
A Lazy Approach for Supporting Nested Transactions

Lee Baugh and Craig Zilles
Dept. of Computer Science, University of Illinois at Urbana-Champaign

E-mail: {leebaugh, zilles}@cs.uiuc.edu

Abstract

Transactional memory (TM) is a compelling alternative
to traditional synchronization, and implementing TM
primitives directly in hardware offers a potential perfor-
mance advantage over software-based methods. In this
paper, we demonstrate that many of the actions asso-
ciated with transaction abort and commit may be per-
formed lazily – that is, incrementally, and on demand.
This technique is ideal for hardware, since it requires
little space or work; in addition, it can improve perfor-
mance by sparing accesses to committing or aborting
locations from having to stall until the commit or abort
completes.

We further show that our lazy abort and com-
mit technique supports open nesting and orElse,
two language-level proposals which rely on trans-
actional nesting. We also provide design notes for
supporting lazy abort and commit on our own hard-
ware TM system, based on VTM.

1. Introduction

The industry-wide shift to multicore processors has re-
newed research interest in synchronization methods.
One leading technique, transactional memory (TM), ex-
poses a much simpler programming interface than
the traditional lock-based method, and potentially im-
proves concurrency by speculatively overlapping crit-
ical sections. A transaction consists of a region of
code, encompassed by a begin transaction and
an end transaction (or some similar denota-
tion). A TM system must guarantee that upon execut-
ing its end transaction, a transaction appears to
have committed atomically.

One of the attractive features of TM is a transaction’s
ability to compose. For example, under lock-based syn-
chronization, if a library function called from in-
side a locked region itself acquires a lock, then care

must be taken to avoid deadlock. With transactional syn-
chronization, the programmer need know nothing about
the atomic behavior of the functions it calls. How-
ever, to guarantee this, hardware TM systems must
support nested transactions. Collapsed nesting, a triv-
ial technique for handling transaction nesting employed
by most hardware TM (HTM) systems, including
LogTM [6], VTM [8] and UTM [1], involves subsum-
ing all nested transactions into their top-level ances-
tor. In this scheme, the nested begin transactions
and end transactions are ignored, except to up-
date a nest depth counter; only when this counter is 0
after an end transaction does a transaction com-
mit.

The alternative to a policy of collapsed nesting is closed
nesting1, in which only conflicting transactions and their
descendants – not their entire ancestry – are prone to be-
ing rolled back. Closed nesting offers a potential per-
formance advantage in, for example, the case of a long
transaction seeking to acquire a highly contended lock
for some resource: enclosing the lock acquisition in a
nested transaction of its own limits the cost of conflict-
ing on the contended lock to only a few rolled-back in-
structions. Other performance justifications for support-
ing closed nesting may be conjectured; however, it must
be noted that after a nested transaction commits, its en-
tire read and write set are coalesced into its parent, ex-
posing the parent to conflict for the rest of its life.2

In addition to the potential performance benefits, nesting
is used by two proposed programming constructs: open
nesting [7] and orElse [3]. Open nesting provides a
means of committing a nested transaction directly to ar-
chitected state, freeing its ancestry from risking conflict
on its accesses after it has retired. orElse may be used
to indicate a set of transactions, of which exactly one

1 The name closed nesting is introduced in [7], but in our work the
term refers to a special case referred to in that paper as linear nest-
ing.

2 For this reason, it would seem to be a good design choice to give
longer transactions, in which more work has been invested, prior-
ity when resolving conflicts.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4820438?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

will commit.

There have been numerous proposals for TM systems,
both hardware-based (such as [6], [8], [1], [2], [5], and
[7]) and software-based (such as [3], [4], and [9]). While
it has always been a primary goal of HTM systems to
offer good performance, HTM proposals have also been
becoming more feature-rich. Many now support arbitrar-
ily large transaction footprints, and many support trans-
actions living past context switches or migrating to dif-
ferent processors. Moss and Hosking’s recent work in-
troduces hardware support for closed nesting [7]. As the
flexibility of HTM proposals increases, so may the via-
bility of transactional memory as a whole.

In this paper, we introduce a new, lazy, method of han-
dling the overflowed transaction state of aborting and
committing transactions. Lazy abort and commit permit
values belonging to aborted or committed transactions
to be used by other memory accesses as soon as their
transactions logically abort or commit – no access must
wait for a physical abort or commit to complete. This
technique also relies much less heavily on mechanisms
which walk the overflowed transaction log, and requires
very little computation or state, so it is quite suitable for
HTMs seeking to keep their performance high.

We further demonstrate how our lazy abort and com-
mit technique may be extended to support the abort and
commit (or coalesce) of closed nested transactions, and
may be further extended to support open nesting and
orElse. Finally, we will give design notes concern-
ing implementation of lazy abort and commit in our own
hardware TM system.

2. Transactional Memory

In this section, we review what is involved with creat-
ing and committing transactions, as well as what must
be done when a transaction reads data, writes data, and
aborts. We then review the retry primitive and discuss
what supporting closed nesting involves. We then intro-
duce lazy abort, commit, and coalesce.

2.1. A Transactional Primer

Transactions, like traditional lock-based critical sec-
tions, are regions of code which, upon exiting, are guar-
anteed to have appeared atomic to all processes. How-
ever, transactions, unlike locks, may be executed con-
currently. Should there be a conflict, then at least one
running transaction must be squashed or stalled.

Transactions are started with a begin transaction
command. When a TM system sees such a command,
it records in local memory that a transaction has be-
gun. In this paper, we will refer to this record as the lo-
cal transaction state (LTS). In the LTS, the TM system
may store transaction-specific data such as the transac-
tion’s current state, a register checkpoint taken just be-
fore the begin transaction, or information it can
use to resolve conflicts between transactions, such as a
timestamp.

When a memory read is performed inside a transaction,
the TM system must add the accessed block to the trans-
action log. If there is already a read entry for this ad-
dress and the current transaction in the transaction log,
then nothing new needs to be added to the log. This log,
which is part of a structure we call the global transac-
tion state (GTS), is logically shared among all trans-
actions. The precise organization of this log varies be-
tween TM proposals: in some software TM systems the
log is a software table ([3], [4], [9], etc.). In the original
HTM proposal by Herlihy and Moss, the log resides en-
tirely in caches [5]. More recent hardware proposals per-
mit the transaction log to overflow from the cache into
user-level memory ([8], [1], etc.). The following discus-
sion supposes an unbounded hardware system similar to
VTM [8], but this is merely a convenience – the same
techniques could be applied to other types of TM sys-
tem.

The entries in the transaction log – each representing
a read or write access to a piece of memory by some
transaction – contain some reference to the transaction
to which they belong (e.g. a pointer to the transaction’s
LTS), the address of the accessed data, and, in the case
of writes, a space to store data – for a write in a run-
ning transaction introduces two copies of data for the
same address: a transactional copy and a nontransac-
tional copy.

Memory writes inside a transaction are somewhat more
complicated. As with transactional reads, the write must
be added to the footprint of the transaction. Since trans-
actional writes, as mentioned, introduce two values for
the same address into the system – one transactional
and one nontransactional – both values must be stored,
one in the transaction log and one in architected state.
Here there are two design choices. In eager versioning,
the original, nontransactional value is stored in the log,
and memory is optimistically updated with speculative
state. In lazy versioning, the speculative value is stored
in the log, and the memory remains untouched. The
former policy, first proposed for HTMs in LogTM [6],
streamlines the commit case while requiring some extra
work for aborts; the latter, used in UTM [1], VTM [8],

and others, streamlines aborts while requring some ex-
tra work for commits. As our own TM system logs non-
transactional state, the following discussion will assume
eager versioning – however, either policy is suitable for
all techniques we will describe. Thus, in our scheme,
when a transaction writes an address it has already writ-
ten before, then the old entry must be left alone, as only
the old entry has the correct nontransactional value.

Transactions are committed when their control flow
reaches an end transaction instruction. When the
TM system sees such a command, then it must atomi-
cally commit the entire transaction. There are several
ways to do this, but the method we describe (fol-
lowing VTM) consists of two parts: the logical com-
mit, wherein the state of the transaction is changed to
Committing, and the physical commit, wherein all en-
tries for the committing transaction are removed from
the log. Once the entire physical commit has com-
pleted, the committing transaction may be shifted to
state nontransactional (NonT), whereupon it senesces.
As this transaction’s write accesses have specula-
tively been written through to architected state, nothing
more than this is required.

Finally, transactions may conflict. While some conflicts
can be resolved by momentarily stalling one of the con-
flicting processes, sometimes it is necessary to abort one
of the transactions. When this happens, one or more
losers must be determined. If a nontransactional access
conflicts with a set of transactions3 then all transactions
must lose. If two (or more) transactions conflict, then
some kind of priority, such as timestamp, can be used to
determine which transactions win and which lose.

Although optimizations exist wherein losing transac-
tions are simply paused until the winners have retired,
we will focus here on the case where the losing trans-
actions must abort. When a transaction is aborted, it
is first logically aborted: its state is changed to Abort-
ing and its registers, including the PC, are restored to
the initial checkpoint. Then, it is physically aborted: all
entries for the aborting transaction are removed from
the log. Read-only entries are, as with commit, simply
removed, whereas write entries will need to be rolled
back to memory – that is, their data field must be writ-
ten back to architectural state, replacing the speculative
value there – before they are removed from the trans-
action log. Once the physical abort has completed, the
aborting transaction may be shifted to state NonT.

We summarize the actions that must be taken on read

3 There could be more than one conflicting transaction, as in the
case of a nontransactional write conflicting with a set of transac-
tional reads.

and write log entries for aborting and committing trans-
actions, under eager versioning, in Figure 1.

Ifll back w
Iemfve thig entd, Iemfve thig entd,

Iemfve thig entd, Iemfve thig entd,

Abort Commit

Write

Read

Figure 1. Actions required for log entries of
aborting and committing top-level transac-
tions, under eager versioning

2.2. retry

A language-level transactional primitive called retry
is introduced in Harris’ et al. work on compos-
ing transactions [3]. If a programmer can, by examining
within a transaction the current architected state, de-
termine that the current instance of that transaction
cannot possibly commit, then a retry may be in-
serted into the transaction. When control flow in a
transaction reaches a retry, the transaction is de-
scheduled (but left in state Running) and all its writes
are rolled back. A retrying transaction loses all con-
flicts, so that only when something in its readset is writ-
ten will it be reawakened, aborted, and reexecuted. The
retrying transaction therefore wastes no CPU cy-
cles spinning.

With respect to the transaction log, a retrying transac-
tion is simply one which loses all conflicts. Thus, as per-
tains to the log, handling retry devolves to handling
aborts.

2.3. Nested Transactions

We now describe the behavior of closed nested trans-
actions. This discussion is based on the work of Moss
and Hosking [7], which also introduced the term ‘closed
nesting’.

When a running transaction executes a
begin transaction, then a nested transac-
tion has begun: a new LTS is allocated, a parent field in
it is set to the current running LTS, and a child field in
the current running LTS is set to the new LTS.

Memory accesses, both writes and reads, are exactly the
same inside a closed-nested transaction as their top-level
counterparts: each access gets its own log entry just as

is described above. If a nested transaction accesses an
address which one of its ancestors accessed, there is of
course no conflict; instead the nested transaction creates
a new log entry. Aborts and commits, however, are dif-
ferent.

When a closed nested transaction commits, it should
be coalesced into its parent transaction. By this we
mean that its entire readset and writeset should be
merged into its parent’s. When the TM system sees
an end transaction, and the current running LTS
C has a (non-NULL) parent P , then a nested trans-
action needs to be committed. As before, the state
of the running transaction is set to Committing. This
thread’s current running LTS is set to P , as the par-
ent is now the current running transaction for this
thread. Then, the transaction log for C must be co-
alesced into the transaction log for P . Writes in
C’s transaction log are not copied into P ’s transac-
tion log unless P has no writes to that address. Any
reads in C’s transaction log are copied into P ’s trans-
action log, unless P already has a write access to that
address.

When a closed nested transaction loses a conflict and
aborts, then its entire effect must be undone. As before,
its state is changed to Aborting and the register check-
point is restored. It is possible that a nested (or indeed
top-level) transaction with descendants of its own loses
a conflict. So, when a transaction is aborted, all its de-
scendants must recursively be aborted. To abort a nested
write, we must roll it back and remove its entry from the
log. It is possible that several descendants have all writ-
ten the same address; in this case, all these writes must
be rolled back in a LIFO manner, with the deepest chil-
dren rolling back their writes first. However, if we force
all transactional accesses to read or write at some block
granularity, and ensure that every accessed block gets its
own transaction log entry (such that a very large single
memory access might produce several transaction log
entries, and a very small memory access might induce
false sharing) then it is sufficient simply to roll back the
shallowest aborting write to a given address, and then re-
move all aborting writes for that address from the trans-
action log. All reads of nested, aborting transactions are
also simply removed from the transaction log.

We summarize, as before, the actions that must be taken
on read and write log entries for aborting and commit-
ting nested transactions in Figure 2. Differences from
top-level aborts and commits are in italics.

Wf shallowest aborting

entry for this address,

roll back; Wn any case

remove this entry

Wf DRA has no write

entry for this address,

coalesce up; Wn any

case remove this entry

Ifl bfackweafmcvt

Abort Commit

Write

Read
Wf DRA has no entry for

this address, coalesce

up; Wn any case remove

this entry

Figure 2. Actions required for log entries
of aborting and committing closed nested
transactions, under eager versioning. DRA
stands for ‘deepest running ancestor’

2.4. Lazy Abort, Commit, and Coalesce

In the TM model given above, actions fall generally
into two types: transaction state actions and transaction
log actions. Transaction state actions logically change
the transaction state. For example, in VTM, changing
a transaction’s state to Committing logically commits
the transaction, though the actual physical commit is not
complete until their log walker (a mechanism which it-
erates through the transaction log physically aborting
and committing transactional accesses) has physically
committed every log entry belonging to the committing
transaction – at which point the transaction’s state is
shifted from Committing to NonT.

Such a physical commit cannot be performed instanta-
neously. In VTM, which uses lazy versioning, when a
memory access conflicts with a transaction in state Com-
mitting, then the access is stalled until the physical com-
mit is complete. The VTM proposal suggests that the ac-
cess must be stalled, but actually, it is possible to avoid
this stall.

In VTM, upon any kind of memory access at all, if there
is projected to be4 a conflicting entry in the transaction
log, the log must be searched to find the conflicting ac-
cess so that the proper action may be determined.

Therefore, any access which conflicts with a committing
transaction has already had to do a log lookup to deter-
mine that its conflictee is logically committing. It could
simply read the logged value and get on with its exe-
cution. This action could trigger a background physical
commit for this entry, coupled with the entry’s removal
from the transaction log.

The same technique may be applied to the eager-
versioning TM which we have been describing. How-

4 The projection is due to VTM’s transaction filter (XF) and over-
flow counter, and is beyond the scope of this paper.

ever, as it supports closed nesting, there may be sev-
eral aborted writes to the same location. Care must be
taken to roll them back in the proper order: again, if ac-
cesses are forced into a block granularity, it is suffi-
cient to roll back only the oldest (shallowest) aborted
write to any location.

Log entries of committing transactions may be lazily
handled by simply being removed from the log when-
ever they are encountered in a log lookup.

In Figure 1 and Section 2.2, we summarized the actions
that must happen to transaction log entries on aborts,
commits, and retry. We presented these actions at the
log entry level in anticipation of this kind of lazy abort
and commit. Indeed, the lazy technique may be applied
to nested transactions as well; once a nested transaction
is logically committed, it may be physically coalesced
lazily, by following the actions in Figure 2.

When a nested transaction commits lazily, its state is im-
mediately shifted into state Committing. When a mem-
ory access conflicts with one of its transaction log en-
tries, the LTS pointer in that entry is changed to the com-
mitting transaction’s parent. If the parent already has an
entry for the given address, it is overwritten only if the
parent’s entry is a read and the committed access is a
write. The committing transaction’s state may ultimately
be shifted into NonT (releasing that LTS for reuse) when
a low-priority background walker has moved through
every transaction log entry, lazily aborting and commit-
ting entries, at least once since the transaction began
committing.

When a nested transaction aborts lazily, its state is im-
mediately shifted into state Aborting. Since an aborted
transaction with descendants aborts all its descendants
as well, it is possible that a memory access will conflict
with several aborting entries for the same address. In this
case, the oldest aborting write must be rolled back. Then,
it and all other aborting matches are dropped from the
transaction log.

To a reader, the correctness of lazy abort and commit is
perhaps not immediately obvious. We provide a set of in-
variants which ensure that lazy abort and commit works
properly:

• A correct value is unambiguously available be-
tween memory and the transaction log.

• If there are N transactional writes to an address
logged, there must be N + 1 versions of the data
at that address between memory and the transac-
tion log, so that any write can be rolled back.

• Every access to an address which exists in the trans-

action log must logically perform a log lookup.5

• Whenever a log lookup finds aborting or commit-
ting entries, they must all be lazily aborted or com-
mitted then.

• If there is a set of aborted writes for an address in
the log, the correct value will be in the log entry for
the oldest aborted write.

• The only way multiple aborted writes for an ad-
dress may appear in the transaction log is if they
are ancestrally related in a direct lineage. That is,
given the set S of transactions to which the multi-
ple aborted write entries for the same address be-
long, every transaction in S is either an ancestor or
a descendant of every other transaction in S.

• Then, the oldest log entry will necessarily be the
entry belonging to the most ancestral transaction –
that is, the transaction which has no ancestors in S.

It is also possible to lazily handle retry. When
a transaction lazily retrys, its state is shifted to
state Retry Running, and the transaction is desched-
uled. When a memory access conflicts with one of the
retrying transaction’s accesses, the retrying trans-
action is immediately shifted to state Aborting, restarted,
and the conflicting log entry is dealt with as an abort-
ing entry.

In other HTM proposals such as VTM and UTM the ef-
ficiency of the log walker mechanism is of cardinal im-
portance, since conflicting accesses may be forced to
wait on it. With lazy abort, commit, and coalesce, the
log walker may no longer strictly even be necessary. As
mentioned, in our own HTM implementation we still
employ a transaction log walker, but its purpose is only
to permit us to recycle LTSs and to ensure that the log
stays efficient. We shall discuss this in more detail in
Section 4.

2.5. Lazy Abort & Commit – An Example

We clarify lazy abort and commit by means of an exam-
ple. Suppose the following transactional program:

1 a = 10; b = 10;
2 begin_transaction(); // trans P
3 a = 1;
4 begin_transaction(); // trans A
5 if (f()) {
6 b = a;

5 Some proposals cache part of the transaction log; if the cache can
guarantee these invariants about the log then it is not a problem.

7 abort;
8 } else {
9 a = a + 1;
10 }
11 end_transaction(); // trans A
12 begin_transaction(); // trans B
13 a = 2;
14 end_transaction(); // trans B
15 end_transaction(); // trans P
16 c = a * b;

The first log entry is created at line 3. It contains an indi-
cation of to which transaction it belongs (P), with what
address it is concerned (a), and the original value at that
address (10):

P (Running) a 10

After f() evaluates to true on line 5, the second log
entry will be created at line 6, and belongs to transac-
tion A. Before it can create this entry, though, transac-
tion A needs to find the proper value of a. Since there
is a log entry for a, transaction A first looks it up. It ob-
serves that the transaction owning that entry is an ances-
tor, so it does not conflict, and that it is running. This
means that it can find the correct value for a in mem-
ory, where transaction P put it6. The transaction log is
now:

P (Running) a 10
A (Running) b 10

Now transaction A loses a conflict on line 77 and must
restart as A’ (as it is given a new LTS). Upon its second
execution, f() evaluates to false, and transaction A’
adds a new entry to the transaction log:

P (Running) a 10
A (Aborting) b 10
A’ (Running) a 1

Note that the entry for a under transaction A’ has as its
original value the (speculative) value left there by trans-
action P. Now transaction A’ logically commits without
complication and transaction B begins. Upon its attempt
to write a on line 13, it finds the committing entry of
transaction A’ in the transaction log, which is therefore
lazily committed. Since the deepest running ancestor of
A’, P, already has a write to a, no coalesce is needed; the
committing entry is simply removed from the log. The
log now:

6 From transaction A’s point of view, the value transaction P placed
in memory is the correct one, since if transaction P is aborted, so
too will be transaction A.

7 Actually it explicitly aborts, but the effect is the same.

P (Committing) a 10
A (Aborting) b 10

B (Committing) a 2

Transaction B and P now logically commit, and the non-
transactional code at line 16 is executed. It must access
the transaction log for both a and b. For a it finds two
committed writes, which are then lazily committed by
being removed from the transaction log; as they are com-
mitted, the correct value is found in memory. For b it
finds an aborted write. The correct value for b is for-
warded from the aborted entry to the nontransactional
access, and the entry is lazily aborted by writing back its
original value to memory and then being removed from
the transaction log. After line 16, the transaction log is
once again empty.

3. Open Nesting and orElse

We now describe two language-level proposals which
improve transactional performance and capability: open
nesting and orElse. We show that these techniques
can, like abort, commit, and coalesce, be handled lazily.

3.1. Open Nesting

In Section 2.3, we discussed how a committing nested
transaction must coalesce its readset and writeset up into
its parent. This exposes the parent to conflicts on ad-
dresses the committed, nested child accessed. Moss and
Hosking have proposed a technique, open nesting, which
provides a way of avoiding these conflicts [7].

An open nested transaction is exactly like a closed
nesting transaction on begin transaction, trans-
actional reads and writes, and aborts. However, when an
open nested transaction commits (which event we shall
call open committing,) its writes are allowed to commit
to architected state, and all addresses which it wrote are
removed from its ancestors’ transaction logs. An open
committing transaction may also register with its ances-
try compensation code which is to be run should an an-
cestor be aborted. Open nesting can compose, so if mul-
tiple compensation codes are registered, they must be
executed in LIFO order.

This technique can improve concurrency by reducing
the length of time a transaction is exposed to conflict
on some memory locations, but it constitutes a violation
of atomicity and care must be taken by the programmer
that no harm will come from other transactions or non-
transactional code accessing open committed data.

Because of this violation of atomicity, open nesting is
not a technique automatically and transparently pro-
vided by a TM system. It is expected that the open
nesting semantics will be fully visible at the language
level, and that the programmer will not only provide
suitable compensation code, but will further ensure that
other transactional or even nontransactional code which
may view open committed data that is later revoked will
still function correctly. Nonetheless, the technique pro-
vides substantial opportunity for optimization in certain
classes of problems where contention is strong but lo-
calized and compensation can be readily performed.

As we have said, until it commits, an open nested trans-
action is identical to any other transaction. Since the
compensation code expects to compensate for a com-
pleted transaction, an open nested transaction must not
write anything to architected state until it commits; yet
when it commits, only those writes inside its region
should be written to architected state.

In Figure 3, we show the behavior of log entries for
an aborted or committed open-nested transaction, with
differences from closed-nesting behavior shown in ital-
ics. We observe that this behavior can also be performed
lazily. When an open nested transaction aborts, it may be
lazily handled just as described in Section 2.4. When it
commits, its state is immediately shifted into state Open
Committing. When a memory access conflicts with one
of its transaction log entries, that entry is lazily open
committed. If it is a write, then every entry to the same
address in the transaction log is checked. Those which
belong to ancestors of the open committing transaction
are removed from the log, as is the open committed en-
try. Open committed read entries are simply lazily re-
moved from the log.

Ifl bacckwe mlavktmhig
eimtnlfktlmbh laddte ,ltkcc
va45;lIilainl4a elte7k8e

mbh leimtn

Wf shaslaofwe shwshtabsoshr

fhilnhaoggaoywhbsfog

hysf hbadlfase baottfhbbr

fhilnhase bahysf,

9e7k8elmbh leimtn

Abort Commit

Write

Read chilnhase bahysf,

Figure 3. Actions required for log entries
of aborting and committing open nested
transactions, under nontransactional log-
ging

3.2. orElse

In their work on composable transactional mem-
ory [3], Harris et al. introduce several novel extentions
to language-level atomicity in the context of a soft-
ware TM system for the Haskell functional program-
ming language. Among these extensions is the primitive
orElse.

In Section 2.2, we described the retry command. Har-
ris et al. observed that retry can be used for more
than optimizing an event loop. If, instead of simply de-
scheduling on a retry, a process provided an alternate
transaction to attempt, then several retrys could be
composed – much like the Unix select syscall com-
poses file-event loops. The code {transaction A()
orElse transaction B()} results in either A or
B being executed. A is attempted first; if it commits
then the whole block is exited. If, however, A executes
a retry, then B is attempted. If it should commit, then
the whole block is exited (without committing the ac-
tions performed by A), but if B reaches a retry as
well, then the whole block stalls as if on a retry, its
readset being the union of the readsets of both A and B.

When a transaction under orElse lazily commits, then
its log behavior is exactly like a closed nested trans-
action lazy commit, as described in Section 2.4. Like-
wise when it lazily aborts. However, should it execute a
retry, this can be handled lazily as well.

In our implementation of orElse, when a transaction
directly (not transitively) containing an orElse begins,
it has an orElse bit set in its LTS. Transactions di-
rectly containing an orElse have a retry placed im-
mediately before their end transaction. It is the
job of the HLL to ensure that should A or B commit,
execution is continued from after their enveloping trans-
action’s end transaction.8

When a transaction lazily retries under orElse, it is im-
mediately descheduled and its state is shifted to state
OrElse Running. When a memory access conflicts with
one of the retrying transaction’s accesses, then its ances-
try is walked, from its parent up towards the top-level
ancestor, until it finds a transaction T whose parent is
either NULL or has an unset orElse bit. Then, T is
aborted, which aborts all its descendants including the
conflictee. Finally, the conflict is handled as a nested
abort. Note that the ancestry traversal allows orElse
to compose.

8 It is also the HLL’s job to ensure that when a transac-
tion retries under an orElse., the process is not desched-
uled but instead is continued after the retrying transaction’s
end transaction.

Whether the conflict spurred a wakeup or not, the
OrElse Running entry which conflicted must be rolled
back (if it is a write) and in any case removed from the
transaction log.

Care must be taken in the case that A reads address
M , then B writes M . As orElse was introduced as
an extension of the functional language Haskell, this
case does not occur there. However, in languages which
feature destructive update, a policy must be decided –
should B’s write trigger a wakeup of A, or not? Either
case can be handled lazily, but a more detailed discus-
sion of the two policies is beyond the scope of this pa-
per.

4. Our HTM Implementation

We have implemented a HTM system, based on
VTM [8], which performs lazy commit, abort, co-
alesce, open nesting, retry, and orElse. In this
section, we will describe some of our implementa-
tion details.

4.1. VTM

The original hardware TM proposal of Herlihy and
Moss [5] constrained the transaction log to reside in the
caches, which both limits the amount of state a transac-
tion may touch and constrains transactions never to live
past a context switch. VTM is an unbounded HTM pro-
posal which permits transactions to overflow to a trans-
action log stored in virtual memory. This log, called the
transaction address data table or XADT, is arranged as
a hash, to facilitate lookups. VTM transactions are as-
sociated with a transaction status word (XSW), which
is analogous to the state component of our LTS. VTM
also supports transaction logging in the cache, only over-
flowing to the XADT when transactions are context-
switched out or when their footprint no longer fits in the
cache.

4.2. Alias Tables

In order to support nesting, our TM system must allow
for multiple transaction log entries for the same data ad-
dress. In general, it should be possible to achieve this
by overloading whatever method a TM system uses to
permit multiple readers. As VTM’s method for support-
ing multiple readers is not defined, we have developed
a solution which we call alias tables. These are arrays
of XADT entries whose allocation (and growth) is man-

aged by software, and which contain multiple log en-
tries, all of which pertain to the same address. Alias
tables are linked to the XADT using an XADT entry
whose address field contains the address referred to by
the alias table’s entries, but which also contains a pointer
to the alias table. One advantage of these alias tables is
that there is strong temporal locality among aliasing en-
tries – when one entry for an address is read, others for
that address are likely soon to be read – and such a ta-
ble will keep them close together. When several entries
all alias to the same address in our XADT, they are guar-
anteed to be collocated on a common alias table. Almost
all lazy operations may be accomplished with only one
pass over the alias table.

For example, when an entry belonging to a closed nested
transaction is lazily committed, a pass is made over its
alias table to see if there is an entry for this address un-
der the committing transaction’s deepest running ances-
tor. If there isn’t such an entry, then the entry’s LTS is
changed to point to that deepest running parent’s LTS; if
there is such an entry, then the committing transaction’s
entry is coalesced into it as described in Section 2.4.

4.3. Software Support

VTM makes use of software9 in allocating virtual mem-
ory space for its various structures, primarily the XADT.
Our system also requires software support for these
structures but additionally leaves LTS management to
software. As suggested in [8], our system maintains a
pool of LTSs. As mentioned in Section 2.4, transaction
state is only ever shifted to NonT by a software XADT
walker. This walker is responsible for deciding when a
committing or aborting transaction no longer has any
XADT entries, and releasing that transaction’s LTS to
the free LTS pool.

5. Conclusion

Most unbounded hardware TM proposals have avoided
attempting to support closed nesting, both because it was
not perceived as critical to performance and because it
was not straightforward to do so. In their paper on nested
transactional memory [7] Moss and Hosking introduced
an HTM system which could support closed nesting, and
showed how it could be extended to support open nest-
ing, a proposed method for reducing the time that criti-
cal transactional values remain vulnerable to conflict.

9 Whether OS or user-level is not specified. Either is possible, and
arguably user-level software is preferable

Open nesting is indicative of a compelling justification
for true – that is, closed nesting – support in any TM sys-
tem, hardware or software: nesting tends to enable in-
teresting and useful language-level transaction features.
Nor is open nesting the only such feature. orElse, pro-
posed by Harris et al., is a method of composing alter-
native transactions, and it also requires closed nesting
support. As it was first described in the context of the
functional language Haskell, we have shown what is re-
quired to support orElse in languages with destructive
update.

Hardware transactional memory support has, as its pri-
mary advantage over the otherwise more flexible soft-
ware transactional memory, the potential for superior
performance. To this end, we have introduced a tech-
nique for lazily aborting and committing transactions
which eliminates the need for memory accesses to stall
when they conflict with committing or aborting trans-
actions. We have shown that transactions may also be
lazily coalesced, permitting nested transactions also to
abort and commit lazily. Further, we have shown how the
aforementioned novel techniques of open nesting and
orElse may, too, be accomodated through lazy meth-
ods. While lazy abort and commit are not necessarily
hardware techniques, they are well-suited to hardware,
as they can be accomplished incrementally, and in par-
allel with execution.

Finally, we have detailed some aspects of our own HTM
implementation which permit it to perform efficiently
lazy abort and commit.

References

[1] C. S. Ananian, K. Asanović, B. C. Kuszmaul, C. E. Leis-
erson, and S. Lie. Unbounded Transactional Memory. In
Proceedings of the Eleventh IEEE Symposium on High-
Performance Computer Architecture, Feb. 2005.

[2] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom,
J. D. Davis, B. Hertzberg, M. K. Prabhu, H. Wijaya,
C. Kozyrakis, and K. Olukotun. Transactional Memory
Coherence and Consistency. In Proceedings of the 31st
Annual International Symposium on Computer Architec-
ture, pages 102–113, June 2004.

[3] T. Harris, S. Marlowe, S. Peyton-Jones, and M. Herlihy.
Composable Memory Transactions. In Principles and
Practice of Parallel Programming (PPOPP), 2005.

[4] M. Herlihy, V. Luchangco, M. Moir, and W. N. S. III.
Software Transactional Memory for Dynamic-Sized Data
Structures. In Proceedings of the Twenty-Second Sym-
posium on Principles of Distributed Computing (PODC),
2003.

[5] M. Herlihy and J. E. B. Moss. Transactional Memory: Ar-
chitectural Support for Lock-Free Data Structures. In Pro-

ceedings of the 20th Annual International Symposium on
Computer Architecture, pages 289–300, May 1993.

[6] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and
D. A. Wood. LogTM: Log-based Transactional Memory.
In Proceedings of the Twelfth IEEE Symposium on High-
Performance Computer Architecture, Feb. 2006.

[7] J. E. B. Moss and T. Hosking. Nested Transactional Mem-
ory: Model and Preliminary Architecture Sketches. In
Proceedings of the workshop on Synchronization and Con-
currency in Object-Oriented Languages (SCOOL), 2005.

[8] R. Rajwar, M. Herlihy, and K. Lai. Virtualizing Transac-
tional Memory. In Proceedings of the 32nd Annual In-
ternational Symposium on Computer Architecture, June
2005.

[9] N. Shavit and D. Touitou. Software transactional mem-
ory. In Symposium on Principles of Distributed Comput-
ing, pages 204–213, 1995.

