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ABSTRACT 

This work analytically and numerically examines the effects of bi-modal excitation on a 

Mach 1.5 heated planar jet.  Starting with the Navier-Stokes equations, triple 

decomposition is applied to the flow components.   A reduced order model is derived, 

turning the Navier-Stokes partial differential equations into a set of coupled ordinary 

differential equations, relating the momentum thickness and amplitudes of a fundamental 

and subharmonic mode to the streamwise location along the jet.  Computational fluid 

dynamics data from the minor plane of a Mach 1.5 heated rectangular jet is used to verify 

a hyperbolic tangent profile for the mean flow at various streamwise locations.  Locally-

parallel linear stability theory is used to compute the shape assumptions for the coherent 

structure components involved in the set of ordinary differential equations.  The set of 

ordinary differential equations is first solved for a single mode.  

The trends for the single mode excitation qualitatively compared well with previous 

work.  In the initial region, the nonlinear amplitude generally agreed well with the linear 

solution.  Bi-modal excitation is then examined for the fundamental Strouhal number 

0.10, which has been identified as a dominant noise source.  Cases were considered 

separately with adding the subharmonic and the harmonic as a means of reducing the 

amplitude of the fundamental.  Adding the subharmonic had minimal effects on reducing 

the fundamental unless both initial amplitudes are large.  However, adding the harmonic 

could be very effective at reducing the fundamental even at low initial amplitudes.  It is 

ultimately determined that adding the subharmonic may or may not be effective as a 

noise-reducing mechanism but adding the harmonic can be effective depending on the 

initial phase difference between the two excitations.  
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1. Introduction 

The effect of bi-modal excitation has previously been explored with a Reduced-Order 

Model (ROM) using an integral technique (Mankbadi, 1985), though this was for a low-

speed round jet.  Here, a ROM is derived for a supersonic planar jet, and using results 

from linear stability analysis (Chang, 2004), we are able to perform a similar type of 

analysis.   

1.1. Research Scope 

This work examines the effects of bi-modal excitation on the large-scale turbulent 

structures in a supersonic planar jet using an integral technique.  This integral technique 

is derived by taking the Navier-Stokes equations (NSE) and splitting the flow variables 

into three parts: a mean flow component, large scale coherent structure, and fine scale 

random turbulence.  With appropriate shape assumptions, the NSE are transformed from 

a set of partial differential equations (PDE) to a set of coupled ordinary differential 

equations (ODE) with various integral terms that are functions of momentum thickness.  

This set of ODE’s solves for the momentum thickness and both excitation amplitudes 

versus streamwise location. 

The aforementioned integrals appearing in the ODEs are computed using linear 

stability theory with NASA’s LASTRAC code (Chang, 2004), which takes a mean flow 

profile as input and outputs the complex streamwise wave number, phase speed velocity, 

as well as the transverse shape functions.  The mean flow profiles are taken to be of the 

hyperopic tangent shape that we showed to ft the CFD results for a Mach 1.5 heated 

rectangular jet (Mankbadi & Salehian, 2021).  Using the results from LASTRAC, the 

integrals are computed as functions of momentum thickness.   
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The solution to the set of ODE’s is analyzed in various ways.  Firstly, single-mode 

excitation is analyzed for various Strouhal numbers and initial amplitudes.  With single-

mode excitation, comparison is made between the initial growth rate of the excitation 

amplitude from the solution of the ODE’s and from linear theory.  Similar work has been 

done by (Dahl et al., 2003; Dahl & Mankbadi, 2002), but for round jets.   

Finally, the solutions of the ODE’s are presented for bi-modal excitation for the 

fundamental Strouhal number of 0.10, which has been shown to be a dominant noise 

source (Mankbadi & Salehian, 2021).  The objective is to add either a subharmonic or 

harmonic excitation that will interact with the fundamental and reduce it.  The initial 

amplitude of the subharmonic and fundamental is desired to be less than or equal to that 

of the fundamental so that no significant noise sources are added to the jet.  Reduction of 

the fundamental indicates the potential for bi-modal excitation to reduce the peak noise of 

the jet.   

1.2. Relevance of Research 

Jet noise is a significant concern for the design of both military and commercial 

aircraft.  There is a lot of interest in mechanisms that can be used to reduce jet noise 

whether it is for commercial aircraft flying over densely populated areas or military 

aircraft taking off from an aircraft carrier in close proximity to personnel.  There is an 

interest in the use of rectangular jets particularly in military applications due to the 

relative ease of integration into an airframe (Chakrabarti et al., 2020a).  In the minor 

plane of high aspect ratio rectangular jets, the jet can be approximated as a 2-dimensional 

planar jet with an infinite span, which is what the current work focuses on. 



3 
 

Various previous works have focused on the use of single-mode excitation as a means 

to actively reduce jet noise.  Similar to the current work, (Dahl & Mankbadi, 2002; Dahl 

et al., 2003) have used an integral technique to predict the nonlinear development of 

wave structures in compressible round jets.  Mankbadi (1985) has also used a similar 

integral approach for bi-modal excitation, but for a low-speed round jet as well.  The key 

difference here is that the integral approach is being used for bi-modal excitation as well 

as for a supersonic planar jet.   

Many previous works use large eddy simulations (LES) as a computational tool to 

predict and model jet noise such as (Wu et al., 2019; Chakrabarti et al., 2020b; Nichols et 

al., 2011).  LES results are then often compared to experiments.  While LES has been 

shown to resourceful in predicting jet noise and results have compared well to 

experiments, it is very computationally expensive.  For example, Nichols et al. (2011) 

performed LES using meshes with 45 million and 86 million control volumes using up to 

20,000 cores, and simulations still took many days to complete.  With the large 

computational demand of LES, it is useful to have tools with low computational demand 

that can reasonably predict outcomes from LES.  The present work focuses on the use of 

an integral technique to create a reduced order model that can model the nonlinear 

amplitudes in bi-modal excitation of a supersonic planar jet as well as the growth of 

momentum thickness along the streamwise direction.  The computations here involve 

performing linear stability analysis and using those results in relatively simple programs, 

none of which require the use of computing clusters.  Once set up, computations can be 

run in a matter of seconds as opposed to multiple days.  Results can provide reasonable 

accuracy by which to guide the setup of expensive computations and experiments. 
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2. Review of Relevant Literature 

The current work focuses on bi-modal excitation of a supersonic planar jet.  There are 

various areas of work that are relevant.  There have been many studies focused on the 

excitation of round jets as a means to reduce the noise.  Many of these studies used only a 

single mode for excitation, but there are handful that have used bi-modal.  Both will be 

discussed.  Our work focuses on a planar jet, which is an approximate representation of a 

rectangular jet in its minor plane.  Thus, we will cover some past work on rectangular 

jets.  There have also been a few works regarding excitation in rectangular jets, which 

will also be discussed. 

2.1. Single-Mode Excitation 

Samimy et al. (2018) have experimentally analyzed high speed shear layers of a 

round jet.  A part of this work involved analyzing the development of large-scale 

structures in round jets.  Here, plasma actuators were used to excite the jet with various 

Strouhal numbers.  They found that the spreading of the jet increased as the excitation 

Strouhal number approached the “preferred” Strouhal number of the jet.  Contours of 

their results for the unexcited jet and symmetric mode can be seen below. 

 

 

Figure 2.1  Phase-averaged streamwise planar images for unexcited jet (left) and 
axisymmetric mode (right) (Samimy et al., 2018). 
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2.2. Supersonic Rectangular Jets 

Nichols et al. (2011) performed LES on a Mach 1.4, isothermal, under-expanded, 

rectangular jet.  They observed a flapping motion of the jet in the minor axis.  This 

flapping motion was coupled with strong upstream acoustic radiation, which took the 

form of a screech tone.  Whereas other research has shown axis switching in the plume of 

the jet (Chakrabarti et al., 2020b), Nichols et al. (2011) showed a smooth transition from 

a rectangular to circular cross-section of the plume. 

Chakrabarti et al. (2020b) examined a heated overexpanded rectangular jet using 

high-fidelity LES.  Here, they showed amplification of the shear layer in the major plane 

as the plume evolved.  In the very near field, they found the dominant noise source to be 

from an asymmetric mode, but further downstream, a symmetric mode was recovered. 

Wu et al. (2019) performed LES on cold rectangular jets to examine screech.  They 

found that the velocity fluctuations near the nozzle exit were low, which suggests that the 

shear layer is initially laminar.  They also showed axis switching for the case of the 

under-expanded jet. 

 

 

Figure 2.2  Jet plume contours of 𝑈/𝑈  for under-expanded rectangular jet (Wu et al., 
2019). 
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2.3. Excited Rectangular Jets 

Crawley et al. (2012) performed experiments with a Mach 1.5 rectangular jet.  

Excitation was imposed via plasma actuators.  They showed that plasma actuation could 

either amplify or reduce the acoustic radiation depending on the excitation Strouhal 

number and polar angle.    

2.4. Bi-Modal Excitation 

Arbey and Ffowcs-Williams (1984) investigated excitation as a means to actively 

cancel pure tones in a low-speed round jet with experiments.  In this work, the jet was 

excited at harmonically related frequencies.  They concluded that harmonics or 

subharmonic excitation was an effective means of controlling harmonic generation 

depending on the phase between the two excitations.  This was true with both the 

harmonic and subharmonic, though it was noted that it was more difficult to exert control 

with the subharmonic. 

Mankbadi (1985) looked the interaction between the fundamental and subharmonic 

instability waves for a turbulent round jet.  Similar to the present work, an integral 

approach was used.  It was concluded that at lower Strouhal numbers, only the first 

subharmonic would amplify by the fundamental, whereas at higher Strouhal numbers, 

many subharmonics could amplify.  The effects of initial amplitude were studied, and it 

was found that increases in initial amplitude decreased the streamwise lifespan of the 

fundamental.  The initial phase difference between the fundamental and subharmonic 

were also analyzed, which showed an effect on the growth of the subharmonic.   
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Mankbadi et al. (1999) used open loop excitation on a Mach 2.1 round jet.  This was 

done for both a single mode and with bi-modal excitation.  The bi-modal excitation was 

done at a fundamental and subharmonic frequency.  The bi-modal excitation showed a 

significant effect on pressure distribution when compared to single-mode excitation. 

 

Figure 2.3  Instantaneous pressure distribution with single excitation (left) and bi-modal 
excitation (right) (Salehian & Mankbadi, 2020b). 
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3. Formulation of the Problem 

Here, we will go into the derivation of our ODE’s and shape assumptions.  In short, 

we will start with the Navier-Stokes equations, apply triple decomposition to the flow 

components.  Equations of motion for the mean flow and large-scale structures are then 

derived.  Energy equations are then derived for the mean flow and large-scale structures.  

We then integrate the energy equations in the transverse direction, make appropriate 

shape assumptions, then finally arrive at our set of ODE’s.  Similar derivations have been 

done in (Dahl & Mankbadi, 2002; Dahl et al., 2003; Mankbadi, 1985), though it should 

be noted that these were done in cylindrical coordinates and the present derivation will be 

in cartesian coordinates. 

3.1. Equations of Motion 

Our first step is to derive the equations of motion.  We will first start with the 

continuity and momentum equations in cartesian coordinates and nondimensional form: 

𝜌 + (𝜌𝑢) + (𝜌𝑣) + (𝜌𝑤) = 0 (3.1) 

(𝜌𝑢) + (𝜌𝑢 + 𝑝) + (𝜌𝑢𝑣) + (𝜌𝑢𝑤) =
1

𝑅𝑒
Δ𝑢 (3.2) 

(𝜌𝑣) + (𝜌𝑣𝑢) + (𝜌𝑣 + 𝑝) + (𝜌𝑣𝑤) =
1

𝑅𝑒
Δ𝑣 (3.3) 

(𝜌𝑤) + (𝜌𝑤𝑢) + (𝜌𝑤𝑣) + (𝜌𝑤 + 𝑝) =
1

𝑅𝑒
Δ𝑤 (3.4) 

Here, we define Reynolds number and the Laplacian operator as: 

𝑅𝑒 =
𝜌 𝑈 𝐻

𝜇
(3.5) 

Δ =
𝜕

𝜕𝑥
+

𝜕

𝜕𝑦
+

𝜕

𝜕𝑧
(3.6) 



9 
 

We will next define the triple decomposition of the flow components.  This takes the 

form of a mean flow, plus a large-scale structure, plus random fine-scale turbulence. 

𝑔 (𝑥, 𝑦, 𝑧, 𝑡) = 𝐺 (𝑥, 𝑦, 𝑧) + 𝑔 (𝑥, 𝑦, 𝑧, 𝑡) + 𝑔 (𝑥, 𝑦, 𝑧, 𝑡) (3.7) 

Here, uppercase variables denote mean flow, (′) denotes the large-scale structure, and 

(′′) denotes the fine-scale random turbulence.  Our definition of the Laplacian operator, 

equation 3.6, and triple decomposition, Equation 3.7, are then substituted into Equations 

3.1-3.4.  The product of density with velocity takes the form: 

(𝜌𝑢 ) = (�̅� + 𝜌 + 𝜌”) 𝑈 + 𝑢 + 𝑢” =  �̅�𝑈 + 𝑢 + 𝑢 ” + 𝜌 𝑢 + 𝜌” 𝑢” (3.8) 

Second-order terms, 𝜌 𝑢   and 𝜌 𝑢 , are neglected.  We then define: 

𝑢 = �̅� 𝑢 + 𝜌 𝑈 (3.9) 

𝑢 = �̅�𝑢 + 𝜌 𝑈 (3.10) 

𝑢 = 𝑢 + 𝑢 " (3.11) 

Substituting these relations back into Equations 3.1-3.4 gives: 

(�̅� + 𝜌 + 𝜌 ) + (𝜌𝑈 + 𝑢 ) + (𝜌𝑉 + 𝑣 ) + (𝜌𝑊 + 𝑤 ) = 0 (3.12) 

(𝜌𝑈 + 𝑢 ) + [𝑃 + 𝑝 + 𝑝" + (𝑈 + 𝑢 + 𝑢")(𝜌𝑈 + 𝑢 )] + [(𝑉 + 𝑣 + 𝑣")(𝜌𝑈 + 𝑢  )]

+[(𝑊 + 𝑤 + 𝑤")(𝜌𝑈 + 𝑢 )] =
1

𝑅𝑒
Δ(𝑈 + 𝑢 + 𝑢") (3.13)

 

(𝜌𝑉 + 𝑣 ) + [(𝑈 + 𝑢 + 𝑢")(𝜌𝑉 + 𝑣 )] + [𝑃 + 𝑝 + 𝑝" + (𝑉 + 𝑣 + 𝑣")(𝜌𝑉 + 𝑣 )]

+[(𝑊 + 𝑤 + 𝑤")(𝜌𝑉 + 𝑣 )] =
1

𝑅𝑒
Δ(𝑉 + 𝑣 + 𝑣") (3.14)

 

(𝜌𝑊 + 𝑤 ) + [(𝑈 + 𝑢 + 𝑢")(𝜌𝑊 + 𝑤 )] + [(𝑉 + 𝑣 + 𝑣")(𝜌𝑊 + 𝑤 )]

+[𝑃 + 𝑝 + 𝑝" + (𝑊 + 𝑤 + 𝑤")(𝜌𝑊 + 𝑤 )] =
1

𝑅𝑒
Δ(𝑊 + 𝑤 + 𝑤") (3.15)

 

Equations 3.12-3.15 will form the basis of the kinetic energy equations for the mean 

flow and the large-scale structures. 
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3.2. The Kinetic Energy Equations 

Next, the kinetic energy equations will be derived.  This is done for the mean flow, 

coherent structure, and random turbulence.   

3.2.1. Mean Flow Kinetic Energy Equations 

Next, Equations 3.12-3.15 are time averaged, giving: 

(�̅�𝑈) + (�̅�𝑉) + (�̅�𝑊) = 0 (3.16) 

�̅�𝑈 + (𝑢 + 𝑢")𝑢 + 𝑃 + �̅�𝑈𝑉 + (𝑣 + 𝑣")𝑢

+ �̅�𝑈𝑊 + (𝑤 + 𝑤") 𝑢 =
1

𝑅𝑒
Δ𝑈 (3.17)

 

�̅�𝑈𝑉 + (𝑢 + 𝑢")𝑣 + �̅�𝑉 + (𝑣 + 𝑣")𝑣 + 𝑃

+ �̅�𝑉𝑊 + (𝑤 + 𝑤")𝑣 =
1

𝑅𝑒
Δ𝑉 (3.18)

 

�̅�𝑈𝑊 + (𝑢 + 𝑢")𝑤 + �̅�𝑊𝑉 + (𝑣 + 𝑣")𝑤

+ �̅�𝑊 + (𝑤 + 𝑤") 𝑤 + 𝑃 =
1

𝑅𝑒
Δ𝑊 (3.19)

 

To obtain the kinetic energy equation for the mean flow, we multiply the x-

momentum equation by 𝑈, the y-momentum equation by 𝑉, and the z-momentum 

equation by 𝑊.  The three resultant equations are then added together.  We define the 

mean flow kinetic energy as 𝐾 = (𝑈 + 𝑉 + 𝑊 ).  This gives us: 

�̅�𝑈𝐾 + (𝑢 + 𝑢") 𝑢 𝑈 + (𝑢 + 𝑢")𝑣 𝑉 + (𝑢 + 𝑢") 𝑤𝑊 + 𝑈𝑃 +

�̅�𝑉𝐾 + (𝑣 + 𝑣") 𝑢 𝑈 + (𝑣 + 𝑣")𝑣 𝑉 + (𝑣 + 𝑣") 𝑤 𝑊 + 𝑉𝑃 +

�̅�𝑈𝐾 + (𝑤 + 𝑤") 𝑢 𝑈 + (𝑤  + 𝑤") 𝑣 𝑉 + (𝑤 + 𝑤")𝑤 𝑊 + 𝑊𝑃 − 𝑃   𝑈 + 𝑉 + 𝑊  

−𝑈  (𝑢   + 𝑢") 𝑢 − 𝑉  (𝑢   + 𝑢") 𝑣 −  𝑊  (𝑢   + 𝑢") 𝑤  

−𝑈  (𝑣   + 𝑣") 𝑢 − 𝑉  (𝑣   + 𝑣") 𝑣 −  𝑊  (𝑣   + 𝑣") 𝑤  

−𝑈  (𝑤   + 𝑤") 𝑢 − 𝑉  (𝑤  + 𝑤") 𝑣 −  𝑊 ( 𝑤   + 𝑤") 𝑤  

=  
1

𝑅𝑒
Δ𝐾 − (𝑈 ) − 𝑈 − (𝑈 ) (3.20)

 

Where: 
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(𝑈 ) = (𝑈 ) + (𝑉 ) + (𝑊 ) (3.21) 

  𝑈 = 𝑈 + 𝑉 + 𝑊 (3.22) 

(𝑈 ) = (𝑈 )  + (𝑉 ) + (𝑊 ) (3.23) 

We finally obtain: 

𝜕

𝜕𝑥
 �̅�𝑈 𝐾 +

𝜕

𝜕𝑥
   (𝑢 + 𝑢 ") 𝑢 𝑈 + +𝑈 𝑃

= 𝑃   
𝜕𝑈

𝜕𝑥
 +  (𝑢 𝑢 + 𝑢 " 𝑢 " )   

𝜕𝑈

𝜕𝑥
+

1

𝑅𝑒
  Δ𝐾 −   

𝜕𝑈

𝜕𝑥
 (3.24)

 

It is noted that the coherent perturbation in the above equation includes both the 

fundamental and subharmonic. 

3.2.2. Large Scale Structure Kinetic Energy Equation 

The continuity & momentum equations for the large-scale structures are obtained by 

first phase-averaging the full momentum equations for a given frequency and a given 

spanwise number, 𝑛, then subtracting the mean flow equations from the corresponding 

phase-averaged equations. The resulting equation contains the entire spanwise mode of 

that frequency. To separate the special z component, we multiply by exp(−𝑖 𝑛 𝑧) and 

integrate over z.  Higher order terms are neglected, as well as the (𝑢 𝑢 − 𝑢 𝑢 ) terms.  

The governing momentum equations for an (𝑚𝑛) large-scale structures component 

become: 

𝜌 + 𝑢 + 𝑣 + 𝑤 = 0 (3.25) 

𝑢 + (𝑝 + �̅�𝑈𝑢 + 𝑢𝑈) + (�̅�𝑈𝑣 + 𝑢𝑉) + (�̅�𝑈𝑤 + 𝑢𝑊)

+ 
𝜕

𝜕𝑥
[ < 𝑢 "𝑢" > − 𝑢 "𝑢"] =

1

𝑅𝑒
Δ𝑢 (3.26)
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𝑣 + (�̅�𝑉𝑢 + 𝑣𝑈) + (𝑝 + �̅�𝑉𝑣 + 𝑣𝑉) + (�̅�𝑉𝑤 + 𝑣𝑊)

+
𝜕

𝜕𝑥
[ < 𝑢 "𝑣" > − 𝑢 "𝑣"] =

1

𝑅𝑒
Δ𝑣 (3.27)

 

𝑤 + (�̅�𝑊𝑢 + 𝑤𝑈) + (�̅�𝑊𝑣 + 𝑤𝑉) + (𝑝 + �̅�𝑊𝑤 + 𝑤𝑊)

+
𝜕

𝜕𝑥
[ < 𝑢 "𝑤" > − 𝑢 "𝑤"] =

1

𝑅𝑒
Δ𝑤 (3.28)

 

To obtain the kinetic energy equations for the large-scale structures, we multiply the 

above phase-averaged momentum equations by their corresponding velocity: 𝑢 , 𝑣 , or 

𝑤 ′.  These equations are then summed and time averaged, giving the kinetic energy for 

the (𝑚𝑛) component of the fundamental and subharmonic.  Similar to the mean flow, we 

can describe the kinetic energy of the large-scale structures by 𝑄 = (𝑢 + 𝑣 + 𝑤 ).  

The kinetic energy equations for an (𝑚𝑛) component then become: 

 
𝜕 �̅�𝑈 𝑄

𝜕𝑥
+ 

𝜕

𝜕𝑥
 [  𝑢 𝑟 +  𝑢 𝑝  +  𝑢 < 𝑢 𝑢 >]

=  𝑢
𝜕𝑝′

𝜕𝑥
 − 𝑢 𝑢

𝜕𝑈

𝜕𝑥
+< 𝑢 𝑢 >  

𝜕𝑢

𝜕𝑥
+   𝑟  

𝜕𝑢

𝜕𝑥
+

1

𝑅𝑒
Δ𝑄 −

𝜕 𝑢

𝜕𝑥
    (3.29)

 

Equation 3.29 can be re-written for both the fundamental (𝑓) and subharmonic (𝑠). 

 
𝜕 �̅�𝑈 𝑄

𝜕𝑥
+  

𝜕

𝜕𝑥
 [  𝑢 𝑟 +   𝑢 𝑝  +  𝑢 < 𝑢 𝑢 > ]

=  𝑢
𝜕𝑝 ′

𝜕𝑥
 − 𝑢 𝑢

𝜕𝑈

𝜕𝑥
+< 𝑢 𝑢 >  

𝜕𝑢

𝜕𝑥
+   𝑟  

𝜕𝑢

𝜕𝑥
+

1

𝑅𝑒
Δ𝑄 −

𝜕 𝑢

𝜕𝑥
    (3.30)

 

 
𝜕 �̅�𝑈 𝑄

𝜕𝑥
+  

𝜕

𝜕𝑥
 [  𝑢 𝑟 +   𝑢 𝑝  − 𝑢 < 𝑢 𝑢 > ]

=  𝑢
𝜕𝑝 ′

𝜕𝑥
 − 𝑢 𝑢

𝜕𝑈

𝜕𝑥
−< 𝑢 𝑢 >  

𝜕𝑢

𝜕𝑥
+   𝑟  

𝜕𝑢

𝜕𝑥
+

1

𝑅𝑒
Δ𝑄 −

𝜕 𝑢

𝜕𝑥
    (3.31)
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3.2.3. Fine-Scale Turbulence Kinetic Energy Equations 

In a similar process to the large-scale structure, we can obtain the kinetic energy 

equation for the small-scale turbulence.  We will start by subtracting the mean flow 

continuity equation and the large-scale structure continuity equations from the full one in 

Equation 3.1.  The same process is also done for the momentum equations. 

𝜌" + 𝑢" + 𝑣" + 𝑤" = 0 (3.32) 

𝑢" + �̅�𝑈𝑢" + 𝑢"𝑈 + �̅�𝑈𝑣" + 𝑢"𝑉 + �̅�𝑈𝑤" + 𝑢"𝑊

− 
𝜕

𝜕𝑥
[ < 𝑢 "𝑢" > − 𝑢 "𝑢"] =

1

𝑅𝑒
Δ𝑢" (3.33)

 

𝑣" + �̅�𝑉𝑢" + 𝑣"𝑈 + 𝑝" + �̅�𝑉𝑣" + 𝑣"𝑉 + �̅�𝑉𝑤" + 𝑣"𝑊

−
𝜕

𝜕𝑥
[ < 𝑢 "𝑣" > − 𝑢 "𝑣"] =

1

𝑅𝑒
Δ𝑣" (3.34)

 

𝑤" + �̅�𝑊𝑢" + 𝑤"𝑈 + �̅�𝑊𝑣" + 𝑤"𝑉 + 𝑝" + �̅�𝑊𝑤" + 𝑤"𝑊

−
𝜕

𝜕𝑥
[ < 𝑢 "𝑤" > − 𝑢 "𝑤"] =

1

𝑅𝑒
Δ𝑤" (3.35)

 

We then multiply each of the above momentum equations with their respective 

turbulent velocity, 𝑢 .  The resultant equations are then time averaged and added 

together.  Triple correlations with an odd number of random components are taken to be 

zero, and those with an even number of random components are non-zero.  We can 

define: 

𝑞 =
1

2
  𝑢" + 𝑣" + 𝑤" (3.36) 

𝑟 = < 𝑢"𝑢" > −   𝑢 "𝑢 " (3.37) 

Finally, we obtain: 
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𝜕(�̅� 𝑈 𝑞)

𝜕𝑥
+  

𝜕

𝜕𝑥
  𝑟 𝑢 + 𝑢 "(𝑝" + 𝑞) +  𝑢 𝑞  

=  −  𝑢 "𝑢 "  
𝜕𝑈

𝜕𝑥
  −    𝑟  

𝜕𝑢

𝜕𝑥
+

1

𝑅𝑒
   𝑢 "  ∆ 𝑢 "  (3.38) 

3.3. Integral Form of the Energy Equation 

With the kinetic energy equations derived, we can now obtain the integral equations.  

First, we will make some assumptions to simplify the problem: 

1. The advection of the kinetic energy by each flow component by the mean flow is 

much larger than that by the perturbation components.  Consequently, the second 

square bracket, [ ], on the left-hand side of the kinetic energy equations is 

neglected relative to the first. 

2. We will ignore the pressure-velocity correlation of the mean flow, 

𝑢 𝑝  + 𝑣 𝑝 + 𝑤 𝑝 .  This term was kept in (Lee & Liu, 1998; Dahl & 

Mankbadi, 2002), but was later shown by Dahl et al. (2003) to be negligible. 

3. Boundary layer-type approximations are made.  We will assume that 𝑊, 𝑉 are 

smaller than 𝑈  and  
 (  )

,
 (  )

≪
 (  )

  for all mean quantities.  This is clearly 

shown in Figure 3.1.  This will not be applied to fluctuating quantities. 

4. Reynolds stresses of the coherent structure component, (𝑢 𝑣), are much larger 

than the other components.  Simulations by Salehian and Mankbadi (2019, 2020a) 

have showed this to be true.  
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Figure 3.1  Simulations of unexcited Mach 1.5 jet: 𝑈/𝑈  (top), 𝑉/𝑈  (middle), 
𝑊/𝑈  (bottom). Salehian and Mankbadi (2019, 2020a). 

 

With the above simplifications, we can then integrate and average over the z-

direction, which results in the time-averaged quantities being independent of z, though it 

is noted that the wave components will include a spanwise wavenumber, 𝑛.  Integrating 
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across the y-direction causes the diffusion terms to vanish.  We finally arrive at the 

following equations for the mean flow, fundamental, subharmonic, and turbulence: 

𝑑

𝑑𝑥

1

2
𝜌𝑈 𝑑𝑦 = − (−𝑣 𝑢 )  𝑈 𝑑𝑦 −  (−𝑣 𝑢 )  𝑈 𝑑𝑦   

−
1

𝑅𝑒
𝑈 𝑑𝑦 − (−𝑢"𝑣")  𝑈 𝑑𝑦 (3.39)

 

𝑑

𝑑𝑥
�̅�𝑈𝑄 𝑑𝑦 = (−𝑢 𝑣 ) 𝑈 𝑑𝑦 −   < −𝑢 𝑢 >  

𝜕𝑢

𝜕𝑥
 𝑑𝑦

−
1

𝑅𝑒
(𝑢 ) + 𝑢 + (𝑢 )  𝑑𝑦 − Φ 𝑑𝑦 (3.40)

 

𝑑

𝑑𝑥
�̅�𝑈𝑄 𝑑𝑦 = (−𝑢 𝑣 ) 𝑈 𝑑𝑦 +   < −𝑢 𝑢 >  

𝜕𝑢

𝜕𝑥
 𝑑𝑦

−
1

𝑅𝑒
(𝑢 ) + 𝑢 + (𝑢 ) 𝑑𝑦 − Φ 𝑑𝑦 (3.41)

 

𝑑

𝑑𝑥
�̅�𝑈𝑞 𝑑𝑦 = (−𝑣"𝑢")  𝑈 𝑑𝑦  

+ Φ 𝑑𝑦 + Φ 𝑑𝑦 −
1

𝑅𝑒
  [ − 𝑢 "  ∆ 𝑢 "  ]𝑑𝑦 (3.42)

 

Where: 

Φ =  𝑟  
𝜕𝑢

𝜕𝑥
(3.43) 

We note that: 

(−𝑣 𝑢)  𝑈 𝑑𝑦 = (− 𝜌𝑣 𝑢 +  𝜌 𝑣 𝑈 )  𝑈 𝑑𝑦 (3.44) 

In Equation 3.44, Dahl and Mankbadi (2002) kept the second term on the right-hand 

side.  Dahl et al. (2003) later showed that this term was negligible relative to the first. 

The physical interpretation of the terms appearing in the energy equation is clear.  For 

the mean flow, the left side is the mean flow advection and the mean flow kinetic energy.  
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The first and second term on the right-hand side of Equation 3.39 is the energy transfer 

from the mean flow to the coherent structure, and the third term is the viscous dissipation 

of the mean flow energy.  For the coherent mode, Equations 3.40 and 3.41, the left-hand 

side is the mean flow advection of the coherent mode kinetic energy.  On the right-hand 

side, the first term is the energy transfer from the mean flow to the coherent mode, the 

second term is the fundamental-subharmonic interaction, the third term is the coherent 

mode energy dissipation, and the last term is the interaction with the fine-scale 

turbulence.  In Equation 3.42, the left-hand side is the advection by the mean flow.  On 

the right-hand side, the first term is the production by the mean flow, the second and third 

terms are the interaction with the waves, and the last term is the turbulence dissipation. 

It is noted that the terms containing coherent stresses multiplied by coherent strain 

represents wave-wave interactions.  Because of the assumed periodicity, the time-average 

of triple correlation frequencies, 𝑘, 𝑙, 𝑝, is zero unless 𝑘 ± 𝑙 = ±𝑝.  We then say that: 

(−𝑣 𝑢) = (𝑣 𝑢∗ ) + 𝐶𝐶 + 𝑣 𝑢∗ exp(𝑖(𝑁 − 𝑁 )𝑧) + 𝐶𝐶

, , ;

(3.45) 

Above, the first summation is independent of z.  The second summation is dependent 

on z and can change the interaction in the z-direction.  It exists only if there various 𝑁 of 

the same frequency.  These terms disappear when integrated over z.  Thus, they 

redistribute the mean flow energy over z, but goes to zero when integrated.  Thus, the 

mean flow production of the waves is given by the linear superposition of each frequency 

component stress.  Let us consider the wave-wave interaction term: 

  < −𝑢 𝑢 >  
𝜕𝑢

𝜕𝑥
 𝑑𝑦 (3.46) 
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Because of the time average and integration over z, the interaction among three 

waves, 𝑚, 𝑘, 𝑙, is generally zero, unless: 

𝜔 ± 𝜔 = ± 𝜔 (3.47) 

𝑛 ± 𝑛 = ±𝑛 (3.48) 

This not a very restrictive condition. Thus, two waves can generate other waves and 

the process continues.  However, we are only considering the interactions between the 

subharmonic and the fundamental.  

3.4. Turbulence and Effective Reynolds Number 

We are trying to replicate a high Reynolds number turbulent rectangular jet.  

Mankbadi (1985, 1991) has shown how to properly account for this where 2-way 

turbulence-coherent structure interactions are considered.  Though this is a complex 

process, we can use a simple approach, which has been used successfully. 

We must first make a few assumptions.  First, we will assume that the effect of the 

coherent structure on the background random turbulence is negligible.  However, the 

effect of the random turbulence on the coherent structure is considered.  We will assume 

that the eddy viscosity hypothesis applies to both the mean flow and the coherent 

structure when considering turbulence effects.  Finally, we will assume that the eddy 

viscosity of the turbulence-coherent structure interaction is the same as that of the 

turbulence-mean flow interaction (Reynolds & Hussain, 1972).  Thus: 

𝜇 =  𝜇 = 𝜇 (3.49)

where ( ) denotes the meanflow, ( ) denotes the coherent structure, and the subscript 

“t” denotes turbulence.  We will use an effective viscosity, 𝜇 = 𝜇 + 𝜇 , where 𝜇 is the 
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molecular viscosity and 𝜇  is the turbulent viscosity.  The effective Reynolds number can 

be described as: 

1

𝑅𝑒
=

1

𝑅𝑒
+

1

𝑅𝑒
(3.50) 

In the present analysis, an algebraic turbulence model is used to model the effective 

Reynolds number.  The model used is similar to the Wind-US code (Thomas, 1979), 

which uses the PDT model: 

𝜈 = 𝐶 𝑈 /
𝜕𝑈

𝜕𝑦
(3.51) 

We can simplify the above equation and obtain the same formular proposed in 

Schlichting (1960). 

𝜈 = 𝐶 𝑈𝜃 (3.52) 

The effective Reynolds number can then be written as: 

1

𝑅𝑒
=

𝜈 + 𝜈

1
2

𝐻𝑈
=

1

𝑅𝑒
+

𝐶 𝑈𝜃

1
2

𝐻𝑈
=

1 + 𝑅𝑒 𝐶 𝜃

𝑅𝑒
(3.53) 

𝑅𝑒 =
1

1
𝑅𝑒

+ 𝑐𝜃
(3.54) 

Since the Reynolds number is very large in this case, Equation 3.54 can be simplified: 

𝑅𝑒 =
1

𝑐 𝜃
(3.55) 

Above, the coefficient, 𝑐, is determined by solving the final ODE equations without 

excitation.  The growth of momentum thickness is then compared to the momentum 

thickness from the CFD results by Mankbadi and Salehian (2021).  Results of this 

process are shown later in Section 3.6. 
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In the present analysis, 𝑅𝑒 is replaced by 𝑅𝑒 .  It should be noted that the use of 

effective Reynolds number is derived for use in the nonlinear solution to the ODE’s.  

Linear stability analysis will still use the very high laminar Reynolds number.  Thus, the 

results from linear stability analysis are effectively inviscid and independent of 𝑅𝑒 . 

Thus, instead of linking the turbulence explicitly in the integrated equation, we absorb 

it in the effective Reynolds number.  Thus, the integrated equations for the planar laminar 

shear layer reduce to: 

𝑑

𝑑𝑥

1

2
𝜌𝑈 𝑑𝑦 = − −�̅�𝑢 𝑣   𝑈 𝑑𝑦 −  −�̅�𝑢 𝑣   𝑈 𝑑𝑦   

−
1

𝑅𝑒
𝑈 𝑑𝑦 (3.56)

 

𝑑

𝑑𝑥
�̅�𝑈𝑄 𝑑𝑦 = −�̅�𝑢 𝑣  𝑈 𝑑𝑦 −   < −𝑢 𝑢 >  

𝜕𝑢

𝜕𝑥
 𝑑𝑦

−
1

𝑅𝑒
(𝑢 ) + 𝑢 + (𝑢 )  𝑑𝑦 (3.57)

 

𝑑

𝑑𝑥
�̅�𝑈𝑄 𝑑𝑦 = −�̅�𝑢 𝑣  𝑈 𝑑𝑦 −   < −𝑢 𝑢 >  

𝜕𝑢

𝜕𝑥
 𝑑𝑦

−
1

𝑅𝑒
(𝑢 ) + 𝑢 + (𝑢 )  𝑑𝑦 (3.58)

 

3.5. Shape Assumptions 

To solve the system of integrated energy equations, shape assumptions need to be 

made for the transverse profiles.  The coherent structure profiles are assumed to follow 

that of the locally parallel linear stability theory.  Each coherent component can then be 

written as: 

𝑢 = 𝑢 (𝑦, 𝑥)𝐴(𝑥) exp (𝑖 𝛼  𝑑𝜉) − 𝑖𝜔𝑡 + 𝑖𝑛𝑧 + 𝐶𝐶 (3.59) 
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Here, the ( ^ ) denotes the eigenfunctions representing the transverse shape function 

in the y-direction.  These eigenfunctions are dependent on the mean flow profile at a 

particular streamwise location in the jet.  In Equation 3.59, 𝑛 is the wave number in the z-

direction and 𝐶𝐶 denotes the complex conjugate.  𝐴(𝑥) is the complex amplitude 

function of x and is determined with nonlinear analysis.  Here, the linear growth rate is 

determined by the imaginary component (−𝛼 ) is absorbed into 𝐴(𝑥).  Since we are only 

considering the fundamental and subharmonic modes, we get: 

𝑔 (𝑥, 𝑦, 𝑧, 𝑡) = 𝐴(𝑥)𝑔 𝑦, 𝑥, 𝜔 , 𝑛 exp 𝑖 𝛼 (𝜉)𝑑𝜉 − 𝑖𝜔 𝑡 + 𝑖𝛽) + 𝐶𝐶 (3.60) 

𝑔 (𝑥, 𝑦, 𝑧, 𝑡) = 𝐵(𝑥)𝑔 (𝑦, 𝑥, 𝜔 , 𝑛 ) exp 𝑖 𝛼 (𝜉)𝑑𝜉 − 𝑖𝜔 𝑡) + 𝐶𝐶 (3.61) 

Here, 𝛽 is the initial phase difference between the two modes.  We normalize the 

eigenfunctions such that: 

(|𝑢| + |𝑣| + |𝑤| )𝑑𝑦 = 1 (3.62) 

We characterize the mean flow by the momentum thickness, 𝜃, rather than a physical 

distance, 𝑥, therefore making the integral terms in our ODE’s functions of momentum 

thickness.  With this shape assumption, our system of ODE’s describing the mean flow 

and the nonlinear amplitudes become: 

𝑑𝜃

𝑑𝑥

𝑑𝐼

𝑑𝜃
= − |𝐴|  𝐼 −  |𝐵|  𝐼 −

1

𝑅𝑒
𝐼 (3.63) 

𝑑 𝐼 |𝐴|

𝑑𝑥
=  |𝐴|  𝐼 −

1

𝑅𝑒
 𝐼 − 𝐼 |𝐴||𝐵| (3.64) 

𝑑(𝐼 |𝐵| )

𝑑𝑥
=  |𝐵|  𝐼 −

1

𝑅𝑒
 𝐼 + 𝐼 |𝐴||𝐵| (3.65) 
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The mean flow is affected by the coherent structure since the equation for the 

momentum thickness includes the energy absorbed by the coherent structure from the 

mean flow on the right-hand side.  We then define the integrals in Equations 3.63-3.65 as: 

𝐼 =
1

2
�̅�𝑈 𝑑𝑦 (3.66) 

𝐼 = − (𝑣𝑢∗ + 𝐶𝐶)  �̅�  
𝜕𝑈

𝜕𝑦
 𝑑𝑦 (3.67) 

𝐼 = − (𝑣𝑢∗ + 𝐶𝐶)  �̅�  
𝜕𝑈

𝜕𝑦
 𝑑𝑦 (3.68) 

𝐼 = 𝑈     𝑑𝑦 (3.69) 

𝐼 = (|𝑢| + |𝑣| + |𝑤| )  �̅�  𝑈  𝑑𝑦 (3.70) 

𝐼 = (|𝑢| + |𝑣| + |𝑤| )   �̅� 𝑈   𝑑𝑦 (3.71) 

𝐼 = 2 (|𝛼| + 𝑛 ) (|𝑢| + |𝑣| + |𝑤| ) +
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑦
𝑑𝑦 (3.72) 

     𝐼 = 2 (|𝛼| + 𝑛 ) (|𝑢| + |𝑣| + |𝑤| ) +
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑦
𝑑𝑦 (3.73) 

In Equations 3.64 and 3.65, the term 𝐼  represents the interaction between the 

fundamental and subharmonic modes. 

𝐼 = − 𝑒  ∫  𝐼 + 𝐶𝐶  (3.74) 

𝐼 =  𝑢∗𝑢∗  
𝜕𝑢

𝜕𝑥
+ 𝑢∗𝑣∗   

𝜕𝑢

𝜕𝑦
+  

𝜕𝑣

𝜕𝑥
+  𝑣∗𝑣∗  

𝜕𝑣

𝜕𝑦

+𝑤∗𝑢∗  
𝜕𝑤

𝜕𝑥
+ 𝑤∗𝑣∗  

𝜕𝑤

𝜕𝑦
(3.75)
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𝐼  is a complex quantity.  Both the real and imaginary components are significant in 

our analysis.  We then write: 

𝐼 =  𝐼  𝑒 (3.76) 

𝜓 = 𝛼 − 2𝛼  𝑑𝜉 (3.77) 

We then write: 

𝐼 = − 2  𝐼  cos{𝜙 + 𝛽 + 𝜓 } (3.78) 

Which we can approximately write as: 

𝐼 = − 2  𝐼  cos{𝜙 + 𝛽} (3.79) 

We can simplify Equation 3.75.  We will assume that  are small and we will neglect 

the velocity in the z-direction, thus 𝑤 is zero.  Equation 3.75 significantly reduces to: 

𝐼 =  𝑢∗𝑣∗   
𝜕𝑢

𝜕𝑦
+  𝑣∗𝑣∗  

𝜕𝑣

𝜕𝑦
𝑑𝑦 (3.80) 

 

3.6. Calculation of the Effective Reynolds Number 

To determine 𝑅𝑒 , results from Dahl and Mankbadi (2002) are used.  The Reynolds 

number was fitted as a function of momentum thickness; thus, it is a variable quantity.  A 

multiplier was then applied to the fitted Reynolds number, which compensates for 

differences in the jets being considered. 
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Figure 3.2  Local Reynolds number from Dahl and Mankbadi (2002). 

 

The multiplier was determined by solving Equation 3.63 with only the viscous terms.  

The multiplier was chosen such that the solution to Equation 3.63 fit well with the CFD 

results from Mankbadi and Salehian (2021).  This gives the effective Reynolds number in 

the form presented in Equation 3.55.  The results for comparison and effective Reynolds 

number can be seen below. 
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Figure 3.3  Solution to ODE with only viscous terms and CFD solution from Mankbadi 
and Salehian (2021). 

 

 

Figure 3.4  Effective Reynolds number  
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4. Calculations of the Integrals using the Shape Assumptions 

To obtain the integrals appearing in the set of ODES obtained in Chapter 3 (Equations 

3.63-3.65), we need to make some assumptions regarding the transverse shapes of the 

base flow as well as the coherent structure.   This will be discussed in Sections 4.1 and 

4.2, respectively, and is followed by calculations of the needed integrals in Section 4.3.   

4.1. The Base Flow 

The mean flow is needed, not only to be used for calculating the integrals involved 

but is also an input for calculating the coherent structure profiles based on the locally-

parrel linear instability theory, which will be discussed in section 4.2.  In this work, we 

are trying to represent the coherent structure in the rectangular supersonic jet of the 

University of Cincinnati facility (Mora et al., 2016).   This jet was also simulated in 

(Salehian & Mankbadi, 2019; Mankbadi & Salehian, 2021) [MS].   The jet considered is 

perfectly expanded with an exit Mach number of 1.5 and heated with total temperature 

ratio of 3. The jet has a width, W, and heigh, H, with an aspect ratio of 2, as shown in 

Figure 4.1. 

In the following, spatial coordinates are non-dimensionalized by a length scale, which 

was taken to be the half-height of the jet (H/2); 𝑢, 𝑣, and 𝑤 velocities by a velocity scale; 

temperature by a temperature scale; density by a density scale; and pressure by 𝜌 𝑈 . 

Non-dimensional quantities will be denoted with the “+” superscript.  Reynolds number 

is calculated using: 

𝑅𝑒 =
𝜌 𝑙 𝑈

𝜇
(4.1) 
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Where 𝜇 is the dynamic viscosity, which is taken to be 1.846 × 10 .  The 

parameters for non-dimensionalization are summarized in Table 4.1, which are based on 

experiments from Mora et al. (2016). 

 

Table 4.1  

Non-Dimensionalization Parameters for Mach 1.5 Planar Jet 

Parameter Symbol Value [unit] 

Reynolds Number 𝑅  155,000 

Length Scale 𝑙 =
𝐻

2
 0.0052 [m] 

Velocity Scale 𝑈  449.16 [m/s] 

Temperature Scale 𝑇 = 𝑎𝑚𝑏𝑖𝑒𝑛𝑡 𝑇𝑒𝑚𝑝 300 [K] 

Density Scale 𝜌 = 𝑎𝑚𝑏𝑖𝑒𝑛𝑡 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 1.225 [𝑘𝑔/𝑚 ] 

Pressure Scale 𝜌 𝑈  247,137 [Pa] 

 

  

 

Figure 4.1  Mach 1.5 jet mean velocity contour 
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We took the mid-line vertical plane of the rectangular jet to present the planar jet that 

we are considering and focused on the initial shear layers before they merge (see Figure 

4.2).  It is then assumed that the planar jet profile takes the form of the hyperbolic tangent 

profile.  This is expressed as: 

𝑢 (𝑦 ) =
𝑈

2
1 + tanh

𝜂

4𝜃

𝜂

|𝑦 |
−

|𝑦 |

𝜂
(4.2) 

Multiple profiles were created from the data from MS.  For each profile, the non-

dimensional momentum thickness, 𝜃 , was computed: 

𝜃 =
𝑢 (𝑦 )

𝑈 − 𝑈
1 −

𝑢 (𝑦 )

𝑈 − 𝑈
𝑑𝑦 (4.3) 

In Equation 4.3, 𝑈  is the larger velocity at the axis of symmetry and 𝑈 =0 is the 

smaller velocity in the far-field, which is zero in this case.  Both 𝑈  and 𝑈  are made 

dimensionless using the velocity scale in Table 4.1.  As stated before, the y-coordinates 

were non-dimensionalized by the jet half-height, which is H/2= 0.0052 meters.  At the jet 

exit, the momentum thickness was found to be 𝜃 = 0.04.  The profiles considered 

extended to a momentum thickness of 𝜃 = 0.70, which corresponds to a streamwise 

location, x/(H/2), of 24.  In the rectangular jet data from MS, this corresponds to a 

streamwise location, x/D, of 6, where D is the width of the jet.  Beyond a momentum 

thickness of 𝜃 = 0.70 the upper and lower shear layers in the jet meet and any linear 

stability results regarding the symmetric mode would no longer be physical.  

Additionally, the distance at which the velocity is half that of the velocity at the line of 

symmetry, 𝜂 , was calculated. 

𝜂 = 𝑦 | (4.4) 
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The value of 𝜂  increases along the streamwise direction of the jet and is used when 

fitting the mean flow profiles to the CFD data.  The hyperbolic tangent profile fits the 

CFD data very well and can be seen in Figure 4.3 

 

 

Figure 4.2  Planar jet cross-sectional view 

 

. 

 

Figure 4.3  Hyperbolic tangent U-velocity fitting to CFD data. 
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Figure 4.4  𝜂  versus momentum thickness for MS jet. 

 

The temperature profile was then computed using Crocco’s Formulation, which 

relates the temperature to the velocity.  It can be written as: 

𝑇(𝑢 ) =
−

1
2

(𝑢 ) + 𝑐 𝑢 + 𝑐

𝑐
(4.5) 

The constants, 𝑐  and 𝑐 , can be found by implementing the boundary conditions.  

These are that at 𝑢 = 𝑈 , 𝑇 = 𝑇 , and that at 𝑢 = 𝑈 , 𝑇 = 𝑇 .  𝑈  is taken to be 𝑈  and 

𝑈  is taken to be zero in this case.  Likewise with temperature, 𝑇  is taken to be the larger 

temperature at the symmetry line and 𝑇  to be the smaller at the ambient, which is 2.075 

and 1 respectively.  Inserting the boundary conditions into Equation 4.5, we find the 

constants to be: 

𝑐 =
𝑐 (𝑇 − 𝑇 ) +

1
2

𝑈

𝑈
(4.6) 

𝜂
x

𝜃+
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𝑐 = 𝑐 𝑇 +
1

2
𝑈 − 𝑈

𝑐 (𝑇 − 𝑇 ) +
1
2

𝑈

𝑈
(4.7)  

Crocco’s formulation agreed well with the CFD data (Mankbadi & Salehian, 2021), 

though it can also be seen that there are some irregularities in the CFD data in Figure 4.5, 

especially further downstream.  The plot can be seen below. 

 

Figure 4.5  Temperature profile fitting to CFD data 
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Figure 4.6  Mean flow velocity profiles at various momentum thickness 

 

Figure 4.7  Temperature profiles at various momentum thickness 
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The velocity and temp profiles used in our computations are given in Figures 4.6 and 

4.7.  To compute the density profile, the ideal gas law was used. 

𝜌 =
𝑝

𝑅𝑇
(4.8) 

The profile for pressure is constant across the jet for a perfectly expanded jet.  

Working out units from Equation 4.8, the specific gas constant, 𝑅, is non-

dimensionalized by 𝑈 /𝑇 .  This gives a value of 𝑅 = 0.427.   

 

Figure 4.8  Density profiles at various momentum thickness   

 

4.2. Shape Assumptions for the Coherent Structure, Linear Stability Solution  

As pointed out earlier, the transversal shape of the coherent structure is given by the 

locally-parallel linear stability theory.  For this purpose, we will be using the NASA 
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Langley LASTRAC (Chang, 2004).  A description of the code can be found in Appendix 

A.  

The code requires the mean flow to be given, which we obtained from our fitted 

hyperbolic profiles in Figures 4.3 and 4.5, mean flow profiles were created for 

LASTRAC at various momentum thicknesses.  A non-dimensional maximum and 

minimum U-velocity of 1 and 0 respectively was used.  At Mach 1.5 and a total 

temperature ratio of 3, the resultant static temperature ratio is 2.075.  Thus, 𝑇  was taken 

to be 2.075, and 𝑇  was taken to be 1.000.  The profiles given to LASTRAC can be seen 

in Figures 4.7-4.9.  Of note, the mean flow velocities, V-velocity, and W-velocity, were 

taken to be zero across the profiles.  The mean flow files include a Reynolds number, 

length scale, velocity scale, temperature scale, and density scale.  These are the 

parameters by which the mean flow profile is non-dimensionalized. 

In the initial region of the jet, the upper and lower shear layers have not merged yet. 

A 2D planar jet has a symmetric and an asymmetric mode. Only the symmetric mode is 

being considered here, hence we only used the half-profiles. 

Given the mean flow at each streamwise location, LASTRAC returns 𝛼 , 𝛼 , and 𝐶  

at various frequencies.  These frequencies are converted to Strouhal number.  The values 

for the length and velocity scales used to calculate Strouhal number are the same values 

from Table 4.1. 

𝑆𝑡 =
𝑓𝑙

𝑈
(4.8) 

Here, 𝑓 is a dimensional frequency given in units of Hz.  LASTRAC uses various 

physical boundaries when running its analysis.  At the jet axis of symmetry (𝑦 = 0), the 
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v-velocity eigenfunction is zero, and the  derivatives for the other flow parameters are 

zero.  Far away from the jet (𝑦 = ∞), the eigenfunctions go to zero. 

4.2.1 Solution Versus Strouhal Number 

The output from LASTRAC provides the variables 𝛼 , 𝛼 , and 𝐶  as functions of 

Strouhal number.  These results can be used to determine the Strouhal numbers that are 

amplified over a large range of momentum thicknesses. 

 

Figure 4.9  𝛼  versus Strouhal number at various momentum thickness. 
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Figure 4.10  Growth rate versus Strouhal number at various momentum thickness. 

 

Figure 4.11  Phase speed velocity versus Strouhal number at various momentum 
thickness. 
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4.2.2. Solution for Selected Strouhal Numbers Versus Momentum Thickness 

Of note, the maximum value of −𝛼  decreases with an increase in momentum 

thickness, which is expected.  From the set of plots above, Strouhal numbers of 0.025, 

0.05, 0.10, 0.20, and 0.40 were selected for further analysis.  At these Strouhal numbers, 

𝛼 , −𝛼 , and 𝐶  were plotted versus the momentum thickness. 

 

Figure 4.12  𝛼  versus momentum thickness at various Strouhal numbers 

 

The linear growth rate was calculated using the data from Figure 4.13. 

𝑁 = −2 𝛼 (𝜃 ) 𝑑𝜃 (4.9) 
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Figure 4.13  −𝛼  versus momentum thickness at various Strouhal numbers. 

 

Figure 4.14  Phase speed velocity versus momentum thickness at various Strouhal 
numbers. 
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Figure 4.15  N-factor versus momentum thickness at various Strouhal numbers. 

 

In Figure 4.15, it is shown that the linear growth rate is highest for Strouhal numbers 

0.10, and 0.05.  For the Strouhal numbers 0.20 and 0.40, the growth rate begins to damp 

at a low range of momentum thickness.  The case for Strouhal number of 0.025 has 

amplification over the range of momentum thicknesses considered, but at a lower 

magnitude than for Strouhal numbers 0.10 and 0.05.  Thus, the chosen Strouhal numbers 

to be considered for the fundamental-subharmonic and fundamental-harmonic 

interactions later are 0.05, 0.10 and 0.20.   

At each frequency, LASTRAC also outputs eigenfunctions for temperature, pressure, 

and the u, v, and w velocities.  Both real and imaginary components are computed.  For 

the computation of the integrals, the eigenfunctions need to be normalized such that: 
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1 = (𝑢 + 𝑣 ) 𝑑𝑦 (4.10) 

This integral is first calculated with the non-normalized eigenfunctions to obtain a 

normalization coefficient, 𝑘.  This normalization coefficient is applied to the real and 

imaginary components of the velocity eigenfunctions.  The velocity eigenfunctions are 

simply normalized as: 

𝑢 , =
𝑢

𝑘
(4.11) 

𝑢 , =
𝑢

𝑘
(4.12) 

𝑣 , =
𝑣

𝑘
(4.13) 

𝑣 , =
𝑣

𝑘
(4.14) 

Some examples of the normalized eigenfunction outputs can be seen below.  It should 

be noted that only the symmetric mode is considered and the eigenfunctions go from 

𝑦 = 0 to 𝑦 = +∞. 
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Figure 4.16  Eigenfunctions at St=0.025   
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Figure 4.17  Eigenfunctions at St=0.050   
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Figure 4.18  Eigenfunctions at St=0.100 
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Figure 4.19  Eigenfunctions at St=0.200 
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Figure 4.20  Eigenfunctions at St=0.400 
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4.3. Calculation of the Integrals 

In Chapter 3, we derived a set of ODE’s with various shape assumptions.  These 

shape assumptions take the form of several integrals.  These integrals can be functions of 

the mean flow as well as the eigenfunctions described in Section 4.2.  The integrals are 

computed numerically using MATLAB.  The eigenfunctions are for the half-profile of 

the jet.  Likewise, the integrals are calculated for the half-width of the jet and not the full 

profile, that is, from the line of symmetry to the far-field.  Before the integrals can be 

calculated, the eigenfunctions are normalized as described in Equations 4.10-4.14.  The 

magnitudes of the eigenfunctions then become as follows: 

|𝑢| =  𝑢 , + 𝑢 , (4.15) 

|𝑣| =  𝑣 , + 𝑣 , (4.16) 

Below are the integrals that are functions of the mean flow only: 

𝐼 =
1

2
𝜌𝑈 𝑑𝑦 (4.17) 

𝐼 = 𝑈 𝑑𝑦 (4.18) 

Next are the integrals that depend on the eigenfunctions. 

𝐼 = − (𝑣𝑢∗ + 𝐶𝐶)  �̅�  
𝜕𝑈

𝜕𝑦
 𝑑𝑦 (4.19) 

𝐼 = (|𝑢| + |𝑣| + |𝑤| ) �̅�𝑈  𝑑𝑦 (4.20) 

𝐼 = 2  (|𝛼| + 𝑛 )  (|𝑢| + |𝑣| + |𝑤| ) +
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑦
 𝑑𝑦 (4.21) 
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For 𝐼 , 𝑛 and 𝑤 are taken to be zero since we are considering the 2D eigenfunctions 

only, and 𝛼 is the magnitude of the complex wave number.  The above integrals are 

computed for each momentum thickness considered, yielding values for the integrals 

versus momentum thickness.  The integrals are then curve fit versus momentum thickness 

in excel for evaluating the solution to the ODE.     

4.3.1. Integrals that are Functions of the Mean Flow 

The integrals, 𝐼  and 𝐼 , are only a function of the mean flow shape and are shown 

in Figures 4.21 and 4.22 in comparison with (Dahl & Mankbadi, 2002; Dahl et al., 2003) 

results, but we note that their results are for a round jet, while here we are considering a 

2D shear layer. 

 

Figure 4.21  𝐼  versus momentum thickness: current results (left), and results from 

Dahl and Mankbadi (2002) (right). 

I am
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Figure 4.22  𝐼  versus momentum thickness: current results (left), results from Dahl et 
al. (2003) (right). 

 

 

Figure 4.23  
( )

 versus momentum thickness 
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4.3.2. Integrals that are Functions of Strouhal Number 

The integrals, 𝐼 , 𝐼 , and 𝐼 , are functions of both the mean flow and the 

eigenfunction.  Thus, they are also functions of Strouhal number. 

 

Figure 4.24  𝐼  versus momentum thickness 

 

 

Figure 4.25  𝐼  versus momentum thickness 

I af

θ+

I fd

θ+



50 
 

 

Figure 4.26  𝐼  versus momentum thickness 

 

Figure 4.27   versus momentum thickness 

4.3.3. The Wave-Wave Interaction Integrals 

Up until now, we have considered the integral terms that are defined by the mean 

flow and eigenfunctions of a single Strouhal number.  When considering the solution 

I m
f

θ+
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without interaction, these results are sufficient.  However, when solving the set of ODE’s 

with interaction, an additional integral term is needed, 𝐼 .  This integral represents the 

interaction between the two modes being considered.  For this work, we are considering 

the fundamental Strouhal number 0.10, with subharmonic St=0.05, and harmonic 

St=0.20.  This gives the fundamental-subharmonic pair St=0.10, 0.05, and fundamental-

harmonic pair St=0.10, 0.20. 

𝐼 = − 2  𝐼  cos{𝜙 +  𝛽 } (4.21) 

Above,  𝜙 is the phase angle of the complex integral quantity, 𝐼 , and 𝛽 is the phase 

between the two modes being considered.  𝐼  is defined as: 

𝐼 =  𝑢∗𝑢∗  
𝜕𝑢

𝜕𝑥
+ 𝑢∗𝑣∗   

𝜕𝑢

𝜕𝑦
+  

𝜕𝑣

𝜕𝑥
+ 𝑣∗𝑣∗  

𝜕𝑣

𝜕𝑦
𝑑𝑦 (4.22) 

Above, the subscript “s” indicates parameters at the lower Strouhal number, and “f” 

at the higher for a given pair.   

Figure 4.28  Real and Imaginary components for 𝐼  with St=0.10, 0.05 
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Figure 4.29  Real and imaginary components for 𝐼  with St=0.10, 0.20 
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5. Solution of the Amplitude Equations Without Wave-Wave Interaction 

Without considering the wave-wave interaction, the system of ODE’s given in 

Chapter 3 (Equations 3.63-3.64) reduces to: 

𝑑𝜃

𝑑𝑥

𝑑𝐼

𝑑𝜃
= −|𝐴|  𝐼 −

1

𝑅𝑒
𝐼 (5.1) 

𝑑 𝐼 |𝐴|

𝑑𝑥
=  |𝐴|  𝐼 −

1

𝑅𝑒
 𝐼 (5.2) 

In Equations 5.1 and 5.2, it is seen that the viscous effects are dependent upon the 

Reynolds number considered.  We consider here a variable effective Reynolds number 

that is taken as a function of the momentum thickness, as was previously described in 

Chapter 3.  Cases will be run solving Equations 5.1 and 5.2 at the different Strouhal 

numbers considered and various initial amplitudes.  Each case will be run for 𝐴  of 10 , 

10 , 10 , 10 , and 10 .  The linear solution is that where 𝐴 = 10 .  

 

 

Figure 5.1  ODE solution for St=0.025  
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Figure 5.2  ODE solution for St=0.05  

 

 

Figure 5.3  ODE solution for St=0.10  
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Figure 5.4  ODE solution for St=0.20  

 

 

Figure 5.5  ODE solution for St=0.40  

 

It is shown that the growth of the non-linear amplitude decreases as the initial 

amplitude, 𝐴 , increases.  This trend agrees with Dahl and Mankbadi (2002) for a 

supersonic round jet.  The addition of excitation resulted in an increase of momentum 

thickness compared to the solution without excitation, which is also consistent with 

results from Dahl and Mankbadi (2002).  As expected, the increase of momentum 
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thickness was more amplified as the initial amplitude was increased.  The most 

pronounced increase in the momentum thickness growth occurred for Strouhal numbers 

0.05, 0.10, and 0.20.  Looking back at the results from linear stability analysis, these 

Strouhal numbers had the highest N-factor across the range of momentum thicknesses.  

This result is consistent with the work of Samimy et al. (2018), who’s experiments 

showed a pronounced increase in jet width in this Strouhal number region, though it 

should be noted that this was for a high subsonic round jet.   

 

 

Figure 5.6  Experimental results of jet width for various Strouhal numbers and base-line 
for Mach 0.9 round jet with 𝑅𝑒 = 0.62 × 10  (Samimy et al., 2018). 

 

Another result that can be analyzed is the development of the nonlinear amplitude at 

various Strouhal numbers.  The general trend can be compared with N-factor, as 

described in Chapter 4.  We note that the trend compares very well to the results for N-
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factor in Figure 4.15. In both the linear and nonlinear solutions, St =0.1 is most amplified 

along he streamwise direction. 

 

 

Figure 5.7  Non-linear amplitude at various Strouhal numbers for 𝐴 = 10  (left) and 
𝐴 = 10  (right). 
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6. Solution of the Amplitude Equations with Wave-Wave Interaction 

When the terms representing the wave-wave interaction are included, the ODE’s 

becomes the full set presented in Chapter 3. 

𝑑𝜃

𝑑𝑥

𝑑𝐼

𝑑𝜃
= − |𝐴|  𝐼 −  |𝐵|  𝐼 −

1

𝑅𝑒
𝐼 (6.1) 

𝑑 𝐼 |𝐴|

𝑑𝑥
=  |𝐴|  𝐼 −

1

𝑅𝑒
 𝐼 − 𝐼 |𝐴||𝐵| (6.2) 

𝑑(𝐼 |𝐵| )

𝑑𝑥
=  |𝐵|  𝐼 −

1

𝑅𝑒
 𝐼 + 𝐼 |𝐴||𝐵| (6.3) 

Here, 𝐴  corresponds to the amplitude at the larger Strouhal number and 𝐵  

corresponds to that of the smaller.  Looking at the opposite signs on the interaction term 

in Equations 6.2 and 6.3 indicates that the interaction transfers energy from one mode to 

the other.   

As previously indicated, there has been a few attempts for reducing the jet noise via a 

single-mode excitation (Crawley et al., 2012, 2015; Samimy et al., 2012, 2018).  Single-

mode excitation has shown some limited successes in some few cases but not in other 

cases (Crawley et al., 2012).  By exciting the jet at a given frequency mode, the 

hypotheses are that this mode will interact with the naturally present coherent modes in a 

way to change the frequency content of the noise sources and, hopefully, the far-field 

noise spectra as well.  

We focus here on modifying the noise source via harmonic or subharmonic 

excitation.  In a future work, we will look at the effect of this type of excitation on the 

radiated noise. In Mankbadi (1991), it was shown that the interaction of various coherent 

modes among themselves has a non-zero time average only if either of these two 

conditions applies: A) the two modes are related to each other by harmonic relations, i.e., 
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if one mode is at frequency f, the other mode must be f/2, f/4, f/8, … or 2f, 4f, 6f, ...etc.   

B) The other possible non-zero averaged interactions when 3 modes are interaction with 

frequencies governed by the sum and difference relation.  We focus here on the harmonic 

or subharmonic interaction as it has shown before to be a significant mechanic in low-

Mach number jets. 

We define the task here as follows: We are looking at only the shear layer in the 

initial region of a supersonic rectangular jet before the shear layers of the minor axes 

have merged. The jet is assumed to be turbulent dominated by coherent structure. The 

coherent structure is presented here by only the most amplified mode corresponding to 

the frequency at which the radiated sound spectra peaks. The amplitude of the energy of 

this peak is labeled as: 

𝐸 =  |𝐴| (6.4) 

We will explore reducing 𝐸 (𝑥), via imposing a subharmonic at frequency (f/2) with 

initial energy amplitude 𝐸( /  ),  or by imposing a harmonic frequency (2f) with initial 

energy amplitude, 𝐸 , .  In the study presented below we take the fundamental mode 

that we are trying to reduce to correspond to St=0.10.   For the rectangular jet that we are 

approximating here that was simulated by Mankbadi and Salehian (2021) and 

experimentally investigated by Mora et al. (2016), it was found out that frequency where 

the far field noise spectra peak corresponds to St=0.1.  This was also shown to be most 

amplified in the current analysis as well.  Of course, this is only an approximate value, 

and we also need to keep in mind that we are only approximating the jet by two 

symmetric shear layers, and we are only considering the symmetric mode. 
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The interaction process will be a function of several parameters including the 

Strouhal number pair considered, the initial amplitudes of the imposed waves, 𝐸 , ,  

𝐸( / ),  , and  𝐸 , ; and the initial phase angle between each of the two modes, 𝛽.  As a 

practical guide, we would like the imposed initial level of the controlling mode to be less 

than that of the fundamental to avoid creating an additional significant noise source. 

6.1. Bi-modal Excitation at the Fundamental and Subharmonic Frequency 

The first case considered is that of the fundamental and subharmonic at Strouhal 

numbers 0.10 and 0.05 respectively.  Equations 6.1-6.3 were solved for various 

combinations initial amplitudes.  Values for the phase, 𝛽, were taken to be 0, , 𝜋, and . 

 

 

Figure 6.1  Amplitudes for St=0.10, 0.05; 𝐸 , = 10 , 𝐸 / , = 10  

 

In this case, with the fundamental frequency being at St=0.1, we excite the jet at 

subharmonic at St=0.05.  Various levels of initial amplitudes were considered, and we 

noted that the interaction is there, and there is some reduction of the fundamental, but it is 

relatively weak as shown in Figure 6.1.  With both initial amplitudes smaller, while still 
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equal, the interaction was even less pronounced on the fundamental, which can be seen in 

Figure 6.3.  For cases with smaller initial amplitudes and when 𝐸 , > 𝐸 / , , the effects 

of interaction were even weaker.  We note that the wave-wave interaction term appears 

with opposite signs in the fundamental and subharmonic equations. Thus, depending on 

the initial phase difference, it takes energy from one and move it to the other as shown in 

Figures 6.1 and 6.2. 

 

 

Figure 6.2  Momentum thickness versus streamwise location for St=0.10, 0.05 with 
𝐸 , = 10 , 𝐸 / , = 10  

 

We examine the development of the corresponding momentum thickness shown in 

Figure 6.2.  We note several levels of the momentum thickness development. The bottom 

line represents the momentum thickness development if there is no coherent structure at 

all, meaning the shear layer growth is governed only by the effective viscous and 

turbulent dissipation term.  We also show the development if each of the two modes are 

added separately without considering the interaction among the two.  Then, we show the 



62 
 

momentum thickness when both modes interact for various initial phase difference. We 

note that the spreading rate is considerably enhanced for the two-mode interaction cases, 

particularly at 𝛽 = .  This will reduce the length of the potential core in a real jet. 

 

 

Figure 6.3  Amplitudes for St=0.10, 0.05; 𝐸 , = 10 , 𝐸 / , = 10  

 

 

Figure 6.4  Momentum thickness versus streamwise location for St=0.10, 0.05 with 
𝐸 , = 10 , 𝐸 / , = 10  
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Given that the interaction between the subharmonic and fundamental is relatively 

weak in reducing the fundamental mode, and that the subharmonic reaches an amplitude 

corresponding to that of the fundamental and persists over a larger streamwise distance, 

then this technique may or may not result in reducing the radiated sound.  However, it is 

quite effective in enhancing the growth rate when the phase difference is optimized.  

The increase in the spreading rate of the jet has previously been shown in both 

computation and experiment (Mankbadi, 1991; Mankbadi et al., 1989). 

 

  

Figure 6.5  Jet momentum thickness with and without bi-modal excitation computation 
(left) (Mankbadi, 1991) and experiment (Mankbadi et al., 1989). 

 

6.2 Reduction of the Fundamental Mode Via Harmonic Excitation 

With the fundamental being at St=0.1, we now consider reducing it via a harmonic 

excitation at St =0.2. Thus, the interaction is between the Strouhal number pair, 0.10 and 

0.20. We first consider the case when the excitation is at the same level as the 

fundamental, thus:  𝐸 , = 𝐸 ,  , and is taken to be 10 , 10 , or 10 , and we vary the 

initial phase as done in Section 6.1. 
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In this case when we solve Equations 6.1-6.3, 𝐴  corresponds to the amplitude for 

harmonic Strouhal number 0.20, and 𝐵  corresponds to the fundamental Strouhal number 

of 0.10.  At the harmonic Strouhal number of 0.20, the linear growth rate becomes 

damped at 𝜃 ≈ 0.15, which can be seen in Figure 4.11.  Consequently, there are only 

linear stability results up to 𝜃 = 0.25, which becomes the limit of our numerical scope 

here.   

 

 

Figure 6.6  Amplitudes for St=0.10, 0.20; 𝐸 , = 10 , 𝐸 , = 10  

 

Unlike with the fundamental-subharmonic pair examined previously, this damping of 

the fundamental resulting from the wave-wave interactions was clear even at low initial 

amplitudes as can be seen even when both initial amplitudes were 10 .  To emphasize 

this point, we show in Figure 6.11, the case when the imposed amplitude is initially an 

order of magnitude less than that of the fundamental.  We note that in this case, the 

momentum thickness growth is enhanced over the case with no coherent structure.  In all 
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of the presented results in this set, the phase that reduced the fundamental the most also 

had a minimal effect on amplifying the harmonic. 

 

 

Figure 6.7  Momentum thickness versus streamwise location for St=0.10, 0.20 with      
𝐸 , = 10 , 𝐸 , = 10  

 

 

Figure 6.8  Amplitudes for St=0.10, 0.20; 𝐸 , = 10 , 𝐸 , = 10  
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Figure 6.9  Momentum thickness versus streamwise location for St=0.10, 0.20 with 
𝐸 , = 10 , 𝐸 , = 10  

 

 

Figure 6.10  Amplitudes for St=0.10, 0.20; 𝐸 , = 10 , 𝐸 , = 10  
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Figure 6.11  Momentum thickness versus streamwise location for St=0.10, 0.20 with 
𝐸 , = 10 , 𝐸 , = 10  

 

   

 

Figure 6.12  Amplitudes for St=0.10, 0.20; 𝐸 , = 10 , 𝐸 , = 10  
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Figure 6.13  Momentum thickness versus streamwise location for St=0.10, 0.20 with 
𝐸 , = 10 , 𝐸 , = 10  

 

Unlike the case with subharmonic interaction, the interaction from the harmonic were 

able to reduce the amplitude of the fundamental when the initial amplitude was smaller 

than that of the fundamental.  Though it should be noted that the interaction effects are 

less pronounced compared to when the initial amplitudes were equal as can be seen when 

comparing with Figure 6.7. 

For all the cases presented in this section in Figures 6.5-6.12, we note that 1) The 

harmonic managed to produce significant reduction in the fundamental mode with the 

appropriate phase difference; and 2) the imposed mode reached peak is still much less 

than that of the fundamental, and its streamwise lifespan is short.  So, the harmonic is not 

likely to cause significant increase in the radiated sound by itself.  Thus, the peak radiated 

sound is projected to decrease as the fundamental has been significantly damped. We 

note that the effect is pronounced at 𝛽 = . 
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7. Conclusions 

We considered here the case of a supersonic shear layer representing the initial shear 

layer of the minor axes of a heated rectangular jet.  We developed a reduced-order model 

for the bi-modal excitation of the jet based on the nonlinear integral approach.  In this 

model, we considered two frequency modes of the coherent structure interaction with 

each other as well as with the background turbulent jet flow.  The model is based on 

modelling the large-scale coherent structure as a wave-packet that resembles nonlinear 

instability, where its transverse profile is obtained from the locally-parallel linear 

instability theory.  The mean flow is represented by fitting a hyperbolic tangent profile to 

CFD data.  With these shape assumptions, the compressible NSE can be reduced to a set 

of simultaneous ODE’s representing the interaction of the two waves among themselves 

and the mean flow.  The effect of the background turbulence is represented by an 

effective turbulent Reynolds number. 

To understand the physics involved, we first considered the case of the nonlinear 

development of each structure frequency mode without considering their interaction with 

each other.  Thus, their development is determined by their production by the mean flow 

and by their effective dissipation caused by the viscous and turbulence effects.  In this 

case, the model is similar to that of the compressible Dahl and Mankbadi (2002) model.  

The present work, however, is considering the case of a 2D shear layer of rectangular jets 

as opposed to a round jet.  Our results show the nonlinear effect in this case results in 

reducing the amplification of each mode, and that this reduction is more pronounced with 

increasing the initial level of the mode, which agrees with previous studies (Dahl & 

Mankbadi, 2002).  Both the linear and nonlinear growth have indicated that the most 
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amplified mode along the jet is St=0.1.  CFD simulations of Mankbadi and Salehian 

(2021) of the same jet have also shown that St=0.1 corresponds to the peak of the 

radiated sound. 

We then presented results with focus on how to use the excitation to reduce the 

fundamental mode.  The fundamental mode is defined here as the dominant noise source 

that results in the peak in the noise spectra.   

We have presented results for bi-modal excitation with both the subharmonic and 

harmonic frequencies.  Our objective is to reduce the streamwise peak of the amplitude of 

the fundamental Strouhal number, which is taken to be the dominant noise source.  The 

additional of the subharmonic or harmonic should be done with an initial amplitude equal 

to or less than that of the fundamental, to prevent the addition of another significant noise 

source.   

We first examined the addition of the subharmonic mode.  Here, we observed some 

reduction in the peak of the fundamental mode with higher initial amplitudes, though this 

reduction is not very pronounced.  Thus, it is not clear whether this mechanism is 

effective in reducing the peak noise of the jet.  However, our computations show that the 

addition of the subharmonic has a significant effect on the growth of momentum 

thickness, which will lead to a reduction in the potential core. 

We then considered reducing the fundamental mode with the addition of its harmonic.  

This was found to be very effective in reducing the fundamental mode for optimized 

values of the phase angle, 𝛽.  It was found that the fundamental was reduced the most for 

𝛽 = .  Even with significant reduction in the fundament, there was not a significant 

increase in the amplitude of the harmonic.  Thus, we believe that imposing the harmonic 
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on the fundamental will be an effective mechanism for noise reduction.  Additionally, the 

addition of the harmonic increased the spreading of the jet, compared to the case with 

single-mode excitation at the fundamental Strouhal number and without excitation. 
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APPENDIX A – LASTRAC Description 

NASA’s Langley Stability and Transition Analysis Code (LASTRAC) was used to 

obtain the linear stability results for the planar jet described in Chapter 4.  The code is 

capable of handling both boundary layers and shear layers.  Both linear stability and 

parabolized stability theory can be used.  For the present work, linear stability analysis 

features were used for the shear layer.  Below is a brief description of the governing 

equations, linear stability theory, and boundary conditions used in our analysis.  A more 

in-depth description of the full capabilities and validation cases for LASTRAC can be 

found in Chang (2004). 

A.1. Governing Equations 

In general, 𝑥 represents the streamwise direction, 𝑦 represents the wall-normal 

direction, and 𝑧 represents the spanwise direction.  Elements of length are then 

represented by ℎ 𝑑𝑥, 𝑑𝑦, and ℎ 𝑑𝑧 for the 𝑥-, 𝑦-, and 𝑧-direction respectively (Chang, 

2004).  To model the evolution of the disturbances, we start with the compressible 

Navier-Stokes equations 

𝜕𝜌

𝜕𝑡
+ ∇ ∙ 𝜌𝑉 = 0 (𝐴1) 

𝜌
𝜕𝑉

𝜕𝑡
+ 𝑉 ∙ ∇𝑉 = −∇𝑝 +

1

𝑅𝑒
∇ 𝜆 ∇ ∙ 𝑉 + ∇ ∙ 𝜇 ∇𝑉 + ∇𝑉 (𝐴2) 

𝜌𝐶
𝜕𝑇

𝜕𝑡
+ 𝑉 ∙ ∇ 𝑇 = ∇ ∙ (𝑘∇𝑇) +

𝜕𝑝

𝜕𝑡
+ 𝑉 ∙ ∇ 𝑝 +

Φ

𝑅𝑒
(𝐴3) 

Here, 𝜇 and 𝜆 are the first and second coefficient of viscosity, respectively.  Viscous 

dissipation, Φ, is defined by: 

Φ = 𝜆 ∇ ∙ 𝑉 +
𝜇

2
∇𝑉 + ∇𝑉 (𝐴4) 
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𝜆 can be related to 𝜇 by the Stokes parameter, 𝑠: 

𝜆 =
2

3
(𝑠 − 1)𝜇 (𝐴5) 

The ideal gas relation is used as the equation of state. 

𝑝 = 𝜌𝑅𝑇 (𝐴6) 

The Navier-Stokes equations in Equations A1-A3 are non-dimensionalized.  Lengths 

are scaled by length scale, 𝑙, velocity by 𝑢 , density by 𝜌 , pressure by 𝜌 𝑢 , temperature 

by 𝑇 , viscosity by 𝜇 , and time by 𝑙/𝑢 .  For jet flows, the values at the jet exit are used.  

The variables in the Navier Stokes equations can be split into a mean flow and 

disturbance fluctuation in the general form: 

𝑞 = 𝑞 + 𝑞 (𝐴7) 

where 𝑞 can represent 𝑢, 𝑣, 𝑤, 𝑝, 𝜌, 𝑇, 𝜇, 𝜆, 𝑘.  These quantities can be substituted into the 

Navier Stokes equations, and the mean flow can be subtracted out.  This gives the 

governing equation for the disturbances: 

Γ
𝜕𝜙

𝜕𝑡
+

𝐴

ℎ

𝜕𝜙

𝜕𝑥
+ 𝐵

𝜕𝜙

𝜕𝑦
+

𝐶

ℎ

𝜕𝜙

𝜕𝑦
+ 𝐷𝜙 =

1

𝑅𝑒

𝑉

ℎ

𝜕 𝜙

𝜕𝑥
+

𝑉

ℎ
 
𝜕 𝜙

𝜕𝑦
+ 𝑉

𝜕 𝜙

𝜕𝑦
+

𝑉

ℎ
 

𝜕 𝜙

𝜕𝑥𝜕𝑧
+

𝑉

ℎ
 

𝜕 𝜙

𝜕𝑦𝜕𝑧
+

𝑉

ℎ
 
𝜕 𝜙

𝜕𝑧
(𝐴8)

 

where 𝜙 is the disturbance vector defined by: 

𝜙 = (𝑝 , 𝑢 , 𝑣 , 𝑤 , 𝑇 ) (𝐴9) 

In Equation A8, Γ, 𝐴, 𝐵, 𝐶, 𝐷, 𝑉 , 𝑉 , etc. are the Jacobians of the flux vectors and 

𝑅𝑒 = 𝑢 𝑙 /𝜈  which is used to normalize the equations.  The disturbance vector, 𝜙, can 

be expressed by a discrete Fourier Series. 

𝜙(𝑥, 𝑦, 𝑧, 𝑡) = 𝜒 (𝑥, 𝑦)𝑒 ( ) (𝐴10) 
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In Equation A10, 𝜔 and 𝛽 are the temporal and spanwise wave numbers.  𝑀 and 𝑁 

are the Fourier modes considered in time and space.  𝜒  is the mode shape of mode 

(𝑚, 𝑛).  Wave number can be related to a physical frequency by: 

𝜔 =
2𝜋𝑙

𝑢
𝑓 (𝐴11) 

The spanwise wave number, 𝛽, is defined by 

𝛽 =
2𝜋

𝜆
(𝐴12) 

where 𝜆  is the spanwise wavelength normalized by 𝑙 .  When the disturbance amplitude 

is small, it is assumed that the Fourier modes evolve independently, and nonlinear 

interaction of the modes is negligible.  Equation A8 can then be written in the linearized 

form: 

Γ
𝜕𝜙

𝜕𝑡
+

𝐴

ℎ

𝜕𝜙

𝜕𝑥
+ 𝐵

𝜕𝜙

𝜕𝑦
+

𝐶

ℎ

𝜕𝜙

𝜕𝑧
+ 𝐷 𝜙 =

1

𝑅𝑒

𝑉

ℎ

𝜕 𝜙

𝜕𝑥
+

𝑉

ℎ
 
𝜕 𝜙

𝜕𝑦
+ 𝑉

𝜕 𝜙

𝜕𝑦
+

𝑉

ℎ
 

𝜕 𝜙

𝜕𝑥𝜕𝑧
+

𝑉

ℎ
 

𝜕 𝜙

𝜕𝑦𝜕𝑧
+

𝑉

ℎ
 
𝜕 𝜙

𝜕𝑧
(𝐴13)

 

A single disturbance mode can be expressed as  

𝜙 = 𝜒(𝑥, 𝑦)𝑒 ( ) (𝐴14) 

Equation A14 can be substituted into Equation A13 to give the linearized Navier-Stokes 

equation, which is a set of constant coefficient PDE’s.   

𝐴

ℎ
−

𝑖𝛽𝑉

ℎ 𝑅𝑒

𝜕𝜒

𝜕𝑥
+ 𝐵 −

𝑖𝛽𝑉

ℎ 𝑅𝑒

𝜕𝜒

𝜕𝑦
+ 𝐷 − 𝑖𝜔Γ +

𝑖𝛽𝐶

ℎ
+

𝛽 𝑉

ℎ 𝑅𝑒
𝜒 =

1

𝑅𝑒

𝑉

ℎ

𝜕 𝜒

𝜕𝑥
+

𝑉

ℎ

𝜕 𝜒

𝜕𝑥𝜕𝑦
+ 𝑉

𝜕 𝜒

𝜕𝑦
(𝐴15)

 

To solve the linearized Navier Stokes equation numerically, the solution is discretized 

in the 𝑥 and 𝑦 directions. 
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𝐴 𝜙 = 𝑓 (𝐴16) 

where 𝜙  is the solution vector, and 𝑓  is the forcing vector associated with the 

boundary conditions.  𝐴  is a banded or full block matrix depending on the scheme used 

for discretization.   

A.2. Quasi-Parallel Linear Stability Theory 

In quasi-parallel linear stability theory, it is assumed that the mean flow evolves 

slowly in the streamwise direction relative to the normal direction.  Thus, it is assumed 

that the mean flow variation in 𝑥 is negligible.  A shape assumption is then made taking 

the following form: 

𝜒(𝑥, 𝑦) = 𝜓(𝑦)𝑒 (𝐴17) 

This leads to: 

𝜙(𝑥, 𝑦, 𝑧, 𝑡) = 𝜓(𝑦)𝑒 ( ) (𝐴18) 

Here, 𝛼 is the local streamwise wave number at a particular streamwise station.  

Equation A18 can be substituted into Equation A15.  The mean wall-normal velocity 

component and viscous terms that are on the order of  or lower are neglected.  These 

yields: 

𝐵 +
𝑖𝛽𝑉

ℎ 𝑅𝑒
−

𝑖𝛼𝑉

ℎ 𝑅𝑒

𝑑𝜓

𝑑𝑦

+ 𝐷 − 𝑖𝜔Γ +
𝑖𝛼𝐴

ℎ
+

𝛼 𝑉

ℎ 𝑅𝑒
−

𝑖𝛽𝑉

ℎ 𝑅𝑒
+

𝑖𝛽𝐶

ℎ
+

𝛽 𝑉

ℎ 𝑅𝑒
𝜓 =

𝑉

𝑅𝑒

𝑑 𝜓

𝑑𝑦
(𝐴19)

 

Equation A19 is ultimately what is of interest here with our application of the 

LASTRAC code.  Equation A19 is a set of ODE’s.  It constitutes an eigenvalue problem 

with the following dispersion relation: 

𝛼 = 𝛼(𝜔, 𝛽) (𝐴20) 
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LASTRAC formulates the stability calculations as a spatial stability problem.  For a 

given disturbance frequency, 𝜔, and wave number, 𝛽, the complex eigenvalue, 𝛼 = 𝛼 +

𝑖𝛼 , is solved for numerically.  If 𝛼 < 0, the eigenmode is unstable.   

A.3. Boundary Conditions 

LASTRAC uses a central differencing scheme, and thus uses the continuity equation 

as a 5th auxiliary equation.  In the free-stream, Dirichlet boundary conditions are used. 

𝑢 = 𝑣 = 𝑤 = 𝑇 = 0,    𝑦 → ∞ (𝐴21) 

Equation A22 works well for subsonic modes.  For supersonic modes, there is a non-

decaying oscillatory structure in the free stream, which causes spurious reflections.  For 

supersonic flows, LASTRAC uses a non-reflecting boundary condition in the far field.  

This non-reflecting boundary condition is derived from the inviscid Euler equations since 

it is assumed that viscous effects are negligible in the far field.  For supersonic flows in 

the far field, the disturbance equation takes the following form: 

Γ
𝜕𝜙

𝜕𝑡
+

𝐴

ℎ

𝜕𝜙

𝜕𝑥
+ 𝐵

𝜕𝜙

𝜕𝑦
+

𝐶

ℎ

𝜕𝜙

𝜕𝑧
+ 𝐷𝜙 = 0 (𝐴22) 

𝐵  is defined as: 

𝐵 = Γ(𝐿Λ 𝐿 ) (𝐴23) 

In Equation A23, 𝐿 is the left eigenvector matrix of the product of the coefficient 

matrix, Γ 𝐵.  Λ  is the modified diagonal eigenvalue matrix. 

Λ = 𝑑𝑖𝑎𝑔 max 0, 𝜆 (𝐴24) 

𝜆  are the eigenvalues of Γ 𝐵.   

In LASTRAC, the equations are discretized via a 1st-order scheme in the streamwise 

direction and 4th-order central difference scheme in the wall-normal direction. The 

solution is obtained in a two-step process. In the first step, the viscous terms are 
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neglected to recast the equation in linear form that can be solved as an eigenvalue 

problem. The obtained global eigenvalue spectrum generally contains all discrete modes 

as well as the continuous spectrum. Once the global eigenvalues are obtained, a local 

eigenvalue search is performed using the results from the global search as a starting point 

for the viscous solution using the iterative Newton’s method applied to the governing 

equations. 
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APPENDIX B – Large-Eddy Simulations of Mach 1.5 Planar Jet 

To later validate the results from Chapters 5 and 6, large eddy simulations (LES) are 

to be performed on a Mach 1.5 heated planar jet.  This is done using the Air Force 

Research Lab’s (AFRL) FDL3DI code. 

B.1 Code Description 

AFRL’s FDL3DI code is an implicit LES code.  It solves the compressible Navier-

Stokes equations in conservative form. 

𝜕

𝜕𝑡

𝑄

𝐽
+

𝜕𝐹

𝜕𝜉
+

𝜕𝐺

𝜕𝜂
+

𝜕𝐻

𝜕𝜁
−

1

𝑅𝑒

𝜕𝐹

𝜕𝜉
+

𝜕𝐺⃗

𝜕𝜂
+

𝜕𝐻⃗

𝜕𝜁
= 𝑆 (𝐵1) 

𝑄 = (𝜌, 𝜌𝑢, 𝜌𝑣, 𝜌𝑤, 𝜌𝑒) (𝐵2) 

𝑒 =
𝑇

𝛾(𝛾 − 1)𝑀
+

1

2
(𝑢 + 𝑣 + 𝑤 ) (𝐵3) 

𝑝 =
𝜌𝑇

𝛾𝑀
(𝐵4) 

The code uses a 6th order accurate compact differencing scheme in space and a 2nd 

order implicit time marching scheme.  The code also has efficient grid moving 

capabilities though these are not used in this work.  There is a plethora of boundary 

conditions that the code comes standard with including: no-slip adiabatic wall, inviscid 

wall, subsonic inflow/outflow based on Riemann invariants, uniform flow at an angle of 

attack, quiescent fluid, extrapolation of all variables, Dirichlet conditions from initial 

values, symmetry plane, and many more.  With the source code, user-defined boundary 

conditions can also be defined. 
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B.2 Case Setup 

Here, a perfectly expanded Mach 1.5 heated planar jet is being modeled.  At the inlet, 

a modified version of the uniform flow at an angle of attack boundary condition was 

used.  The modification allows for the additional prescription of temperature.  The jet 

from Salehian and Mankbadi (2020) has a total temperature ratio of 3, which gives a 

static temperature ratio of 2.075 for Mach 1.5.  The grid generated for this computation is 

composed of around 1.1 million cells.  This inlet was prescribed along the left-hand side 

of the computational domain between 𝑦 = [−0.5, 0.5].  It should be noted that although 

we are using a length scale of 𝐻/2 in the linear stability analysis and results to the ODE, 

FDL3DI scales based on a length scale equal to the heigh of the jet and thus desires a jet 

height of 1.  1st order extrapolation of variables was prescribed at every other boundary.  

The grid along with the boundary conditions can be seen below.  The case was run with a 

time step of Δ𝑡 = 0.000045 𝑠. 
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Figure B1  Computational grid with boundary conditions 

 

Figure B2  Magnified computational grid with boundary conditions 
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B.3 Results 

Images below show contours for the time averaged u-velocity, temperature, and 

pressure.  Ideally, these results should be symmetrical about 𝑦 = 0  However, it is clear 

that this is not the case with the present results, indicating that there is still some work to 

be done with the LES. 

 

 

Figure B3  Time averaged u-velocity contour for Mach 1.5 planar jet LES 
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Figure B4  Time averaged temperature contour for Mach 1.5 planar jet LES 

 

Figure B5  Time averaged pressure contour for Mach 1.5 planar jet LES 
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Figure B6  Snapshot contour of u-velocity for Mach 1.5 planar jet LES 

 

Figure B7  Snapshot contour of temperature for Mach 1.5 planar jet LES 
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Figure B8  Snapshot contour of pressure for Mach 1.5 planar jet LES 
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