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ABSTRACT

Of broad scientific and public interest is the reliability of global climate models (GCMs) to simulate future

regional and local tropical cyclone (TC) occurrences. Atmospheric GCMs are now able to generate vortices

resembling actual TCs, but questions remain about their fidelity to observed TCs.Here the authors demonstrate

a spatial lattice approach for comparing actual with simulated TC occurrences regionally using observed TCs

from the International Best Track Archive for Climate Stewardship (IBTrACS) dataset and GCM-generated

TCs from the Geophysical Fluid Dynamics Laboratory (GFDL) High Resolution Atmospheric Model

(HiRAM) and Florida State University (FSU) Center for Ocean–Atmospheric Prediction Studies (COAPS)

model over the common period 1982–2008. Results show that the spatial distribution of TCs generated by the

GFDLmodel compares well with observations globally, although there are areas of over- and underprediction,

particularly in parts of the PacificOcean. Differencemaps using the spatial lattice highlight these discrepancies.

Additionally, comparisons focusing on theNorthAtlanticOcean basin aremade. Results confirma large area of

overprediction by the FSU COAPS model in the south-central portion of the basin. Relevant to projections of

future U.S. hurricane activity is the fact that both models underpredict TC activity in the Gulf of Mexico.

1. Introduction

Following recent improvements in model resolution

and physics, global climate models (GCMs) are now be-

ing employed to study how tropical cyclone (TC) fre-

quency and intensitymight change in the future (e.g., Sugi

et al. 2002; Knutson and Tuleya 2004; Bengtsson et al.

2007; Gualdi et al. 2008; Knutson et al. 2008; Zhao et al.

2009; Bender et al. 2010; Knutson et al. 2010). TCs can

be costly events in terms of loss of life and property.

Therefore it is important to understand how these storms

may be affected by a warmer climate. GCMs have the

potential to be valuable tools in this area of research, but

before they can be used with confidence to predict fu-

ture TC attributes, it is necessary to understand how

well they represent historical TCs. Specifically, how well

do model-generated TCs match observed TCs with re-

spect to intensity, frequency, and spatial distribution?

After earlier attempts at resolving TC-like vortices

in coarse-resolution GCMs (e.g., Manabe et al. 1970;

Haarsma et al. 1993; Bengtsson et al. 1995), enhanced

computing capabilities and physical parameterizations

have resulted in better representations of tropical cy-

clones in models (e.g., Vitart et al. 1993; Sugi et al. 2002;

Oouchi et al. 2006; Bengtsson et al. 2007; Walsh et al.

2007; LaRow et al. 2008; Zhao et al. 2009). Although

these finer-resolution GCMs have been able to gener-

ate warm core vortices that resemble TCs, the resolution

and physics still fall short in some respects. Most notably,

the modeled systems are still unable to attain intensities

of observed TCs (e.g., Emanuel et al. 2008; LaRow et al.

2008; Zhao and Held 2010). In fact, Chen et al. (2007)

used mesoscale models to demonstrate that a grid spac-

ing of ;1km may be necessary to resolve hurricane

eyewall convection and wind maxima. Despite these
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shortcomings, recent studies reveal some promise in the

ability of GCMs to reproduce global TC statistics such as

storm counts and seasonal cycle on the basin scale (e.g.,

Camargo et al. 2005; Zhao et al. 2009). For example,

Zhao et al. (2009) ran a global climate model of 50-km

horizontal resolution over the period 1981–2005 and

found that the correlation of modeled and observed

yearly Atlantic Ocean hurricane counts was greater

than 0.8, although correlations were lower in the Pacific

and Indian Ocean basins.

As resolution and physics continue to improve and

new models are developed, intercomparison analyses

are needed to provide insight into the model strengths

and weaknesses. For example, Camargo et al. (2005)

examined genesis location, TC counts, intensity, and

storm lifetimes in a statistical analysis of TC-like vortices

in three low-resolution GCMs. They found that basin-

scale global TC statistics match the observed statistics

reasonably well, even for these lower-resolution models.

With the suite of higher-resolution models, individual

modeling groups have presented TC performance statis-

tics for their specific model (e.g., Bengtsson et al. 2007;

Gualdi et al. 2008; LaRow et al. 2008; Zhao et al. 2009).

However, there remains a need for a uniform frame-

work that can be used to compare the new suite of high-

resolution models with each other and with observations.

We present a spatial lattice framework, first introduced

for use in TC studies by Elsner et al. (2012), as a novel

approach to model intercomparisons. The model com-

parison we present demonstrates how the spatial lattice

approach may facilitate efficient spatial and statistical

comparison of model-generated TCs.

Here we employ the spatial lattice to see how well

the spatial distribution of actual TCs compares with the

distributions generated by two atmospheric GCMs:

the Florida State University (FSU) Center for Ocean–

Atmospheric Prediction Studies (COAPS) spectral

model and the Geophysical Fluid Dynamics Labora-

tory (GFDL) High-Resolution Atmospheric Model

(HiRAM). The methodology applied in this study to

compare regional cyclone occurrence between obser-

vations and model simulations can be used to compare

other models and other storm attributes such as in-

tensity and intensification rate.

The paper is organized as follows: observational and

model track data are presented in section 2, followed by

an explanation of the spatial lattice methodology in

section 3. Section 4 examines the spatial distribution of

observed and GFDLmodel TC occurrences using maps,

and section 5 quantifies the comparison using a per-

formance diagram. Section 6 compares the spatial dis-

tribution of observed and model TC occurrence over the

North Atlantic alone using both the GFDL and FSU

COAPS models. Comparisons are quantified using rela-

tive risk ratios. A summary is given in section 7.

2. Data

a. Observational data

Observational data used in this research come from the

International Best Track Archive for Climate Steward-

ship (IBTrACS; available online at http://www.ncdc.

noaa.gov/oa/ibtracs/; Knapp et al. 2010). For analysis

purposes, the 6-hourly data have been interpolated to

hourly intervals using the method outlined in Elsner and

Jagger (2013). Although IBTrACS includes more than

a century’s worth of track data, we subset the data from

the period 1982–2008. This is also the time period over

which the models were run. Furthermore, because these

data were obtained during the satellite era, the reliability

of the observations is quite high. Finally, the period of

study also includes the transition from the relatively in-

active period in the North Atlantic from 1970–94 to the

more recent active period after 1995 (e.g., Elsner et al.

2000; Goldenberg et al. 2001). Regardless of the cause,

the apparent nonstationary nature of the North Atlantic

TC climatology during this period is worth noting.

b. Model data

Model-derived track data are obtained from experi-

ments performed by the Hurricane Working Group of

theU.S. ClimateVariability and Predictability Research

Program (CLIVAR; http://www.usclivar.org/working-

groups/hurricane). We use data from two different high-

resolution atmospheric (uncoupled) GCMs. As with

the observational data, the modeled track data are pro-

vided at 6-hourly intervals and have been interpolated to

hourly intervals using the same algorithm as used for the

observations.

We first use cyclone tracks from the GFDL HiRAM,

version 2.2 (Zhao et al. 2009, 2012). Themodel data come

from a control simulation forced withmonthly prescribed

SSTs and sea ice concentrations for each simulated year

from the Hadley Centre Global Sea Ice and Sea Surface

Temperature (HadISST) dataset (Rayner et al. 2003).

The model features a 50-km horizontal resolution and

32 vertical levels. As described by Zhao et al. (2009),

TC-like vortices are detected and tracked using an al-

gorithm similar to that used by Vitart et al. (2003). The

algorithm searches for a coinciding (within 28 latitude
and longitude) relative vorticity maximum at 850 hPa,

a sea level pressure minimum, and a maximum in the

300–500-hPa averaged temperature field. The vortex

trajectories are considered TC tracks when the modeled

maximum surface winds exceed 15.2m s21 during at least

three (not necessarily consecutive) days (Zhao et al.
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2009). We use track data from three realizations of the

HiRAM, referred to here as r1, r2, and r3, which differ

only in their initial conditions. The initial conditions in

different HiRAM runs are obtained from 1 January of

different years from an earlier Atmospheric Model

Intercomparison Project (AMIP) run. For these long in-

tegrations, the initial conditions are completely irrelevant

to the solutions since we do not use the first year results.

The purpose is to generate different realizations of the

simulation.

We also use cyclone tracks from the FSU COAPS

global spectral model (Cocke and LaRow 2000; LaRow

et al. 2008). As with the GFDL HiRAM, the FSU

COAPS model is uncoupled with the ocean and is forced

with prescribed SSTs from the HadISST dataset. The

spectral model has 27 vertical levels and a T126 hori-

zontal resolution, which corresponds to roughly 0.948 of
latitude. The simulated TC tracks were obtained using

a similar algorithm. Because global track data were not

available from this model, FSU COAPS tracks are

compared with observations andHiRAM tracks for the

North Atlantic basin only. Again, we use tracks from

three model runs, r1, r2, and r3.

3. The spatial framework

First, a global comparison is implemented using track

data from observations and GFDL HiRAM. To set up

the spatial framework, we consider only those observa-

tions that meet or exceed 17m s21, which corresponds to

the 43rd percentile for the global IBTrACS dataset. We

also set a 17m s21 minimum threshold for the modeled

storms. Relative to observations, the model is unable to

produce storms with intensities greater than 50m s21

(category 3 on the Saffir–Simpson scale); however, after

the 17m s21 threshold is imposed, the average observed

wind speed exceeds the average model wind speeds by

less than 6ms21 for all model runs (seeTable 1). It should

be noted that the models are much more successful in

simulating minimum central pressure. The minimum

pressures from theGFDLHiRAM track data are 896.3,

905.4, and 897.0 hPa for runs r1, r2, and r3, respectively.

These values compare well with the observed minimum

pressure of 878.9 hPa. Therefore, another approach

might be to use minimum pressure from the model data

to infer wind speeds through some type of pressure–

wind relationship and then set the 17m s21 threshold

from the inferred wind speeds. However, because we

do not have data for the spatial extent of the modeled

storms and would introduce additional uncertainty by

using a pressure–wind relationship that does not in-

corporate storm size, we instead simply set the 17m s21

threshold using the raw wind speeds.

For the global spatial analysis, the data locations are

first projected onto a planar coordinate system using

a Mollweide projection (Snyder 1987). The Mollweide

projection is used because we want to examine global

distributions of TCs in equal areas. The cost of using an

equal-area projection is a sacrifice in the accuracy of

angles and shapes, which is significant at the borders of

the ellipse.

To establish the spatial lattice, we first define a com-

mon grid of equal area hexagons that cover the global

tropical and subtropical region to approximately 708N/S

latitude. We choose to use a hexagon lattice because

1) it does not require an areal correction as needed for

latitude–longitude grids and 2) relative to rectangles,

hexagons are more efficient at capturing the curved na-

ture of TC tracks (Elsner et al. 2012). The use of an areal

correction, which would be necessary if we instead relied

on latitude–longitude grids, would affect attribute

values within the grids. For example, for areally corrected

latitude–longitude grids, per-gridcell storm counts will

not necessarily be an integer count, thereby making

interpretation less intuitive and physical. With an equal-

area tessellation, however, counts are preserved as in-

tegers. This allows for a more natural and physically

meaningful interpretation of the results. We use hexa-

gons of area 7.3 3 105 km2 (slightly larger than the state

of Texas) with a diameter, measured from vertex to

opposite vertex, of 917 km. The selected area is suffi-

ciently small to capture regional (basin and subbasin)

variability. Once the hexagon grid is defined, we pop-

ulate it with track attribute data from the observational

and model datasets. Additional details, justification, and

applications for the spatial framework used here can be

found in Elsner et al. (2012).

4. Cyclone counts

As we are interested in comparing observed and

modeled spatial distributions of storms, we calculate

cyclone counts within each hexagon. Cyclone counts

represent the number of storms that ‘‘passed through’’

each hexagon in the spatial grid. One count is assigned

for each TC that enters a hexagon. For example, a

TABLE 1. Mean, minimum, and maximum wind speed values

(m s21) for observations and all three GFDL HiRAMmodel runs.

The last column gives minimum pressure P (hPa). Values shown

are only for data exceeding 17m s21.

Mean Min Max P Min

IBTrACS 31.18 17.00 82.76 878.9

HiRAM (r1) 25.86 17.00 50.82 896.3

HiRAM (r2) 25.44 17.00 52.03 905.4

HiRAM (r3) 26.01 17.00 52.69 897.0
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hexagon centered in the western North Pacific may con-

tain hundreds of storms for the period 1982–2008, while

a hexagon in the South Atlantic may contain no storms.

Counts are obtained by summing the number of unique

storm IDs within each hexagon. Therefore if a TC enters,

exits, and then reenters a hexagon, that TC is only

counted once within the hexagon. Figure 1 illustrates the

framework for the year 2005 in the Gulf of Mexico. We

sum the number of cyclones contained in each hexagon

and store this information in a polygon data frame for

further calculations. This procedure is carried out for

both observed and modeled data. It should be noted,

however, that the hexagons in Fig. 1 have a smaller area

of 1.6 3 105 km2 as compared with the hexagons of area

7.3 3 105 km2 used in the global analysis that follows.

Using the same spatial lattice to sum TC counts for

both observations and model, we can visually compare

them with ease. Figure 2 contains a map of cyclone

counts for (a) observations and (b) the GFDL HiRAM

(r1). Darker reds indicate areas with higher storm fre-

quencies over the 1982–2008 time period. Overall, the

maps for observations and themodel show a very similar

spatial distribution of TCs. In both maps, local maxima

in TC counts are present in the eastern and western

North Pacific basins as indicated by the darker red

hexagons. For observations, 223 out of the 363 hexagons

in the lattice have cyclone counts less than 25. Only two

hexagons have cyclone counts greater than 200. For the

model a total of seven hexagons contain TC counts

greater than 200 for HiRAM runs r1, r2, and r3. The

largest observed count is 255, while the largest model

counts are 295, 258, and 277 for realizations r1, r2, and

r3, respectively. As evident in Fig. 2, there is distortion

in the country border lines that is not present when we

display the hexagon grid. This is a presentation issue

that does not affect the actual analysis. The grid from

which the cyclone counts are calculated is properly pro-

jected, but the polygons are not distorted as the country

borders arewhenmapped. Furthermore, the grids remain

the same for observations and model, so comparison

still can be made accurately. However, caution should

be exercised when interpreting the precise locations of

country borders relative to the hexagons, particularly

on the map edges.

Although per-hexagonTC counts greater than 200may

seem high, they occur in particularly active regions of the

eastern and western North Pacific basins. The eastern

North Pacific is an especially active basin in terms of the

number of storms forming over a given unit of area (Gray

1968; Molinari et al. 2000). This is clearly illustrated by

the high-count hexagon (from observations) off of the

west coast of Mexico. The high-count hexagon in the

westernNorth Pacific occurs roughly within the monsoon

trough region, as geographically defined in Harr and

FIG. 1. Observed cyclone tracks (observations in gray) for the Gulf of

Mexico in 2005. The colors represent per-hexagon cyclone counts.

FIG. 2. Global per-hexagon cyclone counts for 1982–2008 for

(a) observations and (b) GFDL HiRAM (r1).
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Chan (2004). It is estimated that 60%–80% of western

North Pacific TCs develop within the monsoon trough

(Ritchie and Holland 1999; Harr and Chan 2004), which

may help explain the high TC counts in this area. The

highest TC count hexagons for the model are similarly

located in the eastern and western North Pacific, al-

though the largest counts in the western North Pacific

appear to be displaced slightly eastward of the observed

maximum.

To facilitate further comparison of the observed and

modeled TCs, we also create difference maps (Fig. 3).

For cyclone count hexagons, this is accomplished by

simply subtracting the per-hexagon modeled storm

counts from the per-hexagon observed storm counts.

Visually, these results agree well with Zhao et al. (2009).

Although the overall distributions of observed and

modeled TCs are similar, there is a significant area of

overprediction (more modeled than observed cyclones)

in the western North Pacific, and a small area of under-

prediction in the eastern North Pacific (fewer modeled

than observed cyclones). There is an additional area of

underprediction in the South China Sea. In all three

model runs, the areas of strongest overprediction (on the

order of 75–125 cyclones) exist in the western North Pa-

cific and in the eastern North Pacific. Interestingly, the

model also generates too many storms in the South At-

lantic, an area in which observed storms have been ex-

ceptionally rare (only one stormwas observed here in the

1982–2008 time period). Figures 2 and 3 also demonstrate

how the spatial lattice frameworkmay provide additional

insight into the range of over/underprediction across

space.

5. Metrics of spatial performance

The difference maps allow for a qualitative assessment

of model performance in terms of cyclone counts per

hexagon. We observe that there are numerous regions in

which the model overpredicts the number of TCs (e.g.,

western North Pacific), while there are other regions in

which the model underpredicts (e.g., Gulf of Mexico).

Although this is a useful way of assessing subregional

model performance in terms of cyclone counts, we are

also interested in comparing how well the observed and

modeled tracks match spatially over the entire globe.

Stated differently, we are interested in knowing whether

hexagons that cover areas with observed activity also

cover areas with modeled activity. A simple bias calcu-

lation provides some insight into this spatial matching

aspect of model performance.

To calculate the bias, we compare the set of hexagons

in which the observed cyclone count is greater than zero

with the set of hexagons in which the modeled cyclone

count is greater than zero.We then calculate the number

of hits, false positives, and false negatives from these sets

of hexagons. A hit is defined as a hexagon that contains

at least one observed and at least one modeled TC; a

false positive is defined as a hexagon that contains at

least one modeled TC but does not contain an observed

TC; and a false negative is defined as a hexagon that

contains at least one observed TC but does not contain

a modeled TC. We calculate the bias as defined in

Roebber (2009):

FIG. 3. Difference maps depicting global observed minus global

modeled per-hexagon cyclone counts for the GFDLHiRAM (a) r1,

(b) r2, and (c) r3.
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bias5
H1FP

H1FN
, (1)

whereH is the sum of the hits, FP is the sum of the false

positives, and FN is the sum of the false negatives for

a grid of hexagons populated with observed and model

data. For bias values near 1, there is no bias in the

model. In this case, the amount of area covered by

modeled tracks is the same as the amount of area

covered by observed tracks. If the bias is less than 1,

the area covered by observed tracks exceeds the area

covered by modeled tracks. The model is in a sense

underpredicting the spatial extent of the tracks. Con-

versely, if the bias is greater than 1, the area covered by

modeled tracks exceeds the area covered by observed

tracks and the model is overpredicting the spatial ex-

tent of the tracks.

To obtain an estimate of model bias and its uncertainty

relative to our spatial framework, we first generate 100

sets of hexagon lattices. Each lattice is randomly offset

very slightly such that the hexagons do not precisely

match in space. We then overlay the observed and

modeled track data onto each set of hexagons to obtain

per-hexagon counts as before. For themodel, we use data

from the GFDL HiRAM r1 in this section. Hexagons

containing at least one observed storm are comparedwith

hexagons containing at least one modeled storm and the

bias is then calculated from Eq. (1). These biases are

specific to gridcell size. For example, we might expect

larger biases from lattices composed of smaller hexagons.

To see the effects of grid resolution, we repeat this

process for grids with per-hexagon areas of 14.6 3 105,

9.703 105, 7.283 105 (the original grid area), 4.853 105,

and 3.64 3 105 km2. The bias calculations, broken

down by ocean basin and gridcell area, are presented

with 95% confidence intervals (CIs) in Table 2. The

CIs are based on the 2.5th and 97.5th percentiles of

the 100 bias values. Interestingly, varying gridcell sizes

in the range presented here does not statistically sig-

nificantly affect the biases. In general, there is more

overprediction than underprediction, with the most

consistent exception being the North Atlantic. The

overprediction is especially high in the South Atlantic,

where themodel produced 14 storms over the 1982–2008

period, but only one was observed. In general, there are

more false positives than false negatives, although for

most basins besides the SouthAtlantic the bias values do

not fall far from 1, indicating good agreement.

From Table 2, we also notice several basins for which

themodel appears to be unbiased. However, a bias value

of 1 is not the perfect summary of model performance.

In these cases, the number of false positives may simply

balance out the number of false negatives. To gain ad-

ditional insight to how well the model matches obser-

vations within the spatial framework, we also calculate

a ‘‘critical success index’’ (CSI) (Roebber 2009). The

CSI is expressed as

CSI5
H

H1FP1FN
. (2)

Thus, values near 1 indicate very few false negatives or

false positives, or a close match between model and ob-

servations, while values closer to zero indicatemany false

negatives, false positives, or both. Hits (H), false positives

(FP), and false negatives (FN) are defined as before.As is

done for the biases, we similarly calculate the CSI for 100

lattices and for varying gridcell sizes. These calculations,

again broken down by ocean basin and gridcell area, are

presented with 95% CIs in Table 3 (expressed as per-

centages). Formost basins besides the SouthAtlantic and

South Pacific, the GFDLHiRAMhas relatively high CSI

values, generally above 70%. As anticipated, CSI values

in the South Atlantic, in which there are numerous false

TABLE 2. Model bias values for the North Atlantic (NA), east Pacific (EP), west Pacific (WP), South Pacific (SP), north Indian (NI),

south Indian (SI), South Atlantic (SA), and all basins together (All). The large numbers are median bias values after generating 100

hexagon grids slightly offset from each other in space. The numbers in parentheses represent the 95% confidence intervals. Bias values are

provided for varying grid resolutions with per-hexagon areas (105 km2) given in the first column.

Area NA EP WP SP NI SI SA All

14.6 0.923

(0.874,1.00)

1.13

(1.06,1.22)

1.00

(0.943,1.09)

1.09

(1.03,1.16)

1.05

(0.895,1.19)

1.24

(1.13,1.34)

8.00

(5.33,20.0)

1.13

(1.10,1.16)

9.70 0.924

(0.860,0.978)

1.16

(1.04,1.27)

1.00

(0.930,1.09)

1.08

(1.01,1.13)

1.04

(0.918,1.17)

1.24

(1.14,1.36)

8.5

(5.41,12.5)

1.12

(1.10,1.16)

7.28 0.920

(0.864,0.965)

1.15

(1.09,1.23)

1.02

(0.969,1.07)

1.05

(1.00,1.11)

1.00

(0.920,1.10)

1.23

(1.13,1.34)

9.75

(5.24,13.5)

1.11

(1.09,1.14)

4.85 0.915

(0.868,0.965)

1.15

(1.06,1.22)

1.02

(0.977,1.07)

1.01

(0.979,1.05)

1.00

(0.927,1.08)

1.22

(1.17,1.29)

9.33

(5.10,16.5)

1.10

(1.08,1.12)

3.64 0.912

(0.874,0.943)

1.15

(1.08,1.22)

1.03

(0.991,1.06)

0.994

(0.959,1.03)

1.00

(0.942,1.06)

1.22

(1.15,1.28)

10.33

(6.40,17.4)

1.08

(1.06,1.10)
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positives, fall below 20% for all grid sizes. Also not en-

tirely unexpected is the slight decrease in CSI that occurs

as per-hexagon area decrease; however, these decreases

are not statistically significant, as indicated by the over-

lapping 95% confidence intervals.

Roebber (2009) also introduces a way to visually com-

pare the different metrics of performance in a single plot.

We adopt this ‘‘performance diagram’’ to display the

bias, CSI, probability of detection (POD), and success

rate (SR) for the GFDL HiRAM track data. The prob-

ability of detection is expressed as

POD5
H

H1FN
. (3)

The success rate is expressed as

SR5 12
FP

H1FP
. (4)

As displayed in Fig. 4, POD is defined along the vertical

axis and SRalong the horizontal axis. The straight dashed

lines in Fig. 4 are lines of equal bias, while the curved solid

lines represent lines of equal CSI. Using this diagram,

we can visually assess model performance on the basis of

four metrics: bias, CSI, POD, and SR. Figure 4 displays

these points (with 95%CIs) for the North Atlantic (NA),

eastern North Pacific (EP), western North Pacific (WP),

South Pacific (SP), north Indian (NI), south Indian (SI),

South Atlantic (SA), and for all basins together (ALL).

The values plotted represent the median values following

the generation of 100 hexagon grids as is done for the bias

and CSI in Tables 2 and 3. The values in Fig. 4 are cal-

culated based on grids with a per-hexagon area of 7.283
105 km2 (the same area as is used in the maps in Figs. 2

and 3).

Most points in Fig. 4 are clustered in the upper-right

portion of the diagram, which indicates a high success

rate and probability of detection. It is also clear from

Fig. 4 thatmost points lie above the ‘‘no bias’’ line (bias5
1), although the western North Pacific and northern

Indian Ocean fall very near this line. The North Atlantic

is the only basin with a bias less than 1, as mentioned

previously. The North Atlantic will be addressed further

in the following section. Figure 4 also indicates high CSI

TABLE 3.Model CSI values (%) for theNorthAtlantic (NA), east Pacific (EP), west Pacific (WP), South Pacific (SP), north Indian (NI),

south Indian (SI), South Atlantic (SA), and all basins together (All). The large numbers are median CSI values after generating 100

hexagon grids slightly offset from each other in space. The numbers in parentheses represent the 95% confidence intervals. CSI values are

provided for varying grid resolutions with per-hexagon areas (105 km2) given in the first column.

Area NA EP WP SP NI SI SA All

14.6 78.6

(73.4,84.5)

84.0

(71.4,89.5)

89.3

(82.1,94.4)

70.4

(64.2,75.8)

84.2

(70.0,95.0)

75.7

(68.0,81.3)

11.1

(5.00,18.8)

75.4

(73.4,78.2)

9.70 78.1

(73.0,81.2)

80.8

(74.8,90.1)

88.6

(82.1,95.9)

69.1

(64.8,74.7)

82.1

(71.4,91.7)

73.6

(69.1,79.0)

9.09

(4.65,14.7)

74.5

(73.4,78.2)

7.28 77.6

(72.8,84.0)

81.8

(75.0,85.9)

89.3

(80.0,94.6)

68.0

(64.2,71.9)

79.4

(69.0,93.5)

74.2

(66.1,79.7)

8.33

(4.08,14.3)

74.0

(72.8,76.2)

4.85 77.5

(73.7,81.6)

80.7

(74.3,86.4)

88.7

(83.2,92.4)

66.5

(63.5,69.4)

78.7

(69.8,84.7)

72.2

(68.9,76.8)

7.14

(6.06,14.3)

73.4

(72.0,74.8)

3.64 77.7

(73.6,80.4)

79.9

(75.3,83.9)

88.2

(85.1,91.4)

65.3

(62.9,67.0)

75.0

(67.5,83.8)

72.0

(68.5,75.4)

6.45

(5.63,12.0)

72.8

(71.9,74.1)

FIG. 4. Performance diagram for the GFDL HiRAM (r1) based

on a hexagon grid with a per-hexagon area of 7.28 3 105 km2. The

straight dashed lines indicate the bias [as defined in Eq. (1)], the

curved solid lines indicate the CSI [as defined in Eq. (2)], and

the x and y axes represent the SR [Eq. (4)] and POD [Eq. (3)],

respectively. The points represent median values after generating

100 hexagons grids slightly offset from each other in space. Metrics

are calculated for the North Atlantic (NA), northern East Pacific

(EP), northern west Pacific (WP), South Pacific (SP), north Indian

(NI), south Indian (SI), South Atlantic (SA), and all basins together

(ALL). The crosshairs indicate the 95% confidence interval for each

point.

1 NOVEMBER 2013 S TRAZZO ET AL . 8263



values for most basins, with the clear exception being the

South Atlantic. On the basis of these metrics and our

spatial lattice approach, the western North Pacific ap-

pears to most closely match observations, with a high

probability of detection, a high success rate, a bias near

1, and a CSI close to 0.9. It should be mentioned that, as

evident in Fig. 3, the western North Pacific represents

a large area of model overprediction in terms of the

number of storms present compared to observations.

However, in terms of the area covered by TC tracks, the

model matches observations well over the western North

Pacific.

For the South Atlantic, the performance diagram in-

dicates significant model overprediction based on a high

probability of detection, a low success rate, a very low

CSI, and a very high bias. This makes sense as only one

TC was observed during this period, but 14 TCs were

generated by the GFDL HiRAM, r1. Although the

GFDL HiRAM produces few TCs over the South At-

lantic relative to other basins, for the period 1982–2008

it nevertheless generates far more TCs than observed.

All of the previous calculations are made with a

threshold of at least one TC for both model and ob-

servations. If we increase the threshold to be at least 15

TCs, for a grid of hexagons with area 7.28 3 105 km2,

the global bias value decreases to 1.01 and the global

CSI becomes 83.6% (compared to 1.11 and 74% with a

threshold of one TC). For a threshold of 50 TCs, the bias

remains at 1.01, but the CSI increases to 90.1%. Finally,

for a threshold of at least 200 TCs, the bias still remains

near 1.01, but the CSI increases to 98.8%. Therefore, it

appears that the areas that generally contain the most

observed storms also contain the most modeled storms.

6. Intermodel comparison over the North Atlantic

Wenext compare the GFDLHiRAM simulated tracks

with those generated from the FSU COAPS spectral

model. Because global tracks are not yet available for the

FSU COAPS model, we focus our comparison on the

North Atlantic basin. Once again, we select only ob-

served cyclone points with intensities exceeding 17ms21,

which corresponds to the 33rd percentile of total ob-

served storms over the North Atlantic. As with the

HiRAM, a 17ms21 wind threshold is also set for the FSU

COAPS model. The data are projected onto a planar

coordinate system using a Lambert conformal conic

projection. As was done for the global comparison, a grid

of equal-area hexagons is created, this time for the North

Atlantic basin. For the North Atlantic comparison, we

use hexagons of area 1.91 3 105 km2, which are much

smaller than the hexagons used for the global comparison

(slightly larger than the state ofWashington). This allows

for a more detailed examination of subregional spatial

variability. The hexagons are populated with observa-

tions and model data from both the GFDL HiRAM and

the FSU COAPS spectral model. Per-hexagon cyclone

counts for observations and the first run from each model

are shown in Fig. 5.

From Fig. 5 it is apparent that there are some dis-

crepancies between the FSU COAPS model and ob-

servations. The FSUCOAPSmodel appears to generate

more cyclones over the south-central portion of the

North Atlantic. Figure 5b also suggests that most of these

model-generated cyclones recurve fairly quickly. This is

consistent with LaRow et al. (2008), who attribute this

to the model’s large-scale steering flow during the first

half of the hurricane season. The framework also allows

us to directly compare the FSU COAPS model with the

HiRAM. In contrast to the FSU COAPS model, which

tends to generate too many cyclones over the North

Atlantic, the GFDL HiRAM does not generate as

many cyclones as are observed. The spatial pattern of

the HiRAM cyclones is more consistent with obser-

vations, although there are fewer modeled cyclones

over the Gulf of Mexico and Caribbean Sea than are

observed. This latter point is also true of the FSU

COAPS model.

Further comparison of the FSU COAPS model with

observations is implemented using relative ratios. We

use the ratios to examine the factor by which the mod-

eled cyclone frequency exceeds the observed frequency.

This is accomplished by first dividing the number of

cyclones in each hexagon by the total number of cy-

clones for the entire grid. These ratios are calculated for

both model and observations. We then divide the model

relative ratio by the observed relative ratio to obtain the

factor by which modeled cyclone frequency exceeds

observed cyclone frequency. The base-two logarithm of

these factors, indicated by the color bar, is shown for the

FSU model in Fig. 6a. A value greater than zero in-

dicates an overprediction by the model, while a value

less than zero indicates an underprediction. The over-

prediction region is clearly visible in the center of Fig. 6a.

It is also apparent that few modeled cyclones are present

over the Gulf of Mexico, at higher latitudes, and near the

Cape Verde Islands. Figure 6b provides the same in-

formation for the GFDLHiRAM. In general, the GFDL

HiRAM agrees better with observations, although once

again there is a notable lack of model-generated cyclones

in the Gulf of Mexico and Caribbean.

Finally, a qualitative comparison between the FSU

COAPS and the GFDL HiRAM is made. The results of

this model comparison are depicted in Fig. 7. Using the

same hexagon lattice as in Figs. 5 and 6, we compare

areas in which both models overpredict the number of
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TCs relative to observations (shown in red), the areas in

which the FSU model overpredicts but the GFDL un-

derpredicts (magenta), the areas in which the GFDL

overpredicts but the FSU underpredicts (cyan), and fi-

nally the areas in which both models underpredict (blue).

It is clear from this map that both models underpredict

over both the Caribbean and Gulf of Mexico. This is

perhaps the result of a lack of model genesis over this

subregion, premature recurving of storms generated

farther east, or both. In the FSU COAPS model, for ex-

ample, LaRow et al. (2008) note that a break in the ridge

over the central Atlantic during the peak of the hurricane

season allows more modeled storms to recurve early

rather than continue westward.

The possibility of a lack of model genesis over the Gulf

of Mexico is also addressed. Figure 8 displays counts for

per-hexagon genesis points for observations (Fig. 8a),

FSU COAPS (Fig. 8b), and GFDLHiRAM (Fig. 8c). To

FIG. 5. Per-hexagon cyclone counts in the North Atlantic basin

over the 1982–2008 time period for (a) observations, (b) FSU

COAPS (r1), and (c) GFDL HiRAM (r1).

FIG. 6. Hexagons indicate the factor by which model storm fre-

quency exceeds observed storm frequency for (a) FSUCOAPS and

(b)GFDLHiRAM.Values greater than 0 (pinks and reds) indicate

that modeled storm frequency exceeds observed storm frequency,

while values less than 0 (blues) indicate that observed storm fre-

quency exceeds modeled storm frequency.
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obtain the genesis points, we define ‘‘genesis’’ as the first

record for each individual storm in the IBTrACS and

model datasets. As expected, hexagons with the most

observed genesis points are located off the west coast

of Africa, throughout the main development region

(MDR), and also over the Caribbean andGulf ofMexico.

In contrast to observations, nearly all genesis in the FSU

COAPS model occurs over the south-central portion of

the basin, well west of Africa and east of the Caribbean

and Gulf of Mexico. In fact, the highest per-hexagon

genesis count for the FSU COAPS model is 50 storms,

significantly higher than the maxima of 13 and 15 for

observations and the GFDL, respectively. Very few

storms generated by the FSU COAPS model form over

the Gulf of Mexico or Caribbean. The distribution of

genesis points from the GFDL HiRAM more closely

matches observations; however, there is still a notice-

able lack of model genesis over the Gulf of Mexico

and Caribbean by this model as well. For the GFDL

HiRAM, the small number of modeled TCs developing

over the Gulf of Mexico and Caribbean may be a result

of large model wind shear anomalies, although another

possible cause is the general lack of simulated convec-

tive activity over this region. This is also true of the FSU

COAPS model, which generates higher than observed

wind shear over the Gulf of Mexico for the August–

October period. The FSU COAPS model also displays

a dry precipitation bias in this region.

In addition to the underprediction over the Gulf of

Mexico and Caribbean, the area of overprediction by

the FSU COAPS model is evident in the red and

magenta hexagons of Fig. 7. It is also interesting to note

that the area of GFDL HiRAM overprediction extends

farther north and east across the basin. Although Fig. 7

provides a qualitative assessment of model over- and/or

underprediction, the magnitude of the model discrep-

ancy is not apparent.

FIG. 7. Hexagons indicate subregions in which there was over-

prediction by both the FSU and GFDL models (red), over-

prediction by the FSU model and underprediction by the GFDL

(magenta), underprediction by the FSU model and overprediction

by the GFDL (cyan), or underprediction by both models (blue).

FIG. 8. Per-hexagon counts of genesis points for (a) observations,

(b) FSUCOAPS, and (c)GFDLHiRAM. ‘‘Genesis’’ is defined as the

first record for each storm listed in the IBTrACS and model datasets.

The darkest shading represents genesis counts greater than 15.
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7. Summary

GCMs are now routinely employed to study how TC

frequency may change with a warmer climate. However,

before confidence can be placed in future cyclone scenar-

ios, it is necessary to understand how well they reproduce

the historical spatial climatology. Using a methodology

based on the spatial tessellation of Elsner et al. (2012),

this study puts forward a spatial lattice approach to

quantitatively compare regional TC activity.

Global and regional comparisons are made between

actual and simulated TC occurrences using actual TCs

from the IBTrACS dataset and GCM-generated TCs

from the GFDLHiRAM and FSU COAPSmodels over

the common period 1982–2008. Globally results show

that although there are some areas of over- and under-

prediction, the spatial distribution of TCs generated by

the GFDL HiRAM compare well with observations.

Difference maps using the spatial lattice highlight the

areas in which themodel disagrees with observations. The

primary mismatch areas are found in the Pacific. Several

quantitative metrics of model success are used to examine

the ability of theGFDLHiRAMtoaccurately capture the

spatial extent of TC tracks globally and regionally. Again,

the model performs fairly well overall, with the primary

problem area being the South Atlantic. Additionally,

comparisons focusing on the North Atlantic basin are

made using both models. Results confirm a large area of

overprediction by the FSU COAPS model over the

south-central portion of the basin, and a large area of

underprediction by both models over the Gulf of Mexico

and Caribbean. The underprediction is particularly rele-

vant to projections of future U.S. hurricane activity.

As the data become publicly available, this method

can be applied to provide a comprehensive model com-

parison using all model datasets from phase 5 of the

Coupled Model Intercomparison Project (CMIP5). All

the code used to generate the results of this paper is

available online (http://rpubs.com/sestrazz/4591).
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