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Abstract

This work concerns appropriate metrics for evaluating microarchitectural enhancements
to improve processor lifetime reliability. The most commonly used reliability metric is mean
time to failure (MTTF). However, MTTF does not provide information on the reliability
characteristics during the typical operational life of a processor, which is usually much
shorter than the MTTF. An alternative to MTTF that provides more information to both
the designer and the user is the time to failure of a small percentage, say n%, of the
population, denoted by tn. Determining tn, however, requires knowledge of the distribution
of processor failure times which is generally hard to obtain. In this paper, we show (1) how
tn can be obtained and incorporated within previous architecture-level lifetime reliability
tools, (2) how tn relates to MTTF using state-of-the-art reliability models, and (3) the
impact of using MTTF instead of tn on reliability-aware design.

We perform our evaluation using RAMP 2.0, a state-of-the-art architecture-level tool for
lifetime reliability measurements. Our analysis shows that no clear relationship between
tn and MTTF is apparent across several architectures. Two populations with the same
MTTF may have different tn, resulting in a difference in the number of failures in the
same operational period. MTTF fails to capture such behavior and can thus be misleading.
Further, when designing reliability-aware systems, using improvements in MTTF as a proxy
for improvements in tn can lead to poor design choices. Depending on the application
and the system, MTTF-driven designs may be over-designed (incurring unnecessary cost or
performance overhead) or under-designed (failing to meet the required tn reliability target).

1 Introduction

1.1 Motivation

An important goal for processor designers is to ensure long-term or “lifetime” reliability against

hard failures. Unfortunately, aggressive CMOS scaling coupled with increased on-chip tem-

peratures is accelerating the onset of wear-out or aging related hard failures due to effects

such as electromigration, gate oxide breakdown, and negative bias temperature instability

(NBTI) [4, 21].

Until recently, in the broad general-purpose processor market, lifetime reliability was largely

addressed at the device level, without much help from microarchitects. Although such an

1Jayanth Srinivasan graduated from the University of Illinois at Urbana-Champaign in May, 2006
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approach tackles the problem at its root, it generally cannot exploit high-level application and

system behavior. Recently, several academic and industry researchers have suggested exploring

microarchitecture level solutions for the lifetime reliability problem [6, 7, 8, 19, 20, 22, 25].

Such solutions can be application-aware and open up new cost-performance reliability points

for general-purpose processors, which were previously unavailable.

Appropriate metrics and models are essential to enable effective microarchitecture-level life-

time reliability research. The most commonly used metric for reliability is mean time to failure

(MTTF), which is the expected lifetime of the given population of processors. Srinivasan et

al. recently proposed RAMP, the first generation of microarchitecture level models to calculate

workload-specific MTTF of a processor for various wear-out failure mechanisms [20, 22].2

A key limitation of the MTTF metric is that it is a single summary statistic that does

not provide insight on the failure behavior during the useful lifetime of most processors, as

illustrated by the following example.

(a) Lifetime CDF over 90 years (b) Closer view of the first 10 years

Figure 1: MTTF can be misleading. Part (a) shows the cumulative distribution function (CDF)
of the lifetimes for two product lines that have the same MTTF of 20 years. Part (b) is a close
view of the same graph for the first 10 years. The distributions are different although the
MTTFs are identical. If the user expects to use the system for around 5 years, system A is
preferable to system B as it sees fewer failures within 5 years. The MTTF metric hides such
information.

Figure 1 shows the cumulative distribution function (CDF) of the lifetimes for two simulated

product lines (the methodology for this simulation is explained in Section 4). The MTTF for

2An alternate industry metric is based on failure rate, measured in units of FITs or failures per billion hours

of operation. It is common practice to quote a constant FIT rate and use the relationship FITs = 10
9

MTTF
.

However, the constant failure rate assumption and the reciprocal relationship between MTTF and failure rate
only hold for failure mechanisms with exponential lifetime distributions [23]. It is widely accepted that wearout
based failures do not follow exponential lifetime distributions and have failure rates that change with time [2, 23].
We assume the more realistic non-exponential model and so do not use FITs.
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both the product lines is 20 years, a typical MTTF target for processor designers [16]. Figure

1(a) shows the CDF of the lifetimes of the product lines over 90 years, while Figure 1(b) shows

a closer view of the first 10 years. The figures show the onset of failures for system A is far

slower than that for system B in the first 10 years. For example, in 5 years, only about 3% of

the processors in system A have failed, while about 13% of the processors in system B have

failed. For users who expect to upgrade within 5 years, system A is clearly a better choice than

system B. The MTTF metric, however, fails to make this distinction.

Designers typically target a much higher MTTF than the expected operational life of a

processor so that most customers do not see failures during the operational life. However, the

MTTF metric itself does not reveal the probability of failure over the operational life of the

processor, as Figure 1 illustrates. This limitation of the MTTF metric has an impact on both

the customer and the vendor.

From the customer’s perspective, paying a premium for a high MTTF is not useful if it does

not translate to a commensurately lower probability of failure during the expected operational

life. In Figure 1, the customer would rather choose system A, but has no way to do so if the

vendor only supplies the metric of MTTF.

From the vendor’s perspective, apart from the number of disgruntled customers, warranty

and replacement costs also depend on the number of failures during the expected operational

life. Again, as Figure 1 illustrates, two designs with the same MTTF may have different num-

bers of failures in the operational life, with significantly different maintenance costs. Reliability

models that only provide MTTF cannot distinguish between such designs.

1.2 Beyond MTTF

This paper explores an alternate metric that addresses the above limitations of MTTF. We

consider the metric of time to failure of n% of the population, denoted tn, where n is a relatively

small number [16, 24]. For example, t5 = 10 years implies that 5% of the processor population

will fail in 10 years; conversely, the probability of failure for a given processor over 10 years is

0.05. For consistency, we henceforth denote MTTF as tmean. In some literature, the metric

tn is also denoted by Ln (where L stands for lifetime) [24] and L10 is a relatively common

metric in many mechanical industry markets [18]. The function tn or Ln is also referred to

as the percent point function or the inverse distribution function (since it is the inverse of the
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cumulative distribution function of processor lifetime) [1].

From the vendor’s point of view, a tn driven design must ensure that tn exceeds the antici-

pated useful operational life for some acceptable failure probability (0.01×n). Both n and the

desirable tn depend on the market, including factors such as customer satisfaction, warranty

costs, and anticipated useful operational life. For example, acceptable values of n (probability

of failure) for the desktop market are likely to be higher than for the server market. Providing

tn data for multiple values of n would allow the customer to consider the value most appropriate

for their use.

From the customer’s point of view, tn indicates that a given processor will fail with proba-

bility 0.01×n within tn years. This gives the customer more information than with MTTF for

comparing products. For example, it may not be worthwhile for a desktop user to pay a cost

premium to obtain t10 > 10 years, but it may be worthwhile to pay a cost premium to obtain

t5 > 5 years.3

1.3 Contributions

This paper makes two contributions.

• Computing tn. First, we show how the previous MTTF (tmean) based RAMP model

can be used in a straightforward way to measure tn [22].

In general, computing tn (vs. tmean) of a system is not straightforward since it requires

information about the distribution of failures, which is inherently hard to obtain. A key

relevant exception is for the sum-of-failure-rates (SOFR) model assumption widely used

in industry [14]. SOFR assumes that the lifetime distribution of each system component

is exponential and the system is a series failure system. With these assumptions, it can

be shown that system tmean is proportional to tn. Previous studies, however, have shown

that the exponential assumption is inaccurate for wearout failures where the failure rate

is not constant over time [1]. Prior work has therefore suggested the use of more complex

distributions (e.g., lognormal) for individual components [1, 21]. Further, reliability-

aware systems use redundancy which also violates the series-failure assumption of SOFR.

3An alternative metric to tn is its inverse – the percentage of processors failed (n) within a given time (t).
Arguably, this metric may be more insightful for customers who may be able to better anticipate their useful
operational period (t) and wish to compare the probability of failure during this time. This metric is the same
as the CDF of the lifetimes, which is also equivalent to 1 - reliability. Our survey of the literature showed more
usage of tn than its inverse, and so we report results on tn here.
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Analytically computing the lifetime for a multicomponent processor with lognormally

distributed component lifetimes in series-parallel-standby organizations is difficult. The

state-of-the-art architecture-level model, RAMP 2.0, therefore uses Monte-Carlo simula-

tions to determine tmean using Min-Max computations on underlying lognormal lifetime

distributions for individual components [22]. We make the observation that these same

Monte-Carlo runs can be used to provide the distribution of the lifetimes and, conse-

quently, values of tn.

• Implications of tn vs. tmean based design for architects. Second, we provide em-

pirical data showing the impact of the use of tn vs. tmean on reliability-aware microarchi-

tecture design, assuming lognormal lifetime distributions for individual components. To

the best of our knowledge, this is the first detailed quantitative comparison of the two

metrics for microarchitectural design.

We use RAMP 2.0 with 16 SPEC applications for our experiments. We find that the re-

lationship between tn and tmean is complex for underlying lognormal distributions. Most

significantly, when considering the benefits of reliability enhancing techniques, using the

improvement in tmean as an estimate of the improvement in tn can lead to poor design

choices. Depending on the application and reliability-enhancement technique used, the

resulting system can be over-designed (i.e., it is unnecessarily expensive or low perfor-

mance) or under-designed (i.e., it does not meet the intended reliability target).

For example, our results show that for a system running a workload similar to the SpecInt

application crafty, the lowest overhead in performance to achieve a 1.4X benefit in tmean

is 1.4X (for the reliability-enhancing techniques studied here). Although a system with

this performance loss achieves a similar benefit in tn, a performance overhead of 1.25X

would have sufficed to obtain that benefit in tn. Thus, the tmean driven design incurs an

unnecessary performance overhead. Our results show other cases where the tmean driven

design does not meet the reliability target for tn. These examples clearly illustrate the

significant limitations of using tmean as the evaluation metric.

The difference between tn and tmean driven designs for underlying lognormal distributions

is in marked contrast to the case of exponential distributions. In the latter case, the linear

relationship between tn and tmean implies that a given reliability enhancing technique has the
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same benefit in tmean and tn; therefore, results from a tmean driven methodology can be used as

a proxy for a tn driven methodology when comparing different reliability techniques. Our results

show that this is not the case for the more realistic complex non-exponential distributions that

characterize wearout!

As lifetime reliability becomes important, architecture-level tools to measure lifetime re-

liability will become increasingly important. In prior work, RAMP 2.0 improved on RAMP

1.0 by incorporating lognormal lifetime distribution for processor components [22]. This pa-

per takes the next step to enhance RAMP 2.0 with a metric that is more meaningful than

MTTF for complex non-exponential lifetime distributions. Admittedly, current tools are still

preliminary and make significant assumptions [22]. Nevertheless, this paper takes an important

step forward to establish appropriate metrics. Our experimental results question the common

industry practice of designs targeting tmean for wearout failures that have complex lifetime

distributions and show quantitatively that the combination of correct metric and underlying

lifetime distribution has a significant impact on reliability-aware architecture.

2 Background

Section 2.1 provides background on RAMP [20, 22], a state-of-the-art architecture level re-

liability model and tool we use in this study. Section 2.2 provides background on the two

reliability-enhancing techniques we study – structural duplication (SD) and graceful perfor-

mance degradation (GPD) [22].

2.1 RAMP

RAMP [20] models the following wear-out failure mechanisms in processors: electromigration

(EM), stress migration (SM), time dependent dielectric breakdown (TDDB), thermal cycling

(TC) and negative bias temperature instability (NBTI) [5]. It works in conjunction with

a timing simulator (in our case, Turandot [17]), a power model (PowerTimer [10]), and a

temperature model (HotSpot [19]).

RAMP starts with state-of-the-art device level analytical models for each of the above failure

mechanisms. These models compute MTTF as a function of various operating parameters such

as temperature, voltage, and utilization, assuming steady state operating conditions. RAMP

abstracts these models at the architecture level. Much like previous power and temperature
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models [11, 19], RAMP divides the processor into a few structures - ALUs, register file, branch

predictor, caches, load-store queue, and instruction window. Every few cycles of the timing

simulator, RAMP applies the analytic models to each structure as an aggregate, to calculate

the “instantaneous” MTTF for the current operating conditions (which are derived through

the timing, power, and temperature simulators). It then averages the instantaneous MTTFs to

give a net MTTF for a given structure and given failure mechanism for the specified workload.4

To obtain the overall reliability of the processor, RAMP needs to combine the MTTFs

across different failure mechanisms across different structures. This requires knowledge of the

lifetime distributions of the different failure mechanisms, which is generally difficult. RAMP

1.0 used a simple but commonly used and potentially inaccurate assumption while RAMP 2.0

used a potentially more accurate assumption. We describe both below since we use both in

this paper.

Combining failures from different mechanisms and different structures with

RAMP 1.0.

RAMP 1.0 uses the industry standard Sum-of-Failure-Rates (SOFR) model, which makes

two assumptions: (1) the processor is a series failure system - in other words, the first instance

of any structure failing due to any failure mechanism causes the entire processor to fail and (2)

each individual failure mechanism has a failure rate that stays constant in time, or equivalently,

each failure mechanism has an exponentially distributed lifetime.

The above two assumptions imply [23]: (1) the lifetime distribution of the processor is

also exponential (i.e., constant failure rate) and the failure rate of the processor is the sum

of the failure rates of the individual structures due to individual failure mechanisms, and (2)

the MTTF of the processor, MTTFp, is the inverse of the total (constant) failure rate of the

processor, λp (true for exponentially distributed lifetimes). Hence,

MTTFp =
1

λp

=
1

∑n
i=1

∑f
j=1

λij

(1)

where λij is the failure rate of the ith structure due to the jth failure mechanism and n is the

number of structures and f, the number of failure mechanisms.

Combining failures from different mechanisms and different structures with

4The assumption underlying the averaging over time is analogous to the SOFR assumption described for
RAMP 1.0 below since SOFR averages over space.
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RAMP 2.0.

The SOFR model used by RAMP 1.0 assumes a constant failure rate for a given failure

mechanism and structure. This is clearly inaccurate as a typical wear-out based failure mech-

anism starts with a low failure rate at the beginning of the component’s lifetime and has an

increasing failure rate as the component ages. Further, the series failure assumption of the

SOFR model is also inaccurate if the processor supports redundant structures (as with the two

reliability enhancing techniques studied here). In these cases, the failure of a single component

does not imply the failure of the processor since the redundant component takes over.

RAMP 2.0 addresses the above two limitations of the SOFR model used in RAMP 1.0.

First, instead of the exponential distribution, RAMP 2.0 assumes lognormal lifetime distribu-

tions for individual structures and failure mechanisms. Lognormal distributions have shown

to be more accurate for degradation processes common to semiconductor materials due to the

multiplicative degeneration argument [1].

Second, since lognormal distributions are hard to deal with analytically, RAMP 2.0 uses

the Monte Carlo simulation method to calculate the full processor MTTF from the lognormal

lifetime distributions of individual structures and failure mechanisms. The mean of these

individual distributions is provided by the timing simulator run similar to RAMP 1.0 and the

variance σ is set at 0.5 (used for wear-out failures in prior work [1, 3]). This method does not

require the series failure assumption. Series, parallel redundant, and/or standby redundant

systems can be modeled using a MIN-MAX analysis on the individual component lifetimes in

a given Monte Carlo trial.

2.2 Reliability-Enhancing Techniques

We examine two reliability-enhancing methods based on structure-level redundancy explored

by Srinivasan et al. [22].

In the first method, referred to as Structural Duplication (SD), certain redundant mi-

croarchitectural structures are added to the processor, and these are designated as “spares”.

Spare structures can be turned on during the processor’s lifetime when the original structure

fails. Hence, in a situation where the processor would have normally failed, the spare structure

extends the processor’s lifetime. With SD, the processor fails only when a structure with no

spare fails, or if all available spares for a structure have also failed. The main function of the
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spares is to increase the reliability and not to enhance the performance; therefore, they are

power gated and not used in the beginning of the processor’s life.

The second reliability-enhancing method is Graceful Performance Degradation (GPD).

This method allows the processor to exploit existing microarchitectural redundancy for reli-

ability. Modern processors have replicated structures so as to increase the performance for

applications with heavy parallelism. The replicated structure, however, is not necessary for

functional correctness. If the replicated structure fails in the course of a processor’s lifetime,

the processor can shut down the structure and can still maintain functionality, thereby increas-

ing lifetime. With GPD, the processor fails only when a structure with no redundancy fails or

when all redundant structures of a given type fail.

Both SD and GPD incur overheads while increasing processor reliability. In the case of SD,

extra processor die area is required to introduce the spares incurring a cost overhead. In the

case of GPD, a performance loss is incurred to improve the reliability. We will explore SD and

GPD configurations of various overheads.

3 Incorporating tn into RAMP

Mathematically, tn is defined as the time t at which

F (t) =
n

100
(2)

where F (t) is the cumulative distribution function (CDF) for the processor lifetimes [23].

We calculate tn with RAMP 2.0 as follows. As mentioned in Section 2, RAMP 2.0 uses a

Monte Carlo simulation to generate the processor MTTF from the MTTFs of the individual

structures and failure mechanisms generated from the timing simulator run. Each Monte Carlo

trial generates a value for the time to failure for each individual structure for each failure

mechanism. This time is generated from the corresponding lognormal distribution, which is

fully specified by the mean (MTTF) provided by the timing simulator run and variance σ of

0.5 as mentioned earlier.

Using these lifetime values, RAMP 2.0 performs a MIN-MAX analysis across all structures

to get the lifetime for the full processor. For example, the base processor with no redundancy

is a series system. The lifetime of each structure is the minimum of the time to failure from
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Technology Parameters

Processor technology 65nm
Vdd 1.0V
Processor frequency 2.0GHz
Processor size (without L2) 3.6mm × 3.2mm
Leakage power density at 383K 0.60 W/mm2

Base Processor Parameters

Fetch/finish rate 8 per cycle
Retirement rate 1 dispatch group (=5,max) per cycle
Functional units 2 Int, 2 FP, 2 Load-Store, 1 Branch, 1 LCR
Integer FU latencies 1/7/35 add/multiply/divide (pipelined)
FP FU latencies 4 default,12 div (pipelined)
Reorder buffer size 150
Register file size 120 integer, 96 floating point
Memory queue size 32 entries

Base Memory Hierarchy Parameters

Data L1 32KB
Instruction L1 32KB
L2 (Unified) 2MB

Table 1: Base processor simulated.

each failure mechanism. The lifetime of the full processor is the minimum of the lifetimes for

each structure. Details on the analysis for the SD and GPD systems are provided in [22].

Thus, each Monte Carlo trial generates the lifetime for one processor sample. RAMP 2.0

averages these lifetimes over a large number of trials (typically 107 trials) to provide the MTTF

of the processor.

The results of the Monte Carlo trials of RAMP 2.0 also directly provide information on the

cumulative distribution function of the processor lifetimes. To calculate tn, we therefore simply

find the smallest processor lifetime value such that n% of the trials lie within that time.

4 Experimental Methodology

We perform our evaluations using RAMP 2.0 (extended to calculate tn) coupled with perfor-

mance, power, and temperature simulators and models, using a methodology similar to previous

RAMP-based work [20, 21, 22].

4.1 Base Processor

The base processor we used for our simulation is a 65nm, out-of-order, 8-way super-scalar

processor, conceptually similar to a single core POWER4 processor [15]. The 65nm processor
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parameters were derived from scaling down parameters from the 180nm POWER4 processor

[21]. Although we model the performance impact of the L2 cache, we don’t model the reliability

as its temperature is much lower than the processor core [15], resulting in very few L2 cache

failures. Table 1 summarizes the base processor modeled.

4.2 Simulation Environment

For timing simulations, we use Turandot, a trace-driven research simulator developed at IBM’s

T.J.Watson Research Center [17]. Turandot was calibrated against a pre-RTL, detailed, latch-

accurate processor model. Thus, despite its trace-driven nature, the extensive validation

methodology provides high confidence in its results[17].

For the power model, we use PowerTimer, a tool-set built around Turandot [9]. The power

values from PowerTimer are fed into HotSpot to evaluate the temperatures of various compo-

nents on chip [19]. RAMP 2.0 uses the temperature estimates from HotSpot and utilizations

from Turandot to calculate processor MTTF and tn for the simulated workloads, as described

in Section 3. Power, temperature, and reliability samples are computed at a granularity of 1 µs.

The power, temperature, and reliability models all work at the granularity of architecture-level

structures. For our experiments, the processor is divided into the following seven structures:

floating point unit (FPU), fixed point unit (FXU), instruction decode unit (IDU), instruc-

tion scheduling unit (ISU), load store unit (LSU), instruction fetch unit (IFU) and the branch

prediction unit (BXU).

4.3 Workloads

We evaluate 16 SPEC2000 benchmarks (8 SpecInt + 8 SpecFP). The SPEC2000 trace repos-

itory used in this study was generated using the Aria trace facility in the MET toolkit [17]

using a full reference input set. Sampling was used to limit the trace length to 100 million

instructions per program. The sampled traces have been validated with the original full traces

for accuracy and correct representation [13].

4.4 Reliability Enhancements

As mentioned earlier, we study two reliability enhancements to the base processor - structural

duplication (SD) and graceful performance degradation (GPD). Our methodology is identical
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Group Units in group Area Original configurations Degraded Configuration

1 FPU 0.96 2 FP units + 96 FP regs 1 FP unit + 48 FP regs

2 FXU 0.96 2 Int units + 120 Int regs 1 Int unit + 60 Int regs

3 BXU + IFU 2.56 16K BHT entries + 32KB ICache 8K BHT entries + 16KB ICache

4 LSU 4.0 2 L/S queues + 32KB DCache 1 L/S queue + 16KB DCache

5 IDU + ISU 3.04 128 instruction window N/A

Table 2: Configurations for SD and GPD. Groups 1-5 are replicated in SD. Groups 1-4 are
allowed to degrade in GPD. IDU + ISU is not allowed to degrade in GPD.

to that used in [22].

For SD, the seven structures of the processor (Section 4.2) are grouped into five groups,

each of which can be duplicated for standby or spare redundancy. The cost overhead of this

area increase is evaluated using the Hennessey-Patterson die cost model [12], and reported as

the ratio of the cost of the SD and base processors. For GPD, the structures are grouped

into four groups, each of which is allowed to degrade to half performance without the entire

processor failing. The net performance overhead of a GPD configuration is reported as the

slowdown incurred by the fully degraded version of that configuration for the entire application

(relative to the base configuration).5 SD with a cost overhead of X and GPD with a perfor-

mance overhead of Y are denoted by SD-X and GPD-Y respectively. In each case, we use

the system configuration that gives the most benefit for the specified overhead for the given

application (this turns out to be the same configuration for benefits in tmean and all tn for a

given application).

Table 2 (from [22]) shows the area of each structure on chip, and the original and degraded

configurations.

5 Results

5.1 Relationship between tmean and tn

Since tmean (MTTF) is widely used to evaluate reliability, we first explore if tmean can be used to

predict tn. As mentioned in Section 1, with the widely used (but incorrect) SOFR assumption,

5The performance of the fully degraded version of a given GPD configuration is the guaranteed performance.
In reality, the early part of the lifetime will see better performance. Srinivasan et al. report both the guaranteed
and the actual performance [22]. We chose to report only the former since the method of counting this overhead
is orthogonal to the point of this paper.
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(a) Base system

(b) GPD-2X system (c) SD-2.25X system

Figure 2: Ratio of tn to tmean. The figure shows the ratios of tn to tmean for different applications
on (a) Base, (b) GPD-2X, and (c) SD-2.25X systems. The applications in each system are
ordered in increasing order of tmean. The ratio of tn to tmean varies and is not a constant for
several cases.
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system tmean is proportional to tn.6 We investigate if such a proportionality relationship exists

even for our systems, where the underlying structure lifetimes are lognormally distributed

and the system employs redundancy. If such a relationship were to exist, then tmean would

be a reasonable proxy for tn; e.g., when comparing the benefits of two reliability-enhancing

techniques, the improvement in tmean would be representative of the improvement in tn.

Figure 2 shows the ratio of tn to tmean for different values of n for each application. Parts

(a), (b), and (c) show this data for the base, SD-2.25X, and GPD-2X systems respectively. The

figures show several cases where the ratio of tn to tmean is not a constant, and so assuming tn

proportional to tmean could lead to erroneous results. To provide some quantitative measure

of the error in estimating tn as a constant factor times tmean, we computed estimates for tn as

follows. For each n, we computed tn = k × tmean where k is the average tn/tmean for the Base

system for that n. We then determined the error in this approximation.

Figure 3 shows that the percentage error in the above approximation is significant for

several cases for t1 and t10. Focusing on t1, we see that four applications (crafty, apsi, vpr and

sixtrack) show more than 19% (absolute) error, the errors across all the applications are both

positive and negative, and the overall range of errors is large (from -10% to 24%). Further,

there is no noticeable trend in the error across the different applications (the applications are

ordered in increasing order of tmean). For a given system, the variation in the errors across the

applications is high for Base and GPD-2X (126% and 86% standard deviation as a fraction of

the mean respectively). For SD-2.5X, the variation is relatively low, but the average error is

relatively high (14%).

t10 shows similar data, although there are fewer cases of absolute errors > 15% and the

average error is modest. Nevertheless, the range in errors is still quite large (-18% to 21%),

the errors are again both positive and negative, and there is no clear significant trend among

applications and systems.

Overall, we conclude that there are several cases for which an approximation of tn that

assumes proportionality to tmean could result in significant positive and negative errors, poten-

tially resulting in under-designed or over-designed systems.

6SOFR assumes individual system components have an exponential lifetime distribution and the system is a
series-failure system. These assumptions imply that the system itself has an exponential lifetime distribution.
For exponential distributions, it is known that tn = −tmean × ln(1 − n

100
) [14].
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(a) Error in t1 estimation

(b) Error in t5 estimation (c) Error in t10 estimation

Figure 3: Percentage error in estimation of tn. The figure shows the percentage error in
estimating (a) t1, (b) t5, and (c) t10 for the Base, GPD-2X, and SD-2.25X systems. The
applications are ordered in increasing order of tmean. The tn estimate assumes that for a given
n, tn/ tmean is a constant equal to the average tn/tmean for the base system for that n. The
error is significant for several cases and both positive and negative, indicating that in general, a
constant factor approximation of tn to tmean could potentially lead to under- or over-designed
systems.
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(a) GPD-1.1X system (b) GPD-2X system

(c) SD-1.5X system (d) SD-2.25X system

Figure 4: Benefit in tmean, t1, t5, and t10 for different systems. The figure shows the benefits in
tmean and tn for (a) GPD-1.1X, (b) GPD-2X, (c) SD-1.5X, and (d) SD 2.25X. The applications
are ordered according to increasing benefit in tmean for each system. Note that the axes are
not identical. In many cases, a benefit in tmean does not translate to a corresponding benefit in
tn. Further, no clear relationship between the benefits in tn and tmean appears to hold across
all cases.

5.2 Improvement in tmean versus tn

The previous section showed that the absolute value of tn cannot be reliably predicted from

that of tmean. However, designers and users are often concerned with relative comparisons

among systems; therefore, we next ask the question whether the improvement in tn from a

reliability-enhancing technique can be predicted from the improvement in tmean. We use the

techniques of SD and GPD for this purpose.

Figure 4 shows the benefit in tmean and tn for different reliability-enhanced systems, for

different applications. (The benefit in tn (or tmean) is computed as the ratio of the tn (or

tmean) of the reliability enhanced system over that of the base system.) For each system, the

applications are ordered in increasing order of improvement of tmean over the base system.
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The figure shows that a benefit in tmean does not, in general, imply the same benefit in tn

and could be higher or lower than the benefit in tn. For example, for t10, GPD-2X shows a

higher benefit for sixtrack (2.2 for t10 vs. 1.9 for tmean) whereas SD-2.25X shows a lower benefit

for twolf (2.2 for t10 vs. 2.5 for tmean).

The figure also does not indicate a clear relationship between the benefit in tmean and tn

that would hold across all systems, applications, and n. For example, with GPD-2X, the tmean

benefit for sixtrack and facerec is similar (roughly 1.9), but the t10 benefit is a higher 2.3 and

a lower 1.8 respectively.

Thus, in addition to the inability to predict the values of tn from tmean (Section 5.1), one

cannot reliably predict the benefits in tn from the benefits in tmean either. From this, we can

infer that designing systems with tmean as a proxy for tn can potentially lead to poor design

choices. Such systems could be over-designed with unnecessarily high cost or low performance

(when tn benefits are under-estimated), or the systems could be under-designed and not meet

the required reliability target (when tn benefits are over-estimated). The next section provides

experimental data to show such scenarios.

5.3 Implications for Reliability-Aware Design

This section illustrates the impact of using tmean as a proxy for tn when considering alter-

native reliability-enhanced designs. Again, we use SD and GPD as our example reliability

enhancements.

Figures 5 shows the benefit under different metrics (tmean, t1, t5, t10) for SD and GPD with

various overheads for four SpecFP (left column) and four SpecInt (right column) applications.

The solid and dotted lines respectively represent SD and GPD systems.

The figure shows several cases where the tmean-optimal design choice is either too aggressive

or too conservative from the point of view of tn. For example, consider a designer targeting a

1.4X improvement in t5 (or t10) on a system running a workload similar to crafty. If the designer

projects the 1.4X improvement in tn as a 1.4X improvement in tmean, the choices available are

a cost increase of 1.5X or more for the SD configurations or a performance slowdown of 1.4X

or more for the GPD configurations. These are fairly high overheads from both a cost and

performance point of view. However, if the designer designed directly to t5 (or t10), then we see

that a GPD configuration with a 1.25X slowdown also meets the target. Thus, a tmean driven

17



ammp crafty

sixtrack bzip2

mesa gcc

mgrid vpr

Figure 5: Impact of using tmean instead of tn on application specific reliability-aware design.
Each figure shows the benefit under different metrics (tmean, t5, t10) for reliability-aware sys-
tems with different overheads. The solid and dotted lines respectively represent SD and GPD
systems. A system achieving the required reliability target under one metric may fail to do so
under other metrics, leading to poor designs.
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(a) SpecFP average benefit (b) SpecInt average benefit

Figure 6: Impact of using tmean instead of tn on reliability-aware design for average (a) SpecFP
and (b) SpecInt applications.

design would be unnecessarily expensive or slow.

Conversely, for sixtrack, a cost-bound designer targeting an improvement of 1.6X in some

tn would choose the GPD-1.25X configuration when using tmean as the proxy metric. However,

this does not meet the target for any of the tn’s and the system is under-designed for reliability.

Instead, a designer employing tn data would have chosen GPD-1.43X and achieved the target

reliability (albeit at reduced performance).

Figure 6 shows the same data as Figure 5, but for the benefit averaged across all SpecFP

(part (a)) and SpecInt (part (b)) applications. We see that the above effects are less pronounced

in the average graphs, but nevertheless do exist.

Thus, using tmean as a proxy for tn to perform reliability-aware system design can lead

to incorrect design decisions. The system may achieve the desired reliability under the proxy

tmean but may fail to do so for the real metric tn. Further, systems that suffer an unnecessary

dip in performance or increase in die area may be chosen to achieve the desired target while a

system with a significantly lower overhead would have sufficed. Thus, designing with tmean as

a proxy for tn can have a large undesirable effect.

5.4 Lognormal vs. Exponential Distributions

Our results so far show that using tmean instead of tn can have a significant implication for

design. The reason for the discrepancy is that we use lognormal lifetime distributions for the

underlying components of the system. Combining component-wise metrics to get a system-

wide metric in this case is analytically hard and results in a complex relationship between tn
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Figure 7: Percentage error in tn when using exponential distribution. The figure shows the
average error in tn, for different n and different systems, when the underlying failure distribution
is assumed to be exponential. The significant error margin in the estimation suggests that the
exponential approximation, though simpler, is not valid even when using tn as a design metric.

and tmean that does not have a closed form [1]. However, as discussed earlier, this is not the

case for exponential component-wide distributions, which result in exponential system-wide

distributions and a closed form between tmean and tn [1]. Although exponential distributions

are known to not adequately represent wear-out behavior, much work in industry makes the

assumption of exponential distributions due to its simplicity [14].

We therefore next analyze the complexity vs. accuracy trade-off between the exponential

and lognormal distributions. We estimate the exponential tn using (1) the SOFR-derived tmean

from the simpler RAMP 1.0 and (2) the closed form relationship between tmean and tn for

exponential distributions (Section 4). We then report the error in this tn relative to the tn

derived from the lognormal assumption with RAMP 2.0. Figure 7 shows this percentage error

averaged across all applications for each of t1, t5, and t10 for different systems. (In order to

perform a fair comparison, the tmean values were normalized such that the average tmean across

all applications is 30 years for both RAMP 1.0 and for RAMP 2.0.)

The average error in tn when assuming an exponential distribution is significant in all

systems, for all n. Thus, although the exponential approximation largely simplifies the compu-

tation of tn, the simplicity comes at a large cost in accuracy.

This is consistent with our previous data. The exponential methodology computes tn as a

constant function of tmean. As seen in section 5.1, this approximation is not valid. In addition,
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the constant used for a particular n is −ln(1 − n
100

) which is significantly smaller than the

ratio of tn to tmean, for small n, as seen from Figure 2. Hence, the error in the estimation is

significant.

Thus, our results show that tn for different systems has to be computed using first principles

– a constant factor approximation applied to tmean and a simpler failure distribution assumption

lead to erroneous results.

6 Conclusion

Aggressive CMOS scaling has lead to the onset of wear-out based failures at a rate not seen in

the past. While high-end systems in niche high-reliability markets have always been concerned

about lifetime reliability, recently this concern has spread to the broader general-purpose market

as well. Concerned microarchitects have begun to propose reliability-aware microarchitectures

to tackle problems caused by wearout failures. However, these designs are largely analyzed

based on the benefits achieved in MTTF (tmean). MTTF, being an average, does not capture

sufficient information about the useful operational life of the processor, which is typically

much smaller than the mean life. Thus, MTTF can be misleading to both customers and

designers as systems with similar MTTFs can have different failure distributions and reliability

characteristics for the most useful part of the product’s life. The reliability literature provides

an alternate metric that does not have this limitation of MTTF. In this paper, we have studied

the metric of time to failure of n% of the population, denoted tn.

This paper, for the first time to our knowledge, analyzes the implication of designing

reliability-aware microarchitectures for MTTF as a proxy for potentially more accurate metrics

like tn. Distribution dependent metrics such as tn are inherently significantly more complex to

compute, but this paper presents a straightforward way of computing such a metric through

the use of the state-of-the-art architecture level lifetime reliability tool RAMP 2.0.

Our analysis indicates that the use of MTTF as a proxy for tn can lead to poor reliability-

aware microarchitecture designs. Systems designed based on MTTF may fail to meet the

intended reliability target owing to an incorrect projection of the benefit in tn as a benefit in

MTTF. In other cases, the systems may incur an unnecessary performance or cost overhead as

a low benefit in MTTF may correspond to a higher benefit in tn.

Admittedly, current architecture level tools for lifetime reliability are still preliminary and
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make significant assumptions. Nevertheless, this paper takes an important step in understand-

ing the right metrics that should be targeted by such tools, and the impact of instead using

the widely used MTTF metric for reliability-aware processor design.

Additionally, tn may not be the only metric that designers are concerned about. Other

metrics such as mean time to repair, etc. are also important. Although this paper does not

analyze all such metrics, it establishes the first important step to move beyond the widely used

but potentially misleading MTTF for architects.
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