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Abstract: Salicylic acid (SA) has observationally been shown to decrease colorectal cancer (CRC) 

risk. Aspirin (acetylsalicylic acid, that rapidly deacetylates to SA) is an effective primary and sec-

ondary chemopreventive agent. Through a Mendelian randomization (MR) approach, we aimed to 

address whether levels of SA affected CRC risk, stratifying by aspirin use. A two-sample MR anal-

ysis was performed using GWAS summary statistics of SA (INTERVAL and EPIC-Norfolk, N = 

14,149) and CRC (CCFR, CORECT, GECCO and UK Biobank, 55,168 cases and 65,160 controls). The 

DACHS study (4410 cases and 3441 controls) was used for replication and stratification of aspirin-
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use. SNPs proxying SA were selected via three methods: (1) functional SNPs that influence the ac-

tivity of aspirin-metabolising enzymes; (2) pathway SNPs present in enzymes’ coding regions; and 

(3) genome-wide significant SNPs. We found no association between functional SNPs and SA levels. 

The pathway and genome-wide SNPs showed no association between SA and CRC risk (OR:1.03, 

95% CI: 0.84–1.27 and OR: 1.08, 95% CI:0.86–1.34, respectively). Results remained unchanged upon 

aspirin use stratification. We found little evidence to suggest that an SD increase in genetically pre-

dicted SA protects against CRC risk in the general population and upon stratification by aspirin use. 

Keywords: salicylic acid; aspirin; colorectal cancer; Mendelian randomization  

 

1. Introduction 

Colorectal cancer (CRC) is the fourth most common cancer in the UK and worldwide 

[1,2]. Although incidence rates among the over 50s have remained relatively stable, rates 

in younger age groups have increased in both the UK and US populations [3,4]. This high-

lights a need to find better and complementary prevention strategies to reduce risk of 

cancer.  

Salicylic acid (SA) is a dietary metabolite that can be found in various fruits, vegeta-

bles, herbs, and spices [5–7]. Results from a meta-analysis of 19 cohort studies found that 

combined intake of fruits and vegetables reduced the risk of colorectal cancer (summary 

relative risk (RR): 0.90, 95% CI: 0.83–0.98) [8]. Whilst dietary fibre obtained from fruits and 

vegetables indicates a possible mechanism for decreased risk [9], it has also been sug-

gested that increased levels of SA obtained through their consumption may play a role 

[7]. In addition, salicylates can be obtained through pharmacological intervention in the 

form of aspirin (acetylsalicylic acid), a well-known analgesic used to treat fever, inflam-

mation, and acute pain [10], which is rapidly deacetylated to form SA [11,12] (Figure 1), 

the active form of the aspirin metabolic pathway [13,14]. Whilst SA can be obtained from 

the diet, the concentrations achieved (male and female median intake from diet 4.4 

mg/day and 3.2 mg/day, respectively [6]) are much lower than through aspirin ingestion 

(aspirin doses ranging between 75 mg to ≥325 mg given daily/alternate days) [15]. There-

fore, it is unclear whether concentrations achieved from the diet alone are sufficient to 

protect against cancer or whether larger doses obtained through pharmacological inter-

vention are required. 

 

Figure 1. Aspirin metabolism pathway. Roughly 10% of aspirin remains unchanged and is excreted 

in the urine as aspirin. Aspirin is broken down into various metabolites, the most active of them 

being salicylic acid [14,16]. Various enzymes are involved in the metabolism pathway. The percent-

ages indicate how much of the drug is being metabolised in that pathway. Abbreviations: BChE, 
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butyrylcholinesterase; PAFAH1b2, platelet-activating factor acetylhydrolase 2; PAFAH1b3, plate-

let-activating factor acetylhydrolase 3; UGT1A6, UDP-glucuronosyltransferase 1–6; ACSM2B, Acyl-

CoA Synthetase Medium-Chain Family Member 2B and CYP450, cytochrome P450. 

As of yet, no primary prevention trials have been carried out to assess the effect of 

SA intervention on CRC risk, but the evidence of aspirin as a chemopreventive agent is 

clear [17]. A long-term follow up of a randomised controlled trial (RCT) in the Women’s 

Health Study (WHS) showed that alternate day aspirin intake reduced the risk of CRC 

after a median of 17.5 years follow up (HR: 0.80, 95% confidence intervals (CI): 0.67–0.97) 

[18] and a meta-analysis of observational studies showed that aspirin is protective against 

CRC (relative risk (RR): 0.79, 95% CI: 0.74–0.85) [19]. Further evidence comes from RCTs 

for primary and secondary prevention of vascular events. These showed that aspirin re-

duces the risk of CRC incidence and mortality (HR: 0.76, 95% CI: 0.60–0.96 and odds ratio 

(OR): 0.79, 95% CI: 0.68–0.92, respectively) [20,21]. Considering aspirin is rapidly deacety-

lated to form SA in under 30 min [22], and that evidence in the form of in vivo and in vitro 

experiments have previously shown SA to be an antiproliferative and antitumour agent 

[23–25], it may be that metabolism of aspirin leading to increased circulating SA levels 

may partially explain aspirin’s chemopreventive mode of action. 

Although many observational studies have shown an inverse association between 

aspirin use and CRC risk, few have directly assessed the association between SA itself and 

CRC. In order to identify the true effect of SA on CRC risk, conducting an RCT would be 

the ideal study design. However, RCTs for cancer primary prevention are lengthy and 

costly, therefore it would be helpful to test this association using statistical methods such 

as Mendelian Randomization (MR). MR uses genetic variants (mostly single nucleotide 

polymorphisms (SNPs)) related to modifiable factors (such as metabolite levels) to inves-

tigate the causal role of these factors on risk of disease [26–28]. Through this method, MR 

has been likened to RCTs in that genetic variants are randomly allocated at conception the 

same way that an intervention is randomly allocated at the start of a trial [29,30]. This 

lends many advantages such as overcoming the issues of confounding and reverse causa-

tion, which are commonly encountered in observational epidemiology [29]. MR has pre-

viously been useful in predicting trial outcomes such as the case of selenium and prostate 

cancer in The Selenium and Vitamin E Cancer Prevention Trial (SELECT) [31]. Results 

from an MR study mimicked the findings of this RCT and may have been useful to inform 

whether to conduct a trial that cost $114 million and that was weakly associated with in-

creasing high-grade prostate cancer risk [32]. 

For this reason, we applied an MR approach using genetic “instruments” or proxies 

for SA to assess the causal effect of this metabolite on the risk of CRC. Since aspirin is 

rapidly deacetylated to SA [22], and therefore a plausible proxy of increased SA levels, we 

also stratified our analysis between aspirin users and non-users to test the hypothesis of 

whether diet-derived levels of SA alone would affect risk of CRC or whether higher con-

centrations achieved through pharmacological intervention in the form of aspirin was re-

quired to identify an effect. Based on previous observational evidence, we hypothesise 

that a genetically predicted increase in SA levels would reduce the risk of CRC, with a 

stronger effect observed in aspirin users. 

2. Materials and Methods 

2.1. Genetic Variants for Salicylic Acid 

We applied a two-sample MR study design to test for the association of SA levels 

(sample 1) with risk of CRC (sample 2). GWAS and meta-analysis of salicylate levels were 

performed using 5841 participants from the EPIC-Norfolk study [33] and 8455 from the 

INTERVAL study [34]. The percentage of samples with missing salicylate measurements 

was low (0.43% and 1.44% in EPIC-Norfolk and INTERVAL respectively), providing a 

total sample size of 14,149. Salicylate was measured independently in each study as one 
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of many metabolites measured using the Metabolon DiscoveryHD4®  platform (Metabo-

lon, Inc., Durham, NC, USA), from non-fasted plasma samples (predominantly non-fasted 

samples in EPIC-Norfolk) collected at baseline. Measures that were median normalised 

for run day were natural log transformed, winsorised to 5 standard deviations from the 

mean, before being regressed against age, sex, and study-specific variables (measurement 

consignment in EPIC-Norfolk and measurement consignment, INTERVAL centre, plate 

number, appointment month, lag time between blood donation appointment and sample 

processing, and the first 5 ancestry principal components in INTERVAL) using linear re-

gression. Residuals from this regression were standardised (mean 0, standard deviation 

1) and used for further analysis. Genotyping was performed in both studies using the 

Affymetrix Axiom UK Biobank genotyping array. In INTERVAL, genotype imputation 

was performed using the combined UK10K+1000 Genomes Phase 3 reference panel. In 

EPIC-Norfolk, imputation was performed using the Haplotype Reference Consortium ref-

erence panel, with additional variants imputed using the UK10K+1000 Genomes Phase 3 

reference panel. Genome-wide association analyses were performed using BOLT-LMM 

(version 2.2) [35], and variants with a MAF < 0.01% and INFO < 0.3 were excluded. Asso-

ciations from the two studies were pooled using inverse variance weighted fixed effect 

meta-analysis implemented in METAL [36], applying a minor allele count threshold in 

each study of >10.  

The causal effect of SA on risk of CRC was assessed using 3 sets of genetic variants 

(SNPs) related to SA: (1) functional SNPs that influence aspirin and SA metabolising en-

zymes’ activity (derived from Figure 1)—termed “functional SNPs”; (2) pathway SNPs, 

those that are present in the coding regions of genes that are involved in aspirin and SA 

metabolism (based on the NCBI Build 37/UCSC hg19 from https://grch37.ensembl.org/in-

dex.html (14.12.2016), Supplementary Table S1) termed “pathway SNPs”; (3) genome-

wide significant SNPs associated with levels of circulating aspirin metabolites—termed 

“genome-wide SNPs”. Pathways SNPs were defined as having a Bonferroni threshold of 

association (p value 0.05/2701 = 1.85 × 10−5), a MAF ≥ 0.01%, as well as a consistent direction 

of effect in both EPIC-Norfolk and INTERVAL. Genome-wide signals were defined as 

having an association p value < 5 × 10−8 in the meta-analysis, a MAF ≥ 0.01%, consistent 

direction of effect across the two studies, and association p value < 0.01 in both studies 

To account for genetic correlation, linkage disequilibrium (LD) clumping at an R2 < 

0.001 and 10,000 kb window was performed to retain the SNP most strongly associated 

with the metabolite for downstream analysis. Since an R2 < 0.001 is considered highly 

stringent, we also used an R2 < 0.8 to incorporate more variants while accounting for re-

sidual correlation in the model (see Statistical Analysis). An F-statistic for each SNP–ex-

posure association was calculated to reflect the strength of the genetic instrument and 

indicate any possibility of weak instrument bias, usually inferred when F < 10 [37]. Power 

calculations were conducted using the mRnd online calculator to identify the OR in both 

directions that could be detected with the sample size available [38]. 

2.2. Genetic Variants for CRC Incidence 

SNP–outcome associations were obtained from the Colon Cancer Family Registry 

(CCFR), Colorectal Cancer Transdisciplinary Study (CORECT), Genetics and Epidemiol-

ogy of Colorectal Cancer (GECCO) consortia, and the UK Biobank (55,168 cases and 65,160 

controls), hereafter collectively termed as GECCO [39–41]. Genetic data from a popula-

tion-based case-control study from southwestern Germany (Darmkrebs: Chancen der 

Verhütung durch Screening (DACHS)) was used to assess replication of the findings, and 

to run an MR analysis stratified by aspirin intake, since this study recorded aspirin use 

(defined as twice per week for at least a year) [42–44]. This study comprised 4410 cases, of 

which 810 (18.37% of cases) were aspirin users and 3340 (75.74%) were non-users, and 260 

cases (5.90%) were excluded as they had reported use of other non-aspirin NSAIDs. This 

study also contained 3441 controls, of which 779 (22.64%) had recorded aspirin use and 
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2320 (67.42%) were recorded as non-users, and 342 controls (9.94%) were excluded as they 

had reported use of other non-aspirin NSAIDs.  

To assess the causal effect of SA on CRC risk, we tested for association in GECCO, 

and also stratified the analysis between aspirin users and non-users in DACHS to investi-

gate whether increased SA levels via pharmacological intervention is required to see an 

effect. We obtained summary association statistics from GECCO and also conducted lo-

gistic regression analyses adjusting for age and sex in the DACHS study for all the partic-

ipants. We then stratified the participants of the DACHS study to aspirin users and non-

users before repeating the logistic regression analyses again. Genetic instruments that had 

a MAF ≤ 0.01 in both GECCO and DACHS (all participants) were excluded from further 

analyses. 

2.3. Statistical Analyses 

Analyses were carried out in R version 3.2.3 using the “Two-Sample MR” package 

[45]. This package allows the formatting, harmonisation, and analysis of summary data 

from genetic association studies in a semi-automated manner. The Two-Sample MR pack-

age automatically assigns effect alleles so that SNP associations with the exposure are pos-

itive i.e., so the effect allele is “metabolite-increasing”. The SNPs identified as associated 

with SA can then be extracted from the outcome datasets. Allele harmonization ensures 

that the effect (metabolite-increasing) allele in the exposure dataset is also treated as the 

effect allele in the outcome dataset. When only one SNP was associated with the metabo-

lite, Wald ratios (SNP–outcome estimate ÷ SNP–exposure estimate) were calculated to as-

sess the change in log OR per SD increase in the metabolite. When more than one SNP 

was available, a weighted mean weighted by the inverse variance of the Wald ratio esti-

mates (inverse-variance weighted (IVW) method) was used to assess the causal effect of 

increased metabolite levels on risk of CRC incidence [46]. To assess the quality of our in-

struments, we calculated the variance in SA levels explained by the SNPs and the F statis-

tic. The variance explained for each SNP was calculated using the formula: 
2𝑏2𝑝 (1−𝑝)

𝑣𝑎𝑟
, 

where p is the minor allele frequency, b is the SNP effect on the exposure (beta) and var is 

the variance of the exposure. The F statistic was calculated using the formula: 
𝑟2(𝑛−1−𝑘)

((1−𝑟2)𝑘)
 

where r is the sum of the variance explained by the set of SNPs, n is the sample size of the 

exposure GWAS and k is the number of SNPs used to proxy the exposure. In the presence 

of weak instruments, we conducted an MR robust adjusted profile score (MR RAPS), 

which is a method that provides robust inference when many weak instruments are pre-

sent [47]. 

Furthermore, the presence of one invalid instrument, e.g., one that is associated with 

exposures other than the exposure of interest (horizontal pleiotropy), may bias the results 

from the IVW method [48]. For this reason, alternative methods that produce an unbiased 

estimator even when some of the genetic instruments are invalid were used as a sensitivity 

analysis when more than 2 SNPs were used as exposure instruments (weighted mode, 

weighted median, and MR Egger) [45,49–51]. The MR Egger test is not constrained to pass 

through an effect size of 0, unlike the IVW method, allowing the assessment of the pres-

ence of directional pleiotropy through the y intercept [48,51]. We also measured the Q 

statistic to measure the presence of pleiotropy between our instruments. If all the SNPs 

are valid instruments, then the individual MR estimates for each SNP will only vary by 

chance. A larger amount of heterogeneity would indicate that one or more of the SNPs are 

pleiotropic [52]. 

Due to the presence of a small number of independent SNPs associated with the me-

tabolite, we also conducted a weighted generalised linear regression (WGLR), whereby 

SNPs in LD (R2 < 0.8) could be used with the incorporation of their correlation as weights 

in the regression analysis [53]. This was performed using the “LDlinkR” and “Mendelian-

Randomization” packages in R (version 3.5.1). The use of multiple SNPs explains more of 

the variance in the metabolite levels and therefore improves power to detect an effect [53].  
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We also assessed the possibility of reverse causation through the use of the MR Stei-

ger test, found in the “TwoSampleMR” package, which does so by comparing the variance 

explained by the SNPs for the exposure and the outcome [45]. 

3. Results 

3.1. Functional SNPs and CRC Risk 

To interrogate the effect of SA on CRC risk, we used three methods to select our ex-

posure instruments (Figure 2). In our first approach, we identified four functional SNPs 

that have been shown to affect enzyme efficiency in the aspirin metabolic pathway (Figure 

1). For BChE (rs6445035), the presence of an A allele increase has been associated with a 

decrease in aspirin hydrolysis by around 1.2 nmol/mL/min [54]. The UGT1A6 variants, 

rs2070959 and rs1105879, predict a higher metabolic activity of the enzyme than the wild 

type [55,56]. Furthermore, a variant in CYP2C9 (rs1799853) encodes an enzyme with re-

duced activity [57].  

 

Figure 2. Instrument selection for functional, pathway, and genome-wide SNPs. Abbreviations: SA, 

salicylic acid; EAF, effect allele frequency; BF, Bonferroni. 

These SNPs were tested for association with SA in the INTERVAL and (EPIC)-Nor-

folk study, however none of the SNPs reached nominal significance with the metabolite 

(Figure 3A) (Supplementary Table S2). For this reason, these SNPs were therefore not 

taken forward in an MR analysis.  
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Figure 3. Functional SNP metabolite associations and two-sample pathway MR analysis. (A) Forest plot of single SNP 

associations with salicylic acid for the functional SNPs. (B) Forest plot of one SD increase in SA and its effect on CRC risk, 

instrumented by pathway SNPs and applying three methods: IVW after applying an LD threshold of R2 < 0.001 (black), 

MR RAPS after applying an LD threshold of R2 < 0.001 (grey), IVW after applying an LD threshold of R2 < 0.8 (red) and a 

WGLR after applying an LD threshold of R2 < 0.8 (green). (C) Forest plot of one SD increase in SA and its effect on CRC 

risk, instrumented by genome-wide SNPs and applying three methods: WR after applying an LD threshold of R2 < 0.001 

(black), MR RAPS after applying an LD threshold of R2 < 0.001 (grey), IVW after applying an LD threshold of R2 < 0.8 (red) 

and a WGLR after applying an LD threshold of R2 < 0.8 (green). Abbreviations: OR, odds ratio; IVW, inverse variance 

weighted; WGLR, weighted generalised linear regression; WR, Wald ratio; LD, linkage disequilibrium. 
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3.2. Pathway SNPs and CRC Risk 

We investigated genetic variants within the coding regions of the enzymes involved 

in aspirin and SA metabolism (Figure 1). These were BChE, PAFAH1b2, PAFAH1b3, 

UGT1A6, ACSM2B and CYP2C9.  

We obtained summary statistics for 2701 SNPs within the genetic coding regions of 

the enzymes for SA. We applied a Bonferroni threshold of association (P value 0.05/2701 

= 1.85 × 10−5) for SNPS and restricted to SNPs with a consistent direction of effects in both 

studies and a minor allele frequency of ≥0.01 in the exposure and outcome studies. This 

identified 45 SNPs that could be used to instrument SA. These SNPs were then clumped 

at an R2 < 0.001 and 0.8, providing two and six SNPs, respectively, to instrument SA levels 

(Figure 2). These explained 0.03% and 0.09% of the variance in SA levels, and had an F 

statistic of 1.74 and 2.16, respectively (Table 1).  

Table 1. Exposure instruments used in the MR analysis. 

SNP Set Study 

Outcome 

Sample 

Size 

Percentage Cases 

(%) 

N 

SNPs 
LD R2 

Variance 

Explained 

R2 (%) 

F Statis-

tics 

OR Detected at 80% 

Power 

Decreased 

Risk 

Increased 

Risk 

Pathway SNPs 

GECCO 120,328 
45.85 

55,168/120,328) 
2 

0.001 0.025 1.74 

0.90 1.11 

DACHS 7851 56.17 2 0.68 1.51 

DACHS aspirin us-

ers 
1589 (4410/7851) 2 0.43 2.38 

DACHS aspirin 

non-users 
5660 50.98 2 0.64 1.64 

GECCO 120,328 (810/1589) 6 

0.8 0.092 2.16 

0.95 1.06 

DACHS 7851 59.01 6 0.81 1.24 

DACHS aspirin us-

ers 
1589 (3340/5660) 6 0.63 1.58 

DACHS aspirin 

non-users 
5660 

45.85 

(55,168/120,328) 
6 0.78 1.30 

Genome-wide SNPs 

GECCO 120,328 
45.85 

55,168/120,328) 
2 

0.001 0.053 7.44 

0.93 1.07 

DACHS 7851 56.17 2 0.76 1.32 

DACHS aspirin us-

ers 
1589 (4410/7851) 2 0.55 1.83 

DACHS aspirin 

non-users 
5660 50.98 2 0.73 1.42 

GECCO 120,328 (810/1,589) 6 

0.8 0.090 3.18 

0.95 1.06 

DACHS 7851 59.01 6 0.81 1.24 

DACHS aspirin us-

ers 
1589 (3340/5660) 6 0.63 1.59 

DACHS aspirin 

non-users 
5660 

45.85 

(55,168/120,328) 
6 0.78 1.30 

Abbreviations: SA, salicylic acid; LD, linkage disequilibrium; NA, not applicable; OR, odds ratio. 

After LD clumping at an R2 < 0.001, 2 SNPs were taken forward in an IVW analysis. 

We found little evidence of an association between an SD increase in SA and CRC risk 

(GECCO OR: 1.03, 95% CI: 0.84–1.27 and DACHS OR: 1.10, 95% CI: 0.58–2.07) (Figure 3B). 

Since aspirin is rapidly deacetylated to form SA [22] and therefore a plausible proxy for 

increased SA levels, we stratified our analysis between aspirin users and non-users in the 

DACHS study. Our power calculations show that after stratification, we had 80% power 

to detect an effect of an SD increase in SA on CRC risk with an OR of ≤0.43 and ≥2.38 in 

the reciprocal direction for aspirin users (n = 1,589). For non-users (n = 5,660), we had 80% 

power to detect an OR of ≤0.64 and ≥1.64 in the reciprocal direction (Table 1). However, 
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our MR analysis showed little evidence of an association between SA and CRC risk (OR: 

0.93, 95% CI: 0.23–3.73 and OR: 1.24, 95% CI: 0.57–2.69, respectively) (Figure 3B).  

The variance explained by these two instruments and their F statistics indicate the 

possibility of weak instrument bias. For this reason, we conducted MR RAPS, a method 

that provides robust inference even in the presence of weak instruments [47]. Through 

this method, no association was found between an SD increase in SA and CRC risk 

(GECCO OR: 1.04, 95% CI: 0.87–1.23 and DACHS OR:1.10, 95% CI: 0.57–2.12). Results re-

main unchanged, even after stratification between aspirin users and non-users (OR: 0.93, 

95% CI: 0.22–3.87 and OR: 1.24, 95% CI: 0.56–2.76). 

Since this LD threshold is known to be very stringent, we used a more relaxed thresh-

old (R2 < 0.8) to increase the number of SNPs available to instrument the metabolite and 

therefore explain more of the variance in SA levels. This provided six SNPs associated 

with SA shown in Supplementary Table S3, of which SNP associations with the outcome 

are also provided in Supplementary Table S4. These SNPs showed no association between 

SA and CRC risk (GECCO OR: 1.01, 95% CI: 0.91–1.12 and DACHS OR:1.14, 95% CI: 0.77–

1.68). Stratification between aspirin use and non-use found no association between the 

metabolite and CRC risk in aspirin users or non-users (OR: 1.02, 95% CI: 0.44–2.40 and 

OR: 1.26, 95% CI: 0.78–2.01, respectively).  

Using the alternative MR methods (weighted mode, weighted median, and MR Eg-

ger), no other association between SA and CRC in both GECCO and DACHS was ob-

served, regardless of stratification (Supplementary Table S5).  

Since all the SNPs were found to be on chromosome 16 (Supplementary Table S3), a 

WGLR method was carried out to account for the SNP correlations and include them as 

weights into the regression. Through this method, there was no association between SA 

and CRC risk in DACHS (OR: 0.81, 95% CI: 0.36–1.83) but a positive association in the 

GECCO sample (OR: 1.11, 95% CI: 1.01–1.21). No association was observed between SA 

and CRC risk in aspirin users or non-users (OR: 0.35, 95% CI: 0.05–2.47 and OR: 1.10, 95% 

CI: 0.55–2.16, respectively) (Figure 3B). As a sensitivity analysis, the heterogeneity of the 

results was appraised through a Q statistic, but no evidence of pleiotropy was observed- 

i.e., no evidence that the instruments may also be associated with another phenotype 

(Supplementary Table S6).  

To identify whether the causal pathway was in the direction from SA to CRC and not 

the reverse, we performed the MR Steiger method using the functional SNPs [58]. This 

method suggested that the causal direction was indeed from SA to CRC, because the SNPs 

explained more variation in SA levels than CRC risk (Supplementary Table S7). 

3.3. Genome-Wide Significant SNPs and CRC Risk 

Initially, 72 SNPs were associated with SA at genome-wide significance. We re-

stricted our analysis to SNPs with a MAF threshold of ≥0.01 in the exposure and outcome 

studies, and only included those with a consistent direction of effect in both studies. This 

resulted in 58 SNPs that were available to instrument SA. After removing SNPs in LD at 

an R2 < 0.001 and R2 < 0.8, one SNP and four SNPs were available to instrument SA, re-

spectively (Figure 2). These explained 0.05% and 0.09% of the variance in SA levels and 

had an F statistic of 7.44 and 3.18, respectively (Table 1).  

Using the one independent SNP associated with SA at genome-wide significance, 

WR results showed no association between the genetically predicted metabolite levels and 

cancer risk (GECCO OR: 1.08, 95% CI: 0.86–1.34 and DACHS OR: 1.01, 95% CI: 0.44–2.31). 

Our power calculations show that after stratification between aspirin users and non-users 

in the DACHS study, we had 80% power to detect an effect of an SD increase in SA on 

CRC risk with an OR of ≤0.55 and ≥1.83 in the reciprocal direction for aspirin users (n = 

1589). For non-users (n = 5660), we had 80% power to detect an OR of ≤0.73 and ≥1.42 in 

the reciprocal direction (Table 1), however, we found no association between SA levels 

and CRC in aspirin users (OR: 0.66, 95% CI: 0.11–4.12) and non-users (OR: 1.12, 95% CI: 

0.42–2.97) (Figure 3C).  
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Due to the possibility of weak instrument bias, we also conducted an MR RAPS ap-

proach, but results remained unchanged (GECCO OR: 1.08, 95% CI: 0.86–1.36, DACHS 

OR: 1.01, 95% CI: 0.44–2.36, DACHS aspirin users OR: 0.66, 95% CI: 0.10–4.33 and DACHS 

aspirin non-users OR: 1.12, 95% CI: 0.41–3.04).  

To explain more of the variance, we used a less stringent LD threshold of R2 < 0.8, 

and therefore four SNPs to instrument SA (Supplementary Table S8, associations with 

CRC are also found in Supplementary Table S9). IVW results also showed no association 

between the metabolites and CRC risk (GECCO OR: 1.03, 95% CI: 0.92–1.15, and DACHS 

OR: 1.06, 95% CI: 0.69–1.63) and no association was found upon stratification by aspirin 

use (users OR: 0.99, 95% CI: 0.38–2.57, non-users OR: 1.10, 95% CI: 0.66–1.84).  

Using the alternative MR methods (weighted mode, weighted median, and MR Eg-

ger), no association between SA and CRC in both GECCO and DACHS was seen, regard-

less of stratification (Supplementary Table S10).  

Since these four SNPs were all found on chromosome 16 (Supplementary Table S8), 

a WGLR method was applied to account for their correlation. We found a positive associ-

ation between SA and CRC risk in the GECCO sample (OR: 1.13, 95% CI: 1.05–1.22) but 

no association in the DACHS sample (OR: 0.51, 95% CI: 0.16–1.67), DACHS aspirin users 

(OR: 0.12, 95% CI: 0.01–2.67) and DACHS aspirin non-users (OR: 0.70, 95% CI: 0.30–1.65) 

(Figure 3C). As a sensitivity analysis, the heterogeneity of the results was assessed 

through a Q statistic, but no evidence of heterogeneity was seen (Supplementary Table 

S11).  

We repeated the MR Steiger method using the genome-wide significant SNPs, and 

results again suggested that the causal direction was indeed from SA to CRC, as the SNPs 

explained more variation in SA levels than CRC risk (Supplementary Table S6). 

4. Discussion 

In this study, we aimed to assess whether increasing levels of SA affected risk of CRC, 

using an MR approach, and whether higher levels of SA proxied by pharmacological in-

tervention in the form of aspirin use was required to identify an effect. Our analysis fo-

cused on aspirin, since 90% of the drug is rapidly deacetylated to form SA [16], which is 

the active metabolite of the drug [13,14], and therefore increases SA levels more than 

would be achieved through the diet. Three different approaches were applied to identify 

genetic variants (instrument variables) which could serve as proxies for SA and under-

stand the causal nature of their role in determining CRC risk. The three approaches in-

volved selecting (i) functional, (ii) pathway and (iii) genome-wide SNPs each associated 

with SA. The functional genetic variants were selected through the established role of the 

genes in aspirin metabolism from various sources of evidence. With regards to the path-

way and genome-wide significant SNPs, all were found on chromosome 16, either within 

or near the coding region for the enzyme ACSM2B, which is the enzyme involved in 

breaking down SA into its metabolite salicyluric acid, thereby providing a plausible bio-

logical link between these SNPs and levels of SA.  

We found no association between the functional SNPs and levels of SA, therefore did 

not take them forward to instrument SA levels. Using pathway and genome-wide SNPs, 

we identified two and one independent SNPs (R2 < 0.001) to proxy for SA levels, respec-

tively, and found no association between increasing metabolite levels and CRC risk using 

an IVW and MR RAPS approach, regardless of aspirin stratification. Furthermore, due to 

the small number of instruments, we applied a less stringent LD threshold (R2 < 0.8) and 

identified six pathway SNPs and four genome-wide SNPs to proxy for an SD increase in 

SA levels. Using these SNPs, we found consistent null results using the IVW method and 

alternative MR methods (weighted median, weighted mode, and MR Egger). However, 

after accounting for SNP correlation using a WGLR method, we found that an SD increase 

in SA increased the risk of CRC in GECCO (OR: 1.11, 95% CI: 1.01–1.21, p-value: 0.03 and 

OR: 1.13, 95% CI: 1.05–1.22, p-value: 1.42 × 10−3, respectively). We acknowledge that when 

the LD clumping threshold was relaxed to 0.8, there may have been some overlap with 



Nutrients 2021, 13, 4164 13 of 21 
 

 

SNPs used in both the functional and the genome-wide analysis. We also acknowledge 

that the sensitivity analyses used were limited in detecting heterogeneity due to the low 

number of SNPs. The Cochran Q statistic also requires a large number of SNPs, otherwise 

there is little power to detect heterogeneity [59]. Overall, we found little evidence to sug-

gest that SA affects risk of CRC, regardless of stratification.  

It is thought that one reason why fruit and vegetable consumption may prevent CRC 

[8] is due to the presence of SA [60], although no formal RCTs have been carried out to 

confirm this. In vitro studies have also shown that salicylic acid inhibits the growth of 

colorectal cancer cells [61]. SA is the primary metabolite of aspirin, of which both obser-

vational and RCT evidence have shown aspirin as a chemopreventive agent [18–21]. Our 

MR results show little evidence of an association between the metabolite and CRC risk, 

regardless of aspirin use. However, we discuss some of the possible reasons why below.  

Whilst we found no association between functional SNPs known to affect aspirin me-

tabolism enzymes’ activity and levels of SA, this may be due to a more complex relation-

ship between genotype and metabolite levels, rather than the assumed linear additive 

model. For example, with regards to the functional SNPs, Nagar et al. (2004) identified 

that whilst individuals with homozygous mutant alleles of UGT1A6 had the highest met-

abolic activity, those that were heterozygous for alleles in three SNPs (including rs1105879 

and rs2070959) were actually less active than homozygous wildtype enzymes [56], indi-

cating a non-linear association between the alleles and the metabolites, which is a common 

assumption made in regression analyses [62]. This non-linear association between alleles 

and enzyme activity needs to also be addressed between alleles and metabolite levels to 

derive instrumental variables.  

To our knowledge, our GWAS for SA is the largest performed for this metabolite (n 

= 14,149), with others having much smaller sample sizes and not being publicly available. 

By using a much larger sample size, we were able to identify genome-wide significant 

associations that would have otherwise been missed in smaller studies. However, the var-

iance explained and the strength of the instruments still indicated weak instruments de-

spite strong associations with the metabolite. In order to improve the results and conclu-

sions observed in this study, ideally we would need to identify the SNP associations with 

SA levels stratified between aspirin users and non-users, similar to what was carried out 

in our CRC outcome sample. However, to our knowledge, metabolite, genotype, and phe-

notype data (of aspirin use) are not currently large enough to run this analysis. If a 

stronger association exists between the SNPs and SA levels in aspirin users, this would 

provide more strength of the appropriateness of the genetic instruments used to proxy for 

SA levels.  

We also acknowledge another limitation in this study is that the measurement of me-

tabolites was through an untargeted metabolomics approach, and so the variables gener-

ated are assessed in units of measurement called “ion counts” which are calculated from 

the area under the curve of the corresponding peak in the mass spectrum. This means that 

metabolite measurements are quantitative values of relative changes as opposed to the 

absolute quantification of metabolite concentrations that can be achieved through tar-

geted metabolomics [63]. For this reason, it is important to focus on the direction of effect 

and strength of association (p-values) in this study, as opposed to the magnitude of effect. 

This may have also impacted on the calculation of variance explained and the F statistics, 

which mostly indicate that the instrumental variables used in the MR were weak as they 

explain little of the variance, and the F-statistic is below the conventionally applied indic-

ative threshold of 10 [64]. However, without carrying out a more targeted metabolomic 

approach and quantifying the exact effect of these SNPs on the metabolite levels, it is dif-

ficult to draw firm conclusions about the strength of the instruments used for MR.  

Furthermore, larger sample sizes of recorded aspirin use are required as currently, 

our study may have been underpowered to detect an effect, hence explaining the null 

results using the IVW approach. Our power calculations show that in aspirin users, we 

had sufficient power to detect an effect of SA on CRC risk with an OR of ≤0.43 and ≥2.38, 
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whereas observationally, the effect of aspirin on CRC risk is RR: 0.79 (95% CI: 0.74–0.85) 

[19], and in a long-term observational follow-up of a trail, the hazard ratio was 0.80 (95% 

CI: 0.67–0.97) [18]. Therefore, it would be useful to repeat this analysis in a larger sample 

with comprehensive data on aspirin use. 

5. Conclusions 

Overall, the analyses presented have shown that dietary levels of SA, as well as in-

creased levels proxied by aspirin use, may be insufficient at reducing risk of CRC, alt-

hough based on the variance explained in SA levels by our SNPs and the F statistic, we 

acknowledge that the analysis needs to be repeated again with stronger instruments that 

proxy the metabolite levels. 

Supplementary Materials: The following are available online at www.mdpi.com/arti-

cle/10.3390/nu13114164/s1, Table S1: Enzyme genomic regions based on NCBI Build 37/UCSC hg19, 
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tions with salicylic acid, Table S4: Pathway SNP associations with colorectal cancer, Table S5: Path-

way SNP associations with CRC using the other MR methods, Table S6: Results of the Q statistic 

heterogeneity test for pathway SNPs, Table S7: MR Steiger test results, Table S8: Genome-wide SNP 

associations with salicylic acid, Table S9: Genome-wide SNP associations with colorectal cancer, 

Table S10: Genome-wide SNP associations with CRC using the other MR methods, and Table S11: 

Results of the Q statistic heterogeneity test for genome-wide SNPs.  
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