Supplementary information

Ligand recognition and G-protein coupling selectivity of cholecystokinin A receptor

Supplementary Table 1. Cryo-EM data collection, refinement, and validation statistics.

	$\begin{gathered} \mathbf{C C K}_{\mathbf{A}} \mathbf{R} / \mathbf{G}_{\mathbf{q}} / \mathbf{s c F v 1 6} \\ \text { (EMD-31389) } \\ \text { (PDB: 7EZM) } \end{gathered}$	$\begin{gathered} \mathbf{C C K}_{\mathbf{A}} \mathbf{R} / \mathbf{G}_{\mathbf{s}} \\ \text { (EMD-31388) } \\ \text { (PDB: 7EZK) } \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{C C K}_{\mathbf{A}} \mathbf{R} / \mathbf{G}_{\mathbf{i}} / \mathbf{s c F v 1 6} \\ \text { (EMD-31387) } \\ \text { (PDB: 7EZH) } \\ \hline \end{gathered}$
Data collection and processing			
Magnification	81,000	81,000	81,000
Voltage (kV)	300	300	300
Electron exposure (e-/ Å2)	80	80	80
Defocus range ($\mu \mathrm{m}$)	$-0.5 \sim-3.0$	$-0.5 \sim-3.0$	-0.5~-3.0
Pixel size (\AA)	1.045	1.045	1.045
Symmetry imposed	C1	C1	C1
Initial particle projections (no.)	3, 405, 355	4, 680, 972	4, 270, 010
Final particle projections (no.)	555, 628	499, 924	140, 602
Map resolution (A)	2.9	3.1	3.2
FSC threshold	0.143	0.143	0.143
Map resolution range (\AA)	2.3-4.3	2.3-4.3	2.3-4.3
Refinement			
Initial model used (PDB accession number)	6OIJ	6 NBF	60MM
Model resolution (\AA)	3.0	3.2	3.4
FSC threshold	0.5	0.5	0.5
Map sharpening B-factor ($\AA 2$)	-97.47	-134.32	-111.38
Model composition			
Non-hydrogen atoms	8999	7196	8860
Protein residues	1170	922	1153
B-factors ($\AA 2$)			
Protein	56.03	66.86	63.12
RMSD			
Bond lengths (A)	0.010	0.010	0.002
Bond angles (${ }^{\circ}$)	1.027	1.010	0.625
Validation			
MolProbity score	1.45	1.39	1.35
Clashscore	4.50	3.85	2.45
Rotamer outliers (\%)	0.21	0.26	0.00
Ramachandran Plot			
Favored (\%)	96.51	96.57	95.40
Allowed (\%)	3.49	3.43	4.60
Disallowed (\%)	0.00	0.00	0.00

Supplementary Table 2. Effects of mutations in the ligand-binding pocket of $\mathrm{CCK}_{\mathrm{A}} \mathrm{R}$ on CCK8 binding affinities.

Radiolabeled ligand ($\left[{ }^{1251}\right]$ CCK-8) binding assay was performed to evaluate the ligand-binding affinity of $\mathrm{CCK}_{\mathrm{A}} \mathrm{R}$ mutants. Binding data are represented mean $\mathrm{pKi} \pm$ S.E.M. ${ }^{* *} P<0.01$, versus wildtype (WT). N.D., not determined. FACS analyses were performed to evaluate the surface expression of the $\mathrm{CCK}_{\mathrm{A}} \mathrm{R}$ mutants. Expression data are shown as \%WT. ${ }^{\dagger} P<0.05,{ }^{+\dagger} P<0.01,{ }^{\dagger+} P<0.001$, ${ }^{\dagger++\dagger} P<0.0001$, versus WT. All data were analyzed by one-way ANOVA Dunnett multiple comparisons test. No adjustments were made for multiple comparisons.

Mutant	pKi \pm S.E.M.	\mathbf{n}	\boldsymbol{P} value	Expression $\%$	\mathbf{n}	\boldsymbol{P} value
WT	8.58 ± 0.12	4	1	100	3	1
K105A	$7.78 \pm 0.22^{* *}$	3	0.0089	$77.86 \pm 6.24^{++}$	3	0.0020
F107A	N.D.	3	-	71.85 ± 6.84	3	0.0994
T118A	8.73 ± 0.13	3	0.9921	$78.06 \pm 5.38^{+}$	3	0.0153
M121A	8.03 ± 0.15	3	0.1191	$74.99 \pm 5.48^{+}$	3	0.0426
V125A	8.68 ± 0.12	3	0.9993	$46.48 \pm 1.03^{+++\dagger}$	3	<0.0001
Y176A	N.D.	3	-	$26.63 \pm 2.43^{++++}$	3	<0.0001
F185A	7.98 ± 0.24	3	0.0742	77.98 ± 4.85	3	0.1029
M195A	8.10 ± 0.26	3	0.2199	85.45 ± 4.52	3	0.5581
C196A	N.D.	3	-	$3.24 \pm 0.06^{+++\dagger}$	3	<0.0001
R197A	N.D.	3	-	104.14 ± 5.14	3	0.9993
H210A	8.61 ± 0.12	3	0.9998	81.19 ± 4.32	3	0.2350
I329A	N.D.	3	-	$74.22 \pm 7.37^{++}$	3	0.0334
F330A	8.67 ± 0.09	3	0.9994	$27.31 \pm 2.74^{++++}$	3	<0.0001
A332G	8.43 ± 0.12	3	0.9921	$32.50 \pm 4.21^{++++}$	3	<0.0001
N333A	N.D.	3	-	$63.96 \pm 3.31^{++\dagger}$	3	0.0009
R336A	N.D.	3	-	82.96 ± 5.35	3	0.3489
A343G	N.D.	3	-	$50.61 \pm 5.37^{+++\dagger}$	3	<0.0001
E344A	N.D.	3	-	88.00 ± 13.77	3	0.7932
L347A	N.D.	3	-	$52.59 \pm 1.43^{++++}$	3	<0.0001
S348A	N.D.	3	-	98.35 ± 8.18	3	0.9997
I352A	N.D.	3	-	80.35 ± 1.26	3	0.1918
Y360A	8.00 ± 0.09	3	0.0899	82.85 ± 6.85	3	0.3411

Supplementary Table 3. Coupling activity of $\mathrm{CCK}_{\mathrm{A}} \mathbf{R}$ with different \mathbf{G} proteins.

BRET assay was performed to evaluate the coupling activity of $\mathrm{CCK}_{\mathrm{A}} \mathrm{R}$ with different G proteins. Coupling activity data are represented as mean $\mathrm{pEC}_{50} \pm$ S.E.M. Decreased fold of $E_{\text {max }}$ compared to G_{q} was calculated. BRET experiments were performed in sextuplicate ($\mathrm{n}=6$). Coupling activity data were analyzed by one-way ANOVA Dunnett multiple comparisons test. P values, versus Receptor $+\mathrm{G}_{\mathrm{q}}$. Radiolabeled ligand binding assay was used to evaluate the allosteric effects of different G proteins on the binding affinity of CCK-8. The binding affinities are indicated as $\mathrm{pKi} \pm$ S.E.M. Binding experiments were performed in triplicate ($\mathrm{n}=3$). Binding data were analyzed by one-way ANOVA Dunnett multiple comparisons test. ${ }^{*} P<0.05$, versus receptor.

Group	G protein-coupling activity of $\mathbf{C C K}_{\mathbf{A}} \mathbf{R}$			Binding affinity of CCK-8			
	pEC $\mathbf{5 0} \pm$ S.E.M.	\mathbf{n}	\boldsymbol{P} value	Decreased fold of $\boldsymbol{E}_{\max }$	$\mathbf{p K i} \pm$ S.E.M.	n	\boldsymbol{P} value
Receptor	-	-	-	-	7.92 ± 0.06	3	1
Receptor $+\mathrm{G}_{\mathrm{q}}$	8.42 ± 0.08	6	1	1	$8.28 \pm 0.08^{*}$	3	0.0143
Receptor $+\mathrm{G}_{\mathrm{i}}$	7.32 ± 0.22	6	0.1230	6.60	7.87 ± 0.07	3	0.9148
Receptor $+\mathrm{G}_{\mathrm{s}}$	7.92 ± 0.65	6	0.5898	20.33	8.02 ± 0.06	3	0.6189

Supplementary Table 4. Effect of I296G mutation of CCK $_{A}$ R on G protein-coupling activity.

 BRET-based NanoBiT G-protein recruitment and NanoBiT G-protein dissociation assays were performed to evaluate $\mathrm{G}_{\mathrm{q}^{-}}, \mathrm{G}_{\mathrm{i}^{-}}$, and G_{s}-coupling activity, respectively. Data are represented as mean $\mathrm{pEC}_{50} \pm$ S.E.M. FACS analyses were performed to evaluate the surface expression of $\mathrm{CCK}_{\mathrm{A}} \mathrm{R}$ mutant. Radiolabeled ligand binding assay was used to evaluate the effects of the mutation on the binding affinity of CCK-8. The binding affinities are indicated as $\mathrm{pKi} \pm$ S.E.M. All data were analyzed by two-tailed Student's t-test by comparing I296G mutants with wild-type (WT) receptor. ${ }^{* *} P<0.01$, versus WT. All experiments were performed in triplicate ($\mathrm{n}=3$).| Mutant | G protein-coupling activity | | Cell Surface
 expression | Binding
 affinity |
| :---: | :---: | :---: | :---: | :---: |
| | $\mathbf{p E C}_{\mathbf{5} \mathbf{0}} \pm$ S.E.M. | | | Expression $\%$ |

CCK-8-CCK ${ }_{A}$ R-Gq-scFv16
Supplementary Fig. $1 \mid$ Cryo-EM workflows for structure determination of $\mathbf{C C K}_{\mathrm{A}} \mathbf{R}-\mathbf{G}_{\mathbf{q}}$ protein complex. a, Size exclusion chromatography (SEC) profile and SDS-PAGE analysis of the CCK-8-CCK ${ }_{A} \mathrm{R}-\mathrm{G}_{\mathrm{q}}-\mathrm{scFv} 16$ protein complex sample. \mathbf{b}, Representative cryo-EM micrograph (scale bar, 30 nm) and 2D classification averages (scale bar, 5 nm) of the CCK-8-CCK ${ }_{A} \mathrm{R}-\mathrm{G}_{\mathrm{q}}-$ scFv16 complex. The data collection was performed once. The 2D averages display different secondary features in different views. c, Single-particle cryo-EM data processing flowcharts of the CCK-8-CCK ${ }_{A} \mathrm{R}-\mathrm{G}_{\mathrm{q}}-\mathrm{scFv} 16$ by Relion 3.1, including the Euler angle distribution of particles used in the final refinement and the fourier shell correlation (FSC) curves. The global resolution defined at the $\mathrm{FSC}=0.143$ is $2.9 \AA$.

Supplementary Fig. $2 \mid$ Cryo-EM workflows for structure determination of $\mathbf{C C K}_{A} R-\mathbf{G}_{\mathbf{s}}$
protein complex.
a, Size exclusion chromatography (SEC) profile and SDS-PAGE analysis of the CCK-8-CCK ${ }_{A} \mathrm{R}-$ $\mathrm{G}_{\text {s }}$ protein complex sample. b, Representative cryo-EM micrograph (scale bar, 30 nm) and 2D classification averages (scale bar, 5 nm) of the $\mathrm{CCK}-8-\mathrm{CCK}_{\mathrm{A}} \mathrm{R}-\mathrm{G}_{\mathrm{s}}$ complex. The data collection was performed once. The 2 D averages display different secondary features in different views. c, Single-particle cryo-EM data processing flowcharts of the CCK-8-CCK ${ }_{A} R-G_{s}$ by Relion 3.0, including the Euler angle distribution of particles used in the final refinement and the fourier shell correlation (FSC) curves. The global resolution defined at the $\mathrm{FSC}=0.143$ is $3.1 \AA$.

Supplementary Fig. 3| Cryo-EM workflows for structure determination of $\mathbf{C C K}_{A} \mathbf{R}-\mathbf{G}_{i}$ protein complex.

a, Size exclusion chromatography (SEC) profile and SDS-PAGE analysis of the CCK-8-CCK ${ }_{A}$ R-$\mathrm{G}_{\mathrm{i}}-\mathrm{scFv} 16$ protein complex sample. \mathbf{b}, Representative cryo-EM micrograph (scale bar, 30 nm) and 2D classification averages (scale bar, 5 nm) of the $\mathrm{CCK}-8-\mathrm{CCK}_{A} \mathrm{R}-\mathrm{G}_{\mathrm{i}}-\mathrm{scFv} 16$ complex. The data collection was performed once. The 2D averages display different secondary features in different views. c, Single-particle cryo-EM data processing flowcharts of the CCK-8-CCK ${ }_{A} R-G_{i}-\mathrm{scFv} 16$ by Relion 3.0, including the Euler angle distribution of particles used in the final refinement and the fourier shell correlation (FSC) curves. The global resolution defined at the $\mathrm{FSC}=0.143$ is $3.2 \AA$.
a

b
$G \alpha_{i}$
MGCTLSAEDKAAVERSKMIDRNLREDGEKAAREVKLLLLGAGESGKSTIVKQMKIIH EAGYSEEECKQYKAVVYSNTIQSIIAIIRAMGRLKIDFGDSARADDARQLFVLAGAA EEGFMTAELAGVIKRLWKDSGVQACFNRSREYQLNDSAAYYLNDLDRIAQPNYIPTQ QDVLRTRVKTTGIVETHFTFKDLHFKMFDVGAQRSERKKWIHCFEGVTAIIFCVALS DYDLVLAEDEEMNRMHESMKLFDSICNNKWFTDTSIILFLNKKDLFEEKIKKSPLTI CYPEYAGSNTYEEAAAYIQCQFEDLNKRKDTKEIYTHFTCSTDTKNVQFVFDAVTDV IIKNNLKDCGLF

$G \alpha_{s}$

MGCTLSAEDKAAVERSKMIEKQLQKDKQVYRATHRLLLLGADNSGKSTIVKQMRIYH VNGYSEEECKQYKAVVYSNTIQSIIAIIRAMGRLKIDFGDSARADDARQLFVLAGAA EEGEMTAELAGVIKRLWKDSGVQACFNRSREYQLNDSAAYYLNDLDRIAQPNYIPTQ QDVLRTRVKTSGIFETKFQVDKVNFHMFDVGAQRDERRKWIQCFNDVTAIIFVVDSS DY----------NRLQEALNDFKSIWNNRWLRTISVILFLNKQDLLAEKVLAGKSKI EDYFPEFARYTTPEDATPEPGEDPRVTRAKYFIRDEFLRISTASGDGRHYCYPHFTC SVDTENARRIFNDCRDIIQRMHLRQYELL

$G \alpha_{q}$

MGCTLSAEDKAAVERSKMIDRNLREDGEKARRELKLLLLGTGESGKSTFIKQMRIIH GSGYSDEDKRGFTKLVYQNIFTAMQAMIRAMDTLKIPYKYEHNKAHAQLVREVDVEK VSAFENPYVDAIKSLWNDPGIQECYDRRREYQLSDSTKYYLNDLDRVADPAYLPTQQ DVLRVRVPTTGIIEYPFDLQSVI FRMVDVGAQRSERRKWIHCFENVTSIMFLVALSE YDQVLVESDNENRMEESKALFRTIITYPWFQNSSVILFLNKKDLLEEKIMYSHLVDY FPEYDGPQRDAQAAREFILKMFVDLNPDSDKIIYSHFTCSTDTENIRFVFAAVKDTI LQLNLKEYNLV
Supplementary Fig. 4| Receptor and Ga subunits used in the cryo-EM structure determination. a, A schematic illustration of the $\mathrm{CCK}_{A} \mathrm{R}$ construct used in cryo-EM studies. HA, hemagglutinin signal sequence; $2 \times \mathrm{MBP}$, double-MBP tag. b, Protein sequences of $G \alpha_{\mathrm{q}}, G \alpha_{\mathrm{s}}$, and $\mathrm{G} \alpha_{i 1}$ subunits. N-terminal sequence replaced in $\mathrm{G} \alpha_{\mathrm{s}}$ and $\mathrm{G} \alpha_{\mathrm{q}}$ is shown in blue. The two dominantnegative mutations are colored red and underlined. Stabilization mutations derived from the reported mini- $\mathrm{G} \alpha_{s}$ are highlighted in cyan. AHD domain of the $\mathrm{G} \alpha_{\mathrm{s}}$ is replaced with the equivalent region of $\mathrm{G} \alpha_{\mathrm{il}}$ and colored in gray.

Supplementary Fig. 5| Local cryo-EM density maps of CCK $_{A} R-G$ protein complexes. a, Cryo-EM density maps of TM1-TM7, ECL1-ECL3, ICL2, ICL3, CCK-8 peptide and $\alpha 5$ helix of $\mathrm{G} \alpha_{q}$ in the CCK-8-CCK ${ }_{A} \mathrm{R}-\mathrm{G}_{q}-\mathrm{scFv} 16$ structure. \mathbf{b}, Cryo-EM density maps of TM1-TM7, ECL1ECL3, ICL2, CCK-8 peptide and $\alpha 5$ helix of α_{s} in the CCK-8-CCK ${ }_{A} \mathrm{R}-\mathrm{G}_{\mathrm{s}}$ structure. \mathbf{c}, Cryo-EM density maps of TM1-TM7, ECL1-ECL3, ICL2, CCK-8 peptide and $\alpha 5$ helix of G_{i} in the CCK-8$\mathrm{CCK}_{\mathrm{A}} \mathrm{R}-\mathrm{G}_{\mathrm{i}}-\mathrm{scFv} 16$ structure. d-f, The global density maps of the CCK-8-CCK ${ }_{\mathrm{A}} \mathrm{R}-\mathrm{G}_{\mathrm{q}}-\mathrm{scFv} 16$ (d), CCK $-8-\mathrm{CCK}_{A} \mathrm{R}-\mathrm{G}_{\mathrm{s}}(\mathbf{e})$, and CCK-8-CCK ${ }_{A} \mathrm{R}-\mathrm{G}_{\mathrm{i}}-\mathrm{scFv} 16$ (f) colored by local resolution (\AA). The density maps are shown at thresholds of $0.08,0.055$ and 0.05 for the $C C K_{A} R-G_{q}, C C K ~ R ~ R-G s$ $\mathrm{CCK}_{\mathrm{A}} \mathrm{R}-\mathrm{G}_{\mathrm{i}}$ complex, respectively.

Supplementary Fig. 6| Gating strategy of cell surface expression assay. Circle a gate E1 in the scatter map (red circle). The cells shown in the density map are all the cells in the gate E1 in the scatter map. Fluorescence signal intensity (FITC) is presented by density map. With the Blank sample as the reference value of background fluorescence signal (a), the "quadrant gate" divides the fluorescence signal density map into four quadrants. The third quadrant represents the negative cell community, while the fourth quadrant represents the positive cell community. The expression level of cell surface wild-type (WT) $\mathrm{CCK}_{\mathrm{A}} \mathrm{R}(\mathbf{b})$ can be calculated as follows: $(\mathrm{M}(\mathrm{Q} 2-4)-\mathrm{M}(\mathrm{Q} 2-3)) \times(\mathrm{Q} 2-$ 4% Parent). M, mean fluorescence intensity. The expression level of the $\mathrm{CCK}_{\mathrm{A}} \mathrm{R}$ mutant is calculated similarly to $\mathrm{WT} \mathrm{CCK}_{\mathrm{A}} \mathrm{R}$ and then is normalized with the WT to calculate the relative expression value.

