
A role-based access control type system for boxed ambients.∗

Adriana Compagnoni, Stevens Institute of Technology, †

Elsa L. Gunter, University of Illinois, Urbana - Champaign, ‡

Philippe Bidinger, Stevens Institute of Technology, §

Abstract

Our society is increasingly moving towards richer forms of information exchange where mobility of
processes and devices plays a prominent role. This tendency has prompted the academic community
to study the security problems arising from such mobile environments, and in particular, the security
policies regulating who can access the information in question.

In this paper we describe a calculus for mobile processes and propose a mechanism for specifying
access privileges based on a combination of the identity of the users seeking access, their credentials, and
the location from which they seek it, within a reconfigurable nested structure.

We define BACIR, a boxed ambient calculus extended with a Distributed Role-Based Access Control
mechanism where each ambient controls its own access policy. A process in BACIR is associated with an
owner and a set of activated roles that grant permissions for mobility and communication. The calculus
includes primitives to activate and deactivate roles. The behavior of these primitives is determined by the
process’s owner, its current location and its currently activated roles. We consider two forms of security
violations that our type system prevents: 1) attempting to move into an ambient without having the
authorizing roles granting entry activated and 2) trying to use a communication port without having the
roles required for access activated. We accomplish 1) and 2) by giving a static type system, an untyped
transition semantics, and a typed transition semantics. We then show that a well-typed program never
violates the dynamic security checks.

1 Introduction

The exchange of information by electronic means in a mobile environment has become part of everyday life,
with cellphones, PDA’s, and laptop computers accessing remote information and transmitting signals and
data. An increasingly mobile workforce needs to be able to access corporate information while at work, from
home, and on the road. This tendency has led the academic community to study the security problems
arising from this ever increasing mobility.

One aspect of secure computing is the control of who gains access to which shared and sensitive computing
resources. Role-Based Access Control (RBAC) [15, 26, 16] is a standardized methodology for defining security
policies and for giving privileges to users, based on using roles as an abstraction representing a set of activities
to be performed. Access is fundamentally controlled by roles. On one side, each user of a system is associated
with a set of roles. On the other side, each role is associated with a set of permissions (access privileges to
existing resources). Some roles may be mutually exclusive, and others may be deactivated leaving the user
with only a subset of the full set of roles with which she is associated. Therefore, in simple RBAC, a user is
granted an access privilege to a resource if one of her activated roles has that privilege. This factorization
of access control simplifies the administration of the security policy by allowing the systems administrator
to separately decide which resources a given role needs in order to successfully operate, and what roles to
assign to each user. It also allows for the choice of authentication method to be handled separately. How to
enrich RBAC by adding orderings and other forms of structure on the roles and the privileges is an active

∗This research was partially supported by the NSF Grant No. CCR-0220286 ITR:Secure Electronic Transactions and by US
Army Research Office Grant number DAAAD19-01-1-0473.

†abc@cs.stevens.edu
‡elsa@cs.uiuc.edu
§pbidinge@cs.stevens.edu

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4820497?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

area of research. They all share in common the separation of concerns given by the introduction of roles.
RBAC, however, is not concerned with the authentication of users. Whether the user claiming to be Bob is
indeed Bob precedes the application of access control, and is beyond the scope of this work.

Mobility adds a new dimension to RBAC, since the services available to a given user also depend on
the location of the user, agreements between parties, and the technology underlying the connection. For
example, without roaming agreements in place, a cell-phone may be rendered useless beyond the scope of
its provider’s network. Furthermore, whether a user’s connection is wireless, wired, secure, or insecure also
conditions the available services. For example, an administrator on an insecure wireless connection may be
denied access to sensitive information. In a distributed environment the policies regulating access control
may be distributed among several parties, and each principal may only have partial knowledge of the overall
security policy [24, 25, 23]. In a mobile environment, different domains will have different access policies and
when users (and potentially programs) migrate from domain to domain the access policy governing them
will change with their enclosing domain.

Role-based access control is currently a popular mechanism for governing the access to databases, files,
executable programs and other computational resources. In networking there is another kind of access
control that is done by packet filtering. A given router may be configured to drop all SMTP or HTTP
packets denying access to certain services of a domain from outside that domain. Here, there is no notion
of user and role, but only IP domain and packet type. However, it can be beneficial to have a finer-grain
access control that is aware of roles and network domains. Consider the following example:

The University of Wizbrau is equipped with intelligent buildings, and students carry their laptops
with them to class. While in the classroom, students have only limited Internet access and
they are not allowed to use e-mail, instant messenger, or visit general websites. However, these
activities are allowed when done from the student lounge instead. Since the instructor of the
course needs a greater access to resources than the students, those activities locally disabled to
the students are available to the instructor. For example, during a lecture, the instructor may
consult her e-mail to address a question raised by a student in an e-mail message.

The restrictions placed on users in this environment need to be sensitive to both the location of the user
(classroom versus lounge) as well as the role (student versus instructor). Such fine-grained control is not
readily handled by either packet filtering or RBAC.

In this paper we design a formal language featuring formal notions for resource, access, computation,
communication, location and mobility. The starting point of our design is a mobile ambient calculus in the
style of [10], where principals and locations are modeled by ambients. This formal language further includes a
type system based on roles and localized role-based access control. We further show that well-types programs
in this system don’t attempt unauthorized access to resources.

1.1 Background on Ambient Calculi

In Cardelli and Gordon’s Mobile Ambients (MA)[11], ambients represent nested computational environments
containing data and live computation. In a nutshell, ambients are administrative units forming a dynamic
hierarchy, where an ambient can move up and down the hierarchy by moving into a sibling or a parent
ambient. Furthermore, a mobile ambient is a communicating entity that can exchange information with
parents and children. MA are capable of moving under the influence of the process they enclose and can
dissolve their perimeter with an open operation. Mobile Ambients provide a direct characterization of
computational processes as well as computational devices.

Boxed Ambients (BA) [6] evolved from MA, by removing the ability of an ambient to dissolve its boundary.
In BA, an ambient is a “box” that cannot be opened. This notion of closed ambient provides a complete
encapsulation of the agents they contain. To enable the communication lost by disabling the open operation,
ambients are equipped with communication channels to exchange information with adjacent ambients (parent
and children ambients).

Both in MA and BA, ambient mobility is commanded by processes inside the ambient. The commands
for mobility are called capabilities. The capabilities tell an ambient to open or move inside or outside
another ambient. Unrestricted mobility, however, can lead to undesired interferences between two concurrent
processes. To address this concern, control over capabilities was first introduced in Safe Ambients [21] and

2

later used in New Boxed Ambients (NBA) [7] in the form of co-capabilities. A capability can be exercised
only in the presence of a matching co-capability. Hence, in order to enter an ambient using the in capability,
that ambient must contain a matching in co-capability authorizing that access; similarly for exiting using
the out capability.

Boxed Ambients with Communication Interfaces (BACI) [3], introduced the notion of local views. In
this calculus, each ambient has an associated communication port and a local view. The communication port
is used for sending and receiving messages to and from other ambients, and the local view represents the
communication types that are used by the processes enclosed inside the ambient. BACI is flexible enough to
allow an ambient to communicate with different parents using different types. However, this flexibility came
with the price of a rather complex syntax and some run-time type checking required to guarantee type safety.
BACIv2 [17] further enhanced communication mechanisms and mobility control by introducing multiple
communication ports, access control lists, and port hiding.

Motivated by our earlier work on BACI [3], we define a typed boxed ambient calculus called BACIR
extended with a Distributed Role-Based Access Control mechanism where each ambient controls its own
access policy. Following the style of BACI, our new calculus distinguishes between names of ambients
and names of communication ports. Ambients are used for mobility and ports are used for communication,
either locally within the main process of an ambient or between a parent and a child. This distinction is
instrumental in defining our RBAC mechanism, since it provides for a finer grain in the security policy. Each
kind of ambient (as determined by its name) controls its own access policy by specifying which roles a user
may activate for it, and which roles are sufficient to allow another ambient to enter it. Similarly, each kind of
ambient specifies for the ports it generates which roles can read from it and which roles can write to it. The
idea behind grouping ambients by name is that the name should indicate the general task to be performed,
and all ambients of the same name should be uniform in the way they interact with other ambients.

An ambient in BACIR is associated with an owner and a set of activated roles that grant permissions for
mobility and communication. The calculus includes primitives to activate and deactivate roles. The behavior
of these primitives is determined by the owner of the ambient, its current location, and its currently activated
roles. In order for an ambient to activate a role, the security policy has to allow the owner of the ambient to
do so. Moreover, deactivating roles should not remove the roles authorizing the ambient to be in its current
location.

We consider two forms of security violations that our type system prevents: 1) attempting to move into an
ambient without having the authorizing roles granting entry activated and 2) trying to use a communication
port without having the roles required for access activated. We accomplish 1) and 2) by giving a static type
system in Section 3, an untyped transition semantics, and a typed transition semantics in Section 4. We
then show that a well-typed program never violates the dynamic security checks in Theorem 4.3.

This technical report is a revision of the extended abstract [12] that appeared in the proceedings of
the international symposium Trustworthy Global Computing, 2005. The work here differs from that in the
abstract in the following ways: The grammar of our language, and correspondingly the type system and
transition rules, have been simplified by the removal of cases that were semantically equivalent to other
constructs. We have also added the details of how to encode the example of the student versus the instructor
in the classroom in our calculus, and described how the type system prevents the unwanted network actions
from taking place.

2 Syntax of BACIR

Based on our earlier work on BACI [3], we define BACIR, a boxed ambient calculus with a Distributed
Role-Based Access Control mechanism, where the location of an ambient conditions its privileges. The
intuitive idea is that to accommodate security checking an ambient is associated with its owner and with
a set of roles that are currently activated. This set of roles can be changed by activation and deactivation
primitives. Whether a role can be activated or deactivated depends on the location of the ambient and its
owner. This control is made explicit in the type system where the type of an ambient has a set of roles
authorizing the entrance of ambients. Going back to the example, the professor can send mail because she
can activate the faculty mail role, while the students can only activate the student mail role, which is not
enough to qualify to send mail in the classroom.

3

Basic types
τ ::= amb(ρin, σ) ambient type

| cap(ρin, σ) capability type

Communication types
σ ::= shh no exchange

| (ρr, ρw, τ) exchange tuple

Locations:
η ::= ↑ c parent port c

| ↓ c child port c
| ? local

Actions:
π ::= C(c) capability

| K(c) co-capability
| activate〈r〉 activate role r
| deactivate〈r〉 deactivate role r
| (x1, . . . , xk)η input
| 〈M1, . . . , Mk〉η output

Capabilities:
C ::=i capability variable

| in m enter
| out m exit
| C1.C2 path

Co-Capabilities:

K ::=in allow enter
| out allow exit

Messages:
M, N ::=m ambient name

| C capability

Processes:
P ::=0 nil process

| P1 | P2 composition
| ννν(n :τ)P restriction
| !P replication
| π.P prefixing
| mu[[[P]]]@ρ ambient

Table 1: Syntax of BACIR

In order to define the syntax of BACIR we use the following disjoint categories of identifiers:

User Names: u, v ∈ Users
Roles: r ∈ Roles
Port Names: c, c′ ∈ C
Ambient Names: n, m ∈ Amb
Capability Variables: i ∈ CapVar
Message Identifiers: x ∈ Amb ∪ CapVar

We assume a fixed set Users of users, a fixed set Roles of roles, and a fixed function UserPolicy associating
each ambient, user and set of currently activated roles with a set of roles that may become activated for the
given ambient. The syntax of BACIR is presented in Table 1.

BACIR may be seem as an extension of the π-calculus. Processes and Actions are the two main syntactic
categories. We add to the processes of the π-calculus that of ambients. Further, we modify restriction to
apply only to ambient names, which are distinct from port names (a.k.a. channel names). The π-calculus
actions of input and output are modified to provide the location of the communication port (parent, child,
or local). We add to these actions those for activation and deactivation of roles and those for requesting
and granting permission for movement of ambients (capabilities and co-capabilities). Capabilities and co-
capabilities, in addition to controlling the movement of ambients, introduce port names and provide their
scope. Capabilities include paths (sequences of movement requests) to allow directions to be passed to
an ambient directing it to a specific location. All the capabilities in the path except the last involve no
communication and generate no port.

We introduce the usual notion of process equivalence through the structural congruence generated by
alpha conversion, associativity and commutativity of parallel composition with 0 for identity, and the rules
given in Table 2. The rules for replication and restriction are fairly standard. We add a rule for allowing
restriction to pass through an ambient, provided that ambient is not the one whose name is being restricted.
(The functions fn and fp give the free ambient names and the free port names, respectively, in a process.)
The last rule tells us that to follow a path is the same as to follow it in pieces. This makes sense because
ambients can only enter one other ambient at a time. In Section 4, we will see that the operational semantics
respects process equivalence.

4

!P ≡ P |!P (Struct Rep Par)
ννν(n :τ)ννν(m :τ ′)P ≡ ννν(m :τ ′)ννν(n :τ)P (Struct Res Res)
ννν(n :τ)(P1 | P2) ≡ P1 | ννν(n :τ)P2, if n /∈ fn(P) (Struct Res Par)
ννν(n :τ)mu[[[P]]]@ρ ≡ mu[[[ννν(n :τ)P]]]@ρ, if n 6= m (Struct Res Amb)
(C1.C2)(c).P ≡ C1(c′).(C2(c).P), where c′ 6∈ fp(P) (Struct Prefix)

Table 2: Structural Equivalence

Ambient Name:

Γ(m) = amb(ρin, σ)
ρ′in ⊆ ρin

Γ ` m : amb(ρ′in, σ)

Variable:

Γ(i) = cap(ρin, σ)
ρ′in ⊆ ρin

Γ ` i : cap(ρ′in, σ)

Path:

Γ ` C1 : cap(ρin, σ′)
Γ ` C2 : cap(ρin, σ)

Γ ` C1.C2 : cap(ρin, σ)

Enter / Exit To:

Γ ` m : amb(ρin, σ)

Γ ` in / out m : cap(ρin, σ)

Parent/
Child Port :

Γ(c) = σ

Γ, m ` ↑ /↓ c : σ

Local:

Γ ` m : amb(ρin, (ρr, ρw, τ))

Γ, m ` ? : (Roles, Roles, τ)

Table 3: Typing of Ambient Names, Capabilities, Messages, and Locations

3 Types for Security

Attempting to enter an ambient without an authorizing role activated is a security violation. Trying to use
a communication port without having activated at least one of the required roles to access the port is also
a security violation. In this section we define a type system such that well-typed processes can compute
without committing security violations. The type of a process is a set of roles sufficient for it to compute
without security violations. In particular, the type of an ambient name is the set of roles needed for mobility
and communication. The syntax of types can be found in Table 1. Basic types describe the kind of data
to be communicated over a port, either ambient name or capability, together with the roles sufficient for
entrance and the communication type of the associated ambient. The communication type includes the sets
of roles ρr and ρw granting read and write access to a port. In this presentation of the calculus, we allow only
ambient names and capabilities to be passed over ports, but not port names. Allowing the communication
of computational types such as the integers does not effect the results here.

In Tables 3, 4 and 5, let Γ be a typing environment mapping message identifiers to basic types and port
names to communication types. We further require that Γ(m) be an ambient type for ambient names, and
Γ(i) be a capability type for capability variables (the two sorts of message identifiers). The typing judgment
for a process is of the form Γ, ρhere, ρdeac,m, u ` P : ρact, where Γ is the typing environment for free message
identifiers and port names, m is the assumed surrounding ambient, u is the current user (owner of m), ρhere

is the set of roles sufficient for authorizing m to be in its current location (the entrance policy for the ambient
containing m), ρdeact is the set of roles that the process may at any time in its computation safely deactivate,
and ρact is the set of “currently active” roles. The judgments for the other syntactic categories are similar.

Typing of ambients and capabilities is mostly as would be expected. One should note that when typing
these, one may use a more restrictive set of roles than is allowed by the typing environment. Thus, when
typing a path, we may use the intersection of all the roles in of the ambients in the path. However, we should
note the only the communication type of the right-most component in a path is used for the communication
type of the whole path. To type local communication, we use the ambient assumed as the surrounding
ambient, and we want no restrictions on reading or writing. However, it is important that we maintain the
restrictions on the types of data transmitted. We could violate the security policy if we omitted the type
checks on messages locally communicated, because we potentially could send a capability with one security
policy, but receive it with a different one.

The rules for typing actions and processes appear in Table 4 and Table 5 respectively. Actions are the

5

Capabilities:

Γ ` C : cap(ρin, σ) (ρact − ρdeact) ∩ ρin 6= ∅

Γ, ρhere, ρdeact, ρact, m, u ` C(c) : (Γ + (c :σ), ρin, ρact)

Co-Capabilities:

Γ ` m : amb(ρin, σ)

Γ, ρhere, ρdeact, ρact, m, u ` K(c) : (Γ + (c :σ), ρhere, ρact)

Activation:

r ∈ UserPolicy(u, ρact)

Γ, ρhere, ρdeact, ρact, m, u ` activate〈r〉 : (Γ, ρhere, ρact ∪ {r})

Deactivation:
r ∈ ρdeact

Γ, ρhere, ρdeact, ρact, , m, u ` deactivate〈r〉 : (Γ, ρhere, ρact − {r})

Input:

m 6∈ {x1, . . . , xk} Γ, m ` η : (ρr, ρw, τ) (ρact − ρdeact) ∩ ρr 6= ∅

Γ, ρhere, ρdeact, ρact, , m, u ` (x1, . . . , xk)η : (Γ + Σk
i=1{xi :τ}, ρhere, ρact)

Output:

Γ, m ` η : (ρr, ρw, τ) Γ ` Mi : τ i = 1, . . . , k (ρact − ρdeact) ∩ ρw 6= ∅

Γ, ρhere, ρdeact, ρact, m, u ` 〈M1, . . . , Mk〉η : (Γ, ρhere, ρact)

Table 4: Well-typed Actions

Nil:

Γ, ρhere, ρdeact, m, u ` 0 : ρact

Composition:

Γ, ρhere, ρdeact, m, u ` P1 : ρact Γ, ρhere, ρdeact, m, u ` P2 : ρact

Γ, ρhere, ρdeact, m, u ` P1 | P2 : ρact

Restriction:

Γ + (m′ : τ), ρhere, ρdeact, m, u ` P : ρact

Γ, ρhere, ρdeact, m, u ` ννν(m′ :τ)P : ρact

Replication:

Γ, ρhere, ρdeact, m, u ` P : ρact

Γ, ρhere, ρdeact, m, u `!P : ρact

Prefixing:

Γ, ρhere, ρdeact, ρact, m, u ` π : (Γ′, ρ′here, ρ
′
act) Γ′, ρ′here, ρdeact, m, u ` P : ρ′act

Γ, ρhere, ρdeact, m, u ` π.P : ρact

Ambient:

Γ ` m : amb(ρin, σ) Γ, ρin, ρ′deact, m, v ` P : ρm

Γ, ρhere, ρdeact, m
′, u ` mv[[[P]]]@ρm : ρact

Table 5: Well-typed Processes

6

Enter: mv[[[in n (c).P1 | P2]]]@ρm | nu[[[in (c′).P3 | P4]]]@ρn ⇒
nu[[[mv[[[P1{c := c′′} | P2]]]@ρm | P3{c′ := c′′} | P4]]]@ρn

Exit: pw[[[nv[[[mu[[[out p (c).P1 | P2]]]@ρm | P3]]]@ρn | out (c′).P4 | P5]]]@ρp ⇒
pw[[[mu[[[P1{c := c′′} | P2]]]@ρm | nv[[[P3]]]@ρn | P4{c := c′′} | P5]]]@ρp

where c′′ is assumed to be a fresh variable in each transition above

Activate: mu[[[(activate〈r〉.P) | R]]]@ρ ⇒ mu[[[P | R]]]@(ρ ∪ {r})

Deactivate: mu[[[(deactivate〈r〉.P) | R]]]@ρ ⇒ mu[[[P | R]]]@(ρ− {r})

Local: 〈M1, . . . , Mk〉?. P | (x1, . . . , xk)?. R ⇒ P | R{xi := Mi |i = 1 . . . k}

To Child (↓): mu[[[〈M1, . . . , Mk〉↓c. P1 | nv[[[(x1, . . . , xk)↑c.P2 | R1]]]@ρn | R2]]]@ρm

⇒ mu[[[P1 | nv[[[P2{xi := Mi|i = 1 . . . k} | R1]]]@ρn | R2]]]@ρm

To Parent (↑): nv[[[mu[[[〈M1, . . . , Mk〉↑c.P1 | R1]]]@ρm | (x1, . . . , xk)↓c. P2 | R2]]]@ρn

⇒ nv[[[mu[[[P1 | R1]]]@ρm | P2{xi := Mi|i = 1 . . . k} | R2]]]@ρn

Context:
P ⇒ R

E{P} ⇒ E{R}
Struct:

P ′ ≡ P P ⇒ R R ≡ R′

P ′ ⇒ R′

Evaluation Contexts: E ::= {·} | E | P | ννν(n :τ)E | mu[[[E]]]@ρ

Table 6: Simple Transition System

basic unit of work in processes. They have the potential for changing the set of variables in scope, the current
position and hence the current authorizing policy, and the set of activated roles. Thus the type of an action
is a tuple of the revised typing environment, the revised authorizing policy, and the revised set of activated
roles. Capabilities change the current location and introduce a new port, while co-capabilities only introduce
a new port. Activation adds a new role, if it is allowed by the policy, and deactivation removes it provided it
is in the set of roles safe for deactivation. Inputting a message introduces a tuple of new message variables.
Outputting a message does not change the typing environment.

Processes are the outermost level of syntax. The main rules to note are those for prefixes and ambients
(Prefixing and Ambient in Table 5). For prefixes, we must type the action at the head to derive a new
typing environment, new authorizing policy, and a new set of active roles, and then use these instead of the
originals to check the remaining process. The typing for an ambient throws away the surrounding ambient
information and checks the ambient in isolation. Since an ambient may travel into other ambients with
unknown active roles, an ambient must be secure relative to the context it carries with itself.

4 Operational Semantics

Our goal in defining the static type system given in Section 3 is to enable us to prove that if a process type
checks with a given set of roles, then it will never attempt an action that it is not authorized to perform when
executed in a state where all the roles in the set have previously been activated. To this end, we define two
transition semantics for our language, one with dynamic security checks and one without. For the untyped
semantics, we have a form of subject reduction. We also have that, if a process type checks, then it reduces
to another process in the untyped transition system if and only if it reduces to that process in the typed
transition system.

4.1 Untyped Transition Semantics

The untyped transition semantics for BACIR is given in Table 6. It is worth noting that almost all the
reduction rules explicitly mention a context containing an ambient, except for the rule for local commu-
nication. The rules for ambient movement (Enter and Exit) are the most complicated. For an ambient
to Enter another, the two ambients must be directly in parallel with each other, the first ambient must
contain a process requesting entrance to the second, and the second ambient must have a process allowing

7

the entrance. If these conditions are met, then the request and permission are consumed and the resulting
first ambient enters the resulting second ambient. Upon entrance, a fresh port is created for the two ambi-
ents to share for communication. The type of the port is determined by the ambient being entered (rules
Capabilities and Co-Capabilities in Table 4). For an Exit action, the conditions are the same except for
the positioning of the ambients: the one requesting to exit must be inside an ambient which in turn is inside
the ambient to which the first wishes to exit. The rules for activation and deactivation cause the addition
or deletion of the given role from the role set of the surrounding ambient. The rules for communication
cause the appropriate substitution when the communicating parties are appropriately positioned. It is worth
noting that local communication is expressly not between ambients, but between ordinary processes, corre-
sponding to communication in the π-calculus. In addition to the above rules for top-level reduction, there
is a rule allowing us to descend through compositions, restrictions, and ambients to find a process capable
of reducing. In particular, it is worth noting that an ambient within another ambient may keep computing,
even while the outer ambient is blocked. To apply any of these rules, we may substitute for a process any
process which is structurally equivalent to the original one.

The following result shows that the typing relation is preserved by reduction.

Theorem 4.1 (Subject Reduction) Let P1, P2, and P3 be processes, m and n be ambient names, u and v be
users, ρhere, ρdeact, ρact and ρ′

act, be sets of roles, and let Γ be a typing environment. If Γ, ρhere, ρdeact, m, u `
P1 : ρact and P1 ⇒ P2, then there exists a typing environment Γ′ ⊇ Γ with Γ′, ρhere, ρdeact, m, u ` P2 : ρact.
Moreover, if mu[[[P1]]]@ρact ⇒ nv[[[P3]]]@ρ′

act, then m = n and u = v and there exists Γ′′ ⊇ Γ such that
Γ′′, ρhere, ρdeact, n, v ` P3 : ρ′

act.

4.2 Typed Transition Semantics

In this section we briefly sketch the transition semantics with runtime type checks (e.g. security checks).
The rules of the semantics are found in Tables 7 – 10. These rules augment the processes to be evaluated

with a typing context in which the evaluation is to take place. This context is comprises a typing environment,
Γ, as in Section 3, a set of roles, ρhere, and a basic type, τ . As usual, the typing environment supplies us
with the types for free ambient names and ports occurring in our process. The set of roles tells which roles
are sufficient to authorize the process’s current location. The basic type is the type of a message that can
be locally communicated at top level. We do not need read and write policies, because there are no security
checks on local communication. The typed reduction relation transforms a process and its context into a
new process in a new context. If we ignore the context, including the premises concerning it, then we get
the untyped system in the previous section. The typing environment, role set and basic type are the extra
information we need to carry to do dynamic security checks.

Since the reductions on the processes are the same as in the untyped transition semantics, we will focus
on the security checks and the transformations to the typing environment and basic type. Activation and
deactivation are relative to an enclosing ambient and serve to change that ambient’s set of active roles. For
activation, we must check that the user of the ambient together with the currently active roles are allowed
to activate the role. For deactivation, we need to check that deactivating the role will still leave some other
role that is sufficient to authorize the ambient’s current location.

When one ambient enters another, we need to know that the entering ambient has an appropriate role
activated authorizing it to enter, and we need to establish a shared communication port for sending and

activate:

r ∈ UserPolicy(u, ρ)

(Γ, ρhere, τ) B mu[[[(activate〈r〉P) | R]]]@ρ −→ (Γ, ρhere, τ) B mu[[[P | R]]]@(ρ ∪ {r})
deactivate:

(ρ− {r}) ∩ ρhere 6= ∅

(Γ, ρhere, τ) B mu[[[(deactivate〈r〉P) | R]]]@ρ −→ (Γ, ρhere, τ) B mu[[[P | R]]]@(ρ− {r})

Table 7: Roles

8

Enter:

Γ(n) = amb(ρin, τ) ρm ∩ ρin 6= ∅ c′′ 6∈ dom(Γ).

(Γ, ρhere, τ) B mv[[[in n (c).P1 | P2]]]@ρm | nu[[[in (c′).P3 | P4]]]@ρn −→
(Γ + (c′′ : τ), ρhere, τ) B nu[[[mv[[[P1{c := c′′} | P2]]]@ρm | P3{c′ := c′′} | P4]]]@ρn

Exit:

Γ(p) = amb(ρin, τ) ρm ∩ ρin 6= ∅ c′′ 6∈ dom(Γ)

(Γ, ρhere, τ) B pw[[[nv[[[mu[[[out p (c).P1 | P2]]]@ρm | P3]]]@ρn | out .(c′)P4 | P5]]]@ρp −→
(Γ + (c′′ : τ), ρhere, τ) B pw[[[nv[[[P3]]]@ρn | mu[[[P1{c := c′′}]]]@ρm | P4{c′ :=c′′} | P5]]]@ρp

Table 8: Mobility

local:

Γ ` Mi : τ i = 1, . . . , k

(Γ, ρhere, τ) B 〈M1, . . . , Mk〉?. P | (x1, . . . , xk)?. Q −→ (Γ, ρhere, τ) B P | Q{xi := Mi |i = 1 . . . k}

to child (↓):
Γ(c) = (ρr, ρw, τ ′) ρm ∩ ρw 6= ∅ ρn ∩ ρr 6= ∅ Γ ` Mi : τ ′ i = 1, . . . , k

(Γ, ρhere, τ) B mu[[[〈M1, . . . , Mk〉↓c. P1 | nv[[[(x1, . . . , xk)↑c.P2 | R1]]]@ρn | R2]]]@ρm −→
(Γ, ρhere, τ) B mu[[[P1 | nv[[[P2{xi := Mi|i = 1 . . . k} | R1]]]@ρn | R2]]]@ρm

to parent (↑):
Γ(c) = (ρr, ρw, τ ′) ρm ∩ ρw 6= ∅ ρn ∩ ρr 6= ∅ Γ ` Mi : τ ′ i = 1, . . . , k

(Γ, ρhere, τ) B nv[[[mu[[[〈M1, . . . , Mk〉↓c.P1 | R1]]]@ρm | (x1, . . . , xk)↓c. P2 | R2]]]@ρn −→
(Γ, ρhere, τ) B nv[[[mu[[[P1 | R1]]]@ρm | P2{xi := Mi|i = 1 . . . k} | R2]]]@ρn

Table 9: Communication

receiving messages of a type specified by the host ambient. The new communication port needs to be added
to the typing environment. (See Enter in Table 8.) The location of the encompassing process hasn’t changed,
so ρhere remains the same. The side conditions for the rule for Exit are comparable to those for Enter.

There are three kinds of communication: local communication between top-level subprocesses, sending a
message from a parent to a child and sending a message from a child to a parent. For local communication,
we only need to check that the type of the messages being sent is of the type specified for local communi-
cation (by τ), and that the number of messages sent is the same as those received. For trans-generational
communication, in addition to checking the number of messages as before, we need to check that the writing
ambient has write access to the port and the reading ambient has read access, and that the type of all
messages sent is the type specified in the type of the port as given by the typing environment.

The structural rules for our transition semantics tell us how and when we can descend through structures.
None of the structural rules impose any security checks in and of themselves. The rules for recursion and
composition use the same environment to security check the premises as they use in their conclusions.
Restriction uses a type environment augmented by the type assignment for the restricted ambient name for
reducing the body of the restriction. For descending through ambients, the typing environment is the same
in the premise as in the conclusion, but here we need to change the type for the local communication to that
of the basic type in the communication policy of the ambient, and we need to change the authorizing roles
to the entrance policy of the outer ambient.

The next theorem gives us that the typed transition semantics is a refinement of the untyped transition
semantics.

9

compostion:

(Γ, ρhere, τ) B P1 −→ (Γ, ρhere, τ) B P2

(Γ, ρhere, τ) B P1 | R −→ (Γ, ρhere, τ) B P2 | R

restriction:

(Γ + {m : τ}, ρhere, τ) B P −→ (Γ + {m : τ}, ρhere, τ) B R

(Γ, ρhere, τ) B ννν(m :τ)P −→ (Γ, ρhere, τ) B ννν(m :τ)R

ambients:

Γ(m) = amb(ρin, (ρr, ρw, τ ′)) (Γ, ρin, τ ′) B P −→ (Γ, ρin, τ ′) B R

(Γ, ρhere, τ) B mu[[[P]]]@ρ −→ (Γ, ρhere, τ) B mu[[[R]]]@ρ

structural equivalence:

P1 ≡ P2 (Γ, ρhere, τ) B P2 −→ (Γ, ρhere, τ) B R2 R2 ≡ R1

(Γ, ρhere, τ) B P1 −→ (Γ, ρhere, τ) B R1

Table 10: Structural Rules

Theorem 4.2 Let P and P ′ be processes, Γ and Γ′ be typing environments, ρhere and ρ′
here be sets of roles,

and τ and τ ′ be basic types. If (Γ, ρhere, τ) B P −→ (Γ′, ρ′
here, τ

′) B P ′, then ρhere = ρ′
here, τ = τ ′, Γ ⊆ Γ′,

and P ⇒ P ′.

Theorem 4.3 tells us that, if a process type checks, then to evaluate it you can omit all runtime checks.
A side-effect of this is that if a process type checks, there is no runtime significance to activation and
deactivation, and they could be removed after type-checking as an optimization.

Theorem 4.3 Let P be a process that type checks with role set ρ using typing environment Γ, authorizing role
set ρhere, ambient m, such that Γ(m) = amb(ρin, (ρr, ρw, τ)), and user u (e.g. Γ, ρhere, ρdeact, m, u ` P : ρact).
If P ⇒ P ′ for some process P ′, then (Γ, ρin, τ) B P −→ (Γ′, ρin, τ) B P ′, for some Γ′ such that Γ ⊆ Γ′.

The typed transition semantics developed in this section was primarily introduced as a vehicle to formalize
the benefit of static type checking. It is worth noting that this semantics is of value in its own right. The
static rules are predicated on static access to the information as to which roles are granted access to which
resources. With the typed transition semantics, we can still perform security checks even in a situation where
the control policy is only known at runtime.

5 Example: The University of Wizbrau

To see the utility of the calculus discussed in this paper, let us see how we could use it to express an example
where we need to combine mobility with localized checking of access authorization to local resources. Recall
the example outlined in the introduction of the university with classrooms where students’ access to the
internet is more limited than that of the instructor. Let {ProfSue,Dan,Chuck} be users representing the
instructor in the class, a student in the class, and the systems administrator for the classrooms in the
university. There are five roles available, student, student mail, instructor, faculty mail and sys admin. To
send mail, one should use an ambient named mail. To use the automated class response system, one should
use an ambient named answer. The laptops of the students and the instructor will be represented by ambients
named laptop, the classroom ambient will be named classroom and the student lounge ambient will be named
lounge. The classroom and the student lounge are part of the Univ ambient.

The user policy and a partial initial typing environment are given in Table 11. For this example, the
user policy doesn’t depend on the currently active policies, and they are omitted in the table. For brevity,
we will also omit communication types from the typing environment description.

The basic program for both the classroom and the student lounge is the same. It allows other ambients
to come and go, provided they have the right roles activated. For those entering, no communication is done.
For those exiting, a path to a router is provided. The program for the instructor is to enter the classroom

10

Ambient User Roles Ambient User Roles

laptop ProfSue {instructor} mail ProfSue {faculty mail}

Dan {student} Dan {student mail}

Chuck {} Chuck {}

classroom / ProfSue {} answer ProfSue {instructor}

lounge / Dan {} Dan {student}

Univ Chuck {sys admin} Chuck {}

Γ(classroom) = amb({student, instructor, faculty mail},)

Γ(Univ) = Γ(lounge) = amb({student, student mail, instructor, faculty mail},)

Table 11: Wizbrau Security Policy

and send some mail, in parallel with some other work. The student enters the classroom, answers some
questions, but also wants to send some mail. Here we can examine some options that fail, together with
one that works. The formal processes are listed below. To assist in examining the possibilities for Dan, his
process will be parametrized by the the role activated for the mail ambient and the ambient to which the
mail ambient trys to exit.

ClassRoom = classroomChuck[[[!in (c).0 | !out (c′).〈path to router〉.0]]]@{}
Lounge = loungeChuck[[[!in (c).0 | !out (c′).〈path to router〉.0]]]@{}
mail amb(user, role, amb) =

mailuser[[[activate〈role〉.out amb c.(i)↑c.i(c′).PDM]]]@{}
ProfSuesLaptop =

laptopProfSue

[
activate〈instructor〉.in classroom c.

(mail amb(ProfSue, faculty mail, classroom) | P)

]
@{}

answer amb = answerDan[[[activate〈student〉.out classroom c.(i)↑c.i(c′).PDA]]]@{})
DansLaptop(role, amb) =

laptopDan

[
activate〈student〉.in classroom c.(!answer amb |
mail amb(Dan, role, amb) | out Univ c.in lounge c′.Q)

]
@{}

The total process, parametrized by the arguements for the ambient DansLaptop then is:

UnivChuck[[[ClassRoom | Lounge | ProfSuesLaptop | DansLaptop(role, amb)]]]@{}.

In this process with amb = classroom, using the untyped transition system, both ProfSuesLaptop and
DansLaptop will enter the ClassRoom and be able to send out their mail ambients. To understand how type
checking and typed transitions proceed, we need to consider the restriction imposed by the user policy and
the typing environment. The total process will type check if and only if role = student mail and amb = lounge
or Univ. If role takes any other value, then the activation in mail will fail to type check because of the user
policy. If role = student mail, then amb cannot be classroom, since, by the typing environment, student mail
is not sufficient to grant entrance to classroom.

6 Related Work

For a variety of calculi for mobile and distributed systems that have emerged in the last years, access control
was one of the primary concerns. The proposed access control mechanisms range from simple ones that use

11

of co-actions [22, 28, 3] allowing or denying all access to a particular location (and the resources it contains)
to more refined ones that use different approaches: credentials to authorize the access [8], restricted groups
[9, 14], Mandatory Access Control mechanisms to constraint unauthorized access [5], and even “membranes”
that specify security policies for controlling the access to a particular location [18].

The work most closely related to our study of RBAC for an ambient calculus is [4]. The authors define a
distributed π-calculus (D-π) based on [19] with primitives to activate and deactivate roles. However, there
is no notion of an individual privilege being disabled or enabled depending on the current location, and the
domain topology is static: domains cannot move. In [20] Hennessy and Riely introduce a type system for a
distributed version of the π-calculus for restricting the access of processes to resources based on the current
location of the process. In this work, again the domain topology is static, and there is no direct connection
to RBAC.

At the Symposium on Trustworthy Global Computing 2005 (TGC 2005), during his invited address,
Matthew Hennessy presented a calculus for RBAC based on D-π. Unlike our system, his calculus has
dependent types to avoid dynamic typechecks of the security policy.

The work of RBAC in [24, 25] does not deal with the implementation of an RBAC mechanism in a given
calculus as is the case in [4]. Instead they define a calculus to describe an RBAC security policy and how to
answer queries to the security policy.

Various groups have developed methods for guaranteeing that specifications of RBAC systems are con-
sistent. In [27], Schaad and Moffett discuss the application of formal methods for the development of
specifications of a conflict-free role-based system. In [1] a formal language for the specification of role-based
authorization constraints, including prohibition, is introduced. Bertino et al. [2] develop a logical framework
for reasoning about access control models in general, including RBAC models.

7 Conclusions and Future Work

We defined BACIR, a boxed ambients calculus with Distributed Role-Based Access Control, where the priv-
ileges associated to processes change during computation and are determined by their location, their owners,
the roles they have activated, and the security policy. The distributed nature of the RBAC mechanism comes
from the fact that each ambient controls the security policy authorizing the entrance of ambients and each
port specifies the security policy controlling the reading and writing privileges.

Our type system prevents two forms of security violations, those consisting of attempting to enter an
ambient without proper authorization, and those consisting of trying to read or write from ports without
the corresponding permissions. These security violations are controlled using roles, that can be dynamically
activated and deactivated. The type system prevents security violating actions by those processes not vested
with the required authorizing roles.

Our main contribution is the design of the first ambient calculus with a distributed RBAC mechanism
where the location of a process conditions its mobility and its ability to communicate with other processes.
Our main result in Theorem 4.3 shows that a well-typed program never violates the dynamic security checks.

Although the classroom example in the introduction and Section 5 is focused on Internet networking for
a sense of location and communication, our Distributed RBAC mechanism should be applicable to other
settings such as those arising from mobile telecommunications.

The area remains full of open and challenging problems. An interesting aspect to consider is the notion
of trust in such a way that the access control policy governing the users’ requests will further depend on
whether the user is in a trusted or untrusted domain. Furthermore, RBAC can be enriched by placing order
structures on roles (role hierarchies), constraints on roles such as mutual exclusion (no user may activate
two given roles at the same time), combination of roles (two given roles have to be activated at the same
time), and composition of roles (users having a given role are given another role). Defining type systems to
address these richer notions of RBAC is the subject of our ongoing and future research.

12

8 Acknowledgments

We are grateful to Pablo Garralda, Healfdene Goguen, and Mariangiola Dezani for illuminating discussions
and comments on earlier drafts. We also appreciate Kaijun Tan for introducing us to the idea of combining
RBAC with calculi for concurrency.

A Auxiliary Lemmas

In section 2, we saw that processes make use of names n, m, variables i, and ports c, c′. We use x for message
identifiers, which can be either variables or names. We define in Figures 1, 2 and 3 the free names, free
variables, and free ports of a process. The free identifiers are defined as fmi(P) = fn(P) ∪ fv(P). We
also defined the names, variables, identifiers, and ports bound by a prefix, bn(π), bv(π), bmi(π) and bp(π)
respectively, where bmi(π) = bn(π) ∪ bv(π).

Free Names of a Process

fn(0) = ∅

fn(P1 | P2) = fn(P1) ∪ fn(P2)

fn(ννν(n :τ)P) = fn(P) \ {n}

fn(!P) = fn(P)

fn(π.P) = fn(P) ∪ fn(π) \ bn(π)

fn(mu[[[P]]]@ρ) = fn(P) ∪ {m}

Free Names of an Action

fn(C(c)) = names(C)

fn(K(c)) = ∅

fn(activate〈r〉) = ∅

fn(deactivate〈r〉) = ∅

fn((x1, . . . , xk)η) = ∅

fn(〈M1, . . . ,Mk〉η) = names(M1) ∪ . . . ∪ names(Mk)

Binding Names of an Action

bn(C(c)) = ∅

bn(K(c)) = ∅

bn(activate〈r〉) = ∅

bn(deactivate〈r〉) = ∅

bn((x1, . . . , xk)η) = names(x1) ∪ . . . ∪ names(xk)

bn(〈M1, . . . ,Mk〉η) = ∅

Names of a Capability

names(i) = ∅

names(in m) = {m}

names(out m) = {m}

names(C1.C2) = names(C1) ∪ names(C2)

Names of a Message

names(m) = {m}

names(C) = names(C)

Figure 1: Free Names and Binding Names

The type system in section 3 is defined with the following judgments.

Capabilites Γ ` C : (ρin, σ)
Locations Γ,m ` η : σ

Messages Γ ` M : τ

Actions Γ, ρhere, ρdeact, ρact,m, u ` π : (Γ′, ρhere, ρact)
Processes Γ, ρhere, ρdeact,m, u ` P : ρact

13

Free Variables of a Process

fv(0) = ∅

fv(P1 | P2) = fv(P1) ∪ fv(P2)

fv(ννν(n :τ)P) = fv(P)

fv(!P) = fv(P)

fv(π.P) = fv(P) \ bv(π)

fv(mu[[[P]]]@ρ) = fv(P)

Free Variables of an Actions

fv(C(c)) = fv(C)

fv(K(c)) = ∅

fv(activate〈r〉) = ∅

fv(deactivate〈r〉) = ∅

fv((x1, . . . , xk)η) = ∅

fv(〈M1, . . . ,Mk〉η) = vars(M1) ∪ . . . ∪ vars(Mk)

fv(Q.C) = fv(Q) ∪ fv(C)

Binding Variables of an Action

bv(C(c)) = ∅

bv(K(c)) = ∅

bv(activate〈r〉) = ∅

bv(deactivate〈r〉) = ∅

bv((x1, . . . , xk)η) = vars(x1) ∪ . . . ∪ vars(xk)

bn(〈M1, . . . ,Mk〉η) = ∅

Variables of a Capability

names(i) = {i}

names(in m) = ∅

names(out m) = ∅

names(C1.C2) = names(C1) ∪ names(C2)

Variables of a Message

fv(n) = ∅

fv(C) = varsC

Figure 2: Free Variables and Binding variables

Free Ports in Processes

fp(0) = ∅

fp(P1 | P2) = fp(P1) ∪ fp(P2)

fp(ννν(n :τ)P) = fp(P)

fp(!P) = fp(P)

fp(π.P) = fp(P) \ fp(π)

fp(mu[[[P]]]@ρ) = fp(P)

Free Ports in Actions

fp(C(c)) = ∅

fp(K(c)) = ∅

fp(activate〈r〉) = ∅

fp(deactivate〈r〉) = ∅

fp((x1, . . . , xk)η) = fp(η)

fp(〈M1, . . . ,Mk〉η) = fp(η)

Binding Ports in Actions

bp(C(c)) = {c}

bp(K(c)) = {c}

bp(activate〈r〉) = ∅

bp(deactivate〈r〉) = ∅

bp((x1, . . . , xk)η) = ∅

bp(〈M1, . . . ,Mk〉η) = ∅

Ports in Locations

ports(↑ c) = {c}

ports(↓ (c)) = {c}

ports(?) = ∅

Figure 3: Free ports

14

It will be useful to have some lemmas about these judgments.

Lemma 1 (Action Judgments) If Γ, ρhere, ρdeact, ρact,m, u ` π : (Γ′, ρ′
here, ρ

′
act), then we have that

bmi(π) ∪ bp(π) = dom(Γ′) \ dom(Γ).

Proof 1 By case analysis of the rules for well-typed actions, see Table 4.

Lemma 2 (Variable Weakening)

1. If Γ ` m : τ ′ and x 6= m then Γ + (x : τ) ` m : τ ′

2. If Γ ` C : (ρin, σ) and x 6∈ fmi(C) then Γ + (x : τ) ` C : (ρin, σ)

3. If Γ,m ` η : σ and x 6= m then Γ + (x : τ),m ` η : σ

4. If Γ ` M : τ ′ and x 6∈ fmi(M) then Γ + (x : τ) ` M : τ ′

5. If Γ, ρhere, ρdeact, ρact,m, u ` π : (Γ′, ρhere, ρact) and x 6∈ {m}∪fmi(π), then if x ∈ bmi(π) then Γ+(x :

τ), ρhere, ρdeact, ρact,m, u ` π : (Γ′, ρhere, ρact) and otherwise Γ + (x : τ), ρhere, ρdeact, ρact,m, u ` π :

(Γ′ + (x : τ), ρhere, ρact)

6. If Γ, ρhere, ρdeact,m, u ` P : ρact and x 6∈ {m} ∪ fmi(P) then Γ + (x : τ), ρhere, ρdeact,m, u ` P : ρact

Lemma 3 (Port Weakening)

1. If Γ ` m : τ Γ + (c : σ) ` m : τ

2. If Γ ` C : (ρin, σ′) then Γ + (c : σ) ` C : (ρin, σ′)

3. If Γ,m ` η : σ′ then Γ + (c : σ),m ` η : σ′

4. If Γ ` M : τ then Γ + (x : τ) ` M : τ ′

5. If Γ, ρhere, ρdeact, ρact,m, u ` π : (Γ′, ρhere, ρact) and c 6∈ fp(π), then if c ∈ π(π) then Γ + (c :

σ), ρhere, ρdeact, ρact,m, u ` π : (Γ′, ρhere, ρact) and otherwise Γ + (c : σ), ρhere, ρdeact, ρact,m, u `

π : (Γ′ + (c : σ), ρhere, ρact)

6. If Γ, ρhere, ρdeact,m, u ` P : ρact and c 6∈ fmi(P) then Γ + (c : σ), ρhere, ρdeact,m, u ` P : ρact

Lemma 4 (Variable Strengthening)

1. If Γ + (x : τ) ` C : (ρin, σ) and x /∈ fmi(C) then Γ ` C : (ρin, σ)

2. If Γ + (x : τ),m ` η : σ and x 6= m then Γ,m ` η : σ

3. If Γ + (x : τ) ` M : τ and x /∈ fmi(M) then Γ ` M : τ

15

4. If Γ + (x : τ), ρhere, ρdeact, ρact,m, u ` π : (Γ′ + (x : τ), ρhere, ρact) and x /∈ fmi(π) ∪ {m} then

Γ, ρhere, ρdeact, ρact,m, u ` π : (Γ′, ρhere, ρact)

5. If Γ + (x : τ), ρhere, ρdeact,m, u ` P : ρact and x /∈ fmi(P) ∪ {m} then Γ, ρhere, ρdeact,m, u ` P : ρact

Lemma 5 (Port Strengthening)

1. If Γ + (c : σ) ` C : (ρin, σ′) then Γ ` C : (ρin, σ′)

2. If Γ + (c : σ),m ` η : σ′ then Γ,m ` η : σ′

3. If Γ + (c : σ) ` M : τ then Γ ` M : τ

4. If Γ+(c : σ), ρhere, ρdeact, ρact,m, u ` π : (Γ′+(c : σ), ρhere, ρact) and c /∈ fp(π) then Γ, ρhere, ρdeact, ρact,m, u `

π : (Γ′, ρhere, ρact)

5. If Γ + (c : σ), ρhere, ρdeact,m, u ` P : ρact and c /∈ fp(P) then Γ, ρhere, ρdeact,m, u ` P : ρact

Lemma 6 (Port Substitution) If Γ, ρhere, ρdeact,m, u ` P : ρact with Γ(c) = σ, and c′ /∈ fp(P) then

Γ + (c′ : σ), ρhere, ρdeact,m, u ` P{c′/c} : ρact

Lemma 7 (Message Substitution) Let x be a variable, and M be a message we wish to substitute for x.

Let Γ and Γ′ be two environments such that for all port names c, we have Γ(c) = Γ′(c), and for all variables

y 6= x, we have Γ(y) = Γ′(y). For all cases, we suppose Γ′ ` M : τ .

1. If Γ ` C : (ρin, σ) then Γ′ ` C{x := M} : (ρin, σ)

2. If Γ ` M ′ : τ then Γ′ ` M ′{x := M} : τ

3. If Γ, ρhere, ρdeact, ρact,m, u ` π : (Γ′′, ρhere, ρact) then,

(a) if x ∈ bmi(π) then Γ′, ρhere, ρdeact, ρact,m{x := M}, u ` π{x := M} : (Γ′′, ρhere, ρact)

(b) else Γ′, ρhere, ρdeact, ρact,m{x := M}, u ` π{x := M} : (Γ′′ + (x : Γ′(x)), ρhere, ρact)

4. If

Γ, ρhere, ρdeact,m, u ` P : ρact

then

Γ′, ρhere, ρdeact,m{x := M}, u ` P{x := M} : ρact

Lemma 8 (Preservation of Structural Congruence) If P ≡ Q then,

1. if Γ, ρhere, ρdeact,m, u ` P : ρact and there exist Γ′, ρ′
here, ρ′

deact and ρ′
act such that Γ′, ρ′

here, ρ
′
deact,m, u `

Q : ρ′
act then Γ, ρhere, ρdeact,m, u ` Q : ρact,

16

2. and if Γ, ρhere, ρdeact,m, u ` Q : ρact and there exist Γ′, ρ′
here, ρ′

deact and ρ′
act such that Γ′, ρ′

here, ρ
′
deact,m, u `

P : ρ′
act then Γ, ρhere, ρdeact,m, u ` P : ρact.

References

[1] G. J. Ahn and R. Sandhu. Role-based authorization constraints specification. ACM Transactions on
Information and System Security, 3(4):207–226, 2000.

[2] E. Bertino, B. Catania, E. Ferrari, and P. Perlasca. A logical framework for reasoning about access
control models. In Proc. of 6th SACMAT, pages 41–52. ACM Press, 2001.

[3] Eduardo Bonelli, Adriana Compagnoni, Mariangiola Dezani-Ciancaglini, and Pablo Garralda. Boxed
Ambients with Communication Interfaces (BACI). In Proceedings Of The 29th International Symposium
On Mathematical Foundations Of Computer Science (MFCS 2004) Prague, Czech Republic, Europe. 22-
27 August 2004, volume 3153 of Lecture Notes In Computer Science, pages 119–148, August 2004.

[4] C. Braghin, D. Gorla, and V. Sassone. Rôle-based access control for a distributed calculus. Journal of
Computer Security, 14(2):113–155, 2006.

[5] Michele Bugliesi, Giuseppe Castagna, and Silvia Crafa. Reasoning about security in mobile ambients.
In CONCUR ’01: Proceedings of the 12th International Conference on Concurrency Theory, pages
102–120, London, UK, 2001. Springer-Verlag.

[6] Michele Bugliesi, Giuseppe Castagna, and Silvia Crafa. Access Control for Mobile Agents: The Calculus
of Boxed Ambients. ACM Transactions on Programming Languages and Systems, 26(1):57–124, 2004.

[7] Michele Bugliesi, Silvia Crafa, Massimo Merro, and Vladimiro Sassone. Communication and Mobility
Control in Boxed Ambients. To appear in Information and Computation. Extended and revised version
of M. Bugliesi, S. Crafa, M. Merro, and V. Sassone. Communication Interference in Mobile Boxed
Ambients. In FSTTCS’02, volume 2556 of LNCS, pages 71-84. Springer-Verlag, 2002.

[8] Michele Bugliesi, Silvia Crafa, Massimo Merro, and Vladimiro Sassone. Communication interference in
mobile boxed ambients. In Proceedings of the 22nd Conference on Foundations of Software Technology
and Theoretical Computer Science, FST&TCS 2002, volume 2556 of LNCS, pages 71–84. Springer, 2002.

[9] Luca Cardelli, Giorgio Ghelli, and Andrew D. Gordon. Ambient Groups and Mobility Types. In
Jan van Leeuwen, Osamu Watanabe, Masami Hagiya, Peter D. Mosses, and Takayasu Ito, editors,
TCS’00, volume 1872 of Lecture Notes in Computer Science, pages 333–347, Berlin, 2000. Springer-
Verlag. Extended version to appear in Information and Computation, special issue on TCS’00.

[10] Luca Cardelli and Andrew D. Gordon. Mobile ambients. In Foundations of Software Science and Com-
putation Structures: First International Conference, FOSSACS ’98. Springer-Verlag, Berlin Germany,
1998.

[11] Luca Cardelli and Andrew D. Gordon. Mobile Ambients. Theoretical Computer Science, 240(1):177–213,
2000. Special Issue on Coordination, Daniel Le Métayer Editor.

[12] Adriana Compagnoni and Elsa Gunter. Types for security in a mobile world. In Rocco De Nicola
and Davide Sangiorgi, editors, Trustworthy Global Computing, International Symposium, TGC 2005,
Edinburgh, UK, April 7-9, 2005, volume 3705 of Lecture Notes in Computer Science, pages 75–97.
Springer, 2005.

[13] Adriana Compagnoni, Elsa Gunter, and Philippe Bidinger. A role-based access control type system for
boxed ambients. Technical Report UIUCDCS-R-2006-2753, University of Illinois at Urban-Champaign,
2006.

17

[14] Mario Coppo, Mariangiola Dezani-Ciancaglini, Elio Giovannetti, and Ivano Salvo. M3: Mobility Types
for Mobile Processes in Mobile Ambients. In James Harland, editor, CATS’03, volume 78 of ENTCS.
Elsevier, 2003.

[15] D. Ferraiolo and R. Kuhn. Role-based access controls. In 15th NIST-NCSC National Computer Security
Conference, pages 554–563, 1992.

[16] David F. Ferraiolo, Ravi Sandhu, Serban Gavrila, D. Richard Kuhn, and Ramaswamy Chandramouli.
Proposed NIST standard for role-based access control. ACM Trans. Inf. Syst. Secur., 4(3):224–274,
2001.

[17] Pablo Garralda and Adriana Compagnoni. Splitting Mobility and Communication in Boxed Ambients.
In Maribel Fernandez and Ian Mackie, editors, International Workshop on Developements in Computa-
tional Models (DCM 2005), ENTCS. Elsevier, 2005.

[18] D. Gorla, M. Hennessy, , and V. Sassone. Security policies as membranes in systems for global computing.
In Foundations of Global Ubiquitous Computing, FGUC 2004, ENTCS, 2004.

[19] Matthew Hennessy, Massimo Merro, and Julian Rathke. Towards a behavioural theory of access and
mobility control in distributed system (extended abstract). In Andrew D. Gordon, editor, FOSSACS’03,
volume 2620 of LNCS, pages 282–299, Berlin, 2003. Springer-Verlag.

[20] Matthew Hennessy and James Riely. Resource access control in systems of mobile agents. Inf. Comput.,
173(1):82–120, 2002.

[21] Francesca Levi and Davide Sangiorgi. Controlling Interference in Ambients. Transactions on Program-
ming Languages and Systems, 25(1):1–69, 2003.

[22] Francesca Levi and Davide Sangiorgi. Mobile safe ambients. Transactions on Programming Languages
and Systems, 25(1):1–69, 2003.

[23] Ninghui Li, John C. Mitchell, and William H. Winsborough. Design of a role-based trust management
framework. In Proceedings of the 2002 IEEE Symposium on Security and Privacy, pages 114–130. IEEE
Computer Society Press, May 2002.

[24] Ninghui Li, William H. Winsborough, and John C. Mitchell. Distributed credential chain discovery in
trust management: extended abstract. In CCS ’01: Proceedings of the 8th ACM conference on Computer
and Communications Security, pages 156–165. ACM Press, 2001.

[25] Ninghui Li, William H. Winsborough, and John C. Mitchell. Beyond proof-of-compliance: Safety and
availability analysis in trust management. In SP ’03: Proceedings of the 2003 IEEE Symposium on
Security and Privacy, page 123. IEEE Computer Society, 2003.

[26] R.S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. Role-based access control models. IEEE
Computer, 29(2):38–47, 1996.

[27] Andreas Schaad and Jonathan D. Moffett. A lightweight approach to specification and analysis of
role-based access control extensions. In SACMAT ’02: Proceedings of the seventh ACM symposium on
Access control models and technologies, pages 13–22. ACM Press, 2002.

[28] Jan Vitek and Giuseppe Castagna. Seal: A framework for secure mobile computations. In Henri E. Bal,
Boumediene Belkhouche, and Luca Cardelli, editors, Internet Programming Languages, volume 1686 of
Lecture Notes in Computer Science, pages 47–77, Berlin, 1999. Springer-Verlag.

18

	Introduction
	Background on Ambient Calculi

	Syntax of BACIR
	Types for Security
	Operational Semantics
	Untyped Transition Semantics
	Typed Transition Semantics

	Example: The University of Wizbrau
	Related Work
	Conclusions and Future Work
	Acknowledgments
	Auxiliary Lemmas

