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ABSTRACT

The never-before-seen proliferation of interconnected low-power computing devices, patently dubbed
the Internet of Things (IoT), is revolutionizing how people, organizations, and malicious actors
interact with one another and the Internet. Many of these devices collect data in different forms,
be it audio, location data, or user commands. In civil or criminal nature investigations, the data
collected can act as evidence for the prosecution or the defense. This data can also be used as a
component of cybersecurity efforts. When data is extracted from these devices, investigators are
expected to do so using proven methods. Still, unfortunately, given the heterogeneity in the types
of devices that need to be examined, few widely agreed-upon standards exist. In this paper, we
look at some of the architectures, current frameworks, and methods available to perform forensic
analysis of IoT devices to provide a roadmap for investigators and researchers to form the basis of
an investigation.

Keywords: Internet of things, IoT, forensics, architecture, tools

1. INTRODUCTION

great interest to forensic investigators looking to
learn more about individual attacks, the organi-
zations involved, and their implications in crime
scenes. Consequently, because these relatively
simple devices collect large amounts of data, all
of the processing that enables their functionality
is performed by computers connected via the In-
ternet. As a result, the simple hardware of the
node devices, paired with the complex software

The never-before-seen proliferation of intercon-
nected low-power computing devices, patently
dubbed the Internet of Things (IoT), is revolu-
tionizing how people, organizations, and mali-
cious actors interact with one another and the
Internet.
ety of applications in homes and commercial

These devices are used in a vari-

fields like medicine, education, and transporta-
tion (Al-Fugaha, Guizani, Mohammadi, Aled-
hari, & Ayyash| [2015). The IoT has introduced
a new paradigm of machine interconnectedness
by allowing IoT-capable devices to communicate
with each other to share information. IoT de-
vices provide a wealth of information about their
surroundings, and their use in cyberattacks is of

of the destination computers, provides unique
challenges for forensics teams (Yaqoob, Hashem,
Ahmed, Kazmi, & Hong}, 2019).

The heterogeneous nature of IoT nodes further
contributes to the challenges of IoT forensics.
These nodes are made by numerous global man-
ufacturers and use varying software, hardware,



and distributed network architectures. This het-
erogeneity makes the invention of a universal
tool or reference standard to aid in performing
IoT forensic investigations highly unlikely (Al-
Sadi, Chen, & Haddad| [2018; |Guth, Breiten-
bucher, Falkenthal, Leymann, & Reinfurt, 2016)).
This unique issue is a significant challenge in the
emerging field of IoT forensics. The lack of a
standard framework or toolkit applicable to a va-
riety of IoT endpoints creates a unique environ-
ment for investigators to navigate and requires
experts that are highly specialized in the low-
est level technical aspects of the IoT (Oriwoh,
Jazani, & Epiphaniou, 2013). Previous works
by Stoyanava et al. (Stoyanova, Nikoloudakis,
Panagiotakis, Pallis, & Markakis, [2020) and At-
lam et al. (Atlam, El-Din Hemdan, Alenezi,
Alassafi, & Wills, [2020)focus on providing an
overall review into the field of IoT Forensics.

This paper aims to guide the data discovery
process for IoT forensics by examining and ad-
dressing the challenges of IoT forensic investiga-
tions from a practical standpoint. We examine
the hardware and software architectures of spe-
cific IoT devices as well as developing paradigms
of IoT devices in terms of their suitability for
forensic investigations. Additionally, we consider
what areas of the network relevant data may
reside, challenges of accessing those areas, and
methods and frameworks developed to assist in
those investigations. This paper presents a se-
ries of research surveys involving IoT devices,
corresponding frameworks, and methods aimed
at forensic investigators. Thereby, we provide
forensic investigators and researchers a roadmap
to forensic approaches for standard IoT devices,
challenges present in IoT forensics, and meth-
ods and frameworks for approaching current IoT
forensics and new IoT paradigms.

The rest of this paper is organized as follows.
Section [2| briefly discusses the concept of digital
forensics and IoT forensics. Section [3| presents a
generic overview of IoT architectures. Specific
devices and families, their software-hardware
and network architectures, as well as developing
IoT paradigms and their respective challenges,
are presented in Section [d] Section [5] provides a
discussion of the available methods and frame-
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works and which device families they apply to,
as well as modifications that may extend them
to other device families. Section [6 summarizes
lessons learned and concludes the study.

2. DIGITAL AND IOT
FORENSICS

2.1 Overview of Digital Forensics

Digital forensics is the science of the identifica-
tion and interpretation of information contained
within digital devices, including IoT devices, in
a way that preserves the integrity of the data.
Like traditional forensics, the critical use of digi-
tal forensics is to prepare evidentiary documents
for legal proceedings. Thus, digital forensics
relies heavily on scientifically validated acqui-
sition methods and tools in order to produce
forensically sound results that can withstand
the scrutiny of the judicial system (Chernyshev,
Zeadally, Baig, & Woodward, 2018). This lack of
standards poses an exciting challenge to forensic
examiners working on newer, non-standard de-
vices or data storage systems that cannot sup-
port entrenched tools, frameworks, and method-
ologies. In the modern era of computing, forensic
examiners must often develop and validate these
on their own in order to target specific systems
(Watson & Dehghantanhal, 2016)).

Research in digital forensics is essential to dis-
cover new methods to extract information and
validate current digital forensics methods. Re-
search is especially imperative in IoT forensics,
where many devices are heterogeneous in de-
sign and often developed using proprietary com-
puter organizations and architectures that will
often not be available for access under standard
modes of operation.
forensics, the requirements of IoT investigations
may extend to the examination of cloud or net-
work data. Thus, we can break down the field
of IoT forensics into three subcategories based
on the location of forensic artifacts: on-device,
network-level, and cloud forensics (Chernyshev
et al. 2018; [Stoyanova et al., [2020). These three
subdivisions provide varying types of forensic ev-
idence contained in different artifacts depending

In addition to on-device



upon which layer of the IoT the extraction takes
place. We expand upon this forensic model and
generalize it into an architecture model in Sec-
tion III of this paper.

2.2 What is IoT Forensics?

Due to the wide variety of IoT devices, it is hard
to define IoT forensics using specific devices. In-
stead, digital forensic methods to extract infor-
mation associated with or contained within IoT
devices can be considered IoT forensics. The het-
erogeneity of IoT devices leads to multiple areas
within digital forensics, such as network foren-
sics, memory forensics, cloud forensics, hardware
forensics, and many more.

2.3 Why Do IoT Forensics?

In addition to the wealth of information that
can potentially be extracted from IoT devices
and their component networks, the vast domain
of applications of IoT devices is a primary rea-
son those forensic examiners will want to pursue
IoT forensic investigations. Unlike traditional
digital forensics, which focuses primarily on in-
device data from computers, laptops, portable
storage devices, and other personal devices, IoT
expands the scope of computing (and therefore
digital forensics) to monitoring systems, vehicles,
healthcare devices, surveillance systems, and in-
telligent home systems (Jahankhani & Ibarraj
2019; Huang, Lu, & Choo, [2017).

Furthermore, IoT forensics has many more ap-
plications than simply collecting data from a
crime scene. Systems can be created by foren-
sic examiners or cybersecurity professionals for
the express purpose of collecting artifacts in a
network in order to detect cyber attacks or to
assist in forensically examining an attack post-
execution (Zhang, Upton, Beebe, & Choo, 2020;
Chhabra, Singh, & Singhl 2018} |Widiyasono, Pu-
tra, Giriantari, & Sudarmal 2019). These sys-
tems are most often found in cybersecurity ap-
plications on private networks as a cyber defense
strategy. Additionally, systems can be devel-
oped with forensic-aware architectures that pro-
vide easier access to artifacts and exposes log
files, network information, and on-device data
more easily (Zawoad & Hasan| [2015)). It should
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be noted that both of these examples are only
highly applicable in cyber defense contexts where
privacy is a non-issue, whereas, in public inves-
tigations, this would be difficult to implement
without infringing upon an individual’s right to
privacy. Unfortunately, unlike traditional digi-
tal forensics and mobile forensics, these laws are
somewhat ill-defined in the US code of law as far
as [oT devices are specifically concerned (Weber],
2010; Maras|, 2015 Peppet), |2014).

3. GENERIC OVERVIEW OF
IOT DEVICE
ARCHITECTURES

Attempting to design a generic architecture for
IoT has been the subject of much research,
though no apparent standard exists. This lack
of standards can be partially attributed to the
heterogeneous nature of IoT ecosystems and the
lack of universal standardization indicating ex-
actly how an IoT device should operate. Many
authors have attempted a realization of a generic
architecture and seem to have arrived, appar-
ently independently, at a similar five-layer model
(Zhong, Zhu, & Huang, [2015; Mrabet, Belguith,
Alhomoud, & Jemai, 2020; (Guth et all [2016]).
We present a version of this layered model in
Table I as it is beneficial to concretely define ar-
eas of an IoT ecosystem when discussing vary-
ing devices, tools, frameworks, and implementa-
tions. Since, in certain implementations, compo-
nents may have altered functions or be omitted
entirely, it is convenient to keep this model ab-
stract, not potentially to exclude any systems.

3.1 Physical Interface Layer

The physical interface layer (Mrabet et al., 2020))
is the fundamental element of an IoT device. On-
device, this layer is composed of hardware sen-
sors or actuators that allow the device to inter-
face with the physical world around it. This in-
terface may be gathering information and trans-
lating it into data in the case of sensors or phys-
ically manipulating something in its vicinity via
mechanical action. An example of an IoT device
that uses sensors would be an Amazon Alexa or
Google Nest. In contrast, an example of an IoT



Table 1: Generic IoT device Architecture

Layer Components | Artifacts
Physical In- | Sensors, Actu- | Protocol
terface Layer | ators packets,
routing  ta-
bles, device
identifiers,
raw  sensor
or actuator
data
Device Layer | Device-level Bytes from
hardware memory,
and software, | logs, appli-
Operating cation data,
System authentica-
tion data,
containers
Network Network- Packet
/Transport specific proto- | traces, fire-
Layer cols, TCP/IP, | wall alerts
UDP/IP,
Presentation | Speakers, User-level
Layer screens, user | informa-
interfaces tion, usage
information
Integration Cloud ser- | Human-
Layer vices, IoT | readable
middleware, data, logs,
companion usage his-
apps tory, user
information

device that uses actuators would be a network-
connected robotic arm (often found in indus-
trial applications), an intelligent pacemaker, or
an IoT oven. This layer will often require lo-
calized software to operate its components and
may store artifacts of its sensor or actuator data
locally, in the cloud, or on a companion device
(such as a smartphone or tablet). Many non-
cyber crime forensic investigations will focus on
artifacts generated at this layer.

3.2 Device Layer

The device layer (Mrabet et al., |2020) simply
refers to the device itself and the associated hard-
ware and software that composes it. The device
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is responsible for controlling the sensing and ac-
tuating at the physical interface layer, perform-
ing operations on that data, sending the data to
the integration layer via the network/transport
layer, receiving data from the integration layer,
and finally translating and presenting that data
at the presentation layer. Like any other modern
computer, devices are controlled by operating
systems with varying degrees of sophistication
and integrate with the physical interface layer
and the network/transport layers using driver
software. Specific hardware may be implemented
on a device that reduces the need for OS or driver
overhead. However, it can generally be assumed
that both of these software are needed to enhance
reliability and compatibility through updates ex-
cept in particular instances. This paper features
a more in-depth discussion of specific devices at
each layer in section IV.

3.3 Network/Transport Layer

The network layer (Mrabet et al., 2020) consists
of any wired or wireless protocols supporting loT
networking. This layer includes Ethernet, Wi-Fi,
Bluetooth, ZigBee, 5G, and associated transport
protocols such as TCP/IP and UDP/IP. This
layer is the layer at which device-to-device or
device-to-gateway connections occur and may in-
volve the sharing of data generated at the physi-
cal interface layer between devices or the routing
of this data up to integration services at the in-
tegration layer. It also includes the flow of data
down from the integration layer into the presen-
tation layer. Artifacts at this layer include in-
coming and outgoing network packets or connec-
tion information. Further, all remote crimes that
are committed leveraging IoT (botnets, cyber-
stalking) can be expected to generate artifacts
on the network layer.

3.4 Presentation Layer

The presentation layer (Mrabet et al. 2020
is the non-sensing human-interface layer of the
device. This layer provides end-user feedback
either through its physical interface layer (on
a speaker or screen) or through a connected
command-and-control application on a compan-
ion device. This layer involves displaying data



either generated by the device, by the integra-
tion layer, or jointly from both. Devices will
often require interface software to provide this
feedback.

3.5 Integration Layer

The integration layer(cloud services layer
(Mrabet et al., [2020)) is the upstream non-local
component of IoT and is responsible for doing
complex computations, long-term storage of
data, off-device command and control functions,
and enhancing or enabling device functional-
ity. This layer is the layer that enables IoT
devices to be decentralized from their primary
computing functions. This layer is enabled by
cloud, middleware, and database technologies.
It will often be located off-site except for in
the cases of companion clients, though specific
IoT architectures, often found in industrial or
secure settings, may support local integration
for security, confidentiality, or convenience. This
layer will often contain valuable information for
forensic investigations, particularly if the device
in question has a comparatively small reserve
of local memory for its function or exposes an
interface to the end-user through a companion
client. In the cloud or an integrated database,
the primary issue at this layer is accessed since
it will require permission, either voluntarily or
compulsory through a subpoena, to access the
data stores.

4. SPECIFIC DEVICE
ARCHITECTURES & 10T
PARADIGMS

As previously mentioned, the heterogeneity in
the architecture of IoT devices makes any at-
tempt at accessing the device correctly to con-
duct forensic analysis a challenge. Depending on
the device, different forensic artifacts are gen-
erated, often in different formats and in differ-
ent locations. This difference can even be ob-
served in the same device family across gener-
ations. However, analyzing some of the archi-
tectures of typical IoT devices (like smart home
speakers) has merit as a blueprint for future in-
vestigations of other devices. In this section, we

JDFSL 2021

look at a few of these devices and developing
IoT paradigms, such as the Internet of Medical
Things and the Internet of Industrial Things, ex-
amine potential sources of forensic artifacts, and
discuss some of the related challenges.

4.1 Amazon Alexa Ecosystem

dws
T
Cloud
a8 ‘ . | a
htips Alexa hatps
Hardware Clients
& oo

@

Echo Dot 3

Companion Clients

Figure 1: Amazon Alexa Ecosystem

(Pawlaszczyk et al., |2019))

The Echo is a brand of home smart speaker
systems developed by Amazon and first released
in late 2014 (Newman, [2020). It has various fea-
tures that include playing music, voice interac-
tion, and making lists. These various features
are made possible by integrating Amazon Alexa,
a cloud-based virtual assistant AT technology de-
veloped by Amazon. These devices require a Wi-
Fi connection and a companion device (a mobile
phone, laptop, tablet) for initial setup. The com-
panion device is no longer needed after the initial
setup is done. As an ever-increasing number of
IoT devices are added for home automation pur-
poses, the Echo can be connected with and used
to control these smart home devices, functionally
extending its physical interaction layer.

Multiple versions and generations of the Echo
devices exist, giving rise to multiple hardware ar-
chitectures. The software architecture for most
of these devices remains the same, and a sim-
plified version of the software architecture is
given in Figure [l| (from (Pawlaszczyk et al.
2019)). The architecture allows for forensic ar-
tifacts to be extracted using the channels at the
network /transport layer in between the compan-



ion clients, the echo devices themselves, or the
cloud. It should be noted that since, in most
cases, the forensic analysis is done after an inci-
dent, network analysis may not prove to be help-
ful to the investigation unless the real-time anal-
ysis is pursued. Echo devices themselves can be
analyzed using a chip-off method outlined in Al-
Sadi et al. to analyze forensic artifacts on device
memory (Pawlaszczyk et al., 2019). This anal-
ysis requires the hybrid RAM and eMMC to be
soldered off the device, the chip identified, and,
using an appropriate adapter, a raw image of the
memory chip can be acquired.

At the integration layer, analysis on the com-
panion client can reveal forensic artifacts about
when the Alexa app was last used, the user ac-
count associated with it, cards containing tran-
scripts of what Alexa understood in each voice
command, and its response to the voice com-
mand in JSON format (Chung, Park, & Lee,
2017)). Audio recordings and their transcripts
can be accessed on the cloud provided that the
user has not deleted them, and each recording is
stored with the date and time of the voice com-
mand. The location of artifacts on different oper-
ating systems of the companion devices has been
provided in (Chung et al., 2017)). User activity
artifacts can be extracted using Amazon’s APIs
as well, but these are not released to the public
and would require the discovery of the APIs. Po-
tential sources of forensic artifacts in the Amazon
echo ecosystem can be summarized in Figure
(from (Pawlaszczyk et all 2019)).

o 17 Cz;ensiclnuestigath:) Oi ~—®‘

Network Artefacts Hardware Analyze Client Cloud

®. oo @

Alexa
.....

usb ITAG

Echo Dot 3

Chip off

Figure 2: Amazon Alexa Ecosystem Forensics
(Pawlaszczyk et al., |2019)
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4.2 Google Nest Ecosystem

Google has a range of intelligent speakers similar
to Amazon’s Echo, part of its home automation
range. Google Nest (previously known as Google
Home, owned by Nest before Google acquired
them) was Google’s answer to Amazon’s Echo
range and was released in 2011. It is estimated to
have sold around 52 million units since its release
(D’Onfrol 2018). Other Google Nest products
include a smart thermostat, cameras, alarm sys-
tems, doorbells, smart locks, and smoke alarms.
All the devices require a Wi-Fi connection and
can be controlled via a companion device like a
laptop, mobile phone, or tablet.

Forensic Investigation Q
e ’ @ lJ ® l ® I

Network Artefacts Hardware Analyze Client Cloud

H N

Nest thermostat, Nest Service,
Home Mini, Google Home
Nest cameras Service

c0fe

Figure 3: Google Nest Ecosystem (Dorai et al.|
2018))

The hardware architecture of the Nest devices
varies by device type (smart speaker vs. thermo-
stat) and across different generations of the de-
vice. The overall software architecture is given in
Fig. 3 (from (Dorai et al., |2018)) and is similar
to the Amazon Echo ecosystem. The IoT de-
vices are connected to the cloud in tandem with
a companion device registered to them. Different
opportunities to collect forensic artifacts exist in
the companion device, the cloud, the IoT device,
and the IoT devices’ network.

Unlike Echo devices, Nest devices do not have
persistent storage, due to which IoT device anal-
ysis may not prove valuable (Dorai et al., 2018]).
Thus, this illustrates that even among competing
manufacturers of the same product type, signifi-
cant differences exist in architectures. However,
forensic investigations may necessitate examin-
ing the IoT device before it can be ruled out for
not containing any relevant forensic artifacts.



Dorai et al. (Dorai et al., 2018) propose exam-
ining the companion devices to the Nest smart
speaker system. An unencrypted logical backup
of an iOS mobile device is taken and then exam-
ined to uncover information about user interac-
tions with the device or the data collected by
the IoT devices. This backup is used to an-
alyze SQLite databases on the device relating
to the Google Nest application, and an infer-
ence engine is built to analyze the data and pro-
duce a FEAAS (Forensic Evidence Acquisition
and Analysis System) report. This report con-
tains details about the device, the app’s account,
geofence events, thermostat events, and camera
events. Camera artifacts from the Nest device
were recovered by analyzing Google Chrome’s
cache on a companion client (laptop). After
parsing the cache, links containing text files, im-
age files, event clips, and a profile picture of the
user can be extracted (Dorai et al 2018).

4.3 Windows 10 IoT

Windows 10 IoT Core is the free version of an
IoT operating system developed by Microsoft.
This OS is optimized to run on ARM and
x86/x64 devices such as Raspberry Pi, Drag-
onBoard 410c, AAEON Up Squared, or Min-
nowBoard Turbot and supports applications de-
veloped in the Universal Windows Platform
(UWP). Microsoft provides the Windows 10 IoT
Dashboard application for Windows 10 com-
puters to allow remote access to the Windows
10 IoT system. This OS features secure boot,
BitLocker encryption, device guard, Bluetooth,
Windows Update, and hardware connection ca-
pabilities for many physical interface layer at-
tachments, including Wi-Fi adapters, Ethernet
adapters, cameras, RFID, and other sensors.
Gmez et al. (Gmez et all 2019) provide
a method for conducting non-volatile memory
analysis on a Windows 10 IoT system. This
forensic analysis was done on a Raspberry Pi
board with Windows 10 IoT Core installed. Non-
volatile memory analysis was performed on the
SD card from the Raspberry Pi, where the Win-
dows IoT OS resides after installation. Conve-
niently, Windows 10 IoT systems are similar to
traditional Windows systems in software archi-
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Figure 4: Windows 10 Ecosystem (Gmez et al.,
2019)

tecture and require minimal adaptation of tra-
ditional forensic techniques. Examination of the
file system can be performed using Autopsy, reg-
istry explorers and parsers, and master file table
explorers and parsers. Windows system events
can also be viewed via their associated log files
(Gmez et al., [2019).

Windows 10 IoT has an app-based framework
for programs, though it operates much the
same as the desktop version of the OS. In the
Windows 10 IoT ecosystem, apps are stored in
a directory under \Programs\WindowsApp
and the packages mneeded are stored
in \ProgramData\Microsoft\Windows\
AppRepository\Packages. User in-
formation from the app is stored in
\Users\DefaultAccount\AppDate\Local\
Packages\ (Gmez et al. [2019)).These apps
may provide high-value forensic evidence to an
examiner since they ultimately provide meaning
and utility to the system for the user.

4.4 Smartwatches: Apple Watch and
Fitbit Versa 2

Smartwatches are a class of IoT devices simi-
lar to smartphones in that they are often on
the user’s person. They include devices like the
Apple Watch and Fitbit Versa, though they are
produced by many companies, including Sam-
sung, Amazon, Garmin, and Fossil, to name
They provide a broad range of fea-
tures like health and wellness, call and mes-
saging, time-related features (multiple timezone
display), alarms, calendars, and notifications.

a few.



These features and their implementations vary
depending on the device model, device genera-
tions, and device maker and can be implemented
with apps depending on the sensors that the de-
vice provides. Because these devices are typi-
cally on a person’s wrist for a significant por-
tion of a day, they can store their location, heart
rates, and fitness patterns. The architecture of
a smartwatch ecosystem generally consists of the
smartwatch device, a companion device that pro-
vides enhanced functionality and connectivity (a
local server of sorts) for the smartwatch, and the
cloud that data is backed up to and processed in.

The Apple Watch, Apple’s flagship smart wear
device intended for use with i0S, was examined
in Dorai and Houshmand et al. (Dorai et al.l
2018)) The watch requires a companion iPhone
to be connected at all times to sync information,
install apps, and change settings. The content
from the Apple watch is constantly backed up
onto the companion device and is available in
the iTunes backup. The cache size for updates is
small on the device, and any that would typically
be data synced with the companion device may
be lost if the companion device is disconnected
for some time. The authors developed the De-
vice Data and Forensic Analysis (DEFA) Model
to extract artifacts from the watch and other de-
vices, which uses an inference engine to extract
relevant data from the activity logs. Given the
general architecture of smartwatches, it is evi-
dent that the opportunities for collecting foren-
sic artifacts are limited to within the watch it-
self, the companion device, or the cloud where
the backups of the device are stored. However,
the DEFA model was used only to extract data
from the companion device, which, fortunately,
is host to much of the forensically relevant data
generated by various apps on the watch (Dorai,
Houshmand, & Aggarwal, 2020)).

A Fitbit Versa 2 was analyzed using NIST-
approved tools Magnet AXIOM and MSAB XRY
by Yoon et al. via its android companion device.
The main focus of the analysis was to determine
the types and sources of forensic artifacts on the
rooted companion device. The authors provide
relative paths on the smartphone to locate GPS
location, heart rate, calories burned, web cook-
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ies, credit card information, and credit card im-
age artifacts. No message data was stored on
the Fitbit app even though message notifications
were sent to the Fitbit device. Further, some
user data such as OAuth refresh tokens in plain-
text were recovered (Yoon & Karabiyik, [2020]).

4.5 Vehicles

Modern vehicles often come equipped with IoT
infotainment centers that connect with user’s
smartphones via Bluetooth and may even have
associated smartphone apps to enable additional
features. At a very minimum, these centers of-
ten provide an interface for phone-to-car music
streaming, GPS navigation, rear-view cameras,
and hands-free phone calls, and sometimes con-
trol car features, such as seat actuation and cli-
mate control. Specific models may even expose
cruise control, steering assistance, fuel economy,
and other features through this central infotain-
ment center. Occasionally, these IoT devices
are connected, via buses, to other computerized
units of the car (Lacroix, El-Khatlib, & Akalul,
2016)). This level of inter-connectedness creates
an environment that may expose a wealth of
forensic artifacts to an examiner.

The external architectures of these vehicular
devices are often simple and typically only in-
volve a singular connection with a user’s phone,
though multiple phones may be registered to
the vehicle. Figure [5| gives an example of a
vehicle’s potential inner architecture, though it
should be noted that some vehicles may not have
all of these connections. More modern vehi-
cles often include both an Event Data Recorder
(EDR) and insurance black box that works with
the telematics unit to provide data relevant to
crash incidents (this may provide emergency call
functionality instead or as well, like OnStar)
(Mansor, Markantonakis, Akram, Mayes, & Gu-
rulian, 2017). Both of these units provide sev-
eral data logging opportunities for forensics in-
vestigators. They may contain artifacts such as
a driver behavior profile and event information,
though both of these units provide information
inaccessible to the users and thus cannot be veri-
fied by them. Mansor et al. (Mansor et al., 2017
propose a forensics logging mobile application,
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Figure 5: Internal Vehicle Network Architecture (Lacroix et al., 2016)

DiaLOG, that provides more excellent privacy
features, transparency of data being transmitted
from the vehicle, and an integrity-protected data
logging feature aimed at forensic investigations.
This application may also be used to alert own-
ers of malicious intrusion by cyberattackers to
cause a denial of service or control operations of
the vehicle (Mansor et al.| 2017)).

For forensic approaches that do not require
proaction, both Jacobs et al. (Jacobs, Choo,
Kechadi, & Le-Khac| 2017), and Lacroix et al.
(Lacroix et al) [2016) provide an in-depth exam-
ination of a 2012 Volkswagen Golf and a Ford
F-150, respectively. Jacobs et al. (Jacobs et
removed modules from the Volkswa-
gen Golf in order to perform a hard-drive ex-
amination and chip-off of the multimedia device
in the vehicle. From the device’s flash memory,
they were able to retrieve the last-known GPS
coordinates of the vehicletwo partitions on the
hard drive, a FAT32 partition, and a WindRiver
Systems DosFs 2.0 partition. On the FAT32
partition, a Siemens AG 2.0.0 Europe Map ver-
sion 5.0.5 was found, leading to the further ex-

amination of the disk revealing navigation cart
data containing more locations in Europe used
by the navigation system. Using Photorec for file
carving, 7,431 files were carved from the Win-
dRiver partition, of which 7,414 of them were
mp3 files, while some were playlists in text file
format (Jacobs et al., [2017)).

Lacroix et al. (Lacroix et al., [2016) procured
a logical dump, as well as two separate phys-
ical dumps, of the Ford-150’s SYNC infotain-
ment file system and its associated content and
files. Ford’s SYNC architecture is based upon
Microsoft’s Windows CE automotive operating
system. It is speculated that this system may in-
teract with telematics and communications mod-
ules and an insurance companies’ black box for
habit reporting, though this could not be con-
firmed without the device. Direct access to the
data inside the system is complicated without a
forensic toolkit or special forensics software since
the encryption is employed on the data itself. Us-
ing Encase and Autopsy on the logical copy, the
authors were able to retrieve a phone book con-
taining device IDs, call names, call types, and




call times; Bluetooth connection attempt logs
and potential security PIN artifacts in hexadec-
imal formats when authenticated; logs of USB
device connections and respective file structures;
last known AM/FM frequencies and Sirius ra-
dio related information (useful for localization);
SQLite databases of fuel price listings, Wi-Fi net-
work listings, and movie listings; GPS logs; cli-
mate state and configuration data (valid for lo-
calization); cryptographic seeds; mobile carrier
information; and Internet profile information. It
is noted that some of this information went un-
analyzed, but it is apparent that the vehicle’s
infotainment system stores a multitude of foren-
sically valuable data (Lacroix et al., [2016).

4.6 Internet of Medical Things

Forensic analysis may be performed on medical
devices for unique reasons, including autopsy re-
ports, medical malpractice cases, or investigat-
ing ransomware attacks. As medical devices and
data must comply with comprehensive govern-
ment regulations, including the Health Insurance
Portability and Accountability Act (HIPPA),
forensic investigations may be accompanied by
legal counsel. Additionally, as some medical de-
vices are implanted into patients, retrieval and
forensic analysis may require a patient to opt-
in to surgical procedures (Jahankhani & Ibarral,
2019)). New standards have been proposed for
IoT devices operating within a clinical setting,
as there are strict ethical and legal guidelines
for medical devices in addition to storage and
protection of patient data (Liu, Sasaki, & Ue-
hara, 2020). Liu et al. (Liu et al.l 2020) pro-
pose a holistic forensic investigation approach to
comply with these standards that incorporate a
"four-space model” in understanding the inte-
gration of medical devices with patients, insti-
tutions, and digital infrastructure: cyberspace; a
”social space” incorporating legal knowledge and
industry standards; a ”physical space” where
limitations of time, space, and biological condi-
tions are included; and a ”psychological” space
where a patient’s behaviors are included (Liu et
al., 2020)).

Jahankhani and Ibarra note that Medical IoT
devices are integrated into an information supply
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(Jahankhani & Ibarra, [2019))

chain that links patients, physicians, providers,
and Cloud Service Providers (CSPs) together.
These can present unique security vulnerabili-
ties as cyberattacks against digital medical in-
frastructure accounts for more than half of all
cyberattacks. As devices, patients, providers,
and CSPs have varying security standards; this
information supply chain is especially vulnera-
ble to malicious attacks. Additionally, the net-
work is complicated by the need for a personal
server (PS) that mediates access to IoT nodes
in or on the body (Jahankhani & Ibarray [2019)).
Smartphones are a prime candidate for personal
servers, though they introduce new vulnerabili-
ties to the network since they are used for ap-
plications other than mediating access to IoMT
devices, acting as both monitoring devices and
delivery devices in Figure [f] However, using
a smartphone as a mediator for these devices
provides rich opportunities for forensic investi-
gators, as mobile forensics is a well-understood
field that is more mature than IoT forensics and
may impart less heterogeneity to IoMT foren-
sics. IoMT is still a developing field, and what
forensic artifacts may be recovered is not yet well
understood, though we would surmise that if the
PS acts as a monitoring tool, one could retrieve
state information regarding the patient and pos-
sibly reports their health.

4.7 Internet of Industrial Things

The industrial Internet of things (IIoT), com-
posed of both industrial control systems (ICS)
and supervisory control and data acquisition
systems, constitute the enabling technologies of
many modern national and industrial infrastruc-



tures. These systems may be found in produc-
tion facilities, power plants, nuclear facilities,
and transportation networks, and their use is
ever-increasing. These IloT networks often ex-
pose an interface to critical systems and are thus
prime attack vectors for malicious cyber actors,
and because of the criticality of IToT networks,
they are the subject of much academic research
in cybersecurity (Eden et al., 2017).
examining their forensic value is an area of re-
search that is still somewhat undeveloped even
though they may contain artifacts that would
enable forensic investigators to construct time-
lines of critical events, including cyberattacks,
industrial-related fatalities, catastrophic failures,
and general foul play. Typically, the architec-
tures of these systems will be implementation-
dependent. However, they all follow the 5-layer
model outlined earlier in this paper.

However,
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Figure 7: IIoT Ecosystem (Awad et al., [2018)

Unfortunately, as is the case in all IoT foren-
sics, the heterogeneity of these systems poses
a significant challenge to investigators. How-
ever, the components of these systems are even
less uniform and often more low-level than other
types of devices (Awad et al., 2018). Fortu-
nately, the control center is often composed of
traditional computing systems, running a stan-
dard OS such as Linux or Windows. Provided
that these terminals have serial or wireless in-
terfaces, extracting data from them becomes a
digital forensics issue and can be done using any
number of standard toolkits, including Autopsy,
Volatility, Rekall, and other automated analy-
sis systems (Awad et al., 2018). The commu-
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nication network also provides an opportunity
for forensic artifact collection using familiar tools
such as Wireshark. However, forensically inter-
esting network traffic will often include pack-
ets whose contents are explicitly formatted for
Programmable Logic Controllers (PLCs), Real-
Time Automatic Controllers (RTACs), and Re-
mote Terminal Units (RTUs) and will need to
be translated depending upon the model and
packet specification of the intended destination.
Field devices must be assessed independently,
but forensic investigations involving them may
benefit from volatile memory analysis, chip-off
methods, and side-channel methods (Awad et al.|
2018).

FRAMEWORKS &
METHODS

While investigators require tools and toolkits in
order to conduct forensics examination of IoT
devices, these have already been enumerated
and evaluated extensively in Venkauskas et al.
(Venkauskas, Toldinas, Grigalinas, Damaeviius,
& Jusas, [2015). However, many of these tools
and toolkits are challenging to apply to IoT sys-
tems simply due to the heterogeneity of devices.
Forensic investigators and researchers often de-
velop frameworks and methodologies for pursu-
ing an IoT-based forensic investigation to ad-
dress this challenge. Many of these frameworks
and methodologies focus on proactive forensics,
while some provide responsive models. In gen-
eral, most of the work centered primarily upon
model-building only superficially discusses pos-
sible approaches to IoT forensics. Nevertheless,
this section briefly surveys state-of-the-art re-
search in IoT forensics, and each may potentially
be achieved.

5.

5.1 Frameworks

This subsection presents some generalized frame-
works for the identification and analysis of foren-
sic evidence on [oT systems. Currently, there ex-
ists no widely accepted framework for conduct-
ing IoT investigations. This fact not only com-
plicates the extraction and analysis of evidence
that would be admissible in a court of law, but



it also leaves these issues to the investigator to
solve. Further, existing digital forensics frame-
works may not be applicable, or only partially
so, to IoT investigations even in research envi-
ronments (Kebande & Ray, 2016)).

Kebande & Ray et al. (Kebande & Ray,
2016|) present an IoT framework based upon the
ISO/TEC 27043: 2015, an international stan-
dard for security and incident investigation prin-
ciples. The framework identifies four stages of
IoT forensics: the proactive process, IoT foren-
sics, the reactive process, and concurrent pro-
cesses. The authors also compare their frame-
work with other proposed frameworks and fi-
nally offer a critical evaluation of the framework
(Kebande & Rayl, 2016]).

Kebande & Karie (Kebande et al.l [2018)), ex-
tend the research mentioned above into a mul-
tidimensional framework. This comprehensive
framework specifies nine sub-processes to provide
greater fidelity of the framework for forensic ap-
plication and more closely match the ISO/IEC
models. The new model takes into account the
IoT network, readiness processes, management,
policies, and standards (Kebande et al. 2018).

Kumar et al. (Kumar, Saha, Lal, & Conti,
2021), present an efficient blockchain-based IoT
forensics framework while considering consor-
tium blockchain to maintain the chain of cus-
tody in cross-border forensic investigations. The
use of a Programmable Hash Function (PHF) in
their approach allows for better blockchain se-
curity with a reasonable level of performance.
This framework does not follow any ISO stan-
dards compared to (Kebande & Ray, [2016)).

Hossain et al. (Hossain, Karim, & Hasan,
2018|)propose using a public digital ledger (sim-
ilar to bitcoin) based IoT forensic framework
FIF-IoT. FIF-IOT can provide interfaces for ev-
idence collection and use a tamper-proof scheme
to maintain the integrity of evidence during a
criminal investigation. Again, unlike (Kebande
et al.l 2018) does not follow any ISO standard
explicitly.

5.2 Forensics Platforms

Some researchers have proposed platform-based
IoT forensic models. These platform models pro-
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vide a database of information for researchers
and investigators to access and often involve
the real-time acquisition of data over the Inter-
net and the subsequent storage of that informa-
tion for later examination or preprocessing by
an Artifical Intelligence (AI) or Machine Learn-
ing (ML) model. These approaches can often es-
sentially be qualified as big-data approaches be-
cause they are aggregating large amounts of data
to be processed. These platforms may provide
valuable information to security professionals
and forensic researchers in the pre-investigation
stages.

Torabi et al. (Torabi, Bou-Harb, Assi, & Deb-
babi, 2020)) developed a system composed of an
IoT data collection module, a darknet data col-
lection module, an IoT threat repository, and an
IoT traffic analysis module. The IoT data collec-
tion module would capture data ”in the wild” to
identify exploited devices and analyze data pack-
ets identified by the module. The darknet data
collection module, which aggregates data from
the UCSD real-time network telescope, would
correlate dark data with the data collected by
the IoT collection module to identify ”suspicious
IoT-generated activities”. The IoT traffic analy-
sis module would then identify compromised or
exploited IoT devices and use the IoT threat
repository to label malicious and compromised
IoT devices. The model was tested on 4TB data
set of network information and identified 27,849
compromised IoT devices that generated more
than 300 million unsolicited packets (Torabi et
al., [2020).

5.3 Real-Time Forensics

Real-Time analysis is a device-level technique
that can prove invaluable for forensic investiga-
tors who are doing on-site analysis or otherwise
have access to a device while it is running or
in use. Though this will rarely be applicable in
legal cases, the technique is helpful for malware
and cyberattack investigation and cases in which
access to the device is otherwise restricted. It
is also helpful for investigations in which the de-
vice has no or little onboard memory to examine.
Often, IoT devices operate as a black box from
the viewpoint of investigators due to the lack of



standardization and publication of their inter-
nal mechanisms (Sayakkara, Le-Khac, & Scan-
lon, 2019). Real-time analysis is a method that
assists in overcoming this challenge.

Zhou et al. (Zhou, Hu, & Makris, [2020)
present an architecture-neutral non-intrusive
real-time workload analysis framework for pro-
cess tracing that leverages, in their case, ARM
CoreSight. This framework requires the im-
plementation of an on-device hardware tracing
module. However, some architectures, such as
those from ARM and Intel, already implement
this module. The authors evaluate the frame-
work on a Zedboard - a Zyng-7000 FPGA embed-
ding an ARM Cortex-A9 core and evaluate the
traces generated by the ARM CoreSight module
using several machine-learning models (Zhou et
al., 2020)).

Sayakkara et al. (Sayakkara et all [2019)
examine the efficacy of electromagnetic side-
channel analysis (EM-SCA) on a Raspberry Pi
3 B + and an Arduino Leonardo. The authors
utilize a HackRF software-defined radio (SDR)
to acquire electromagnetic emissions from each
device, apply a Fourier transform to the traces,
average and normalize the results, and utilize a
neural network to classify the results in order to
detect and classify possible cryptographic algo-
rithms executing on the devices. The authors
note that both of these devices run heavyweight
operating systems and posit that the method
they supply could potentially achieve greater
accuracy and recover a greater fidelity of in-
formation on simpler devices with fewer cores
(Sayakkara et al., 2019).

5.4 Machine Learning and Artificial
Intelligence Based Forensics

Artificial intelligence (AI) and machine learn-
ing (ML) is a well-developed and ever-maturing
field of research with an extensive range of
applications. These models in forensics have
gained increasing interest in recent years and
are already common in cybersecurity applica-
The value of Machine learning and Ar-
tificial Intelligence-based forensics approaches is
two-fold: they help preserve the privacy of the
device owner, and they assist the investigator in

tions.
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determining what data is forensically valuable in
a relatively short time (Kebande et al., [2020; Ko-
roniotis, Moustafa, & Sitnikova, 2020). An ex-
haustive and up-to-date (at the time of writing)
survey of ML and Al-based forensic models can
be found in Kebande & Ikuesan et al. (Kebande
et al., [2020).

Koroniotis et al. (Koroniotis et al., [2020])
present a deep-learning framework for IoT net-
work forensics called a particle deep framework
(PDF), describing investigation phases for iden-
tifying and analyzing IoT attack behaviors. The
author’s framework outlines the process of ex-
tracting data flows, implementing particle swarm
optimization (PSO) algorithm to adapt the deep
learning parameters, and developing a deep neu-
ral network based on the algorithm to uncover
and trace abnormal events in the network. This
framework is specifically targeted for use in intel-
ligent home networks but is likely adaptable to
other types of IoT networks as well (Koroniotis
et al., [2020).

5.5 Blockchain-based Forensics

Many authors have proposed a blockchain model
for ToT forensics that involves the insertion
of a new forensics layer between the network
layer and integration layer (Nakamoto, 2008}
Le, Meng, Su, Yeo, & Thing} 2018} [Yazdinejad,
Parizi, Dehghantanha, Zhang, & Choo, 2020;
Ryu, Sharma, Jo, & Parkl [2019; Hossain et
al., 2018)). These proposed methods solve the
problem of heterogeneity in IoT but require a
change in paradigm that may not be widely im-
plementable. The blockchain layer would require
integration-provider buy-in and implementation
or linking that makes this approach somewhat
unpragmatic. However, it may have significant
value in systems where command and control are
provided and managed by the system’s user, such
as in the industrial Internet of things, medical
Internet of things, or military Internet of things.

The concept of the blockchain was introduced
by Satoshi Nakamoto in 2008, concurrent with
the creation of Bitcoin (Nakamotol 2008). It con-
sists of chains of digital ledgers called blocks that
are managed jointly by all hosts on a peer-to-peer
network with the intent of transparency and ver-



ification from all participating hosts (Nakamotol,
2008). Since its introduction to the world,
blockchain has been applied in almost every sec-
tor from finance to agriculture (Yazdinejad et al.|
2020)).

Yazdinejad et al. (Yazdinejad et al., 2020)
propose a blockchain organization in which the
network is divided into software-defined network
(SDN) clusters, each with an SDN controller that
acts as a cluster head. Both public and pri-
vate blockchain layers are inserted between these
clusters to act as verified ledgers of forensic ev-
idence. For SDN to SDN connections, a public
blockchain network is maintained that new SDNs
are free to join and participate in. Between the
SDN head and individual IoT devices, a private
blockchain is maintained that requires validation
by the network starter or set rules dictated by the
network starter. The authors tested this archi-
tecture using the Pyethereum test tool from the
Ethereum platform (Le et al., |2018).

Le et al. (Yazdinejad et al., 2020) propose a
framework that implements a law-enforcement-
managed blockchain that defines a device from
which evidence is generated as a digital wit-
ness (DW). A law enforcement agency (LEA)
designated a digital custodian (DC) to examine
the evidence. The LEA acts as a provider of
the blockchain platform and is the only entity
allowed to verify each transaction on the net-
work and write to ledgers, and all other entities
can read and write transactions. This network
uses a Byzantine Fault Tolerance (BFT) con-
sensus algorithm where unverified transactions
are collected by the LEA, formed into a block,
and broadcast back to the network for commu-
nity verification. The author’s framework has
not been tested, and an analysis of its effective-
ness and soundness on an IoT network would be
needed to evaluate its effectiveness. Further, it
has not been examined in a legal sense and al-
lowing LEAs sole access to the blockchain plat-
form may likely constitute privacy violations and
cause a considerable amount of legal trouble to
citeb47.
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5.6 Fog-based Forensics

Some authors have proposed a fog solution to
IoT forensics that involves migrating computa-
tion power and data storage closer to the IoT im-
plementation (Al-Masri, Bai, & Li, 2018; |Huang
et al, 2017). These solutions involve adding
nodes to the network that act as mediators to the
upstream integration-layer services and perform
some of the integration-layer work on-site instead
of in the cloud or on a backend. This solution
solves some forensic issues, such as cyberattacks,
by aggregating and interpreting forensic data on
a single node. However, this potentially exposes
forensic evidence to physical tampering and only
partially solves heterogeneity since each device
family would need a separate fog computer. Ad-
ditionally, like blockchain-based methods, this
requires integration service provider buy-in and
restructuring of the larger IoT ecosystem as a
whole, making it unrealistic for consumer-level
devices but plausible for the industrial Internet
of things, Internet of medical things, and Inter-
net of military things.

Al-Masri et al. (Al-Masri et al., 2018) present
the concept of a Fog-Based IoT Forensic Frame-
work (FoBI) that is implemented on a generic fog
node. FoBI requires the use of in-built ML algo-
rithms to determine suspicious activity on the
end devices. This essentially constitutes user en-
tity and behavior analytics (UEBA) to construct
profiles of device users and compare device use in
real-time with the profile using log files and net-
work packet aggregation. Suppose a mismatch
between behavior and the profile occurs past a
threshold. In that case, the fog node notifies
other IoT devices on the network to stop execut-
ing instructions via message queuing telemetry
transport (MQTT) until further analysis deter-
mines there is no longer a present threat or the
system owner is notified. FoBI also includes us-
ing an evidence collection module that creates
a forensic image of all data residing on the IoT
nodes using bit-stream imaging and process ex-
amination and generates reports. This model has
not been tested (Al-Masri et al., [2018)).

Huang et al. (Huang et al. 2017)) suggest a
fog computing framework for vehicles using road-



side fog nodes for data collection and processing
for both forensics and real-time traffic control.
These fog nodes connect to a higher-level cloud
system responsible for aggregating and storing
data and providing larger-scale traffic control.
This model, of course, relies upon the buy-in
of local government and a yet-to-be-developed
data fusion algorithm to account for the differ-
ent formats of vehicle manufacturers. However,
the authors also conduct a theoretical analysis
of cyberattacks on these systems and propose an
evidence-based system forensics approach that
relies upon adjacent nodes and intelligent ve-
hicles to determine a given fog node’s valid-
ity (compromised or not-compromised). These
countermeasure approaches may have useful ap-
plications in other fog-based systems (Huang et
al., [2017)).

6. SUMMARY &
CONCLUSIONS

With the increasing prevalence of IoT systems
for every application and the increasing prac-
tice of leveraging them for cybercrime, there is
a growing need for forensic investigators and se-
curity practitioners to utilize digital forensics to
investigate these systems. However, because of
these systems’ heterogeneity, there are no stan-
dardized frameworks, models, or methods for the
extraction and handling of forensic evidence from
them compared to the realm of digital foren-
sics. This lack of standardization represents a
gap between the field of digital forensics and the
implementation of IoT. In order to assist inves-
tigators and researchers in filling this gap, we
have provided a roadmap to some common ex-
isting architectures, developing IoT paradigms
and both generalized and specific approaches
to confronting the challenges of performing IoT
forensics. Additionally, we have provided a gen-
eral model for discussing and classifying different
components of an IoT architecture. As the field
progresses, we suggest that researchers continue
to focus on developing generalized frameworks,
methods, and tools for IoT devices while pro-
gressing beyond developing high-level models -
an endeavor that has already had much effort

JDFSL 2021

placed into it.Future work involves further re-
search into general frameworks and tools for loT
forensics while discovering sources for evidence
collection in IoT devices.
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