

Abstract

- Junction flows, are a complex, coupled, and interacting flow field broadly seen across applications.
- There is some understanding of the individual components, there is very little predictive understanding of it: the focus of this research.
- Utilized a NACA 2415 wing section in tandem with various flow visualization techniques.
- Discovered that the horseshoe vortex is invariant, while the corner separation was highly dependent on the angle of attack and placement of the wing section in the flow.
- Further research should focus on corroborating these results.

Methods

- Prepared a NACA 2415 wing section of aspect ratio 4.32 and chord 117.413 mm.
- Wing was tested in College of Engineering's Boundary Layer suction tunnel.
- Micro-tuft flow visualization was performed to select parameter space for more advanced testing, validated using XFLR.
- Advanced testing utilized talcum streaks flow visualization.
- Performed an angle of attack sweep at multiple tunnel stations downstream of the inlet.

Results

- Micro-tuft visualization showed a parameter space varying angle of attack, α from zero to 15 degrees [Fig. 2].
- Moderate angles of attack sometimes produced corner separation [Fig. 1].
- Extreme angles of attack created large-scale flow separation and vortices [Fig. 3].
- Horseshoe size and strength varies based on angles of attack [Figs. 1,4a-4b].

An Investigation of Wing-Body Junction Flows

Paul Winner & Dr. Ebenezer Gnanamanickam

Talcum Streak Visualization: Suction Side

Figure 1: Horseshoe vortex and possible flow separation for case seven.

Parameter Space Selection: $\alpha = 10^{\circ}$

Figure 2: Multi-tuft visualization demonstrating corner separation.

Talcum Streak Visualization: Leading-Edge

Figure 4a: Horseshoe vortex visualization from case five.

Talcum Streak Visualization: Wake & Flow Separation

Figure 3: Trailing edge visualization for cases 14 and 15.

Talcum Streak Visualization: Looking Downstream

Figure 4b: Horseshoe vortex visualization for cases 14 and 15.

Results, cont.

Table 1: Wind tunnel parameters of the talcum streak oil-flow visualization experiment.				
Experiment	Dynamic Pressure	Tunnel Speed	Angle of Attack	Wing Section
Number	(Pa)	(m/s)	(degrees)	Location
1	Not Available	~13	-11.96	Upstream
2	Not Available	~13	-11.96	Upstream
3	Not Available	~13	-17.34	Upstream
4	93.4	12.3	31.00	Downstream
5	93.7	12.4	23.19	Downstream
6	94.4	12.4	18.32	Downstream
7	94.7	12.4	0.000	Downstream
8	95.4	12.5	0.000	Upstream
9	95.4	12.5	6.927	Upstream
10	95.4	12.5	6.927	Upstream
11	Not Available	~13	6.927	Upstream
12	95.2	12.5	11.08	Upstream
13	93.7	12.4	11.08	Upstream
14	94.4	12.4	13.93	Upstream
15	95.2	12.5	13.93	Upstream

Conclusions

- techniques.

References

https://doi.org/10.2514/1.j051462

1987-06

• Horseshoe vortex is always present with respect to the parameter space.

• Boundary layer thickness and angle of attack are tied to corner separation onset.

• Findings limited by lack of literature data verification, will be performed in future research [1,3-5].

Further research will study Reynolds number effects and utilize state-of-the-art full flow-field measurement

^[1] Bordji, M., Gand, F., Deck, S., and Brunet, V. "Investigation of a Nonlinear Reynolds-Averaged Navier–Stokes Closure for Corner Flows." AIAA Journal, Vol. 54, No. 2, 2016-02, pp. 386–398. https://doi.org/10.2514/1.j054313.

^[2] Gand, F., Brunet, V., and Deck, S. "Experimental and Numerical Investigation of a Wing-Body Junction Flow." AIAA Journal, Vol. 50, No. 12, 2012, pp. 2711–2719.

^[3]Gand, F., Monnier, J.-C., Deluc, J.-M., and Choffat, A. "Experimental Study of the Corner Flow Separation on a Simplified Junction." AIAA Journal, Vol. 53, No. 10, 2015-10, pp. 2869–2877. https://doi.org/10.2514/1.j053771p. 2869-2877

^[4] Kegerise, A. M., Neuhart, H. D., Hannon, A. J., Rumsey L. C.,

[&]quot;An Experimental Investigation of a Wing-Fuselage Junction Model in the NASA Langely 14- by 22-Foot Subsonic Wind Tunnel," AIAA Scitech 2019 Forum. 2019-01

^[5] Devenport, W., and Simpson, R. "Turbulence Structure Near the Nose of a Wing-Body" Junction. AIAA 19th Fluid Dynamics, Plasma Dynamics and Lasers Conference.