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Abstract 20	
Coronaviruses (CoVs) have very large RNA viral genomes with a distinct genomic architecture 21	
of core and accessory open reading frames (ORFs). It is of utmost importance to understand their 22	
patterns and limits of homologous and non-homologous recombination, because such events may 23	
affect the emergence of novel CoV strains, alter their host range, infection rate, tissue tropism 24	
pathogenicity, and their ability to escape vaccination programs. Intratypic recombination among 25	
closely related CoVs of the same subgenus has often been reported; however, the patterns and 26	
limits of genomic exchange between more distantly related CoV lineages (intertypic 27	
recombination) needs further investigation. Here, we report computational/evolutionary analyses 28	
that clearly demonstrate a substantial ability for CoVs of different subgenera to recombine. 29	
Furthermore, we show that CoVs can obtain - through non-homologous recombination - 30	
accessory ORFs from core ORFs, exchange accessory ORFs with different CoV genera, with 31	
other viruses (i.e., toroviruses, influenza C/D, reoviruses, rotaviruses, astroviruses) and even with 32	
hosts. Intriguingly, most of these radical events result from double-crossovers surrounding the 33	
Spike ORF, thus highlighting both the instability and mobile nature of this genomic region. While 34	
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many such events have often occurred during the evolution of various CoVs, the genomic 35	
architecture of the relatively young SARS-CoV/SARS-CoV-2 lineage so far appears to be stable. 36	
 37	
Introduction 38	
Genomic analyses of single-stranded RNA-viruses, including Coronaviruses (CoVs), have 39	
repeatedly demonstrated how recombination affects their emergence, host-range, and 40	
pathogenicity (Decaro et al. 2009; Simon-Loriere and Holmes 2011; Terada et al. 2014; Tian et 41	
al. 2014; Su et al. 2016; Lau et al. 2018). Given the current pandemic of SARS-CoV-2 42	
(Coronaviridae Study Group of the International Committee on Taxonomy of Viruses 2020; Wu 43	
et al. 2020), it is of utmost importance to fully understand the patterns and limits of homologous 44	
and non-homologous genomic exchange of the entire CoV subfamily. This knowledge will allow 45	
us to better evaluate any risks from cross-species transmission and recombination with other 46	
closely or distantly related viruses. It may also guide the development of future vaccines, by 47	
allowing the selection of stable antigenic regions and avoiding reversion (via recombination) of 48	
any future live-attenuated vaccine strains (Guillot et al. 2000; Racaniello 2006; Pliaka et al. 2012; 49	
Burns et al. 2013; Graham et al. 2018; Nikolaidis et al. 2019). 50	

According to the ICTV 2020 release, the CoV subfamily (Orthocoronavirinae) harbours 51	
significant genomic diversity, comprising 4 genera (α−δ), further subdivided into 25 sub-genera 52	
(Lauber et al. 2012; Lauber and Gorbalenya 2012; ICTV Coronaviridae study group). Various 53	
CoVs are found in a wide range of animal species, causing respiratory, enteric, hepatic, and 54	
nervous system disorders with mild to severe symptoms (Rota et al. 2003; Weiss and Navas-55	
Martin 2005; Woo et al. 2007; Bermingham et al. 2012; Wheeler et al. 2018; Chen et al. 2020; 56	
Wu et al. 2020). Bats are reservoirs for the α- and β-CoVs, whereas wild birds are reservoirs for 57	

the γ- and δ-CoVs (Woo et al. 2009; Woo et al. 2012; Wong et al. 2019; Latinne et al. 2020; 58	

Wille and Holmes 2020). Human CoVs are found in the α- and β-genera and have a zoonotic 59	
origin, with bats as the key reservoir, but intermediate hosts may also be involved in the cross-60	
species transmission (Song et al. 2005; Reusken et al. 2013; Fan et al. 2019).  61	

CoVs possess very large genomes among RNA-viruses (25-32 Kb) and contain at least 6 62	
core ORFs (1a, 1b, Spike, Envelope, Membrane, and Nucleocapsid) (Gorbalenya et al. 2006; Cui 63	
et al. 2019; Chen et al. 2020). Lineage-specific accessory ORFs are also present and may be 64	
involved in host adaptation, including the modulation of interferon signaling and the production 65	
of pro-inflammatory cytokines (Gorbalenya et al. 2006; Liu et al. 2014; Cui et al. 2019; Hartenian 66	
et al. 2020). This large genome size and complex architecture allows division of labour and 67	
flexibility for cross-species adaptation (Lauber et al. 2013). Importantly, the Spike protein 68	



facilitates binding to host receptors and so determines host-range, cell-tropism, and even the 69	
transition from a mild towards a highly pathogenic phenotype, via point-mutations and 70	
recombination (Sánchez et al. 1999; Kuo et al. 2000; Casais et al. 2003; Rottier et al. 2005; 71	
Menachery et al. 2015). 72	

Recombination events among closely-related CoV strains/genotypes/species of the same 73	
subgenus have been reported frequently (Keck et al. 1988; Kottier et al. 1995; Herrewegh et al. 74	
1998; Decaro et al. 2009; Tian et al. 2014; Dudas and Rambaut 2016; Forni et al. 2017; Bobay et 75	
al. 2020; Boni et al. 2020; Saeng-Chuto et al. 2020; Goldstein et al. 2021; Yang et al. 2021); we 76	
denote this category of events as intratypic recombination. The corresponding recombination 77	
junctions are scattered across the genome, although enrichment around transcriptional regulatory 78	
sequences (TRS-B) has been reported (Yang et al. 2021). These TRS are needed for template 79	
switching during the transcription of the CoV ORFs (Sawicki et al. 2007; Sola et al. 2015), but 80	
they may also facilitate recombination via template switching among different CoVs (Graham et 81	
al. 2018; Yang et al. 2021). The genomes of several CoVs are mosaic, but many of their donors 82	
have yet to be sequenced (Goldstein et al. 2021). Furthermore, recombination events among more 83	
distantly related CoVs have also been observed. Such radical evolutionary events probably result 84	
from the presence of highly conserved TRS-B sequences (shared between the recombining CoVs) 85	
at the beginning of the various ORFs (Sawicki et al. 2007; Sola et al. 2015; Boniotti et al. 2016; 86	
Graham et al. 2018; Banerjee et al. 2020). Nevertheless, very disparate TRS-B sequences 87	
between two CoVs cause incompatibility and thus may also present barriers to such 88	
recombination events (Yount et al. 2006). In this study, we define as intertypic any recombination 89	
event among members of different CoV subgenera. In addition, non-homologous recombination 90	
events may occur with other viruses or taxa, leading to the acquisition of new genomic regions 91	
that appear as lineage-specific accessory ORFs (Zeng et al. 2008; Woo et al. 2014; Forni et al. 92	
2017). The goal of this study is to understand the patterns and limits of radical (intertypic) 93	
genomic exchange of CoVs and to see whether any genomic regions emerge as hotspots of 94	
recombination. The first part of this analysis focuses on homologous recombination of core ORFs 95	
among different CoV subgenera, whereas the second part deals with non-homologous 96	
recombination of accessory ORFs among CoV subgenera/genera and even with other taxa. 97	
 98	
Results 99	
 100	
Several computational methods exist for detecting and analyzing recombination events among 101	
closely related viruses (Posada et al. 2002; Pond et al. 2005; Martin et al. 2011). In this study, we 102	



have implemented phylogenetic tree incongruence methods, which are best suited for macro-103	
evolutionary analyses, as well as similarity plots (see Methods Sections). BioNJ, PhyMl and 104	
Bayesian protein phylogenetic trees and tanglegrams (or ‘cophylo plots’, a way of graphically 105	
representing correspondence between two phylogenies with the same tip labels) were generated 106	
for the non-structural peptides (nsps) of ORFs 1a/1b and the other core ORFs. This was done both 107	
for all four genera together and for each of the four genera individually. In addition, phylogenetic 108	
trees (BioNJ and PhyML) of the various regions were compared against each other for 109	
incongruence, using the normalized Robinson-Foulds method for unrooted trees (see Methods 110	
section). We further validated the statistical significance of detected incongruities with CONSEL, 111	
to ensure the robustness of our conclusions. In this study, we only consider highly confident 112	
phylogenetic incongruence events that are supported by high bootstrap, aLRT and posterior 113	
probability values for all three tree methods and are also statistically supported by the 114	
corresponding CONSEL analyses. In all analyses, the neighborhood of the Spike ORF emerges as 115	
an intertypic recombination hotspot. 116	
 117	
The Spike ORF displays elevated phylogenetic tree incongruence 118	
Phylogenetic trees based on the Spike ORF consistently display the highest or next-highest 119	
phylogenetic incongruence compared to all other analyzed regions, in α-, γ- and δ-CoVs (Figure 120	

1; suppl. file 1 figs 32-33, 38-39, 50-51, 57-58). In contrast, the corresponding regions of β-CoVs 121	
display relatively low phylogenetic incongruence. The Spike sequence is one of the most variable 122	
core genomic regions. However, other core regions also have similar sequence variability, but do 123	
not display such high levels of phylogenetic incongruence. Therefore, this pattern (confirmed by 124	
subsequent phylogenetic tree tanglegram analyses) does not result from badly aligned regions, 125	
rather, it may be attributed to divergence combined with cassette-like intertypic recombination. If 126	
the majority of intertypic recombination events involved single crossovers, then there should be 127	
high phylogenetic incongruence among the regions flanking the Spike ORF, but this is not the 128	
case. Furthermore, if most of the intertypic recombination (in various regions) involved single 129	
crossovers, then the incongruence among the 5’ terminal nsps and the 3’ terminal ORFs, such as 130	
Membrane and Nucleocapsid, should also be high, resembling linkage disequilibrium decay 131	
(Dudas and Rambaut 2016), but it is not. 132	
 133	
  134	



Tanglegram-based detection of intertypic recombination events in the common ancestors of 135	
CoV genera and subgenera 136	
α- and β-CoVs consistently cluster together as a major clade for all core genomic regions except 137	

for Spike, for which most of the α- and all the δ-CoVs form a single group (Figure 2 and 138	
suppl.fig.1, recombination event 21). Moreover, cryo-electron microscopy has demonstrated that 139	
the Spike proteins of α- and δ-CoVs are structurally more similar to each other (Shang et al. 140	

2018). Thus, at least one recombination event occurred in which the common ancestor of all δ-141	

CoVs obtained a Spike ORF from an α-CoV ancestor. 142	
We also observed several cases of phylogenetic incongruence involving entire subgenera 143	

(mostly in α-CoVs); they displayed a major shift in their phylogenetic position (for a certain 144	
genomic region), as a monophyletic group. We interpret this as a major event that occurred in the 145	
common ancestor of the representative sequences of that subgenus. Here, we only report cases 146	
well supported by BioNJ, PhyML and Bayesian tree tanglegrams and also statistically supported 147	
(for their incongruence) by CONSEL. The regions that are involved in such events are shown in 148	
Figure 2 and are designated as SgM (Subgenus Movement). 149	

More specifically, in α-CoVs, there exist 14 well-established subgenera, with the 150	
Ozimops and Desmodus genomes possibly forming two extra subgenera. The first 9 subgenera 151	
(Decacovirus, Pedacovirus, Colacovirus, Nyctacovirus, Minunacovirus, Duvinacovirus, 152	
Setracovirus, Myotacovirus, Rhinacovirus) together with Ozimops and Desmodus constitute a 153	
major clade that we designate A1. Another two subgenera, (Tegacovirus, Minacovirus) constitute 154	
a major clade that we designate A2 and is a sister group to A1. Luchacovirus (found in rodents), 155	
Sunacovirus and Soracovirus (both found in shrews) constitute three very diverse additional 156	
clades, that we designate A3, A4 and A5 respectively. The tanglegrams reveal that Ozimops is a 157	
sister group to Decacovirus, but for nsp16 it pairs with Minunacovirus (recombination event 4, 158	
suppl.figs.16-19). The Rhinacovirus (A1 clade) nsp8 is no longer part of the A1 clade, but 159	
clusters with the A3 Luchacovirus (recombination event 3, suppl.figs.12-15). Luchacovirus (A3 160	
clade), moves within the A1 clade for both nsp1 (recombination event 1, suppl.figs.4-7) and nsp7 161	
(recombination event 2, suppl.figs.8-11). Similarly, Sunacovirus (A4 clade) moves within the A1 162	
clade for Envelope (recombination event 11, suppl.figs.28-31). We observed many other 163	
incongruities for most of the subgenera in various genomic regions, but their new positions (in the 164	
trees) were not supported by both high bootstrap/aLRT values and different trees, thus they may 165	
actually represent cases of rapid divergence. 166	



Although α-CoVs form 5 distinct lineages, their Spike ORFs are organized into two 167	
major evolutionary clusters. The smaller cluster comprises Rhinacovirus (a member of clade A1), 168	
Luchacovirus (clade A3), Sunacovirus (clade A4), Soracovirus (clade A5), whereas the major 169	
cluster comprises all the other members of clades A1 and A2 (see Spike tree in Figure 2, 170	
recombination events 5, 8, 9, 10 in suppl.figs.1-2, 20-23,). The Spike ORF of this smaller cluster 171	
has been suggested to originate from β-CoVs via an ancient recombination event (Tsoleridis et al. 172	
2019). 173	

Phylogenetic incongruence was also observed for the Nucleocapsid region of β-CoV 174	
Merbecovirus (Figure 2 and recombination event 12 in  suppl.figs.34-37). By taking Sarbecovirus 175	
as the reference point, Hibecovirus is their closest subgenus, followed by Nobecovirus, 176	
Merbecovirus, and finally Embecovirus (most distant). The only exception to this pattern is 177	
observed in the Nucleocapsid region, where Merbecovirus seems to be the closest subgenus to the 178	
Sarbecovirus-Hibecovirus group. An alternative explanation is that the ancestral Nobecovirus 179	
Nucleocapsids underwent recombination or significant sequence divergence. However, manual 180	
inspection of the trees, their branch lengths, and the Poisson-distances leads us to favor the first 181	
explanation, whilst acknowledging that the second cannot be excluded at present. 182	
 183	
Tanglegram-based detection of intertypic recombination between some members of 184	
different subgenera 185	
We investigated instances where certain genomic regions of the members of a particular subgenus 186	
did not form a monophyletic group. These observations could be attributed to rapid divergence or 187	
intertypic recombination events in some, but not all, members. These events are more recent than 188	
the ones (described above) that occurred in the common ancestor of a subgenus. Such regions are 189	
shown in Figure 2 (designated as “P”: polyphyletic). We checked whether these candidate 190	
recombinant sequences clustered within or next to other subgenera with high 191	
bootstrap/aLRT/posterior probability values and also performed similarity plot and bootscan 192	
analyses with RDP4 (Martin et al. 2015) (see Methods), whenever possible. We detected several 193	
events; two in α-CoVs, five in γ-CoVs, and three in δ-CoVs. Interestingly, 9 of these 10 events 194	
are located at the Spike ORF.  195	

The most striking and recent event has been documented for Swine Enteric CoV 196	
(Boniotti et al. 2016), which is essentially a swine Tegacovirus (A2 lineage) that obtained the 197	
Spike ORF of a swine Pedacovirus (A1 lineage) (recombination event 6, suppl.figs.20-22, 24-198	
25). A second case (again in the Spike ORF) concerns five of the thirteen analyzed Tegacovirus 199	
sequences that form a monophyletic sister group to Minacoviruses (recombination event 7, 200	



suppl.figs.20-22, 26-27). An alternative sequence of events is that the other seven Tegacovirus 201	
(from cats and dogs) that form the second Spike monophyletic group recombined with an as yet 202	
unknown donor from the A2 lineage. Inspection of the phylogenetic trees and their branches leads 203	
us to favor the first option, while the host-range of the second group favors the second option. Yet 204	
another instance concerns four γ-CoV Igacovirus Spike sequences (from birds) that form a 205	
monophyletic cluster outside of the Igacovirus (recombination events 13-16, suppl.figs.40-44). 206	
This is a case of three or most probably four independent events where members from an as yet 207	
unknown γ-CoV subgenus repeatedly served as Spike donors to several Igacoviruses. A further 208	

case involves a duck Igacovirus Membrane sequence that clusters with the γ−CoV Brangacovirus 209	

(recombination event 17, suppl.figs.45-49). A final example concerns five δ-CoV Buldecovirus 210	
Spike sequences forming a monophyletic cluster (that is outside of Buldecoviruses) and is a sister 211	
group to Herdecovirus (recombination events 18-20, suppl.figs.52-56). Our interpretation is that 212	
this is a case of three independent events, where members from an, as yet unknown, δ-CoV 213	
subgenus (a close relative of Herdecoviruses) repeatedly served as Spike donors to these 214	
Buldecoviruses. 215	

In addition, we detected several low-confidence intertypic recombination events for α-216	
CoV subgenera, where the incongruent sequences cluster with other subgenera, but with low 217	
bootstrap/aLRT/posterior probability support. Here, either the donor is unknown or the 218	
incongruence is due to rapid divergence; they were not considered further in our study. Finally, 219	
we also observed previously reported intratypic recombination events, i.e. within Sarbecovirus 220	
(Suppl.Figs.60-68). Although such events are not the focus of this study, it should be mentioned 221	
that, at the beginning of the COVID-19 pandemic, several studies analyzed the available genomic 222	
data for evidence of recombination that could have led to the emergence of SARS-CoV2 (Boni et 223	
al. 2020; Lam et al. 2020; Paraskevis et al. 2020; Yang et al. 2021). Although the data show that 224	
SARS-CoV2 did not emerge via a recent recombination event, recombinant sequences (from 225	
other species) among the SARS-CoV and SARS-CoV2 lineages have been detected and were also 226	
confirmed by our study. 227	
 228	
Accessory ORF evolution: Non-homologous recombination of accessory ORFs between 229	
different CoV subgenera and genera. 230	
Based on PSI-BLAST, we built position-specific scoring matrices (PSSMs) for the various 231	
annotated accessory ORFs and thus identified 73 non-redundant Accessory ORF Families (AOFs; 232	
see Methods Section). The PSSMs allowed for a very sensitive homology search and revealed 233	
very distinct distributions in the various genera and subgenera (Figure 3, Figure 4 and suppl.file 234	



2). Although no AOF was present in all four genera, three AOFs were present in some subgenera 235	
of both α- and β-CoVs and three AOFs were present in subgenera of both γ- and δ-CoVs. 236	
Interestingly, three of these intergenus AOFs are localized in the neighborhood of the Spike ORF. 237	
Possibly, some AOFs with restricted distributions may actually be distant homologs of other 238	
AOFs that significantly diverged (Ouzounis 2020; Neches et al. 2021) and lost their homology 239	
signal. 240	
 Intriguingly, we detected two AOFs with very restricted distributions that originated 241	
either from gene duplication or horizontal gene transfer (HGT) of a Spike ORF fragment. The 242	
first instance concerns a bat β-CoV Hibecovirus ORF2 that is situated between ORF1ab and 243	
Spike, that is distantly homologous to the N-terminal region of its Spike (suppl.file 2: 244	
PSSM_TBlastN: 4e-39; 27% identity). This is either a case of non-homologous 245	
recombination/gene-fragment duplication within the same genome (followed by rapid 246	
divergence) or horizontal transfer from another related Hibecovirus Spike N-terminal region. The 247	
second instance concerns a similar Spike gene-fragment duplication event for ORF6 of some 248	
Luchacoviruses (suppl.file 2: PSSM_TBlastN: 7e-63; 25% identity). 249	
 We also detected distant homology between the ORF3a of β-CoV 250	

Sarbecovirus/Hibecovirus/Nobecovirus and the Membrane ORF of α-CoV A2 Tegacovirus and 251	
A4 Sunacovirus (suppl.file 2: PSSM_TBlastN: 2.4e-4 and 3.9e-4 respectively). Accordingly, a 252	
bioinformatics analysis (Ouzounis, 2020) recently reported a very distant homology among the 253	
SARS-CoV-2 ORF3a and Membrane ORFs. Based on our extended genome sampling and the 254	
observed e-values of the ORF3a PSSM against α−CoVs (best PSSM_TBlastN: 2.4e-4) and β-255	

CoVs (best PSSM_TBlastN: 2e-3), possibly a Membrane region from α-CoVs jumped via non-256	
homologous recombination to the common ancestor of Sarbecovirus/Hibecovirus/Nobecovirus 257	
and rapidly diverged to an accessory ORF. 258	
 259	
Non-homologous recombination of accessory ORFs between coronaviruses and other taxa 260	
We detected seven AOFs that had homologs in other taxa, outside of the Coronavirinae 261	
(suppl.file 2), with three of them situated in the neighborhood of Spike. The most striking and 262	
well-studied example is a hemagglutinin-esterase (MHV_HE) that is present in all the members 263	
of β-CoV Embecovirus, situated just before the Spike. It has homologs in toroviruses (porcine 264	
torovirus PSI-Blast e-value: 1.7e-55) and influenza C/D. Most probably, it was acquired either 265	
indirectly (via a torovirus intermediate step) or directly from an influenza C/D-like virus, and 266	
subsequently adapted and coevolved with the Spike (Snijder et al. 1991; Zeng et al. 2008; Caprari 267	
et al. 2015; Lang et al. 2020). 268	



 Another case is the β-CoV NS2 Embecovirus AOF (MHV_NS2), that belongs to the 2H 269	
phosphoesterase superfamily (Mazumder et al. 2002).  This AOF is observed in most 270	
Embecoviruses, like HCoV-OC43, and is situated between ORF1ab and the hemagglutinin-271	
esterase (HE). Interestingly, close homologs (NCBI-BlastP e-value: 6e-61) of this AOF (from β-272	

CoVs) are consistently found in several rodent α-CoV Luchacoviruses as well (Tsoleridis et al. 273	
2019), at the same genomic location, but they do not have the neighboring HE ORF. This AOF is 274	
also homologous to a region within the central part of polyprotein 1ab of several toroviruses, 275	
including porcine torovirus (PSI-BLAST e-value: 2e-28). Apparently, non-homologous genomic 276	
exchange among CoVs and toroviruses has happened more than once.  277	
 Next to the α-CoV Luchacovirus ORF2/NS2, there exists another accessory ORF 278	

(instead of HE in Embecoviruses), designated ORF2b. It is present in some, but not all α-CoV 279	
Luchacoviruses. It is homologous to rodent C-type lectins (PSI-Blast e-value: 4e-34) found in 280	
natural killer cell receptors as well as in many poxviruses and some herpesviruses. This AOF 281	
probably originated from its hosts (Wang et al. 2020). Furthermore, both ORF2a and ORF2b are 282	
missing from another closely related Luchacovirus genome (MT820625.1), thus highlighting the 283	
dynamic nature of this genomic region (Wang et al. 2020) and the potential for gene loss (Forni et 284	
al. 2017). 285	
 We also identified four more interesting AOFs. p10, situated just after the nucleocapsid 286	
region of some β-CoV Nobecoviruses in bats, is homologous (PSI-BLAST e-value: 3.9e-22) to 287	
p10 proteins from reoviruses (Huang et al. 2016). The Buldecovirus NS7a AOF (situated after the 288	
Nucleocapsid) of several avian δ-CoV Buldecoviruses is homologous (PSI-BLAST e-value: 1e-289	
10) to NSP1-1 from avian rotavirus-g. An uridine kinase (closest PSI-Bast hit: fungi; e-value: 2e-290	
30) is found only in γ-CoV Cegacoviruses (Mihindukulasuriya et al. 2008). Finally, the same γ-291	
CoV Cegacoviruses contain ORF6 that is distantly homologous to the capsid protein of human 292	
astrovirus 5 (PSI-BLAST e-value: 4.7e-7). 293	
 294	
Discussion 295	
The integration of our extensive phylogenetic and genome architecture analyses have revealed 296	
intertypic homologous and non-homologous recombination events among the genomes of 297	
different CoV subgenera/genera, and even with other taxa. Intriguingly, many of these events are 298	
localized around the Spike ORF and occur as double crossovers, where an entire region is 299	
exchanged as a cassette/module and the rest of the genome stays intact. It is unlikely that these 300	
observed and statistically supported phylogenetic incongruities (especially for Spike) are artifacts 301	



of rapid divergence or convergent evolution, because the “incongruent” regions actually cluster 302	
with regions from other genera/subgenera with high bootstrap/aLRT/posterior probability support 303	
(among other evidence, like site-wise likelihood of alternative hypotheses – results not shown). 304	
The Spike recombination of Swine Enteric CoV is the most recent and clear example. We have 305	
applied stringent analysis criteria involving the phylogeny of entire regions and it is possible that 306	
many genuine intertypic recombination events may not have passed our filters, especially if they 307	
involved small segments of an ORF (Forni et al. 2017). Another major problem is genomic 308	
sampling, where the donor has yet to be sequenced (Goldstein et al. 2021).  309	

Our interpretation for the frequently observed modular recombination events around the 310	
Spike ORF is that long-range genetic interactions of various genomic regions may actually block 311	
radical (intertypic) single crossover recombination events (Sola et al. 2011; Sola et al. 2015) but 312	
allow for double crossover events in certain genomic islands. This conclusion is supported by 313	
various independent experimental observations. Nucleocapsid proteins (N-proteins) from 314	
different members of the same genus may only be partially compatible, whereas N-proteins from 315	
different genera are completely incompatible (Schelle et al. 2005; Sungsuwan et al. 2020) and 316	
may even have a suppressive effect (Masters 2019; Sungsuwan et al. 2020). N-proteins are also 317	
involved in circularization of the genome (Lo et al. 2019). CoV RNA secondary structures have 318	
been shown to form long-range interactions within a CoV genome (Ziv et al. 2020) and to interact 319	
with cellular components, to initiate transcription and replication (Sola et al. 2011). Genetic 320	
interactions have been observed between the nsp8, nsp9 peptides (from ORF1a) and the 321	
pseudoknot at the 3’ end of the genome (Züst et al. 2008). Thus, single-crossover recombination 322	
events among different subgenera may break such long-range interactions, while double-323	
crossover/modular events may allow their retention. 324	

We also observed distinct subgenus-specific accessory ORF genomic architectures. These 325	
may function as an additional barrier to single-crossover intertypic recombination events, that 326	
would otherwise disrupt certain co-evolved combinations of ORFs. Several of these AOFs have 327	
been introduced from other genera/subgenera. However, some of these AOFs do not have 328	
homologs in any other subgenera and may have emerged via i) de novo gene birth, ii) rapid 329	
divergence of existing ORFs and loss of the homology signal, or iii) via non-homologous 330	
recombination with ORFs (followed by rapid divergence) from other CoVs, other viruses, or even 331	
hosts (Elhaik et al. 2006; McLysaght and Hurst 2016; Moyers and Zhang 2016; Schmitz and 332	
Bornberg-Bauer 2017; Ouzounis 2020). 333	

We observed exchange of genomic regions between CoVs and toroviruses, influenza C/D 334	
(directly or indirectly), reoviruses, rotaviruses, astroviruses, and even with hosts. Such events 335	



were frequent in the neighborhood of the Spike ORF. Toroviruses are of particular interest, 336	
because they belong to the same order (Nidovirales) as CoVs and can also act as gene donors in 337	
other viral orders, e.g. porcine Enterovirus-G (Shang et al. 2017; Hu et al. 2019). Worryingly, 338	
porcine toroviruses have both a worldwide distribution and a high infection rate (Hu et al. 2019). 339	
Thus, future genomic sampling of yet undiscovered CoVs may reveal an even more extensive 340	
exchange between CoVs and toroviruses. Moreover, genomic exchange between viruses 341	
(Flaviviridae, Hepeviridae, Dicistroviridae, Potyviridae) and their hosts has been observed 342	
repeatedly (Gilbert and Cordaux 2017). It is conceivable that some of the above-mentioned CoV 343	
AOFs did not move from one virus to the other, but independently from similar hosts; however, 344	
the PSI-Blast results show other viral sequences, and not cellular proteins, to be the closest hits. 345	

Importantly, members of the relatively young (Boni et al. 2020) SARS-CoV/SARS-CoV-346	
2 lineages (within Sarbecoviruses) do not yet appear to act as recipients in radical intertypic 347	
recombination events. They also display a very distinct AOF architecture. Thus, current 348	
evolutionary data do not favor a scenario where SARS-CoV-2 may (homologously) recombine 349	
with other currently circulating human CoVs of other subgenera/genera. Furthermore, SARS-350	
CoV/SARS-CoV-2 do not seem to exchange accessory ORFs with other CoV subgenera or other 351	
viruses/hosts, with the exceptions of ORF3a that is an old and unresolved event and ORF7a (with 352	
some Decacoviruses). It should be noted that their closest relatives, Hibecoviruses, have a 353	
divergent Spike-like accessory ORF that resulted from either a gene duplication or horizontal 354	
transfer event. Nevertheless, SARS-like viruses can recombine with SARS2-like viruses, as our 355	
and other analyses have shown (Boni et al. 2020; Lam et al. 2020; Yang et al. 2021). This finding 356	
has very important implications, because, combined with the ability of Sarbecoviruses to easily 357	
move from one host to another, it demonstrates a potential for a future intratypic recombination 358	
event (within Sarbecoviruses), where a highly infectious SARS-CoV2 variant (e.g. the Delta 359	
variant) could recombine with a SARS-like sequence in another host species and give rise to a 360	
recombinant that combines the high infectivity of SARS-CoV2 with the much higher mortality 361	
rate of SARS itself. 362	

Many of the events that we have observed are very old; nevertheless, our results suggest 363	
that researchers and those responsible for public health should be vigilant. Certain key taxa like 364	
bats and/or farmed animals (especially pigs) have the potential to play a key role in any future 365	
emergence of a recombinant SARS-CoV-2 strain or some other CoV epidemic (from another 366	
genus/subgenus). SARS-CoV-2 spill-back from humans to other animals (domesticated or wild) 367	
that also harbor many and diverse CoVs has been reported (de Morais et al. 2020; Olival et al. 368	
2020; Sit et al. 2020). Ferrets, cats and dogs are susceptible to the currently circulating SARS-369	



CoV-2 strains, whereas pigs, chicken and ducks appear to have lesser, or no susceptibility 370	
(Meekins et al. 2020; Shi et al. 2020; Sit et al. 2020; Pickering et al. 2021). CoVs demonstrate a 371	
high capacity for cross-species infection, even from birds to mammals, either directly or via a few 372	
evolutionary steps (Li et al. 2006; Graham and Baric 2010; Menachery et al. 2015; Menachery et 373	
al. 2016; Li et al. 2018; Boley et al. 2020). Furthermore, pigs are carriers of very diverse α-, β-, 374	

as well as δ-CoVs and have been shown to function as “recombination bioreactors”, with the 375	
notable example of Swine Enteric CoV (Boniotti et al. 2016). In addition, intensively farmed pigs 376	
are hosts for many other viruses, such as toroviruses or influenza A (Hu et al. 2019; Henritzi et al. 377	
2020; Sun et al. 2020). Fortunately, genomics is a valuable new tool for monitoring the 378	
emergence, spread, and ongoing adaptations of SARS-CoV-2 (Boni et al. 2020; Neches et al. 379	
2020; Worobey et al. 2020; Kemp et al. 2021; Volz et al. 2021). It is conceivable that what we 380	
have observed is only the “tip of the iceberg”; that past unknown recombination events of various 381	
CoVs may have led to many unnoticed (or, perhaps, readily contained) localized small-scale 382	
epidemics that died out. However, given the observed genomic diversity and inherent genomic 383	
instability of CoVs, in this new era of urbanization, global transport, intensive farming, and 384	
habitat destruction (Beyer et al. 2021), intratypic and intertypic recombination events may lead to 385	
new epidemic strains that may prove much more difficult to contain (Bedford et al. 2019). As a 386	
final note, these results highlight the need to further investigate the inclusion of other, and much 387	
more stable, genomic regions (in addition to Spike) in the design and development of the next 388	
generation of coronavirus vaccines. 389	
 390	
Methods 391	
Phylogenetic analyses 392	
We obtained the taxonomy IDs for α-, β-, γ- and δ-CoVs from NCBI Taxonomy in order to 393	
search for available nucleotide sequences in Genbank (Benson et al. 2013), using (as two extra 394	
criteria) the keyword “complete” and nucleotide length higher than 24,000. We obtained 1102, 395	
14769, 435 and 154 genomic sequences from α-, β-, γ- and δ-CoVs respectively, in August 2020. 396	
Redundancy with the set of retrieved sequences was removed with the UCLUST software (Edgar 397	
2010), using 90% nucleotide identity and 98% query coverage at the whole-genome level, in 398	
order to filter out the thousands of available genomes from the same virus that have been 399	
involved in large outbreaks, like SARS-CoV-2, PEDV, IBV. From each non-redundant group, we 400	
retained one representative sequence, or more if they were obtained from different hosts. We 401	
designate these groups as NRG90 (Non-Redundant-Group-90% nucleotide sequence identity). In 402	
addition, within each NRG90 group we ensured that we retained the representative RefSeq 403	



sequences for each species, that were obtained from ICTV taxonomy (ICTV Coronaviridae study 404	
group). Sequences were aligned with Muscle (Edgar 2004) and MAFTT (parameters: --auto) 405	
(Nakamura et al. 2018). Multiple alignment views and manual editing were performed with the 406	
Seaview4 software (Gouy et al. 2010). The boundaries of nsps within ORF1ab, as well as those of 407	
Spike, Envelope, Membrane, Nucleocapsid and the accessory ORFs were determined based on 408	
Genbank annotation and from manual inspection of the multiple alignments. Filtering of poorly 409	
aligned regions was performed with the g-blocks software (Castresana 2000), where we retained 410	
sites with less than 50% gaps and blocks of two consecutive sites. Model selection for ML and 411	
Bayesian trees was performed with Prottest3 (Darriba et al. 2011). Subsequent ML tree 412	
reconstruction was performed with PhyML (Guindon and Gascuel 2003) (applying SH-like 413	
approximate likelihood ratio test, SPR algorithm for tree search). Neighbour-Joining (BioNJ) 414	
trees were generated with Seaview4 (Gouy et al. 2010), using the Kimura two-parameter and 415	
Poisson models with 500 bootstraps, for nucleotide and protein sequences, respectively. Bayesian 416	
phylogenetic trees were calculated using the BEAST software v.1.10.4 (Drummond et al. 2012; 417	
Suchard et al. 2018) with MCMC length of 1 million and a burn-in value of 10000 (all the other 418	
operators and priors were set to default). Phylogenetic trees were visualized with Treedyn 419	
(Chevenet et al. 2006), iTOL (Letunic and Bork 2019) and Dendroscope (Huson and Scornavacca 420	
2012). Phylogenetic trees were generated for all regions (nsps, ORF1ab, Spike, Envelope, 421	
Membrane, Nucleocapsid) of each CoV genus independently. In addition, phylogenetic trees that 422	
included all sequences of all four CoV genera together were generated for those regions (nsps 3-423	
10, 12-16, ORF1ab, Spike, Membrane, Nucleocapsid) whose multiple alignments had a sufficient 424	
number of columns, after g-blocks filtering. 425	

Phylogenetic tree incongruence was estimated/quantified with the Robinson-Foulds (RF) 426	
method (Robinson and Foulds 1981) for unrooted trees, within the Visual Treecmp server 427	
(Goluch et al. 2020). A certain genomic region is considered incongruent when its phylogeny is 428	
not in agreement with the phylogeny of the other regions (from the same genome). Visualization 429	
of the triangular matrix of Robinson-Foulds normalized values among the various trees was 430	
performed with Python and R pheatmap packages. This RF-matrix resembles the Linkage-431	
Disequilibrium matrix, at the macroevolutionary level, but for specified genomic regions. Since 432	
the goal was to investigate incongruence at the macroevolutionary level and not within the virus 433	
species level, for this type of analyses, branches with length less than 0.02 were collapsed with 434	
the TreeGraph v2 software (Stöver and Müller 2010). Otherwise, the incongruence of strains of 435	
the same virus species would artificially inflate the RF values. This would especially be the case 436	
for γ-CoVs, where many divergent strains of IBV (Igacovirus) were available. Phylogenetic tree 437	



tanglegrams were visualized with Dendroscope (Huson and Scornavacca 2012), using the ML, 438	
BioNJ and Bayesian tree of ORF1ab as the reference tree against each of the ML, BioNJ and 439	
Bayesian trees of the individual nsps and ORFs S, E, M, N, for each of the four CoV genera 440	
separately.  Estimation of evolutionary distance among homologous aligned sequence regions (for 441	
visualization in the RF-matrices) was performed with the Poisson-distance method within the 442	
MEGA X software (Kumar et al. 2018) (parameters - gap missing data: pairwise deletion; rates 443	
among sites: uniform). The statistical significance of phylogenetic incongruence of specific 444	
suspected recombination events was further assessed with the approximately unbiased (AU) test, 445	
using CONSEL (Shimodaira and Hasegawa 2001). For a certain set of sequences, the reference 446	
PhyML tree was obtained from the suspected recombined region and it was compared against the 447	
PhyML tree of the corresponding ORF1ab regions. 448	
 449	
Accessory ORF analysis 450	
In the first step of this analysis, all annotated accessory ORFs from our non-redundant set of 196 451	
CoV genomes were retrieved from Genbank. We only retained accessory ORFs with a length ≥50 452	
amino acids, with the exception of human CoVs (length≥30) that were situated in the regions 453	
among the 6 core ORFs and not any accessory ORFs that were entirely overlapping with any of 454	
the core ORFs. The selected annotated accessory ORFs in all analyzed genomes were further 455	
clustered in 88 homologous groups, using as cut-off, pairwise BLASTP e-values of 1e-10, 456	
followed by grouping with mcl-clustering (Enright et al. 2002). Afterwards, a representative 457	
peptide sequence from each cluster was used to build a corresponding Position Specific Scoring 458	
Matrix (PSSM) with locally installed PSI-BLAST, against the Coronaviridae proteins of the 459	
(locally installed) NCBI non-redundant protein database, with an e-value cut-off 1e-3 and as 460	
many iterations as needed, until convergence was achieved. Next, 15 redundant PSSMs were 461	
removed and we ended up with 73 annotated accessory ORF PSSMs. Accordingly, each non-462	
redundant PSSM corresponded to one homologous Accessory ORF Family (AOF). All 73 463	
PSSMs are available in supplementary file 3. 464	

Afterwards, each AOF PSSM was used to scan all the analyzed CoV representative 465	
genomes for the presence of the corresponding family with TBlastN (cutoff: 1e-3). Each TBlastN 466	
hit was inspected to determine whether it encoded a peptide of at least 30 amino acids, otherwise 467	
it was considered to be pseudogenized (represented with orange colour in the matrices of figures 468	
3 and 4). The coordinates of the detected homologous regions were visualized in each genome 469	
with Biopython and the genomic architectures were manually inspected. Genomic regions from 470	
the representative CoV genomes containing a certain AOF were aligned with Muscle. Each 471	



multiple alignment is available within the zipped supplementary file 4. Next, the annotated ORF 472	
PSSMs were used as queries to scan the entire NCBI non-redundant protein database, in order to 473	
detect AOF homologs in taxa outside of Coronavirinae and thus detect potential non-homologous 474	
recombination events (horizontal gene transfers). Intriguingly, bacterial draft genomes were 475	
found to include CoV AOFs with very high sequence identity. These draft genomes were re-476	
assembled with Spades (Bankevich et al. 2012) and the relevant contigs were manually 477	
investigated for co-presence of CoV and bacterial genes, but they eventually appeared to be 478	
contaminations and were not further investigated. 479	
 480	

Figures 481	

 
Figure 1. Matrices of incongruence among the core genomic regions of the four CoV genera 

based on the normalized Robinson-Foulds method, for unrooted trees (calculated with the 

TreeCMP server). BioNJ phylogenetic trees were generated with the Poisson model of evolution 

and 500 bootstrap replicates. In addition, branch lengths < 0.02 were collapsed. The orange line 

above each matrix displays the average Poisson-distance among sequences of the same genomic 



region (calculated with the MegaX software). Blue bars above each matrix display the average 

RF value for that particular region (against all other regions). 
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Figure 2. The genomic organization of the core ORFs and peptides of the SARS-CoV2 genome 



are displayed on the top of the figure. The table/matrix below it shows which genomic regions of 

the various subgenera are involved in intertypic recombination events. “GM” represents events 

that occurred at the common ancestor of the genus. “SgM” represents events that occurred at the 

common ancestor of the subgenus. “P” represents more recent events that occurred for one or few 

members of the subgenus and have resulted in a polyphyletic tree pattern (for that region and 

subgenus). All incongruence events in the matrix are supported by the three phylogenetic tree 

methods (NJ, PhyML, Bayesian) and are also statistically significant, based on the approximately 

unbiased test of CONSEL. Two phylogenetic trees (of ORF1ab and Spike) for all four genera are 

also included below the matrix, to visualize the recombination events of the Spike region. In these 

trees, we use stars to denote sub-genera that have been involved in intertypic homologous 

recombination events, in any genomic region (not only the Spike). 
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Figure 3. Presence and distribution of Accessory ORF Families (AOFs) in the α- and β-CoVs. 

Each column in the matrix represents a certain AOF. Red color (within the matrix cells) denotes 

the (TblastN) presence of an AOF that is also verified by a predicted ORF with length ≥30 aa, 

whereas if the length of the predicted ORF is <30 aa, then it is denoted with orange color. Stars 
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denote AOFs that are present in both α- and β-CoV members, whereas diamonds denote an AOF 

that resulted from duplication of a core ORF. Downward arrows denote AOFs that have 

homologs in non-CoV genomes, together with their best PSI-Blast hit e-value. Horizontal orange 

bars (above the matrices) denote the genomic region where the AOF is located, i.e. S-E denotes 

the region between the Spike and Envelope ORFs. 
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Figure 4. Presence and distribution of Accessory ORF Families (AOFs) in the γ- and δ-CoVs. 

Each column in the matrix represents a certain AOF. Red color (within the matrix cells) denotes 

the (TblastN) presence of an AOFs that is also verified by a predicted ORF with length ≥30 aa, 
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whereas if the length of the predicted ORF is <30 aa, then it is denoted with orange color. 

Inverted triangles denote AOFs that are present in both γ- and δ-CoV members. Downward 

arrows denote AOFs that have homologs in non-CoV genomes, together with their best PSI-Blast 

hit e-value. Horizontal orange bars (above the matrices) denote the genomic region where the 

AOF is located, i.e. M-N denotes the region between the Membrane and Nucleocapsid ORFs. 
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