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Abstract: The paucity of currently available therapies for glioblastoma multiforme requires novel
approaches to the treatment of this brain tumour. Disrupting cyclic nucleotide-signalling through
phosphodiesterase (PDE) inhibition may be a promising way of suppressing glioblastoma growth.
Here, we examined the effects of 28 PDE inhibitors, covering all the major PDE classes, on the
proliferation of the human U87MG, A172 and T98G glioblastoma cells. The PDE10A inhibitors PF-
2545920, PQ10 and papaverine, the PDE3/4 inhibitor trequinsin and the putative PDE5 inhibitor MY-
5445 potently decreased glioblastoma cell proliferation. The synergistic suppression of glioblastoma
cell proliferation was achieved by combining PF-2545920 and MY-5445. Furthermore, a co-incubation
with drugs that block the activity of the multidrug resistance-associated protein 1 (MRP1) augmented
these effects. In particular, a combination comprising the MRP1 inhibitor reversan, PF-2545920 and
MY-5445, all at low micromolar concentrations, afforded nearly complete inhibition of glioblastoma
cell growth. Thus, the potent suppression of glioblastoma cell viability may be achieved by combining
MRP1 inhibitors with PDE inhibitors at a lower toxicity than that of the standard chemotherapeutic
agents, thereby providing a new combination therapy for this challenging malignancy.

Keywords: glioblastoma; drug combination; multidrug resistance-associated protein 1; phosphodi-
esterase inhibitor; proliferation

1. Introduction

Glioblastoma multiforme (GBM) is the most common and aggressive brain tumour in
adults, and its treatment options are limited [1]. The standard therapy is surgical resection
followed by radiotherapy and concomitant chemotherapy with temozolomide [2]. Despite
recent progress in understanding the disease, the 2-year and 5-year survival rates of patients
with GBM remain poor, at only 27 and 5%, respectively [3,4]. Glioblastoma exhibits high
invasive potential and inherent resistance to the currently available treatments; therefore,
novel targeted therapeutic strategies are urgently needed [5,6].

Inhibition of cyclic nucleotide-specific phosphodiesterases (PDEs) is one promising
avenue for GBM treatment. These enzymes catalyse the hydrolysis of the important intra-
cellular second messengers cyclic adenosine monophosphate (cAMP) and cyclic guanosine
monophosphate (cGMP), thereby disrupting many of the biochemical cascades involved in
cancer [7]. It is known that glioblastoma cells are sensitive to intracellular cAMP levels, and
their apoptosis can be triggered by cAMP elevation [8–11]. Furthermore, the expression
of several PDEs is upregulated in glioblastoma cells [12–14], and the specific isoforms
PDE1C, PDE4A, PDE4B, PDE4D and PDE5 have been suggested as therapeutic targets in
glioblastoma [9,10,13]. Multiple brain-penetrant inhibitors of various PDEs are currently
in clinical trials for neurodegenerative conditions such as Alzheimer’s disease, Parkin-
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son’s disease, and Huntington’s disease [15], and these are available for repurposing in
glioblastoma treatment.

In addition to PDEs, the levels of cAMP and cGMP are also regulated by the activities
of multidrug resistance-associated proteins (MRPs) [16], and exposure to MRP inhibitors
was shown to sensitise glioblastoma cells to chemotherapeutic drugs [17–20].

To assess the pharmacological inhibition of PDEs as a potential glioblastoma treatment,
we examined the effects of 28 selected PDE inhibitors, covering the entire range of PDE
isoforms, on cell proliferation and cAMP and cGMP levels in the human glioblastoma
cell lines U87MG, A172 and T98G. We also investigated the effects of the co-treatment of
glioblastoma cells with PDE and MRP inhibitors to find drug combinations with maximal
antiproliferative action.

2. Results
2.1. Effects of PDE Inhibitors on the Viability of Glioblastoma Cell Lines

To identify whichPDE inhibitors were able to attenuate the proliferation of U87MG,
A172 and T98G glioblastoma cells, we tested 28 compounds inhibiting all the major PDE
classes, using the CCK-8 viability assay (Figure 1). The most potent inhibitors of glioblas-
toma cell viability were the PDE10A inhibitors PF-2545920, PQ-10, papaverine and TC-E
5005, which decreased the percentage of viable cells by 55–95% in at least one of the three
cell lines (Figure 1; Supplementary Table S2). Among the inhibitors of PDEs 1–4, only
trequinsin had a pronounced antiproliferative effect, suppressing the number of viable cells
in all three glioblastoma lines by 89–98.5%. Some inhibitors of PDEs 5–7, such as MY-5445,
zaprinast and TC3.6, moderately inhibited cell viability by 51–77%. Other drugs, including
all the tested inhibitors of PDEs 8, 9 and 11, suppressed the viability of the U87MG, A172
and T98G glioblastoma cells by not more than 20% (Figure 1; Supplementary Table S2). We
observed that the U87MG cells were not as sensitive to PDE inhibitors as the A172 and
T98G cells.

2.2. Effects of PDE Inhibitors on cAMP and cGMP Levels in Glioblastoma Cell Lines

The relatively low antiproliferative potency of some PDE inhibitors was unlikely to
be caused by the lack of expression of the corresponding PDE targets in glioblastoma
cells, as our RT-PCR experiments revealed detectable transcription of the majority of PDEs
in all three of the glioblastoma lines tested, except for some PDE6 isoforms (Figure 2).
The relative mRNA expression levels of various PDEs were generally similar in all the
lines, although the PDE4C and PDE9A mRNAs were appreciably expressed only in the
U87MG and T98G cells, but not in the A172 cells. Likewise, the mRNA expression levels of
enzymes generating cGMP and cAMP varied little in the three glioblastoma lines, although
we noted that, unlike U87G cells, the A172 and T98G cells lacked the expression of the
mRNA encoding adenylyl cyclase type 8.

The inhibition of cellular PDE activity should lead to an increase in the cyclic nu-
cleotide concentration. We, therefore, determined the effects of PDE inhibitors on cAMP
and cGMP levels in the glioblastoma cells (Figure 3). To increase the detectability of the sig-
nals associated with cyclic nucleotides, cAMP and cGMP levels in the cells were amplified,
respectively, by a 30-min stimulation with 1 µM forskolin and a 10-min stimulation with
100 µM SNAP.
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Figure 1. Antiproliferative activity of PDE inhibitors in glioblastoma cells. The heatmap illustrates the percentage of viable
U87MG, A172 and T98G cells determined in the CCK-8 assay following treatment with PDE inhibitors at the indicated
concentrations for 72 h (n = 3–12). Detailed quantitative data are presented in Supplementary Table S2.
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Figure 2. Relative expression levels of genes encoding PDEs, adenylyl cyclases and guanylyl cyclases in the U87MG, A172 

and T98G glioblastoma cells. (A) Representative gels illustrating mRNA expression levels in each of the three glioblastoma 
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deviation of three independent experiments. 
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Figure 2. Relative expression levels of genes encoding PDEs, adenylyl cyclases and guanylyl cyclases in the U87MG, A172
and T98G glioblastoma cells. (A) Representative gels illustrating mRNA expression levels in each of the three glioblastoma
lines tested. White asterisk (*) on the gel indicates the band of the correct size. (B) mRNA expression levels normalised by
the GAPDH mRNA signal in glioblastoma cells grown to maximal confluence. Data are presented as the mean ± standard
deviation of three independent experiments.
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Figure 3. Effects of PDE inhibitors on cAMP and cGMP levels in glioblastoma cell lines. Incubation of glioblastoma cell
lines with PDE inhibitors at a concentration of 100 µM altered cAMP (A) and cGMP (B) signals evoked, respectively, by
1 µM forskolin and 100 µM SNAP. Fractional changes are presented as the mean ± standard deviation of 4–6 independent
experiments. The statistical significance of induced changes is indicated as follows: * p < 0.05; ** p < 0.01, *** p < 0.001,
**** p < 0.0001.

At a concentration of 100 µM, nearly all the tested PDE inhibitors, apart from vin-
pocetine, irsogladine and sildenafil, significantly increased cAMP levels in at least one of
the three glioblastoma lines (Figure 3A). Fewer PDE inhibitors altered cGMP levels: only
trequinsin, sildenafil, tadalafil and zaprinast increased cGMP levels by >25%, whereas
lower, but still significant, increases in cGMP concentrations were caused by ibudilast,
MY-5445, TC3.6, BAY 73-6691, PQ10, papaverine, PF-04449613, PF-2545920, TC-E 5005, BC
11-38 and IBMX in at least one of the two glioblastoma cell lines tested (Figure 3B).

Notably, although there were no significant correlations between the degree of ele-
vation of cAMP and the extent of the antiproliferative effects of the inhibitors at a con-
centration of 100 µM, moderate negative correlations between the increase in cGMP level
and cell survival were observed (Supplementary Figure S1). Generally, the drugs that
strongly attenuated glioblastoma cell survival (Figure 1), such as trequinsin, MY-5445,
PF-2545920 and PQ10, tended to significantly upregulate both cAMP and cGMP concen-
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trations (Figure 3A,B). On the other hand, IBMX and ibudilast failed to cause appreciable
antiproliferative effects, despite significantly enhancing both cGMP and cAMP levels
(Figures 1 and 3).

2.3. Effects of Combinations of PF-2545920 with Other PDE Inhibitors on the Survival of
Glioblastoma Cells

Next, we examined whether combinations of PDE inhibitors would exert a synergistic
suppressive effect on glioblastoma cell viability. We focused only on the combinations
involving the PDE10A inhibitor PF-2545920 [21] because there is evidence of the high
accumulation of this drug in the brain [22], and it was shown to be effective in colorectal
cancer [23,24]. In an initial set of experiments, we performed the CCK-8 assay with
glioblastoma cells treated with 10 µM PF-2545920, to which one other PDE inhibitor was
added at a concentration, which, on its own, suppressed cell viability by no more than
20% (Figure 4). For weak inhibitors, the default concentration was 100 µM. We observed
that a combination of 10 µM PF-2545920 and 50 µM MY-5445 had a particularly strong
antiproliferative effect in all three lines tested (Figure 4A–C).

The additional combinations that led to at least a two-fold decrease in viability in
at least one cell line included PF-2545920 and the PDE inhibitors irsogladine, piclami-
last, trequinsin and sildenafil for A172 and T98G cells; vinpocetine, cilostimide, BAY-73-
6691, PF04449613 and TAK-063 for A172 cells; and TC3.6 and papaverine for T98G cells
(Figure 4A–C).

Next, we determined the concentration–response relationships for the inhibitory effect
of PF-2545920 on the survival of glioblastoma cells alone or when co-applied with MY-5445
at concentrations of 25, 50 and 100 µM (Figure 5A). We found that PF-2545920 and MY-5445
exerted a clear synergistic effect in the U87MG and T98G cell lines, whereas in A172 cells,
synergy was not prominent, likely due to the overwhelming antiproliferative effect of
100 µM MY-5445 (Figure 5B).

As cell migration plays a pivotal role in cancer progression, we also determined
the effect of the combination of PF-2545920 and MY-5445 on the migratory capacity of
glioblastoma cell lines using the Radius™ cell migration assay. The U87MG and A172
cells that were treated by vehicle or 10 µM PF-2545920 achieved nearly a complete gap
closure to 75–93% of the initial gap area in 24 h (Figure 5C). In contrast, the gap closure was
significantly lower in the U87MG and A172 cells treated with 50 µM MY-5445 (27.98 and
24.56%, respectively) or with a combination of PF-2545920 and MY-5445 (10.90 and 14.86%,
respectively). Qualitatively similar effects of these treatments were also observed in T98G
cells, although in this case, the extent of the closure was lower for all the treatments, as
even the vehicle-treated cells only covered 38.22% of the initial gap area after 24 h. In
all three cell lines, the suppressive effect of the combination treatment on the degree of
migration was significantly stronger than the effect of treatment with PF-2545920 alone
(p < 0.05, post hoc Tukey test). The degrees of migration of cells treated with MY-5445
alone and with the combination of MY-5445 and PF-2545920 were not statistically different.
However, in all three cell lines tested, maximal suppression was always achieved after the
combination treatment.

2.4. Effects of Combinations of PF-2545920 and MY-5445 with MRP1 Inhibitors on the Survival of
Glioblastoma Cells

Since, on the one hand, MRPs affect the intracellular concentrations of cAMP and
cGMP [16] and, on the other hand, MRP inhibitors were shown to sensitise glioblastoma
cells to the cytotoxic action of other drugs [19,20], we investigated the effect of treatments
with PF-2545920 and/or MY-5445 in combination with MRP1 inhibitors MK-571 and
reversan on glioblastoma cells (Figure 6).
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Figure 4. Effects of combinations of PF-2545920 with other PDE inhibitors on the survival of glioblastoma cells. CCK-8
proliferation assays were performed in the U87MG (A), T98G (B) and A172 (C) cell lines cultured with 10 µM PF-2545920
(yellow bar) with other PDE inhibitors used either at a concentration that inhibited cell viability by not more than 20%
or at the default concentration of 100 µM (blue bars), or with combinations of these inhibitors at the same concentration
with 10 µM PF-2545920 (green bars). Data are presented as the mean ± standard deviation. The statistical significance of
differences in cell survival in the presence of drug combinations is indicated as follows: * p < 0.05; ** p < 0.01; *** p < 0.001;
**** p < 0.0001 (from survival under PDE inhibitor alone); & p < 0.05; && p < 0.01; &&& p < 0.001; &&&& p < 0.0001 (from
survival under 10 µM PF-2545920).
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Figure 5. Synergistic suppressive action of PF-2545920 and MY-5445 on the viability and migration of glioblastoma cells.
(A) Concentration–response relationships for the inhibitory action of PF-2545920 on the viability of U87MG, A172 and T98G
cells were obtained using the CCK-8 assay in the absence or presence of MY-5445 at 25–100 µM. (B) In the synergy plots,
the colour indicates the degree of synergism, and the values indicate synergy scores using the Loewe model as previously
described [25]. The stronger the synergy is, the darker blue is the background, and the higher is the synergy score. Asterisks
indicate the significance of synergy scores obtained following a one sample t-test (* p < 0.05; ** p <0.001, *** p < 0.0001; the
number of replicates (N) is shown in the left top corner of the matrix display). (C) Migration capability of U87MG, A172
and T98G cells was assessed from the degree of closure of the initial cell-free gap area (outlined by a contour line in the
centre of each image) after 24 h in culture using the Radius™ cell migration assay. C: control (vehicle); MY: 50 µM MY-5445;
PF: 10 µM PF-2545920: PF+MY: combination treatment. Concentrations for the migration experiment were chosen from
the synergy points designated by ovals in (B). Data are presented as the mean ± standard deviation (n = 3). The statistical
significance of differences in cell migration is indicated as follows: * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001 (post
hoc Tukey’s test).
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Incubation with either MK-571 or reversan alone at a concentration range 1–50 µM did
not appreciably affect the survival of the U87MG and T98G cells, although in the A172 cells,
treatment with MK-571 at a high concentration of 50 µM decreased the number of viable
cells to 58% of the control (Figure 6B). Co-treatment with 25 µM reversan significantly
potentiated the antiproliferative effects of both PF-2545920 (Figure 6A–C) and MY-5445
(Figure 6D–F). Furthermore, the incubation of all three glioblastoma lines with PF-2545920,
MY-5445 and 25 µM reversan simultaneously caused a particularly strong suppression of
glioblastoma cell growth; therefore, the number of viable cells was decreased by >80%, even
at low concentrations of PF-2545920 and MY-5445 (Figure 6G–I). MK-571 also potentiated
the antiproliferative action of the PDE inhibitors upon co-treatment, although to a lower
degree in the A172 (Figure 6B,E,H) and T98G cells (Figure 6C,F,I). In the U87MG cells, a
significant potentiating effect of 25 µM MK-571 was observed only during co-treatment
with the highest tested concentration of MY-5445 (50 µM, Figure 6D).

3. Discussion

It has been known since the 1970s that brain tumours, and glioblastomas in particular,
have lower concentrations of cAMP and cGMP than normal brain tissue [26–29]. PDEs
catalyse the hydrolysis of cyclic nucleotides and are, therefore, important physiological
regulators of cAMP and cGMP levels [30]. The inhibition of PDEs has been proposed as
a viable therapeutic strategy in many cancers [7,31]. Given that multiple PDE isoforms
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are expressed in the brain [32,33], we screened 28 compounds that inhibit all the major
PDEs and identified several inhibitors with promising antiproliferative activity against the
U87MG, A172 and T98G glioblastoma cell lines. Further experiments using the PDE10A
inhibitor PF-2545920 and the PDE5 inhibitor MY-5445 revealed the synergistic suppression
of proliferation in two of the three glioblastoma cell lines tested. Finally, we demonstrated
that treatment with PF-2545920 and MY-5445 at low micromolar concentrations in combina-
tion with the MRP1 inhibitor reversan afforded nearly complete inhibition of glioblastoma
cell growth.

Our present results broaden the spectrum of PDE inhibitors that might be used to
attenuate the proliferation and survival of glioblastoma cells. Several previous studies have
used pharmacological inhibition of PDE4 by rolipram to increase cAMP concentrations
and thereby decrease the viability of glioblastoma cells [9,34]. In our experiments, 100 µM
rolipram did not have a pronounced inhibitory effect on the survival of glioblastoma
cells, but this result is not necessarily in disagreement with previous reports, as potent
suppressive activity against U87MG and A172 cells has only been reported at several-fold
higher concentrations of the drug, up to 1 mM [34], or when rolipram was combined
with forskolin [9]. However, we did observe a modest antiproliferative effect of the PDE4
inhibitors irsogladine and piclamilast, particularly when they were combined with the
PDE10A inhibitor PF-2545920. In addition, we observed a moderate effect of the PDE1
inhibitor vinpocetine at a concentration of 100 µM, which was broadly in agreement with
the published data on its antiproliferative action in both the U251MG cells and several
primary glioblastoma tumour cell lines (IC50 = 34–273 µM) [13]. Further, our data regarding
the effect of the PDE10 inhibitor papaverine are in line with those of Inada et al., who
showed the antiproliferative action of papaverine against U87MG and T98G cells in the
WST-8 assay with IC50 values of 29 and 40 µM, respectively [35].

The inhibition of glioblastoma cell proliferation has also been achieved by treatment
with relatively non-selective PDE inhibitors, such as the methylxanthines theophylline,
theobromine, caffeine and IBMX [9,36–40]. In general, these compounds decrease glioblas-
toma cell survival at concentrations above 100 µM, which is similar to the low potency
of caffeine and IBMX observed in our experiments (<10% suppression of proliferation
at 100 µM). Another non-selective PDE inhibitor, zaprinast, was reported to block the
proliferation of U87 cells by ~20% at a concentration of 100 µM [37]. This was also seen
in our experiments, where zaprinast had a comparable effect on U87MG cells, while its
antiproliferative action against A172 and T98G cells was even stronger. Thus, our screen-
ing of several previously tested PDE inhibitors was largely consistent with the results of
published reports. However, to the best of our knowledge, this is the first report of potent
suppression of human glioblastoma cell viability by the compounds trequinsin, MY-5445,
PF-2545920, PQ10 and TC-E-5005.

Notably, although all the PDE inhibitors with high antiproliferative potency in our
experiments caused the elevation of both the cAMP and cGMP concentrations, a general
increase in the cyclic nucleotide levels on their own was likely a necessary but not sufficient
condition for suppressing glioblastoma cell proliferation, because several PDE inhibitors
failed to affect cell survival despite they increased cAMP and cGMP levels. In our recent
study in rat glioma cells, a significant correlation was found between the ability of PDE
inhibitors to suppress cell growth and elevate cAMP (but not cGMP) levels [41]. However,
we note that the effects of the drugs on cell survival were quite different in rat glioma cells
compared to those in the human glioblastoma cells in the present study.

The pronounced antiproliferative action of some of the PDE inhibitors on glioblastoma
cells may be partially explained by their additional effect on non-PDE targets. For example,
zaprinast is a strong glutaminase inhibitor that may decrease the abnormally high levels of
D-2-hydroxyglutarate in glioblastoma cells [42]. Papaverine is a mitochondrial C1 inhibitor,
which may account for its radiosensitising action in solid tumours [43], while MY-5445
has been reported to antagonise the ABCG2 transporter, the upregulation of which is
implicated in cancer multidrug resistance [44].
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Drug combinations comprising PDE inhibitors have been used to treat several cancers,
including glioblastoma. In particular, rolipram, ibudilast and papaverine have been shown
to augment the effects of temozolomide, the current standard of care in glioblastoma
treatment [45–47]. Sildenafil is currently in clinical trials for the treatment of recurrent
high-grade glioma in combination with sorafenib and valproic acid [48]. Interestingly, the
inclusion of ibudilast, papaverine and sildenafil in such combinations is not based mainly
on their inhibitory efficacy against respective PDEs. Papaverine potently disrupted the
interaction between high mobility group box 1 (HMGB1) and the receptor for advanced
glycation end-products (RAGE) [49], which was thought to be the essential mechanism of its
anti-proliferative action against glioblastoma cells [35,46]. Ibudilast sensitised glioblastoma
cells to temozolomide by inhibiting the macrophage migration inhibitory factor [47], while
sildenafil is included on the basis of its ability to inhibit drug transporters ABCB1 and
ABCG2 [50]. Our experiments showed the potent antiproliferative actions of several
previously untested combinations of PDE inhibitors, including the synergism of the effects
of PF-2545920 and MY-5445. It is possible that the particular efficacy of this combination
could, again, be partly explained by the inhibitory action of MY-5445 on the ABC family
drug transporters [44].

Migration and invasion are crucial cellular mechanisms in the spread of glioblastoma
within the brain. Several PDE inhibitors have been tested for their action on the migratory
and invasive properties of cancer cells. IBMX (500 µM), dipyridamole (100 µM), milrinone
(10 µM), piclamilast (1 µM), rolipram (10 µM), the PDE7 inhibitor spiroquinazolinone
(1 µM) and the PDE8 inhibitor PF-04957325 (1 µM) significantly attenuated the migration
of MDA-MB-231 breast cancer cells in transwell and/or wound healing assays [51]. The
PDE5 inhibitors vardenafil and sildenafil, at a concentration of 100 µM, also significantly
suppressed the migration of prostate cancer cell lines in the wound healing assay [52].
At the same concentration, IBMX and cilostamide inhibited the migration of Panc1 and
MiaPaCa2 pancreatic cancer cells [53]. Caffeine at concentrations of 100 and 500 µM
inhibited the migration of U87MG cells [38], whereas vinpocetine (30–300 µM) failed to
significantly affect the cell migration of primary glioblastoma cells [13]. Interestingly, at a
relatively low concentration (1 µM), sildenafil increased the wound-healing ability of T98G
cells, a potentiating effect that was not seen in cells after PDE5 knockdown [14]. In our
experiments, the PDE5 inhibitor MY-5445 at a concentration of 50 µM had a clear inhibitory
effect on the migration of all three glioblastoma lines tested, including T98G cells, which
was further potentiated by the co-application of 10 µM PF-02545920. The qualitatively
opposite actions of the PDE5 inhibitors sildenafil [14] and MY-5445 (this study) on cell
migration could be explained by the different potencies of the drugs, distinct effects on
other targets [44], or differences in the assays used. Further experiments using the invasion
assay will be required to confirm the ability of PDE inhibitors to prevent the spread of
glioblastoma cells.

The maximal suppression of glioblastoma cell viability in our experiments was
achieved by treatment with drug combinations that included the MRP1 inhibitor reversan.
Co-treatment with another MRP1 inhibitor, MK-571, led to qualitatively similar but less
dramatic effects. Although neither MRP1 inhibitor alone significantly affected the prolifera-
tion of glioblastoma cells at 25 µM, they significantly enhanced the antiproliferative actions
of PF-2545920 and MY-5445, particularly in ternary combinations. Although MRP proteins
may take part in the regulation of cAMP and cGMP levels [16], it is more likely that the
additive negative effect of MRP1 inhibitors on glioblastoma cell proliferation in our exper-
iments was linked to the inhibition of PDE inhibitor efflux. The up-regulation of MRP1
expression underlies the multidrug resistance mechanisms in various tumours, including
high-grade gliomas, as well as glioblastoma cell lines, such as T98G [18,54–56]. Various
MRP1 inhibitors have been shown to increase the efficacy of conventional chemotherapies
in glioblastoma cells [17–20].

Our present results allow a cautious conclusion that the potent inhibition of glioblas-
toma cell viability may be achieved by combining MRP1 inhibitors with PDE inhibitors,
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especially the PDE10A inhibitor PF-2545920. The next logical steps in the translational
preclinical evaluation of PDE inhibitors and their combinations may involve in vivo ex-
periments in PDX mice and in vitro tests in organoids from patient-derived glioblastoma
cells. Such studies, as well as a further elaboration of the molecular mechanisms and
signalling pathways mediating the antiproliferative effect of the tested combinations of
PDE and MRP1 inhibitors, will be necessary before assessing the potential efficacy of these
treatments in the clinical setting.

4. Materials and Methods
4.1. Cell Culture and Reagents

The human glioblastoma astrocytoma cell lines U87MG (ECACC 89081402), derived
from a female patient with grade IV glioma [57], and A172 (ECACC 88062428), derived from
a 53-year-old male with glioblastoma [58], were obtained from the European Collection of
Authenticated Cell Cultures. The T98G cell line, derived from a glioblastoma removed from
a 61-year-old male [59], was obtained from the American Type Culture Collection (ATCC®

CRL1690™). Mutations in multiple genes, including TP53 (for T98G), PTEN (for T98G), RB1
(for A172), NF1 (for U87MG, T98G) and others, have been reported previously in these cell
lines [60]. All cell lines were maintained in Dulbecco’s Modified Eagle Medium/Nutrient
Mixture F-12 (Gibco, Thermo Fisher Scientific, Paisley, UK) supplemented with 10% foetal
bovine serum (Merck Life Science, Gillingham, UK) and 5% antibiotic antimycotic solution
(10,000 units penicillin, 10 mg streptomycin and 25 µg/mL amphotericin B; Merck Life
Science, Gillingham, UK) at 37 ◦C in the humidified atmosphere of 95% air and 5% CO2.

The following twenty-two previously reported PDE inhibitors were purchased from
Sigma (Gillingham, UK): vinpocetine (PDE1), EHNA (PDE2), amrinone, cilostamide, mil-
rinone (all PDE3), trequinsin (PDE3/4), ibudilast, piclamilast, roflumilast, rolipram (all
PDE4), sildenafil, tadalafil (all PDE5), zaprinast (PDE5/6), BRL-50481, TC3.6 (all PDE7),
BAY 73-6691, PF-04449613 (all PDE9), PF-2545920, PQ-10 (all PDE10A), BC 11-38 (PDE11),
caffeine and IBMX (non-selective cAMP PDE inhibitors). Four PDE inhibitors, irsogladine
(PDE4), MY-5445 (PDE5), PF-04671536 (PDE8) and TC-E 5005 (PDE10A), were purchased
from Tocris Bioscience (Bristol, UK). Two PDE10A inhibitors, papaverine and TAK-063,
were from Acros Organics (Geel, Belgium) and Selleckchem (München, Germany), re-
spectively. The MRP1 inhibitors reversan and MK-571 were purchased from Sigma. All
compounds were dissolved in dimethyl sulfoxide (DMSO) to obtain 10–100 mM stock
solutions, except papaverine and MK-571, which were dissolved in sterile water.

4.2. Cell Viability Assay

Cell viability was measured using the Cell Counting Kit-8 (CCK-8) assay (Sigma,
Gillingham, UK). U87MG, A172 and T98G cells were seeded at a density of 8,000 cells/well
in 96-well plates and allowed to adhere overnight at 37 ◦C in a humidified atmosphere of
95% air and 5% CO2. No cells were seeded in the perimeter wells to ensure measurement
accuracy and those were filled with 100 µL of sterile water. Initially, all compounds were
tested at the following three concentrations: 100, 10 and 1 µM. All initial dilutions were
made in DMSO (except for papaverine, which was diluted in sterile water) and then diluted
in the medium at 1:100 ratio. Compounds that showed antiproliferative activity were tested
at additional concentrations to generate dose–response curves. Then, culture medium was
removed from the plates, and fresh medium containing tested compounds at different
dilutions was added. Control cells were treated with vehicle solution containing 1% DMSO
or 1% sterile water. Blank controls without cells were also prepared. At 72 h after treatment,
5 µL of the CCK-8 solution was added to every well containing 100 µL of tested compounds,
controls or blank. After 3 h of incubation at 37 ◦C in the dark, the plates were read using
a Mithras LB940 multimode microplate reader (Berthold Technologies, Harpenden, UK),
and the absorbance values were determined at 490 nm. The percentage of viable cells
was calculated for each well as follows: % cell survival = {(At − Ab)/(Ac − Ab)} × 100,
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where At is absorbance of the medium with tested compound, Ac is absorbance of control
medium and Ab is absorbance of blank medium.

4.3. cAMP Accumulation Assay

Cells were trypsinised, washed in phosphate-buffered saline (PBS) and resuspended
in the stimulation buffer (PBS containing 0.1% bovine serum albumin). The number of cells
per well was optimised to obtain the best response for each cell line and comprised 7000,
1000 and 800 for the A172, U87MG and T98G cell lines, respectively. Cells were added
to 384-well white optiplates (PerkinElmer Life & Analytical Sciences, Seer Green, UK).
The compounds were diluted in a 96-well plate in the stimulation buffer containing 1 µM
forskolin and added at concentrations ranging between 100 nM and 100 µM. The cAMP
accumulation was measured after 30-min stimulation using a LANCE cAMP detection kit
(PerkinElmer Life & Analytical Sciences, Seer Green, UK). Plates were read using a Mithras
LB940 multimode microplate reader (Berthold Technologies, Harpenden, UK). Percentages
of the maximum response (Emax) change in cells after forskolin stimulation were calculated
for each PDE inhibitor using the following formula: %Emax change = 100 − (At/Ac × 100),
where Emax is efficacy or the maximum response, At is absorbance of the stimulation buffer
with tested compound and Ac is absorbance of stimulation buffer with DMSO.

4.4. cGMP Accumulation Assay

Cells were trypsinised and resuspended in the stimulation buffer (PBS containing
0.1% bovine serum albumin). The optimal numbers of cells per well, which generated
a signal within the linear range of the standard curve, were 20,000 for A172 cells and
40,000 for T98G. We found it problematic to optimise the cGMP assay for the U87MG
cell line, because over 80,000 cells per well were required; therefore, this line was not
included in this experiment. The cells were pre-treated with compounds at a concentration
of 100 µM and added to 384-well white optiplates (PerkinElmer Life & Analytical Sciences,
Seer Green, UK). cGMP was detected after a 10-min stimulation using the cGMP assay
based on the HTRF® technology (Cisbio Bioassays, Codolet, France). The NO donor (S)-
nitroso-N-acetylpenicillamine (SNAP; Tocris, Bristol, UK), an activator of soluble guanylate
cyclase, was dissolved in DMSO and diluted in the stimulation buffer at 0.1–100 µM in 96-
well plates, which were read using a Mithras LB940 multimode microplate reader (Berthold
Technologies, Harpenden, UK). The following ratio of the acceptor and donor emission
signals was calculated for each well: Ratio = Signal665nm/Signal620nm × 10,000.

The percentage of the Emax change in cells after SNAP stimulation was calculated for
each PDE inhibitor and analysed in the same way as in the cAMP accumulation assay.

4.5. Gene Expression

U87MG, T98G and A172 cells were seeded in T75 flasks and allowed to grow to
maximal confluence. The cells were trypsinised, and total RNA was extracted using an
RNeasy Mini kit (Qiagen, Manchester, UK) according to the manufacturer’s instructions.
A NanoDrop Lite spectrophotometer (Thermo Fisher Scientific, Paisley, UK) was used
for measurements of RNA quantity and purity. Aliquots of RNA were frozen at −20 ◦C
for the subsequent study of the expression levels of genes encoding PDEs, guanylyl cy-
clases and adenylyl cyclases by using RT-PCR with a QuantiTect reverse transcription kit
(Qiagen, Manchester, UK). The primers used for PCR amplification are indicated in Sup-
plementary Table S1. All PCR products were resolved on a 2% agarose gel with ethidium
bromide and imaged using a G:Box iChemi gel documentation system (Syngene, Cam-
bridge, UK). The density of each band was analysed with GeneTools software (Syngene,
Cambridge, UK). Densitometry measurements of each gene were normalised using the
GAPDH mRNA signal.
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4.6. Drug Combination Assays

To study the effects of combined treatments of the PDE10A inhibitor PF-2545920
with other PDE inhibitors, the CCK-8 viability assay was performed as described above.
Initially, a combination of 10 µM PF-2545920 and another PDE inhibitor at a concentration
at which the inhibition of glioblastoma cell viability was no more than 20% or, if virtually
no inhibition was seen, at 100 µM. Thus, 10 µM PF-2545920 was co-applied with PQ-10 at
0.25 µM; with trequinsin at 25 µM; with MY-5445, zaprinast, TC-E 5005, papaverine and
TC3.6 at 50 µM; and with the remaining PDE inhibitors at 100 µM. Then, concentration–
response relationships for PF-2545920 were determined in the presence of MY-5445, co-
treatment with which, in the previous experiment, suppressed viability by >50% in all
three glioblastoma cell lines.

4.7. Cell Migration Assay

To study their migratory properties, glioblastoma cells were plated at a density of
8000 cells/well into a RadiusTM 96-well cell migration assay plate (Cell Biolabs, Inc., San
Diego, CA, USA) and allowed to adhere overnight at 37 ◦C in a humidified atmosphere of
95% air and 5% CO2. Each plate well contained a 0.68-millimeter non-toxic, biocompatible
hydrogel spot, where the cells cannot attach. At the start of the experiment, the gel spot was
removed according to the manufacturer’s instructions, and fresh medium containing tested
compounds at different concentrations added. Control cells were treated with the medium
containing 1.1% DMSO. Digital images of the gap closure were taken with a DinoEye Edge
5MP eyepiece digital camera (Lambda Photometrics Ltd., Harpenden, UK) and analysed
with ImageJ software.

4.8. Statistical Analysis

Cell survival data were normalised to the average signal from control wells (100%)
and the statistical significance of differences from control values was assessed using the
one sample t-test (in comparison to the hypothetical mean of 100%). Concentration–effect
relationships for drug inhibitor assays were analysed by using Prism 8 (GraphPad, Inc., San
Diego, CA, USA). Data were fitted by the four-parameter logistic equation to obtain pIC50
values. The analysis of combination effects was performed using Combenefit software
(version 2.021) [25] with the additive Loewe synergy effect as a baseline model [61,62]. Cell
migration was calculated as the difference between the initial area of the hydrogel spot in
the beginning of the experiment and the area that remained free of cells in 24 h. Data are
presented as the mean ± standard deviation. Statistical significance of the drug effects was
analysed using the Student’s t-test for pairwise comparisons or by one-way analysis of
variance followed by the Dunnett’s or Tukey’s post hoc tests for comparisons involving
more than two groups. Correlation between the extent of the antiproliferative effect of PDE
inhibitors and the degree of elevation of cAMP or cGMP levels was assessed by calculating
Pearson coefficient r.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijms22189665/s1, Figure S1: Analysis of the relationships between the degree of elevation of
cAMP or cGMP levels and the extent of the antiproliferative effect of PDE inhibitors at a concentration
of 100 µM in glioblastoma cell lines U87MG, A172 and T98G, Table S1: Primers used for PCR, Table S2:
Details of statistical analysis of the experiments illustrated in Figure 1.
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