, in order to be faithfully equivalent to BigStep computationally,
lacks the main strength of rewriting logic, that makes it an appropriate formalism for concurrency, namely
that rewrite rules can apply under any context and in parallel (here all rules are syntactically constrained
to apply only at the top, sequentially).

Strengths of big-step operational semantics: straight-forward recursive definition; when deterministic,
can be easily and efficiently interpreted in any recursive, functional or logical framework; specifically useful
for defining type systems.

Weaknesses of big-step operational semantics are due to its monolithic, single-step evaluation: it is
hard to debug or trace; if the program is wrong, no information is given about where the failure occurred;
it is hard or impossible to model concurrent features; it is not modular - to add side effects to expressions,
one must redefine the rules to allow expressions to evaluate to pairs (value-store); it is inconvenient (and
non-modular) to define complex control statements; consider adding halt to the above definition - one needs
to add a special configuration halting(I), and the following rules:

〈halt A,S〉 → halting(I) ⇐ 〈A.S〉 → 〈I, S′〉
〈St1;St2, S〉 → halting(I) ⇐ 〈St1, S〉 → halting(I)

〈while B St, S〉 → halting(I) ⇐ 〈B,S〉 → 〈S′〉 ∧ 〈St, S′〉 → halting(I)
〈St.A, S〉 → 〈I〉 ⇐ 〈St, ∅〉 → halting(I)

6 Small-Step Operational Semantics

Introduced in [Plo04], also called transition semantics or reduction semantics, small-step semantics captures
the notion of one computational step.

One inherent complication in capturing small-step operational semantics as a rewriting logic theory in a
one-to-one notational and computational correspondence is that the rewriting relation is by definition tran-
sitive, while the small-step relation is not transitive (its transitive closure is defined aposteriori). Therefore
we need to devise a mechanism to “inhibit” rewriting logic’s transitive and uncontrolled application of rules.
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·
〈X, σ〉 → 〈(σ(X)), σ〉

·
〈++X, σ〉 → 〈I, σ[I/X]〉 , if I = σ(X) + 1

〈A1, σ〉 → 〈A′
1, σ

′〉
〈A1 + A2, σ〉 → 〈A′

1 + A2, σ′〉
〈A2, σ〉 → 〈A′

2, σ
′〉

〈I1 + A2, σ〉 → 〈I1 + A′
2, σ

′〉

·
〈I1 + I2, σ〉 → 〈I1 +Int I2, σ〉

〈A1, σ〉 → 〈A′
1, σ

′〉
〈A1<=A2, σ〉 → 〈A′

1<=A2, σ′〉
〈A2, σ〉 → 〈A′

2, σ
′〉

〈I1<=A2, σ〉 → 〈I1<=A′
2, σ

′〉

·
〈I1<=I2, σ〉 → 〈(I1 ≤Int I2), σ〉

〈B1, σ〉 → 〈B′
1, σ

′〉
〈B1 and B2, σ〉 → 〈B′

1 and B2, σ′〉

·
〈true and B2, σ〉 → 〈B2, σ〉

·
〈false and B2, σ〉 → 〈false, σ〉

〈B, σ〉 → 〈B′, σ′〉
〈not B, σ〉 → 〈not B′, σ′〉

·
〈not true, σ〉 → 〈false, σ〉

·
〈not false, σ〉 → 〈true, σ〉

〈A, σ〉 → 〈A′, σ′〉
〈X:=A, σ〉 → 〈X:=A′, σ′〉

·
〈X:=I, σ〉 → 〈skip, σ[I/X]〉

〈St1, σ〉 → 〈St′1, σ
′〉

〈St1; St2, σ〉 → 〈St′1; St2, σ′〉

·
〈skip; St2, σ〉 → 〈St2, σ〉

·
〈{St}, σ〉 → 〈St, σ〉

〈B, σ〉 → 〈B′, σ′〉
〈if B then St1 else St2, σ〉 → 〈if B′ then St1 else St2, σ′〉

·
〈if true then St1 else St2, σ〉 → 〈St1, σ〉

·
〈if false then St1 else St2, σ〉 → 〈St2, σ〉

·
〈while B St, σ〉 → 〈if B then (St; while BSt) else skip, σ〉

〈St, σ〉 → 〈St′, σ′〉
〈St.A, σ〉 → 〈St′.A, σ′〉

〈A, σ〉 → 〈A′, σ′〉
〈skip.A, σ〉 → 〈skip.A′, σ′〉

〈P,⊥〉 →∗ 〈skip.I〉
eval(P ) → I

Table 3: The SmallStep language definition
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·〈X, S〉 → 〈(S[X]), S〉
·〈++X, S〉 → 〈I, S[X ← I]〉 ⇐ I = S[X] + 1

·〈A1 + A2, S〉 → 〈A′
1 + A2, S

′〉 ⇐ ·〈A1, S〉 → 〈A′
1, S

′〉
·〈I1 + A2, S〉 → 〈I1 + A′

2, S
′〉 ⇐ ·〈A2, S〉 → 〈A′

2, S
′〉

·〈I1 + I2, S〉 → 〈I1 +Int I2, S〉
·〈A1 <= A2, S〉 → 〈A′

1 <= A2, S
′〉 ⇐ ·〈A1, S〉 → 〈A′

1, S
′〉

·〈I1 <= A2, S〉 → 〈I1 <= A′
2, S

′〉 ⇐ ·〈A2, S〉 → 〈A′
2, S

′〉
·〈I1 <= I2, S〉 → 〈(I1 ≤Int I2), S〉

·〈B1 and B2, S〉 → 〈B′
1 and B2, S

′〉 ⇐ ·〈B1, S〉 → 〈B′
1, S

′〉
·〈true and B2, S〉 → 〈B2, S〉

·〈false and B2, S〉 → 〈false, S〉
·〈not B,S〉 → 〈not B′, S′〉 ⇐ ·〈B,S〉 → 〈B′, S′〉
·〈not true, S〉 → 〈false, S〉
·〈not false, S〉 → 〈true, S〉
·〈X := A,S〉 → 〈X := A′, S′〉 ⇐ ·〈A,S〉 → 〈A′, S′〉

·〈X := I, S〉 → 〈skip, S[X ← I]〉
·〈St1;St2, S〉 → 〈St′1;St2, S

′〉 ⇐ ·〈St1, S〉 → 〈St′1, S
′〉

·〈skip;St2, S〉 → 〈St2, S〉
·〈{St}, S〉 → 〈St, S〉

·〈if B then St1 else St2, S〉 → 〈if B′ then St1 else St2, S
′〉 ⇐ ·〈B,S〉 → 〈B′, S′〉

·〈if true then St1 else St2, S〉 → 〈St1, S〉
·〈if false then St1 else St2, S〉 → 〈St2, S〉

·〈while B St, S〉 → 〈if B then (St; while B St) else skip, S〉
·〈St.A, S〉 → 〈St′.A, S′〉 ⇐ ·〈St, S〉 → 〈St′, S′〉

·〈skip.A, S〉 → 〈skip.A′, S′〉 ⇐ ·〈A,S〉 → 〈A′, S′〉
eval(P ) = smallstep(〈P, ∅〉)

smallstep(〈P, S〉) = smallstep(·〈P, S〉)
smallstep(·〈skip.I, S〉)→ I

Table 4: RSmallStep rewriting logic theory
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An elegant way to achieve this is to view a small step as a modifier of the current configuration. Specifically,
we consider “·” to be a modifier on the configuration which performs a “small-step” of computation; in other
words, we assume an operation · : Config→ Config. Then, a small-step semantic rule, e.g.,

〈A1, S〉 → 〈A′
1, S

′〉
〈A1 + A2, S〉 → 〈A′

1 + A2, S′〉

is translated, again automatically, into a rewriting logic rule, e.g.,

·〈A1 + A2, S〉 → 〈A′
1 + A2, S

′〉 ⇐ ·〈A1, S〉 → 〈A′
1, S

′〉

A similar technique is proposed in [MB04], but there two different types of configurations are employed,
one standard and the other “tagged” with the modifier. However, allowing · to be a modifier rather than
part of configuration gives more flexibility to the specification - for example, one can specify that one wants
two steps simply by putting two dots in front of the configuration.

The complete2 small-step operational semantics definition for our simple language except its halt state-
ment (which is discussed at the end of this section), say SmallStep, is presented in Table 3. The corresponding
small-step rewriting logic theory RSmallStep is given in Table 4

As for big-step, the rewriting under context deduction rule for rewriting logic is again ineffective, since
all rules act at the top, on configurations. However, it is not the case in SmallStep that all right hand sides
are normal forms (this actually is the specificity of small-step semantics). The “·” operator introduced in
RSmallStep prevents the unrestricted application of transitivity, and can be regarded as a token given to a
configuration to allow it to change to the next step. We use transitivity at the end (rules for smallstep) to
obtain the transitive closure of the small-step relation by specifically giving tokens to the configuration until
it reaches a normal form.

Again, there is a direct correspondence between SOS-style rules and rewriting rules, leading to the
following result, which can also be proved by induction on the length of derivations:

Proposition 3 For any p ∈ Pgm, σ, σ′ : Var ◦→ Int and s ∈ Store such that s ' σ, the following are
equivalent:

1. SmallStep ` 〈p, σ〉→〈p′, σ′〉, and

2. RSmallStep ` ·〈p, s〉→〈p′, s′〉 and s′ ' σ′.

Moreover, the following are equivalent for any p ∈ Pgm and i ∈ Int:

1. SmallStep ` 〈p,⊥〉 →∗ 〈skip.i, σ〉 for some σ : Var ◦→ Int, and

2. RSmallStep ` eval(p)→ i.

Proof. As for big-step, we split the proof into four, by proving for each syntactical category the following
(suppose s ∈ Store, σ : Var ◦→ Int, s ' σ):

1. SmallStep ` 〈a, σ〉 → 〈a′, σ′〉 iff RSmallStep ` ·〈a, s〉 → 〈a′, s′〉 and s′ ' σ′,
for any a, a′ ∈ AExp, σ′ : Var ◦→ Int and s′ ∈ Store.

2. SmallStep ` 〈b, σ〉 → 〈b′, σ′〉 iff RSmallStep ` ·〈b, s〉 → 〈b′, s′〉 and s′ ' σ′,
for any b, b′ ∈ BExp, σ′ : Var ◦→ Int and s′ ∈ Store.

3. SmallStep ` 〈st, σ〉 → 〈st′, σ′〉 iff RSmallStep ` ·〈st, s〉 → 〈st′, s′〉 and s′ ' σ′,
for any st, st′ ∈ Stmt, σ′ : Var ◦→ Int and s′ ∈ Store.

4. SmallStep ` 〈p, σ〉 → 〈p′, σ′〉 iff RSmallStep ` ·〈p, s〉 → 〈p′, s′〉 and s′ ' σ′,
for any p, p′ ∈ Pgm, σ′ : Var ◦→ Int and s′ ∈ Store.

2yet, we don’t present semantics for equivalent constructs, such as −, ∗, /, or.

13



These equivalences can be shown by induction on the size of the derivation tree. Again, we only show one
example per category:

1. SmallStep ` 〈a1 + a2, σ〉 → 〈a1 + a′2, σ
′〉 iff

a1 = i and SmallStep ` 〈a2, σ〉 → 〈a′2, σ′〉 iff
a1 = i, RSmallStep ` ·〈a2, s〉 → 〈a′2, s′〉 and s′ ' σ′ iff
RSmallStep ` ·〈a1 + a2, s〉 → 〈a1 + a′2, s

′〉 and s′ ' σ′.

2. SmallStep ` 〈not true, σ〉 → 〈false, σ〉 iff
RSmallStep ` ·〈not true, s〉 → 〈false, s〉.

3. SmallStep ` 〈st1; st2, σ〉 → 〈st′1; st2, σ′〉 iff
SmallStep ` 〈st1, σ〉 → 〈st′1, σ′〉 iff
RSmallStep ` ·〈st1, s〉 → 〈st′1, s′〉 and s′ ' σ′ iff
RSmallStep ` ·〈st1; st2, s〉 → 〈st′1 + st2, s

′〉 and s′ ' σ′.

4. SmallStep ` 〈st.a, σ〉 → 〈st.a′, σ′〉 iff
st = skip and SmallStep ` 〈a, σ〉 → 〈a′, σ′〉 iff
st = skip, RSmallStep ` ·〈a, s〉 → 〈a′, s′〉 and s′ ' σ′ iff
RSmallStep ` ·〈st.a, s〉 → 〈st.a′, s′〉 and s′ ' σ′.

Let us now move to the second equivalence. For this proof let→n be the restriction of RSmallStep relation
→ to those pair which can be provable by exactly applying n − 1 transitivity rules for → if n > 0 or the
diagonal for n = 0. We first prove the following more general result (suppose p ∈ Pgm, σ : Var ◦→ Int and
s ∈ Store such that s ' σ):

SmallStep ` 〈p, σ〉 →n 〈p′, σ′〉 iffRSmallStep ` smallstep(〈p, s〉)→n smallstep(·〈p′, s′〉) and s′ ' σ′,

by induction on n. If n = 0 then 〈p, σ〉 = 〈p′, σ′〉 and since RSmallStep ` smallstep(〈p, s〉) = smallstep(·〈p, s〉)
we are done. If n > 0, we have that
SmallStep ` 〈p, σ〉 →n 〈p′, σ′〉 iff
SmallStep ` 〈p, σ〉 → 〈p1, σ1〉 and SmallStep ` 〈p1, σ1〉 →n−1 〈p′, σ′〉 iff
RSmallStep ` ·〈p, s〉 → 〈p1, s1〉 and s1 ' σ1 (by 1)
and RSmallStep ` smallstep(〈p1, s1〉)→n−1 smallstep(·〈p′, s′〉) and s′ ' σ′ (by the induction hypothesis) iff
RSmallStep ` smallstep(·〈p, s〉)→1 smallstep(〈p1, s1〉) and s1 ' σ1

and RSmallStep ` smallstep(〈p1, s1〉)→n−1 smallstep(·〈p′, s′〉) and s′ ' σ′ iff
RSmallStep ` smallstep(·〈p, s〉)→n smallstep(·〈p′, s′〉) and s′ ' σ′.
We are done, since RSmallStep ` smallstep(〈p, s〉) = smallstep(·〈p, s〉).

Finally, SmallStep ` 〈p,⊥〉 →∗ 〈skip.i, σ〉 iff RSmallStep ` smallstep(〈p, ∅〉)→ smallstep(·〈skip.i, s〉), s '
σ; the rest follows from RSmallStep ` eval(p) = smallstep(〈p, ∅〉) and RSmallStep ` smallstep(·〈skip.i, s〉) = i.
�

Strengths of small-step operational semantics: precisely defines the notion of one computational step;
stops at errors, pointing them out; easy to trace, debug; gives interleaving semantics for concurrency.

Weaknesses of small-step operational semantics: it is an “iterated big step”, that is, each small step does
the same amount of computation as a big step in finding the next redex; does not give a “true concurrency”
semantics, that is, one has to chose a certain interleaving (no two rules can apply at the same moment),
mainly because reduction is forced to occur only at the top; one of the reasons for introducing SOS was
that abstract machines need to introduce new syntactic constructs to decompose the abstract syntax tree,
while SOS would and should only work by modifying the structure of the program - we argue that is not
entirely accurate: for example, one needs to have in the syntax boolean values if one want to have boolean
expressions and needs an if mechanism in the above definition to evaluate while - the fact that this are
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common in programming languages does not mean that the languages which don’t want to allow them should
be despised; still hard to deal with control - for example, consider adding halt to this language. One cannot
simply do it as for other ordinary statements - instead one has to add a corner case (additional rule) to each
statement, as shown below:

·〈halt A,S〉 → 〈halt A′, S′〉 ⇐ ·〈A,S〉 → 〈A′, S′〉
·〈halt I;St, S〉 → 〈halt I, S〉
·〈halt I.A, S〉 → 〈skip.I, S〉

If expressions could also halt the program, e.g., if one adds functions, then a new rule must be added
to specify the corner case for each halt-related arithmetic or boolean construct. Moreover, by propagating
the “halt signal” through all the statements and expressions, one fails to capture the intended computation
granularity of halt: it should just terminate the execution in one step!

7 Reduction Semantics with Evaluation Contexts

Introduced in [WF94], also called context reduction, the evaluation contexts style improves over small-step
definitional style in two directions:

1. gives a more compact semantics to context-sensitive reduction, by using parsing to find the next redex
rather than small-step rules; and

2. it gives one the possibility to also modify the context in which a reduction occurs, making it much
easier to deal with control intensive features. For example, defining halt is done now using only one
rule, C[halt I]→ I, preserving the desired computation granularity.

In a context reduction semantics of a language, one typically starts by defining the syntax of contexts. A
context is a program with a “hole”, the hole being a placeholder where the next computational step takes
place. If c is such a context and e is some expression whose type fits into the type of the hole of c, then c[e]
is the program formed by replacing the hole of c by e. The characteristic reduction step underlying context
reduction is

C[E]→ c[E′] when E → E′,

capturing the fact that reductions are allowed to take place only in appropriate evaluation contexts. There-
fore, an important part of a context reduction semantics is the definition of evaluation contexts, which is
typically done by means of a context-free grammar. The definition of evaluation contexts for our simple
language is found in Table 5 (we let [] denote the “hole”).

In this BNF definition of evaluation contexts, S is a store variable. Therefore, a “top level” evaluation
context will also contain a store in our simple language definition. There are also context-reduction definitions
where that is not needed, but instead one needs to employ some substitution mechanism (particularly in
definitions of λ-calculus based languages). The rules following the contexts grammar in Table 5 complete
the context reduction semantics of our simple language, say CxtRed.

By making the evaluation context explicit and changeable, context reduction is, in our view, a significant
improvement over small-step SOS. In particular, one can now define control-intensive statements like halt
modularly and at the desired computational granularity level. Even though the definition in Table 5 gives one
the feel that evaluation contexts and their instantiation come “for free”, the application of the “rewrite in
context” rule presented above can be expensive in practice. That is because one needs either to parse/search
the entire configuration to put it in the form C[E] for some appropriate C satisfying the grammar of
evaluation contexts, or to maintain enough information in some special data-structures to perform the split
C[E] using only local information and updates. Moreover, this “matching-modulo-the-CFG-of-evaluation-
contexts” step needs to be done at every computation step during the execution of a program, so it may easily
become the major bottleneck of an executable engine based on context reduction. Direct implementations of
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C ::= []
| 〈C,S〉
| skip.C | C.A
| X:=C | C;St | ifC thenSt1 elseSt2 | haltC
| I<=C | C<=A | C andB | notC
| I + C | C + A

E → E′

C[E]→ C[E′]

I1 + I2 → (I1 +Int I2)
〈P, σ〉[X]→ 〈P, σ〉[(σ(X))]
〈P, σ〉[++X]→ 〈P, σ[I/X]〉[I] when I = σ(X) + 1

I1<=I2 → (I1 ≤Int I2)
true and B → B
false and B → false
not true→ false
not false→ true

if true then St1 else St2 → St1
if false then St1 else St2 → St2
skip;St→ St
{St} → St
〈P, σ〉[X:=I]→ 〈P, σ[I/X]〉[skip]
while B St→ if B then (St; while B St) else skip
C[halt I]→ 〈I〉

C[skip.I]→ 〈I〉

Table 5: The CxtRed language definition
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context reduction such as PLT-Redex cannot avoid paying a significant performance penalty, as the numbers
in Table 12 show.

Context reduction is trickier to faithfully capture as a rewriting logic theory, since rewriting logic, by its
locality, always applies a rule in the context, without actually having the capability to change the context.
We make use of two equationally defined operations, s2c which splits a piece of syntax into a context and
a redex, and c2s which plugs a piece of syntax into a context. In our rewriting logic definition, C[R] is
not a parsing convention, but rather a constructor conveniently representing the pair (context C, redex R).
In order to have an algebraic representation of contexts we extend the signature by adding a constant [],
representing the hole, for each syntactic category. s2c, presented in Table 6 has an effect similar to what
one achieves by parsing in context reduction, in the sense that given a piece of syntax it yields C[R]. c2s,
also presented in Table 6 is defined as a morphism on the syntax, but we get (from the rules) the guarantee
that it would be applied only to “well-formed” contexts (i.e., containing only one hole). The rewriting logic
theory RCxtRed is obtained by adding the rules in Table 7 to the equations of s2c and c2s.

The RCxtRed definition is a faithful representation of reduction semantics using evaluation contexts:
indeed, it is easy to see that s2c recursively finds the redex taking into account the syntactic rules defining a
context in the same way a parser would, and the same way as other current implementations of this technique
do it. Also since parsing issues are abstracted away using equations, computational granularity is the same,
having a one-to-one correspondence between the reduction semantics rules and the rewriting rules.

Theorem 1 Suppose that s ' σ. Then the following hold:

1. 〈p, σ〉 parses in CxtRed as 〈c, σ〉[r] iff RCxtRed ` s2c(〈p, s〉) = 〈c, s〉[r];

2. RCxtRed ` c2s(c[r]) = c[r/[]] for any valid context c and appropriate redex r;

3. CxtRed ` 〈p, σ〉 → 〈p′, σ′〉 iff RCxtRed ` ·(〈p, s〉)→ 〈p′, s′〉 and s′ ' σ′;

4. CxtRed ` 〈p, σ〉 → 〈i〉 iff RCxtRed ` ·(〈p, s〉)→ 〈i〉;

5. CxtRed ` 〈p,⊥〉 →∗ 〈i〉 iff RCxtRed ` eval(p)→ i.

Proof.

1. By induction on the number of context productions applied to parse the context, which is the same as
the length of the derivation of RCxtRed ` s2c(syn) = c[r], respectively, for each syntactical construct
syn. We only show some of the more interesting cases.

Case ++x: ++x parses as [][++x]. Also RCxtRed ` s2c(++x) = [][++x] in one step (it is an instance of an
axiom).

Case a1<=a2: a1 <= a2 parses as a1 <= c[r] iff
a1 ∈ Int and a2 parses as c[r] iff
a1 ∈ Int and RCxtRed ` s2c(a2) = c[r] iff
RCxtRed ` s2c(a1<=a2) = (a1<=c)[r].

Case x:=a: x:=a parses as [][x:=a] iff a ∈ Int, iff
RCxtRed ` s2c(x:=i) = [][x:=i].

Case st.a: st.a parses as st.c[r] iff
st = skip and a parses as c[r], iff
st = skip and RCxtRed ` s2c(a) = c[r] iff
RCxtRed ` s2c(at.a) = st.c[r].

Case 〈p, σ〉: 〈p, σ〉 parses as c[r] iff
p parses as c′[r] and c = 〈c′, s〉 iff
RCxtRed ` s2c(p) = c′[r] and c = 〈c′, s〉 iff
RCxtRed ` s2c(〈p, s〉) = 〈c′, s〉[r].
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s2c(〈P, S〉) = 〈C,S〉[R]⇐C[R] = s2c(P )
s2c(skip.I) = [][skip.I]

s2c(skip.A) = (skip.C)[R]⇐C[R] = s2c(A)
s2c(St.A) = (C.A)[R]⇐C[R] = s2c(St)

s2c(halt I) = [][halt I]
s2c(haltA) = (haltC)[R]⇐C[R] = s2c(A)

s2c(whileB St) = [][whileB St]
s2c(ifT thenSt1 elseSt2) = [][ifT thenSt1 elseSt2]

s2c(ifB thenSt1 elseSt2) = (ifC thenSt1 elseSt2)[R]⇐C[R] = s2c(B)
s2c(skip;St2) = [][skip;St2]

s2c(St1;St2) = (C;St2)[R]⇐C[R] = s2c(St1)
s2c(X:=I) = [][X:=I]

s2c(X:=A) = (X:=C)[R]⇐C[R] = s2c(A)
s2c(I1<=I1) = [][I1<=I2]
s2c(I<=A) = (I<=C)[R]⇐C[R] = s2c(A)

s2c(A1<=A2) = (C<=A2)[R]⇐C[R] = s2c(A1)
s2c(T andB2) = [][T andB2]

s2c(B1 andB2) = (C andB2)[R]⇐C[R] = s2c(B1)
s2c(notT ) = [][notT ]

s2c(notB) = (notC)[R]⇐C[R] = s2c(B)
s2c(++X) = [][++X]

s2c(I1 + I2) = [][I1 + I2]
s2c(I + A) = (I + C)[R]⇐C[R] = s2c(A)

s2c(A1 + A2) = (C + A2)[R]⇐C[R] = s2c(A1)
c2s([][H]) = H
c2s(〈P, S〉[H]) = 〈c2s(P [H]), S〉
c2s(〈I〉[H]) = 〈I〉
c2s(E1.E2[H]) = c2s(E1[H]).c2s(E2[H])
c2s(haltE[H]) = halt c2s(E[H])
c2s(whileE1 E2[H]) = while c2s(E1[H]) c2s(E2[H])
c2s(ifE thenE1 elseE2[H]) = if c2s(E[H]) then c2s(E1[H]) else c2s(E2[H])
c2s({E}[H]) = {c2s(E[H])}
c2s(E1;E2[H]) = c2s(E1[H]); c2s(E2[H])
c2s(X:=E[H]) = X:=c2s(E[H])
c2s(skip[H]) = skip
c2s(E1<=E2[H]) = c2s(E1[H])<=c2s(E2[H])
c2s(E1 andE2[H]) = c2s(E1[H]) and c2s(E2[H])
c2s(notE[H]) = not c2s(E[H])
c2s(true[H]) = true
c2s(false[H]) = false
c2s(++X[H]) = ++X
c2s(E1 + E2[H]) = c2s(E1[H]) + c2s(E2[H])
c2s(I[H]) = I

Table 6: Equational definitions of s2c and c2s
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·(I1 + I2)→ (I1 +Int I2)
·(〈P, S〉[X])→ 〈P, S〉[(S[X])]

·(〈P, S〉[++X])→ 〈P, S[X ← I]〉[I] ⇐ I = s(S[X])
·(I1<=I2)→ (I1 ≤Int I2)
·(true and B)→ B

·(false and B)→ false
·(not true)→ false
·(not false)→ true

·(if true then St1 else St2)→ St1
·(if false then St1 else St2)→ St2

·(skip;St)→ St
·({St})→ St

·(〈P, S〉[X:=I])→ 〈P, S[X ← I]〉[skip]
·(while B St)→ if B then (St; while B St) else skip

·(C[halt I])→ 〈I〉[[]]
·(C[skip.I])→ 〈I〉[[]]

·(C[R])→ C[R′] ⇐ ·(R)→ R′

·(Cfg)→ c2s(C[R]) ⇐ ·(s2c(Cfg))→ C[R]
eval(P ) = reduction(〈P, ∅〉)

reduction(Cfg) = reduction(·(Cfg’))
reduction(〈I〉) = I

Table 7: RCxtRed rewriting logic theory

2. From the way it was defined, c2s acts as a morphism on the structure of syntactic constructs, changing
[] in c by r. Since c2s is defined for all constructors, it will work for any valid context c and pluggable
expression e. Note, however, that c2s works as stated also on multi-contexts (i.e., contexts with multiple
holes), but that aspect does not interest us here.

3. There are several cases again to analyze, depending on the particular reduction that provoked the
derivation CxtRed ` 〈p, σ〉 → 〈p′, σ〉. We only discuss some cases; the others are treated similarly.

CxtRed ` 〈p, σ〉 → 〈p′, σ′〉 because of CxtRed ` 〈c, σ〉[x]→ 〈c, σ〉[σ(x)] iff
〈p, σ〉 parses as 〈c, σ〉[x] and 〈p′, σ′〉 is 〈c, σ〉[σ(x)] (in particular σ′ = σ) iff
RCxtRed ` s2c(〈p, s〉) = 〈c, s〉[x], RCxtRed ` s[x] = i where i = σ(x) and RCxtRed ` c2s(〈c, s〉[i]) = 〈p′, s〉
iff
RCxtRed ` ·(〈p, s〉)→ 〈p′, s〉, because RCxtRed ` ·(〈c, s〉[x])→ 〈c, s〉[i].

CxtRed ` 〈p, σ〉 → 〈p′, σ〉 because of not true→false
c[not true]→c[false]

for some evaluation context c iff
〈p, σ〉 parses as c[not true] and 〈p′, σ〉 is c[false] iff
RCxtRed ` s2c(〈p, s〉) = c[not true] and RCxtRed ` c2s(c[false]) = 〈p′, s〉 iff
RCxtRed ` ·(〈p, s〉) → 〈p′, s〉, because RCxtRed ` ·(c[not true]) → c[false] (which follows since
RCxtRed ` ·(not true)→ false).

CxtRed ` 〈p, σ〉 → 〈p′, σ′〉 because of CxtRed ` 〈c, σ〉[x:=i]→ 〈c, σ[i/x][skip]〉 iff
〈p, σ〉 parses as 〈c, σ〉[x:=i], σ′ = σ[i/x] and 〈p′, σ′〉 is 〈c, σ′〉[skip] iff
RCxtRed ` s2c(〈p, s〉) = 〈c, s〉[x:=i], s′ = s[x← i] ' σ′ and RCxtRed ` c2s(〈c, s′〉[skip]) = 〈p′, s′〉 iff
RCxtRed ` ·(〈p, s〉)→ 〈p′, s′〉, because RCxtRed ` ·(〈c, s〉[x:=i])→ 〈c, s′〉[skip].

4. CxtRed ` 〈p, σ〉 → 〈i〉 because of CxtRed ` c[skip.i]→ 〈i〉 iff
〈p, σ〉 parses as 〈[], σ〉[skip.i] iff
RCxtRed ` s2c(〈p, s〉) = 〈[], s〉[skip.i] iff
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RCxtRed ` ·(〈p, s〉) = 〈i〉, since RCxtRed ` ·(〈[], σ〉[skip.i]) → 〈i〉[[]] and since RCxtRed ` c2s(〈i〉[[]]) =
〈i〉.
Also, CxtRed ` 〈p, σ〉 → 〈i〉 because of CxtRed ` c[halt i]→ 〈i〉 iff
〈p, σ〉 parses as 〈c, σ〉[halt i] iff
RCxtRed ` s2c(〈p, s〉) = 〈c, s〉[halt i] iff
RCxtRed ` ·(〈p, s〉) = 〈i〉 since RCxtRed ` ·(〈c, σ〉[halt i])→ 〈i〉[[]] and since RCxtRed ` c2s(〈i〉[[]]) = 〈i〉.

5. This proof follows exactly like the one for the similar property for SmallStep (Proposition 3), using the
above properties and replacing smallstep by reduction.

�

Strengths of context reduction semantics: distinguishes small-step rules into computational rules and
rules needed to find the redex (the latter are transformed into grammar rules generating the allowable
contexts), making definitions more compact; it improves over small step by allowing the context to be
changed by execution rules; can deal easily with control intensive features; more modular than SOS.

Weaknesses of context reduction semantics: still allows only “interleaving semantics” for concurrency;
although it would suggest context-sensitive rewriting, all current implementations work by transforming
context grammar definitions into traversal functions, thus being as (in)efficient as the small-step implemen-
tations (one has to perform an amount of work linear in the size of the program for each computational
step).

8 A Continuation Based Semantics in Rewriting Logic

The idea of continuation-based interpretors for programming languages and their relation to abstract ma-
chines was well studied (see, for example, [FF86]). In this section we propose a rewrite logic theory based on
a structure that appears to be a first-order representation of continuations; that is the only reason for which
we call it “continuation”, but notice that it can just as well be regarded as a post-order representation of the
abstract syntax tree of the program, so one needs no prior knowledge of continuations [FF86] to understand
this section. We will show the equivalence of this theory to the context reduction semantics theory.

Based on the desired order of evaluation, the program is sequentialized by transforming it into a list of
tasks to be performed in order. This is done once and for all at the beginning, the benefit being that at
any subsequent moment in time we know precisely where the next redex is - at the top of the tasks list. We
call this list of tasks continuation because it resembles the idea of continuations as higher-order functions
- however, our continuation is a pure first order flattening of the program. For example aexp(A1 + A2) =
(aexp(A1), aexp(A2)) y + precisely encodes the order of evaluation: first A1, then A2, then sum the values.
Also, stmt(if B then St1 else St2) = B y if(stmt(St1), stmt(St2)) says that St1 and St2 are dependent
on the value of B for their evaluation.

The top level configuration is constructed by an operator “ ” putting together the store (wrapped by a
constructor store) and the continuation (wrapped by k). Also, syntax is added for the continuation items.
Here the distinction between equations and rules becomes more obvious: equations are used to prepare the
context in which a computation step can be applied, while rewrite rules exactly encode the computation
steps semantically, yielding the intended granularity. Specifically pgm, stmt, bexp, aexp are used to flatten
the program to a continuation, taking into account the order of evaluation. The continuation is defined as
a list of tasks, where the list constructor “ y ” is associative having identity a constant “nothing”. We
also use lists of values and continuations, each having an associative constructor “ , ” with identity “.”. We
use variables K and V to denote continuations and values, respectively; also, we use Kl and Vl for lists of
continuations and values, respectively. The RK rewriting logic continuation-based definition of our language
is given in Table 8.
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aexp(I) = I
aexp(A1 + A2) = (aexp(A1), aexp(A2)) y +
k(aexp(X) y K) store(Store)→ k(Store[X] y K) store(Store)
k(I1, I2 y + y K)→ k(I1 +Int I2 y K)
bexp(true) = true
bexp(false) = false
bexp(A1<=A2) = (aexp(A1), aexp(A2)) y≤
bexp(B1 and B2) = bexp(B1) y and(bexp(B2))
bexp(not B) = bexp(B) y not
k(I1, I2 y≤y K)→ k(I1 ≤Int I2 y K)
k(true y and(K2) y K)→ k(K2 y K)
k(false y and(K2) y K)→ k(false y K)
k(T y not y K)→ k(notBoolT y K)
stmt(skip) = nothing
stmt(X := A) = aexp(A) y write(X)
stmt(St1;St2) = stmt(St1) y stmt(St2)
stmt({St}) = stmt(St)
stmt(if B then St1 else St2) = bexp(B) y if(stmt(St1), stmt(St2))
stmt(while B St) = bexp(B) y while(bexp(B), stmt(St))
stmt(halt A) = aexp(A) y halt
k(I y write(X) y K) store(Store)→ k(K) store(Store[X ← I])
k(true y if(K1,K2) y K)→ k(K1 y K)
k(false y if(K1,K2) y K)→ k(K2 y K)
k(true y while(K1,K2) y K)→ k(K2 y K1 y while(K1,K2) y K)
k(false y while(K1,K2) y K)→ k(K)
k(I y halt y K)→ k(I)
pgm(St.A) = stmt(St) y aexp(A)
〈P 〉 = result(k(pgm(P )) store(empty))
result(k(I) store(Store)) = I

using the (equationally defined) mechanism for evaluating lists of expressions:

k((V l,Ke, Kel) y K) = k(Ke y (V l,nothing,Kel) y K)

Note. Because in rewriting engines equations are also executed by rewriting, one would need to split the
rule for evaluating expressions in two rules:

k((V l,Ke, Kel) y K) = k(Ke y (V l,nothing,Kel) y K)
k(V y (V l,nothing,Kel) y K) = k((V l, V,Kel) y K)

Table 8: RK rewriting logic theory (continuation-based definition of the language)

21



The most important benefit of this transformation is that of gaining locality. Now one needs to specify
from the context only what is needed to perform the computation. This indeed gives the possibility of
achieving “true concurrency”, since rules which do not act on same parts of the context can be applied
in parallel. We here only discuss the sequential variant of our continuation-based semantics, because our
language is sequential. In [Roş05] we show how the same technique can be used at no additional effort to
define concurrent languages; the idea is, as expected, that one continuation structure is generated for each
concurrent thread or process. Then rewrite rules can apply “truly concurrently” at the tops of continuations.

Strengths of continuation based semantics: no need to search for a redex anymore, the redex
is always at the top; much more efficient than direct implementations of evaluation contexts or
small-step SOS.

Weaknesses of continuation based semantics: the program is now hidden in the continuation -
one has to either learn to like it like this, or to write a backwards mapping to get programs from
continuations3; to flatten the program into a continuation structure, several new operations (con-
tinuation constants) need to be introduced, which “replace” the corresponding original language
constructs.

An important “strength” specific to the rewriting logic approach is that reductions can now apply wher-
ever they match, context-insensitively. Also, this style eliminates the need for conditional rules, which might
involve reachability analysis to check the conditions and are harder to deal with in parallel environments.

8.1 Proofs

An important aspect of formal definitions of languages, in contrast to just implementing interpretors, is that
they allow formal proofs to be done. In this section we show how one could prove equivalences of programs
within a rewriting logic theory defining a programming language. Specifically, we here prove the soundness of
loop unrolling. But first, we formally define what equivalence of programs means in this framework. Given a
rewriting logic theory R = (Σ, E, R) and a (ground) Σ-term t, let btcE denote the class of (ground) Σ-terms
provably equal to t, i.e., btcE = {t′ ∈ TΣ | E ` t = t′}. For a set of Σ-equations E′, the E′-congruence is the
relation containing all pairs of Σ-terms that can be proved equal using E′.

Definition 1 Let R = (Σ, E, R) be a rewriting logic theory with a distinguished visible equational subtheory
(ΣV , EV ) of value datatypes (or, the data universe) which is protected by R in the sense that for any ΣV -
terms v1, v2, if R ` v1 → v2 then4 EV ` v1 = v2; for this reason, we call ΣV terms v1, v2, etc., as well as
the Σ-terms in their E-equivalence classes, bv1cE, bv2cE, etc., visible.

A computational congruence ≈ on R is a congruence on TΣ such that:

• it includes the E-congruence;

• on ΣV -terms, it is precisely the EV -congruence;

• it preserves the computational granularity of R, i.e., if t1 ≈ t2 then there exists a bijection associating
to each bt′1cE such that R ` t1 →1 t′1 an E-equivalence class bt′2cE such that R ` t2 →1 t′2 and t′1 ≈ t′2.

A functional congruence is obtained if we drop the last requirement, of preservation of computational gran-
ularity.

3However, we regard this as minor irrelevant syntactic details. After all, the program needs to be transformed into an
abstract syntax tree in any of the previous formalisms. Whether the AST is kept in prefix versus postfix order is irrelevant.

4Since in rewriting logic the relation “→” is reflexive and is defined on top of equational deduction, “R ` v1 → v2” also
includes the case when bv1cE = bv2cE .

22



There is some similarity between our notion of computational granularity preservation and the notion
of bisimulation [Mil89]. However, note that our notion of computational congruence above differs from the
notion of bisimulation on E-equivalence classes, in that we require it to “protect” the data universe, or the
values (second bullet), while in bisimulation based approaches the data tends to be encoded as labels of
transitions. Rewriting logic also allows labeled transitions [Mes92], but we chose not to consider them yet
in our definitions.

Notice that the E-congruence is a computational congruence, more precisely the minimal one. We will
show that there also exists a maximal such congruence, that we call the computational equivalence. But first,
let us define the notion of a trace tree.

Definition 2 For each “invisible” term t (i.e., t is not E-equivalent to any visible term), let Next(t) be the
set of “states” (i.e., E-equivalence classes) reachable in one step from t: Next(t) = {bt′cE | R ` t→1 t′}. Let
the trace tree of a “state”, Tree(btcE), be the tree rooted in · and having as direct descendants the subtrees

Tree(bt′cE) for all distinct elements bt′cE ∈ Next(t). For any visible term v, Tree(bvcE) is the tree · bvcE−→ ·.

Therefore, our trace trees contain labels only on the edges leading to leaves. The other edges contain no
labels because, for the time being, we prefer to make no distinction among the various types of computational
steps: all it matters is their number and the resulting values. For deterministic programs, trace trees will be
just plain linear traces. Proper trees can result when non-deterministic languages are defined. We therefore
prefer a tree-based, rather than a trace-based, equivalence in the context of non-determinism. We next define
the important notion of computational equivalence as a contextual “behavioral” equivalence:

Definition 3 The computational equivalence ≡R on R is defined by:

t1 ≡R t2 iff for any context c, Tree(bc[t1]cE) and Tree(bc[t2]cE) are bisimilar.

Theorem 2 For any R as in Definition 1, the computational equivalence is the greatest computational
congruence.

Proof. Fist, let us prove that ≡R is a computational congruence in the sense of Definition 1. That it is
an equivalence is clear because the bisimulation relation is an equivalence; the compatibility with operations
follows by transitivity and the fact that we can put any context on top of a term. ≡R includes the E-
congruence because its definition refers only to classes of E-equivalent terms. ≡R is the EV equivalence on
visible terms since v1 ≡R v2 implies in particular that Tree(v1) is bisimilar to Tree(v2), so they must be
labeled by the same E-equivalence class. The computational granularity condition follows from the similar
condition in the definition of bisimulation of trees [Mil89].

Let us now show that any other computational congruence ≈ is smaller that ≡R. From the congruence
condition one can derive that c[t1] ≈ c[t2] for any t1 ≈ t2. The bisimilarity condition follows by induction
on the structure of trace trees, using the preservation of computational granularity property for ≈. �

Corollary 1 Let R = (Σ, E, R) be a rewriting logic theory as in Definition 1, and let t1, t2 be two ground
Σ-terms such that the (E ∪ {t1 = t2})-congruence is a computational congruence on R. Then t1 ≡R t2.

Proof. Obvious, since the pair (t1, t2) is in the (E ∪ {t1 = t2})-congruence which, as a computational
congruence is included in the computational equivalence (by Theorem 2). �

The above gives us a generic way to prove that two terms t1 and t2 are computationally equivalent: prove
that the E∪{t1 = t2}-congruence is a computational congruence on R. Since the (E∪{t1 = t2})-congruence
includes the E-congruence (first item in Definition 1), one only needs to show that the new equation does not
affect the data universe (second item in Definition 1) and that it still preserves the computational granularity
of R. Regarding the former issue, first note that one can indeed destroy the data consistency by adding
inappropriate equalities t1 = t2; for example, if one adds aexp(7) = aexp(5) then one can derive 7 = 5, which
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is obviously not desirable within the original (ΣV , EV ). The data consistency preservation problem can be
made arbitrarily complex in worst case scenarios; however, as we shall shortly see, in practice one can show
it relatively easily. Regarding the preservation of computational granularity, one can show it by analyzing
the effect that each rule has on contexts containing the two terms.

Proposition 4 In the RK language definition in Table 8, suppose that the data universe is given by the
assumed signatures and equations for integers and booleans. Then for any b ∈ BExp and st ∈ Stmt,

while b st ≡RK
if b then {st; while b st} else skip

Proof. Since this is the first proof of computational equivalence of programs in this setting, we take the risk
of being boring and prefer to discuss in depth the details of the proof. Since the two terms are in normal
form with regard to R and since they can only be placed in a stmt(·) context, it suffices to prove that

stmt(while b st) ≡RK
stmt(if b then {st; while b st} else skip),

which is equivalent to proving that

bexp(b) y while(bexp(b), stmt(st)) ≡RK
bexp(b) y if(stmt(st) y bexp(b) y while(bexp(b), stmt(st)),nothing).

Since ≡RK
is defined only using E-equivalence classes to prove the latter, it suffices to prove that

while(bexp(b), stmt(st)) ≡RK
if(stmt(st) y bexp(b) y while(bexp(b), stmt(st)),nothing)

We prefer to prove an even more general computational equivalence, namely that for any continuations kb

and kst,
while(kb, kst) ≡RK

if(kst y kb y while(kb, kst),nothing).

Let us now use Corollary 1 and show that identifying these two terms has no influence on the data consistency
or the computation. Let e be the equation identifying the two terms.

It is relatively easy to see that e does not affect the data consistency. Indeed, one can notice that
equations yield structurally equivalent terms, with one exeception, that of the equation defining the value
of the computation (yet, that applies only to finished computation, so could not be used in conjunction
with e without any rules being applied in between), and thus one can use e to only prove equalities about
terms containing the two terms as subterms, i.e., equalities of continuations representing statements, or
even programs. In order to destroy the data consistency, one would have to derive equal terms belonging
to a syntactic category which also contains visible terms, such as AExp, BExp or Pgm. In fact, not even
equations like halt(3) = halt(5) can destroy the data consistency, because there is no way to prove that
E ∪ {halt(3) = halt(5)} ` 3 = 5.

Let us now show that E ∪ {e}-congruence satisfies the computational granularity condition. Let t1 and
t2 be two terms such that E ∪ {e} ` t1 = t2 and suppose that R ` t1 →1 t′1. We must find a term t′2 such
that R ` t2 →1 t′2 and E ∪ {e} ` t2 = t′2.

Let c1 be a context, θ1 a substitution and l → r a rule in R such that E ` t1 = c1[θ1(l)] and E ` t′1 =
c1[θ1(r)].

Let us first show that there exists a context c2 and a term l′ such that E ` t2 = c2[l′] and E ∪ {e} `
θ1(l) = l′. Since E ` t1 = c1[θ1(l)] it must be that E ∪{e} ` c1[θ1(l)] = t2. Notice that, due to the nature of
our rewrite rules, θ1(l) must be either of form k(kpgm) or of the form k(kpgm) store(s) for some continuation
term kpgm and store term s. Since all equations, including e, can either apply inside a continuation or are of
the form k(k1) = k(k2), the deduction for E ∪ {e} ` c1[θ1(l)] = t2 will keep replacing equals by equals either
in the c1-part or in the θ1(l) part, yielding our affirmation true.

We next show that there exists r′ such that R ` l′ → r′ and E ∪ {e} ` r′ = θ1(r). If l → r is not a rule
involving if or while, we can easily replay it for l′. Let us exemplify with one of the rules for and - others
can be treated in a similar manner. Suppose l→ r is

k(true y and(K2) y K)→ k(K2 y K),
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and suppose θ1(K2) = k2 and θ1(K) = krest. Since e makes equal two continuation items which can’t
be further decomposed without setting them in a proper context, we must have that E ` l′ = k(true y
and(k′2) y k′rest) such that E ∪ {e} ` k′2 = k2 and E ∪ {e} ` k′rest = krest. Thus, we can also apply l → r to
c2[l′], using the context c2 and the substitution θ2 given by θ2(K2) = k′2 and θ2(K) = k′rest, yielding the term
c2[r′] = c2[θ2(r)] = c2[k(k′2 y k′rest)]. Applying the congruence rule we obtain that E ∪ {e} ` θ1(r) = θ2(r).

If l→ r is one of the if rules then we distinguish three cases:
1. if E ` l′ = k(t y if(k1, k2) y krest) for some boolean value t, we are in the same situation as above.
2. if θ1(l) = k(true y if(k1, k2) y krest) and E ` l′ = k(true y while(kb, kst) y k′rest), then we must also
have that E ∪ {e} ` krest = k′rest, E ∪ {e} ` k2 = nothing and E ∪ {e} ` k1 = kst y kb y while(kb, kst).
Also, θ1(r) = k(k2 y krest). Using the rule for while for c2[l′], we obtain t′2 = c2[r′] where r′ = k(kst y
kb y while(kb, kst) y k′rest) and using the congruence rule several times we obtain that E ∪{e} ` θ1(r) = r′.
3. if θ1(l) = k(false y if(k1, k2) y krest) and E ` l′ = k(false y while(kb, kst) y k′rest), then we must also
have that E ∪ {e} ` krest = k′rest and E ∪ {e} ` k2 = nothing. Also, θ1(r) = k(k2 y krest). Using the rule
for while for c2[l′], we obtain t′2 = c2[r′] where r′ = k(k′rest) and using the congruence rule several times and
the identity equations for nothing, we obtain that E ∪ {e} ` θ1(r) = r′.

A similar argument can be given if we interchange if with while above.
We can now show that E ∪ {e} ` c1[θ1(r)] = c2[r′], by replaying those steps of the proof E ∪ {e} `

c1[θ1(l)] = c2[l′] which occur only on positions originating from c1, then using the context rule for equational
deduction. �

8.2 Relation with Context Reduction

We next show the equivalence between the continuation-based and the context reduction rewriting logic
definitions. The specification in Table 9 relates the two semantics, showing that at each computational
“point” it is possible to extract from our continuation structure the current expression being evaluated. For
each syntactical construct Syn ∈ {AExp,BExp,Stmt,Pgm}, we equationally define two (partial) functions:

• k2Syn takes a continuation encoding of Syn into Syn; and

• kSyn extracts from the tail of a continuation a Syn and returns it together with the remaining prefix
continuation.

Together, these two functions can be regarded as a parsing process, where the continuation plays the role of
“unparsed” syntax, while Syn is the abstract syntax tree, i.e., the “parsed” syntax. The formal definitions
of k2Syn and kSyn are given in Table 9.

We will show below that for any step CxtRed does, RK does at most one step to reach the same5

configuration. No steps are performed for skip, or for dissolving a block (because this were dealt with when
we transformed the syntax into continuation form), or for dissolving a statement into a skip (there is no need
for that when using continuations). Also, no steps will be performed for for the loop unrolling, because this
is not a computational step; it is a straightforward structural equivalence. In fact, note that because of
its incapacity of distinguishing between computational steps and structural equivalences, CxtRed does not
capture the intended granularity of while: it wastes a computation step for unrolling the loop and one when
dissolving the while into skip; neither of these steps has any computational content.

In order to clearly explain the relation between reduction contexts and continuations, we go a step forward
and define a new rewrite theory RK′ which, besides identifying while with its unrolling, ads to RK the idea
of contexts, holes and pluggable expressions. More specifically, we add a new constant “[]” and the following
equation, again for each syntactical category Syn:

k(syn(Syn) y K ′) = k(syn(Syn) y syn([]) y K ′),

5“same” modulo irrelevant but equivalent syntactic notational conventions.
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k2Pgm(K) = k2Stmt(K ′).A⇐ {K ′, A} = kAExp(K)
k2Stmt(nothing) = skip
k2Stmt(K) = k2Stmt(K ′);St⇐ {K ′, St} = kStmt(K) ∧K ′ 6= nothing
k2Stmt(K) = St⇐ {K ′, St} = kStmt(K) ∧K ′ = nothing
kStmt(K y write(X)) = {K ′, X:=A} ⇐ {K ′, A} = kAExp(K)
kStmt(K y while(K1,K2)) = {K ′, if B then {St; while B1St} else skip}
⇐ {K ′, B} = kBExp(K) ∧B1 = k2BExp(K1) ∧ St = k2Stmt(K2) ∧B 6= B1

kStmt(K y while(K1,K2)) = {K ′, while BSt}
⇐ {K ′, B} = kBExp(K) ∧B1 = k2BExp(K1) ∧ St = k2Stmt(K2) ∧B = B1

kStmt(K y if(K1,K2)) = {K ′, if B then k2Stmt(K1) else k2Stmt(K2)}
⇐ {K ′, B} = kBExp(K)

kStmt(K y halt) = {K ′, halt A} ⇐ {K ′, A} = kAExp(K)
k2AExp(K) = A⇐ {nothing, A} = kAExp(K)
kAExp(K y kv(Kl, V l) y K ′) = kAExp(V l,K, Kl y K ′)

kAExp(K y aexp(A)) = {K, A}
kAExp(K y I) = {K, I}
kAExp(K y K1,K2 y +) = {K, k2AExp(K1) + k2AExp(K2)}
k2BExp(K) = B ⇐ {nothing, B} = kBExp(K)
kBExp(K y kv(Kl, V l) y K ′) = kBExp(V l,K, Kl y K ′)

kBExp(K y T ) = {K, T}
kBExp(K y K1,K2 y≤) = {K, k2AExp(K1)<=k2AExp(K2)}
kBExp(K y and(K2)) = {K1, B1 and k2BExp(K2)} ⇐ {K1, B1} = kBExp(K)
kBExp(K y not) = {K ′, not B} ⇐ {K ′, B} = kBExp(K)

Table 9: Recovering the abstract syntax trees from continuations
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replacing the equation for evaluating lists of expressions, namely

k((Vl,Ke,Kel) y K) = k(Ke y (Vl,nothing,Kel) y K),

by the following equation which puts a hole instead of nothing:

k((Vl,Ke,Kel) y K)k(Ke y (Vl, syn([]),Kel) y K)

The intuition for the first rule is that, as we will next show, for any well-formed continuation (i.e., obtained
from a syntactic entity) having a syntactic entity as its prefix, its corresponding suffix represents a valid
context where the prefix syntactic entity can be plugged in. But first, the following shows that RK′ does
not bring any novelty to RK, as expected.

Proposition 5 For any term t in RK, TreeRK
(t) is bisimilar to TreeRK′ (t).

Proposition 6 For each arithmetic context c in CxtRed and r ∈ AExp, we have that RK′ ` k(aexp(c[r])) =
k(aexp(r) y aexp(c))). Similarly for any possible combination for c and r among AExp, BExp, Stmt, Pgm,
Cfg.

(Note that r in the proposition above needs not be a redex, but any expression of the right syntactical
category, i.e., pluggable in the hole.)
Proof.

++x = [][++x]: RK′′ ` k(aexp(++x)) = k(aexp(++x) y aexp([]))

a1 + a2 = [] + a2[a1]: RK′′ ` k(aexp(a1 + a2)) = k((aexp(a1), aexp(a2)) y +)
= k(aexp(a1) y (aexp([]), aexp(a2)) y +) = k(aexp(a1) y aexp([] + a2))

i1 + a2 = i1 + [][a2]: RK′′ ` k(aexp(i1 + a2)) = k((aexp(i1), aexp(a2)) y +)
= k(aexp(a2) y (i1, aexp([])) y +) = k(aexp(a2) y aexp(i1 + [])).

b1 and b2 = [] and b2[b1]: RK′′ ` k(bexp(b1 and b2)) = k(bexp(b1) y and(bexp(b2)))
= k(bexp(b1) y bexp([]) y and(aexp(b2))) = k(bexp(b1) y bexp([]and b2)).

t and b2 = [][t and b2]: RK′′ ` k(bexp(t and b2)) = k(bexp(t and b2) y bexp([])).

st.a = [].a[st]: RK′′ ` k(pgm(st.a)) = k(stmt(st) y aexp(a))
= k(stmt(st) y stmt([]) y aexp(a)) = k(stmt(st) y pgm([].a)).

skip.a = skip.[][a]: RK′′ ` k(pgm(skip.a)) = k(stmt(skip) y aexp(a))
= k(aexp(a)) = k(aexp(a) y aexp([]))
= k(aexp(a) y stmt(skip) y aexp([])) = k(aexp(a) y pgm(skip.[])).

All other constructs are dealt with in a similar manner.
�

Lemma 1 RK′ ` k(k1) = k(k2) implies that for any krest, RK′ ` k(k1 y krest) = k(k2 y krest)

Proof. We can replay all steps in the first proof, for the second proof, since all equations only modify the
head of a continuation. �

By structural induction on the equational definitions, thanks to the one-to-one correspondence of rewriting
rules, we obtain the following result:

Theorem 3 Suppose s ' σ.
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n 15 16 18 Memory
for 18

ASF+SDF 1.7 2.9 11.6 13mb
BC 0.3 0.6 2.8 <1mb
Maude 3.8 7.7 31.5 6mb
Prolog 2.6 5.3 23.6 600mb
Scheme 3.2 6.4 25.5 5mb

Table 10: Execution times for Big Step definitions

1. If CxtRed ` 〈p, σ〉 → 〈p′, σ′〉 then RK′ ` k(pgm(p)) store(s) →≤1 k(pgm(p′)) store(s′) and s′ ' σ′,
where →≤1=→0 ∪ →1.

2. If RK′ ` k(pgm(p)) store(s)→ k(k′) store(s′) then there exists p′ and σ′ such that CxtRed ` 〈p, σ〉 →∗

〈p′, σ′〉, RK′ ` k(pgm(p′)) = k(k′) and s′ ' σ′.

3. CxtRed ` 〈p,⊥〉 →∗ i iff RK′ ` 〈p〉 → i for any p ∈ Pgm and i ∈ Int.

Proof. Sketch.

1. First, one needs to notice that rules in RK′ correspond exactly to those in CxtRed. For example,
for i1 + i2 → i1 +Int i2, which can be read as 〈c, σ〉[i1 + i2] → 〈c, σ〉[i1 +Int i2] we have the rule
k((i1, i2) y + y krest) → k((i1 +Int i2) y krest) which, taking into account the above results, has,
as a particular instance: k(pgm(c[i1 + i2])) → k(pgm(c[i1 +Int i2]). For 〈c, σ〉[x:=i] → 〈c, σ[i/x]〉[skip]
we have k(i y write(x) y k) store(s) → k(k) store(s[x ← i]) which again has as an instance:
k(pgm(c[x:=i]) store(s)→ k(c[skip) store(s[x← i]).

2. Actually σ′ is uniquely determined by s′ and p′ is the program obtained by advancing p all non-
computational steps - which were dissolved by pgm, or are equationally equivalent in RK′ , such as
unrolling the loops-, then performing the step similar to that in RK′ .

3. Using the previous two statements, and the rules for halt or end of the program from both definitions.
We exemplify only halt, the end of the program is similar, but simpler. For 〈c, σ〉[halt i] → i we
have k(i y halt y k) → k(i), and combined with RK′ ` result(k(i) store(s)) = i we obtain RK′ `
result(k(pgm(c[halt i])) store(s))→ i.

�

9 Experiments

We have defined interpretors for the language presented above in two rewrite engines, ASF+SDF (a com-
piler) and Maude (a fast interpreter with good tool support), in Prolog and in Scheme (modifying existing
interpretors used to teach programming languages). Also, the big-step definitions are compared against bc,
an C-written interpretor for a subset of C working only with integers. For Prolog we have compiled the
programs using the gprolog compiler. For Scheme we have used the PLT-Scheme mred interpretor. Tests
were performed on an Intel Pentium 4@2GHz with 1GB RAM, running Linux. The program chosen to test
various implementations consists of n nested loops, each of 2 iterations, parameterized by n. Times are
expressed in seconds. A limit of 700mb was set on memory usage, to avoid swapping. For largest runs, peak
memory usage was also recorded. For Scheme we have adapted the definitions from [FWH01], chapter 3.9
(evaluation semantics) and 7.3 (continuation based semantics) and a PLT-Redex definition given as example
in the installation package (for context reduction).

Prolog yields pretty fast interpreters. However, for backtracking reasons, it needs to maintain the stack of
all predicates tried on the current path, thus the amount of memory grows with the number of computational
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n 15 16 18 Memory
for 18

ASF+SDF 11.9 25.7 115.0 9mb
Maude 63.4 131.2 597.4 6mb
Prolog 10.2 21.9 - >700mb

Table 11: Execution times for Small Step definitions

n 9 15 16 18 Memory
for 18

ASF+SDF 0.6 88.7 214.4 1008.6 10mb
Maude 3.7 552.1 1239 6142.5 6mb
Prolog 0.1 10.2 - - >700mb
Scheme 198.2 - - - >700mb

Table 12: Execution times for Context Reduction definitions

steps. The style promoted in [FWH01] seems to also take into account efficiency. The only drawback is the
fact that it looks more like an interpretor of an SOS definition, the representational distance to the SOS
definition being much bigger than in Rewriting Logic/Prolog. The PLT-Redex implementation of context
reduction seems to serve more a didactic scope. It compensates lack of speed by nice interface and the
possibility to visually trace a run. The rewriting logic implementations seem to be pretty efficient in terms
of speed and memory usage (<12mb), while keeping a minimal representational distance to the operational
semantics definitions. As expected, continuation based definitions run slower than the big-step, but faster
than the others. Nevertheless, we prefer this definitions for the sake of modularity, concurrency and easiness
of defining context-intensive features.

10 Conclusion and Additional Related Work

We gave a unified overview of how common language operational semantics can be defined as rewrite logic
theories. Related big-step and small-step rewrite logic definitions have also been given in [VMO06] and
[MB04]. We additionally showed a novel rewrite logic approach to context reduction, together with its
equivalence to a more efficient and flexible continuation-based definition. What distinguishes our equivalence
result from efforts on efficient implementations of context reduction semantics by CPS transformations to
higher-order continuations, e.g., [SF92, DN01, DN05], is that our continuations are first-order and our
language definitions are theories in a logic, with algebraic denotational semantics and complete deduction,
not implementations; yet, they can be executed by current rewrite engines at performance comparable with
interpreter implementations.

There is much related work on defining programming languages in various computational logical frame-
works. We cannot mention all these here, but we refer the interested reader to [Roş05] for a comprehensive
discussion. Besides the ones already mentioned, we here list a few others which are, in our view, closer in

n 15 16 18 Memory
for 18

ASF+SDF 2.5 4.7 18.3 13mb
Maude 8.4 15.6 63.2 7mb
Prolog 4.8 9.7 - >700mb
Scheme 5.9 11.3 45.2 10mb

Table 13: Execution times for Continuation based definitions
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purpose to our approach: they aim at more than just implementing interpreters. ACL2 [KMM00] allows
both (functional) definitions and formal analysis of languages. Abstract State Machine (ASM) [Gur94] can
encode any computation and have a rigorous semantics, so any programming language can be defined as
an ASM and thus implicitly be given a semantics. Both big- and small-step ASM semantics have been
investigated. There are interesting connections between ASMs and rewriting logic, but their discussion is
beyond our scope here. Most of the other approaches ar either (non-trivial) encodings into a (usually typed,
higher-order) logic or intepretors (see, for example [FWH01]), which take the formal mathematical definition
only as a guideline, usually losing the computational granularity.
Acknowledgments. We thank Mark Hills for fruitful discussions and his help in adjusting the PLT-Redex
implementation to suit our needs.
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[GM82] Joseph A. Goguen and José Meseguer. Completeness of many-sorted equational logic. SIG-
PLAN Notices, 17(1):9–17, 1982.
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