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The bigger picture

Achieving the various goals of the

global sustainable development

agenda poses complex

challenges for the chemical

industry and society as a whole.

Systemic innovation in chemical

research and development,

assessment, management, and

education is required to facilitate

a transition toward a sustainable

future. Such an innovation can

benefit, to a large extent, from the

increased uptake and systematic

adoption of digitalization and

digital tools to optimize the

management of entire chemical

life cycles, from chemical supply

chains and chemical
SUMMARY

Modern chemistry is the backbone of our society, but it is also a
major contributor to global environmental pollution and the
ongoing climate crisis. The transition toward a sustainable future
requires a radical transformation of how chemistry is designed,
developed, and used. This represents a ‘‘break it or make it’’ chal-
lenge for the chemical industry with significant technology lock-in
and high entry barriers to radical innovations. We propose that
urgently required systemic changes in chemical industry, research
and development (R&D), chemicals assessment and management,
and education to advance sustainable chemistry are attainable
through increased and more rapid adoption of digitalization and
new digital tools. This will enable flexible data exchange, increased
transparency of information flows along cross-country chemical,
material, and product life cycles, and chemistries that are safe and
sustainable by design, addressing the complexity of chemicals-envi-
ronment-health interactions and lowering the costs of entry into
chemical R&D and manufacture, and new, more sustainable and
collaborative business models.
manufacturing to use and end-of-

life. Digitalization in chemistry will

enable development of more

flexible data exchange models,

more transparent international

and cross-sector chemical

information transfer, and

chemistries that are both safe and

sustainable by design. With that,

digitalization is key to a radical

transformation to more

sustainable and collaborative

business models in the growing

chemical industry sector.
INTRODUCTION

Advances in chemistry over the past century are widely praised for the technological

and developmental achievements of human civilization, but are also associated with

environmental degradation, loss of biodiversity, threats to human health, and the

ongoing climate crisis. Yet, in the modern technological society, chemistry is ubiq-

uitous, and innovations in chemistry and materials are responsible for the majority

of new products in most areas of human endeavor.1 The innovation potential of

chemistry is at the core of current efforts to solve complex challenges, including

the development of energy storage materials to support the wider adoption of

renewable energy, the production of hydrogen as a clean energy vector, the direct

utilization of carbon dioxide to introduce technogenic circulation of carbon, and the

development of infinitely recyclable synthetic polymers.2–8 Nevertheless, the transi-

tion of chemistry toward a sustainable development model requires a paradigm shift

in (1) chemical research and development (R&D); (2) how businesses protect intellec-

tual property and profit from chemicals; and (3) chemicals, materials, and products

design and manufacturing being safe and sustainable-by-design (SSbD).

It is no surprise that the definition of ‘‘sustainable development’’ (see https://sdgs.

un.org/goals) includes ‘‘organizational’’ change. A systemic change to how the

chemical industry is structured is urgently needed that would encompass the entire

life cycle of molecules toward full circularity. This includes what feedstocks are being
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Figure 1. Overarching EU strategy and objectives for moving toward sustainable chemicals
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used, what molecules are incorporated into materials and products to achieve the

desired functional performance, howmanufacturing of newmolecules is developed,

and how molecules are treated for remanufacturing, reusing or at end-of-life.9,10

Chemistry has long been described as a complex system.11,12 When all its aspects

are considered together—its highly complex supply chains, business models, wide

range of stakeholders, interactions of molecules with products, humans, and the

environment—chemistry becomes an example of a complex dynamic interacting

system, a class of problems that are not amenable to classical reductionist solu-

tions.13,14 Finding chemical solutions with positive impacts toward sustainability de-

pends onmaking chemical data more transparent and available for decision-support

tools that are suitable for addressing complex problems, including emerging tools

from the field of artificial intelligence (AI) and digitalization. There is an ongoing

development in the discourse on potential positive and negative implications of

digitalization approaches.15 We outline the rationale for an urgently needed, rapid,

and radical transformation of the chemical industry with the aid of digitalization, in

support of achieving the ambitious objectives of intergovernmental strategies,

such as the EU Chemicals Strategy for Sustainability16 (Figure 1).

Structural transformation of chemical industry

Scientific institutions,17,18 industry associations,19,20 and financial market ac-

tors21,22 point to major shifts in global environmental, social, and economic condi-

tions over the next decades, risking societal fractures with deep global conse-

quences.23 The chemical industry, along with all other sectors of human activity,

must radically change toward sustainable models. We argue that digitalization

will facilitate this transition and create knowledge on how best to adapt and
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perform. The ‘‘low-carbon’’ and ‘‘pollution-free’’ paths to mitigate the current

climate crisis and ongoing environmental degradation must be based on the tran-

sition toward a circular economy model, as well as significantly emphasizing the

importance of stronger protection of human and environmental health. Such path-

ways indicate great opportunities ahead for the chemical innovation ecosystem of

academia, private and public sectors, but they also pose many uncertainties as

existing structures will be tested.

Manufacturers are progressively acknowledging consumer and government calls for

providing product sustainability information based on principles of reliability, rele-

vance, clarity, transparency, and accessibility.24 Climate-driven initiatives, such as

‘‘carbon-neutrality’’ roadmaps, are a first step toward a more sustainable chemical

industry but are currently limited to greenhouse gas (GHG) emissions and not

directly addressing the wider realm of impacts from chemicals on human and

environmental health, including biodiversity impacts. Furthermore, ‘‘sustainable,’’

‘‘circular,’’ or ‘‘green’’ public procurement has the potential to leverage sustainability

information via policymaking25 in a sector with great purchase power—public

procurement accounts for an average of 12% of gross domestic product (GDP) in

countries of the Organization for Economic Co-Operation and Development

(OECD) and up to 30% of GDP in many developing countries. Assessing the

complete life cycle of chemicals, materials, and products, based on transparent,

standardized, and accessible scientific methodologies, will become the major

foundation for gaining the trust of the public and enabling evidence-based pol-

icies.26 To understand how far we currently are from this target, it is enough to

consider that life cycle assessment (LCA) studies published today almost never

contain full verifiable datasets and are not supported by detailed annotated

models.27

Althoughmany calls for action agree on the ultimate goals, viable decision pathways

toward these goals need to be developed, tested, and adjusted in iterative cycles,

based on the reality of evolving elements of a complex system. Current innovation

activities are slowed down by the lack of robust frameworks that align the interests

of citizens, communities, shareholders, private enterprises, and the environment.

Regulatory intricacy at all levels,28 short-term financial incentives, and incipient

business models for a circular and low-carbon chemical industry all compound the

technological challenges. This translates into uncertainty over future strategies in

the private sector and stalls implementation of even those scientific and technical

solutions that are ready for scale-up today. Furthermore, companies often lack an

insight into the environmental, social, and economic impacts of their products

beyond the immediate scope of their own operations. Thus, direct actionable

cause-effect relationships and the resulting responsibilities still need to be estab-

lished on a systemic level.29 Regulating agencies and government entities also

lack such insights, preventing the development of policies and regulations that

cover the full extent of the chemical value chain.

Would acceleration of the transformations in the whole innovation ecosystem help to

respond to these challenges faster? How can we build frameworks that mitigate

planning uncertainty on the systems level? How can we make environmental, social,

and economic-sustainability ambitions actionable based on rigorous scientific

standards and tools that capture relevant complexities and interactions?

Assuming that uncertainty over future regulations and multiple conflicting business

drivers are only slowly resolved, the private sector and the wider innovation
Chem 7, 1–17, November 11, 2021 3
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ecosystem, including academia, governmental agencies, and nonprofit R&D

agencies, can already work toward the more rapid alignment of visions—circular

economy for plastics,30 mass balance,31 value chain carbon transparency,18 and sus-

tainability impact accounting29 represent the emerging industry frameworks that

have the potential to align the interests of communities, companies, shareholders,

and the environment. These frameworks follow the principles of scientific rigor

and shared responsibility for products’ eventual impact, considering how products

are designed, created, manufactured, brought to market, reused, and recycled.

The recent surge of research and investments in data-driven innovation and chemi-

cal manufacturing operations is creating the comprehensive data foundation

required for industry-wide data sharing and deployment of state-of-the-art ma-

chine-learning, AI and big-data applications.32–34 Pilot projects on distributed trust

technologies have started to tackle the challenge of proprietary data and intellectual

property protection.35 Considering recent progress, initiatives for cross-sector, pre-

competitive technology roadmaps and standards,36 could be implemented at a

much faster pace than what is observed today. However, the sustainability challenge

in such efforts transcends a single organization of any type in the chemistry value

chain. To address this challenge, new solutions in the field of sustainable technolo-

gies are urgently needed, which combine conventional chemistry and sustainability

assessment expertise with innovations in digitalization technologies. Since it is

nearly impossible for a single entity to capture all the required technology compo-

nents, a wider structural change is required, which should also include much broader

cross-organizational cooperation.

Needs for increased digitalization

At the level of individual entities, ‘‘Industry 4.0’’ has become reality in many com-

panies since 2011,37 and automation has led to measurable increases in productivity

and efficiency. Many attributes of Industry 4.0 are rapidly being adopted across

different industry sectors. For example, measurements of extensive process param-

eters in real-time are in place and used for visualization, as well as for economic opti-

mization, although the latter is still fairly rare.38 Predictive maintenance and

augmented reality for maintenance have arrived in some chemical companies.39

Within the chemical industry, there are also significant structural changes already

taking place, such as interlinking of processes with upstream and downstream, as

well as raw materials and residue management within the network of plants and

entire production facilities.

However, for several applications, more data are collected than are being used

because data are not integrated into a single, consistent (centralized or distributed)

platform nor standardized, whereas for many running ‘‘legacy’’ processes, the rele-

vant data are not collected or otherwise available. The challenge of data is especially

complex in the estimation of environmental aspects of sustainability, such as toxicity

and degradability,40,41 or mapping detailed chemical flows for complex multi-mate-

rial products. For these two very different challenges, there is a common set of prob-

lems—access to data, transparency, and traceability of data—which require the

same solution through digitalization of the complete system of chemical processes.

To address these problems, digitalization should aid in the transformation of chem-

ical business models, as well as breaking organizational obstacles to the exchange of

know-how and data.42

We ask the questions ‘‘What opportunities would emerge, if chemical value chain

stakeholders standardize data and establish data sharing in an economically viable
4 Chem 7, 1–17, November 11, 2021
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Figure 2. Examples of international collaborative efforts in digitalization of chemical industry
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and secure manner that respects intellectual property rights, confidentiality of

enterprise data, and privacy of citizens?’’ and ‘‘Would the environmental, social,

and economic benefits of data sharing and data availability significantly outweigh

concerns that are levied from the position of maintaining the status quo?’’

The creation of digital twins of production processes and digital representations of

products is a prerequisite to the virtualization of value chains. Virtualized value

chains are required for cost optimization and comprehensive tracking and evaluation

of environmental impacts. This would represent a radical departure from the

currently used one-off estimates that depend on laborious field and literature

studies and come with significant uncertainties. In the fully digital chemical design

and manufacturing paradigm, factories and production sites learn from each other,

designers systematically adopt SSbD principles, and manufacturers learn how to

produce with fewer emissions and health hazards, ultimately staying within planetary

and other boundaries for chemicals.43

The digitized value chain with transparent data flows will enable to rapidly translate

customer-defined product functions into the most sustainable function delivery,

whereas emerging digital rights identification methods protect intellectual prop-

erty. It is feasible with current digital technologies to enable data transparency,

business-to-business cooperation, and intellectual property protection at the

same time. There are emerging examples of collaborations that are spearheading

the development of data transparency and full digitalization of value chains in the

chemical industry (see Figure 2).

There are alsoexamplesof newbusinessmodels,which requireextensivedata-drivenser-

vices being trialed out, such as chemical leasing and industrial symbiosis.44 Although the

manufacturing industry is experimentingwith thesedata spaces andbusinessmodels, the

chemical process industry is lacking behind. A similar situation exists with the commercial
Chem 7, 1–17, November 11, 2021 5



Box 1. Challenges and enabling factors of introducing digitalization into chemistry R&D and
manufacturing

Increasing transparency: It is expected that digitalization of chemistry will facilitate wider access to

(raw) data, providing the ingredients for disruptive-innovation alternatives and unveiling bottle-

necks, similar to the introduction of open standards in computing and the development of digital

collaboration tools for coding. Increasing transparency of the value chain will advance the knowl-

edge of manufacturing processes of compounds that are currently restricted. A wider and more

systemic adoption of digitalization may be required to trace those procuring materials for synthesis

of restricted materials.46 Blockchain can tackle the security and privacy issues of such data being

exchanged.

Reskilling/upskilling of professionals: The digitalization of chemical R&D and manufacturing re-

quires a new set of skills. This can be obtained by reskilling/upskilling the current workforce or

bringing new professionals to work within the chemical industry. Chemists and material scientists

would benefit from being able to work with large datasets, assisted by AI and machine learning.

Engineers working with robotic instruments would support complex multi-instrument infrastructure

of robotic labs and manufacturing facilities within the chemical industry. As the amount of routine

and repetitive tasks will decrease, technicians and engineers who currently perform such types of

activity would have to be reskilled/upskilled to remain active in the industry.47 Although digital

transformation brings along operational benefits, large companies have enough resources to bring

or develop new skills within its workforce. Nevertheless, the impact of change tends to be harder

for small and medium enterprises, especially when competing for highly skilled workforce.48

Providing additional high-performance infrastructure and new devices: Digitalization of chemistry

entails increasing the use of smart devices and sensors to collect more data and pushing compu-

tational performance to interpret increasingly larger amounts of data. The manufacturing of new

electronic devices, especially on a large scale, will increase the over-exploitation of natural

resources, such as (scarce) metals required for processors and batteries. Toxic wastes generated

from production, recycling, and end-of-life of electronics are a serious environmental concern.

The path toward sustainable and non-polluting digitalization should consider these aspects and

push for longer product lifetimes through circularity processes, such as repair, reuse, and reman-

ufacture, and especially designing devices within a circular and life cycle-based approach. E-wastes

should be appropriately included in related chemical and product life cycle performance assess-

ments.49 Furthermore, efficiency of computing power should be paired with clean energy con-

sumption (as it is the case currently with internet giants). It is key that environmental benefits

brought by digitalization are not cancelled by the infrastructural environmental costs.
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adoption or scale-up of promising new clean technologies. Currently, scaling of novel,

potentially sustainable, and innovative chemical technologies to industrial production is

mainly limited by uncertainty over the future shape of the chemical industry, which affects

investments into capital projects. Investors are reluctant to pour capital into technologies

that may not be able to offer an explicit demonstration of the benefits to sustainability.

There have also been examples of early commercialization of new clean processes that

resulted in ultimate commercial failure, such as the 2nd generation bio-ethanol plants in

theUK, which are now shut. At present, investment decisions intodeveloping sustainable

technologies contribute around 5% of the ratio between economic versus sustainability

criteria in corporate boardrooms.Weattribute this, ultimately, to the lack ofdecision-sup-

port tools that are suitable for analysis of complex, dynamically interacting systems that

could offer 5- to 10-year projections with regard to the impact of investment decisions

on sustainability. Main reasons for this are the protection of companies’ intellectual prop-

erty and fear of losing competitive advantage, as well as the lack of transparent environ-

mental informationon largebenchmark processes fromestablishedchemical companies.

The uptakeof digitalization for developingandevaluating chemicals also introduces new

requirements. These are related to changes in operational chemical R&D workflows and

additional infrastructures for information and datamanagement. Some of these require-

mentsand relatedenabling factors areprovided inBox1. Inparallel to industry, academia
6 Chem 7, 1–17, November 11, 2021
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plays a key role in enabling digitalization, seeking transparency, decentralization and

harmonization of data generation and curation, and reproducibility of new digitaliza-

tion-based data for decision support. Centralized data cleaning and augmentation ap-

proaches create concerns around ownership, funding, and authorship. In response,

blockchain-enhanced solutions have recently emerged as a possible, secure alternative

to centralized data management. Academia provides an important forum for discussing

and suggesting data standards, and for developing appropriate authorship and data

identifiers using new digital technologies. Furthermore, a recent analysis of the potential

applications of blockchain technology in the chemical industry45 has identified opportu-

nities through better sharing and logging of data and machine-to-machine ‘‘trading’’

paired with the internet of things (IoT). Nevertheless, that analysis also highlights the

need for further development of blockchain technology to overcome some of its limita-

tions for large-scale deployment without serious environmental impact, such as high

resource consumption. This includes slow speed and computational costs that are

currently being addressed by the 3rd generation crypto/blockchain start-ups and

academic institutions, which elaborate onhow tooptimize a decentralized non-hierarchi-

cal network of (autonomous) agents and non-hierarchical data sharing protocols.

However, given the early stage of this research area, there is limited knowledge about

its performance and eventual impact.18

Despite the required adaptations, there are quantifiable benefits of moving toward

increased digitalization in the chemical industry. For example, BASF has reported a

30% reduction in pilot-scale batch cycle times of emulsionpolymerizationby introducing

real-time optimization based on better reaction sensors and improved predictive

models.50 This time reduction translates into lower operational costs, higher plant

throughput, and, with the quality-oriented process control, a reduction in off-spec prod-

uct waste. In automotive manufacturing, one of the key benefits of digitalization that

translates into supply chain optimization is an 80% increase in forecasting accuracy.51

A similar potential is expected when applied to optimizing chemical supply chains,

where collaboration with digital market places allows to rationally forecast product de-

mand. In these efforts, an improved access to data thereby enables new start-ups to

challenge the traditional opaque chemicals market, and the use of machine learning al-

gorithms enables deeper understanding of chemical supply chains with knowledge that

can be used to reduce the number of harmful chemical products in the market. In chem-

ical R&D, digitalization has already demonstrated a significant increase in performance

gains of materials and molecules discovered with the aid of AI,52,53 which will ultimately

also be useful to identify and develop safer and more sustainable chemistries and mate-

rials to substitute harmful substances across applications. Although some benefits of

digitalization can already be enumerated, the most significant benefit is expected

from innovation in business models enabled by digitalization.

In the following, we will focus the discussion on the role of digitalization in relation to

feedstocks, chemicals and materials design, and interactions in the chemicals-envi-

ronment-health space.

The role of feedstocks

Global chemicals production still greatly relies on the oil and gas sectors as major

feedstocks for chemicals, despite their significant contributions to global warming

and environmental pollution. In parallel, the chemical industry is directly or indirectly

implicated in the life cycle of most products globally, and its unaccounted release of

hazardous chemicals and pollution is linked not only to environmental releases from

resources extraction but also from chemical synthesis, chemical and product formu-

lation and manufacturing, product use and recycling, remanufacture, and waste
Chem 7, 1–17, November 11, 2021 7



Box 2. Data availability and digitalization needs associated with chemicals, oil and gas indus-
tries emissions, chemical pollution, and impacts on human and environmental health

Greenhouse gas emissions and related impacts on climate: Data show that fossil fuels, apart from

coal, were responsible for 55% of the historic high of 33.1 Gt CO2 global energy-related emissions

in 2018.54 The oil and gas industry is the second (after agriculture) largest emitter of CH4 (82 Mt out

of 342Mt annual emissions from human activity55), a critical climate pollutant with a global warming

potential over 80 times that of CO2 on a 20-year timescale. In 2017, approximately 75 Mt of natural

gas escaped into the atmosphere from global oil and gas operations, which represents roughly

USD 34 billion of lost revenue at average 2017 delivered prices.56 In relation to the chemical indus-

try, its operations generate about 20% of all GHG industrial emissions and 7% of global GHG emis-

sions, despite significant reductions in the past decade.54

Chemical pollution: When addressing chemical pollution, an appropriate assessment is not

possible nor accurate due to the multitude of sources in selected countries, the lack of data—espe-

cially in low-to middle-income countries—and the lack of data from industrial accidents and disas-

ters. Although simulation models have the potential to be used to estimate environmental releases

and related impacts on human and environmental health, related data are only available in the

lower percent range across themore than 100,000 marketed chemicals worldwide,57 which empha-

sizes the strong need for innovative digitalization methods that help characterize and manage

chemical releases and their potential impacts on humans and the environment.

Chemical impacts on natural ecosystems: Cumulatively, chemicals reaching the environment are

reported to already threaten the integrity of ecosystems globally.58 This trend is considered to

worsen as the global chemical market is rapidly and continuously growing, with a 50-fold increase

in global chemical production volume since 1950.57 Chemical production is especially growing in

emerging economies with mostly insufficient chemicals and waste management capacity, which

affects entire product life cycles and cross-border value chains, urgently requiring innovative digi-

talization approaches along with additional and efficient technologies and chemicals management

infrastructure.

Chemical impacts on human health:A recentWHO report estimated that twomillion human lives or

an equivalent of 53 million disability-adjusted life years were lost globally in 2019 due to exposure

to selected chemicals, including lead and some occupational carcinogens and asthmagens.59

However, such figures are based on epidemiological data that are available only for a handful of

chemicals, whereas humans are exposed to a wide range of chemicals in their daily life.60 Hence,

whereas these estimates are likely underestimating the true human health burden from chemical

exposure, more straightforward digitalization methods are urgently needed to provide health

burden estimates for the wider range of marketed chemicals, also accounting for the diversity of

exposure settings, and inter-individual and spatiotemporal variability.
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disposal. A dramatically increased availability of data, as well as the development

and uptake of digitalization methods, is required to address these urgent

challenges (see Box 2).

The ongoing global climate crisis, approaching or surpassing Earth’s boundaries that

include thefiniteassimilativecapacity for chemicalpollution,43 isunquestionablya reason

to accelerate thedevelopment of sustainable chemistry.Over the last decade, the search

for alternative carbon sources for chemicals has significantly widened the R&D efforts in

creating ‘‘new’’ feedstocks from municipal and industrial wastes, recycled/repurposed

materials and bio-feedstocks,61 such as lignocellulose and algae, aswell as captured car-

bon dioxide.3 These broadly align with the circular economy model62 and move toward

SSbD approaches. An increasing number of chemical companies realize the necessity to

shift emphasis toward environmentally benign products and to prioritize investment to-

ward sustainability and circular economy, in order to create low-carbon supply chains.

However, the chemical supply chain and its networks are highly complex and usually

non-transparent. The transition to ‘‘new’’ feedstockswith theirwidelyacknowledgedchal-

lenges of compositional complexity and variability, while retaining the opaque and com-

plex nature of the chemical supply chain, is currently a major bottleneck.63,64
8 Chem 7, 1–17, November 11, 2021
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How could companies identify and capture long-term value from truly sustainable

chemicals supply chains? Could we envisage decision-support tools, which would

allow identification of optimal sustainable technology choices in different locations?

One key target for the utilization of digital technologies is the development of up-to-

date databases on availability, scales, and geographies of specific feedstocks,

combined with the demand for chemicals, as sustainable supply chains become

localized. Some molecules can be produced or remanufactured from different feed-

stocks; identifying the most sustainable (and efficient) way of molecule production

from a given choice of feedstocks becomes very important (for example, drop-in

molecules from CO2 obtained via carbon capture and utilization (CCU) technologies

versus the same molecules produced from biomass).

An overall result of a sustainability assessment65 depends on the combination of impacts

of each life cycle stage, which, in turn, depends on the level of maturity of technology at

each stage and hence is a dynamic variable. As businesses need to develop long-term

strategies, prospective sustainability assessment that considers the likelihood of

changes in energy systems and regulations could facilitate the currently stagnating in-

vestment decision making. For example, the utilization of second-generation biomass

or the direct conversion of CO2 to fuels and molecules is limited today due to environ-

mentally costly energy requirements, which may soon be overcome if energy systems

become renewable.3 Machine-learning and AI-supported decision-making tools,

capable of making viable predictions on optimized solutions, can bolster the chemical

industry progress toward sustainable sourcing of feedstocks.

Design of chemicals and materials

Digitalization will help to transition toward more sustainable sourcing of feedstocks, as

chemicals and materials design supported by new digitalization methods will increase

transparency and sustainability along the entire chemical value chain. Many discoveries

in chemical sciences are serendipitous and, despite significant progress in the field of

molecular design,66,67 the ability to rationally ‘‘design’’ a synthesizablemolecule or ama-

terial that perfectly corresponds to the required ‘‘functional performance’’ remains an

elusive target. This is related to the significant degree of complexity in most structure-

property relations that are not only numerous (simultaneous competing objectives)

but may also lack theoretical foundation for the link between molecular structure and

the final product performance (quantitative structure-activity relationships, QSARs).

This is why future innovations in chemistry will likely be based on integrated solutions,

which are based on digital technologies.57

The use of AI and machine-learning tools for designing molecules and materials has

transformed this field in recent years. Navigating complex multidimensional input-

output relationships with machine learning has become possible through significant

advances in computing, and many areas of material and molecular products are rich

in data through access to high-throughput experimental and computational tech-

niques. There are several early successes that serve as potent demonstrations of

the future capabilities of digitalization in molecular/material sciences, such as pre-

dicting new protein folding with Alphafold 2 algorithm,68 the creation of large-scale

datasets for in silico design of catalysts,69 designing new materials through a com-

bination of datamining, training simplified predictive models, and searching a large

chemical space for ‘‘functional’’ fit,70 or designing formulations using machine

learning models based on high-throughput data.71 Published early advances

already cover the widest range of chemistry, from energy materials, via consumer

products, to catalysts and healthcare. The recent development of a hybrid
Chem 7, 1–17, November 11, 2021 9
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physics/machine learning framework72 is also promising rapid progress in the highly

diverse areas of multiscale modeling, which can also be applied to a wider range of

chemistry and chemical processes. However, these are individual achievements of

early adopters, who have benefited until today from access to rare resources, such

as expertise, computing power, datasets, or high-throughput experimental facilities.

The paceof developing digitalization tools for chemistry is already very high andwill only

increase. Increased participation is being facilitated through access to data and low-cost

robotic equipment, welcoming a larger pool of talent into the field of chemistry. Howev-

er, this field is massively hampered by the unresolved issues of lack of standards for data

and knowledge models. To date, the majority of chemical reactions data are locked in

few proprietary databases, which, in reality, offer only limited capability to digitalization

research, since these datasets are highly biased (mostly positive data and not universal

coverage), have a non-negligible error rate, and are accessible only via an expensive

subscription. These databases also contain information that is insufficiently well labeled,

and thus is difficult to use by algorithms. This increases the popularity of new databases

generation efforts, such as a well-maintained and cleaned, but rather small Pistachio

database.73 In part, this is due to the fundamental difficulties in developing a universal

canonical data standard for chemical information that could cover many areas of chem-

ical sciences. Another aspect is the high dimensionality of chemical information. In order

to describe the behavior of molecules in a specific situation, one requires at least a six-

dimensional context descriptor.74 This complexity further increases as we include supply

chain and life cycle information. Although scientific output in chemical sciences con-

tinues to be largely on paper and the reported information is low-dimensional, it will

remain almost entirely inaccessible and useless to algorithm-based research, unless

innovations from the field of digitalization are more rapidly taken up.
CHEMICALS-ENVIRONMENT-HEALTH INTERACTIONS

Beyond the chemical design and feedstock sourcing, the increasing number and amount

of marketed chemicals used in thousands of industrial and consumer product applica-

tions, creates additional challenges for achieving sustainability, which cannot be solved

using conventional chemicals and environmental management approaches. Challenges

range from (1) assessing and mitigating impacts on climate crisis and pollution from en-

ergy-intensive chemical production, via (2) environmental degradation from emissions

and resources depletion along chemical, material, and product life cycles, to (3) human

occupational exposuresduringmanufacturingandwaste treatment, and consumer expo-

sure during product use. Although some challenges are directly connected to intrinsic

properties of molecules, such as environmental persistence, bioaccumulation, or hazard

potency, the problem is not related to chemicals alone. Instead, many challenges arise

from insisting on designing molecules and materials in a linear rather than a circular

model75 with a focus on sales of volume rather than on performance (or on function),

and the lack of transparency of the environmental ‘‘costs’’ (so-called externalities) of

new products that would enable customers to make informed choices.

By following the ‘‘reduce-by-design,’’76 ‘‘sustainable-by-design,’’77 or ‘‘safe-by-

design’’78 approaches, the design of molecules and materials would anticipate

and plan for different alternatives to production, consumption, and end-of-life,

avoiding mostly energy- and resource-intensive processing technologies, marketing

that disregards the risk of using hazardous chemicals in non-essential applications,

and prevailing end-of-life treatments that are mostly incinerating or landfilling prod-

ucts after use.79 Consequences are that a wide range of chemicals used in consumer

products and industrial processes is now found in virtually all environmental media
10 Chem 7, 1–17, November 11, 2021
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worldwide, in biota, and in human tissues, where they—individually or in combina-

tion—can cause health hazards and biodiversity loss.80

Which innovations are needed to successfully overcome these challenges, to suc-

cessfully manage the ever-increasing demand for new chemistries and consumer

goods? By what means can we ensure that the highly dynamic mixture of marketed

chemicals is aligned with health and environmental sustainability targets and to

manage increasingly complex, global chemical supply chains and waste streams?

Answering these questions requires innovation in providing, collecting, curating,

and structuring data, and developing prediction and assessment methods that are

able to handle an ever-increasing complexity. It is clear that digitalization needs

to become an important driver to overcome these challenges, adopting big data

management approaches for structuring, curating, and preparing data, as well as

AI- and machine learning-based approaches for processing data, filling-in data

gaps, and producing input for relevant decision-support tools at the chemicals-envi-

ronment-health nexus. Initial efforts focus on, for example, using such approaches

for aiding the optimization of chemical synthesis and material manufacturing pro-

cesses.81–83 However, the need for radically increasing the use of digitalized chem-

icals management encompasses the entire value chain of the chemical industry (Fig-

ure 3), where different data and methods apply to each specific value chain segment
Chem 7, 1–17, November 11, 2021 11



Table 1. Current challenges in sustainability assessments of chemicals across various fields of chemistry and possible application of digitalization

approaches to overcome these challenges

Challenges in sustainability assessments of
chemicals

Key limitations of existing data and
approaches for sustainability assessments Potential solutions to address the challenges

Process and supply chain levels: life cycle inventories

Data gaps Although the use of primary process data of a
chemical production in environmental
assessment is preferable, in reality, access to
process data is very limited, owing to the fear
of loss of commercial advantage or reputation.

Digital infrastructure for information and data
management. The use of link-prediction
estimation of incomplete data for new
chemical processes.84 The use of streamlined
process simulation to estimate energy
consumption of chemical manufacturing.85

Changes in business models promoting data
exchange.

Poor data quality In the absence or high-quality process data,
prediction methods based on molecular
structures and thermodynamic properties are
used86,87; these methods do not distinguish
between different chemical production
pathways and often suffer from poor
extrapolation ability.

New, more accurate machine learning models
for properties predictions.88 Combining
molecular and process descriptors in
prediction models.89

Limited spatiotemporal resolution Current data on feedstocks production are very
patchy and difficult to obtain.

Creation of spatially resolved feedstock
production databases.

Unconsidered chemical supply
chain processes

Assessment of product and system life cycle
performance usually does not consider the
complexity and all relevant chemical synthesis
and supply chain processes, such as emissions
and related impacts from catalysts
production.90,91

Transparency of supply chain through well-
labeled process data, prices, and chemicals
availability data. Efficient search of data using
knowledge-graph technology.92

Chemical-related human and environmental health impacts

Data gaps Many existing methods, including life cycle
impact assessment (LCIA), face data gaps
yielding incomplete assessments (e.g.,
chemical content in products, dermal
exposure, cancer effects, ecotoxicity effects for
some species groups or environments, and
general data from vulnerable locations, such as
the Global South, where most end-of-life
processes currently take place).

Imputation or other approaches (e.g., read
across) for systematic data gap filling;
regulatory framework for completeness of
product data. Incentives for data collection in
all locations impacted by chemical, material,
and product life cycles, including vulnerable
locations in the Global South.

Poor data quality Many existing approaches use data of
inconsistent, poor, or non-determined data
quality (e.g., data on biodegradation,
ecotoxicity, and human toxicity); several QSAR
and extrapolation methods have a very limited
data applicability domain (e.g., restricted to
selected substance classes).

Systematic approaches for semi-automated
data curation and quality assessment.93

Limited spatiotemporal resolution Most current approaches do not consider a
sufficiently high and flexible level of spatial
and/or temporal resolution and/or inter-
individual heterogeneity (e.g., for human
exposure, consumer product applications,
effect vulnerability, emission patterns).

Flexible digitalization approaches accounting
for a sufficient level of spatiotemporal and
inter-individual detail.94,95

Poor prediction models Many prediction models use themselves input
data that are (at least partly) predicted or
otherwise estimated, and do not account for
interactions across input parameters or strong
non-linearities (e.g., predicting chemical
function and concentration as function of
product application, such as phthalates that
are used as plasticizers in plastics but as
solvents in cosmetics, non-linearities in phase
partitioning in multilayer materials, saturation
effects in bioaccumulation processes).

Prediction approaches that consider the right
level of (input data) complexity, accounting for
non-linearities and interdependencies.96–101

Oversimplified extrapolation models Existing extrapolation approaches are often
based on limited training data and various
untested assumptions e.g., across effects or
exposure routes, e.g., inhalation versus oral
exposure or multi-species ecosystem
exposure.

Collection of new and consistent integration
with various existing and emerging data (e.g.,
from human and environmental
biomonitoring), and training of machine
learning models using more complex
datasets.102

(Continued on next page)
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Table 1. Continued

Challenges in sustainability assessments of
chemicals

Key limitations of existing data and
approaches for sustainability assessments Potential solutions to address the challenges

Difficult-to-characterize chemicals High complexity when addressing ‘‘difficult’’
chemicals, e.g., partitioning for per- and
polyfluoroalkyl substances (PFAS) and
siloxanes or transformation kinetics for
inorganic substances.

Digitalization-basedmethods that consider the
intrinsic complexity of reaction pathways in
different environments103 and chemical group-
specific kinetics and environmental fate and
degradation dynamics.104

Environmental systems level: Biome and biosphere; biotic regulation of the environment

Lack of considering interdependency Lack of ecosystem- and location-specific
information to address chemical mixture-
ecosystem interactions and interactions with
chemical background levels, local species
distributions, and high level of
interdependencies in molecular properties,
water chemistry, ecological species abundance
for ecotoxicity.

Cross-disciplinary ontologies and data
exchange frameworks to allow modeling
interdependency across disciplines, as well as
multi-stressor pressure prediction method that
consider local environment and ecosystem
conditions.105

Missing link between chemical pressure on
ecosystems and ecological capacities for
chemical pollution

Current attempts fail to account for
spatiotemporal granularity of chemical fate,
eco-exposure, and effects, to define local-to-
regional ecosystem sensitivity for different
chemical effects, and to translate species-level
effects into damage on ecosystem integrity.
The lack of data on dynamics of interaction of
technogenic fluxes and natural fluxes that
contribute to biotic regulation of the
environment.

Absolute environmental sustainability
approaches are needed that allow linking
chemical pressure to ecosystem capacity for
diluting chemical pollution, thereby
considering spatiotemporal interactions
between chemicals, ecosystems and
environmental conditions.106,107 Increased use
of Earth satellite observation (sensors and
images) and open data.108

Socio-economic-sustainability level

Data gaps True economic and social costs of loss of
biodiversity and of climate change (i.e.,
including externalities). Only few, limited
attempts have been made to quantify such
impacts and costs of climate change and
biodiversity loss.109

Advanced data science techniques for
identifying emerging trends in ‘‘values,’’
‘‘ethics’’ and ‘‘wellbeing,’’ which would inform
cost formation and sustainability-driven
evolution of economic concepts.

Methodological gaps The current growth model is outdated, hinders
the adoption of new, clean technologies, and is
not compatible with the emerging and
sustainability-conscious trends in the younger
population. However, there is no accepted
alternative model and no broadly accepted
methods for incorporating social and
economic trends into sustainability
assessments.

New models based on considering complex
systems dynamics, which would help to set and
monitor global and regional priorities, and
consistently and quantitatively integrating
environmental, social, and economic-
sustainability aspects.
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to address distinct yet often systemic and complex aspects (Table 1). In the previous

section, we have already provided examples of successful early implementation of

digital technologies in different sectors across all fields of chemistry, from chemical

synthesis and materials chemistry to pharmacology and environmental chemistry.

Access to information enabled by digitalization will automatically enable breaking

out of compromises within the complex chemicals-environment-health nexus that

today, almost invariably, lead to negative consequences for the environment.
CONCLUSIONS AND PERSPECTIVE

The global goal to minimize adverse impacts of chemicals and waste was not

achieved by 2020.57 Going forward, digitalization is a key enabler of sustainable

development within the chemical industry and chemistry R&D. The chemical industry

must undergo a significant systemic-level transformation, and digitalization is an

essential tool to support this evolution. Digitalization of chemistry and materials

R&D will facilitate the access and interlinkage of data and knowledge, which are

crucial for transforming chemistry from the subject of an elite, to the subject

accessible to many more talented individuals and organizations. This requires rapid
Chem 7, 1–17, November 11, 2021 13
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development of standards for chemical data and knowledge models, as well as the

adoption of scalable infrastructure for data sharing and sustainability assessments.

Digitalization of chemical supply chains and chemical manufacturing is shown to

lead to increased understanding and the potential for business innovation, which

are necessary for transforming the current industry to a much more sustainable

model. This also depends predominantly on the availability of data sharing and

knowledge-management infrastructure. The emerging tools of digital identification

of intellectual property rights and managed data privacy in the digital space are

already being demonstrated in other sectors.

A significant change is required in the organization of chemistry R&D, facilitating the

development of open collaboration betweenmultiple science and technology areas,

academia, private and public institutions, crossing geographical or geopolitical

boundaries and including the Global South. Digitalization of research partnering, ac-

cess to open data and digital experimental facilities globally, and an increased, sus-

tainability- and circularity-driven assessment capacity promise a revolution in the

speed of chemistry R&D and the possibility to pose research questions worthy of

the challenge of developing a sustainable global society.
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Papadokonstantakis, S., and Guillén-
Gosálbez, G. (2018). Predicting the cradle-to-
gate environmental impact of chemicals from
molecular descriptors and thermodynamic
properties via mixed-integer programming.
Comput. Chem. Eng. 108, 179–193. https://
doi.org/10.1016/j.compchemeng.2017.09.
010.

88. Coley, C.W., Barzilay, R., Green, W.H.,
Jaakkola, T.S., and Jensen, K.F. (2017).
Convolutional embedding of attributed
molecular graphs for physical property
prediction. J. Chem. Inf. Model. 57, 1757–
1772. https://doi.org/10.1021/acs.jcim.
6b00601.

89. Kleinekorte, J., Kröger, L., Leonhard, K., and
Bardow, A. (2019). A neural network-based
framework to predict process-specific
environmental impacts. Comput. Aided

https://doi.org/10.1016/j.cell.2020.01.021
https://doi.org/10.1016/j.cell.2020.01.021
https://doi.org/10.1115/1.4045040
https://doi.org/10.1115/1.4045040
https://www.iea.org/reports/global-energy-co2-status-report-2019
https://www.iea.org/reports/global-energy-co2-status-report-2019
https://www.iea.org/reports/global-energy-co2-status-report-2019
https://www.iea.org/reports/methane-emissions-from-oil-and-gas
https://www.iea.org/reports/methane-emissions-from-oil-and-gas
https://www.iea.org/reports/methane-emissions-from-oil-and-gas
https://www.edf.org/sites/default/files/documents/EDF_TakingAim.pdf
https://www.edf.org/sites/default/files/documents/EDF_TakingAim.pdf
https://www.unep.org/resources/report/global-chemicals-outlook-ii-legacies-innovative-solutions
https://www.unep.org/resources/report/global-chemicals-outlook-ii-legacies-innovative-solutions
https://www.unep.org/resources/report/global-chemicals-outlook-ii-legacies-innovative-solutions
https://www.unep.org/resources/report/global-chemicals-outlook-ii-legacies-innovative-solutions
https://doi.org/10.1016/j.envint.2015.02.001
https://doi.org/10.1016/j.envint.2015.02.001
https://www.who.int/publications/i/item/WHO-HEP-ECH-EHD-21.01
https://www.who.int/publications/i/item/WHO-HEP-ECH-EHD-21.01
https://www.who.int/publications/i/item/WHO-HEP-ECH-EHD-21.01
https://doi.org/10.1111/risa.13604
https://doi.org/10.1111/risa.13604
https://doi.org/10.1016/j.coche.2019.09.010
https://doi.org/10.1016/j.coche.2019.09.010
https://doi.org/10.1039/C6GC00501B
https://doi.org/10.1039/C6GC00501B
https://doi.org/10.1038/s41893-019-0442-8
https://doi.org/10.1111/gcbb.12652
https://doi.org/10.1111/gcbb.12652
https://doi.org/10.1073/pnas.1821029116
https://doi.org/10.1073/pnas.1821029116
https://doi.org/10.1016/B978-0-444-63433-7.50007-9
https://doi.org/10.1016/B978-0-444-63433-7.50007-9
https://doi.org/10.1016/j.compchemeng.2004.08.010
https://doi.org/10.1016/j.compchemeng.2004.08.010
https://doi.org/10.1038/s41586-019-1923-7
https://doi.org/10.1038/s41586-019-1923-7
https://arxiv.org/abs/2010.09990
https://arxiv.org/abs/2010.09990
https://doi.org/10.1016/j.matt.2019.03.002
https://doi.org/10.1016/j.matt.2019.03.002
https://doi.org/10.1016/B978-0-12-823377-1.50299-8
https://doi.org/10.1016/B978-0-12-823377-1.50299-8
https://doi.org/10.1038/s42254-021-00314-5
https://doi.org/10.1038/s42254-021-00314-5
http://nextmovesoftware.com/pistachio.html
http://nextmovesoftware.com/pistachio.html
https://doi.org/10.1016/j.cep.2011.06.005
https://doi.org/10.1016/j.cep.2011.06.005
https://doi.org/10.1016/j.resconrec.2017.08.027
https://doi.org/10.1016/j.resconrec.2017.08.027
https://www.unep.org/circularity
https://www.unep.org/circularity
https://www.eea.europa.eu/themes/human/chemicals/delivering-products-that-are-safe
https://www.eea.europa.eu/themes/human/chemicals/delivering-products-that-are-safe
https://doi.org/10.5281/zenodo.3254382
https://doi.org/10.5281/zenodo.3254382
https://doi.org/10.1016/j.scp.2015.08.001
https://doi.org/10.5334/aogh.2831
https://doi.org/10.1039/D0GC02956D
https://doi.org/10.1039/D0GC02956D
https://doi.org/10.1016/j.xcrp.2020.100247
https://doi.org/10.1016/j.xcrp.2020.100247
https://doi.org/10.1038/s41586-021-03213-y
https://doi.org/10.1038/s41586-021-03213-y
https://doi.org/10.1021/acs.est.7b05366
https://doi.org/10.1021/acs.est.7b05366
https://doi.org/10.1021/acssuschemeng.0c00439
https://doi.org/10.1021/acssuschemeng.0c00439
https://doi.org/10.1021/acs.est.7b02862
https://doi.org/10.1021/acs.est.7b02862
https://doi.org/10.1016/j.compchemeng.2017.09.010
https://doi.org/10.1016/j.compchemeng.2017.09.010
https://doi.org/10.1016/j.compchemeng.2017.09.010
https://doi.org/10.1021/acs.jcim.6b00601
https://doi.org/10.1021/acs.jcim.6b00601


ll

Please cite this article in press as: Fantke et al., Transition to sustainable chemistry through digitalization, Chem (2021), https://doi.org/10.1016/
j.chempr.2021.09.012

Perspective
Chem. Eng. 46, 1447–1452. https://doi.org/
10.1016/B978-0-12-818634-3.50242-3.

90. Yaseneva, P., Marti, C.F., Palomares, E., Fan,
X., Morgan, T., Perez, P.S., Ronning, M.,
Huang, F., Yuranova, T., Kiwi-Minsker, L., et al.
(2014). Efficient reduction of bromates using
carbon nanofibre supported catalysts:
experimental and a comparative life cycle
assessment study. Chem. Eng. J. 248,
230–241. https://doi.org/10.1016/j.cej.2014.
03.034.

91. Yaseneva, P., Hodgson, P., Zakrzewski, J.,
Falß, S., Meadows, R.E., and Lapkin, A.A.
(2016). Continuous flow Buchwald-Hartwig
amination of a pharmaceutical intermediate.
React. Chem. Eng. 1, 229–238. https://doi.
org/10.1039/C5RE00048C.

92. Inderwildi, O., Zhang, C., Wang, X., and Kraft,
M. (2020). The impact of intelligent cyber-
physical systems on the decarbonization of
energy. Energy Environ. Sci. 13, 744–771.
https://doi.org/10.1039/C9EE01919G.

93. Fantke, P., Aurisano, N., Provoost, J.,
Karamertzanis, P.G., and Hauschild, M. (2020).
Toward effective use of REACH data for
science and policy. Environ. Int. 135, 105336.

94. Wannaz, C., Fantke, P., and Jolliet, O. (2018).
Multiscale spatial modeling of human
exposure from local sources to global intake.
Environ. Sci. Technol. 52, 701–711. https://
doi.org/10.1021/acs.est.7b05099.

95. Wannaz, C., Fantke, P., Lane, J., and Jolliet, O.
(2018). Source-to-exposure assessment with
the Pangea multi-scale framework - case
study in Australia. Environ. Sci. Process.
Impacts 20, 133–144. https://doi.org/10.1039/
c7em00523g.

96. Feng, F., Lai, L., and Pei, J. (2018).
Computational chemical synthesis analysis
and pathway design. Front. Chem. 6, 199.
https://doi.org/10.3389/fchem.2018.00199.

97. Schwaller, P., Gaudin, T., Lányi, D., Bekas, C.,
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