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Recent studies have proposed using Boundary Layer Ingestion propulsion systems utilizing 

turboelectric generators to increase fuel efficiency in the next generation of airliners. Another 

aircraft platform where fuel savings would be highly valuable would be long-range UAVs. 

Therefore, a design optimization study was conducted on a BLI propulsor for an adaptation 

of a RQ-4 Global Hawk airframe, which is an airframe that is already proven to be ideal for 

long range missions. The study was performed on STAR CCM+ CFD software, using the 

Design Manager feature within the program. The interest was in optimizing the propulsor for 

cruise conditions, when the fuel savings will be most valuable in achieving a longer range. An 

initial simulation was performed, to act as the reference simulation for the Design Manager 

study. After initial values were obtained, the Design Manager study was conducted in two 

different iterations, searching for the ideal design. A variety of geometric variables were input 

into the Design Manager, such as inlet and outlet cross-sectional area, and the shape of the 

inner engine. Upon completion of the study, an ideal design of a BLI propulsor was found. The 

total power necessary to achieve static equilibrium flight was reduced from 222 MW to 193.2 

MW, a savings of 12.87%. Such power savings are significant considering that a BLI 

propulsor already achieves fuel savings compared with a traditional propulsor that ingests air 

traveling at the free stream velocity. This study acts as a rationale for the further development 

of a physical scale model to validate such results, and the possibility of commercial 

development if satisfactory results are obtained  

I. Nomenclature 

BLI = Boundary Layer Ingestion 

�̇� = Mass Flow Rate 

�̇�𝑒 = Exit Mass Flow Rate 

�̇�𝑖 = Inlet Mass Flow Rate 

MW = Megawatt 

Rpm = Revolutions per Minute 

ρ = Density 

PSC = Power Savings Coefficient 

Ve = Exit Velocity 

Vi = Inlet Velocity 

W = Watt 

II. Introduction 

 Boundary Layer Ingestion propulsion systems provide an opportunity to decrease fuel consumption on a variety 

of aircraft platforms. Currently, the aerospace industry is experimenting with several different platform concepts, such 

as the NASA STARC-ABL, Empirical Systems Aerospace ECO–150R, and the NASA N3‒X flying wing. [1] The 
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NASA STARC-ABL and the NASA N3-X flying wing concepts both utilize boundary layer ingestion turboelectric 

fans as a means of fuel savings. The NASA STARC-ABL concept is of particular interest due to the 7-12% fuel 

savings, and the relatively limited R&D which would be required to deploy a serviceable commercial concept. [1]  

 

A) 

 

B) 

 

 

Figure 1. Examples of BLI Turboelectric Propulsion Design Concepts (Figure from Reference [1]) 

 

 This project wished to perform a design optimization study on a conceptual long-range, high-altitude UAV 

utilizing this same technology, with the hope of increasing the operational range utilizing a boundary layer ingestion 

turboelectric propulsion system. Similar studies have been conducted on UAV’s for a variety of applications, 

however, none observed the possibility of integrating a BLI propulsion system on a high-altitude, long-range UAV. 

[2] The conceptual design proposed uses the airframe of a RQ-4 Global Hawk, an already proven long-range, high-

altitude UAV platform, and integrates a boundary layer ingestion propulsion system. The goal is to use the Design 

Manager feature of the STAR CCM+ to optimize the propulsor to achieve the maximally optimized design for such 

a propulsor in order to demonstrate feasible fuel savings for such a conceptual design. A BLI propulsor design that 

follows the NASA-STARC ABL airliner concept is chosen because of the limited technological innovation that 

would be necessary for such an aircraft to go into service, thus making the UAV concept presented here 

technologically feasible in the short-term.  
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 A) B) 

 

Figure 2. Conceptual UAV Platform with BLI Propulsion system 

 

 The fuel savings for a BLI propulsor come from the ingestion of air on the boundary layer of the aircraft that is 

slower than the free stream velocity. Because the thrust produced by a propulsor is proportional to the relative 

velocities of the inlet and outlet of an engine, and the velocity of air in the boundary layer around an aircraft is less 

than the free stream velocity, a BLI propulsor can produce the same amount thrust for less power input than a 

conventional propulsion system. This principle is shown in equation 1, which is the standard equation for the thrust 

of a propulsor. 

 

            𝐹 = �̇�𝑒𝑉𝑒 − �̇�𝑖𝑉𝑖 + (𝑝𝑒 − 𝑝𝑖)𝐴𝑟𝑒𝑎                     (1) 
 

 This creates fuel savings which can ultimately increase the range of an aircraft. The RQ-4 Global Hawk currently 

utilizes an Allison AE-3007H turbofan engine and has a range of 11,000 nautical miles. In theory, this platform, 

utilizing an aft ABL propulsion system, could achieve fuel savings similar to the fuel savings that the NASA STARC-

ABL platform achieved over a traditional airliner. This means that the Global Hawk airframe, when paired with a BLI 

propulsor in place of a traditional propulsor, has the potential of attaining over 1,000 miles in additional range.  

 The goal of this design optimization was to decrease the net power necessary to drive the virtual disk propulsor in 

the CFD simulation while maintaining static equilibrium flight, where the thrust force was equivalent to the drag force. 

This was done by changing the rpm of the propulsor while executing several different geometric designs for the 

propulsor. Consistent with other optimization studies performed with single-aisle BLI Propulsion systems, the power 

savings coefficient, PSC, is defined by the following equation [3]: 

 

𝑃𝑆𝐶 =
𝑃𝑤𝑟𝑆ℎ𝑎𝑓𝑡

′ −𝑃𝑤𝑟𝑆ℎ𝑎𝑓𝑡

𝑃𝑤𝑟𝑆ℎ𝑎𝑓𝑡
′              (2) 

  

 By demonstrating the potential for fuel savings using a coupled CFD simulation, the rationale can be established 

for a physical prototype to be produced. Due to the high degree of situational utility that fuel savings would be for a 

reconnaissance UAV, it is believed that a demonstration of the possibility of fuel savings using a CFD optimization 

is a worthwhile exploration.  

III. Methods 

A. Justification for Coupled CFD Analysis 
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A) B) 
Figure 3. A) Engine Inlet Velocity Profile with Virtual Disk. B) Engine Inlet Profile without Virtual Disk. 

  

 As it can be seen in Figure 3A and Figure 3B, the velocity profile at the engine inlet greatly differs when a virtual 

disk, which is intended to simulate the turboelectric BLI propulsor, is introduced in the engine inlet. The effectiveness 

of the geometry of the UAV in reducing inlet velocity can be observed as well in Figure 3B. The inlet velocity for the 

engine is greatly reduced from the free stream velocity of 160 m/s used in this simulation. This justifies using a coupled 

CFD simulation to ensure accurate results. In addition, this initial comparison also shows the initial effectiveness of 

the UAV airframe and propulsor geometry in ensuring that the inlet velocity is greatly reduced from the free stream 

velocity, thus proving the effectiveness of the design, and inviting a further design study for optimization.  

 

B. Reference Simulation 

The design optimization study was conducted using Star CCM+ commercial CFD software and the Design 

Manager feature within the program. The initial CAD used in this study is a modification of a RQ-4 Global Hawk, 

with the engine removed and a BLI propulsor placed in the rear, consistent with the design of the NASA STARC-

ABL aircraft. For the mesh, the Surface Wrapper, Surface Remesher, and Trimmer were used, with a Prism Layer 

around the aircraft. The Prism Layer is used to accurately capture the boundary layer flow around the airframe, which 

is of particular interest for this study. A volume of refinement around the propulsor was used to accurately capture the 

virtual disk interactions with the airflow. The mesh used for the reference simulation is shown below in Figure 4. This 

mesh was ideal because it accurately captured the boundary layer flow while focusing the computational power on 

ensuring an accurate simulation around the virtual disk and propulsor, giving accurate thrust and power values, which 

were of utmost importance for the validity of this study. 

 

 

Figure 4. Mesh illustrating Prism Layer and volume of refinement around propulsor 
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A Blade Element Method virtual disk is used within the propulsor in the CFD simulation to represent the BLI 

propulsor. This method for simulating a BLI propulsor fan has been used in previous CFD studies exploring BLI 

propulsion design optimization studies. [3] The total torque on the shaft is calculated through the CFD simulation and 

is based upon the force that the virtual disk exerts on the incoming fluid in the propulsor From the torque value, the 

total power supplied to the propulsor can be calculated and can thus be used as the primary parameter to be minimized 

through the design study to achieve the optimal and most efficient design. The power supplied to the shaft is governed 

by the following equation: 

 

𝑃 = 𝑇𝑜𝑟𝑞𝑢𝑒 × 𝜔 (3) 

                                          

The design study will include various geometric variables, with the goal of reducing the power to the propulsor 

shaft required to maintain static equilibrium flight at simulated cruise conditions. The cruise condition selected for 

this study will be consistent with the RQ-4 Global Hawk with a speed of 160 m/s and air density at 65,000 ft since 

design optimization for these conditions would be most impactful for increasing total range of such an aircraft. Several 

geometric variables for the propulsor, including the diameter of the inlet and outlet of the propulsor, are input into the 

design study.  

 

C. Design Optimization Study 

 

 The design optimization study seeks to reduce the power required for the aircraft to be maintained in static 

equilibrium flight. This will be obtained by varying several geometric values as compared with the reference 

simulation, along with the rpm of the virtual disk. To limit the number of designs, the design study was conducted in 

several iterations, with a limited number of geometric variables being selected and run with several different rpm 

values. The design study was conducted in two iterations, with the best case being selected from the broader, first 

iteration of the study that included 405 different designs, and a second, smaller iteration of 30 designs. After running 

the Design Manager study, the best design was selected, and the relative specifications were compared with the 

original design.  

IV. Discussion of Results 

 

Based upon the conditions discussed previously, a reference simulation was produced for the Design Manager 

Program within Star CCM+. The results for static equilibrium flight are given in Table 1. 

 

Initial Results 

Power 222 MW 

Drag & Thrust 29072 N 

 

Table 1: Reference Simulation Values 

 

These values served as a baseline by which the success of the Design Manager study was measured. The 

convergence of the power, drag, and thrust value is shown below in Figure 5 and Figure 6. 
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Figure 5. Monitors plot demonstrating convergence of Drag Force and Virtual Disk Force. 

 

 

Figure 6. Total Power Monitor plot demonstrating convergence. 

 

The design study was completed with three geometric parameters as shown in Figure 7, and the rpm was modulated 

to find the case where the flight was maintained in relatively static equilibrium. The first iteration included 405 design 

iterations total, with one inlet parameter and one outlet parameter while the rpm was decreased to find the greatest 

power savings. The CAD sketch of the three geometric parameters that were varied throughout the simulations is 

shown in Figure 7.  
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Figure 7. Geometric parameters showing sketch before and after design study 

 

The first iteration of the Design Manager study is shown in Figure 8. The pattern shown in Figure 8 is due to the 

fluctuation of rpm for different geometric designs. The best design was chosen which both reduced power consumption 

and maintained static equilibrium flight. As can be seen in Figure 8, the selected design had the second-lowest power 

consumption amongst the first grouping of designs, while also maintaining static equilibrium flight, suggesting a 

proper result was reached. Amongst the second grouping of designs, shown from design number 135 onward, no 

design had both lower consumption than the selected design while also maintaining static equilibrium flight, thus 

showing that an optimized result has been reached and it is unlikely to be improved upon given the parameters selected. 

The best design was run through a further refinement iteration of 30 different designs. Each design failed to produce 

a better result than the first iteration, suggesting that the result obtained in the first Design Manager study was the 

optimal result given the parameters selected.  

 

 

Figure 8. First Design Study with selected design designated. 

 

Once the optimized design was found, the original design was able to be directly compared with the optimized 

design. The power savings coefficient, found according to Equation 2, was .129, which is significant considering the 

possible fuel savings already given by a BLI propulsor over a traditional propulsion system. The optimized design 

results are shown in Table 2. 
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Optimized Results 

Power 193.2 MW 

Drag & Thrust 23080 N 

PSC .129 

 

Table 2. Optimized Design Values with PSC. 

  

 A side by side comparison of the velocity and pressure profiles of each simulation is shown in Figure 9. A high 

contrast scale is given for the pressure profile to show the specific differences between the designs, while a 

traditional scale is shown for the velocity profile. 

 

 

A) 

 

B) 
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C) 

 

 

D) 

 

Figure 9. A) Velocity profile of airflow through original BLI Propulsor. B) Velocity profile of airflow through 

optimized BLI Propulsor. C) Pressure Profile through original BLI propulsor. D) Pressure Profile through 

optimized BLI propulsor. 

 

 As shown in Figure 9A and 9B, there are dramatic differences in the velocity profile through each propulsor. In 

the original propulsor, it can be seen that large turbulent wakes form on both the upper and lower regions of the 

interior propulsor. In the optimized propulsor, this turbulent flow is minimized compared with the unoptimized 

design. In addition, the velocity profile through the interior of the optimized propulsor is much higher than the 

unoptimized propulsor, suggesting that the optimized propulsor accelerates the air behind the propulsor at a much 

higher velocity, creating more thrust. Also, the inlet airstream of the optimized BLI propulsor has a lower velocity 

profile than that of the unoptimized BLI propulsor, suggesting that the optimized design is enhancing the power 

saving effect of the BLI propulsor, by ingesting air at an even lower velocity than the free stream velocity.  

 The pressure profiles are shown in Figure 9C and 9D also shows differences that contribute to the power savings 

of the optimized BLI propulsor. The optimized BLI propulsor inlet shows a high-pressure region as compared with 

the unoptimized BLI propulsor. This is consistent with the velocity profile, showing that air is decelerating upon 

entry to the propulsor, which produces further power savings for the BLI propulsor.  
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V. Conclusion 

The Design Manager study was able to use the Design Manager feature of Star CCM+ to produce a significant 

amount of power savings while maintaining static equilibrium flight at cruise conditions for a conceptual RQ-4 

Global Hawk powered with a BLI propulsor. Based upon the findings presented in this study, it can be concluded 

that further study into the possible fuel savings that a BLI propulsor is a worthwhile pursuit due to the possibility of 

significantly extending the range of a long-range, high-altitude UAV. With more computational power, a larger 

number of geometric parameters could be input into a design study, encompassing the whole of the fuselage along 

with the BLI propulsor. This could lead to the development of a physical scale model to validate such results and 

subsequently lead to commercial development if satisfactory results are obtained. Boundary Layer Ingestion 

propulsors are already in development for multiple conceptual airliners, and it would be a natural extension of such 

projects to utilize this propulsion system for common UAV platforms as well.  

Another avenue of study could be to observe if the unique inlet shape found through this paper is applicable to 

other BLI propulsors. The inlet shape found through this design study is unique compared with other BLI propulsor 

inlets found on other CFD studies [4,5]. A 2D application of the inlet shape on other BLI propulsor platforms 

compared with the conventional BLI inlet shape could show if the power savings are specific to this study, or are 

applicable across all other BLI propulsor platforms, which would open up the possibility of experimenting with the 

air inlet found in the study with other common BLI conceptual designs. 
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