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REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

This manuscript reports on the electrochemical deposition of Mo carbide films on Mo substrates from a 

high temperature melt in which CO2 has been introduced. The final MoC-MoC2 material was found to 

be highly active and stable for the HER over a large pH range which was due to excellence adherence 

to the Mo substrate, the presence of MoC-MoC2 heterostructure interfaces and good wettability. 

Promisingly high current densities could be maintained for up to 100 days which is great to see as 

often studies limit their lifetime tests to 1 day. Overall this is an excellent piece of work where the 

material has been characterised thoroughly, the electrochemical performance is outstanding and is 

backed up by theoretical calculations. I only have some minor comments 

Some more detail should be provided on the electrodeposition of Mo carbide films and the mechanism 

of this reaction. This could be discussed better in the context of previous work where MoCx films were 

electrodeposited. 

For the XPS – the C 1s spectra should also be shown as well as the O 1s spectra – I assume there is 

some surface oxidation. 

In the experimental a pre-electrolysis step was done with a Ni sheet – why was this done? 

It is noted that a NiFeCu anode was used and claimed to be inert – are the authors sure that there is 

no leaching of these elements? ICP-OES analysis of the catalyst should be undertaken to rule out any 

trace impurities that may be present in the material. 

iR compensation was used – this should be quantified. 

Is the electrode tolerant to some oxidation which may occur if integrated directly with an intermittent 

power supply like solar where reverse current effects can occur? 

Reviewer #2 (Remarks to the Author): 

In the manuscript, the authors reported a self-standing MoC-Mo2C catalytic electrode with high 

catalytic activity and stability in both acidic and alkaline electrolytes. The most impressive data is the 

long-lasting lifetime of over 2400 h and stability at the industrial operating temperature of ~70 oC. In 

addition, the outstanding performance was assigned to MoC (001)-Mo2C (101) heterojunctions and 

surface hydrophilicity affect H2 bubbles’ motion behaviors. Although there are some other papers 

published about MoC (001)-Mo2C (101) heterojunctions as an efficient HER catalyst, I believe this 

work can be a landmark for non-precious metal-based HER catalytic electrode. Therefore, I would like 

to suggest publication after a minor revision. 

1: As the ratio of MoC/Mo2C changes with the electrolysis temperature, which ratio is most suitable 

for an efficient HER catalyst? 

2: The MoC-Mo2C-790 electrode shows an almost constant catalytic current for 1000 h (2000 h in 
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is the same electrode working consecutively in 0.5 M H2SO4 and 1 M KOH. 

3: Please confirm whether the LSV curves in the manuscript are iR- corrected or not? 
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5: Why do the MoC/Mo2C composite electrodes with different electrolysis temperatures have different 

hydrophilicity? 

6: As the heterojunctions and surface hydrophilicity both play important roles in HER kinetics, which 

one is the major factor? 



Reviewer #3 (Remarks to the Author): 

Active and stable electrocatalyts free-from noble-metal elements are highly desired for hydrogen 

evolution reactions. Transition-metal carbides showing their promise in this subject have been 

extensively investigated. This manuscript by Liu et al. reports a self-standing MoC-Mo2C catalytic 

electrode prepared via a one-step electro-carbiding approach using CO2 as the feedstock, which 

achieves the outstanding HER performances with low overpotentials at 500 mA cm-2 in both acidic 

(256 mV) and alkaline electrolytes (292 mV), a long-lasting lifetime of over 2400 h, and high-

temperature performance. This outstanding electrocatalytic performance can enable the application in 

industry. However, the scientific content is not enough for the publication on Nature Communications. 

The reviewer recommends the rejection. (i) Heterojunction, e.g., MoC-Mo2C, MoS2/Mo2C, 

Mo2N/Mo2C, WOx/WC, etc., have been previously studied for HER (Chem. Sci. 2016, 7, 3399; Adv. 

Mater. 2018, 30, 1704156; Nat. Commun. 2019, 10, 269; ACS Energ. Lett. 2020, 5, 3560-3568). 

Moreover, the mechanism interpretation to the enhanced HER herein is ordinary, and cannot bring 

further insights into the overall kinetics, beyond H* adsorption energy. In particular, alkaline HER also 

confronts the great barrier of water dissociation that desires comprehensive analysis to identify the 

influences made by water dissociation energy barriers and H* adsorption energy on the overall 

reaction rate. In this regard, the novelty of this work is limited. (ii) The feature of this work should be 

the high current density and long-term durability. Although surface hydrophilicity is highlighted in this 

work, but the underlying mechanism is still not clear. For example, the relationship between 

hydrophilicity/aerophobicity and surface porosity, and the merit for mass transport in nanostructured 

MoC-Mo2C. 

There are some minor issues should be addressed. 

(i) MoC was mentioned with weak *H binding in this work as compared with Mo2C. This is consistent 

with previous reports. However, in the DFT calculation (Figures 3b and 3c), MoC shows the much 

stronger *H binding than that on Mo2C. Why? 

(ii) Tafel plots were also analyzed in the range with high overpotentials and current density (Page 8 

and Figure S6). It’s not appropriate because the Tafel analysis is only available in a kinetic-control 

region. The much higher slope in a range with high overpotentials and current density, in comparison 

with that in a low-overpotential region, is owing to the logarithmic function. For example, two regions 

of lg(100) ~ lg(1000) and lg(10) ~ log (100) have the same interval of 1 in Tafel plots, but the 

current-density range of the former is obviously larger. 

(iii) XPS analysis in Figure S5 is questionable. The Mo2+ peaks at 890 oC are quite similar with those 

of Mo0 in the sample at 590 oC. The XPS profiles should be deconvoluted again to make sure the peak 

positions of a Mo species are consistent in all the samples.
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Detailed Responses to the Reviewers 

Manuscr ipt ID: NCOMMS-21-10682-T

Title: ‘A self-standing MoC-Mo2C heterojunction electrode with high electrocatalytic 

activity, acid and base tolerance, superior hydrophily and stability’

” 

Author(s): Wei Liu
1,2

, Xiting Wang
3
, Fan Wang

1,2
, Kaifa Du

1,2
, Zhaofu Zhang

4
, 

Yuzheng Guo
3*

, Huayi Yin
1,2*

 and Dihua Wang
1,2*

We are grateful to all the reviewers for their comments and suggestions that are 

helpful for us to improve our manuscript. We have revised the manuscript taking into 

full account of the reviewers’ comments and recommendations. Below are our 

pint-to-point responses in the same order as the reviewers’ comments. The changes in 

the revised manuscript are highlighted in yellow.

REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author): 

This manuscript reports on the electrochemical deposition of Mo carbide films on Mo 

substrates from a high temperature melt in which CO2 has been introduced. The final 

MoC-Mo2C material was found to be highly active and stable for the HER over a 

large pH range which was due to excellence adherence to the Mo substrate, the 

presence of MoC-Mo2C heterostructure interfaces and good wettability. Promisingly 

high current densities could be maintained for up to 100 days which is great to see as 

often studies limit their lifetime tests to 1 day. Overall this is an excellent piece of 

work where the material has been characterised thoroughly, the electrochemical 

performance is outstanding and is backed up by theoretical calculations. I only have 

some minor comments. 

Response: Thank you very much for your positive recommendations. 
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1. Some more detail should be provided on the electrodeposition of Mo carbide films 

and the mechanism of this reaction. This could be discussed better in the context of 

previous work where MoxC films were electrodeposited. 

Response: Thanks for the comment. The MoC-Mo2C electrode was prepared by a 

one-step electrochemical surface engineering approach in molten Li2CO3-K2CO3 salts. 

As shown in Figure 1a of the manuscript, the injected CO2 was firstly captured by O
2-

to form soluble CO3
2-

 (CO2 + O
2-

 = CO3
2-

) [Energy Environ. Sci., 2013, 6, 1538-1545]. 

Then, the CO3
2-

 got electrons and was reduced to carbon atoms (CO3
2-

 + 4e
-
 = C + 

3O
2-

) on the surface of a molybdenum (Mo) plate. At the same time, the released O
2-

diffused to the inert anode and then discharged to O2. Under the synergy of 

high-temperature molten salt and electric field, the deposited carbon diffused into the 

Mo plate and simultaneously reacted with Mo atoms spontaneously to generate 

MoC/Mo2C (C + Mo = MoC, "GT=500-900#=-29.5 kJ/mol$-30.6 kJ/mol; C + 2Mo = 

Mo2C, "GT=500-900#=-47.3 kJ/mol$-45.7 kJ/mol), forming the MoC-Mo2C HER 

electrode finally. 

    In previous work, most MoxC films were prepared using a hydrothermal method 

by which molybdates were used as the Mo precursor along with a reducing agent to 

reduce molybdates. The electrolysis was usually conducted in molten halides 

containing molybdates and carbonates ions as the Mo and C feedstock. However, all 

electrolyzers used graphite as the anode because it is difficult to employ a low-cost 

inert anode in molten halides. In previous studies, the aim of making the carbide film 

is to prepare a protective coating rather than a catalytic layer.    

The relative discussion has been added in Electronic Supplementary Information 

(ESI) on page 2. Thank you again for your suggestion. 

2. For the XPS- the C 1s spectra should also be shown as well as the O 1s spectra -I 

assume there is some surface oxidation. 

Response: Thank you very much for the comment. The C1s and O1s XPS spectra of 

the MoC-Mo2C-790 electrode surface are shown in Fig. R1 and Supplementary Fig. 1, 

which indicates that there is some surface oxidation and it is in consistent with the 
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results in Mo3d XPS spectra (Fig. 1h).  

The corresponding XPS analysis of C1s and O1s have been added in 

Supplementary Fig. 1. 

Changes to the revised manuscr ipt. On page 5. “Supplementary Fig. 1a shows the 

high-resolution spectrum in the C 1s region that was fitted by components 

corresponding to Mo-C, C-C, C-O, and C=O species. The peak at a BE of 282.8 eV is 

assigned to the Mo-C species and represents 12 at% of the C1s region. It should be 

noted that the 12 at% of the C1s region does not mean that the amount of Mo-C is 12 

at%, but rather the fact that thin carbon layers formed on the surface of the electrode. 

The O1 s XPS spectrum (Supplementary Fig. 1b) indicates the slight oxidation of the 

Mo-based composites, which is in consistent with the Mo 3d results in Fig. 1h”. 

Fig. R1 (a) C1s XPS spectra and (b) O1s XPS spectra of the MoC-Mo2C-790 

electrode surface.

3.In the experimental a pre-electrolysis step was done with a Ni sheet % why was 

this done? 

Response: Thank you very much for your question. A pre-electrolysis experiment is a 

common method to remove impurities and residual moisture of the molten salt 

electrolyte. The corresponding revision has been made in the part of 

“Electrodeposition of carbide layer in molten carbonate”. 

Changes to the revised manuscr ipt. On page 19. “Third, pre-electrolysis was 
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conducted between a nickel sheet (10 mm " 50 mm) cathode and a home-made 

Ni-11Fe-10Cu inert anode under a constant cell voltage of 1.5 V for 4 h to remove 

possible impurities and residual moisture”. 

4. It is noted that a NiFeCu anode was used and claimed to be inert % are the 

authors sure that there is no leaching of these elements? ICP-OES analysis of the 

catalyst should be undertaken to rule out any trace impurities that may be present in 

the material. 

Response: Thank you very much for your valuable questions and suggestions. 

According to our previous work about the Ni11Fe10Cu anode [Electrochimica Acta, 

2018, 279:250-257; Corrosion Science, 141, 2018, 168–174; Corrosion Science, 2016, 

112:54-62], the released O2-
 from the reduction of CO3

2- 
diffused to the inert anode 

and discharged to O2. And the formed O2 reacted with Ni11Fe10Cu to form a 

protective oxide scale, which is able to prevent the Ni11Fe10Cu substrate from 

leaching of some elements for at least 600 h. The preparation of the MoxC film in this 

paper only took 2 hours. The inert anode was quite stable according to the weight and 

dimension change of the anode. In order to further confirm the stability of the anode, 

we analyzed the impurities in the MoxC film. 

We conducted the ICP-OES test of the MoxC electrode, and the results are shown 

in the following Table R1. The concentrations of Cu, Fe and Ni are all below 6 mg/kg, 

thus the effect on the HER performance is almost ignorable. 

Table R1. The content of Mo, Ni, Fe and Cu in the MoC-Mo2C-790 electrode 

measured by ICP-OES. 

Elements Sample concentration (mg/kg) 

Cu 4.0192 

Fe 3.5116 

Ni 5.4241 

Mo 980321.6369 

5. iR compensation was used % this should be quantified. 
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Response: Thank you very much for your suggestion. The R value used for the iR 

compensation was determined by EIS measurement. We have added this point in the 

Method part of the revised manuscript as well as in the figure captions.  

The corresponding LSV curves of different electrodes before and after iR 

correction in 0.5 M H2SO4 and 1 M KOH are presented in the following figure (Fig. 

R2). For the convenience of readers, we have added the figure in the Electronic 

Supplementary Information (ESI) (Supplementary Fig. 7).  

Fig. R2 (a) LSV curves of different electrodes before and after iR correction in 0.5 M 

H2SO4. (b) LSV curves of different electrodes before and after iR correction in 1.0 M 

KOH.

6. Is the electrode tolerant to some oxidation which may occur if integrated directly 

with an intermittent power supply like solar where reverse current effects can occur? 

Response: Many thanks for the interesting question. Based on the comment, we tested 

the open circuit potentials (corrosion potential) of the MoC-Mo2C-790 electrode and 

its anodic polarization curves in 0.5 M H2SO4 and 1.0 M KOH, respectively. As 

shown in Fig. R3, the electrode had a stable potential profile in both 0.5 M H2SO4 and 

1.0 M KOH, which indicates that the MoC-Mo2C coating has a good oxidation 

resistance at the open circuit. While the anodic polarization curves show an oxidation 

current upon anodic polarization starting from the open circuit potential. Thus, the 

electrode cannot withstand a strong anodic polarization for a long time. The stability 

of the MoxC electrode under anodic potential depends on its intrinsic physicochemical 

properties. For the practical application, it should be avoided to reverse the 
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polarization direction.

Fig. R3 (a) Open circuit potential profiles as a function of time of the MoC-Mo2C-790 

electrode in 0.5 M H2SO4 and 1.0 M KOH. (b) Anodic polarization curves of the 

MoC-Mo2C-790 electrode in 0.5 M H2SO4 and 1.0 M KOH. 

Reviewer #2 (Remarks to the Author): 

In the manuscript, the authors reported a self-standing MoC-Mo2C catalytic electrode 

with high catalytic activity and stability in both acidic and alkaline electrolytes. The 

most impressive data is the long-lasting lifetime of over 2400 h and stability at the 

industrial operating temperature of ~70 
o
C. In addition, the outstanding performance 

was assigned to MoC (001)-Mo2C (101) heterojunctions and surface hydrophilicity 

affect H2 bubbles"motion behaviors. Although there are some other papers published 

about MoC (001)-Mo2C (101) heterojunctions as an efficient HER catalyst, I believe 

this work can be a landmark for non-precious metal-based HER catalytic electrode. 

Therefore, I would like to suggest publication after a minor revision. 

Response: Thank you very much for your positive recommendations.

1. As the ratio of MoC/Mo2C changes with the electrolysis temperature, which ratio is 

most suitable for an efficient HER catalyst?

Response: Thanks for the good question. As shown in Fig. 1g, Fig. 2a and Fig. 2c, the 

MoC -Mo2C-790 HER electrode (with 65.4% of MoC and 34.6% of Mo2C) with an 
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optimal Mo
3+

/Mo
2+

 ratio (Supplementary Table 6, Supplementary Fig. 20) has the 

highest catalytic activity among the four measured electrodes. There might exist a 

more optimistic ratio of MoC/Mo2C and it remains to be investigated in future. 

2. The MoC-Mo2C-790 electrode shows an almost constant catalytic current for 1000 

h (2000 h in total) at " = 150 mV in 0.5 M H2SO4 and 1 M KOH, respectively. I still 

want to confirm that whether it is the same electrode working consecutively in 0.5 M 

H2SO4 and 1 M KOH. 

Response: Thanks for the question and sorry for not making this point clear in the 

original manuscript. It is the same electrode working consecutively in 0.5 M H2SO4

and 1 M KOH. 

3. Please confirm whether the LSV curves in the manuscript are iR- corrected or not? 

Response: The LSV curves in the manuscript had been iR-corrected. The 

corresponding LSV curves of different electrodes before and after iR correction in 0.5 

M H2SO4 and 1 M KOH is presented below and Supplementary Fig. S7 in the revised 

manuscript. The value of R was determined by the EIS measurement for each 

experiment, we have added this point in the Method part. 

Fig. R4 (a) LSV curves of different electrodes before and after iR correction in 0.5 M 

H2SO4. (b) LSV curves of different electrodes before and after iR correction in 1.0 M 

KOH.

4. For ECSA calculation, why a flat surface is supposed to be ~ 40 #F cm
-2

? 
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Response: Typically, the non-Faradic capacitance for the electrode/solution interface 

in aqueous solution is in the range of 20-60 #F cm
-2

(Electrochim. Acta, 2002, 47, 

3571-3594; ACS Catal., 2012, 2, 1916-1923; Angew.Chem. Int. Ed., 2014, 53, 

14433-14437; Energy Environ. Sci., 2016, 9, 1468-1475), 40 #F cm
-2

 was usually 

used to calculate  the ECSA and turnover frequency (TOF). 

5. Why do the MoC/Mo2C composite electrodes with different electrolysis 

temperatures have different hydrophilicity? 

Response: Thanks for the question. Fig. 4 indicates that the MoC/Mo2C composite 

electrodes prepared at different electrolysis temperatures have different hydrophilicity. 

The main reason is due to the difference of surface morphology between the  

electrodes prepared at different temperatures. From Fig. 1b and Supplementary Fig. 3, 

it can be known that the electrodes show different surface morphologies with different 

roughness and porous characteristics. When a liquid comes in contact with a textured 

surface, it leads to either the fully wetted Wenzel (Ind. Eng. Chem. 1936, 28, 988) 

state or the Cassie-Baxter (Trans. Faraday Soc. 1944, 40, 0546) state, which supports 

a composite solid-liquid-air interface. For the hydrophilic electrodes (Contact angle < 

90 
o
), the calculation of the contact angle (#r) between electrodes and water should 

employ the following equation: 

cos #r = r cos #

where #r represents the actual measured contact angle. r represents the roughness 

factor, which is obtained by dividing the actual area by the geometric area. # is the 

contact angle of an ideal smooth surface.  

Therefore, when the contact angle of an ideal smooth surface is < 90 
o
, a larger r 

value corresponds to a smaller #r. According to the ECSA of different electrodes in 

Table S7, the r value of MoC-Mo2C -790 > the r value of Mo2C -890 > the r value of 

MoC-Mo2C -690 > the r value of M/C-590. So, the #r value of MoC-Mo2C -790 < the 

#r value of Mo2C -890 < the #r value of MoC-Mo2C -690 < the #r value of M/C-590. 

In fact, there are many similar conclusions that a rough structures with roughness 

at both the micro- and nano-scale not only generate a strong capillary force to pump 
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liquid, but also reduce interfacial adhesion to facilitate gas bubble release (Adv. Mater.

2012, 24, 5838–5843; Adv. Energy Mater. 2018, 8, 1802445; Angew. Chem. Int. Ed. 

2015, 54, 4876–4879; Soft Matter 20l2, 8(7): 2261). 

6. As the heterojunctions and surface hydrophilicity both play important roles in HER 

kinetics, which one is the major factor?

Response: Thanks for the insightful question. Yes, both of the heterojuntions and 

surface hydrophilicity play important roles in HER kinetics, but their contribution is 

different under the different working current densities. The MoC-Mo2C 

heterojunctions play important roles in controlling the thermodynamics of the HER, 

and the surface hydrophilicity of electrodes relates to the kinetics of the HER at a high 

current density.  It can be seen from the LSV curve of the Pt electrode in Fig. 2a that 

the Pt electrode outperforms all HER electrodes including the MoC-Mo2C-790 

electrode at 0-200 mA cm
-2

. But the performance of the Pt electrode is inferior to the 

MoC-Mo2C-790 electrode when the current density exceeds 200 mA cm
-2

. In addition, 

the LSV curve of the Pt electrode shows obvious fluctuations when the current density 

exceeds 200 mA cm
-2 

because of the shielding effect caused by the generated bubbles 

at the surface of Pt electrode. The shielding effect has been directly observed from the 

Video S5. In the thermodynamic point of view, Pt has an optimal "GH*, so it has the 

smallest hydrogen evolution overpotential.  

Fig. R5 Polarization curves (with iR correction) of various electrodes in 0.5 M 

H2SO4.
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Reviewer #3 (Remarks to the Author): 

Active and stable electrocatalyts free-from noble-metal elements are highly desired 

for hydrogen evolution reactions. Transition-metal carbides showing their promise in 

this subject have been extensively investigated. This manuscript by Liu et al. reports a 

self-standing MoC-Mo2C catalytic electrode prepared via a one-step electro-carbiding 

approach using CO2 as the feedstock, which achieves the outstanding HER 

performances with low overpotentials at 500 mA cm
-2

 in both acidic (256 mV) and 

alkaline electrolytes (292 mV), a long-lasting lifetime of over 2400 h, and 

high-temperature performance. This outstanding electrocatalytic performance can 

enable the application in industry. However, the scientific content is not enough for 

the publication on Nature Communications. The reviewer recommends the rejection. 

(i) Heterojunction, e.g., MoC-Mo2C, MoS2/Mo2C, Mo2N/Mo2C, WOx/WC, etc., have 

been previously studied for HER (Chem. Sci. 2016, 7, 3399; Adv. Mater. 2018, 30, 

1704156; Nat.Commun. 2019, 10, 269; ACS Energ. Lett. 2020, 5, 3560-3568). 

Moreover, the mechanism interpretation to the enhanced HER herein is ordinary, and 

cannot bring further insights into the overall kinetics, beyond H* adsorption energy. In 

particular, alkaline HER also confronts the great barrier of water dissociation that 

desires comprehensive analysis to identify the influences made by water dissociation 

energy barriers and H* adsorption energy on the overall reaction rate. In this regard, 

the novelty of this work is limited. (ii) The feature of this work should be the high 

current density and long-term durability. Although surface hydrophilicity is 

highlighted in this work, but the underlying mechanism is still not clear. For example, 

the relationship between hydrophilicity/aerophobicity and surface porosity, and the 

merit for mass transport in nanostructured MoC-Mo2C. 

Response: Many thanks to the reviewer for your comments on the merit of our work 

that “This outstanding electrocatalytic performance can enable the application in 

industry”. We are sorry that the reviewer proposed a high scientific standard here by 

comparing our work with four kinds of catalysts (MoC-Mo2C, MoS2/Mo2C, 

Mo2N/Mo2C, WOx/WC, etc.) which we cited in our original manuscirpt (Chem. Sci. 
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2016, 7, 3399; Adv. Mater. 2018, 30, 1704156; Nat. Commun. 2019, 10, 269; ACS 

Energ. Lett. 2020, 5, 3560-3568). In the process of preparing this paper, we had 

carefully dug into these literatures and believed our work is a significant advancement 

in this field.  

Among tons of papers regarding carbide-based HER electrodes, we selected 

these papers because these papers inspired us a lot and we think that our work makes 

important progresses on developing a straightforward synthetic method, achieving 

a long service time, revealing the thermodynamic mechanism using DFT 

calculations, and uncover ing the surface proper ties that controlled the kinetics of 

the HER under high current densities.

We are sorry that we have not compared our work with the above-mentioned 

papers in more detail, which leads to an impression that our work is lack of scientific 

advances compared with previous works. We also thank the editor for giving us a 

chance to revise our manuscript. We really appreciate this opportunity to explain both 

scientific and technical advances of our work and the valuable time the reviewer 

reexamined our work. 

First, we read the four papers carefully again, summarized the keys points of 

these work, and pointed out the different points with our work. 

MoC-Mo2C: This paper reported the MoC-Mo2C heteronanowires prepared by the 

carbonization of various MoOx-amine precursors. The HER activity of this powdery 

heteronanowires catalyst was measured to be $=126 at a current density of 10 mA 

cm
-2

. This paper reported its HER activity at a low current density (10 mA cm
-2

). 

However, the underlying mechanism was not studied in detail. In addition, the 

stability of the heteronanowire catalyst was tested for only 40 h, and it had a low 

current retention rate of about 50% in KOH after 20 h.  

    Thus, the preparation method, service time, and working conditions are quite 

different from our work. It is not a self-standing electrode. In addition, theoretical 

calculation and surface properties were not investigated in this work. 
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MoS2/Mo2C: First, the composition of the catalyst is different from ours. This paper 

introduced the MoS2/Mo2C heterojunction, which exhibited excellent HER activity at 

a high current density ($=225 V at1000 mA cm
-2

). However, this electrode was tested 

for the stability for a total of 48 hours, which is much shorter than our work. And the 

mechanism of electrode stability was not investigated. In addition, the preparation 

process contained two steps . 

    Thus, the composition of the catalysts, service time, working conditions, 

synthetic method, Mo precursor are different from our work.  

Mo2N/Mo2C: This paper reported the Mo2N-Mo2C heterojunction. The author 

highlighted that the N-Mo-C interface with the addition of graphene oxide had the 

smallest "GH* value (0.046 eV). However, the measured HER activity of the 

Mo2N-Mo2C heterojunction was relatively low ($=300 mV at 200 mA cm
-2

 in 0.5 M 

H2SO4, $=530 mV at 200 mA cm
-2

 in 1 M KOH). And the mechanism of electrode 

stability was not investigated. 

    Thus, the composition of the catalysts, service time, working conditions, 

synthetic method, Mo precursor are different from our work. In addition, surface 

properties were not investigated in this work. 

WOx/WC: The paper reported the WOx/WC surface heterojunction catalyst, and 

demonstrated that the WOx/WC surface heterojunction catalyst had a more excellent 

HER activity than that of pure WOx and WC. DFT calculations and in situ XAS were 

employed to reveal the mechanistic process. Even though the WOx/WC surface 

heterojunction had a perfect Gibbs free energy of H* adsorption ("GH*=0.09), the 

corresponding HER activity was not so high ($=233 mV at 20 mA cm
-2

 in 0.5 M 

H2SO4). The paper highlighted the influence of WOx/WC surface heterojunction on 

the intrinsic catalytic activity of the material, but the performance at a high current 

density was not performed, and the surface properties were not studied. 

Thus, the composition of the catalysts, service time, working conditions, and 



13 

synthetic method are different from our work. In addition, the WOx/WC is not a 

self-standing electrode and surface properties are not investigated in this work. 

 In summary, only one paper reported the MoC-Mo2C heterojunction and the 

result is preliminary. They prepared the MoC-Mo2C powder that was then coated on a 

glass carbon electrode, which was not a self-standing electrode. Our group has 

worked in the field of molten salt electrochemistry for more than 20 years. The 

electrified synthesis and efficient conversion and utilization of CO2 have gained 

increasing attention in recent years. After many years of hard work, we try to combine 

the molten salt electrolysis with the surface engineering technology to make 

functional layers for green energy conversions. This work was done based on previous 

establishments such as inert anode development, CO2 capture and reduction, 

physicochemical properties of molten salts, and fundamentals of electrochemistry and 

materials. In addition, we try our best to scale up this process that a larger electrode (3 

cm×11.5 cm) electrode was successfully prepared. And a working condition similar to 

the industrially deployed electrolyzer was applied to measure the HER performance. 

To reveal the underlying mechanism, we worked with other groups at Wuhan 

University and Cambridge University to do the theoretical calculations. In this regard, 

we hope our work can make contributions to both scientific advances and technical 

progresses.     

Second, we double-checked the DFT calculation. Our work indicates that both surface 

chemical composition and surface microstructure of catalysts should be considered 

toward HER activity and stability at high current densities and high temperatures, 

which is a general requirement for developing high-performance HER catalysts. 

Regarding the surface chemistry, our results indicate that the 64.5%MoC-34.5%Mo2C  

heterojunction improves the Gibbs free energy of H* adsorption ("GH*=-0.13) and the 

wettability between the electrode and water of pure MoC or Mo2C by changing the 

electronic structures. Regarding the surface microstructure, the abundant 3D 

honeycomb-like structures not only provide a super large specific surface area, but 
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also provide an effective channel for the rapid entry of water and the rapid removal of 

gas, which is conductive to the improvement of electrode surface hydrophilicity and 

reduce the erosion effect of gas on the surface-active material of the electrode, 

improving the HER activity and stability of catalysts. Both of this kind of structures 

and the mechanism we found is instructive for the design of other catalytic electrodes, 

e.g., metal carbides, metal nitrides, and MXenes. Besides, the preparation of HER 

electrodes by molten salts electrolysis is reported for the first time, which is simple, 

green and effective, and also provides an instructive method for the preparation of 

other HER catalysts, such as metal carbides, metal nitrides, metal sulfide, etc. 

Therefore, we believe our manuscript offers new insights into the HER mechanism 

and provides a general guideline for catalyst design. 

Third, we agree that the relationship between hydrophilicity/aerophobicity and 

surface porosity can add scientific value of this work. Fig. 4 indicates that the 

MoC/Mo2C composite electrodes prepared at different electrolysis temperatures have 

different hydrophilicity. In fact, this could be caused by the different surface 

morphologies of electrodes prepared at different temperatures. From Fig. 1b and 

Supplementary Fig. 3, it can be known that different HER electrodes show different 

surface morphologies with different porous characteristics and roughness. Thus, the 

HER electrodes prepared at different temperatures exhibit different surface roughness 

inevitably. 

When a liquid comes in contact with a textured surface, it leads to either the fully 

wetted Wenzel (Ind. Eng. Chem. 1936, 28, 988) state or the Cassie-Baxter (Trans. 

Faraday Soc. 1944, 40, 0546) state, which supports a composite solid-liquid-air 

interface. For the hydrophilic electrodes (Contact angle < 90 o), the calculation of the 

contact angle (#r) between electrodes and water should employ the following 

equation: 

cos #r = r cos #

where #r represents the actual measured contact angle. r represents the roughness 

factor, which is obtained by dividing the actual area by the geometric area. # is the 
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contact angle of ideal smooth surface.  

Therefore, when the contact angle of an ideal smooth surface is < 90 
o
, the larger 

the r value, the smaller the #r. According to the ECSA of different electrodes in Table 

S7, the r value of MoC-Mo2C -790 > the r value of Mo2C -890 > the r value of 

MoC-Mo2C -690 > the r value of M/C-590. So, the #r value of MoC-Mo2C -790 < the 

#r value of Mo2C -890 < the #r value of MoC-Mo2C -690 < the #r value of M/C-590. 

In fact, there are many similar conclusions that structures with roughness at both 

the micro- and nano-scale not only generate a strong capillary force to pump liquid, 

but also reduce interfacial adhesion to facilitate gas bubble release (Adv. Mater. 2012, 

24, 5838–5843; Adv. Energy Mater. 2018, 8, 1802445; Angew. Chem. Int. Ed. 2015, 

54, 4876–4879; Soft Matter 20l2, 8(7): 2261).  

Until now, we can only provide this information about the surface properties of 

the as-prepared electrode. This is a good question need to be uncovered in our future 

work with more advanced characterization and theoretical methods. 

There are some minor issues should be addressed. 

1. MoC was mentioned with weak H* binding in this work as compared with Mo2C. 

This is consistent with previous reports. However, in the DFT calculation (Figures 3b 

and 3c), MoC shows the much stronger H* binding than that on Mo2C. Why? 

Response: We thank the reviewer for helping us to clear this point. According the 

DFT calculation, MoC has the much stronger H* binding than that on Mo2C indeed. 

We may not express it clearly and we have made corresponding revisions in 

manuscript. The strong Mo-H on Mo2C benefits H+ reduction (i.e., the Volmer step), 

but limits the desorption process of adsorbed H (Hads) (i.e., the Heyrovsky step). And 

the MoC-Mo2C-790 electrode with the formed MoC-Mo2C heterojunctions weaken 

the strength of Mo-H towards accelerating Hads desorption, and thus significantly 

enhances the HER performance.  

Changes to the revised manuscr ipt. On Page 12. “The reduction of electron density 
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in the MoC-Mo2C-790 electrode for the formation of MoC-Mo2C heterojunction with 

the ascendency of Mo
3+

 weakens the strength of Mo-H towards accelerating Hads

desorption, and thus significantly enhances the HER performance. With incresing 

n3+/2+ to 1.98, the MoC-Mo2C-690 electrode with a main MoC phase shows an 

obviously decreased HER activity comparing with the MoC-Mo2C-790 electrode”. 

2. Tafel plots were also analyzed in the range with high overpotentials and current 

density (Page 8 and Figure S6). It’s not appropriate because the Tafel analysis is only 

available in a kinetic-control region. The much higher slope in a range with high 

overpotentials and current density, in comparison with that in a low-overpotential 

region, is owing to the logarithmic function. For example, two regions of lg(100) ~ 

lg(1000) and lg(10) ~ log (100) have the same interval of 1 in Tafel plots, but the 

current-density range of the former is obviously larger. 

Response: Thanks for the comment. This is a goof point. Yes, we agree that the Tafel 

analysis is only available in a kinetic-control region. So we have changed the 

expression by using “slope”, instead of “Tafel slope” in Supplementary Fig. 8. The 

purpose of Supplementary Fig. 8 is to show how much potential is needed when 

increasing the current to an industry-scale current, which could be an indicator to 

evaluate the performance of a catalyst working at large current densities. In fact, the 

literature we mentioned (Nat.Commun. 2019, 10, 269) also used the similar 

calculation to evaluate the performance of a catalyst at large current densities. Of 

course, if the reviewer still thinks it is not proper, we can further revise or delete 

Supplementary Fig. 8 based on your suggestion.

Changes to the revised manuscr ipt. On Page 8. “Although the Tafel slope value of 

the MoC-Mo2C-790 electrode is slightly higher than that of Pt (35 mV dec-1), the 

slope value of the MoC-Mo2C-790 (110 mV dec
-1

) electrode at the strong polarization 

zone (at 200 to 500 mA cm
-2

) is much smaller than that of Pt (405 mV dec
-1

) 

(Supplementary Fig. 8). This means that the MoC-Mo2C-790 electrode is able to 

operate at high current densities with a smaller overpotential, which could be an 

indicator to evaluate the performance of a catalyst at large current densities and is 
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meaningful for practical use”. 

3. XPS analysis in Figure S5 is questionable. The Mo
2+

 peaks at 890 
o
C are quite 

similar with those of Mo
0
 in the sample at 590 

o
C. The XPS profiles should be 

deconvoluted again to make sure the peak positions of a Mo species are consistent in 

all the samples. 

Response: Thank the reviewer very much for the comment. We have carried out the 

XPS test of the Mo2C-890 electrode again, and the corresponding spectrum can be 

seen in Fig. R6 and Supplementary Fig. 6.

Fig. R6 XPS patterns of different electrolytic electrodes prepared at 590 
o
C, 690 

o
C 

and 890 
o
C. 



REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

The authors have thoroughly addressed all the reviewer comments 

Reviewer #2 (Remarks to the Author): 

As all my concerns and questions have been well addressed by the authors, I am very satisfied with 

the explanation and revisions made accordingly. However, after going over the other referee's 

comments, I suggest the authors amend DFT calculation of the water dissociation step which can 

better explain the mechanism of HER activity in alkaline electrolytes. 

Reviewer #3 (Remarks to the Author): 

The authors have thoroughly revised the manuscript and provided clear response in details that 

addressed my concerns. I think this manuscript is acceptable for the publication on Nat. Commun.
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activity, acid and base tolerance, superior hydrophily and stability
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We are grateful to all the reviewers and editors for their comments and suggestions 

that are helpful for us to improve our manuscript. We have revised the manuscript 

taking into full account of the reviewers’ and editor’s comments and 

recommendations. Below are our pint-to-point responses in the same order as the 

reviewers’ comments. The changes in the revised manuscript are highlighted in 

yellow.

REVIEWER COMMENTS

Reviewer #1 (Remarks to the Author): 

The authors have thoroughly addressed all the reviewer comments 

Response: Thank you very much for your positive recommendations. And we are also 

grateful for your comments and suggestions that are helpful for us to improve our 

manuscript. 

Reviewer #2 (Remarks to the Author): 

As all my concerns and questions have been well addressed by the authors, I am very 

satisfied with the explanation and revisions made accordingly. However, after going 

over the other referee's comments, I suggest the authors amend DFT calculation of the 

water dissociation step which can better explain the mechanism of HER activity in 

alkaline electrolytes. 

Response: Thank you very much for your positive recommendations and this kind 



suggestion. According to your suggestion, we performed the following calculations 

and the results are shown in Fig. R1 and Supplementary Fig. 24.  

The water dissociation step, considered as the key rate determining step, is calculated 

to further explain HER mechanism in alkaline condition, where water supplies 

hydrogen [Energy Environ. Sci. 7, 2255-2260 (2014), Science 334, 1256-1260 

(2011).]. To be specific, the H2O molecule would adsorb one electron to be 

dissociated into intermediate *H and *OH as shown in Fig. R1 and Supplementary 

Fig. 24. The water molecule would adsorb on the Pt atom and break into intermediate 

*H and *OH with an energy barrier of 0.97 eV, consistent with previous work of Pt 

(111) surface in alkaline condition [Nature Comm. 8: 14580 (2017)]. Similarly, the 

dissociation of water on the Mo2C-MoC interface also happens on Mo site and shares 

the same reaction path. It can be known by calculation that the Mo2C-MoC interface 

possesses the water dissociation barrier of 0.32 eV, which is much lower than that of 

Pt (111) (0.97 eV). The Mo2C-MoC interface can promote the dissociation of water 

and the energy barrier is comparable to the previously reported PtNi alloy system 

[Nature comm. 8: 14580 (2017)]. 

Fig. R1 Calculated "GH* diagram of the HER at the equilibrium potential in alkaline 

electrolyte. 



Reviewer #3 (Remarks to the Author): 

The authors have thoroughly revised the manuscript and provided clear response in 

details that addressed my concerns. I think this manuscript is acceptable for the 

publication on Nat. Commun. 

Response: Thank you very much for your positive recommendations. And we are also 

grateful for your comments and suggestions that are helpful for us to improve our 

manuscript. 



REVIEWER COMMENTS 

Reviewer #2 (Remarks to the Author): 

As the amended DFT calculation can well explain the water dissociation step, I have no further 

questions or comments. Therefore, I am very happy to suggest acceptance for publication. 

Reviewer #4 (Remarks to the Author): 

The author reported a MoC-Mo2C heterojunction structure exhibiting high HER activity and explored 

DFT calculation to give explanation. However, in my opinion, much more work need to be done for the 

DFT section. 

Firstly, due to the reaction occurring on alkaline condition, it is very necessary to consider the energy 

barriers of two steps of water dissociation. The authors only compared the first water dissociation 

energy barrier of Mo2C-MoC with Pt and dropped this section in SI. What the authors need to do is to 

compare the water dissociation energy barrier on Mo2C, MoC, and Mo2C-MoC, respectively. And 

what’s more, not only the first water dissociation step, but the second water dissociation step is also 

supposed to be done which is usually the rate-determining step. 
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value, not close to zero. In addition, the author mentioned “As illustrated in Fig.3g, the MoC-Mo2C 

heterojunction exhibits better HER kinetics compared to those of bare MoC and bare Mo2C. ” While, I 

cannot get any HER kinetics information from Fig. 3g. So, Fig.3 needs to be reorganized where some 

figures are not valuable anymore. 

Finally, the calculated results by the software are just like the experimental measurement by the 

instrument. The authors need to give further theoretical analysis why the heterojunction structure 

exhibits high HER kinetics. Since structure determining the performance, what kind of intrinsic 

electronic structure corresponds with the heterojunction geometric structure and thus results in the 

high HER activity of Mo2C-MoC, not Mo2C or MoC. Having understanding this benefits the significance 

of this article and will be very helpful for readers to find more high-performance HER catalysts.
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bVOb bVS C]:*C]/: VSbS`]Xc\QbW]\ SfVWPWba O Q`cQWOZ `]ZS b] bVS ?<G QObOZgaWa+

IVS`ST]`S) bVS aQVS[ObWQ WZZcab`ObW]\ %=WU+ 0R W\ bVS \Se dS`aW]\& Wa YS^b W\ bVS `SdWaSR

[O\caQ`W^b+ I] Od]WR O\g Q]\TcaW]\) eS QVO\USR bVS Sf^`SaaW]\ %?<G YW\SbWQa& b]

k?<G OQbWdWbgl+

0+ =W\OZZg) bVS QOZQcZObSR `SacZba Pg bVS a]TbeO`S O`S Xcab ZWYS bVS Sf^S`W[S\bOZ

[SOac`S[S\b Pg bVS W\ab`c[S\b+ IVS OcbV]`a \SSR b] UWdS Tc`bVS` bVS]`SbWQOZ O\OZgaWa

eVg bVS VSbS`]Xc\QbW]\ ab`cQbc`S SfVWPWba VWUV ?<G YW\SbWQa+ HW\QS ab`cQbc`S

RSbS`[W\W\U bVS ^S`T]`[O\QS) eVOb YW\R ]T W\b`W\aWQ SZSQb`]\WQ ab`cQbc`S Q]``Sa^]\Ra

eWbV bVS VSbS`]Xc\QbW]\ US][Sb`WQ ab`cQbc`S O\R bVca `SacZba W\ bVS VWUV ?<G OQbWdWbg ]T

C]/:*C]:) \]b C]/: ]` C]:+ ?OdW\U c\RS`abO\RW\U bVWa PS\STWba bVS aWU\WTWQO\QS ]T

bVWa O`bWQZS O\R eWZZ PS dS`g VSZ^TcZ T]` `SORS`a b] TW\R []`S VWUV*^S`T]`[O\QS ?<G

QObOZgaba+



.3<:98<3( IVO\Y g]c dS`g [cQV T]` g]c` Q][[S\ba O\R acUUSabW]\a+ KS OU`SS bVOb

bVS RSbOWZSR O\OZgaWa ]T P]bV Ob][WQ O\R SZSQb`]\WQ ab`cQbc`Sa ]T bVS VSbS`]Xc\QbW]\)

Sa^SQWOZZg bVS Q][^O`Wa]\ eWbV C]/: ]` C]:) eWZZ PS\STWb bVS aWU\WTWQO\QS ]T bVS O`bWQZS+

=`][ bVS 9ORS` QVO`US b`O\aTS` Rc`W\U bVS ? ORa]`^bW]\ W\ OQWR Q]\RWbW]\) eS ]PaS`dSR

bVOb bVS a[OZZS` bVS OPa]ZcbS dOZcS Wa) bVS Q]``Sa^]\RW\U u>?' dOZcS Wa QZ]aS` b] -+ 8\R

bVS ;EH aV]ea bVOb bVS S\S`Ug ]\ C]:*C]/: Wa RWTTS`S\b T]` PO`S C]: ]` C]/:+ @b Wa

^`]POPZg bVOb bVS Q][PW\ObW]\ ]T C]: O\R C]/: [OYSa ? RSa]`^bW]\ O\R ORa]`^bW]\

SOaWZg) eVWQV Wa Q]\RcQWdS b] ?<G QObOZgaWa+ IVS `SOQbW]\ ^ObVa W\ OQWRWQ O\R OZYOZW\S

Q]\RWbW]\a O`S RWTTS`S\b a] eS RWdWRSR bVS O\OZgaWa W\b] be] ^O`ba+ KS VOdS `SdWaSR bVS

bVS]`SbWQOZ O\OZgaWa W\ bVS [O\caQ`W^b O\R c^RObSR =WU+0Q) O\R =WUc`S H@ /2 OQQ]`RW\UZg+

@\ bVS `SdWaSR [O\caQ`W^b) eS VOdS ORXcabSR bVS Sf^`SaaW]\ ]T bVS]`SbWQOZ O\OZgaWa+

FOUS .0) ZWUVb ZW\S /006 kIVS ;=I QOZQcZObW]\a ]\ P]bV ac^S`TWQWOZ O\R W\bS`TOQWOZ C]

aWbSa ]T C]:) C]/: O\R C]:*C]/: eS`S Q]\RcQbSR b] Q][^O`S bVS SZSQb`]QObOZgbWQ

?<G OQbWdWbg ]T PO`S C]:) C]/: O\R C]:*C]/: VSbS`]Xc\QbW]\+ E\ OQWRWQ Q]\RWbW]\)

O[]\U C]: %--.&) C]/: %.-.&) O\R bVS C]:*C]/:) bVS C]:*C]/: W\bS`TOQS SfVWPWba

bVS ]^bW[c[ >WPPa T`SS S\S`Ug ]T ?' ORa]`^bW]\ %u>?' 7 *-+.0 SJ&) Oa aV]e\ W\ =WU+

0P+ IVS ?<G SZSQb`]QObOZgab eWbV O ^]aWbWdS dOZcS `SacZba W\ bVS ^]]` ORa]`^bW]\ ]T ?')

eVWZS O QObOZgab eWbV O \SUObWdS dOZcS [Og ZSOR b] bVS RWTTWQcZb `SZSOaS ]T O ?/+ IVS WRSOZ

dOZcS ]T iu>?'i aV]cZR PS hS`]+ IVS a[OZZSab dOZcS ]T iu>?'i ]T bVS C]:*C]/:

VSbS`]Xc\QbW]\ W\RWQObSa Wba PSbbS` OQbWdWbg+ IVS []RSZa ]T ?' ORa]`^bW]\ T]` C]/: %.-.&

O\R C]: %--.& O`S Q][^O`SR W\ Hc^^ZS[S\bO`g =WU+ /.+ IVS ZObbWQS [Wa[ObQV ]T C]:

O\R C]/: QOcaSa ZO`US Z]QOZ RWab]`bW]\ Ob bVS VSbS`]ab`cQbc`S O\R QVO\USa bVS Z]QOZ

SZSQb`]\WQ ab`cQbc`S eWbV []`S C]0(,C]/( aWbSa) eVWQV O`S Q]\aWabS\b eWbV ]c` ^`SdW]ca

Sf^S`W[S\ba+ 9ORS` QVO`US O\OZgaWa eOa Q]\RcQbSR b] O\OZghS bVS QVO`US b`O\aTS +̀ ?

OROb][ ORa]`PSR Ob bVS C]:*C]/: VSbS`]Xc\QbW]\ ^]aaSaaSa bVS ZSOab QVO`US b`O\aTS`

]T -+02 S) Q]``Sa^]\RW\U b] bVS a[OZZSab ORa]`^bW]\ S\S`Ug ]T *-+/4 SJ+j+l

FOUS .0) ZWUVb ZW\S /3.6 kjaV]eW\U bVOb bVS C]:*C]/: Wa PS\STWQWOZ b] OQbWdObS

VgR`]US\ Ob][a+ ;c`W\U bVS ^`]QSaa ]T ?<G W\ OZYOZW\S a]ZcbW]\) bVS TW`ab ?/E

RWaa]QWObSa W\b] W\bS`[SRWObS ?' O\R E?'+ IVS\) bVS RWaa]QWObW]\ ]T bVS aSQ]\R ?/E

ZSORa b] bVS US\S`ObW]\ ]T ?/+ IVS ?<G S\S`Ug RWOU`O[a eS`S ^Z]bbSR b] Sf^ZOW\ bVS



?<G ^S`T]`[O\QS W\ OZYOZW\S a]ZcbW]\+ 8a aV]e\ W\ =WU+ 0Q) bVS VWUVSab S\S`Ug PO``WS`

%bVS aSQ]\R ?/E RWaa]QWObW]\ abS^& ]T bVS C]:*C]/: VSbS`]Xc\QbW]\ Wa .+.2}SJ) eVWZS

bVS ?<G ^S`T]`[O\QS ]\ PO`S C]: O\R C]/: Wa `SZObWdSZg ^]]`) eWbV bVS VWUVSab S\S`Ug

PO``WS` ]T .+5- SJ O\R 0+00 SJ ]\ PO`S C]: O\R C]/:) `Sa^SQbWdSZg+ EdS`OZZ) Q][^O`SR

eWbV PO`S C]: O\R C]/:) bVS C]:*C]/: VSbS`]Xc\QbW]\ SfVWPWba PSbbS` ?<G OQbWdWbg

W\ P]bV OQWRWQ O\R OZYOZW\S a]ZcbW]\a+ 8a WZZcab`ObSR W\ =WU+ 0R) bVS C]:*C]/:

VSbS`]Xc\QbW]\ SfVWPWba PSbbS` ?<G OQbWdWbg Q][^O`SR eWbV bV]aS ]T PO`S C]: O\R PO`S

C]/:j+l



REVIEWER COMMENTS 

Reviewer #4 (Remarks to the Author): 

The authors did more detailed DFT calculations as my suggestions. They performed the calculation of 

the second water dissociation step. However, the authors still didn't completely answer my third 

question. They are supposed to explain why the energy barrier of water dissociation on the Mo2C-MoC 

interface is lower that on Mo2C or MoC. I still suggest the authors try to give more intrinsic theoretical 

explanations, not only simply listing the calculation results. In addition, the Figure R1 needs to give 

the relative energy values. Because there is only one water molecular in the first step but another 

water molecular is involved into the second step, so they don't meet the mass conservation in one 

potential energy surface. And what's more, I didn't find any detailed calculation results about the 

alkaline HER mechanism in supporting information section, such as the structure information of the 

reactant water adsorption, the dissociated intermediate, etc. They even didn't show where the active 

site is.



1 

Detailed Responses to the Reviewers 

Manuscr ipt ID: NCOMMS-21-10682C

Title: A durable and pH-universal self-standing MoC-Mo2C heterojunction 

electrode for  efficient hydrogen evolution reaction 

’

” 

Author(s): Wei Liu
1,2

, Xiting Wang
3
, Fan Wang

1,2
, Kaifa Du

1,2
, Zhaofu Zhang

4
, 

Yuzheng Guo
3*

, Huayi Yin
1,2*

 and Dihua Wang
1,2*

We are grateful to the reviewers for their comments and suggestions that are helpful 

for us to improve our manuscript. We have revised the manuscript taking into full 

account of the reviewers’ comments and recommendations. Below are our 

point-to-point responses in the same order as the reviewers’ comments. The changes 

in the revised manuscript are highlighted in yellow.
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Reviewer #4 (Remarks to the Author): 

The authors did more detailed DFT calculations as my suggestions. They performed 

the calculation of the second water dissociation step. However, the authors still didn't 

completely answer my third question. They are supposed to explain why the energy 

barrier of water dissociation on the Mo2C-MoC interface is lower that on Mo2C or 

MoC. I still suggest the authors try to give more intrinsic theoretical explanations, not 

only simply listing the calculation results. In addition, the Figure R1 needs to give the 

relative energy values. Because there is only one water molecular in the first step but 

another water molecular is involved into the second step, so they don't meet the mass 

conservation in one potential energy surface. And what's more, I didn't find any 

detailed calculation results about the alkaline HER mechanism in supporting 

information section, such as the structure information of the reactant water adsorption, 

the dissociated intermediate, etc. They even didn't show where the active site is. 

Response: We thank the referee for the valuable comments and suggestions. 

According to the comments and suggestions of the referee, our point-to-point 

responses are shown below.  

Q1. They performed the calculation of the second water dissociation step. However, 

the authors still didn't completely answer my third question. They are supposed to 

explain why the energy barrier of water dissociation on the Mo2C-MoC interface is 

lower that on Mo2C or MoC. I still suggest the authors try to give more intrinsic 

theoretical explanations, not only simply listing the calculation results. 

Response 1: We thank the referee for the valuable comments. We have added the 

following discussions in the main text to give more details about the mechanism of 

the water dissociation.

During the process of HER in alkaline solution, the first key step is that the first 

H2O adsorbs on the surface and dissociates into intermediate H* and OH*. Then, the 

dissociation of the second H2O leads to the generation of H2 (Supplementary Fig. 

26-28). The free energy diagrams are plotted to explain the corresponding HER 

performance in alkaline solution. As shown in Fig. 3c, the highest energy barrier (the 
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second H2O dissociation step) of the MoC-Mo2C heterojunction is 1.15#eV, while the 

highest energy barrier on bare MoC and Mo2C are 1.90 and 3.33 eV, respectively. This 

indicates that the energy barrier of water dissociation on the MoC-Mo2C interface is 

lower than that on MoC or Mo2C, which can be explained by the interface Mo d 

orbital tuning since engineering the transition metal d orbitals is a feasible method to 

modulate the interaction between the molecule and active sites [Nature 

communications, 2019, 10(1), 1-8. and Advanced Materials,2019, 31(16), 1807780.]. 

The occupied orbitals of the H2O molecule are mainly p states. And the partial DOS 

shows that the electron transfer is mainly from the d orbitals of Mo atoms 

(Supplementary Fig. 29). The empty orbitals of MoC and Mo2C near the Fermi level 

are more localized within the surface (Supplementary Fig. 30), suggesting that both 

MoC and Mo2C are easy to capture the H2O molecule but hard to dissociate the H2O 

molecule. While the active Mo atoms on the MoC-Mo2C interface have a higher 

partial DOS near Fermi level (Supplementary Fig. 29) and an empty hybridized d 

orbital perpendicular to the surface, which is not only beneficial to capture the H2O 

molecule but also easy to dissociate the H2O. In addition, the electron overlap 

between the active site and H2O molecule on the MoC-Mo2C interface is moderate 

compared to MoC and Mo2C, which is helpful to decrease the energy barrier 

(Supplementary Fig. 31). Overall, the energy barrier of water dissociation on the 

MoC-Mo2C interface is lower because of the Mo d orbital tuning. Therefore, the 

MoC-Mo2C interface exhibits better HER activity than MoC and Mo2C in both acid 

and alkaline solutions (Fig. 3d). 
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Supplementary Fig. 29 Par tial density of states of Mo d states for  MoC, Mo2C, and 

MoC-Mo2C. 

Supplementary Fig. 30 Par tial charge density for (a) MoC, (b) Mo2C, and (c) 

MoC-Mo2C heterojunction inter face. The yellow region represents electron accumulation.
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Supplementary Fig. 31 Par tial charge density for (a) MoC, (b) Mo2C, and (c) 

MoC-Mo2C heterojunction inter face with the adsorbed H2O. The yellow region represents 

electron accumulation. 

Q2. In addition, the Figure R1 needs to give the relative energy values. Because there 

is only one water molecular in the first step but another water molecular is involved 

into the second step, so they don't meet the mass conservation in one potential energy 

surface. 

Response 2:  

We thank the referee for the valuable comments and suggestions. According to the 

literatures [Nature communications, 2019, 10(1), 1-8. and Advanced Materials,2019, 

31(16), 1807780.], we have renamed y-axis to relative energy and modified the 

relative energy diagram. And the dash lines are added near the step of the second 

water molecular involved. We mainly focus on the energy barrier of H2O dissociation 

in Fig 3c. The highest energy barrier (the second H2O dissociation step) of the 

MoC-Mo2C heterojunction is 1.15#eV, while the highest energy barrier on bare MoC 

and Mo2C are 1.90 and 3.33 eV, respectively. This indicates that the energy barrier of 

water dissociation on the MoC-Mo2C interface is lower than that on MoC or Mo2C. 

The details are shown as follows: 
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Fig. 3 TOF LSV curves and DFT calculations. (a) TOF LSV curves of different electrodes. 

(b) Calculated "GH* diagram of the HER in acid electrolyte at the equilibrium potential. (c) 

Relative energy diagram of water dissociation on MoC, Mo2C, and MoC-Mo2C, including the 

two steps of water dissociation, in alkaline solution, TS: Transition State. (d) Schematic 

illustration of the HER mechanism. 

Q3. And what's more, I didn't find any detailed calculation results about the alkaline 

HER mechanism in supporting information section, such as the structure information 

of the reactant water adsorption, the dissociated intermediate, etc. They even didn't 

show where the active site is. 

Response 3: Thank you very much for your comments and suggestions. We have 
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given more details about the structure information of the reactant water adsorption, 

the dissociated intermediate on MoC, Mo2C and MoC-Mo2C interfaces, as shown in 

the new Figures S26, S27 and S28, respectively. And the charge density difference 

and partial charge density for MoC, Mo2C and MoC-Mo2C interfaces also have drawn 

in new Figure S30, which show the interaction difference between the active site and 

the surface effect.

Supplementary Fig. 26 The top-view and side-view structures of intermediates on the 

bare MoC dur ing the process of alkaline HER.

Supplementary Fig. 27 The top-view and side-view structures of intermediates on the 

bare Mo2C dur ing the process of alkaline HER. 
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Supplementary Fig. 28 The top-view and side-view structures of intermediates on the 

MoC-Mo2C dur ing the process of alkaline HER. 

Supplementary Fig. 30 Par tial charge density for (a) MoC, (b) Mo2C, and (c) 

MoC-Mo2C heterojunction inter face. The yellow region represents electron 

accumulation. 



REVIEWERS' COMMENTS 

Reviewer #4 (Remarks to the Author): 

Comments have been addressed. I recommend it for publication.


