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ABSTRACT

This thesis is devoted to the study of bargaining using the
In Part I (chapters

1 examine commitment inthe role of bilateralwe
bargaining. different notions of commitment inTwo
bargaining explored in different non-cooperativetwoare
infinite-time horizon sequential games with complete and
perfect information. (chapters 3 andIn Part II 4) we
examine the role of outside options in bilateral
bargaining. Two models are presented, each model is
cooperative infinite-time horizon sequential withgame
complete information. The differmodels in theirtwo
approach to modelling the interlacing of the search and
bargaining processes. finalthe this thesis,In ofpart

(chapter 5)zPart III ofpresentwe a a
decentralised market, based on
the market search for partners with whom to trade and when

they initiatebuyer and seller sequentialmeeta a a
bargaining process over the terms of trade.

methods of non-cooperative game theory.
and 2)

theory 
the idea that the agents of

a non-
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INTRODUCTION

pervasive phenomena in modern societies,a

a bazaar.
interesting. occupies important inMoreover, placean
economic sincetheory, the "pure bargaining is theat

This,
therefore,

In this thesis we non-
I and IIParts

with commitmentthe roles of and outside options in bilateral

The starting point this thesis isfor the classic bypaper
Rubinstein (1982) . that RubinsteinIn presentspaper, a non-
cooperative infinite-time horizon sequential with completegame
information, which represents a bargaining process. In that game, the

bargainers make offers alternately untiltwo theagreement on
partition of the surplus is reached. Rubinstein proved the existence
of a unique sub-game perfect equilibrium partition. One may interpret
the exemplifiesRubinstein that the role of time ingame as one
bilateral bargaining.

All the bargaining games to be presented in this thesis either are
based this alternating-offers sequential due toon game

infinite-time horizon sequential Furthermore,innotion game.an
thesis "method of will depend thatthe our on

In this thesis we shall restrict attention to bargaining games with
game is an example.

on
would bethat concern us . tothe issues

opposite pole of economic phenomena from
is another important reason to study bargaining.

shall study bargaining using the methods of 
cooperative game theory.

throughout 
presented by Rubinstein in his 1982 paper.

bargaining. Part III deals with embedding a bilateral bargaining model 
in a large market context.

complete information, of which Rubinstein's (1982) 
board this assumption so as to cast away the issues 

and thus be able to focus

problem"
"perfect competition".

proof"

UNIVERSITY 
LIBRARY 

CAMBRIDGE 
—“ 1,1 -J

alone the study of bargaining is useful and 
bargaining

entirely
Rubinstein or else incorporate the essence of this alternating-offers

Bargaining is a pervasive phenomena in modern societies, ranging 
from trade and wage negotiations to arms control talks to haggling in 

For this reason

We shall take on 
that arise with incomplete information;

A future research programme

of this thesis are concerned
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informationof differential thekinds models betocertain toadd

the outcomes. However t may a
will wait untilhave the confusion thatresearch to

in this Binmorecontext

(chapters 1 and 2) of the thesisI
commitment in bilateral different notions ofTwo

sequential with complete and perfectgames
information.

firstThe notion commitmentof that explore iswe

the future cost of backing down from committed bargaining positiona
(for example. budge from offer,not to not to acceptan or an

thisopponent's offer). notion, making commitment is costless,In a
but revoking a commitment is costly.

In the second notion of commitment that we explore, is
making iscommitment costly, commitmenttrue: isa a

costless. in that, a
bargainer chooses, strategically, the length of time for which he is
committed.

himself. Thus,a
a demand (i.e.,commitment la genuinea

unconditional take-it-or-leave-it offer) only if a bargainer chooses
to commit himself for an infinite length of time.

of this thesis we examine the role ofIn Part II
modelsTwooutside are

each model is a
account

essentially the issue is that
some

differ in their approachoutside toan

(1987b) provides a thought-provoking discussion of the possible causes 
of this confusion and the possible routes to remedy.

"Nash

Commitment in this second notion is irrevocable during the 
length of time that a bargainer has chosen to commit 

is irrevocable game"

programme 
currently resides in the literature 
with incomplete information" is resolved;

the following.
Bargainers can take actions during the negotiation process to increase

presented in this thesis and then investigate the resulting change in 
equilibrium outcomes. However, it may be noted that such

(chapters 3 and 4) 
options in bilateral bargaining. Two models are presented, 

non-cooperative infinite-time horizon sequential game 
with complete information. Both models explicitly take into 
the search dimension of the situation: 
the bargainers have to engage in some sort of search in order to find 

option. The two models

bargaining.
commitment in bargaining are explored in two different non-cooperative 
infinite-time horizon

In Part

on "the correct analysis of games

we examine the role of

but revoking
In this notion commitment has a time dimension,

the reverse
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oneone
to

market which the institution formationtheory of a
(i.e., the buyers and thedecentralised. The of the marketagents

location. The theory,sellers) do know each others'not, ex-ante,
matching technology within which thetherefore, includes agentsa

sellerpartners with When buyer andsearch for whom to trade. a a
the terms ofthey initiate a sequential bargaining processmeet, over

concerned with embeddingtrade. other words, chapter 5 isIn a
bilateral bargaining model in a large market context.

Throughout the thesis, the solution concept that we shall employ in
analyse bargaining is the perfectorder the sub-gameto games

equilibrium concept due to Selten (1965, 1975) .

Finally, caution. The chapters self-contained, inword of area
This has meantthat each chapter can be read independently. that(a)

statements will appear in each of the chapters, for example, thesome
definitions bargaining situation andof of the sub-game perfecta
equilibrium numbering equations,and (b) that the ofconcept,

chapter is independent from that of
any other chapter.

modelling the interlacing of the search and bargaining processes. Once 
takes the search dimension of the situation into account, one has

(chapter 5), we develop a 
of price formation is

"views"
"view"

In the final part of the thesis, 
in

to form a

footnotes and figures in any one

Part III

on how the search and bargaining processes ought 
be interlaced. Two such "views" are explored in chapters 3 and 4.
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Chapter 1

The role of commitment in bargaining I
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1 . INTRODUCTION

examine the rolethe shall ofthis and nextIn we
each of the two chapters,.commitment In a

notion of a non­
complete andwithgame

is cannotIt aonenow

Binmore (1987, 1) for(see and an
discussion of this point).

other hand,theOn

an importantThere isliterature. no

by paper
commitment offocused thewhere he on

thefact,In as a
that is,themselves to toto

bargaining positions.

and ofdefines commitment

or
of backing downthe future from one' scostincreasethat

demand.
model complete informationinbe a

(i.e., no

The Nash
there

A

Schelling views 
commit

aspects
bargaining process

great deal of attention in this
doubt that commitment must have

Schelling defines commitment impressionistically and by way 
examples, but the essential idea seems to involve making a demand and 
'burning one's bridges', or taking actions during the negotiation

bargaining.
struggle between bargainers 
convince their opponent that they will not retreat from - advantageous

(b) time and (c) information within the bargaining process 
introductory

a generalised version of this very idea will 
with

in which commitments are irrevocable. In the Nash demand game, 
is only one stage, in which bargainers simultaneously make demands.

chapter 
in bilateral bargaining.

model will be presented that will capture some of the features of the 
commitment in bargaining. Each of the models is 

cooperative infinite-time horizon sequential 
perfect information.

role in shaping the outcome in bilateral bargaining situations, 
Schelling in his classic paper (Schelling 

entirely
argued forcefully 
(1956)),

view on

fairly well-established that one cannot usually offer 
sensible estimate of what is likely to happen in bilateral bargaining 
situations without having a view on the roles to be ascribed to (a) 
commitment,

(1953) demand game can be viewed as a model of commitment 
irrevocable.

as is

hardly been explored in the recent literature on 
game-theoretic strategic approach to bargaining, 
time and information have received a

process
In this chapter, 

formalised in a game-theoretic 
informational asymmetries).

Chap.
The commitment aspects of bargaining have 

the non-cooperative

Dasgupta
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a

in
the It must

to as
games .

shall commitment

We assume
associated withto

information

The be(to in 2) hassecton
In a can

histo, not to not to acceptor
offer. theto a means

takes actions

but at a cost.
ita

an

the (common) discount
such that (i)Infactor. we

(ii) and

a
themakes

(b)zero.
forand two subgameany gamefor

game
offers alternately, 
himself

game 
information

process 
offer,

any
for(CA,

CA,

CA:

bargaining
that make

(cA,cB)*(0,0) , 
(cA,cB)*(l-8+E, 0)

-cB-0

the players making
player can commit

presented
the bargaining 

budge from his < 
Commitment

stage, 
firstly, that it is rarely the case that commitments are irrevocable. 
Secondly, that the notion of simultaneous demands is not particularly 
realistic in most bilateral bargaining situations. And thirdly, that 
bargaining processes ought to be modelled as infinite-time horizon

equal to one

denote the cost to player i of backing down from his 
bargaining position and 8

section 3 we prove: (a) for
cB) * (0,1-8+e)

opponent's offer. Commitment to a bargaining position 
following. The player takes actions that make it costly 
later back down from this bargaining position. Commitment is therefore 
revocable, but at a cost. Commitment to a bargaining position can lead 
the bargaining process into a "concession game", a game in which one 
of the bargainers has to concede in order for the bargaining process 
to either yield an agreement or proceed to a game of fresh offers and 
counteroffers.

Let C£(i=A,B) < 
commitment to a

formalise Schelling's view of 
non-cooperative infinite-time horizon sequential 
and complete information. We assume complete 
the usual problems associated with incomplete 

games, and besides the interest of this chapter is solely 
in examining the role of commitment in bargaining.

In this chapter we 
in bargaining, in a 

with perfect 
avoid

for him to

demand represents an unconditional take-it-or-leave-it offer. Recently 
Crawford (1982) has studied a simple two-stage game of incomplete 
information in which there is uncertainty about the extent to which 
commitments are genuinely irrevocable. In his game the bargainers, 

first stage, make demands simultaneously. It must be noted,

cB>0 
any £>0, and (iii) 

vo, w, for any £>0, and for any 8<1 the bargaining game has 
unique subgame perfect equilibrium partition in which the player who 

first offer (i.e., starts the bargaining) receives payoff 
and the other player receives payoff equal to 

8<1 the bargaining game has
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(i)

(c)
and for for ifany

offer, has two

zero,
in to

the first offer,
one

shareWe that result (a)at seems
counterintuitive.
case

while

In with thea

he to not to
demand. His from hiscost is

reach where thewe a

now

not
not
backwards we

offerfirstthe

thecan
negligible costn ii player absolutely no

player)
player) gives the

any
then 1

> accept 
commitment

ci=0 
first

opponent's < 
large. Thus

cost”

’’negligible cost”
(i.e., ’’large

’’clout ”

(1982) 
' Cj>l-8 and 
the bargaining game 
(i) in which player i receives 

j receives payoff equal to zero, and 
receives payoff equal to 1-8 

and on the other hand,

incur a

of backing down 
stage in the bargaining process 

players have made mutually incompatible commitments. Commonsense would 
suggest that the player with the ’’negligible cost" (i.e., who made 

the demand) should ’’concede", that is back down from his commitment to
since he knows that his opponent will 

large cost. Working 
in which the player who makes 

demands the whole surplus and commits not to budge 
from this demand, ought not to be sub-game perfect. Note that the fact 
that the player who makes the first offer (i.e., the 

commit himself before the responder

wish to

to budge from his demand, 
"concede" because his opponent will 

see that this equilibrium,

our view,

perfect equilibrium partitions, (i) in which the player who makes the 
first offer receives payoff equal to one and the other player receives 
payoff equal to zero, and (ii) in which the player who makes the first 
offer receives payoff equal to 1/(1+8) and the other player receives 
payoff equal to 8/(1+8) (i.e., the Rubinstein (1982) solution),
for i*jz i,j=A,B: for c^=0 and for any c^>l-8 and for any 8<1, 
player i makes the 
subgame perfect equilibrium partitions, 
payoff equal to one and player
(ii) in which player i receives payoff equal to 1-8 and player j 
receives payoff equal to 8, and on the other hand, if player j makes 

then the bargaining game has a unique subgame perfect 
equilibrium partition in which player j receives payoff equal to 
and player i receives payoff equal to zero.

first sight,
To explain why it seems counterintuitive we take the 

where the player who makes the first offer has a negligible cost 
of backing down from his commitment to a bargaining position, 
the other player has a large cost of backing down from his commitment 
to a bargaining position. In the equilibrium, the player 
"negligible cost" demands the whole surplus and commits himself to not 
to budge from this demand, and the other player accepts, 
this player (i.e., the responder) deviates, 
demand; furthermore, he commits

Now suppose 
and rejects his opponent's 

hishimself



I

£<U.

1 
P



8

and the fact that iscommitmentwhatsoever.
negligible cost" playerii

work.
(1956)

down commitment indeed greater
ii than the ofcost

then is f does the commonsense

The

Thus

the down hisfromcost

stalemate
the who hasoutcome. to to

not no
his cost
offer.

L

convincingly, 
and thus,

cost”

’’concedes” r

’’negligible cost” 
player will not 

optimal for the 
because if he

once the players make 
is the

"where

"concede"

argument break 
what is a reasonable explanation for result (a)?"

player will receive no surplus if he 
of backing 

Therefore,
guaranteed 

respond to his 
(if the offer is coupled with 

matter how large is 
to not to accept the

The question 
down, and thus,

argument is in fact reflected in Schelling's 
quite convincingly, that in bargaining 

the player with the large cost 
should indeed have

Schelling (1956) argues, 
"weakness is often strength"; 
of backing down from his 
bargaining strength" than the player with 

backing down from his commitment. But we have here, 
result that appears to contradict this very commonsensical notion.

(negligible) 
commitment - hence a negative payoff, 
mutually incompatible commitments, 

Realising this, the player 
opponent's demand will accept any offer 
a commitment to not to budge from the offer) 

of backing down from his commitment

The commonsense

Sub-game perfection 
negligible cost prevents the 

to commit himself to not to budge from demanding the whole surplus.
revocable at a

the negligible
in this chapter, a

either. This is

player is correct to realise that the "large 
"concede". But, given the equilibrium, it is not 

"negligible cost" player to
"concedes", then the bargaining process proceeds into a 

subgame which begins with the "large cost" player demanding the whole 
surplus and committing himself to not to budge from this demand, 
the "negligible cost" 
but he will incur
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2 . THE MODEL

A and B,
an

not
his offer.to tonotor

to
is therefore revocable t cost. toat a a

"concession

a

t>l,The the subgame time depends theofstructure at t zany on
history.

Suppose at time t-1 player j(1)

the subgameThen,
structure. or
not to commit,

where C NCchooses
denotes

("Ac")moves:

to

1 is placed at the end of section 4.i Figure

(j=A,B) made an offer to player i 
i=A,B) but player j did not commit himself to not to budge from

i.e., player i 
and

(i*j,
his offert and player i rejects the offer.

has the following 
to commit,

game Gj.

"to

"immediate"

(denote it by G^_)
Player i makes an offer and decides whether, 

himself to not to budge from his offer, 
denotes "to commit"(x,a)e [0,1]X{C,NC},

"not to commit"; refer to Figure I.1

Two players, A and are bargaining on the partition of a pie of 
size one. The pie will be partitioned only after the players reach 
agreement. The players make offers alternately. In the bargaining 
process a player can commit himself to, not to budge from his offer, 

Commitment to a bargaining 
that make it

is modelled as

at time t+1,

bargaining position can lead the bargaining process into a 
game", a game in which one of the players has to concede in order for 
the bargaining process to either yield an agreement or proceed to 
game of fresh offers and counteroffers.

The bargaining process is modelled as a non-cooperative infinite­
time horizon sequential game with complete and perfect information. 
The time dimension of bargaining process is discrete, te{0,1,2, . . . } .

If a=NC, then player j moves: he either accepts ("Ac") or rejects 
("R") the offer. If player j accepts the offer, then the game ends. If 
player j rejects the offer, then the game proceeds,

at time t,

accept his opponent's 
position means the following. The player takes actions 
costly for him to later back down from this bargaining position. 
Commitment is therefore revocable, but at a cost. Commitment
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he either accepts the offer ("Ac")moves: or
commits himselfoffer to the offernotto accept

offer but commit himselfdoes If("RNC").notor
If player j chooses then"RC",

where the players have made mutuallyawe are
Thus, the game proceeds, time t+1,at

game"t be described below in (2)to (denoted by
iswhere the offer which player ito has Ifx

jplayer chooses then the proceeds, time t+1,at togame
another game"f to be described below in (3)
L±(x) ,

(2) Suppose at time t-1 player i (i=A,B) has
offer, (XG [0,1] ) , and player j (j*i, j=A,B)not to x

has committed himself the offer they haveto tonot x;

at time t,Then, the subgame has the following
Player istructure. does notmoves: or

concede ("Neon") . If iplayer concedes, then time theat t game
proceeds to the subgame G-, described in (1) above. If player i does
not concede,
whether concedeto ("Neon"). If player jnot toor
concedes, If player jends . does concede, thennot at
time t+2 the game proceeds to the subgame K^(x).

(3) Suppose at time t-1 player i (is=A,B) has committed himself to
offer, (xe [0,1] ) , and playernot x

the offer.

theat time t,Then,
structure. moves: or

i concedes, then time the("Neon") . at tconcede game
above.(1)

not to If playerconcede jortowhether
jIf player does not concede, then at

rejects the 
player j accepts, 

in

K±(x), 
committed himself).

"RNC",

incompatible commitments.
"concession

. then the game ends. 
situation

accept 
committed themselves to incompatible bargaining positions.

then player j 
and

"concession (denoted by 
where x is the offer to which player i has committed himself).

proceeds to the subgame Gj, described in (1) above. If player i does 
not concede, then at time t+1 the game proceeds where player j decides 

("Con") or not to concede ("Neon") .

j (j*i, j=A,B)
has rejected the offer but has not committed himself to not to accept

3
then at time t+1 the game proceeds where player j decides 

concede ("Con")

subgame (denote it by (x)) has the following 
he either concedes ("Con") or does not

to budge from an

budge from an

(denote it by (x) ) 
he either concedes ("Con")

concedes, then the game ends.
time t+2 the game proceeds to the subgame (x).

then the game

committed himself to

to a

If a=c, 
rejects the 
("RC")

Player i
If player

described in
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or
makes are

Let 8We
(8<1) thebe the Let

fromtocost a
(t>0)time offert to an x

be the times. at which player
"commitment" . Then, to

player i is:

shall that the (i=A,B) is of completeWe Gassume a game
information, i. e . , common knowledge

isFurthermore,

make at
players will have of choosetotwo set aa

The solutionstrategy. usewe

i 
k=l 
a

The game 
t=0 is Ga 

the

where XA=X and

amongst the players. 
information.

GA
gb 

first

ci'

game
all information is assumed to be

(i.e., the bargaining process) begins at t=0. The game at 
according to whether it is player A or player B who 
offer (i.e., starts the bargaining); GA and GB 

described above (see also Figure 1).

xB=l-x.

ci

Gi

-
N •
k=l

player i of backing down 
position. Suppose the players agree at 

• N •(xe[0,l]). Let {tfc} 1 be the times, up until time t, k=l
i backs down from a "commitment". Then, the discounted payoff

a game of perfect

A strategy for each agent in G^ will tell the agent the choice to 
each and every decision node that he may be at. Each of the 

strategies from which 
concept we will use is the subgame perfect 

equilibrium (SGPE) (Selten (1965, 1975)). A strategy tuple is in SGPE 
if its restriction to any subgame is in Nash equilibrium.

note that

that the players maximise expected utility.
(common) discount factor. Let c^, i=A,B, (c£>0) be 

commitment to a bargaining

shall assume
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3. PERFECT EQUILIBRIUM

such that (ii)

zero.

iSGPE in which

(ii)
receives

(i.e.,

(i)

has a unique SGPE partition in which player j receives
zero.

Let i,j=A,B,PROOF:

Let

3' 3'

i then 1
3

0 if x--C-i <03 3
(la)

if X.1-C4 >03 3

at point (1) player i chooses "Con”tthe other hand, then

and
(lb)

chooses
- j

I

<CA' 
and

"Neon”,
, 8k^(x)}. Thus,

Xj=l-x if j=B.

CA'CB“°
and (iii)

8(xj-cj)

K?(x) =

K?(x)=8max{x•-

k?(x) =

PROPOSITION: (a)
Cp) (0,1-8+e) 
for any 8<1 the

K?(x)=k?(x) =

i#j; and Xj=x if j=A,

j

(CA, 
has a

k?(x) (K?(x)) denote the infimum (supremum) of the payoffs to 

player j in any SGPE of the subgame K^(x). Then the infimum (supremum) 
of the payoffs to player j in any SGPE as of point (2) (in Figure 1) 
is max{Xj-Cj, 8k^(x)} (max{Xj-Cj, 8k?(x)J).

j=A,B) 
solution). (c) 

any Cj>l-8 and for any 8<1, 
in which player i 

receives payoff equal to zero, and (ii) in which player i 
receives payoff equal to 1-8 and player j receives payoff equal to 8, 
and the game Gj 
payoff equal to one and player i receives payoff equal to

CA: 
game G^ (i=A,B) has two SGPE partitions, 
receives payoff equal to one and player j(j^i, 
equal to zero, and (ii) in which player i receives payoff equal to 
1/(1+8) and player j (j^i, j=A,B) receives payoff equal to 8/(1+8) 

the Rubinstein (1982) solution), (c) For i^j, i,j=A,B we have: 
for Cj_=0 and for any Cj>l-8 and for any 8<1, the game Gj_ has two SGPE 
partitions, (i) in which player i receives payoff equal to 
player j receives payoff equal to zero, and (ii)

one and

For any 
for any e>0,

any d<l the game G^ (i=A,B)
which player i receives payoff equal to one and player j 
receives payoff equal to zero, (b) For cA=cB=0 and for 

G^ (i=A,B) has two SGPE partitions, (i)

If at point (1) player 
Cj,8K£(x)} and k? (x)=8max{xj-cj

If, on

(i) (cA,cB)*(0,0) , 
cB) & (1-8+e, 0 ) for any e>0, 
unique SGPE partition in 

(j*i, j=A,B) 
any 8<1 the 

player
j=A,B) receives payoff
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of the payoffs to player j in

one

D 3

(2a)

(2b)

jto player

(3a)

S^=8max{K£(x)rL?(x)} (3b)

x.

Hence,
1-min{13:xe [0,1]}},

M^=l-min{8mj, min{I^:xe [0,1] } }i . e . , (4a)
and

l2 and are definedA A

I.

SGPE as of point (5) (
l3=8max{k2(x),1?(x)}

of the payoffs to player j in any SGPE as of 
• note that both the infimum and the supremum

m^=l-min{8mj,

mf=max{1-8m^, 1-min{S^:xe [ 0,1] } }, X J X

By repeating the above argument
supremum of the payoffs to player j in any SGPE of the subgame L^(x); 
denote this infimum (supremum) by l?(x)(L?(x)).

min{S^:xG [0,1]}}, (4b)
of the payoffs to player i in

i . e ., 
where m^(M^) is the infimum (supremum) 
any SGPE of the game Gj_.

infimum (supremum) of the payoffs 
(in Figure 1) by l3(S^).

If at point (4) player i chooses
L?(x)=1?(x)=8xj

where m j (M j )

max{l-8mj,

L?(x)=Mj

M^=:

Let us now compute and S^ for all xe(0,l]; 
by equations (3a) and (3b).

The infimum (supremum) < 
point (6) is l-8mj(1-8Mj) ; 
are independent of

can establish the infimum and

"Con", then

"Neon”, then

If, on the other hand, at point (4) player i chooses 
1 j / x j 1 (x) =mj and

in anyDenote the

j is the infimum (supremum) 
any SGPE of the game Gj.
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(la) ,

(5)

n and
(2b) ,

(6a)and

(6b)

(III) Suppose (1)
(lb) ,

j (7a)

sj = 8max{M^, 8x_i} 
x J J (7b)

(IV) Suppose (1)

(2b),
(8a)

S7 = 8max{M^, 8(x--c^)}
A J J J (8b)

(i=A,B), where

and
andfor oror or

and for any

Then
xg [0,1]}=0=min{S

xg [0,1]}=0=min{S . Thus,
and1

(9)1

I

j 
j

at point
"Con”

"Con"player i chooses
. Then, using equations

min {I

"Neon" and

A.
x ’

mA=

at point
"Neon”

"Neon"

min{I®:

xj

x = [0,1] }

and Mj-

[0,1] at point (1) player i chooses 
chooses "Neon". Then, using equations

and

Suppose for an xg[0,1] at point (1) player i chooses 
"Con". Then, using equations (lb),

mi

XG [0,1] 
and at point (4) player i chooses 

(3a) and (3b), we obtain:
li = 8max{m^, 8(x_i-c-)} and 
* J J J

XG [0,1]
(4) player i chooses

for x=l equation (5) applies,
(6) or (7) or (8) applies;

(5) applies,
(8) applies.

®:xg [0,1]} and

player i chooses
. Then, using equations (la) ,

s3 = J

(II)
at point (4) player i chooses
(3a) and (3b), we obtain:

li = 8m

for an

for an

CASE A: Suppose when i=A and j=B, 
any x<l either equation (5) 

suppose when i=B and j=A, for x=0 equation 
x>0 either equation (5) or (6) or (7) or

(I) Suppose for an xg 
at point (4) player i 
(2a), (3a) and (3b), we obtain: 

s3=lj=52

Let us now proceed to compute 
are defined by equations (4a) and (4b).

"Con

and at point
(2a), (3a) and (3b), we obtain:

= 8max{m-, 8x^} and x J J
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defined bywhether the equilibrium payoffs,checkLet asus now

with the supposition made above (Caseare
(i=A,B)i choosesstatesA) . at

i=A, x=0 if i=B.points (1) and (4) , and for
equilibrium player ithen ininstead chooses "Con", the a

and incurs strictlysurplus equal to zero
choice.negative Thus r indeed, optimal

is also an optimal choice.Furthermore, then

withsupposition is thethe (Case A)Hence,
equilibrium payoffs, defined by equation (9) , for (Inany c

player i chooses for all xg [0,1]fact,

for anyHence,

A pair strategies that thisof solution is follows.as
Player i (i=A,B) always offers where

1 if i=A

0 if i=B
and commits himself to to budge from this offer. Player j (j*i,not
j=A,B) if itoffer is commitment, andaccepts any a
accepts offers smaller than is coupled withoffer not a

Player icommitment. concedesnever
xg [0,1] . j alwaysfor Playerany a

concedes if x■<c;;but furthermore, playernever

Suppose when i=A and j=B, the largest xg [0,1], for whichCASE B: x,
for such that and forsome

(7) (8) applies, anyany or or
(6) (8) applies; and suppose(7)or oror

j=A, for which equationand smallest XG [0,1] , (5)when the x,
is and forfor such that anysome

(7)or or

2

equation (5) applies is 
either equation

that player
for x=l if

payoff.
if c±=0,

for any xg [0,1] .

★ x±= -

If player i 
receives

equation (9), 
The supposition

A'cB>0.
at points (1) and (4)).

eA

eB

0<x<1-£a 
i=B

I.2

l>x>l-eA
either equation (5)

support 
★ x±,

"Neon”

"Neon”

(cpO) • 
is the

in the subgames K^(x) 
concedes in a subgame

"Neon”

"consistent"

applies is x=£B, 
either equation (6)

"consistent"

coupled with
1-8 if the

ci
"Neon"

and L^(x)
K±(x) if 
j alwaysxj>cj'

concedes in the subgame Lj_(x)

l>eA>0, 
and for

Here we can allow 8<1. But the condition 8<1 is required to prove the 
"inconsistency” of the other possible suppositions (to be discussed below) with 
the equilibrium payoffs that they generate; 8-1 leads to multiple equilibria in 
these other suppositions, which would then allow us to choose an equilibrium that 
would be consistent with a given supposition. Thus 8<1 is a necessary requirement 
for the Proposition above.

x=1"eA'
(6)

1 and MB=m

1>£b>0, and for any 0<x<£B
(8) applies, and for any 1>x>£b either

a cost

CA'CB~°'

hence a



—
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(7) or (8) applies.

Therefore,Then S I
that,

and
(10)

(10) ,using equationfor Then,Assume

(11)

(12)

with the

Thus

Hence,
(13)c

(14)

(15)
(16)for i=A,B,and >

i=A and i. e.,When
chooses

(sinceand (2a),
cf.

chooses

(18)

Therefore, equation (11) holds if
for i=A,B, epl/[8(1+8) ]

1/ (1+8) and
1/(1+8)

points
choose

B'
and

e±82 }

eA>c
(2)

does not apply.
or at point

i,j=A,B,i*j, 
provided 8<1, we obtain:

cB.

x>l-eA
II

ma=”1=

CA 
we have

B _ TB!-eA “ I]--eA ’ 

for i, j=A, B, i;*j ,
IA = 
eB

= l-min{8mj,

mA=

= l-min{8Mj,

£b82.

"Neon"

Mi

and Sp eB

"Neon"

e±52}

e^8>mj, M j .

mi

CB :
ei

-A 
and Lg(l-eA)=l

now check whether this equilibrium is "consistent" 
supposition made above (Case B).

equation (5) applies, i.e., player A 
and (4). Therefore, using equations (la) 

we have that KA(l-eA) =kA(l-eA)=8[1-(l-eA)-cR]=8[eA-cB] 
Hence at

Let us

ea82 we obtain

for any
A chooses

A to

When i=A and j=B for any x>l-eA equation (5)
for any x>l-eA player A chooses "Con" either at point (1)
(4) or at both points (1) and (4). Hence, for any 8<1,

8/(1+8) - cA >0
Since 1/[8(1+8)]>8/(1+8) equations (12) and (13) =>

for i=A,B,

for x=l-eA

equation (5) or (6) or

ei
Symmetrically, when i=B and j=A, 

8/(1+8) >0

j=B
at points (1)

- - -B • -- ------ -Ak± eA)“5[l (1 eA) cB
equation (16)), and LA (l-eA) =1A (l-eA) =8eA.

(3) player B chooses "Con". Thus, for player 
at points (1) and (4) it must be the case, that for any 8<1, 

[l-eA]8>[8/(1+8)-cA] . (17)
Symmetrically, when i=B and j=A, we have 

[l-eB]8>[8/(l+8)-cB]
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8<1.that is falseshow for ThisWe now some a
contradiction. as
and above.

such that 1-x-
will ifan x

Now
if

x

forNow, x>l-e

x.

(3) ator

A to choose

[8/ (1+8) -cA]>8x=8 [l-£A+y] ,

[8/(1+8)-ca]>8[1-ea] .that This

the hold (10) ,
foras one can

with the

the supposition of Case B is false, for any

Suppose when i=A and
or or or

xg [0,1],suppose
such that 1>£r>0,x=e some

(7)or or
or

which implies 
equation (17).

described in equations 
with the supposition of Case B,

j=B,
(5)

C.AMBR/oGe i

implies
(11)

(15) , 
8<l/^2.

j

x>1-Ea,

CA

CB
such that x=l-£A+y.

(17) 
Hence the equilibrium, 

(12), is not "consistent" 
Thus the equilibrium cannot hold.

■A CB 
equation 

1/[8(1+8)] >28/(1+8) 
exists an x, x>1-ea, such that 

-8/(1+8) ] . Denote this

Hence, 
any 8<1.

,cB>0 and for

x>l-eA, 
exist such [1 cB 

ea>1/ [8/(1+8)],

[£A~cB]>8/(1+8). Hence, there
[l-x-cB]>8/(1+8), i.e., such that x<[l- 

by x. By continuity there exists a y, y>0,

"Con"

"Con”

CASE C: 
for any 0<x<l either equation 

when i=B and j=A, the smallest x, 
(5) applies is x=eb, for some eb 
either equation (6) or (7) or (8) applies, 
equation (5) or (6) or (7) or (8) applies.

of equation

prove by similar 

’’consistent”

By assuming that the other possibilities 
such as for i, j=A, B, i^j, irij, Mj> £j_8, 
arguments that the equilibrium obtained is not 
supposition of Case B.

We first observe that there 
cb>5/(1+8) , provided 8<1/'V2 . There 
8/(1+8) ] > [1-£A] <=> [EA-cB] > [8/(1+8) ] . From equation (12), tA. . . .
and from equation (15), 8/(1+8) >cB=>28/(1+8) > [cB+8/(1+8) ] .

Thus [£a-cJ >8/ (1+8) . Hence,

for x=l equation (5) applies and 
(6) or (7) or (8) applies; and 

for which equation 
B^u, and for any 0<x<eb 

and for any l>x>eB either

given our supposition, for any x>1-ea player A chooses 
either at point (1) or at point (4) or at both points (1) and (4); in 
particular for x=x. Since [l-x-cB]>8/(1+8) , which implies l-x>8/(l+8), 
player B will choose "Con” either at point (2) (if player A chooses 
"Con" at point (1)) or at point (3) (if player A chooses "Con" 
point (4)) or at both points. In order for it to be optimal for player 

"Con" we require

is in contradiction to

exists an
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and (19)

One as
is the any

CASE D: (5)
or or or

(5) is thatsome

or

(20)

is not any
cB>0 and for any 8<1.

3xe [0,1] (5)
(i.e., either or or

and and such

and
(21)

and (22)

with the

CA'

CA'

eA

■p mg=l and 
TOA=1“52eA‘

for i,j=A,B,i^j,
M£=l-8mj

m£=l-8Mj.

applies
equation (8) applies);
that equation (5) applies.

’’consistent”

such that equation
(6) or equation (7) 

j=A, 3xe [0,1]

for x=0 equation
(6) or (7)

MA=mA=1 
MB=mB=l-82EB.

CASE E:

One can show that this equilibrium, 
consistent" with the

Let us now check whether this equilibrium is 
supposition made above (Case E) .

Then, we obtain that

Thus, provided 8<1, we obtain:
MA=mA=1// <1+S> 
M|=m|=l/(1+5) .

can show that this equilibrium, as described by equation (19) , 
not "consistent” with the supposition of Case C, above, for 
cB>0 and for any 8<1.

Then, we obtain that

Then, we obtain that,

Suppose when i=A and j=B, 
Vxg[0,1] either equation 

suppose when i=B

as described by equation (20), 
supposition of Case D, above, for

applies and 
(8) applies; and 

for which equation 
l>eA>0, and for any 

(8) applies, and for any 0<x<l- 
(8) applies.

applies is x=l-eA, for some ea 
l>x>l-eA either equation (6) or (7) or 

either equation (5) or (6) or (7)

Suppose when i=B and j=A, 
for any l>x>0 either equation (5) 
suppose when i=A and j=B, the largest x, xe[0,l], 

for some En such
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(i=A,B) will choose either at
(1) and point

for i=A,B (23)

and (4) . Takeor or
it implies that

choose
(1) ) chooses at

we require
5/(1+8)-ca>8[1/(1+8)-cB]

i . e . f (24)

Symmetrically, when i=B and j=A, we require
(25)

>0 and 8<1,For any

(26)A
For any cB>0 and 8<1,

(27)B

and obtain: i . e . ,we
This is a contradiction.

(25) and (27) A'
i.e., ScA>cA,

and 8<1,If,
(27)) do ifnot And the

with the

I

CA'

Similarly, combining (24), 
for any 8<l,cB>0 and cA>0 .

CA:

Con”

cB>0 such that (cA,

8ca>cb>8cb>c
This is a contradiction.

"Con" either

5cBScA>8cA-cB'

’’consistent”

8/(1+8)-c^>0

cA>8c

8cb—CA

8ca>cb

Combining 
8gb>cb,

cb>8c

then the above arguments 
c^=cR=0 and 8<1, then

"Con"Since for any xg[0,1] player i 
point (1) or at point (4) or at both point 
have:

we obtain:

CA“CB~° 
((26), (27)) do not go through. ahu xx ^“^B
equilibrium payoffs (defined by (22)) are indeed 
supposition of Case E.

(24), (25) and (26)
for any 8<l,cA>0 and cB>0.

When i=A and j=B, for any xg[0,1] player A will choose 
at point (1) or at point (4) or at both points (1) 

Since l-x-cB=8/(1+8) and l-x>8/(1+8), 
”Con” either at point (2) (if player A chooses 

(if player A chooses ”Con”
In order for it to be optimal for A to

(1) 
x=[l/(1+8)-cb]. 
player B will choose ”Con” either at point 
"Con” at point (1) ) or at point (3) 
point (4)) or at both points, 
choose "

(4), we must

on the other hand,

Thus, the equilibrium payoffs (as defined by equation (22)) are not 
"consistent” with the supposition made above (Case E) , for any 

cB)^(0,0) and for any 8<1.
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CASE F: (5)
(7)or or

(6)or or or

and (28)
1-5.

with the

When i=A and the that for xe [0,1]
(1)

(1) and (4) .

If then this not optimal, since by choosing

If

(2)
(1) ) chooses "Con" ator

In orderor
choose

0>x5= (l-cB~5-£) 5,

which is a contradiction since x>0. then the
are

>1-5.
Then Thus, for all xg [0,1] , Thus, not
exist choose given thatBan

choosesA ifHence, and then the
(as defined indeedby are

I

any
or at point (4)

suppose
such that

suppose 
there■ - ~B- 

would

j=B, 
player A will choose 
both points

"Con"

such that player 
"Con".

CA=0'

"Con"

cA>0, then this is definitely 
player A receives zero surplus.

player 
equilibrium 
it

payoffs 
consistent" with the supposition made above (Case F).

CB<1 
1-CB-
Thus,

In conclusion, for any S<1 and for any cb>1-5 and for 
5 and MB=mB=l.

CB:
does

MA=mA=1-

CA=° 
equation

either at point 
at point (3) 

at both points.
we require

supposition states, 
either at point

"consistent"

cb>1-8, 
(28) )

Suppose when i=A and j=B, 3xe [0,1] 
applies (i.e., Vxe[0,l] either equation (6) 
equation (8) applies); and suppose when i=B and j=A, 
(5) applies, and for any x>0 either equation (5) 
applies.

such that equation
equation
for x=0 equation

(7) or (8)

cA=0,
5. Then l-cn-5>0. 
5>x>0.

"Con"

some £ small.

"Con"

"Con"

"Con" or at

w|=m|=l
MA=mA

then choosing "Con" can be optimal. Firstly, 
Thus, there exists an l>x>0, say x,
—5—£ for some £ small. Then l-x>5 and l-x-cB>S.

(if player A chooses
(if player A
for it to be optimal for A to

Let x=l-cB
chooseplayer B will 

"Con" at point 
point (4))

Let us now check whether this equilibrium is 
supposition made above (Case F).

Thus if cA=0 and cb<1-5, 
equilibrium payoffs (as defined by equation (28)) are not "consistent" 
with the supposition made above (Case F) . Secondly, 

1-cb<5. Thus, for all xe[0,l], l-x-cn<5. 
xg [0,1]

Then, we obtain that
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CASE G: but with the roles of players A and B

We
such that for

8<1(iii) for
(i=A,B) as

(i=A,B) has
theas

any 
the(cA, 

has

any
has a unique

cB-°
and

CB
a

reversed, 
conclusion: for any 8<1 and for 
MA=mA=1•

any
(see Case A above) 

8<1 the

Cj>l-8 and for

the Proposition.
two SGPE partitions
Proposition. For i^jz i,j=A,B: for c^=0 and for any
8<1 the game G^ has two SGPE partitions and the game Gj 
SGPE partition (see Cases A, F and G) as stated in the Proposition.

Q.E.D.

A' 
any e>0, 

unique SGPE partition
For cA=Cg=0 and for any 8<1 the game G^ 

(see Case A and Case E above) as stated in 
iz j=A,B:

For any cA,
E>0,

Symmetric to Case Fz 
Therefore, by similar arguments one arrives at the following 

any ca>1-8 and for cB=0z MB=mB=l-8 and

game G^
stated in

have considered all the possible suppositions.
(i) (cA,cB)*(0z0), (ii) (cA,cB)*(0z1-8+e) 
)^(l-8+ez0) for any e>0, and
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4 . SUMMARY AND CONCLUDING REMARKS

the model a
infinite-time withgame
information.

The the
a

opponent'sto, not to not toor an
offer.

commitments (for if of theone

the offer) leads theto not to accept
ha a

agreement or game
counteroffers.

for such

(c
(b) 0

andthe

the Introduction (section argued that first sight1)In atwe
(a) counterintuitive, itresult seemed that to

contradict notion, that
n

awe now
cost to

n

accept 
but at a cost.

and argued
(commonsensical)

appears 
in bargaining 

In order to re-emphasize the apparently 
(a) we now illustrate a special case, 

commitment

=CB

The Proposition (section 3) 
that (i) (cA,cB)*(0,0) , (ii)

)*(l-8+£, 0) for any £>0,
for

’’first mover” of backing down from his commitment to not

In this chapter we have presented a model that examines the role of 
commitment in bilateral bargaining; the model is a non-cooperative 

horizon sequential game with complete and perfect

budge from one's
Thus commitment is revocable,

Schelling's
weakness is often strength”, 

paradoxical nature of result 
Suppose the responder's cost of backing down from his 
not to accept the ’’first mover's” offer is infinite relative to the 
cost to the

bargaining process, represented by the sequential game, 
incorporates commitment possibilities a la Schelling (see Schelling 
(1956)): the bargainers can take actions during the bargaining process 
that increase the future cost of backing down from one's commitment 

offer,

established, (a) for any cA,cB>0
(cA, cB) (0,1-8+e) for any £>0, and (iii) 

a,cb)^(1-O+e,U) tor any £>0, and for any 8<1 the uniqueness of the 
SGPE partition, (b) for cA=cB=0 and for any 8<1 the multiplicity of 

SGPE partition, and (c) for i^j, i,j=A,B: for C£=0 and for any 
Cj>l-8 and for any 8<1 the uniqueness of the SGPE partition for the 
game Gj and the multiplicity of the SGPE partition for the game Gj_.

Mutually incompatible commitments (for example, 
bargainers commits himself to not to budge from an offer and the other 
bargainer commits himself 
bargaining process into a ’’concession game", a game in which one of 
the bargainers has to concede in order for the bargaining process to 
either yield an agreement or proceed to a game of fresh offers and
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hasThen it if theis noas
(i.e.. has

while the responder
make commitment to not toancan

In thisdemand. scenario, toone
theobtain the whole surplus. and notishe does;But as
theavailable commitment (seeresponder, who has irrevocablean

apparentlyIntroduction, give explanation for this,where we an
paradoxical, result).

of theimplicationsshall theWe venturenow some on
andin general,result of this chapter, for theory

Rubinstein's (1982) classic paper in particular.

Observe, 0that
But,

positive, then the uniqueness property is obtained.

notion inOur bargaining incorporates the alternating-offersgame
bargaining, due to Rubinstein (1982) .

Rubinstein haveof the However, as weas a game.
seen,
for values of andsome

on their specifying a unique equilibrium.

strictly positive, thethat if both thenhaveWe costsseen are
Rubinstein solution disappears and the bargaining game has a unique

in the sense, thatequilibrium. This equilibrium can be called
who thelife, first (i.e., the playerin real the startsmover

This observation may

an so,
on which

our bargaining game is built.

study the implications ofAn alternative angle from which to our
result is the following.

and for any 8<1 the bargaining game does 
strictly

thoughts 
bargaining

would not expect the
it is as if he,

the uniqueness property of the Rubinstein game does not survive 
This is indeed disturbing, especiallyc^ and Cg • 

since the usefulness of non-cooperative bargaining models rests mainly

"bad",

"incorrect"

to budge from his offer, 
possibility of commitment 
the future cost of backing down from his demand) , 

irrevocable commitment to not to accept his opponent's

bargaining) would not obtain the whole surplus, 
imply that something fundamental is wrong with our bargaining model. 
Maybe it is an "incorrect" model of bargaining? If so, then one may in 
effect criticise the alternating-offers model of bargaining,

no actions available to increase

A CB 
not possess the uniqueness property.

In fact,

"first mover"

one may view our game

for c

"first mover"

if both costs are

"generalisation"
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commitment possibilities are not allowedTake the Rubinstein game;
and time plays the key role in determining the bargaining outcome.

is presumably theIt
should be stable in the presence of small perturbations.

outsideif of the bargainers availableexample, hasFor one an
bargainingoption it will Rubinsteinknow that affect thenotwe

this isprovided the value of the outside option is small;outcome”
(1985) .'Outside Option Principle' discovered by Binmorethe famous

is indeed stable in theRubinsteintheHence t
presence of small perturbations from outside of this type.

the bargainers, in Rubinsteineach of the hasNow suppose game,
been given an action which each in order commit himselftake tocan

histo budge from offer f the opponent'sto, not not to acceptor
the action makes it costly for a player to later back down fromoffer;

committed bargaining position. bothAnd these costs, tosupposea
players, negligible. This is small perturbation thetoare a
Rubinstein game.

The game presented in this chapter is one possible way to modelling
this perturbation Rubinsteinthe with and strictlyto game,

seen,
a unique "bargaining outcome", which ishas different from thevery

Rubinstein Thus, the Rubinstein
is not stable in the presence of small perturbations of this

type.

Finally, notion inshall the ofcommentwe on
bargaining. Since there does not exist

isnotion in bargaining need fordefined thereof a
exploring the various plausible notions that come to the mind.

this version ofgeneralisedchapter modelledhaveIn we a
bargainers takeSchelling's thatnotion commitment, which is,of

Here,
revocable, but at a cost.

i

actions during the negotiation process to increase the future cost of 
backing down from a committed bargaining position. Here, commitment is

"bargaining
outcome"

"commitment"

outcome"

"commitment"

"bargaining outcome"

CA 
positive but very small (i.e., negligible). As we have

case that the Rubinstein

"bargaining

a unique unambiguous and well

"bargaining outcome

CB
this game
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Commitment, whatmodelled in this chapter, does havenotas we
shall call a time dimension. commitmentHere,
which could, last

one
which could be

but revoking a
rolehas play in the notion of commitment thattono

this chapter.

notion of commitment isthe model a
infinite-time perfectsequential with complete andgame
information.

c h apt e r making commitmentthatIn toa a
costs of revoking a commitment.

commitfor which he willchooses, strategically, the length of time
himself to a bargaining position. the length ofThe costs depend on
time costs being strictly increasing and strictly inchosen; convex

is irrevocable time thattime. Commitment during the length of a
ischosen commit himself. commitmentbargainer has Thus,to

genuine unconditionala demand (i.e.,irrevocable la Nash game ” a
committake-it-or-leave-it only if bargaineroffer) chooses toa

himself for an infinite length of time.

commitment is costly.
is adopted in

In this chapter, making a
Time

bargaining position is
A bargainer

an alternative

There are no

a function

In chapter 2 we

costly, but there are no

in bargaining;
horizon

shall present a model that explores
non-cooperative

a bargainer can make a 
in principle, last for any length of time.

costs associated with the length of time for which 
(for example, no lawyer's fees to be paid, 
of the time for which commitment is sought). 
commitment costs nothing,

is committed;
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Chapter 2

The role of commitment in bargaining II
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1. INTRODUCTION

This chapter, together with examines role of1, the
In this chapter we shall present a

model notion of commitment in bargaining differenta
from the notion explored in chapter 1.

this chapter the basic ideaIn is, that making commitment to aa
bargaining position is costly, but revoking a commitment is costless
(for motivation of this idea ideachapter 1, pp.24-25). Thisa see
will formalisedbe in non-cooperative infinite-time horizona
sequential game with complete and perfect information.

The players make offers alternately. At the time of making an offer
a player can choose, strategically, the length of time for which he is
committed his offer. Commitment during that length of time isto
irrevocable. The cost of making a commitment depends on the length of
time which Commitmentfor commitment offer is sought. isto an
irrevocable a genuine unconditionalla demand (i.e.,ttgame a

bargainertake-it-or-leave-it if chooses commitoffer) only toa
himself for an infinite length of time.

The game may be interpreted as a generalisation of the alternating-
offers model of Rubinstein (1982), in which the proposer has available

namely the length of time for which he isan extra strategic variable,
This implies that the "times" at which offerscommitted to his offer. !

except the first offer whichdetermined endogenously,are
is made at time t=0.

unique sub-game perfectexistence ofthesection 3In aprovewe
equilibrium.

obtainedRubinstein (1982) solution isthethe equilibrium,In
commit themselves) ifplayer Bneither player A(i.e., evernor

conditions relativelymadeThesehold.conditionscertain are

tends to zero. Then,

chapter 
commitment in bilateral bargaining, 

that explores

transparent if the exogenously fixed minimum time between successive 
offers - which represents the physical constraints in making an offer 

in this limit, the conditions are:

"Nash

are made
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for i*j, i, j=A,B,

(i=A,B) andwhere

c
commits

if,
so.

I

ci ■ 

and

r^ (i=A,B) is the rate of time preference of player i(r£>0)
C£(T) is the cost to player i for making a commitment for a length of 
time T. c^ is a strictly increasing and strictly convex function with 

/CjL(0)=0 and 0^(0) >0 . The right-hand side of the inequality above is 
interpreted as the marginal benefit to player i if player i 
himself. Thus, in the equilibrium, the Rubinstein solution is obtained 

at the margin, the cost to both players of committing themselves 
exceeds their respective benefit of doing

c±(0)>rj[ri/(r±+rj)]
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2. THE MODEL

A and B,

agreement.

to

irrevocable .
time for to aan

determined endogenously,The which offers madeat areare
is madeexcept the first offer which at

(i.e.,makes an offer
which is committed his his (i.e., thehe offer, andto

either (i.e., waitsresponder) concedes accepts) toor
make a counteroffer,
length of time, namely the length of time for which the proposer has
committed himself plus fixed minimum time whichan

non-cooperative infinite-is modelled as a
information.

The as
(i.e., the

has available an extra strategic variable,

offers.

(n=0,1,2, . . .) , player A makes offer,timeAt an
time, whereand anda

concedesPlayer B either Ifor

I

game may be interpreted 
offers model of Rubinstein

length of time above the exogenously fixed minimum time 
proposer has committed himself to his offer); A, Te .

a player can choose, 
committed to his offer.

exogenously 
represents the physical constraints in making a counteroffer.

player who makes an offer)
namely the length of time for which he is committed to his offer.

"times”

x2n+l'
T2n+le]R+-

2n
t=i=l(Ti)+(2n)A' 
chooses a commitment

opponent 
rejects and

which the responder can make only after a certain

The player who 
the proposer) decides on the length of time for

x2n+le [°'U 
rejects.

T2n+1'
(i.e., accepts)

a pie ofTwo players, A and B, are bargaining on the partition of 
size one. The pie will be partitioned only after the players reach an

The players make offers alternately. At the time of making an offer 
strategically, the length of time for which he is 

Commitment during that length of time is 
The cost of making a commitment depends on the length of 

which commitment to an offer is sought. Thus, making 
commitment is costly, but revoking a commitment is costless.

for which a

The bargaining process 
time horizon sequential game with complete and perfect 

a generalisation of the alternating- 
(1982), in which the proposer

Let A denote the exogenously fixed minimum time between successive
Let T denote what we shall call the commitment time (i.e., the

time t=0.
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a move .a

time tand

point where player A has toa

t=0begins time with player choosingThe Aatgame

shall that the LetWe assume
(i=A,B) denote the Letrate

be and convexa

time offerat to an
is

Let
★

Thus t If
theA's offer which If/ otheron

itthenn even,
★

even.
(i=0,l,...,k,

k=[(n-2)/2] the payoff,Thusand if iseven)n
discounted to time t=0,

★ ★

is player 
hand, n is

bargaining
(x1,T1)e [0,1]XJR+.

★ x

★ X
k

the
★ x

rA

Suppose 
x*e [0,1];

player B concedes, 
then the

x2n+2
Concession terminates

x2n+2'

t* (t*>0)

T2n+2'
Player A either concedes or rejects.
Rejection leads the game to 

2n+2E (T•)+(2n+2)A.i=l

On the other hand, 
2n+l t= E i=l

j=l to player A is:

a move.

offer which is the accepted
___k _ ★ ___ ★ v where k=n

( E1(T^) + (2i)A)], 
j=l -J

n-1 * k *
exp [-rA ((T j) + (n-1) A) ] “i^ocA (T2i+l> exP

players maximise expected utility.
rj_(i=A,B) denote the rate of time preference of player i.
c^: ]R+—>1R+(i=A, B) be a strictly increasing and strictly 

/function with 0^(0)=0 and C£<0)>0. c^CT) denotes the cost to player i 
for making a commitment for a length of time T.

come to an agreement.

where k=[(n-l)/2] if n is odd, and k=[(n-2)/2] if n is even. One can, 
similarly, define the payoff to player B.

2n+2 
the game. 
move, at time t

players agree
is the share of surplus received by player A and 1-x 

the share of surplus received by player B. Let (t£,...,T*) denote the 
commitment times chosen by the two players up until time t*, when they

* n-1 *t = E (T-) + (n-l)A. If n is odd, then it j=l -I 
is the accepted offer.

is player B's 
offer. The commitment times of player A are (T£,T^,...,T£), 
if n is odd, and k=n-l if n is even. The time at which player A chose 
the commitment time T^+i (i=0,1, . . ., k, where k=[(n-l)/2] if n is odd, 

is even) is (Tj) + (2i)A.

2n+lAt time t= E (T•)+(2n+l)A, i=l 
chooses a commitment

(n=0,1,2,...), player B makes an offer, 
where xOnxOe[0,l] and

if player Bthen the game ends.
rejects, then the game proceeds at time t= . E^ (T^) + (2n+l) A, where 
player B makes a move. Note that if player B rejects, then he has to 
wait for a time, of length T2n+1+^' before making a move. Nothing 
happens during that time. Player A has made a commitment and player B 
does not concede.
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whichdescribed above.shall thatWe assume
(i.e., all

Furthermore,

choice to
at.

chooseof toset aa
is thewe usestrategy. The solution concept we will use is the sub-game perfect 

equilibrium (SGPE) (Selten (1965, 1975)). A strategy tuple is in SGPE 
if its restriction to any subgame is in Nash equilibrium.

I

solution concept
(Selten (1965,

the bargaining game 
game of complete information 
common knowledge amongst the players). 

note that G is a game of perfect information.

shall be denoted by G, 
information is assumed to be

is a

A strategy for each agent 
make at each and every 
two players will have

The

in G will tell the agent the 
decision node that he may be at. Each of the 

strategies from which 
will
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3. PERFECT EQUILIBRIUM

extraan
istime which hethe for

SGPE G; to
(1987b) (Thm. (1987b)1 a

restatement of Rubinstein's (1982) result).

PROPOSITION.

be the unique solution for the following pair ofLet
programmes:

max
(1)

s. t.

max
(2)

s. t.

(y,s)eS and S=[O,1]XJR+.where (x,t)eS,

Then,

a
andthanwhich betterleaves

(1) and (2), above,of(i) TheREMARKS: are
in Rubinstein (1987b,theto twoanalogous

Theorem 1).

★ y r

[1-y-c
(y, s)eS

y=[x-cA(t)]exp(-rA(A+s)),

★ s

pair
fundamental

The game G that we have presented (in section 2) may be interpreted 
generalisation of the alternating-offers model 
in which the proposer has available

B (s) 1

(x*,t ★.
, S )

Yr S (X, t) 
(x\t*),

(x-cA(t)]
(x, t)eS

l-x=[1-y-Cg(s)]exp(-rB(A+t)),

★ ★, Y

proposer 
length of

, * * (y /S

as nothing more than a 
of Rubinstein (1982),

accepts any proposal 
★ ★ ★ the proposal y , s (

rejects any proposal which is strictly worse for him than the proposal 
(x*,t*)- where (x*,t*), (y*,s*) are defined above.

strategic variable, namely 
committed to his offer. The Proposition below deals with the existence 
and the uniqueness of the SGPE of the game G; it is analogous 
Theorem 1 in Rubinstein (1987b) (Thm. 1 of Rubinstein (1987b) is

the unique SGPE of the game G is the pair of strategies in 
which player A (player B) always makes the offer x*(y*) and commits 
himself for a length of time t (s ) , 

him better off

programmes, 
equations

(ii) One can verify that the pair of strategies described 
in the Proposition are in SGPE. (iii) Lemmas (1) and (2) below prove 

* ★ ★ *the existence of a unique solution (x ,t ,y ,s ) to the two programmes
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of the SGPE of
(see his Proof 1 of Theorem 1)

method of proof presented by Shaked and Suttonon
(1984a) .

Lemma 1.

Consider the two in(1) and (2) , described theprogrammes f
Proposition, above.

Then, there exist functions f and where
(i=2,4),

(3)
(4)

and (2)
(5)
(6)

are defined below.

<0
s=f 2 (x,t)= .

defined by
equation (7)

(7)

<
y=f!(x,t)

>

<o
[l-y-Cg(s)]exp(-rBA)

game 
which

equation (8)

f4<

rA[x-cA(t)]exp[~rA(A+s)] = cB(s)

f2'

if rA[x-cA(t)]exp(-rAA)

| [x-cA(t)]exp(~rAA)

' [x-c

f ±: S—> [0,1]

rB

1' f2' 
such that

cA(0)

where

t=f4(y,s)= 
defined by

if rA[x-cA(t)]exp(-rAA)
A(t)]exp(-rA(A+s)), 

where s is defined

x=f3(y,s)
t=f4(y,s)

and f4

yby equation (7)

cB(0)

cB (0)

described in the Proposition.
SGPE of our game G is not presented here, 
proof of uniqueness of 
presented in Rubinstein (1987b) 
is based on the

(1=1,3), and f^zS—>3R+ 
y=f (x, t) 
s=f2<x't)

(iv) The proof of the uniqueness of the 
That proof is similar to the 
the Rubinstein (1982)

f 3
(1)
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(8)

<

Proof.

Let examine (1) (cf. the Proposition). Substitutingus

[ 1-[x-cA(t)]exp[-rA(A+s)]-cB(s)] .max

(s) .

(t)>0 and Thus is
strictly concave,

s=0 if F (0)<0
s>0 if F (0)>0

F (0)>0, first-orderIf is condition (i.e.,then s
F (s)=0) . exists isthereHence, a
as defined in the Lemma.

constraint ofSubstituting into the (Dr we
where y=fi(x,t)

(2) and show the existence of the
3

Q.E.D.

defined by the 
function,

by equation (8)

x=f3s)=

say f2:S—>]R+,

I 1-[l-y-cB(s)]exp(-r

'1-[l-y-cB(s)]exp(-r 
where t is defined

and f4

SG ]R+

and

bA)

B

if rB[l-y-cB(s)]exp(-rBA) 
B(A+t)),

s=f2(x,t) 
obtain that there exists

where f2

One can similarly solve programme 
functions fq and as defined in the Lemma.

CA(°)
rB H-y-CB 3 exP [-rB <A+t> ] =c

F : —>3R.|.
denote it by s.

cB(s)>0, 
and hence a unique solution exists;

programme 
a function, say f^zS—>[0,1], 

is as defined in the Lemma.

programme 
for the constraint, we obtain:

Let F(s) denote the maximand. Differentiating twice, we obtain:
F (s)=rA[x-cA(t)]exp[-rA(A+s)]-cB(s) and
F (s)=-rA[x-cA(t)]exp[-rA(A+s)]-cB

we have that F (s)<0.Since x-cA
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Lemma 2.

(4) ,

Proof.

and

Then, we have:

we obtain:

Hence, have under the conditions specifiedwe a
above for Case I,
for i^j,i,j=A,B,

There considered.three other be each of them,to Inare cases
above,

to equations (3)
Q.E.D.

IThe

which will hold if:

for i*jz
(9)

(i.e.,

unique solution 
which become:

i,j=A,B,
C£ (0)>[r jexp(-r jA) [ 1-exp (-r^) ] ] / [ 1-exp (-A (r±+r_p ) ]

rA[x“cA(t)]exP<“

using Lemma 1,
y=fi(x,t)=[x-c
s=f2t< 
x=f3(y,s)=1-[1-y-c 
t=f4(y, s)=0.

y =[exp(-rAA)] [ [1-exp(-rBA)]/[ 1-exp(-A(rA+rB) ) ] ]
★ _ s =0 .

aA)<cb(0)

A(t)]exp(-rAA),

B(s)]exp(-rBA) and

(x*, t ,y*,s*) to equations (3),

Solving the above equations,
x*=[l-exp(-rBA)]/[1-exp(-A(rA+rB))] 
t*-0
* , , .......... _ . ...

c± (0) > [r jexp (-r jA) [1-exp (-r^) ] ] / [1-exp(-A(r±+rj) ) ] .

Case I:
rBA)<cA(0).

There exists a unique solution 
(5) and (6) of Lemma 1.

no explicit solution will be obtained. However, 
using the Brouwer Fixed Point Theorem and the Gale-Nakaido Univalence 
Theorem, one can prove the existence and the uniqueness of a solution 

(6) .

rB[l-y-cB(s)]exp(-

one can

★ * _ s =t =0

interesting conclusion is brought out by the result of Case 
in Lemma 2. The result is the Rubinstein (1982) bargaining solution,

unlike Case I

Note that neither player A nor player B ever make a
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commitment) . Thus,
(9) holds.

Then:

for i^j , i,j=A,B, (10)

Note that

a
(i=A,B) and the rates

(i.e.,fact, the sideIn of the
(MB) toas

i.e.,

out",

course,

Let us further illustrate this condition

to turnzero.
which

at

i.e.,

I

between the marginal costs of commitment, 
of time preference,

right-hand
the marginal benefit

(i) Suppose
0) .

special cases.
i.e.,

i/(ti+rj) 
and r

rA and rB.

c±(0)>rj[r±/(r^+rj)]

rj> 
r±/(r±+rj) .

rj~°

rj
rj
means

j's 
at the margin, 

in order to "buy him

r±/(

to zero,

c±(0)

r±/(r±+rj) 
j. To restate, 
if condition

is the share of the surplus received by player 
commitment is never made by either player A or player B 

(10) holds. Condition (10) establishes a "relationship"

In order to obtain a more transparent interpretation let A—»0 .
★ Ar Arx =y =rB/(rA+rB) and s =t =0 (i.e., the Rubinstein result) if

our game G has produced the Rubinstein result if.

rj[ri/(r±+rj)] 
inequality (10)) can be interpreted 
player i (when player i and player j have not committed themselves for 
any length of time, i.e., given s*=t*=0) . r^/ (r^+rj) is the share of 
the cake (i.e., surplus) received by player j and rj is player 
rate of time preference. When player i commits himself, 
the amount of cake he has to give to player j, 

decreases - and thus player i's share increases - and the amount 
by which it decreases depends on the rate of time preference of player 
j (i.e., rj) and, of course, what player j receives if he rejects - 
which is r.; / (r.-+r4) . Hence, MB=r j [r^/(r^+r j) ] .

(10) by reference to some 
is very small (say, approximately equal 

Then the MB to player i is approximately equal 
that player j is very patient, which in 

implies that player j does not care when he receives r^/(r^+rj) , 
in turn implies that player i cannot gain by committing himself, 
the margin (i.e., MB~0) . (ii) Suppose rj is very large (say,
approximately infinite, i.e., rj~°°) . This means that player j is very 
impatient, which in turn implies that player j cares a lot as to when 
he receives r^/fr^+rj), which in turn implies that player i can gain a 
lot by committing himself, at the margin (i.e., MB~<») .
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Chapter 3

Bargaining, search and the 'Outside Option Principle'

I
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1. INTRODUCTION

the bilateral bargaining problem the perfectusing notion of a

equilibrium in bargaining process. of the twoa

players in the bilateral quitbargaining situation is free to

bargaining outsideand instead outside option; thetake up some

option is available with certainty. The outside option and the pie

"How will the value of the

the bargaining outcome?” Binmore (1985),

using an extension of the Rubinstein bargaining model, demonstrated

that if the value of the outside option is less than what the player

receives in the Rubinstein solution then it will the

other hand, the value ofbargaining outcome, and the if theon

thethan what the player receives inoutside is largeroption

does influence thesolution then the outside optionRubinstein

his opponent buys him out by giving him thebargaining outcome

the ‘OutsideThis result is knownvalue of the outside option. as

(1984b) further(see forPrinciple’ Shaked and SuttonOption a

discussion).

of the two players in the bilateral bargainingNow suppose one

situation is free to quit bargaining and instead take up some outside

But, now the outside option is not available with certainty;option.

the player has to engage in

In other words, the player is free to quitfind this outside option.

bargaining in order to search for his outside option. If the player

the outside option, after having searched fornot finddoes some

time, then he may resume bargaining. In this situation, how will the

a process of random search in order to

outside option impinge on

under bargaining are mutually exclusive.

Now suppose one

not influence

In his classic paper, Rubinstein (1982) presented a solution to
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value of the outside option impinge on the bargaining outcome, given

that search is costly.

The chapterpresent will provide the abovetoan answer

question. fact,In in this chapter will study generalwe a more

situation; each of the two players is free to quit bargaining and

instead engage in a process of random search in order to find one of

his many outside options. The players may

time without success.

interested to know how the values of the outside options impinge on

the bargaining outcome, given that search is costly.

Thus, this chapterin study the following situation. Twowe

players are bargaining on the partition of a pie of size The pieone.

will be partitioned only after the players reach an agreement. Each

of the two players is free to quit bargaining and instead engage in a

process of random search in order to find

options, which the player may adopt instead of attempting to reach

an agreement in the bargaining (i.e., the outside options and the pie

under bargaining are mutually exclusive). The players can choose to

having searchedbargaining, for withoutafter timesomeresume

success.

And the worker is free to

quit bargaining in order to search for alternative wage offers.

in section 2, which ismodel,

infinite-time horizon sequential game with complete information. The

bargaining and both ofsearch,incorporates two processes,game

The bargaining process is the alternating-which depend time.on

by Stahl (1972) and (1982).Rubinsteinoffers procedure studied

I

An example of such a situation is when two insiders, a firm and a

resume bargaining, after

Once again, we arehaving searched for some

one of his many outside

worker, are bargaining over the wage.

We present a a non-cooperative
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Furthermore, the game incorporates a

and search processes ought to be interlaced.

3section the subgame perfect equilibrium solutionIn we use

concept (Selten (1965, 1975)) to analyse the game, and we

unique equilibrium partition. We then analyse the limiting

the time between successive There

important reasons why is interested in this limit. Firstly, thisone

eliminates the first And secondly, this overcomes

the criticism that is often made regarding the rigidity of the

timetable for making proposals; these points were first discussed by

Binmore (1987a).

Suppose the players did not play the then each playergame;

would achieve his expected reservation value, which is derived from

sequentially optimal search rule over his outside options.

discussion of optimal stopping rules).

Before we state the key result that is obtained,

’Outside Option Principle’ extendsBinmore (1985)

withoutside availablehas optionthe playerseach of two one

exist mutuallyorder for thereinthan tooptions is less one,

beneficial trade amongst the two players.

The key result is, that in the limiting case we obtain the Binmore

players’Principle’, expectedwith the(1985) ’Outside Option

reservation values treated as the outside options.

An alternative angle from which to view this result is as follows.

result (thepresented in this chapter has producedThe agame

(1985)produced by the Binmorewould belimiting case) that

extension of the Rubinstein game (which produced the ’Outside Option

(See McCall (1965) for a

’’view”

following a

we note that the

case as

mover advantage.

on how the bargaining

obtain a

to the case when

offers tends to zero. are two

certainty; of course, one assumes that the sum of the two outside
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priori define the expected

reservation values of the players to be their outside options available

with certainty.

Principle') if in the Binmore game we a



I
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2. THE MODEL

Two players, A and B, pie of

size one. The pie will be partitioned only after the players reach an

Player k (k B) is freeagreement. quit bargaining andA, to

process of random search in order to find

outside options, which the player may adopt instead of

attempting to reach agreement in the bargaining (i.e., the outsidean

options and the pie under bargaining are mutually exclusive). Denote

the outside options by

(i = 1, ..., N^) with

x< 1).

horizon sequential

with complete information. The incorporates twogame game

search, both of which dependbargaining andprocesses,

The bargaining process is the alternating-offers procedure studied

(1982).(1972) searchRubinstein The isby Stahl and process

interlaced with the bargaining process as follows. At any time in the

bargaining process when player A makes an offer to player B, B can,

reject the offer and makeeither accept the offer, aor

counteroffer (and thus remain on the negotiating table), or reject the

offer and leave the negotiating table (i.e., the bargaining process) in

At the end of one period oforder to search for an outside option.

search either an outside option is taken up, in which the gamecase

the players return to the negotiating table with B making

And symmetrically, following B’s offer to A,an offer to A. A can

choose to interrupt the bargaining process in order to search for an

1

iPlayer k will find the outside option
Nk 
E

i=l
non-cooperative infinite-time

probability p^ (1 > p^ > 0 and

one ofinstead engage in a

x1*
i

pi

that the options are ordered (i.e.

are bargaining on the partition of a

ends, or

(i = 1, N^, 1 > x¥ > 0), and assume

The model is a

> *i) •, for i = 1, Nfc-1,

his many

wait to

on time.
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outside option. Note, either the

ends, else the bargaining is resumed; in other words,game or

following interruption of the bargaining and thenan process, an

H unsuccessful” search period, the game proceeds to another round of

bargaining and not to another round of search.

We may now proceed to

offer to player B (point (1) inAt time t - 0, player A makes an

1Figure 1). either accept the offer, in which

game ends, B has to wait A units

of time to make counteroffer, reject the offer anda or

negotiating table (i.e., the bargaining process) in order to search for

an outside option.

If player B chooses, at time 0, to search fort

option, then player A has to decide whether to or not to search for

outside option (point (2) in Figure 1). One period of search takesan

T units of time.

Then, at time t = T, a chanceSuppose player A does not search.

player B findsmove occurs
and with probability (1 -

thewhichin returns tooutside option,findnot casean

negotiating table and makes an offer to A (point (4)). If B finds

the outside option x? he either chooses to take it, in which case
i

chooses not to take it, in which case B returns tothe game ends, or

the negotiating table and makes an offer to A (point (4)).

Suppose player A chooses to search.

Figure 1 is placed at the end of section 4.1.

i

the outside option x?,

Then, at time t = T, a

a description of the game.

Player B can case the

or reject the offer, in which case

an outside

that after one period of search,

leave the

(point (3)), in which, with probability p?
nb 1
E pB) player B does 
i=l
B



1
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[1 -

with probability [1 - i

outside option, in which

choose either

E p?]p4 player A finds the outside option and player B doesi

an

take it and thus the game ends or not to take it and thus B makes

playeroffer to A (point (6)), and (iv) with probability p?pan

If both players donot to take up their respective outside option.

not take up their respective outside option, then B makes an offer to

A (point (6)).

outside option, then the game ends.

If at time t = 0 player B chose to search, then atTo summarise.

round) either the game has endedtime t - T (after searching for one

the players have returned to the negotiating table with B makingor

On the other hand, if at time t = 0 player B choseoffer to A.an

not to search and simply waited to make counteroffer, then at timea

t = A B makes an offer to A.

player B begins bysubgame in whichtheWe describenow

making to player A.

independent of the history of the subgame. Let us denote the game

in which B begins with

Therefore, the game at time t = 0 is G^,begins with an offer by G^.

and thus make an offer to A (point (6)), (iii) with probability 
nb

x?
1

X?
1

case B has to

[1 -
i=l

not find

,BpA
1 J

A finds the outside option xA and player B finds the outside option
J

, in which case both players, simultaneously, decide whether to or

J - - ■ ' XJ
outside option, in which case A has to choose either to

an offer by Gg, and the game in which A

to take it and thus the game ends or not to take it

chance move occurs (point (5)), in which, (i) with probability
NB n NA a
E P-] [1 ~ E P-] both players, A and B, do not find an

i=l 1 j=l J
outside option, in which case B makes an offer to A (point (6)), (ii) 

NA
E pA]p? player B finds the outside option : 

j=l J
and player A does not find an

an offer

or both A andor B B take up their

The structure of this subgame is

If either A



?

1

9a

I
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and the subgame at time t - A and the subgames at time t ~ t (when

B makes an offer) is Gg.

We have described, above, the game G^. Repeat that description,

but with A replaced by B and B replaced by A, and one obtains the

description of the game Gg. To summarise. If at time t - T (t - A) A

chose to search, then at time t 2r(t - A + t) (after searching for

one round) either the game has ended the players have returnedor

to the negotiating table with A making On the other

hand, if at time t - T(t = A) A chose not to search and simply waited

to make a counteroffer, then at time t = T + A (t = 2A) A makes an

offer to B.

Thus, at times 2A,t 2t (whent + A and tT

player A makes offer to player B) the game has returned to thean

game G^. Hence, note the recursive structure of the game G^ that

begins at time 0; the homogeneity of the game permitst

define and independently theGB of time elapsed since the

beginning of the game.

We shall that the two players maximise expected utility.assume

Player k (k = A, B) has Neumann-Morgenstern utility function

Uk (z, t, m) = z

by player k, if agreement on the partition is achieved,

of an outside option belonging to player k, if k takes up an outside

(w

A, B) takes up an outside option leaving player k with his

The expected reservation value is theexpected reservation value.

expected payoff derived from following a sequentially optimal search

t is the time elapsed from time t 0rule over outside options.

is the number of periods that player k

i

ga

option, or the expected reservation value of player k, if player w

z can be either the share of the pie received

a von

an offer to B.

or the value

before z is obtained, and m

A + T, t

us to

* k, w
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searched is obtained. the (common) discount factor8 is

(i.e., the cost of time), 0 < 8 < 1, and & represents

period of search, 0 < 3 < 1. We shall assume that the total cost of

search per period of search includes the cost of time (the r units of

time incurred) and the fixed cost per period of search.

shallWe that the GA is completeofassume game gamea

information, i.e., all information (including and thetree

players preferences) is assumed to be common knowledge amongst the

players. game of imperfect information. The

imperfect information arises only in the search process, when both of

the players find an outside option and have to decide simultaneously

(i.e., without knowing what decision the opponent is taking) whether

to or not to take up their respective outside option. We emphasize

nowhere else thethat in does there exist imperfectgame

We note that this imperfect information is innocuous ininformation.

that the subgame perfect equilibrium solution concept is sufficient

(and necessary) to ensure

Suppose player k (k = A, B) refused to play the game Gy^ with

= A, B); then player k would achieve his expected(w * k, w

derived from followingreservation value (ERV), R^,

Thereoptimal search rule over outside options. Let us compute Rm­

will exist r^ such that it is sequentially optimal for player k to

for i > r^, and to reject outside optionsaccept outside options x

£ for i < r^ - 1;

I

k 
i

Nk 
E 

i=l

k 
X-

kx
rk

We note that Gy^

k k p. x.
1 1

GA

player w

a fixed cost per

> x -j rk-l

is a

i.e., there exists r^ such that

a sequentially

before z

a unique outcome of the game.

the game



I
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discussion of optimal stopping rules). rk

for i = 1, N^, S, T and /3.

Given R^ is defined as follows:

/ 1 " 1 -

A strategy for each agent in will tell the agent the choice to

make at each and every decision node that he may be at. Each of

set of strategies from which to choose a

is the subgame perfectstrategy.

equilibrium (SGPE) (Selten (1965, 1975)). A strategy tuple is in SGPE

if its restriction to any subgame is in Nash equilibrium.

Nk 
E 

i=rk

Nk 
E 

i=rk

k k p. x.
i i

k
Pi

will depend on the parameters p^,

(see McCall (1965) for a

xk
i

the two players will have a

Rk

The solution concept we will use





!
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3. PERFECT EQUILIBRIUM

will analyse the using the solutionWe SGPEgamenow

firstly, in characterise theWe unique SGPEconcept. Case I,

partition of the game when player A has no outside option and player

B has one outside option. This will elucidate the

result of this chapter and allow to draw certain conclusions. Weus

will not present the analysis of the game G^ when player A has many

outside options and player hasB

because the algebra involved is extremely complicated and lengthy, to

say the least. secondly, in Case II, prove the existence

SGPE partition (and characterise it)and uniqueness the whenof

(say N)outside option and player hasBno many

outside options. the existence and

uniqueness of the SGPE partition (and characterise it) when player A

has one outside option and player B has one outside option.

Player A hasCase I:

outside option.

And player B’s ERV, Rg, is as follows:

[ST/?px]/[l - (1-p)8T/3] ,

(cf. section 2). dropped the subscripts andthat haveNote we
has onlysuperscripts, since outside option andhas BA no one

p denotes the probabilityoutside option; this reduces the notation.

period ofhis inthat will find outside optionB search.onex

Furthermore, note that Rg < 1 for all values 0<S<l,T>0, 0</3<

gA

Player A’s ERV is zero.

rb

However, we

no outside option and player B has one

crux of the main

Thirdly, in Case III, we prove

many outside options. This is

player A has
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1, 0 < p < 1 and 0 < x 1.

for all possible parameter values. ra + 1 implies that there<

mutually advantageous trade, i.e., a surplus exists.

The game has a unique SGPE partition, in which agreement is

reached at time t - 0 and player A receives share M, given by:

1/(1ifM

0] if

and player receives (The above result is obtained byB 1 M.

putting N 1 in Proposition 1, which will be stated and proved

below, in Case II.)

A relatively transparent interpretation is made possible by taking

the limit as A-*0.

Firstly, this eliminates the first

mover advantage. And secondly, this overcomes the criticism that is

often made regarding the rigidity of the timetable for making

proposals (i.e., after rejecting an offer and choosing not to search a

player will typically wish to make his counteroffer at the earliest

possible and thus the limiting be usedmoment, case can as a

paradigm which thethe in players formallyfor notcase are

exogenously determined timetable). These points

first discussed by Binmore (1987a). Thus as A ->0, we obtain:were

1/2if1/2M

Rb if RB > !/2 ,1 -

Since R^

rb

1/(1 +

- (1-p)ST£] ,

[1 - stZ3[(1-p)

exists a

1/(1+SA) < [ST/?px]/[SA

+ >z [ST/?px] / [SA

+ px]]/[1 - (l-p)ST+A

rb

why one is interested in this limit.

constrained by an

But, there are two further and important reasons

- 0, R^ + Rg < 1 is satisfied
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where Rg is the expected reservation value (ERV) of player B.

the outside option to player B available withIf one treats Rg as

(as A-»0)in the rediscovered thethen limit havecertainty, we

Principle’.'Outside Option The principle first discovered bywas

Principle’ ('OOP’)(1985). 'Outside beThe OptionBinmore can

outside option and playerobtained in our game when player A has no

outside option available with certainty, and thus B does

not have to search for his outside option (or equivalently, t = 0, /3 =

The 'OOP’ (limiting case,1 and p = 1).

1/2 ifM

if1-x

where x is the outside option of player B available with certainty.

The 'OOP’ refers to the situation when player B has

option x, available with certainty. Now suppose B has to search for

his outside option

presented game which incorporates the bargaining and the searcha

processes; in particular, the game represents as to how thea

bargaining process ought to be interlaced with the search process.

led the conclusion that it is the value thatto not

it does in the case when

available with certainty, but it is of thatrb matters.

Furthermore, Rg influences the bargaining outcome as if Rg were the

outside option of player B available with certainty.

In Case II and Case III, below, we rediscover the above result in

more general environments.

L

as A-»0):

x > 1/2

x is

x « 1/2

"view”

influences the bargaining outcome, as

an outside

B has one

x and that search is costly.

of x

In section 2, we

We are

the value
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Case II:

(say N) outside options.

And, player B’s ERV, Rg, is as follows:

1 -

(cf. section 2). subscripts andNote

superscripts, since A does not have any outside option; this reduces

the notation. Pi (i = 1, ..., N) denotes the probability that B will find

May we recall (fromhis outside option x^ in period of search.one

section 2) that there exists r such that

Furthermore, < 1 for all parameter values. Thus, R^ +

0.

The SGPE of the game Ga is analysed using the elegant method

proposed by Shaked and Sutton (1984a).

We begin by establishing the following:

Let Pa(ga) den°te the set of SGPE payoffs to player ALemma 1:

Let M denote the supremum (infimum) of Pa(ga)‘the game Ga*in

Then:

{sA(l (1)1 - maxM

where 1 -F

b 

N
E 

i=r

N
E 

i=l

N
E 

i=l

N
E 

i=l

- S^M), f] ,

X r

< 1 since Rarb

p. X .
1 1

piPiXi / 1 "

note that Rg

Player A’s ERV is zero.

rb

pi pi
(1 - S^M) +

Player A has no outside option and player B has many

max (x^., 1 -

that we have dropped some

> xr_x *

N
E 

i=r
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Let Pa/G/J denote the set of SGPE payoffs to player A inProof:

the game and let M denote the supremum of Pa(Ga>«

In Figure 1, consider the subgame beginning from point (7), at

which player A choose either to search (i.e.,can

counteroffer (i.e., move to pointnot to search and wait to makeor a

(9)). Player does have outside option, thus theA andnot an

of the payoff in perfect equilibrium of theto Asupremum any

subgame beginning at point (7) is S^M.

consider the subgame beginning at point (10),Now where B

makes Any offer by B which gives A

will be accepted by A; and perfect equilibrium inso

which B offers It follows that B will get at least 1 -

fact, this is the infimum of the payoff received by B in the

subgame beginning from point (10).

By repeating the above the infimum of the payoffargument,

received by in the subgame beginning from point (4)B and the

subgame beginning from point (6) is 1 -

Now consider the subgame beginning from point (3), at which B

probability 1 B does not find SupposePi

If he takes it up, then B

receives at least and if he does not take it up, then B moves to

point (4) and receives at least 1 - Thus, the infimum of the

payoff to B in any perfect equilibrium of the subgame beginning from

point (3) if he finds is Thus the infimum of the

payoff to B in any perfect equilibrium of the subgame beginning from

in

max(xp 1 - S^M).xi

an outside option.

an offer to A.

more than S^M.

finds the outside option X| (i = 1, ..., N) with probability pj and with 
N 
E 

i=l
B finds the outside option x^ (i = 1, N).

more than

move to point (8))

there is no
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point (3) is

11

In Figure 1, consider the subgame beginning from point (11), at

which search ThehasB to to notor

infimum of the payoff to B in any perfect equilibrium of the subgame

beginning from point (11) is H, where

(2)H F

where 1 1F

beginning from point (1), at whichthe Agame

makes an offer to B. Any offer by A which gives B less than H will

be rejected by B; and so there is no perfect equilibrium in which A

It follows that A will get at most 1 - H; this isoffers less than H.

the supremum of the payoff to A in the game beginning from point

H, where H is defined by equation (2) above.(1). 1Hence, M

Hence the equation shown in Lemma 2 (i.e., equation (1)) defines the

supremum of P/x/G^).

The above argument

may be repeated exactly, but with M defined instead as the infimum

more/less, most/least,pa(ga); with the wordsandof

supremum/infimum and accept/reject interchanged throughout. Hence

equation (1) also defines the infimum of Pa(Ga)«

Q.E.D.

N
E 

i=l

N
E 

i=l

N
E 

i=l

N
E 

i=l
max(x..

i

max (x., 
i

pi

pi

pi
(1 - S^M) +

(1 - S2^) +

We defined M as the supremum of Pa^a)*

max ^$^(1 - t

Pi

Now consider

choose either to search.
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Before we characterise the solution of the game

the following assumption: t > A (i.e., the time of one period of search

is greater than or equal to the time of one period of bargaining).

SGPE partition, inProposition The unique1: game

which agreement is reached at t = 0, and player A receives share M,

given by:

A4 1/(1 + (ii) thereif either (i)M or

.., N} such that

and

A p,)ST/3P-x- / Si i i

Aor (iii) >z 1/(1 + and

A - (1 “/P4*1 i

-1 1 / 1 " 1 - S+

e {1, 2, 3, .N} such thatif

.A(1 - S ) + S / 1 ->/ S

and

N
E 

i=l

x m

N
E 

i=m

N
E 

i=m

’ N

E 
_i=m

N
E 

i=m
x m

gA

N
- (1 - E 

i=m

p. x.
1 1

1/(1 + SA) <

1/(1 + sA)

sA) <

p. X .
1 1

SA) >z

1/(1 + sA)

pi

p.)ST£

;T+A/s

we shall make

XN

T+^

1/(1 +

X 1 m-1

x 1 m-1

T+A3

X1

1/(1 +

pi

pi

exists an m € {2, 3, .

has a

N
ST£ E

i=m

T N
s £ E

i=l

there exists an m

N
1 - E 

i=m
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1

= 0),

and player B receives 1 - M.

We begin by showing that the equation stated in Lemma 1Proof:

(i.e., equation (1)) has unique solution. Leta

considering threesolved byequation for The equation isM.

(ii) 1 - < xj, andxN 4 1 -(i)mutually exclusive cases,

e {2, 3, N} such that xm_q 4 1- 4(iii) there exists an m

Thus, for i = 1, 2, . . . , N, max(x., 1 -< 1 -(i)

Therefore, equation (1) becomes, M - 1

Thus, > ST.ST/?(1 - SaM)}. We have assumed that T > A. Hence,

1 - S^(l - S^M); and therefore,M

1/(1 + SA) . (3)if 4M

> 1 - sAm.(ii)

SA(1 - S^M),
= xi-

(1 - S^M)ST/3

Thus,

A
>z 1/(1 + * ) andifM

1 -i i

I

N
E 

i=m

N
E 

i=l

N
E 

i=m

xm*

max{S^(l - S^M),

(where we define x^

XN

X1

p. X .
1 1

p .X .
1 1

1/(1 + SA) >,

l/d +

1/(1 + sA)

ST/3 ST /3/

/SA

X1

1 - sam.

us firstly solve this

pi

pi

pi

Thus, for i = 1, 2, N, max (x^, 1 - S^M)

Therefore equation (1) becomes, M = 1 - max
N

+ E
i=l

N
1 - E 

i=l

T N
S (i L p.x 

i=l 1
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/ 1 " 11 -

A 1/ 1 "(1 - £ ) + £if

(4)1and

there exists an m c {2, 3, ..., N} such that 4
Equation (1) becomes, M = 1 max

(11
Thus,

A£ ) if there existsM

.A< 1/(1 + £ ) < and

AA1/(1 + S ) >/ / *

,T / 1 "11 - £ /3 +

there exists an m e {2, 3, .N} such thatif

A
/ 1 - 1 - £(!-£)+£ P-;P;x m-1i i i

ST/3A (5)1 -and 1/(1 + £ ) <

N
E 

i=l

N
E 

i=m

N
E 

i=m

N
E 

i=m

N
E 

i=m

N
E 

i=l

N
E 

i=l

N
E 

i=m

N
E 

i=m

N
E 

i=m

N
E 

i=l

N
E 

i=l

N
E 

i=l

‘ N

E 
_i=m

x m

x m

< x . m

N
E 

i=m

N
+ E

i=l

X1

1/(1 + SA) < p. X .
1 1

p. X .
1 1

p. X .
1 1

pixi

p. X .
1 1

pi

ST/3

sTft

ftft /

/

1 - ft

x im-1

p.x.
i i

(iii)

1 -

Xm-1
SA(1 - S^),

1/(1 +

T+^

■T+*p

Pi

p.x.
1 1

pi

pi

pi

pi

pi

pi

N
1 - E 

i=m

an m e {2, 3, .N} such that

pi

+

ST+A/3

N
1 - E 

i=m

£T+A^

sT+^
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Combining equations (3), (4) and (5) gives

(1) for M, which is as stated in the Proposition.

Thus, the equation stated in Lemma 1 does indeed have a unique

whence it follows that the supremum and infimum of thesolution

set Pa(G/\) coincide.

is in factthis solutionshow thatstraightforwardisIt to

supported by a pair of strategies which involve immediate agreement

This follows from the fact that M R^ - 0 and 1 M0.at time t

Player A receives M as defined in the Proposition and player>z RB.

B receives 1 M.

Hence, the game has a unique SGPE partition.

Q.E.D.

We discussed theLet us now examine the limiting case, as A -» 0.

0,underfor doing Case I.soreasons

Proposition 1:

either (i) < 1/2 or (ii) there exists anif= 1/2M

ande {2, 3, N} such thatm

1/2 Em
(6)> 1/2 andor

there exists an m € {1, 2, 3, .N} such thatif

and 1/2 < E> xm-1 m

(7)= 0) »

I

1 - E m

x m

4 1/2 < x mx i m-1

(iii) x1

us the solution of equation

>/ Emm

XN

1/2 > Et

(where we define x^

As A we obtain, from
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/ 1 " 1 -where

interpret the above limiting

through a few points.

withFirstly, that if player B refused to play thenote game

player A, would achieve his expectedthen he reservation value,

denoted by Rg, which is derived from following a sequentially optimal

Thus, there would existsearch rule

that

(8)>/

i.e., player B would accept outside options Xj > and reject outside

would dependoptions Xj xr-l* the values of the parametersr on

for i 1, ..., N, S, t and /3. Rg is defined as follows:Pi,

T/ 1 - 1 -

which has emerged in the limiting case,

is the expected payoff to player B if B followed search rule sucha

that he accepted outside options > and rejected outside options

xi xm-l*

Thirdly, we have that

ST£ Vm (9)

L

N
E 

i=l

N
E 

i=r

N
E 

i=m

N
E 

i=r

x m

N
E 

i=l
x 

DI
E m

E m

x r

rb.

xr

p. X .
1 1

p. s

p. X .
1 1

p. X . , 
1 1

ST/3

ST/3

ST/3

xm

p.x.
i i

Thus Er

rb

X 1 r-1

pi

Before we can

Secondly, note that Em,

over outside options.

case we need to go

r such

N 
e 

i=m
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(10)and Vm

Thus, from equations (8) and (9), we have,

1Vm r

(ID1i. e. , Vm 4r

And from equations (8) and (10), we have,

Vm r + 1

(12)i. e. , Vm r + 1 >/

(13)and Vm r

Fourthly, we have that

(14)

The

second equation of the limiting case, i.e., equation (7), is:

there exists an me {1, 2, 3, N) such thatifM

= 0)(where we defineand> xm-1

1.Using equation (11) we

And, using equations (13) and (14), we haverule out m > r + 1.

Thus, equation (7), the second= rB*>/ xr_p

ft

N
E 

i=l

x m

x m

x m

1 - E m

E m

E m

E m

E m

E m

E rx r

xr

x0

>/ Er

sT/*

x im-1

1/2 > E m

x i m-1

X 1m-1

E m

p. x. , 
i 1

E , mx i m-1

rule out m 4 r Using equation (12) we

well equipped to interpret the limiting case.Now we are

x im-1

Note that Er
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equation of the limiting case boils down to:

if 1/2 < Rg .M

condition for M(Note that we have not included Rg > xr-l

cf.since it is always true given the properties of1 rb> r,

equations (13) and (14) above.)

The first equation of the limiting case, i.e., equation (6), is:

either (i) (ii) there exists an1/2 ifM

and€ {1, 2, 3, N} such that < 1/2 <ID

1/2 > EID

(where we define = 0).

Using equation (11) we rule out m < r-1. We now demonstrate that

< 1/2 < 1/2 > E Rg < 1/2Vm > r + 1, and m

(4>). A'/B', A'where andi 1

[A' + C]/[B' + D],B ' 1 - 1 -

8T^3where C and DP-xi^i

m~l,A' x< [1/2]B Since for i = r,x< 1/2

Thus, A' + Cwe have, C [1/2]D .x< 1/2 ,

x ID

ID-1 
E 
i=r

N
E 
i-m

E m

E m

x m

Pi ’

xr

X0

x i m-1

XN

x i ni-1

1/2 or

as a

1 -

m-1
ST/3 E 

i=r

pi

x.i

N
ST/3 E 

i-m
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X< [1/2] (B'

Vm r + 1. FromWe have that, Em_j,«=).

Thus, Vmequation (12) given, Vm > r+1 xm_| > Em.

Thus, Rg < 1/2 => Vmi. e. ,r + 1

< 1/2 <1/2, => Vm > r + 1, E> r + 1 E mm

r

ST/3T [1/2][1/2]. Now,P£X^ < s /3

Thus, Rb < 1/2 .[1/2]

= RB <^> Rb <and< 1/2 <Finally, note that,

1/2.

Hence the second equation of the limiting case, equation (6), boils

down to:

1/2 .if1/2M

as A -> 0, we obtain,IN SUMMARY:

1/21/2 ifM

> 1/2 .if Kb

Player A has one outside option and player B has oneCase III:

outside option.

Player k (k = A, B) has a ERV R^ defined as follows:

ST/3]/[l - (1 - P)ST^] ,
k

' N
E 

i=r

xm*

Em

N
E 

i=r

[p x

xr

Er

xm

1/2, ST/3

+ D) Rg < 1/2 .

we are

rb

1 - ST/3 + ST/3

Rk

xr-l

and xm_j

1 "

= RB = max {Em}. 
m>r 

x< 1/2

pi

XN < 1/2 => Vm >

N 
E 

i=r
pi

We now show that xjq < 1/2 => Rg 1/2.

N 
E 

i=r
pi

^m-l ^m»

1/2 > Er

xm-l Emr
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(cf. section 2). have dropped

p denotes the probabilitysuperscripts; this reduces the notation.

that player k will find his outside option in

This simplifies the analysis.we have assumed that p^ - pg Wep.

Rg < 1, so that mutually beneficial trade exists.

is again analysed using the method

proposed by Shaked and Sutton (1984a). We have defined the game

offer to Athe subgame of G^ that begins with B making an

(cf. section 2 and Figure 1). set of SGPE

payoffs to player k (k = A, B) in the game Gj (j = A, B).

We begin by establishing the following:

Let Mk( mH) denote the supremum (infimum) of the setLemma 2:
(a)

(b)andy Z1 z2 x Z1 z2
Equation (15):

X)]]y

if either (i) and and< x < x,

(iii) > x,4- or

and

and> x

A

I

ga

< z^.

4 z1

(1 - p)Zj]

such that +

1 - max|8 x,

2+ P(1 ~ P)Rg + (1 “ p) z1]> £[pxr D

21

+ pRb

XB

XA

+ p max(x ,A

> 2^> £[PXB

XA

1 - maxfs^x, [ (1 - p)x

one period of search;

XB

XB

(1 ” P)z1

or (iv) x
A

or (ii)XA XB

8T/3[p2x

Gg as

shall assume that the parameters p, x^, xg, S, r and ft take values

------------------ J J' ‘

Pk(Gj), then equations (15)-(18) below are satisfied by, 
m§, zi = m? and (b) x = m^ y = , zi =B 1 A B -- A B 1 A

+ p(l - p) max(x , x) + p(l - p)R +A A

y = mJ*D

x = A
mA.

The SGPE of the game

some subscripts andNote that we

Let Pk(Gj) denote the
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(1 - p)2x]j

if either (i)

and> x + +

+ (1 - P)

Equation (16): 1 y.

Equation (17):

y) ]}.A ,TX

andeither (i) 4 y and xif 4 y,A

and> £[px > y,

or (iv) and> y

+ p(l - p) max(x , y) + p(l - p)R1 BB

(1 - p)2y]}

y andif either (i)

andor (ii) >/ y

+ p(l - p)RA

2 z

> z2,

> z^

> z,,

> z2,

< z2 ,

1 - max{sAy, ST/3[(1 - p)y

x< Z2

(1 - p)z1J

(1 - p)z2

'B +

4 £Cpxa + U ~ P)z2^

4 £[pxa A

A +

Z2

pRg « £[PXB

> £[pxa

XA XB

Z2

•

Z2

9+ (1 - p) z2].

XB

4 £[PxnD

XB

XA

+ PRA

XB

^Tnr 2- max(S y, S /3[p x

(1 - p)z1

x zx

+ p(l - p)RaA

XB

+ pra

XA

XA

XB

p(l - p)R D

XA

XA

21

XB

XA

XB

or (ii)

or (iii)

or (ii)

>z Z2

2+ (1 - p) z

(1 - p)z2^l > z2

+ p max(x ,D

(1 - p)z2
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Equation (18): 1 - x

denote the supremum and infimum,the proof below: let S

respectively, of the payoff to player k in any SGPE of the subgame

beginning from point (x), where point (x) denotes the points labelled

in Figure 1.

Let MH(m^) denote the supremum (infimum) of the setProof: J J
Pk(Gj).

In Figure 1, consider the subgame beginning from point (12), at

which (i) with probability p player A finds his outside option x^ and

(ii) with probability (1 - p) player A does not find x&, in which case

A makes an offer to B at point (13). Thus, with probability (1 - p),

Then, theNow suppose player A finds
most A gets by taking his outside option is, of course, x^, and the
most A gets by not taking his outside option is M^ Thus, with

On the= Rb-

other hand,
IN SUMMARY,12

(1 - P)M^ (19)A

if+

(20)and
if+ pRB

B 
pmA

= mAA
m? • A

mA •A

(1 - P)m®

A +

(1 - P)m®

XA

qA12

> M* .
A

Z1

XA
^2

_ r -^2 CXliUl W X CH Jk>L X x X L. y P,

if max(x^, M^) = M^, then with probability p, 

and thus with probability p, I?

sA b12

probability p, = 
probability p, S^

For purposes of convenience we will use the following notation in 
k , k x ana Ix

S12 = MA and I^

p max(x , M^) , 
A A

A* 
max(x^, M^). Now if max(x^, M^) = x^, then with

= x^, and with probability p, I?



_
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subgame beginning from pointin Figure 1, the

both players, A and B, find(14), at which,

their respective outside option, and xg, (ii) with probability p(l -

(iii) withbut player does findp) player A finds B not XB>XA

probability (1 - p)p player B finds xg but player A does not find x^,

and (iv) with probability (1 - p)2 neither A B finds his outsidenor

option, in which case A makes an offer to B at point (15). Thus,

Now suppose B

Then, with probability (1 - p)p,finds

if

and

if

Similarly, if A finds xA and B does not find xg, then with probability

(XA» M^), andP(1 “ P), max

if

if

find their respective outsideA andNow suppose both players, B,

Then with probability p2,option, x^ and xg.

if

if

max(xg,

B 
mA

raA)1

XA

mA *Aand I»4

x B> mA

14

$A
14

XB

with probability (1 - p)2

XB

< MAA

XB

SAS14

max(xA> M^)

XB

z B< m4A

ra

rb

xg and A does not find x^.

z B< m.A

x B> mA

XA

XA

sA b14

(i) with probability

Now consider,
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if

if

IN SUMMARY:

+ p(l - p) max(x , M ) + p(l - p)RAA

if

(21)

p max(x , M ) + (1 - p)M' if < mA

p(l - p)R. + (1 - p)+ BB

if

(22)

) + (1 - p)m‘ if < M‘

In Figure 1, consider the subgame beginning from point (8), at

which B has to choose either to search or not to search. If player B

then he gets at least STI® , where I?chooses not to search, is1212
defined in equation (20) above and ST represents the cost of waiting

(t being the time per period of search). If player B chooses to

is defined in

equation (22) above and ft represents the fixed cost per period of

search.

is defined by equation

I

£

B 
‘A

B
A

£

max{STlB }.

2 B 
mA

2 
P x

B 
mA

> ST/SlB then
14if

>z MA
A

>z MA
A

(A 2MA (1 - p) ma

jnax(x , 
D

Thus, Ig - inoA<v XI9* w ,_,x14

ill = ST1P9, and thus, = ST/3S6Q, where S^9
O 1. O X X

XB
x B

A

’ 2
P XA

XB

XA

XA

XA

B, mA)

B, m ) A

XA

XB
and lj4

SA b14

1X̂14

search, then he gets at least where 1^

c rYA

+ P(1 “ P) max(Xg,

p max(xB,

,A
A

,A
A
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(19).

is defined by equation (21).

TO SUMMARISE:

if
(23)

ST/3 S if

consider the subgame beginning from point (7), whereLet us now

Thus,player A has to choose either to search

(24)

defined in equation (23).
At point (10), in Figure 1, player B makes an offer to player A.

defined above in equation (24)) will be accepted by player A; and so

It
Now

since the subgame beginning from point (10) is the game Gg, we have

Thus,

(25)1

(26)1i.e. ,

A
14

B
- mB

B 
mB

SA)

wB.

Any offer by player B which gives player A more than (as

mAB

where SA is o

there is no perfect equilibrium in which B offers more than
1 - SA.

SA b7 ,

IB10

or not to search.

STIBS Z12

SA
/

STIBS X12

SAb8

sA

> ^;4,sTs S*2

And, of course,

follows that B will get at least 1 - S^; and thus, IBq

max (sV .A

thus = ST^SA where sA 
o 14 14

If, on the other hand, STIB 4 ST/3IB , then IB = ST/3IB , and
1Z 14 o 14
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12

rearranging, we obtain that equation (25) is

And note

that equation (26) is equation (16) (which is stated in Lemina 2) with

z2
have shown that equations (15) and (16), which are

stated in Lemma 2, are satisfied by andy Z1 =

z2
By a symmetric argument one can show that equations (17) and (18)

- mAare satisfied by In fact, thex Z1 B

the argument is revealed by the symmetrysymmetry of between

(15) (17), (16) andequation and equation and between equation

equation (18); take equation (15) and interchange y/x, x^/xg,

rb/ra, and
Thus equations (15)—(18) are indeed satisfied by,

Z1
Now, the argument that led us to discover that equations (15) and

(16) are satisfied by y Z1
m-

replaced by

accept/reject, most/least, more/less interchanged throughout. And

Z1

satisfy

equations (17) and (18).

B
A

zi/z2.

mA, A

mAA

mA.B
mA

*A

mB.

mB,

mB

A

mAA

m Â and z2

and z2

= mA.B

and z2

and zj

= "8-

mA and mB

is stated in Lemma 2) with x

one discovers that equations (15) and (16) are satisfied by x =

one obtains equation (17).

= M? and zo =A 4*-

as equation (15) (which

= M? and zo =A

Thus, we

= and y

And symmetrically, x

x - M^, y = m|, zj = m® and z2 = M^ may be 

repeated exactly, but with m^ replaced by M§, M^- replaced by

y = z1

x - mAA

y = mB,

By substituting for S^, using equation (24), and then substituting 

for SA, using equation (23), and then substituting for SA jB $A o 14 14 1Z
and usin& equations (21), (22), (19) and (20), and finally

x - MA yA

= mA y
A

'B “B> **A w, U1A, mA

replaced by M® and the words supremum/infimum 
A

= MA yA
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TO SUMMARISE: We have shown that equations (15)-(18)

Z1 =

Z1 z2
Q.E.D.

We now characterise the solution of the game G^.

Proposition 2:

which agreement is reached at t ~ 0, and player A receives the share

x, given by:

A A
1/(1 + * ) either (i)if andx

A
S ) xand B

A
1/(1 + S ) <

A< ocQ/(1 + S ),3

pxD]]/[l - S if either+
B

X< [SA[1 - ST3[(1 - p)and

‘/3(1 - p)] or (ii)

< a SA[1 - 8T/3[(1 - p) + px_]]/[l - £3 B

A T[1 - S [1 - pxAS’Z3]J/[l - (1 - p)S if eitherA

XB

= mbA

XA

XB

XA

XA

= Mi>
A

= mA.

ra? ’ A A

T+A n i
£(1 - p)J

PX’B] ]/[l - s

y = mg,

> «3/[i + S t

sA)

> 0^/(1 + SA)

and o^/(l + SA) €

x< o^/Q + SA)

> aj/(l *' ®A) and

T+AjB(1 - p)] 4

< a /(I + SA)

[1 - 8T/3[ (1 - p)

;T+A0]

T+A/*(l - P)]

1/(1 +

pxBJ]]/(l - ST+A

XA

XB + sA) <

are indeed

(i) xA

XA

z2 ~ and (b) xsatisfied by (a) x

or (iii)

(i) xB

and SA[1 - 8rZ3[(l - p) +

XB

or (ii) «1/(1

< SA[1 - SA[1 - px.8r/S]];
A

y - mb
D

4 «3/(l

€ «]/(!

unique SGPE partition, inThe game G^ has a

x< ^/(l + 8 )





70

Z3] » and

B

(1 - p)ZT/3]/pST/3where and

> 1), and player B receives 1 - x.

show the thatProof: in appendix the four equationsWe

(15)-(18), which are stated in Lemma 2, have a unique solution. Let

zj, Z2) denote this unique solution. Thus,

1 1y
straightforwardis show that this solutionIt is in factto

supported pair of strategies which involve immediate agreement

0. This follows from the fact thatat t >z RAX

where stated Proposition 2.in Player A receives andx x

player B receives 1 - x.

Hence the game has a unique SGPE partition.

Q.E.D.

interpretation of this result.

look at the limiting case, as A 0. (See Case I where we discuss the

interest and importance of this limiting case). As A -> 0, we obtain:

< 1/2 and < 1/21/2 ifx

I

mB ’ mB> A

note that

“3

> a3/(1

mA, A

(and we

= M* =

«,SA[1 - Sa(l - px.ST/S)J/(l - <1 - p)S 
«J A

eA[l - SA[1 - px ,ST/3]]/[l - (1 - p)S
A

- (1 - pjV/i] [1 - (1 - P)STZ3] ]/[ [pST/3] [1 - (1 ~ P)2ST3]],

[1 - (1 - p)sT+A

T+A „, x
■ /3] < X

/3]

ra rb

y = m| =

ai

We now turn to an

[[SA

XA

by a

or (ii)

Once again, we

+ sA)

(x, y,

x > Rb,

x = mA =
A

and 1

x = M^ -
A

is as
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> 1/2 andif *B

> 1/2 andif

and Rg denote the expected reservation values of player A and

(Note, Lim =player B, respectively. 1A->0

in the limitingagain, case,

reinterpret the notion of the outside

treat and Rg

and player B, respectively.

where R^

Lim ct, , 
A-*0 1

RA’

ra ra

< 1 - Rb

[xB]/[Lim «3] = Rp)• 
A-*0

Thus, once

ra

and [x ]/[Lim ccj =
A A-,0 °

1 - RB

Rb < 1 - ra ,

Option Principles provided we

option: i.e., we as the outside options of player A

we obtain the *Outside
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4. SUMMARY AND CONCLUDING REMARKS

2 presented model the following situation.section ofIn we a

the partition of pie of sizea one.

will be partitioned only- players reachThe pie after the an

Each of the two players is free to quit bargaining andagreement.

process of random search in order to find one of

The playershis outside options. choose to resumemany can

situation is when two insiders,

the worker is free toAnd

quit bargaining in order to search for alternative wage offers.

"how will the values of theThe central question of interest is,

outside options impinge on the bargaining outcome, given that search

the analysis the model,From of conducted in 3,section we

to the above question. In the limit,

the time between successive offers tends to zero, the bargainingas

(1985)characterised by the Binmore 'Outsideisoutcome Option

Principle’, with the players’ expected reservation values treated as

the outside options.

The game presented in this chapter, in which derived thewe

above result, explicitly takes into account the search dimension of

the situation that we have modelled. This meant that we have had to

how the searchformulate and bargaininga on processes

In order to model the bargaining situationought to be interlaced.

(in which the players have many outside options, where each option

is available with

I
I

a firm and a

bargaining, after having searched for some time without success.

An example of such a

is costly?"

instead engage in a

arrived at the following answer

"view"

worker, are

bargaining onTwo players are

some probability) one has to have a model of how

bargaining over the wage.
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and bargaining interlaced; in

situations, in real life, bargainers have

search in order to find an outside option.

alternative that purports bilateraltogame

bargaining with outside where eachsituation options, option is

available with probability, take of the searchmust accountsome

dimension; which will then require the need to form

the search and bargaining processes ought to be interlaced.

result (the limitingAn interesting observation theconcerning

game is the following. The result becan

obtained in game in which the search

dimension of the situation is completely ignored.

Binmore (1985) extension of the Rubinstein game (which produced the

'Outside Option Principle’). Simply define, priori, the expecteda

reservation values of the players to be their outside options available

with certainty. Then apply the Binmore game and

result (limiting case).

We have made the above observation in order to point out the

"robustness” (1985) ’Outside Principle’,of the OptionBinmore

provided one redefines the notion of We suggest

that the concept of the outside option ought to be redefined

expected reservation value (and

meaning of the term

offer). Therefore,

achieved from following

outside offers.

offer available with certainty, the value of his Outside Option equals

the value of his outside offer.

an outside option in the "traditional"

an outside option.

can be called something else, such as an outside

on howa "view’

as the

one obtains our

a simpler game; in fact, in a

a player’s Outside Option is his expected payoff

processes are

This game is the

case) produced by our

a player has one outside

model a

the search

Thus, any

Thus, in the case when

to engage in some sort of

a sequentially optimal search rule over his

most such





14:

does not implythe above observationmust emphasize thatWe

dimension of the situation whenshould ignore the searchthat one

attempting to model the bargaining situation.

coincidence that our result (limiting case) be brought out by thecan

The two games are very different.Binmore game.

to model the bilateral bargaining situation with outside options, where

to incorporate theprobability, is

search dimension.

the Binmore game, with the modified

our

game.

The issue is, what is the correct way, if there is

model the interlacing of the bargaining and search processes.

approach this issue is that adopted in theOne currentto

chapter.

bargaining;outside option while he has withdraw from theto

bargaining in order search (seein theto engageprocess

Introduction chapter 5 for that justifies thisto argumentan

approach to modelling the interlacing of the bargaining and search

processes).

alternative approachThe central of modelling theidea toan

interlacing of the bargaining and search processes is the following.

The players can search for an outside option during the bargaining

process, i.e., between two successive offers. This approach was first

explored by Sutton (1986, pp. 713-714). However, he considers the

The result that he obtains is very differentwith some probability.

I 
g

of "applications"

"complex"

Finally, we shall now make some comments on an important issue.

case in which each bargainer has only one outside option, available

one could use

However, what we may say

a correct way, to

is, that for purposes

The "right" way

each option is available with some

The basic idea being that a player cannot search for an

definition of an outside option (suggested above) rather than

It happens to be a
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from the result of the current chapter (and thus his result does not

support any modified form of the ’Outside Option Principle’, as does

the result of the current chapter). In chapter 4 we shall generalise

Sutton’s (1986) shall examine the in which thegame; we case

bargainers have many outside options. We shall do this in order to

check ’’robustness”the of the general conclusions obtained by

Sutton.

Wolinsky (1987) also presents

he later embeds in

adopted. Wolinsky, however, generalises the search aspect by letting

the bargainers choose "how hard they wish to search".

Although in the Introduction chapter 5to presentwe an

justify the approach adopted byargument to thein currentus

nchapter the then being embedded large marketin a

context in chapter 5 - it may be the case that there may not be a

conclusive argument to justify either of the two approaches. The

"approaches n be viewed representing differenttwo twomay as

institutional frameworks. Thus, at this stage of our knowledge, there

of modellingis the interlacing of the search andcorrect wayno

bargaining processes.

His

paper subscribes to the approach taken in the current chapter.

2.

recent paper by Shaked (1987).2

It may be noted that the first draft of the current chapter was 
submitted for the University of Cambridge Stevenson prize on 21 
April 1987 (and in fact it was later awarded the Stevenson prize). 
Furthermore, the first draft was written before the papers by 
Shaked (1987) and Wolinsky (1987) appeared.

a bilateral bargaining game (which

a large market) in which the Sutton approach is

Finally, we now mention a

approach"
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is of a

Shaked has raised a rather different issue, whichdifferent nature.

however fits within the issues under discussion. The question he

"at which points during the bargaining process shouldaddresses is,

player be allowed to withdraw, in order to search fora

recall, it is the responder who

decides whether continue bargaining. Shakedwithdrawto toor

"Hi-tech"argues that for markets this

He presents a model in which it is thealthough for Bazaars it may.

proposer who decides whether to withdraw or to continue bargaining.

that this issue is important for theLast but not least,

modelling of large markets with sequential bargaining, at thesince

those models lie interlace theheart of howmust toa on

bargaining and search processes.

option?"

"view"

He does not say this explicitly, though, because his concern

a realistic model,may not be

an outside

we note

In the current chapter, may we
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APPENDIX

solve four equations stated in Lemma 2.

Let us firstly simplify equation (15) (stated in Lemma 2). Note

and T > A.

(•, •) and the inequalities, equationAfter manipulating the max
(15) becomes:

either (i)1 if < xy

(iii) x < x andand x orB A

,T1 “ [(1 - p)x + px ]S £ if andA

T+ px ]S /31 - [(1 - p) andifA

(15a)

- (1 - p)ST/3]/pST^ ,where

[(1 - p)[l - (1 - p)STmi - (1 - p)Z3] ]/[Z3p[l - pST -

9 T T T
- (1 - p) S /3][1 - (1 - p)S Z3]]/[pS /3[1 -

2x

> o^x

«1x

4 maxfoc^Zjj

> maxfo^Zp

> maxfo^Zp

= [pST£x ]/[l - (1 - p)ST£] 
A

In this appendix we

9 y 
(1 - p) s £]], and

9 T (1 - p)ZS /3]] .

a2

a3

XB

“1

that Rg = [pST£xB ] / [ 1 - (1 - p)ST/3],

XB

Zl}

RA

+ (1 - p)RaA

[[SA

zl}

zl}-

XA

XA

Zl}

or (ii) x < xA

XB

XA

< a3x

>z «3x

< max{«2z^>
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> 1 and a

A either (i)if x< y1 - S yx B

(iii) y < andand or

andif1

2 and1 - [(1 - p) y + (1 - p)pR if+B

(17a)

equation (17a), above,for inNow secondly, substitute z2we

using equation (16) (stated in Lemma 2) and for in equation (15a)

above, using equation (18) (stated in Lemma 2).

does thissolveAnd finally, for y: onenowone can

carefully, taking note of the parameter restrictions embodied in the

obtained using equations (16) and (18)."inequalities”. arez2

show that the four equations (15) —(18) have a unique

solution.

>z a3y

> a2^

XB

■ z2}

> «1y

maxfo^Zg

XA

> raaxfotgZg’

< maxfttgZg,

XB

XB

Z2}

XB

z2).

XA

px ]ST/3
D

px ] [3
D

Hence, one can

Z} and

[(1 - p)y +

Z2}

or (ii) y x

XA

XA < «3y

> inax{a2z2’

[Note that i cuivx

And symmetrically, equation (17) (stated in Lemma 2) becomes:

x and
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Chapter 4

A note on bargaining with many outside options
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1. INTRODUCTION

non-cooperative sequential gameIn chapter 3 presented awe

the playersthat modelled bilateral bargaining whichsituations in

outside option is availablehave many outside options. where each

with probability. We argued there thatsome

»» view” how and bargaining ought to bethe searchon processes

interlaced if In fact, themodels such bargaining situation.one a

presented approach thisin chapter 3 represents togame one

We mentioned there that Sutton (1986, pp. 713-714)important issue.

has presented a game

However,

has only one outside option, available with In this

will generalise Sutton's game;

two players to have many outside options, where each outside option

is available with We do this in order to check the

n robustness" of the general conclusions obtained by Sutton.

Sutton obtains the following result (the limiting when thecase

time between successive offers tends to zero). The outside option

belonging to a player, which is available with probability, doessome

not influence the bargaining outcome if its value is less than the

Rubinstein (1982) solution (i.e., 1/2); if its value is greater than the

Rubinstein solution, then it influences the bargaining outcome

particular way.

show that even if the value of

(available probability)option with is than thegreatersome

Rubinstein solution it need not influence the bargaining outcome.

for example,Take, the bargainer has two outsidecase

some probability.

some probability.

chapter we

in which an alternative approach to this issue

we shall allow each of the

an outside

is taken.

in a

he considers the case in which each bargainer

when a

one needs to form a

In this chapter we
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options, where each outside option is available with some probability.

influences thethe larger of the outside optionsSuppose two

shall show, that even if the smaller ofbargaining outcome.

Rubinsteinvalue than thethe options hasoutside greatertwo a

the bargaining itinfluence For tosolution it need not outcome.

influence the bargaining outcome its value has to be much greater

than the Rubinstein solution: the precise value required will depend

the value of the larger of the two outside options.on

Then, we
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2. THE MODEL

pie ofTwo players, A and B, are bargaining

The pie will be partitioned only after the players reachsize one. an

Player k (k = A, B) has outside options; denote theagreement.

(i = 1, ..., N^) and assume that the optionsoutside options by 2,
1.... Nk - 1. The outsideare ordered, i.e., for i

is available with probability pk. The bargaining game is1
Rubinstein-type game (Rubinstein (1982)); the players make offersa

alternately.

1fc=2r>

b/a
■ A

Figure 1

At each time t = 2n (n = 0, 1, 2, ..., ) player A makes an offer to

player B (node 1 in Figure 1). Player B either accepts or rejects.

If he accepts, then the game ends. Otherwise, a chance move occurs,

(i = 1, 2, . .., Ng) the outside option

> xk.
1

/

a/b

option

xk
i

in which, with probability p?

xk
Xi+1

on the partition of a

s
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(i = 1, 2, .Ng) is available to player B (node 2). If an out­

side option is available then he choose.to B, either to quitcan

not to quit bargaining

counteroffer (node 3).a

Note that with probability (1 - i
to B (node 2), and thus,

offer (node 3).

Following B's offer 2n + 1 (node 3), A either

accepts or rejects. If he accepts, then the game ends. Otherwise, a

(i = 1,2 Na)

(i = 1, 2, ...» N^) is available to A (node 4);the outside option

choose, quit bargaining and takeeither the outsideto up

not to quit bargaining in which case A must await his turn

counteroffer (node 5). The chance

independent.successive nodes are

We shall that the two players maximise expected utility.assume

Player k (k = A, B) has a

be either the share of the pie received byUk(z, t)

player k, if agreement on the partition is achieved,

outside option belonging to player k,an

option, or the expected reservation value of player k, if player

= A, B) takes up an outside option leaving player k with his

expected reservation value. t is the time elapsed from time t 0

S is the (common) discount factor, 0 < S < 1.before z is obtained.

Denote the game described above by G. G is a game of complete

and the agents preferences(i.e., the treeinformation game are

assumed to be common knowledge amongst the agents). Furthermore,

A

zSk

xA
i

B 
xi

chance move occurs,

option, or

bargaining and take up the outside option, or

von Neumann-Morgenstern utility function

in which case B must await his turn to make 
nb _
E P?) no outside option is available 

i=l 1
B must await his turn to make a counter­

moves which occur at

w (w

to make a

or the value of

in which, with probability p

z can

to A, at time t

if k takes up an outside

A can

* k, w
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note that G is a game of perfect information.

Suppose player k (k

(w * k,

reservation value (ERV), Rk, sequentiallyderived

Thereoptimal search rule over outside options. Let us compute Rk.

will exist rk such that it is sequentially optimal for player k to

i > rk, and to reject outside optionsforaccept outside options x

such thatfor i rk - 1;

>/ £

discussion of optimal stopping rules).

for i = 1, ..., Nk, and S. We have

follows:

/ 1 - (1 -

We shall assume that R^ < 1, so that mutually beneficial trade is

possible.

A strategy for each agent in G will tell the agent the choice to

make at each and every decision node that he may be at. Each of

set of strategies from which to choose a

will use is the subgame perfectstrategy.

equilibrium (SGPE) (Selten (1965, 1975)). A strategy tuple is in SGPE

if its restriction to any subgame is in Nash equilibrium.

i

k x.
i

k 
i

Nk
E : 

i=rk

r Nk
E 

-i=rk

Nk 
E 

i=l

kx
rk

+ rb

k
Pi

k 
pi

k x.
i

depend on the parameters p^S,

> x , , 
rk-!

k. _ Pi)S

x*<
i

(see McCall (1965) for a

w ~ A, B); then player k would achieve his expected

that, given rk, Rk is defined as

rk will

player w

the two players will have a

Rk

The solution concept we

i.e., there exists rk

A, B) refused to play the game G with

from following a
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3. PERFECT EQUILIBRIUM

The SGPE of the game G is found using the method proposed by

Shaked and Sutton (1984a).

We begin by establishing the following:

Let M be the supremum (infimum) ofLemma: the payoff to A in

any SGPE of G, then:

1 -SIM 1 1 SM

> S(1 - K)if , (r = 1, . . . , N + 1,A

= 1, . . . , N, 1), where 1 - K 1s

1 SM .

Let M be the supremum of the payoff to player A in anyProof:

SGPE of G.

Consider the subgame beginning with an offer made by player A

2 (node 5 in Figure 1). This subgame has the same

structure as the original game G apart from rescaling of payoffs,a

and so the supremum of the payoff to A in any SGPE of this game is

again M.

Now consider the subgame beginning at node 4. At node 4,

nA 
E 

i=r

nb 
E 

i=s

A x r

nb 
E 

i=s

na 
E 

i=r

na 
E 

i=r

na 
E 

i=r

A A p. x.
i i

B B p. x.
1 i

A A p. x.
1 1

A
Pi

A
Pi

. B and x ----- s

B
Pi

B
x is-1

+ 
B

A
> SM > x , r-1

at time t
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with probability

1 none of his outside options
are available.

(if it becomes available), then he must await his turn to make
a counteroffer (at node 5). From the paragraph above
the of the payoff in of the subgameSGPEto Asupremum any

beginning at node 5 is M. Discounted node 4, this equals SM.to

supefrmum of the payoff to A in any SGPE of the subgameThus the

beginning at node 4 is K, where

1K max(SM,SM + that is,

1K ifSM +

(r = 1, ..., N 1) (1)

Now consider the subgame beginning at node 3, where B makes

an offer to A. Any offer by B which gives A than K (where Kmore

is defined in equation (1)) will be accepted by A; and so there is no

SGPE in which B offers than K. It follows that B will get atmore

least 1 K; in fact, this is the infimum of the payoff received by B

in the subgame beginning from node 3.

Now consider the subgame beginning at node 2. At node 2
with probability p?,player B has available his outside option i

and with probability 1 - none of his outside options are

available.

(if it becomes available), then he

A 
i

B

■

na 
E 

i=r

na 
E 

i=l

na 
E 

i=r

na 
E 

i=l

A x r
A A p . x . , 
1 i

A
Pi

A
Pi

B
Pi

A x.
i

pA, and with probability

f + A

nb E
i=l

If B chooses not to take up his outside option x

player A has available his outside option x

xAi

X?i

A> SM > x , , r-1

Pi

A
Pi

na E
i=l

If A chooses not to take up his outside option

we know that

make aturn tomust await his
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counteroffer (at node 3). infimum of the payoff to BThe

SGPE of the subgame beginning from node 3 is 1 K, where K is

defined in equation (1). Discounted to node 2, this equals 8(1 K).

Thus the infimum of the payoff to B in

beginning from node 2 is L, where

p 8(1 - K) + max (8(1 - K),1L

> 8(1 - K) >P, S(1 " K) if1L

(2)+ 1)(s = 1, . . . , N.B

Now consider node 1 in Figure 1 - the node at which the game G

than L (whereless iswhich gives LAny offer by A Bbegins.

defined in equation (2)) will be rejected by B; and no

It follows that A will get atSGPE in which A offers less than L.

the supremum of the payoff to A inmost 1

beginning from node 1. Hence,

(3)1 - LM

definedK in equation (2), K is inwheresubstitute forNow

equation (1), and then substitute for L in equation (3), where L is

defined in equation (2), and obtain that M iswe

i.e., the equation shown in the Lemma defines the supremumLemma;

of the payoff to player A in any SGPE of the game G.

We defined M as the supremum of the payoff to player A in any

The above argument may be repeated exactly, but with MSGPE of G.

!
1
I

Nb 
L 

i=s

NB 
E 

i=l

B x s

E 
i=l

NB 
E

i = s

B B p.x.
i 1

B 
x i > s-1

Bsi . i . • xp , that is,F B 
Lpi

so there is

in any

as defined in the

the game

any SGPE of the subgame

L; this is

B
i

B
1
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defined instead as the infimum of the payoff to player A in any SGPE

of G; the words more/less, most/least, supremum/infimum

and accept/reject interchanged thethroughout. Hence equation

shown in the Lemma also defines the infimum of the payoff to player

A.

Q.E.D.

We now characterise the solution of the game G.

Proposition: The game G has unique SGPE partition, in whicha

player A receives a share of M, where M is given by:

1M 1 1 * / 1 - 1

1 if > SM > x

> S(1 - K) > (r = 1, . . ., N + 1,A

+ 1),

where

(1 - K) 1 - 1 1 S /

11 1 -

and player B receives 1 - M.

1 
■

na E 
i=r

NB E i=s

nb E 
i=s

nb E 
i=s

B x s

na E 
i=r

nb E 
i=s

nb E 
i=s

na E 
i=r

na E 
i=r

na E 
i=r

A A p.x.i 1

B B p. x.i i

A x r

A
Pi

B
Pi

A
Pi

B
Pi

B
Pi

A
Pi

B
x i > s-1

A A p.x.i 1

S2

s2

s = 1, .... Nb

B B p.x.1 i

A ., andr-1 --

and, with
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Remark: The game in which player B moves first has

SGPE partition, in which player B receives 1 - K (as defined above in

the Proposition) if

> S(1 - K) >and> SM x + 1,

1) ,= 1, N,s

where is defined above in the Proposition, and playerM Aas

receives K.

We begin by showing that the equation theProof:

preceding Lemma has

Solving that equation for M, and then substituting M into 1 - K,

Thus the equationdefined in the Proposition above.

stated in the preceding Lemma does indeed have

whence it follows that the supremum and infimum of the payoff to

player A in any SGPE of G coincide.

show that this solution is in factstraightforwardis toIt

supported by a pair of strategies which involve immediate agreement

This follows from the assumption that R^ rb < 1,at time t 0. +

Player Awhere R^ (k = A, B) is the reservation value of player k.

defined in the Proposition and player Bthe sharereceives

receives 1 - M.

Hence, the game G has a unique SGPE partition.

Q.E.D.

k

A 
r-1

B x s
A x r (r = 1, . . . , N

ri

B
X 1 » s-1

a unique solution.

we obtain M as

a unique solution -

B +

a unique

stated in

M as
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An implication of the (characterisation) Proposition isRemark:

Suppose the r biggest outside options of player A andthe following.

biggest outside options of player B influence the bargaining

We now ask whether the next biggest outside option of,outcome.

will not influence the bargainingsay, player A (i.e.,

It will not influence the bargaining outcome if the threat ofoutcome.

having recourse to it (if it becomes available) is empty. The threat

will be empty if x

this payoff willthe option;doesA will receive if A not

depend on both the

biggest outside options of player B since these options influence the

is, providedthe bargaining outcome.

this payoff influence theequal toless than notor

bargaining outcome.

the above, is bestcontained in Proposition,The result

interpreted by reference to some special cases.

Player k (k = A, B) has one outside option available withCase I:

probability p (i.e., the Sutton case); then,

x< S/(l + S) (4.1)1/(1 + *) ifM

2[1 - 8(1 - px?)]/[l - (1 - p)8 ] > 8/(1 + 8),if

(4.2)

> 8/(1 + 8),if

(4.3)

!

I
i

A r-1

B
X1

A
Xl>

B
X1

A
X1

B
X1

A
X1

9- (1 - P)8]/[1 - (1 - p)8~]

xA .r-1

[1 - px®

) will or

is less than or equal to the payoff that player

r biggest outside options of player A and the s

the s

Thus, no matter how big r-1

A
X< F(xJ)

4 F(x®)

it is

take up

it will

A
1
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2 2(1 - p) (1 - px?)S]/[l - (1 - p^S*] if

(4.4)> F(x?)

2[1 - pxwhere (i - P)s]/[i - (i - P)s ], k = A, B.

Proof: (cf. the Proposition above). 1 and

1Then, 2 and rP- s

1 and 1 and r 1 givesr

(4.4).

A relatively transparent interpretation is made possible by taking

limiting case: offersa

from 1 to A, replace the probability p by pA, and the discount factor

S by 0 we obtain (see Sutton (1986, pp.Then in the limit A

713-714)) F(x><) 1/2 and:1

(5.1)1/2 v< 1/2ifM

w[l/2] + (1 - w)x (5.2)> 1/2,if x< 1/2

(5.3)< 1/2if > 1/2,+

(1 - w)[x + (1/2)(1 - > 1/2w[l/2] ±1

(5.4)

1/(1 - (p/ln s2)]; (1 - w) can be interpretedwhere w measure

of the likelihood that the outside option will be available.

Thus, from case I (i.e., the Sutton case) above, see that thewe

k
1

A
1

A 
1

r

w[l/2]

B
X1

B
X1

A
Xl’

nb

A
X1

B
X1

B
X1

A
Xl’

Put Na

A
X1

A
X1

A
X1

B
X1

> F(x®),

P1 P?

F(xJ)

as a

[1 “ P*!

Bx, xp]

gives (4.2), s

2 and r = 2 gives (4.1), s

2 gives (4.3), and, s

change the time interval between successive

(1 - w)(l - x®)

A
1

A
1
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availableis withplayer, whichoutside option belonging to a

probability p, does not influence the bargaining outcome if its value

is less than the Rubinstein (1982) solution (i.e., 1/2); if its value is

the bargaining outcomegreater than 1/2, then

particular way (cf. equations (5.1) —(5.4)).

not holdthat this conclusion doesII,In case

each option isoutside options, wherewhen player has twoa

available with some probability.

outside options and player B has twoCase II:

outside options available with probabilities pB and then,1

< S/(l + S) (6.1)1/(1 + S) ifM

> S/(l + S)if

" (5/(1 + *))]and

(6.2)

if

> S/(l + S)

2> s/d + s) + [s p;/(i - (i - p;)s )][x: - (s/d + *))]and (6.3)

(cf. the Proposition above).Proof: 2.

= 3 gives (6.1),

Change the time interval between successive offers from 1 to A,

B 
2

0 and Ng

B B
P1X1

B
X2

B
X2

Put Na

B
X2

B
X1

p|;

B
X1

M B B [1 - P2x2

n B B [! - P2x2 B- d - P2

s = 1 gives (6.3).

(1 - p|)S]/[l - (1 - pB)S2]

“ pB)S]/[i ~ (1 ~ Pg

< S/(l +

Player A has no

Then, s

" px)s J

r_2 B .,.. ,, Bx_2x-.r B
[S P2/d ‘ d “ P2)S J ix2S) +

s = 2 gives (6.2), and

below, we show

it influences in a

2 B
2

B
2
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Then in the limit A 0

we obtain:

if (7.1)1/2 4 1/2M

[1/2] + (1 - if > 1/2 arid

- d/2)) (7.2)4 1/2 + (1 -

> 1/2if and

(7.3)> 1/2 + (1 - - (1/2))

will be available.

As can be seen, from equation (7.2), that even if the smaller of

1/2) it need not influence the bargainingRubinstein solution (i.e.,

outcome.

B
X1

B
X2

B
X2

B
X2

B
X1

[(w2

w2

W2

w B )(x2

+ wT(l -

W2

[w2

w B )(x2

where w^

(i = 1, 2) by p?A, and S byreplace p?

w2) 5

B.
x2)

w (1 - w w1(l -

- 1/(1 - (pB/ln s2)], k - 1, 2; (1 - w^) can be interpreted 
K

as a measure of the likelihood that the outside option xB (k = 1, 2) K

wp(l/2) + 1)(1 - x®) +

the two outside options, namely xB, has a value greater than the

w2)x®]/
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GENERAL EQUILIBRIUM
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Chapter 5

Price formation in a decentralised market

I



____________

1

i.

A
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1 . INTRODUCTION

this theory of market in whichIn present thewe a a
of is decentralised. The of theagents

(i . e . rmarket the buyers and the sellers) do not. know eachex-ante,
location.others' The theory, therefore, includes matchinga

technology within which the agents search for with whom topartners
trade. When sellerand initiate sequentialmeet,aa a

If they reach an agreement
they leave the market.

Models of this type have been explored recently by various authors.
These models be distinguished by two main important factors: thecan

and
and search problem. the models presented inIn

Diamond and Maskin (1979) and Mortensen (1981, 1982),
the matching and search is modelled explicitlyprocess as a non-
cooperative game, but the events that follow a match are not modelled.
Rather, these authors that the parties reach agreementass ume an on
the terms of the suggested by the Nash Bargaining Solution.contract
On the other hand,
(1985, 1986), Gale and Herrero (1984), the
matching and search process is not modelled explicitly a la Diamond-
Mas kin-Morten sen, but they do explicitly model the bargaining process

non-cooperative in which bargaining procedurethe isas a game,
in Wolinsky (1987)described detail. the only thatpresents

with a
sequential bargaining model.

The raison d'etre of this chapter is now discussed.

(A) Firstly, model that will be presentedthe generalseems more
and less restrictive than any of the previous models mentioned above.

The matching and search model a la Diamond-Maskin-Mortensen has two
(i) all agents of the assumed,same are a

a linear or a

buyer and a seller meet, they 
bargaining process over the terms of trade.

the matching
Diamond (1982),

approach adopted with respect to (i) the basic bargaining problem, 
(ii)

paper
combines the model of matching and search of Mortensen (1982)

in the models presented in Rubinstein and Wolinsky
(1986, 1987) and Binmore

major assumptions: (i) all agents of the same type
priori, to search with the same strategy and (ii) the matching rate is 

quadratic function of the search choices made by each

chapter 
price formationinstitution
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(which will haveIn aour
will notto we

(i) that agentsin factrWe shall, assume
thatof the same type can
thefunction of theis some

in our model the rate at which a particular
affected by the searchwill beparticular buyer meeta

choices of the other agents.

Herrero

in view, iseach other. notleaveto ourare

seller meet they
isas

themention the difference betweenshallthis pointAt we
Wolinskyadopted byand thatbargaining us
modifiedBoth areour

Inas our acan
are

for partnerstrade) cannot
search while(1987) the matchedinwhereas can

onea
is in both andassumedstepmake therandom to our

(who hasmodelmodels. Now, to
or to

another choice: headdition to these two
’’the negotiating table’’) and search for(i.e.,the bargaining process

strategic decision;
This,

in Wolinsky/s model the agent
either to accept the offer,

bargaining procedures 
pair of agents who 

search

Wolinsky's 
react to the offer) has two choices,

type of agent.
framework similar

matching and search model 
that of Diamond-Maskin-Mortensen)

’’forced"

reject the offer and wait for a fixed time interval before proceeding 
to another round of bargaining, whereas in our model the agent has, in 

choices,

agents. Thus, 
seller and

the matching rate
for example,

buyer
genuine sequential bargaining a la Rubinstein (1982). 
in the model of Wolinsky (1987), when a buyer and a 
can bargain as long as they like;
modelled explicitly as

seller and buyer is not a

a strategic decision.

in the process of bargaining (over the terms of 
alternative partners while bargaining,

procedure adopted by
(1987). Both our and Wolinsky's bargaining procedures
versions of the classic alternating-offers model of Rubinstein (1982).
The key ideas that lie at the heart of the difference between the two 

be put as follows. In our model a matched

make these two assumptions, 
choose different search strategies and (ii) 

search choices of all

can withdraw from

Wolinsky (1987) the matched pair
bargaining. Let us elucidate. When a matched pair of agents go through 

round of bargaining, firstly one of the two agents is chosen at 
offer. This

A central feature of the non-cooperative strategic approach to the 
basic bargaining problem adopted by Rubinstein-Wolinsky-Gale-Binmore- 

(with the exception of Wolinsky (1987)) is the following. In 
these models the decision to abandon the bargaining between a matched 

the matched seller and

the choice to leave each other

In our model, as
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during the timein Wolinsky's model,an alternative partner. However,
search forsuccessive offers the agentsinterval between two can

and can therefore switch to alternative partnersalternative partners,
proceed to bargainduring this time interval and thus they may not

with each other in the next round of bargaining.

particularof thein favourhave the followingWe argument
answeringargument is basedTheassumptions that have chosen. onwe

timeinterval ofd'etre of theis raisonthe question, "what the
alternating-offersRubinstein-typesuccessive inbetween offers

is observe thatbargaining models?" starting pointThe to canone
therigidity ofRubinstein-type models with regard to thecriticise

timetable for making proposals; what constrains the players to the use
time betweenlength ofthis timetable (i.e., why have theof

shown thatBinmore (1987a) hassuccessive offers fixed exogenously).
Rubinstein-type model in which the intervalsit is reasonable to use a

a paradigm forbetween successive proposals vanishingly small asare
formally constrained byin whichthe the players not ancase are

further thatdetermined timetable. couldexogenously One weargue
put the time between successive offers equal toshould, at the outset,

then face the problem of indeterminacyas is well known,But, wezero.
could counter-argue that timeof the bargaining outcome. However, one

strictly positive if only forsuccessive offers bebetween must
interval time betweenlet there remain ofphysical So anreasons.

but interest will center on the interval tending tosuccessive offers,
d'etre of introducing a time interval betweenthe raisonThus,zero.

notion in thethe ofsuccessive isoffers to capture

eliminate the indeterminacy ofwhich happensbargaining process, to
view time betweenshould thebargaining Onethe outcome. gap

successive bargainingintegral part of thesuccessive offers as an
integral part of the bargaining process. The timeand thusrounds, an

thesuccessive is and parcel ofoffers partinterval between
andof the of offersthebargaining sequenceprocessprocess,

this time of search.forcounteroffers. One cannot use gap purposes
wishesif search forthustime, and agent totakesSearch anan

withdraw bargainingfrom thethen healternative mustpartner,
process.

"frictions"
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equilibria insymmetric equilibria (i . e . t agents same
forallowtheorychoose the strategy). Intype non-wesame our

allowed(i.e.,symmetric equilibria theof type toagents same are
the unique sub­choose different strategies) . thatHoweverf

symmetric. of theequilibrium isgame perfect A propertyoutcome
identical)equilibrium is that all choose thesellers (who sameare

(who are identical) choose the same strategy.strategy, and all buyers

important, justification forthird, and perhaps the(C) The most

wisdom,answering the question, is conventionalwhat theextent
that all 'frictionless' markets are Walrasian,

The main theorem will establish that all transactions take place at
in equilibrium).different prices (i.e., non-uniform prices emerge

This is tradersbecause the demand and as
leave the market
at which a matched pair trade depends on the state of the market, and

Firstly, the bargaining friction, which isthree types of frictions.
fixed time interval successivecaptured by the exogenously between

shall call this friction the Internal friction. Secondly,offers. We
isthe market friction, which captured by the search andcosts,

(in particular,

the equilibrium price. shall call this friction the ExternalWeon
Thirdly, there is the (common) rate of time preference.friction.

friction keeping the Internalthe External tends toAs zero,
friction and the rate of time preference strictly positive, all the

competitivethe equilibrium price.equilibrium prices tend Anto
explanation and interpretation for this is as follows. As the External

the sellers (since they are on the short sidefriction tends to zero,

i

2

supply conditions change
new traders who enter) .1 The price

This
and

(B) Secondly, most of the models mentioned above focus attention on 
which agents of the

"to
correct?"

We will assume that all traders enter the market at one single time and that the 
market continues to operate until all possible transactions are completed, 
assumption is also adopted by Rubinstein and Wolinsky (1986) and Binmore 
Herrero (1984, section 8).
We analyse the model with the assumption that there are more buyers than there 
are sellers. (The case whore thore are more sellers than there are buyers can be 
analysed in a similar manner - and the results would be 'symmetric' . The case 
whore tho number of sellers equals the number of buyers is somewhat different).

the current chapter is the new results and new insights it provides in

represents the extent to which the market environment
the fact that there are more buyers than there are sellers)2 impinges

(and there are no

we prove



4

1



99

of the market) are
in order to obtain the whole surplus.
to view this is as follows. we
will taken forshow that the agent toan

tends to zero.
market it is they (and not the buyers)

withis matchedadvantage. seller aa
since theInternal

taken for the findseller toto an
continuethanseller will always prefer change toto partners

bargaining with in the matchedhis buyer. Thus fcurrent essence.
in which the seller announcesseller and buyer play a one-shot game a

take-it-or-leave-it offer to the buyer.

Internal friction tends keepingOn the other hand, to zero,
friction time strictlythe External and the of preferencerate

positive, all the equilibrium prices tend to the bilateral bargaining
equilibrium price . explanation and interpretation for this isAn as
follows. The friction becomes infinitely large relativeExternal to
the Internal friction, and thus the market environment (in particular,

buyers than there are sellers) does notmore
impinge on the equilibrium prices, and thus a matched seller and buyer
become locked in hence the equilibrium
prices are the bilateral bargaining equilibrium price.

Internal frictions approachboth the External and theAs zero,
(i) all therate

and (ii)friction,

External frictionthat the and the Internalwill become clearIt
equilibrium prices, the oppositethe infriction are on

the effect of the
competition, whilefriction the effect of thefavoursExternal

Internal friction favours bilateral bargaining.

bargaining equilibrium price, if the Internal friction approaches zero 
at a higher speed than the External friction.

working, 
directions. As both of these frictions tend to zero,

Thus, competitiveness 
is characterised not by the removal of all frictions but rather by the

expected time
Since the sellers are on the short side of the

strictly positive and 
alternative buyer tends

matched”
exploit this to their

Since the

’’getting

able to play off the buyers, one against another, 
An alternative angle from which 

As the External friction tends to zero,

Suppose 
friction is

buyer.
expected time

as the

a bilateral bargaining game

the fact that there are

keeping the rate of time preference strictly positive, 
equilibrium prices approach the competitive equilibrium price, if the 
External friction approaches zero at a higher speed than the Internal 

all the equilibrium prices approach the bilateral

who can

zero the
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removal of certain frictions.

section 3,Section 2 describes model.of the chapter the In we
prove the existence and uniqueness of the sub-game perfect equilibrium

discuss the nature of the equilibriumThen, in section 4,outcome. we
and derive implications; implications providekey thesesome new
insight in our understanding of the range of validity of the Walrasian
outcome .

I
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2 . THE MODEL

All the sellers are
A seller has one unit ofidentical.

onean
seller's valuethisunit of Aand one

andcommodity is normalisedtheof at azero,
thus,normalisedreservation price) isvalue at one;

they bargain thematched,sellerandWhen buyer overarea a
theyi . e . ,partition of the unit

the price of theifof trade (or,the terms you

timetime. Themodelconsidered in theThe market operates over
The market opens at time t=0, withdimension is continuous, real time.

that no new agentwhere M,NgjN.
The market terminates

min{N,M}transactions executed (namely,possiblewhen all are
transactions).

cited in theThe central idea common to all the models,REMARKS:(1)
matchingthroughpairs ofIntroduction, is that agents meet some

the authorsHowever,
exclusivetheir choicediffer in
presence

and buyers in it the completion ofsellersnumber oftheof one

all traders enter the market at(ii)seller, one
until all possible transactionscontinuesmarket to are

assumptions is theof thethat either tosuggest one
investigate the implications threeof all thehasothers. One to

note that models which differ with respect towe
chosen s t ri ctly comparablenet (seeare

buyer's 
there exists a unit surplus between any buyer and seller.

M buyers and N sellers, 
of either type enters the market after time t=0.

assumptions. However, 
the particular assumption

transaction is immediately followed by the pairing of a new buyer and 
single time and the

only
reservation price) < 

(i.e . ,

’’superior”

assumptions regarding the relationship between the traders' 
in the market and time: (i) the market is in a steady state in terms

technology and then there is pairwise bargaining.
of the following three mutually

The agents in the model are buyers and sellers. 
And all the buyers are identical.

buyer is seeking to buy
(i.e . ,

surplus associated with the match; 
like,bargain over 

commodity). After they reach an agreement they leave the market.

indivisible commodity for sale, 
commodity.

operate
(iii) the number of sellers and buyers considering tocompleted, and 

enter the market is constant over time. There is no a priori reason to

We will assume

and a
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Rubinstein (1987a) for discussionfurther In thisa
chapter have (ii); is alsowe

and Wolinsky (1986) and and Herrero
(1984 f section 8) .

(2) section 3 will analyseIn the withmodel the assumption,we
(The whereM>N. M<N similarcase can a manner.

However,

There be modelled,two to andare processes
the bargaining process. We,
isolation from the Secondly, describe theprocess. we
bargaining in isolation from the matching Andprocess process.
thirdly, combine the to describe precisely how thetwowe processes
market operates .

The Matching Process

of the model (i.e., the buyers
do not, know each others'ex-ante, location. Thus, an

agent of type will within the domain of a particularone
matching process, in order find the locationto of agent of thean
opposite type.

Formally,
of the stochasticparameters will beprocess . process

influenced by the choices of the agents. An agent chooses a
non-negative real number that hisrepresents search”. One can
interpret this non-negative real number the intensity of search.as

will only unmatched agentsthatWe "search". Matchedassume can
in of bargainingtheagents (cf.cannot theprocess

Introduction (section 1) for a justification of this assumption).

The time dimension of the stochastic process is continuous;
isThe of the defined bystate system the set W,space

W={w: w^U}, where U is the of all agents,set and w denotes set ofa
unmatched agents. Let X(t) denote the

The central idea is that the agents 
and the sellers)

assumption
Binmore

r

teJR+.

adopted assumption 
adopted by Rubinstein

teK+.
where

"search",

"search”

"search"

state of the system at time t, 
X(0)=U (thus at t=0 all agents are unmatched).

the matching process 
firstly, describe the matching process in 

bargaining

be analysed in a very 
the case where M=N is somewhat different).

the matching process will be represented by
And the

on this point).
this

a stochastic
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Assumption 1

the stochastictime whenX(T)=w, where Then,t—T WG W .Suppose at
w,

[w minus (seller iand b-gw) , whereg w

pair caninstant in time onlyAssumption 1 that at onemeans any
instant ofsameor

Assumption 2

timewhere andX(T)=w,Let WG W . atsuppose

and buyer j
remain of the
time, and b • unmatched; this lengththat were

Assumption 2 embodies the Markovian property of 'complete lack of
this assumption the stochastic will bememory'; with process

Markovian .

let TV.; denote the random time takenLet wgW and 13

Assumption 3

VwG W, are independent random variables.

Given Assumption and that1, andwe W.Let are
random

(a)
with

T

s

get matched, 
time.

{TVj:s

XV j,

one and only one of the 
wij =

of time is t^,

(bj)
length of

and b jG w}, 
variable

state

^gw and bjGw}

variables 
mW_ mi n xi bjGw 

(b)

:si-" — -j 
and buyer j)], denoting seller i by s^ and buyer j by bj.

Suppose X(T+t-^)=w, 
t=T+ti+h all agents belonging to w excluding seller i and buyer j are 
unmatched. Then, the probability that seller i (Sj_) 

unmatched at time t=T+t^+h is independent

S^G w, 
to move from state w

Assumption 2 <=> T^j is an exponential random variable with parameter 
^ij' ^ij>0* (See Feller (1968), chap. XVII.6).

13
Vb jG w,

E
SjGW

to w

{TjJj} is an

system moves out of 
following states:

it will move to

bjGw. Then, 
to state w-*-9

{T^jZS^Gw and bjGw}
with parameters {X^jZS^Gw

{TV.} is an exponential random
TV=s^3<Tijl

and (c)

before time t=T+t^, that s^ and bj
and thus the probability is independent of tj_.

we have

can get matched at the

is an
iW- min

Sj_G W
E E

j_GW bjGW

no two pairs

independent exponential
Vsj_g w, 

parameter E bjGW 
exponential random variableJ with parameter 
b^ew an exponential random variable''with parameter
X^.ij’
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(i . e ., the random time
for one pair to get matched,. given that the system is in state w).

Suppose that X(T) timeAnd T+t.atsuppose occursw.
this transition iswe

to the state for any ew and b^ew .ij j

descriptionThe motion stochastic isof the of the asprocess
follows: the process sojourns

timeof whose distribution function is exponential distributionanxywith parameter the process entersw
j withstatesone g w

ij

The stochastic andof theparameters are
interpretOne the rate atparametercan as,

i jand buyer matched, the of thethatget state
stochastic is shall describe how the searchsystem Wew. now

denote intensitiesand the search chosen by seller andLet n

Assumption 4

depend on the state of the stochastic system, butand e w;
t.

(1) Note that the search intensities depend on time to theREMARKS:
extent that the state of the stochastic system will depend on time.

search intensities(2) We have assumed that the
time in order to avoid needless technicalities that would arise when
defining the payoff functions.

the numberfor of sellers and theobserve that, wg W,We anynow
number of buyers is related as follows. Let w be any element of W. And

Then there are M-N+k buyers.let k be the numbers of sellers. This is
either left the market,have,N-k sellers in thebecause or are
either eachin of theof bargaining, N-k sellers iscaseprocess

l

S^G W, 

which

Z 
new

the probability that
Z 

new
Z 

mew b

b jG w} . 

seller

Tw

system
XVj 

given

{j:wg W 

the

and bjGw}:si 
and bjGw} .

and only 
probabilities { [XVj/ (

Given Assumption 1, we have, 
wij is [IV./( 

J s

. When leaving state
{w1^

Both e^ and e^ 

are independent of time,

intensities chosen by the unmatched agents influence these parameters.

e^ and e™ 

buyer m, respectively.

Z XV .
GW 
the following

sx

is the random time to move out of state w

s^g w

Z
S^GW b 
one of

a transition

in a

are independent of

given state w for a random length
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wg W; course,
as

1=N,N-l,...,1 .

We shall assume that
as :

ke{1,2,3,...,N-1,N}, and

Assumption 5 :

and in(a)
ininand convex

all
it w

Then,

ark(«) 9rk(«)(i)
for all p^q^i,

and

k dFk (•)(ii) 3fk(.)
for all p^q^j.

(d)

= 0 for all p^q,(i)

1+(M-N+l)

where |w|=k, 

{eb:bmew'm’t3 }> •

(c) Suppose
(denote

e£. (b)
and

eVr((e-:

is continuous and twice differentiable on its 
define

matched with some buyer.
are M- (N-k)=M-N+k unmatched buyers, 
sellers, given that wgW; and of course, M-N+|w|=number of 
buyers, given that weW. Finally, define N functions as follows:

SP'

3eb

—t

a2Fk (•)

Fk Fk

3eP

V (assumptions on F )

F1

F1: R

3eP9e^

SP

new, n?ti)
es

(s

,sqew

sqew.

:sne w,n^i},

bp,bq6w .

domain. Let wgW and s^ew,

w choose the same

in 
en s

sellers belonging to 
by es) and all buyers belonging to 

choose the same search intensity (denote it by e^).

Since M is the total number of buyers, there 
Now define |w|=number of unmatched 

unmatched

is strictly increasing and concave
is strictly decreasing 
eg(bmew,m^j) .
search intensity

bjGw. Then, we
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(ii)

(iii)

all mixed derivatives are zero).(i.e.,

(a)-(d) , is5REMARK: on

This completes the model of search and matching.

kdefine three functions derived from FK, thatwe

choose the same search intensityw

s

when sellers choose theThus, same
thethe same
of the facesseller meet

k. 2and >]R+Given Assumption 5 (c),

Assumption 5 (i.e., the assumptions
needed to prove the uniqueness of the Nash equilibrium for the search 
game, given our method of proof.

s<eb'^k) •

^m'
3e£3eg

s' eb^ 
choose

a2Fk (•>
---- = 0 for all s-gw and bvew.

P

32Fk (•)

--------  = 0 for all m=£n, bnew.

(snGw,n*i) and ej^

Fk(efl(es<eb)

Fk) ,

ij - ves'eb'—k^' 
(bmew,m^j). Define fk : 3R^—>K+

search intensity,
is independent

9ei9eb

define f k :

Before we proceed, 

will be used later in the analysis of the model.

and buyers 

buyer and any 

independent of i and j) .

as follows:

search intensity, 
which any 

(i.e.,

Suppose all sellers belonging to
(denote it by es) and all buyers belonging to w choose the same search 
intensity (denote it by e^) . Then, j=Fk(es,e^,ek) , where ek=e£j with 
es=es (snew,n^i) and e^e^ (b^Gw,m^j). Define fk: HR^ —>2R_^ as follows:

rate at
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SFk (•) dFk(«)
and

3Fk (•) SFk (•)

The Bargaining Process

Suppose time (t>0)at t seller get matched.some a a

of the parties is selected at random, with probabilityone
partition ofto the unit surplus which the othertopropose a

then withparty reacts ("A")acceptance rejection ("R")or or
rejection and search ("RS”). ofAcceptance proposal ends thea
bargaining time(at t) and both parties leave the market having
executed transaction. If proposal is then thea a same

at time t+A.

return to the matching process (at time t) search for altenativeto
partners.

(1) Suppose the two parties abandon each other in order toREMARKS:
search for alternative Andpartners. of them findssuppose one an
alternative partner. the partyIf who has found a new can
remember the (i.e., location) then

This means that
the above bargaining procedure has to be amended so as to include this
possibility. This would lead formulateto rather complicatedus a
bargaining procedure. In order to avoid this, and in order to retain
our initially proposed bargaining procedure, asssume that when twowe

(inabandon each other orderparties search for alternativeto
partners) they forget each others' "address", and thus cannot return

each other later time in future.at (However,a we
the parties have perfectshall recall can identifyandassume

to bargain with
that

Firstly, 
1/2,

aeg

buyer and
Then, they begin bargaining as follows.

s' eb^
aep

3eg
f£(es,eb) = ---

9eg

"address”
partner 

of his previous partner, 
he could use this as a threat against his new partner.

rejected,
(above) bargaining procedure is repeated A time later,
Rejection and search implies that the parties abandon each other and

*3<e
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ineach other by face if i. e . r iffuture, they again, themeet
matching process matches them again).

(2) Unmatched matched who inagents cannot themeet agents are
process of bargaining. This is because matched agents who in theare

of bargaining do (i.e.,search searchnotprocess

requires time and thus the matched agents who in the ofare process
bargaining have abandon the bargainingto if they want toprocess
search (cf. the Introduction, where presented argument towe an
justify this assumption).

The model studied in chapter 3 has offers being
made alternatively and determined bynot random mechanism; thisa

ismodel based the classic works of Rubinstein (1982) and Stahlon
(1972) . idea of havingThe a

first suggested by Binmore (1987a), who applied the idea thewas to
Rubinstein (1982) model.
determined by random that bargaining procedurethea
becomes completely symmetric A>0 .for This will simplify theany
analysis. (As of fact, allmatter the in thisrecenta

The Evolution of the Market/Order of Events.

proceed toLet nowus
i . e ., combinelet search and matching with theus process
bargaining process, and show how they are interlaced.

The market operates in continuous, real time. consider theLet us
(T>0);market time assuming thatT the market isat still inany

operation.

At time and every agent haseachTr to be in and only one ofone
(i)the following classes: Class 1 (ii)

one,
and the pairs who last had a bargaining round at time T-A and decided
to continue bargaining),

round ofhavenot a a

describe precisely how the market operates, 
the

papers 
literature use the random mechanism to determine the proposer).

(iii) Class 3 (C3) := matched pairs who will 
bargaining since they last had a round of

One advantage of having the proposer being 
mechanism is

"advertise");

The bargaining procedure adopted here is a modified version of that 
studied in chapter 3.

random mechanism determine the proposer

(Cp := unmatched agents,
Class 2 (C2) := matched agents who will have a round of bargaining at 
time T (these will include the newly matched pair, if there is
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where T>s>max(0,T-A),bargaining at some time s f
pairs who have left the market,

Therefore, time there will exist partition of theat T, set , U,a
of all agents into four mutually exclusive classes,

timethe of into the fourT,

Define the of the market at time T by its partition, ofstate Pt /
U.

The decisions that taken instantaneously, but sequentially, atare
time T are as follows:

First: matched pairs of Class 2 (C2) go through a bargaining round.

who abandoned each other
the First (above), during the round, choose,at

simultaneously, search intensities.

A history of the market until time T, atup

time T,

time t=T; this is characterised by the following data:

(I) For all t (T>t>0) the state of the market at time t.Pt'
and V matched pair(T>t>0)(II) (a) thet G

proposer,

(T>t>0)(III) For all t we

his intensity choice,have, search are

such a market history,denote denote the set of all
possible market histories at time T.

Preferences

We shall assume
t>0. Let

(iv) Class 4 (C4) := 
having reached an agreement.

those

and C4 .
set

c2,namely C-^, C2/ C3
And let IP denote

C1(t) 
 where C2(t) (c C2(t)) 

matched pairs who abandoned each other at the bargaining round.

Let gT and Gt

but excluding events 
will include all the events that have occured from time t=0 to

C2(t),
(b) the proposal, and (c) the reaction of the responder.

and matched pairs of C2 
bargaining

ci

Let pT denote the partition of U at time T. 
all possible partitions of U, at 

mutually exclusive classes, C^ i=l,2,3,4.

we have,

x denote the share
that all agents maximise expected utility. Suppose 

an agent reaches an agreement at time t,

Second: members of C-^ 
stage

and V agent g

For all

and V agent g
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haveunit receives. Thetheof that the may

on the state of the stochastic system, e (w)
the during which searched bythe Letstates agent

time interval during which,
searched withi=l, . (b) the agentand. , n,

strictlybeLet c a
c isconvex,

the (common) cost of search function.

Therefore the utility to the agent is :

i=l

i i+1] z

where r is the (common) rate of time preference, r>0 .

Informational Assumptions

shall modelthat the and the preferencesWe assume are common
knowledge the Thus the is completeofamongst agents. game one
information.

time isA history of market characterised by threethe Tat any
earlier underelements described the subsection headed,(I)-(UI) z

shall assume that elements (I) andWe
knowledge amongst the agents but element (III) is not(ID

common knowledge. an agent never knows the search intensitiesIn fact.
Therefore the of imperfectchosen by the other agents. isgame one

information.

isthere perfectthatshall recall;We assume anin particular, 
agent does not forget the faces of the agents he met in the past.

1 r E i=l

surplus that the agent 
searched for some part of the time during which he 
Let e denote the search intensity chosen by the agent. This may depend 

(cf. Assumption 4). Denote

c[e(w±)]e

c[e(w±)]

^i'ti+i] denote the 
system was in state

"the Evolution of the Market”.

wiz

<wl'...,wn}.
(a) the stochastic

[e-rt

xe"rt

e-rtxe"rt

"rsds£ jti+1
1

are common

agent 
was in the market.

intensity e(w^) . Let c : 3R+—>3R+ be a strictly increasing, 
continuous and twice differentiable function. And c(0)=0.
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Strategies, Outcome and Equilibrium

i
allrecall that G setwe

For
minus element (III) of Tata

denote this. Let

T T{ hT:hT=(gT/element (III)] f where g±G G1} .

VhT6HT, in and only of the fourtime iT,at agent oneone
interested in histories afterclasses , k=l,2,3,4 . We are

iagent asus
is thefollows: Uu

ksubset to
(k=l,2,3,4) at time T.

hasi is in the market, and thus he(1) not no

(2) VhTGH?(C3), agent i has no decision to take at time T.

There

theat to aare

(if he isdecision, (i) selected to propose) ,

(if agent i or his partner
decide to leave each other).

functions,

defines

the opponent 

if the agent 

decisions on any hieH£(C2>.

(3) VhTGH?(C2), 

three decision points

represents the decision if 
while 

rn rn rn rn rnLet fT=(fi,f^,f^,f5).

*1' *2'

strategy for an agent i;
T denotes the

represents the decision 
fT

which 
ht

ht:

"R","RS"},

partition 
hT(c4) , 
agent i

what proposal to make
(ii) how to react to the proposal (if he is not selected to propose) , 
and (iii) which search intensity to adopt

four
:H?(C2)xE?->[0,1],

f3 and as follows:
f : H? (C2 ) xeTx [ 0,1 ] x { "RS " } ->0R+, 
f4:Hi <C2* xEix[0,1]x{"RS"}->K+, 

denotes the search intensities chosen by agent i from 
Note that

Let us now define a

VhTeH£(C4), agent 
decision to take.

ck' 
has to take a decision.

: HT=hT(C1) u hT(c2) 
of market histories

any buyer.
histories at
g minus element (III) is that part 
which is common knowledge amongst the agents.
m rnH denote the set of all such h , i.e.,

excluding the events at time T. 
is that part of a market history

Let h^

can be

Let 
u hT(c3) 
that lead

Define 
fl-- ~ _ 
^:hT(C2)xeTx[0,1]-»{"A", 
where E?= {: ej_ 
time t=0 up until time t=T}.

"rejects and searches", 
"rejects and searches".

the set
where

be in class

May
time T,

can be any seller or 
of all market 

T T any g gG , 
time

agent i is matched and has a bargaining round, 
which the agent might have make
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i is timematchednot at T. Now

set

f J: (C-l) xE?xB [F (C2 ; hTe H? (C1) ) ]->K+ .

Define And define is a
denote the for

Associated with (M+N) is ofoutcomea ani=l
the game.

be a define,
ieU as

givenIF seller i and have a

andto wherean

T Tundefined IF given gxeG seller i either do not
have if they doa or

chosen to propose)

similarly defined,is but with the seller being chosen to

agent i chooses a search intensity.

= 0 IF agent i does not

Then, i=l

strategy for agent 
agent i.

fT f 2'

M+N strategy vector {Fj_}
Let us define what we mean by an outcome.

"search".

(gT)e[0,1]

propose) and they reach an agreement 
T(g ) is the terms of trade (i.e., price) agreed

given gTeGT

ei(gT)G]R+ IF

xij 
at.

xij

Yij(gT) 

propose.

M+N an OUTCOME of the game, given {F^}.  is defined as :

Fi={fT:oo>T>0} . F± 
set of all strategies

T r-T given gxeG

and buyer j, 
bargaining round at time T, 

(and it is the buyer who is 
they do not reach an agreement.

gW 
bargaining round at time T

let F[C2;hTGH?(C1) ] 

denote a possible set of proposers, 
the matched pairs of C9 . And let 
possible e[F ( . ; . ) ]'s .

(4) Vh^e(C^) , agent i is not matched at time T. Now Vh^eH^(C^) 
there may exist pairs of agents that are in C2. Given an hTeH^(C]_), 

denote the matched pairs of C2. Let e [F (.; . ) ] 
offers and replies associated with 

C2 • And let B[F (.;.)] denote the set of all 
Now define a function

rT rT rTx ^3'14'*5' ’
i. Let A

are in C2 .
of

buyer j
(with the buyer chosen 

reach

M+N
Let {Fi}i=l 

(xij(gT) , y —(gT) ) 
follows:

(M+N) strategy vector. Then VT and Vg^eG^, 
Vseller i, buyer jeU, and ej_(gT) Vagent
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and Vseller i, buyer jeU}

union and Vseller i, buyer jeU}

union

shallWe the solution(SGPE)

to
may we

Vi,vector where and for all

(M+N) vector of strategies, 
such that its restriction to any proper subgame is

F*eAA SGPE is a (M+N) 

possible histories b^,

Let b^

](b?) ,
1

{X£ j (gT) : VT, VgTeGT

adopt the subgame perfect equilibrium 
concept (Selten (1965, 1975)). A SGPE is a 
one for each agent, 
a Nash equilibrium.

for all FiGAi .
* M+N 

ui[{Fi}i=l

Fi

rp * M+N](bT)>u.[Fi,{Fj}
3=1

i up
recall that at time T there M+NUiUFi)

denote the personal history of agent 
point at time In­
decision points. Let v .
expected utility to agent i who has experienced the history of b? 
who employs the strategy Fi while the others, agent j (j^i), employ

■

some decision

* M+N

{y±j(gT):VT, VgTGGT

{ei<gT) :VT, VgTeGT and Vagent ieU} .

are a sequence of
](bj) denote the value at time T of the 

and
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3. EXISTENCE AND UNIQUENESS OF EQUILIBRIUM

outcome.
deriveandnature some

implications.

andwith existenceTheorem that deals thefirst thestateWe
uniqueness of the equilibrium outcome, and then prove the Theorem.

THEOREM

there exists a unique(a) Given that there are N sellers and M buyers,
tradeof in which matched pair ofthe agentsa

(b) The price at which a matched pair of agents trade depends only on
the number of unmatched sellers and the number of unmatched buyers at

is matched; i . e . , the price is x(k) y (k)or
where

ofis of unmatched sellers r and,k the number
x(N-l)M-N+k unmatched buyers. (Thus r for example,course,

which the Noteat
or

thatand to extenton
w
non-uniform pricesFurthermore, that haveof k) .the value note

conditionsis due the fact that demand-supplywhich to

state of the stochastic system, all the unmatched sellers(c)

the same search intensity. The
but depends only the number ofdependdoesw,weW, not on onw,
and the number of unmatched buyersunmatched sellers belonging to w,
andi . e . r (k+1) denote the searchbelonging to w;

unmatched buyer,chosen byintensities an an
k+1 unmatched sellers,given that there where k=N-respectively, are

history
(which in turn defines

buyer, 
determines a

game, 
instantaneously; where N,MeTJ and M>N.

and all the unmatched buyers choose 
search intensity chosen in any state,

eb(k+l)
seller and

emerged, 
change, as traders leave the market.

the time when the pair 
according to whether it is the buyer or the seller who proposes, 

k=N-l,N-2, ... 1,0,

es 
unmatched

In any 
choose the same search intensity,

In this section we

or y(N-l) is the price at which the first matched pair trade) .
that the price does not depend on a particular seller or a particular 

depends on history only to the 
state of the stochastic system,

shall prove the existence and uniqueness of the 
sub-game perfect equilibrium (SGPE) outcome. In the following section 
we will discuss the nature of the equilibrium and derive some key

there are

SGPE outcome
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of there

a w

(d) (k=N-
the

x(k) = max { h1(xk,yk) , h2(Xk) } (1)

l-y(k) = max { h3(xk,yk) , h4(Xk) } (2)

hi(xk,Yk) = (x(l)+y(l) ) /2][P (3)

h3(xk,yk) = (A) [ (1-x(1)+l-y(1))/2] (4)

and where

It t r are
(cf.t

tare are
and

(es(k+1)reb(k+1))-c(es(k+1))
Vs(k+1) = (5)

(es(k+l),eb(k+l))

|w2|=l, 
time t+A.

kZ 1=0

kZ 1=0

Assumption 4) 
of the

matching rates 
stochasticparameters

. (k+1) and h4(Xk)

where
i . e . ,

[k+1][M-N+k+1]fi+1

pkl

kl<A>

[X(k)+kVs(k)][M-N+k+1]fj+1

e"rA

r +

where hj_

and Xk={(x(1)+y(1))/2}^=0 , i 
are defined inductively by

l,N-2r . . . f1r 0, and, of course, there are M-N+(k+l) unmatched buyers. 
Note that the search intensity chosen depends on history only to the 
extent that history determines a state of the stochastic system, 
(which in turn defines the value of k).

i=l,2,3,4 are defined below.

w1'w2g^' lwil=k and 
occur from time t to

(A) =Prob[X(t+A) =w2|X (t) = 
the probability that 
is independent of 

assumed to be independent of
independent of t => parameters of the stochastic process 

independent of t. h2 (X0 =VS (k+1) and h4 (X^) =Vb (k+1) , where Vs(k+1) 
Vb(k+1) are defined inductively by the following equations:

Vt , 
k-1 matches

Let xk={x (!) }i=0, Y.k={y (1) }i=q 
l,N-2,..., 1,0) . Then {x(k) ,y (k) 
following two equations:

since the search intensities
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(es(k+1),eb(k+1))-c(eb(k+1))

(6)(es(k+1),eb(k+1))

(k+1),eb(k+l))s
(es(k+l),eb(k+l)) ]

(7)(es(k+1),eb(k+1))=c ' (es(k+1))

(es(k+l),eb(k+l))]

(8)(es(k+1),eb(k+l))=c'(eb(k+l))

It
of we

is forthe Theorem true

M,

We now proceed to prove that the Theorem is true for (N,M) = (1,B+1) , 
where Me ON.

Principle of Induction, 
Since B is any element of 
true VN,MgIN such that M>N.

[M-N+k+l] + [Vs (k) -Vs (k+1) ] kf£+1

[k+1][M-N+k+1]f^+1

[k+l]+[Vb(k)-Vb(k+l)][M-N+k]f^+1

[ (l-X(k)) +(M-N+k)Vb(k)] [k+l]f£+1

Vb(k+1)------------------------------------------------------------------

afV1
[l-x(k)-vb(k+l)] [ ------

3eb

is based on the Principle of
Given this He IN, we will

-kfk-l[X(k)-vs(k+i)]

-[M-N-k]f§+1

r +

3f^+1(e
[ ---

des

The method of proof is as follows.
Induction. Take any element

where X(k)[x(k)+y(k)], Vs(0)=Vb(0)=0, and where {es(k+1),eb(k+1)} is 
the unique solution to the following equations:

(es(k+1),eb(k+l))

We will, secondly, assume 
where LeU, L>1, and then 

(N,M) = (L+l,B+L+l) . Then, by the 
the Theorem is true for (N,M) = (n,M+n) , VneU. 

we will have proved that the Theorem is

show that

any element of IN, say B. 
firstly prove the Theorem for (N,M) = (1,H+1) . 
that the Theorem is true for (N,M) = (L,B+L) ,
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as follows.Define two sets As

= { X : x

{ X :Ab =

this is because theThe sets A are the
same

bothfor We
are

(9)}x = max {

(10)}1-y = max {

where X

(ID

(12)Fb(X) =

where (e*,eb) is the unique solution to the following equations:

is a SGPE payoff to the seller in a subgame starting with 
the seller's offer }

SGPE payoff to the seller in a subgame starting with 
some buyer's offer }

i=b,s. We firstly show that 
solutions for the following system

and Ab

buyers are 
function.

c (e*)

£=inx and M^=sup A^ 
(x, y) = (Mb,Ms) and (x, y) = (mb,ms) 
of equations:

[l-X] fhes'eb>

As

X[H+1]

(H+l] fj(e*,eb>

[H+l] f£(e*,e£)r +

r +

same for all buyers;
and have the same strategy set and same payoff

C (e£)

~rA, Fb(X)

x is a

[l-x+l-y]e

s and Ab 
identical,

g[x+y]e

Let mj=inf A

Fs(X) =

rA, FS(X)

= (x+y], and
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(13)

1•k1- ^(es,eb)] - M Fb(X)^( (14)eb> =

(9)-(10) hasthat theWe a

tradeand occur
the

We shall,
the

is(x,y)=(Mb,Ms)below,
(9) and (10) .

LEMMA 1

-rA where isandIf XG A as

PROOF

inConsider the a a
z f

and any price above it. If thez
and thus thenor

nextorx

FS(X) },

<es,eb)
[l-X-Fb(X)] [ ---

aeb
es'

in the process, 
same intensity, e£, and that 
where (e*, eb)

s , yeA^ and z=max{^[x+y]e 
defined by equation (11) , then zeA^ .

FS(X)

following strategies 
buyer's offer. The buyer offers price 
Lemma above, and the seller agrees to 
seller deviates, and thus ’’rejects” or "rejects and searches", 
all players follow equilibrium strategies that support the seller's 
payoff x or y, according to whether in the next bargaining round 
(whenever it will take place) it is the seller or some buyer who is

= c'(e*)

secondly show 
★ ★ . say (x ,y ). This,

and Ab

also show that all buyers search with the 
seller searches with intensity e*,

and

and Ms=ms.
Thus the equilibrium price is unique 

identity; trade will 
and the buyer who gets matched

3es

subgame starting with 
where z is as defined in the

eb, and that the seller searches with intensity 
"A*s, eb) is the unique solution to the two equations, (13) 

(14), as defined above.

system 
therefore, implies that Mb=mb 

sets As and Ab are singletons.
independent of the buyer's 

instantaneously, between the seller, 
first with the seller.

unique solution,
Hence, the

a solution ofwill prove that

3fl<es'eb)
[X-FS(X)][M+l] ---

Lemmas 1-5,

c'(eb)
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selected to propose.

(X) },
then

if heto anda
where as

is indeed

If offers less than whichZ ,

And thus the

is indeed the

z .

-rANow F If offers less than z,

>[(1-x+l-y)/2]e

is z,

Q.E.D.

of above,1, madeIn Lemma three claims (withoutwe
(ii) that and thetoare

order to alternativean
partner), that

who is to and thator some

payoff) . Furthermore, 
Thus

gets 
searches”,

the buyer
, then the seller will

gets 
defined by equation (11) . 
the payoff).

follow equilibrium strategies 
according to whether in the 

it is the seller

Fb(x> 
if the seller

where Fj0(X) 
that Fk(X)

the proof
(i) and

z=max

And thus
suppose Fs(X) <^[x+y]e 

which is equal to ^[x+y]e-rZ^ 
the buyer will get a payoff equal to [ (1-x+l-y)/2]e 
[x+y] e~rA>[(1-x+l-y)/2]e“r/\ the buyer cannot profit by deviating.

"reject".
-rA. Since 1-z

Fs
flow of

Therefore the strategies are in equilibrium. The equilibrium payoff 
and hence zgA^.

Fs

{l[x+y]e-rA, 
either "rejecting" or 
he gets a payoff 

then he

"rejects",
"rejects
FS(X) is

s (x)

x or

the payoffs
"rejects and searches"

search forpartner
and given that all players 

that support the seller's payoff x or y, 
next bargaining round (whenever it will take place)

buyer who is selected to propose, and (iii) 
(X)+Ffc(X)<l. To prove these claims at this stage would interrupt the

the current argument. We will therefore defer the proof of 
these claims till later.

Suppose Fs (X) >2 [x+y ] e“rZ^. If the buyer 
equals Fs(X), then the seller will "reject and search", 
buyer will get a payoff equal to Fb(X), where F}?(X) is as defined in 
equation (12) . (We will later on prove that F^

we shall also prove later on that 1>FS(X)+F^(X).
l-z=l-Fs(X)>F^(X), and hence the buyer cannot profit from 

offering less than

proof): (i) and (ii) that Fs (X) 
seller and a buyer, respectively, 
(i.e., leaves his partner in

Fs(X)}, and thus the seller will not profit from 
"rejecting and searching"; if he 

equal to 2^x+yle-r^' and 
a payoff equal to Fs(X), 
(We will later on prove that F
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LEMMA 2

where M=2[Ms+Mj:>] .

PROOF
have,for1, and any weany

and We now
that

(15)

such(15) is false.

This subgameexiststhat there ameans a

in this equilibrium is However t
this priceby the seller the equal to

and
thethus such that

Q.E.D.

LEMMA 3
-rA iswhere [Ms+Mb] and as

PROOF

similar thoseto can

and forfor any
y)e

By 
[x+y]e

By arguments 
prove the following:

Ms>l-max {[ 1-x+l- 
,Fb (M) } .

Mb<max{^[Ms+Mb]e

Fb(X)

,FS(M) },
Hence

Then

-rA,F

zl- 
offering

Mb=max{ [Ms+Mb] e

he will indeed deviate 
e"rA

then zgAs<

M=^

Lemma
-rA,Fs(X)}, [Ms+Mb]e

rA,Fs(M)},

XG As 
hence,

Thus, for any xgAs 
~r^,Fb(X)}. And hence,

[Ms+Mb]e ,.s 

accept. Since the buyer strictly prefers this, 
•1 

e-rA

1-Ms<max{^ [1-Ms+1-Mb]e rn,Fb(M)), 

defined in equation (12) .

for
M^ax {

s (M) >

perfect equilibrium in 
that starts with some buyer's offer such that the payoff to the seller 

if the buyer deviated and started 
max {j 

then the perfectness implies that the seller will

profitably by offering a price equal to max{
3z-^gAjd such that M^>z^>max{ | [Mg+M^] < 

inequality defined by (15) must hold.

subgame
-rA,F (M) },

in the proof of Lemma
if xgAs, yeA^ an<^ l-z=max { g [ 1-x+l-y ] e

any ycAb, we have, 
Ms^l-max { [ 1-Ms+1-Mb] e~r^

yeAb, 
“rA,Fs(M) } .

1, one 
~rA,Fb(X)},

[Ms+Mb]
,FS(M)}.

Suppose the inequality defined in 
that MjD>z-^>max { [Mg+M^ ] e-r^, F

Mb>max{| 
show

S(M) } .
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Q.E.D.

LEMMA 4

all withIn in that thestartsa
seller's leastto ata

withtheIn aa

PROOF

a

would be above Ms

Let be

s •

The second of the lemma follows immediately from thestatement

Q.E.D.

LEMMA 5
-rA , Ffc(M)} where [Ms4-M^] .

PROOF
Given Lemma 3 it is sufficient to show that

(16)

perfect 
offer

subgame
this buyer's payoff is 

that starts

equilibria 
certain buyer, 

1-MS. In the perfect equilibria in a subgame
buyer's offer, the payoff to this buyer is at least 1-M^.

definition of M^.

1-Ms>max [l-Mg+l-M^] e~rA,Fb(M) }

perfect equilibrium in this subgame
This perfect equilibrium must be such that 

for otherwise the

and Ms+£,

1-Ms=max{ j [ l-Mg+l-Mfc] e

s. Thus, the initial hypothesis 
in all perfect equilibria of this subgame buyer i's 

payoff is at least 1-M
is false and so

p be a price between Ms 
candidate for an equilibrium in this subgame.

If the seller demands

and consider the following 
The seller offers p and 

buyer i accepts it. If the seller demands more than p or if buyer i 
"rejects" or "rejects and searches", then all players continue as in 
the original perfect equilibrium. Thus, given our initial hypothesis, 
this is indeed a perfect equilibrium and the seller's payoff is p>Ms, 
in contradiction to the definition of M

Consider a subgame that starts with the seller offering to buyer i. 
Suppose that there exists a perfect equilibrium in this subgame in 
which buyer i gets l-Ms-e.
there is no immediate agreement, for otherwise the seller's payoff 

in contradiction to the definition of Ms.
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does
i . e . ,

he (to be shownor
no or

such that smaller RHS
s ’

least 1-Mat
Lemma 4);

If he "rejects and gets a

Q.E.D.

is

(x,y)= (mb,ms) solution

Before we (9) and (10) have a unique solution,
the claims inmade the Lemmas (X) and where X=on
(i) and (ii) that F (X)

if and given that all

selected toor some

time is matched. Andat t that when theno one
withmatched follow equilibriumsome

thethat toX or
is or some

and isWhat theto

denoteLet the payoffs.

prove
[x+y] :

buyer, 
seller's

s
thus his

By similar arguments 
of (9) and (10) .

(x,y)=(Mb,Ms) 
and (10).

and Fb(X)
no one

Ms+1-Mb]e

he gets
(cf .

1-p
(16), and so 3

propose
seller and

Then 3z2^As 
1-Ms<l-Z2<max{[1-M

Suppose

seller is

"rejects"

Ms>Z2>l~max{^[1- 
-rA,Fb(M)}.

(M) } is the minimum payoff guaranteed to 
"rejects and searches"

• buyer will offer or accept price p 
the RHS of the inequality, defined in

y according 
selected to

propose (xgAs

e-rA

strategies
whether it

^[1-Ms+1-Mb]e 
payoff equal to Fb(M) .

S+1-Mble

If a buyer 

selection of the proposer 
-j s 1 r i —m 4-i —m. i a r/X

according to the 
(discounted) payoff 

searches", then he

(xgAs and yeAb) .

buyer k (for k«l, . . . , Mtl) ,

The max{g 
any buyer, 
below). Thus,

support
the seller

Lemmas 1-5 prove that 
equations defined by (9)

a solution for the system of

is a

prove that

Assume (16)
-rA,Fb(M)},

we shall
F (X) and Fi_(X), where X=i 

are the payoffs to the seller 
is matched,

or 1-Mb

s 
and a buyer, respectively, 
players follow equilibrium strategies that support the seller's payoff 
x or y, according to whether in the next bargaining round (whenever it 
will take place) it is the seller or some buyer who is 

and yeAb), and (iii) that Fs(X)+Fb(X)<1.

[1-Ms+1-Mb]e ia,Fb 
if he "rejects" < 

in equilibrium, 
is smaller than

suppose 
the players 

payoff 
buyer who is 

the equilibrium payoff 
as of time t?

such that

V R'b 1
VQ(b), ^b^lk-l denote the equilibrium payoffs. These 

equilibrium payoffs are determined by the equilibrium search strategy 
choices.

one can show that

not hold.

z2eA



a
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(17)

For k=l,2 f . ..fM+lr

r t dk/x) t k (i

-r<<?"t)dq)] Xe-X<u-t> (18)du]

which sellerthe thewhere [x+y], rate at
where the ofsetare

|w|=lM+l buyers)f andthe seller and the

matched withis some buyer (i.e., thethe rate which the sellerat
since there is only one seller).rate at which a match forms,

are independentintensities ,that the search
Thisof time, the stateon w

k=l,... ,M+1) is independent time. With thisimplies that of
simplify equations (17) and (18) . We obtain (notecan

that the equilibrium payoffs are therefore independent of t):

(17a)

and for k=l,...,M+1,

k k k (18a)pb<eb'3o'es>

are defined below:l*k'

max 
e^O

(Xk/X) ) . 0

-r(q-t)dq)]Xe-X(u-t)du]

Vb

es'

pkpb

and depend only
(for

observation we

v£(t)= max[ 
e£>0

and Ps,

V (t)= max [ 
es>0

fu- ( I c t

x=-X 2 
(denoted by s)

=F1

R+l 
where eb=(eg)1=1,

vs

(e£)e

A. -XW Ak-Ask 
and buyer

(l-X)e-r(u-t

eb=<eb}

unmatched agents (i.e., 
4k=<eb:biew'1,tk};

k M+1{eb}k=i'
(cf. Assumption 4) .

max PQ(e es>°

r [Xe r(u t^-(J c(e )e t t s

We note

(es'eb'—sk^' 
k are matched,

R+l X = ZXk, 
k=i

w denotes
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Xx
Ps (es'—1>)

which

anda

Assumption 6

(a) dPs(0,eb)

(b) 3p£(0,e£,es)
> 0,

PROPOSITION 1
(denote it
the Nash

Claim 1 shows that there exists
(18a). 6(17a) thetoa

3and Claim shows that thereare

Claim 1
(17a) (18a) (i.e.,solution andThere exists therea

Given Assumption
(i) Claim 2 shows that all

se K+-

to equations 
exists a Nash equilibrium).

> 0, VebeJR^+1

r + X

3es

/X /X /XT- R+lA joint search strategy, e - (es, {eg}^ ^) , is a Nash equilibrium of 
the search game if and only if e solves equations (17a) and (18a).

(18a) , then it is an

r + X

Ve£e JR^, e

There exists a unique solution to equations (17a) and (18a) 
by e) ; with the property that eb=eb for k=l,...,R+l (i.e., 
equilibrium is symmetric) .

[1—X] xk- c(e£) 
pb(eb'^b'es> = --------------

We shall make the following assumption (Assumption 6, below), 
will ensure that if there exists a solution to equations (17a) 

interior solution (i.e., e>0.) •

The proof consists of three claims, 
solution to equations (17a) and 

solution (s) are interior. Using this fact, 
Nash equilibria are symmetric, and (ii) 
exists a unique symmetric Nash equilibrium.

c(es)
----- , and



-----
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Proof

classical oftheorem on
is(1952)) . Thus all have do(see Debreu totowe

conditions are met.

(k=l, ...,M+1)and {e(1) The strategy sets {e are
will show belowtheyBut,convex. areare

suchreal positive scalars,that there exists
willthat the strategy sets

(k=l,...,M+1). These both[O,Qg]}be {e and are

well defined,(2) functions,The payoff are
continuous from the of thebounded;

(k=l,...,M+1)functions andand show thatWe arec .
strictly concave in

Thus the conditions will be met.

axax

(19)
2[X+r]

a2xa2xi
[ rX +

axaxax2
(20)[ rX

Nash equilibria, 
verify that the

eK+} 
compact.

The existence of a Nash equilibrium will be proved by appealing to the 
existence of (pure-strategy)

can
{e£:

will
and e^

[X+r]c' ' (es)

and
F1

PS' 
this

be restricted.
:e£e -k

s : es 
not

aes

9es

3ps

de2

[X ------ -c'(es)][X+r]-[Xx-C(es)]■-----

8es 3es

[X+r]c'(es)+ ------ [c(es)]]

dec
J>3es

es

p£(k=l,.. .,H+1) , 

follows

t)2ps

[X+r]3

----- (c(e_)]]
3e2[X+r]2

b:ebeK+>
However, we

o£(k=l,...,H+1), 
strategy sets

Qs f

The new

s:ese [0,Qs] ] 
convex and compact.

properties
Ps and p£ 

(k=l,...,M+l), respectively.
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it is clearfunctions andGiven assumptions the notcfour on
whether

We shall now prove the following statement:
stationary point (for theexistsIf there a

then it isinterior offunction in the

(I)
is indeed strictly concave in e s ’

If there exists any stationary points (i.e., local maxima localor
interior of then it must be theminima or saddle points) in the

case:

3ps(es)
is such a stationary point.= 0,

] = 0 (20a)

(using equation (19)) .

Using equation (20) r we have

32Xa2xi
[X+r]c’' (es) +

for any stationary point. that the second of theterm secondNote
using equation (20a). Given our assumptionsderivative becomes zero,

(es>

K+,

^es

pl

9es

[ rX----------

where es

S2ps

It will then become clear that Ps

----- [c(es)] ] , 

3es

3X(es) 3X(es)

<=> [ rX -----  - [X(es)+r] c ’ (es) + ------ [c(es)J

9es 9es

[X+r]2

d2ps

------  < 0.

Ps, in the interior of IR+) f 
unique and it is a local maximum.
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inis(c is strictlyon the functions concaveconvexc
we have

a2ps^s)
< 0.

issincemaxima.localThus all stationary points Butare
local maxima there must becontinuous in between two aany

uniquestationary point, it isminimum. there existsHence, aa
This concludes the proof of statement (I), above.local maximum.

is continuous in (b)and(a) as
is(b)together with andStatement

such that VeSince Veb, theas —b
s *

in and showOne concavecan

Q.E.D.

Claim 2

(18a).solution of equations (17a) and Then,interioran
for k=l,...,M+l (i.e., all Nash equilibria are symmetric).

Proof

satisfies the first-ordersolution,is interiorSince eane
using equations (18a),(17a) andconditions with equality. Thus, we

obtain:

ar1(es, e£,
(21)

es) •

Now note that
VebG3R®+1 

strictly concave in

eb

Let e be

eb'

es' 
if

ae2

similarly prove that P^is strictly
V 

the existence of QgG •

ew •) —s j’
= C’(es)

es-

3es

and F1 and F^

ps
local

Ps—as es~>+°°, there exists Qse ]R+ 

unique optimal choice of the seller is less than or equal to Q

es
(a)

ps
(I)

Ps—as es—>+“, 
imply that Ps

M+l 
(X-V„) E 

j=l
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and for k=l,...,M+1,

s'
kk (22)

ofwill forshow below that, vectorWe a
exists a

Thus,
(23)

are functions.

for allsame

a

with equation (23) ,that

b

and (22),
vector

exists.solution order theknow that In toWe a
the Gale-Nakaidoof towe

M+2

be one

and c, one obtains that

uniqueness
Theorem.

We now prove the existence of 
of

prove
Univalence

arbitrary
•k\M+l\ , there

M+l E 
j*k 
j = l

eg.eg- e”k)

using the fact unau vjD=v];) 
for k=l,...,M+l.

dF1 (e

3eb

However, 
we obtain that e^=e

i=j and a^j

9F1 (es, 
[1-X-Vj^] ---

9eb

given

say e.

where E^and E2

= E-l(V

vb = C'(eb)

e
shall <

v£=V-

es

. (e>0)
e, we shall appeal

So we have to show that the Jacobian of the system (21)-(22) 
is negative quasi-def inite for all ee .

a unique solution e to (21) 
equilibrium expected utility payoffs

s,yb) and for k=l,...,M+1 
eb = E2(Vs,v£,v£)

using the assumptions on the
<0 for all

given an arbitrary 
(vs'<vbJkii) •

The equilibrium expected utility payoffs must be the 
buyers (i.e., for k=l, . . . , M+l) . Otherwise a buyer with a lower
payoff could imitate a buyer with a higher payoff; this is possible 
since all buyers are identical. This in itself does not imply that the 
buyers will choose the same strategy; it is possible that they obtain 
the same payoff by choosing different strategies.

Let the Jacobian J of the system (21)-(22) with respect to e at any 
eeJR^J2 be denoted by J==(aij]irj- Using equations (21) and (22) 
computes a^j for all i and j. And then, 
functions F^(cf. Assumption 5)

0 for all i^j. Thus J is negative quasi-definite.

equilibrium expected utility payoffs 
unique solution to (21) and (22),

for all k,
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Q.E.D.

Claim 3

There exists

Proof

Existence

(21) (22) f(18a), and.equations (17a), weon

1 k k (24)= (X-Vs)(M+l)f£(es,eb)

(25)

M <es'eb>
(26)

(27)

UnivalenceGale-Nakaido Theorem obtainsthe one
<VS'Vb>a

say

= ET(Vs,Vb)
(28)

= E2(Vs,Vb)

Imposing symmetry 
obtain:

symmetric Nash equilibrium;

is guaranteed by Claims 1 and 2.

★ 
s

* 
eb

H Vb
a*l<es'

[1-X-Vb][ ---
3eb

*3

* 
es

Firstly, 
that, for

c (e*)

/ *»- C(eb)

eb)l

,e*)

(e*)
eb>

" ^3<es'

rVs

* \ 1eb) = c'

a unique symmetric Nash equilibrium.

es

rVb = [1-X-(M+l) Vb] f b (e*

Let (e*,e£) be a

using 
given arbitrary vector (vszvt>) equilibrium expected 

utility payoffs, there exists a unique solution to (26) and (27), 
(es'eb>. And thus, there exist functions Enand Eq, wherethere exist functions E-^and E2,

>0 and e^>0.

<es'

[X-Vs][H+l] -----

3es

k

s
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as a
a function

(29)
(VJ

wherethusand[Eb(vs)] • Let

(i) Ez (V ) >0 (i.e.,

whichwe

(24)-(29) one
on

one
theon
and

Now
ifBut a

(iv) ares
continuous.

Q.E.D.

interiorexists Nashtherehave awe

same

(26)

(25) , (26)(13) and (14)(12) ,
with havewe

in and FbW •s

computes 
functions

(i)
(ii)

and E^

strategy 
payoffs

. s/^v. (ii) 
computed E's (Vb) and Eb(Vs), 
computes E"(Vb) and Eb(Vs).

(cf. Assumption 5) 
(iii)

E is strictly increasing), 

(iii) E(1)<1, and (iv) E 
obtain that E has a unique fixed point, 

there exists a unique symmetric Nash equilibrium.

: vb'
Thus,

E(vs> <

vs<i,
This follows since E

F1

vs

vsVS=ES

E: [0,1]—>[0,1] .

Vs
as

functions F1
E"s(vb)<(). Thus E" (Vs)>0.
Then Vs=l would be an 
VS<X and X<1. 
contradiction.

s' v '
E is strictly convex),

are equations (24), 
and F^(X)=Vx. Hence,

Equations (11), 
and (27), respectively, 
proved claims (i) and (ii)

Secondly, using the Implicit Function Theorem one obtains that, 
equation (24) defines Vs as a function (say Es) of VK, and 
equation (25) defines Vb as a function (say Eb) of Vs. '

FS(X)=VS and Fb(X)=Vb. 
made in Lemmas 1-5 on FQ(X)

= Es<vb>

vb = Eb<'s- 
E(•)=ES(Eb(•)),

equations
assumptions

one obtains that E's (Vb) <0 and Eb(Vs)<0. Thus
In (i) we have

(i)
E's(vb) ana ^b v - s
(cf. Assumption 5) and c,
E'(VJ>0. (ii) E"(Vs)=E's(Vb) .E^(VS)+E" (Vb) ,E^(VS) . 

and Eb(Vs), and therefore, by differentiating, 
using the assumptions 

and c, one obtains that E'b(Vs)<0 
Suppose E(l)/1, i.e., suppose E(l)=l. 

equilibrium expected payoff to the seller.
X=l, then VS<1. Thus, for all X, VQ<1, i.e., 

E is continuous.

Hence, we have proved that 
equilibrium for the game of search, 
choose the same strategy. Let the 

x ‘A’<eS'eb)' and the associated payoffs be denoted by 
(es'eb'Vs'Vb^ uniQue solution to the equations (24),
and (27) .

And then,

E'(Vs)=E's(Vb) -E'b(Vs) . Using 
and Eb (V ) . And then, using the

unique 
with the property that all buyers 

choices be denoted by 
<VS'Vb>• 

(25) ,

Below we shall prove:
(ii) E"(Vs)>0 (i.e., 
is continuous. Thus, 
in turn implies that



___
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from the fact that V <X andClaim (iii) (X)+Fb(X)<l) follows(i.e.f s

and (10) haveAll we have to do
a unique solution. the following(9) beand can
compact notation:

(30)x = h (x)

-rAwithwhere [x,y] handx

FJX)) are

We shall first
has existence). then theleast fixed (i.e., Weat useone

(i.e., uniqueness).

LEMMA 6 (Existence)
h has at least one fixed point.

PROOF

and

(X)G [0,1]

obtain that h:[0,l]x[0,l]—»[0,l]x(0,l].From (i) and (ii) Sincewe

are continuous functions of X, we have that h is continous on
by the Brouwer Fixed Point Theorem, h has atTherefore,

least one fixed point.

Q.E.D.

LEMMA 7 (Uniqueness)

h has one and only one fixed point.

1
2

X=

[x+y]e —, rb 
and (12), respectively.

Vb<l-X.

point
(Banach) Contraction Fixed Point Theorem to prove that h has precisely 
one fixed point

s) and h2 (x) =l-max ( 
defined by equations

h (x) = [h-L (x) ,h2 (x) ] , 
l[x+y]e-rA, FH(X)),

(11)

Fsand Fb 

[0,l]x[0,l] .

equations (9) 
rewritten in

-rAe [0,1]
~rAe [0,1] .

~rAe [0,1].j[1-x+l-y]e 
VXe [0,1],

Fs

i [x+y]e
[x+y]e Fs 

and 0<Fb(X)<(l-X)/M.

s <x)

now is to prove that
(10)

Brouwer Fixed Point Theorem to prove that h

1 (a) 
where F

max([x+y]e 
and Fb(X)

(i) V(x,y)e [0,l]x[0,l] ,
(ii) V(x,y)e [0,l]x[0,l] , 
and Fb(X)e[0,1]. This is because 0<Fs(X)<X,

use the
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PROOF

fixedleast6 h has atLemma one
Thus theh

thatsuchDefinition: contractionish
is thed

condition in thecontractionSince differentiable theh is
is equivalent to:

I + I 3h-L (x) /3y I X (31)

| + | 3h2 (x) /3y I - X (32)

a
and

all strictly

(33)

| dFs(X)/dX | < X2 (34)

| 3(1—J; (1-x+l-y) e r^]/3x | + | 3[1-|(1-x+l-y)e (35)

| 3(l-Fb(X)]/3X | < X4 (36)

-rA

= —

Vx^ / *2e 10 r 1 ] x [ 0,1 ] t 
Euclidean metric.

(iv) l-Fb(X). 
less than 1,

3Xe [0,1]
where

(a) | 3hy (x) /3x 
and
(b) | Sh2 (x) /3x

| (x+y)e

rA] /9y I ^3

x2,

i.e., suppose 
| (x) /3y | =

rA]/3x | + | 3[g(x+y)e

, Fb(X)}

Below we shall prove that each of the following four functions is 
contraction: (i) I [ x+y ] e”rZ^, (ii) F (X) , (iii) 1-1[1-x+l-y] 

Z o Z
Thus 3 positive scalars X]_, X2, X2 and Xd, 

such that

where h^ (x) =max {[ x+y ] e 
and where X=3j[x+y] .

a contraction if 
d[h (XjJ ,h(x2)]<Xd[xlzX2^'

Now suppose h^(x)CFS (X) , 

Then, | 3h^(x)/3x | +

[dFs(X)/dX](1/2) | 

Similarly, 

d[l-Fb(X) ]/dX | £ X4, using (36).

definition, above,

h:[0,l]x[0,l]—>[0,l]x[0,l]. By
point. Below we shall show that h is a Contraction. Thus by 
(Banach) Contraction Fixed Point Theorem h has one and only one fixed 
point.

rA]/3y | < X-l

max{^[x+y]e Fs(X)}=?s(X) .
| + | Sh^xJ/dy | - | [dFs(X)/dX] (1/2) | + |
| dFs(X)/dX | < X2, using (34), and since X«l[x+y]. 

suppose h2 (x) «1-Fb (X) . Then, | 3h2 (x)/^x | + | dh?(x)dy | = |

Fs (X) } and h2(x)=l-max{|[x+y]e
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. 0<£<l, wherefor allsinceLet

(31)such that andIt is clear that there exists
(32) are satisfied.

All we need to do
for 1=1,2,3,4, s . t.

-rA since A>0 and r>0.

]/2; and thus,

] / 2; and thus,

with strict inequality if X>0. Fs : [ 0,1 ] —» [ 0,1 ]VXe[0,1],

Let a1=sup{ [Fs(X)/X] :Xg [0,1] } . Now [FS(X)/X]<1, VX>0.

VX*0, x=o,i . e . ,Therefore For

Therefore,

(X) -a-iX<0, VXe [0,1] (37)

[0,1] .ofelementsbeLet

i. e.,

3 a positive real
such

tocan be proved using an argument similar 
to prove the existence of 1^.

Then
2

£=max{, 12, X3, X4 } 
i=l,2,3,4.

i.e., [FS(X±)]
[Fs(X2)]z<af[xf+x^],

Hence Vx1,X2e[0,l] 

namely a-^, where 

d[Fs(Xi) ,Fb(X2) ]<a1d[X1,X2] .

] /3x

0<X3<l.

"rA<l,l+l d [| (x+y) e

namely X=£,

Thus h is a contraction.

0<X1<l.

(X)-a1X<0.i a1<l. 

i.e.,

(a) | 3[^(x+y)e

where

[FS(Xi)-
-a^X?<0 for

Vxlz X2e [0,1],

Fs(X)=0=X,

(c) FS(X)<X, 

with Fs(0)=0 .

0<X±<l

[Fs(x)/x]<alz
Fs(x)-a1x=0.

where 0<?v£<l

Choose Xi=[l+e

Fs

Fs(X)"alX-0' vXg[0,1]
is a positive scalar strictly less than one.

r^]/dy | =e

scalar strictly less than 1, 
a1=sup{Fs(X)/X:Xe (0,1]}, such that 
Thus X9=a1.

(b) Similarly choose X3=[l+e

X-^,X2 be any

alXi] tFs<Xi)+alXi]~0 for 1=1,2, using (37); 
i=l,2. Thus (fs(X1) ]2+[^^'v^' 12<-^2rv2^v2 

<[Fs(x1)]2+[fs(x2)]2<a1^x^+x^.

a X,

now is to verify that 3 X2, X3, X4 , 
(33)-(36) are satisfied.

(d) the existence of X4 
the one used above ((c))
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true We now
wherethat the for Lg Mtrueassume

Define two sets B as follows.
{ x :

matchedthe the seller isoffer, when some
M+L buyersbuyer, andand all the other sellersL are

unmatched }

Bb = { is subgame starting withsellerx a
is matched withthe selleroffer, when some

H+Lbuyer, sellers and buyersand all the other L are
unmatched }

identicalSince (i) identical,REMARK: the sellers are
and (ii)

the set B

bothi=b,s . thatand forLet We
are

(38)}x
(39)}

for i=l,2,3,4 are defined below.

(A) (1/2) [x(l)+y (1) ] (40)Jl (x,y) = (1/2) [x+y]e

indefined thewhere Theoremand are

J2(X) and J4(X) are defined below:

(A) (1/2)[1-x(1)+l-y(1)]
(41)

L-l E 1=0
L-l E 1=0J3(x,y) = (l/2) [l-x+l-y]e

firstly show 
solutions for the following system

subgame starting with 
with

(A)+e~rA

(A)+e"rA

PLL

{x(l) ,y(l) 
(part(d) ) .

PL1

{pLi<A>}5:=o

s and Bb
SGPE payoff to 

seller's

n^=inf and N£=sup B^ 

(x,y) = (Nb,Ns) and (x, y) = (nb,ns) 

of equations:

Bs

-rAp
fLL

-rAp 
fLL

proof:

and L>1, and then show that the Theorem is true for (N,M) = (L+l,M+L+l) .

max { J1(x,y), J2 (X) 
1-y = max { J3(x,y), J4(X) 
where X=^[x+y] and

It is easy to check that 
for (N,M) = (1,M+1) .

a seller in ax is a

having 
strategy sets and payoff functions, and (ii) the buyers are identical, 
having identical strategy sets and payoff functions, the set Bs and Bb 
are independent of the particular seller and the particular buyer who 
are matched.

we have indeed proved that the Theorem is 
proceed to the second stage of the 

Theorem is true for (N, M) = (L, M+L) ,

a SGPE payoff to 
some buyer's

in a
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(42)
!

(43)

(L) ;

(44)

e

(45)

has

theare

occur
and the buyer who matchedget

(
[l-x-J4 (X) ] [---

3eb

[M+L+l]f^+1

-[M+L]f^+1

[M+L+l]f^+1

+ [DS-J2(X)]Lf£+1

-Lf^+1

* \ t / * \eb)=c'(eb)

<es'eb>

(e*,e£)][M+L+l]

(e*,e£)][L+l]

, * * \ f / * \(es,eb)=c'(es)

<es'

. * * x (es,eb)

/ * * \(es,eb)af£+1
[X-J2(X)] [--

3es

s'eb>

and V^CL)
(e*,e^) is the unique solution to the

+ [Db-J4(X)][M+L]fg+1

where DS=VS (L) r
(part (d)), X=Jj 
following two equations:

We secondly show that the system (38)-(39) 
"/r "A*say (x , y ) . This, therefore, implies that N^n^ ana INs=I1s* 

sets Bs and B^ are singletons. Thus the equilibrium price 
first matched pair is unique and independent of the particular seller 
and the particular buyer who get matched first; trade will 
instantaneously between the seller 
first.

[X+LD„] [M+L+l]
J2(X)- -

r

are defined in the Theorem

a unique solution, 
and No=no. Hence, the 

for

Db=vb(L); VS(L) 
(x+y), and where

[l-X+Db[M+L]][L+l]f^+1 
J4(X)=— 

r

(e*,e*)-c(e*)

(es,eb)-c(es)

+ [L+l]

+ [L+l]
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in the untilalso show that upprocess,
allall withsearch the

the where thesame

firstOnce the pair there thenmatched leave the market are
(N,M) = (L,M+L) The Theorem is for this. Thus ,assumed true we

(L+l,M+L+l).(N,M)

solutions for the systemare

the payoffs to a seller and a buyer,are
(which impliesof L+l sellersnone

that none of the M+L+l buyers are matched), and given that all players
seller's payoffa orx y

in the next bargaining round (whenever it takes
place, and whomsoever the matched pair) it is theare
buyer who is selected to propose;
Then we shall prove that

sellers are unmatched (and therefore. all
unmatched). And first matchthat when theare suppose

follow equilibrium strategiesthe players thethat supportoccurs,
seller's payoff y according to whether it is the the

isbuyer who selected and is theWhatto propose
equilibrium payoff to seller 1 a buyer kand toa
(for k=l, .. .,M+L+l), as of time t?

denote the equilibrium payoffs. These

For 1=1,...,L+1

[Tt (Xj/X) -r(u-t)

(46)

buyers 
with

M+L+l E 
j = l

L+l E i=l i*l

Suppose at time t all L+l

R+L+l buyers

(A-Y-j/X) Vg(u;i, j)e

the first pair

eb'
is

same
* 

es'
(44) and (45).

get matched, 
sellers search

to prove that J2 (X) 

respectively, if

- (fUc(eg)e 
t s

intensity,

(es'eb}

(t)= max 
el>0

-r(q-t)dq) jXe-^u-tJdu]

agents.
will have proved that the Theorem is true for

By arguments similar to those presented in Lemmas 
that both (x,y)

follow equilibrium strategies that support 
according to whether

Let {vl(t)}^ih {v£(t)}^+1
payoffs are determined by the equilibrium search strategy choices.

(xgBs and yeB^) .
(for 1=1,...,L+1)

Xe~r(u-t)+

and J4(X)
the

(Nb,Ns) 
of equations defined by one would have

1-5 one can show

We shall,

x or

and (x,y)=(nb,ns)
(38)-(39) . In these arguments

are matched

seller or

seller or the
xeBs and yeB^. We will prove this.

(38) and (39) have a unique solution.

intensity,
unique solution to the equations
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iwhich seller andthe atwhere rate
unmatchedofthe set

[
the rate

is part of1, if not
and the match

we haveu.
i.e.f independent of time and independent of i and jr

and independent of 1.

For k=l,...,M+L+l

tfi <x£/X) t K
-r(u-t)

(47)du ]

the rate at which buyer k gets matched.

intensities,that the searchWe note are

theindependent of time,
j=l,...,M+L+l) isandi=l,..., L+lThis implies that (for4) .

can simplify equationsindependent of time. we
equilibrium payoffstheobtain that(46) and (47) . (noteWe are

therefore independent of t) :

For 1=1,..., L+l

(46a)

and for k=l,...,M+L+l

(47a)

' —b eb n^k• are

■i

agents 
X

where X^

max
e^>0

(1 - (X^A) )Vb(L)e

vb =

V* =
5

4=

L^Xik, 
i=l lk

and depend only on
XY j

With this observation

and p£

ru- (J c
t

t_ M+L+l
jx X

vs
he

X=l[x+y],XVj=FL+1 

buyer j get matched, 

(i.e.,
M+L+l 

E 
j=l

ps

V^(t)= max
e£>0

1 L+l 
where ec={e^} ,-s s 1=1 
defined below:

utility payoff to seller
pair but the first matched pair is seller i and buyer j,

Since the Theorem is true for (N,M) = (L,M+L) ,

(e£) e

max pl (e 
el>0

s' —s' —b^

(1-X)e"r<u-t)+

occurs at time
Vg(u; i, j)=VS (L) , 

dependent only on L,

|w| =
M+L+l 

■■ E

?=1

M+L+l
{eb}k=l
(cf. Assumption

i L+l 

state w

"r (q-tJdq) jXe-^-t)

the L+l sellers and M+L+l buyers) , |w| = L+l;L+l M+L+l  o M+L+lE E XV •] the rate at which a match occurs, X?= E X-. -, i=l j=l i . . 13
at which seller 1 gets matched. Vg(u;i,j) is the equilibrium expected

the first matched

(ei,e£,eVj), 
where w denotes
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b ”

is

whichbelow)f
(46a) anda

PROPOSITION 2

for

earlierof that usedmethodthe to provewas

seller andand toLet a a

H+L+l

eb

[X-X£]D

, e^l

ps =

* 
es

c (eg)

> 0, Ve^GK^+L

Pb =

A joint search strategy, is a Nash equilibrium of the
search game if and only if e solves equations (46a) and (47a).

[X-Xf]Ds

r 4- X

(47a) , then it is an

There exists a unique solution to equations 
a a n *

it by e) ; with the property that e;;=es for 1=1, . . ., L+l, 
k«l, . . .,H+L+l (i.e., the Nash equilibrium is symmetric).

r + X

Assumption 7
dps<°'®s'eb) 

(a) —
de*

3p£(0,e£,es)
(b) --

X^x +

c (e£)
----- , where =Vb(L).

(46a) and (47a) (denote 
and eg=

By using the method of proof
Proposition 1, and arguments similar to those presented there, one can 
prove Proposition 2 .

We shall make the following assumption (Assumption 7, 
will ensure that if there exists a solution to equations 

interior solution (i.e., e>0).

A* A*Vs and denote the equilibrium payoffs 
Ar Ar Ar Ar buyer, respectively. Then (es,e^,Vs,V^) will be the unique solution to

x£[i-x] +

> 0, Ve^eJR^,

a Nash

, where DS=VS(L) and

1
—s



J
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(44) (45) Note
(L+l)f

Vs

All we have to do havenow
solution. as
where x= [xzy] and and

(38)(cf.

of 6 willLemma that h has leastat
note

since
one 1=0

VXg [0,1], 
where A: and X(l)

one
and then showsone
with if

turn
and the andJ J

that of Lemma 7to
One shows thatare

the facts thatare
X*0, where

(b)

1=0
Thus, we have completed the proof of the Theorem.

s 
are

4 
[0,l]X[0,l].

s 
(equations

proves 

that

J4 (X)
X (1)], and then

1=0
Jx(x)g [0,1]

J,, on their

J2 
(a)

that J9(X)<1.
L-l

(1~X(1) ] ] ,

X)+B] ,VXe [0,1], 
which in

J1 
contractions

=1[x(l)+y(1)], 
by induction

with J2(X)=V* 
Vq(L+1) and v£=Vb(L+l),

defined in the Theorem

using
strict inequality if
and (b) J4(X)<[1/(R+L+l)][(1-

L-l

(43) , 
* 
b=eb
and

VXe[0,1], 
=l[x(l)+y(1)]

A proof similar 
only one fixed point. 
and

equations (38) and (39) 
be represented as follows:
h (x) = [hjL (x) ,h2 (x) ] r

h2(x)=l_max((x),J4(X)) (cf. equations

equations (42),
that e*=e

eb(L+l),

(5)-(8) ) . Thus J2 (X)

prove

and J4(X)e[0,l]. Firstly,
and J4(X)=Vb(L+l) .
L-l

a unique
x=h(x),

h^ (x) =max (J1 (x) , J2 (X) ) , 
and (39) ) .

Jl' u2' u3 
one obtains the continuity of h on

and J 
by 
with

J4
J2(X)<[1/(L+l) ] [X+A]
A-J [X(1)J and X(l)
X)+B]VXg[0,1], with strict inequality if X^l, where B= Z (l-X(l)].

and

Vb(L+l) <
(L+l) and J4(X)=Vb(L+l).

is to prove that
Let (38) and (39)

' will prove that h has one and 
contractions.

S(L+1) ,e 
Vs(L+l)

A proof similar to that

one fixed point. VXe [0,1], J2(X)e [0,1]
that J±(X)>0 for i=2,4 since J2(X)=VS(L+l)

Secondly, by induction one proves that VQ(L)<(1/L)[ Z 13 l=l
one shows that J^(X) < [ 1/(L+l) ] [X+A] , VXe[0,l], with strict inequality 
if X^O, where A=^Z^X(1) and X(1)=g[x(1)+y(1)], which in turn implies 

Thirdly, by induction one proves that Vb(L)<[1/(M+L) ]
J4(X)<[1/(M+L+l)][(1-

L-lstrict inequality if X^l, where B= Z^[1-X(1) ] , 
implies that J4(X)<1. V(x,y)g(0,1]X[0,1],

J3 (x)€ [0, 1] . By the continuity of 
respective domains,

and J4(X)=Vb.
where e (L+l),
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4. AN ANALYSIS OF THE SOLUTION

inthe equilibrium outcome,examine howIn this section shallwe
prices)r depend ontrade (i.e.,particular the equilibrium terms of

firstdo this, shallbeforethe parameters of the model. But, wewe
make two observations:

Introduction (section havementioned in 1) , not(1) theAs we
(who are mentionedas various authorsfocused on symmetric equilibria,
established thein The Theorem hasthe Introduction) have done.

non-symmetricexistence forof unique SGPE outcome,a
strategies. Furthermore, Theorem hasthe

(i.e., all buyers choose the same strategy,SGPE outcome is symmetric
and all sellers choose the same strategy).

transactions take(2) that all theThe Theorem has established
innon-uniform pricesplace different prices (i.e.,at emerge

supplyequilibrium) . is demand andthis that theforA reason
conditions change (and thereleave the markettraders no newareas

trade thetraders who enter) . two matched pairsthat atNote never
same instant in time, since the matching process matches agents one at

matchedtime. (Of it is possible, for example, that twoa course,
pairs trade within one-millionth of a second, or that all trades occur

within one-billionth of a second).

frictions. Firstly, thethree ofmarket, and types
A, time betweenwhich captured by the thefriction, is parameter

(A>0). call this friction parameter theshallsuccessive offers We
which isfriction,Internal friction parameter. Secondly, the market

function, thesearch c(-) , and representscaptured by the ofcost
(in particular, fact thatextent to which the market environment the

impinges thethere sellers)there than onaremoreare

is the rate of time preferencefriction parameter. Thirdly, there
(r>0) .

*

allowing 
established that the unique

buyers
equilibrium price. We shall call this friction parameter the External

The price at which a matched pair trade depends on the state of the 
bargaining
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the External friction thebecomesparameter

Internal friction parameter and the rate of time preference strictly
positive.

theThe External friction is represented by costparameter
function, Since it does not make becomescO .

(which satisfiesnegligible we shall where a>0assume that
strictly increasing and strictlyour proposed properties of i . e . fc,

andconvex) . And thus, let the Externala bewe

for k=0,1,..., N—1,Let

where defined inare
the Theorem. (k+l;a,A) (k+l;a,A) ,Let
for where in theare
Theorem.

Firstly, that a—>0 (i.e., thefornotewe any as

either l>x(k)>0 andif,

(k=0,...,N-1), and l>y(k)>0 (k=0,...,N-1), thenor

(since search costs approach obtain that (k+l)->+oozero we
x(k)=y(k)=la—>0 . Thirdly, if thenas

x(k)=y(k)=0a—>0. ifFourthly,as
a—>0 .(k+1)—>0 Since for alland

(k=0,1, . . . ,N-1)k bothoror
and a—>0, that for all kas we

a-»0, where(k+1) ) —>+°° as

sellers,k+1 unmatched
and M-N+k+1 unmatched buyers. Thus, as
a-»0 for (k=0,...,N-1),all k i.e., the an

frictionExternaltends theagent to to zero as
parameter tends to zero, whatever the state of the market, and keeping
A>0 and r>0.

(5) (6) ,and we
k=0,1,...,N-1,for all k,

(es(k+l),eb(k+l)))]->0 
for

Using equations
V_ (k+1) = [1/ (k+1) ] [R(k)+kVq (k) ]

sense
2

therefore have,
where R(k)=^

search costs approach 

l>y(k)>0

"getting matched"

eb
(k+1) —>+°°

a^O s 
defined

ae2—>0

s
k=0,1, . . . ,N-1,

es (k+1) -++«>

(k=0,l, . . . ,N-1) 
rk+1 
U

x (k) =Lim x (k; a, A) 
a—>0

{x (k; a, A) , y (k; a, A) }
y (k) =Lim y (k; a, A) , 

a—>0
the equilibrium prices,

and Vb (k+1) =Lirn V 
...N-l 

i=0

and eb(k+l) —>+°° 

es(k+l)—and 

(k=0, ...,N-1) ,

and
N-l
k=0

(k+l)=LimV_
s a-+0 s

{V (k+1),Vb(k+l)}£

friction parameter, 

hence we will examine what happens to the equilibrium prices as a—>0, 
keeping A>0 and r>0 .

(es(k+1),eb

is the equilibrium rate at which any buyer and

es

es
(k=0,...,N-1),

es 
either

c (e) = ae

ee IR+,
zero as a—>0) . Secondly, 

l>x(k)>0

eb (k+1) —>+°° 

obtaineb (k+1) —>+°° 
rk+1 
* 1

(es(k+1) , eb(k+1))

any seller get matched,

to say that c(')

given that there are
[1/(f£+1 

expected time taken

(k+1)—>+°° as

We first of all examine what happens to the equilibrium prices as 
negligible, keeping

a s a—> 0)

eb(k+l)->0
then
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Clad 4

:xvi'vk'. . N.
♦ * \

-he rhe F _ere
rhe‘ s v~ • < v '■

_k-l x k= ?,a__
a—<x k= 1, . . N) ancanya._

A>0 .an\ an an

and
(2) r we

(1/2) [x(O)+y(O) ] ,
and

(1/2)[1-x(0)+l-y(0)], (49)

where a(1) 2(x(l)4-y (1) ] .

SubstituteLet

we

for k=0,1,...,N-1,Equation (49) becomes,

1-y(k)=e (49a)
And we obtain that

obtain thatand we

y(k)=i.for k=0,1,...tN-l, (50)

given

k- 11For k—1?
N'-k) ‘

Put k=0 into equation (48) .
i.e., x(0)=y(0). Now substitute this

-rA[[l-x(0)+l-y(0)]/2]

x (k) {e rA

1-y(k)=maxte-rA

Thus, in addition to a—»0, we will assume that the number of agents 
becomes infinitely large. This will simplify the analysis below.

(l/(k-rl)) [ f X(l)]} 
1=0

x(0) = [ [x(0)+y(0) ]/2] , 
into equation 

Now substitute

{x(k),y(k)} k=Q■ 
above, we have,

(1/(M-N+k+1))[ £ [l-X(l)]1} 
1=0

all k .

using equations 
:or k=C,1...,N-1,

(M/N)=P where P>1. Thus M=£n.
equation (49) for M using M=pN. Then let N—>-h*> . Thus [1/(M-N+k+1) ] = 
[1/(N(P-l)+k+l)] = [(1/N)/((p-1) + ((k+1)/N))] —>0 as N->+~.

rhe resulrs obtained

(i.e., x(0)=y(0)) 
x(0)=y(0)=l. 

and we obtain that,

S in re as a—*0

x(0)=y(0). 
(49a) with k=0, 
x(0)=y(0)=l into equation (49a),

ebrain rhar

Cl am, 4 can
us we shall

. e - . k-1' , e*_ xk-1

We know that M>N.

Skl(A'-0
(A) —>1 as a—
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x(O)=l,(50) , andsubstituteNow
[l/(k+l)]thatwe

Claim 5

x(k)=l.For k=0,1, . . .,N-1,

Proof (by induction)

x(0)=l x(k-l)=l, x(k)=l. ThusNow we assume

(i) (51)assume

Then x (k) = [l/(k+1)] [ [[x(k)+1]/2]+k], Substitute this
into (51) , and hence r i • e . t which is true
since A>0 and r>0.

(ii) (52)assume

Then hence
a

(52) cannot hold.

Q.E.D.

Thus (50) and Claim imply,5 for k=0,1,...,N-1,
for k=0,1,...,N-1,(Hence, (k+1)—>+°° and e^tk+l) —>0 as

a-»0) .

Therefore, External (a) tendsthe toas
theand numberas

1) ,constant greaterconstant, a
for k=0,1,...,N-1,

that the of timeNote
kept strictly positive.preference (r) are

thisBefore we
numberpoint outlet us agents

equation
and we obtain

zero,
(keeping [M/N]
x (k; a) —>1

equation 
x(k)=y(k)=1.

into 
k E1=0

is given.
~rA, [1/(k+1)] [[ [x(k)+l]/2]+k] }.

(1/ (k+1)) [((x(k)+l)/2)+k]<e-rA

[1/(k+1)][[[x(k)+1]/2]+k]>e~rA

friction parameter 
of agents become infinitely large 

strictly q re ater than
y (k;a)->l, 
the competitive equilibrium price;

Internal friction parameter

give an
that

the result that 
x (k) =max{e“r^,

this into (52) , and 
<=>e“rA+l+2k<2 (k+1) e-rA<=>l<e~rA,

explanation and interpretation of 
the assumption, "that the

equation (48), 
[[x(1)+1]/2] } .

es

x(k)=e~rA
(1/(k+1)) [ ( (e~rA

Substitute
+1) /2) +k]<e~rA

and 
i.e., all the equilibrium prices tend to 

the sellers take all the surplus.
(A) and the rate

and thus x(k)=l.
(1/(k+1)) [l+k]>e“rA, i.e., l>e~rA

contradiction. Thus

and deduce
x(k)=max{e

result,
of
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not bemay
We usedobtain this result. It ist of course,

the subsequent(49) , and thereforeit it simplifies equationsince
analysis.

the isexplanation interpretation for above resultandAn as
friction parameter, thefollows. the External tendsAs toa, zero,

(since they are the short side of the market)sellers on
in order to obtain the whole

surplus. The fact that the
Internalshall show later that if the(We on

friction parameter, also tends then the above result mayto zero
not be obtained).

As the External friction parameter (a) we have shown
that the expected time taken for tendsan agent to

on the short side of the market it is
(and not the buyers) exploit this their advantage.they who tocan

is matched with Since A>0seller and since thea
alternative buyer tendsan

(as oc—> 0 ) f the seller will always prefer to change partnersto zero
than to continue bargaining with his current buyer. Thus , in essence,
the matched seller and buyer play a one-shot game in which the seller

For k=0,1,...,N-1,

equivalent torepeated limits the following doubleaboveThe are
for k=0,1,...tN-l,limits:

x(k;a,A)=l
(53)

y (k;OC, A)=l

(a, A)allowing
below;1,

Suppose a seller is matched with a buyer, 
expected time taken for the seller to find

to approach (0,0) along the path indicated in Figure 
(Call this path ?c).

Lim (a, A)-»(0, 0)

Lim (a, A)—>(0,0)

becomes infinitely large (keeping [M/N]>1)”, may not be necessary to 
a sufficient assumption.

Lim [Lim x(k;a,A)]=l and Lim [Lim y (k; a, A) ] =1.A-^0 a-X) A—>0 a—>0

’’getting matched”

play off the buyers, one against another,
Internal friction parameter A is strictly

positive is important.
A,

announces a take-it-or-leave-it offer to the buyer.

are able to

tends to zero,

Since the sellers areto zero.
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A

(CL, A)(cl, A)

path P

(0,0) (0,0)

FIGURE 2FIGURE 1

frictionThus, both Internal the Externalthe and. parametersas
all the equilibrium prices tend totend to zero,

A—>0) ,the Internal becomes negligible (i.e.,parameter
keeping the External friction timethe ofandparameter rate
preference strictly positive.

k=0,1,...,N-1,forLet
where

first A->0,observe thatWe as
forSecondly, we

[1-x(k)+l-y(k)].2

(2) ,using equations and(1)Thus, made
[(x(k)+y(k))/2]k=0,1,...,N-1,have, forabove, and

which gives, for k=0,1,...,N-1,
x(k)

Internal parameterthe tendsTherefore, toas zero,
andk=0,1,...,N-1,for

Note of time

along the path Pc, 
the competitive equilibrium price.

and
N-l

—> 
a

friction
x (k;a, A)—

-4 a

pkl 
k=0,1,...,N-1,

we
~rA[(1-x(k)+l-y(k))/2] ,

=12 •

(A)—»0 for l^k and Pkk(A)—>1.
Vs(k+l)<X(k)=l[x(k)+y(k)]

We now proceed to examine what happens to the equilibrium prices as 
friction

x (k)=Lim x (k;a,A) and y (k) =Lim y (k; (X, A) , 
A—>0 NT—1{x(k;a, A), y (k; a, A) } pi=Q are the equilibrium prices.

path PQ

note that, 
and Vb(k+l)<l-X(k)=^

and the two observations 
x(k)-e"rA

1-y(k)=e
=1 and y(k)

(A) 
y(k;a,A)-i.e., all the 

equilibrium prices tend to the bilateral bargaining equilibrium price.
that the External friction parameter and the rate
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preference are kept strictly positive.

As
A—»0 and a>0,

Internal friction, and thus thetheto
than therethe fact that there more areare

thusandthenot aon

thehence are
equilibrium price.

Lim [Lim x (k; a, A) ] =1 and Lim [Lim y (k; a, A) ] a—X) A-X) 2 a—X) A—XTFor k=0r 1t ...tN-lt

equivalent to following doublerepeated limits theThe above are
limits: for k=0r1r ...tN-l,

x (k; a, A)

(54)

y (k;a, A)

(a, A) along the path indicated in Figureto approach (0,0)allowing
(Call this path Pm).2, above;

frictionthe Internal and the ExternalbothThus, parametersas
tend to zero,

resultto theisresultThis

frictionExternalis theit the
I and thus

hence
if

i that
friction andI

in sharp contrast to the result stated in equation 
An explanation and interpretation for

Lim (a, A)-»(0, 0)

Lim (a, A) —>(0, 0)

- i

-i-

c 
that

- i-

(shown in Figure 
’’dominates”1), it is the External friction parameter

Internal friction parameter, and thus the market environment impinges 
on the equilibrium prices - hence the result is the competitive 
equilibrium price. On the other hand, if (a, A) -»(0,0) along the path 

(shown in Figure 2), it is the Internal friction parameter 
” the External friction parameter, and thus

Pm 
"dominates” the External friction parameter, and thus the market 
environment does not impinge on the equilibrium prices at all - hence

along the path Pm, all the equilibrium prices tend to 
the bilateral bargaining equilibrium price.

particular, the fact that there are more buyers 
sellers) does not impinge on the equilibrium prices, 
matched seller and buyer become locked in a bilateral bargaining game 

equilibrium prices are the bilateral bargaining

(53) and depicted in Figure 1.
this is as follows. As (a, A)(0,0) along the path P

An explanation and interpretation for this result is as follows, 
the External friction becomes infinitely large relative 

market environment (in
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the result is the bilateral bargaining equilibrium price.

frictionInternalExternal friction and thetheThus
oppositeprices, inworking, theare on

tend theboth theseof toAs zero,
while the effecteffect of the External friction favours competition,

itof the Internal friction favours bilateral bargaining. Furthermore,
marketfrictions which makes theremoval of alltheis not

Externalis obtained if thecompetitive; the outcome
friction approaches zero at a

resultsresults, commentssomeour
choose their paper forWe

contains thoughts the(i) it of the recenttwo some onreasons:
same assumptiontheir model contains theand (ii)literature, as our

presence in themodel regarding the relationship between the traders'
the markettime, namely, that all tradersmarket and atenter one

operate until all possiblesingle time and the market continues to
their model is directlytransactions completed, and thusare

comparable to our model.

athat anonymity impersonal interaction)first (i.e., laWe note
Rubinstein and Wolinsky (1986) (see also Rubinstein (1987a), pp.21-23)

In our
players' depend the entireallow themodel to onwe

conditions under which the uniqueexistand then there sub­history ,
coincides withequilibrium the competitiveperfect outcomegame

the frictionWhat twomatters parameters,are
Furthermore,

of equilibriaresults,from weour
obtained in Rubinstein and Wolinsky (1986)

discount factorthe equalfact thatthe to 1.is due to
and say that,

environmentmarket the
And thus, the

parameter 
directions.

(see their Proposition 1) 
is They 
... here the number of

parameter
equilibrium

friction parameters

equilibrium outcome.
namely the Internal and the External friction parameters, 

conclude that the multiplicity

is not necessary to obtain the competitive equilibrium outcome, 
strategies

light of 
obtained by Rubinstein and Wolinsky (1986).

suggest this not to be the case, 
buyers is strictly greater than the number of sellers and it is rather 
natural to expect that this fact alone would exert sufficient pressure 
to guarantee the competitive price and that the absence of frictions 
would just reinforce it”, (p.8). In their model there is no friction 
parameter that captures the market environment (in particular, 
fact that there are more buyers than there are sellers).

we makeIn the on the

competitive
higher speed than the Internal friction.
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equilibriumenvironment impinge outcome.market thecannot on
reinforcethe theabsence of frictions wouldFurthermore , not

competitive equilibrium as has been shown in our results.
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