
REVIEW
published: 28 September 2021

doi: 10.3389/fnana.2021.712862

Edited by:

Alfonso Represa,
INSERM U901 Institut de

Neurobiologie de la Méditerranée,
France

Reviewed by:
Vanessa Troiani,

Neuroscience Institute, Geisinger
Health System, United States

Christopher D. Kroenke,
Oregon Health and Science

University, United States

*Correspondence:
Arnaud Cachia

arnaud.cachia@u-paris.fr

Received: 21 May 2021
Accepted: 31 August 2021

Published: 28 September 2021

Citation:
Cachia A, Borst G, Jardri R,

Raznahan A, Murray GK, Mangin J-F
and Plaze M (2021) Towards

Deciphering the Fetal Foundation of
Normal Cognition and Cognitive
Symptoms From Sulcation of the

Cortex.
Front. Neuroanat. 15:712862.

doi: 10.3389/fnana.2021.712862

Towards Deciphering the Fetal
Foundation of Normal Cognition and
Cognitive Symptoms From Sulcation
of the Cortex
Arnaud Cachia1,2*, Grégoire Borst1,3, Renaud Jardri4, Armin Raznahan5,
Graham K. Murray6, Jean-François Mangin7 and Marion Plaze2,8

1Université de Paris, LaPsyDÉ, CNRS, Paris, France, 2Université de Paris, IPNP, INSERM, Paris, France, 3Institut Universitaire
de France, Paris, France, 4Univ Lille, INSERM U-1172, CHU Lille, Lille Neuroscience & Cognition Centre, Plasticity &
SubjectivitY (PSY) team, Lille, France, 5Section on Developmental Neurogenomics, Human Genetics Branch, National
Institute of Mental Health, Bethesda, MD, United States, 6Department of Psychiatry, University of Cambridge, Cambridge,
United Kingdom, 7Université Paris-Saclay, CEA, CNRS, Neurospin, Baobab, Gif-sur-Yvette, France, 8GHU PARIS Psychiatrie
& Neurosciences, site Sainte-Anne, Service Hospitalo-Universitaire, Pôle Hospitalo-Universitaire Paris, Paris, France

Growing evidence supports that prenatal processes play an important role for cognitive
ability in normal and clinical conditions. In this context, several neuroimaging studies
searched for features in postnatal life that could serve as a proxy for earlier developmental
events. A very interesting candidate is the sulcal, or sulco-gyral, patterns, macroscopic
features of the cortex anatomy related to the fold topology—e.g., continuous vs.
interrupted/broken fold, present vs. absent fold-or their spatial organization. Indeed,
as opposed to quantitative features of the cortical sheet (e.g., thickness, surface area
or curvature) taking decades to reach the levels measured in adult, the qualitative
sulcal patterns are mainly determined before birth and stable across the lifespan. The
sulcal patterns therefore offer a window on the fetal constraints on specific brain areas
on cognitive abilities and clinical symptoms that manifest later in life. After a global
review of the cerebral cortex sulcation, its mechanisms, its ontogenesis along with
methodological issues on how to measure the sulcal patterns, we present a selection
of studies illustrating that analysis of the sulcal patterns can provide information on
prenatal dispositions to cognition (with a focus on cognitive control and academic
abilities) and cognitive symptoms (with a focus on schizophrenia and bipolar disorders).
Finally, perspectives of sulcal studies are discussed.

Keywords: sulcation, gyrification, neurodevelopment, MRI, psychology, psychiatry

INTRODUCTION

Analysis of the brain structure from in vivo magnetic resonance imaging (MRI) is now
a main tool in biological psychology and psychiatry. Cognitive abilities and psychiatric
disorders have been associated to variations in various structural brain features in
postnatal life (Giedd and Rapoport, 2010; Kanai and Rees, 2011). However, growing
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evidence suggest that prenatal processes play a critical role for
cognitive ability (Shenkin et al., 2004; Raznahan et al., 2012;
Walhovd et al., 2012) and disease risk (Schlotz and Phillips, 2009)
that appear in postnatal life (Schork et al., 2019). Such findings
have driven the search for anatomical brain features in postnatal
life that could serve as a proxy for fetal events. A very interesting
candidate is the typologies of cortical folding, also referred
as sulcal/sulco-gyral patterns (Figure 1), related to the fold
topology—e.g., continuous vs. interrupted/broken fold (Cachia
et al., 2018), present vs. absent fold (Yücel et al., 2001)—or their
spatial organization—e.g., ‘‘H-shaped’’ sulcus (Nakamura et al.,
2007) or ‘‘power button-shaped’’ (Mellerio et al., 2015). Indeed,
as opposed to local quantitative features of the cortical sheet (e.g.,
thickness, surface area or curvature/gyrification) taking decades
to reach the levels measured in adults (Armstrong et al., 1995;
White et al., 2010; Raznahan et al., 2011; Li et al., 2014), the
qualitative regional pattern derived from the primary, secondary
and tertiary folds, or sulci, observed in adults is already evident
at birth and stable during the development (Chi et al., 1977;
Cachia et al., 2016; Tissier et al., 2018; Figure 2). The analysis
of such trait features of the brain can thus give information on
the prenatal constraints imposed by some specific brain regions
on later cognitive development.

In this review article, we show in some compelling examples
that the analysis of the cortex sulcal patterns can help deciphering
the fetal foundation of normal cognition in non-clinical
populations and cognitive symptoms in patients with psychiatric
disorders. After a general overview of the cerebral cortex
sulcation mechanisms—indicating why, how and when the
cerebral cortex folds along with methodological issues on
how to measure the cerebral cortex folds—we present studies
illustrating that analysis of the sulcal patterns can provide
relevant information on prenatal dispositions to cognition
(with a focus on cognitive control and academic abilities) and
cognitive symptoms (with a focus on schizophrenia and bipolar
disorders). Finally, the limits and perspectives of sulcal studies
are discussed.

CEREBRAL CORTEX SULCATION

What Is Cortical Folding?
Cortical folding is a characteristic of many mammalian
brains, which is intrinsically related to the organization of
the brain function (Welker, 1988). The degree of folding
increases with the size of the brain (Zilles et al., 2013).
This degree of folding scales uniformly as a function
of the product of the cortical surface area (CSA) and
the square root of cortical thickness (CT; Mota and
Herculano-Houzel, 2015). In humans, sulci emerge in a
specific order during the perinatal period, with the primary
involutions appearing in the second trimester, followed
by important growth of folds in the third trimester (Chi
et al., 1977). The sulcal pattern observed after birth is the
consequence of pre-natal and peri-natal processes that shape
the cortex from a smooth surface to a highly convoluted
structure (Haukvik et al., 2012; Nishikuni and Ribas,
2013).

The folding process might enable increases in cortical
surface area while limiting accompanying increases in axonal
wiring costs (Klyachko and Stevens, 2003). This association
between network functioning and cortical folding may mediate
relationships between cortical folding and brain function.
Macroscopic (morphological/volumetric) and microscopic
(cellular) features of the cortex are therefore intrinsically
interrelated as shown in the early brain mapping studies
at the beginning of the 20th century (Brodmann, 1909).
For instance, it has been shown that the cortical ribbon is
thicker in the gyral areas and thinner in the sulcal areas
and neurons located in the deep layers of gyri are squeezed
from the sides and appear elongated while neurons that
reside in the deep layers of sulci are stretched and look
flattened (Hilgetag and Barbas, 2006, 2009). In addition,
gyral and sulcal architecture is intrinsically related to the
functional organization of the brain. For instance, the central
sulcus separates the somatosensory cortex from the motor
cortex, the calcarine sulcus separates the superior and inferior
visual hemifields and even in the very complex and variable
prefrontal cortices, the cortex sulcation influences the functional
organization (Li et al., 2015; Lopez-Persem et al., 2019).
In addition, functional differences (time-frequency activity,
connectivity) exist between sulcal and gyral areas (Jiang et al.,
2021).

When Do the Cortical Sulci Appear?
Human cortex development is a complex and dynamic
process that begins during the first weeks of pregnancy
and lasts until early adulthood (Figure 2). In parallel to
cellular changes, early cortex development is characterized
by dramatic changes in its macroscopic morphology due
to the cortical folding process that begins from 10 weeks
of fetal life (Feess-Higgins and Larroche, 1987; Nishikuni
and Ribas, 2013). During the third trimester of pregnancy,
the cerebral cortex changes from a relatively smooth,
lissencephalic surface to a complex folded structure that
closely resembles the morphology of the adult cortex. The
development of folds is relatively conserved across individuals
and species: primary sulci, which develop first, are the less
variable and most heritable (Lohmann et al., 1999) folds,
and have the strongest relationship with cytoarchitecture
(Welker, 1990; Fischl et al., 2008). Some folding patterns are
preserved across species, complex patterns in larger brains
likely emerging from simplified patterns in smaller brains
(Borrell and Reillo, 2012). The heritability of cortical folding
is estimated between 20 and 50% (Le Guen et al., 2018;
Pizzagalli et al., 2020), supporting a major effects of early
environmental factors on sulcation and cognition, including
alcohol exposure (De Guio et al., 2014), intrauterine growth
restriction (Dubois et al., 2008a) or twin pregnancy (Amiez et al.,
2018).

Dedicated MRI acquisition and morphometric tools have
recently allowed to map the developing cortical surface and
growth patterns in fetuses as young as 20 weeks of gestational
age (Habas et al., 2012). These in vivo studies confirm earlier
post-mortem data (Chi et al., 1977) and show that the cortical
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FIGURE 1 | Examples of different types of sulcal patterns. (A) Presence of the fold. The sulcal pattern of the anterior cingulate cortex (ACC) can be “single”, with
only the cingulate sulcus, or “double parallel”, with an additional paracingulate sulcus (PCS). Adapted from Cachia et al. (2014). (B) Interruption of the fold. The sulcal
pattern of the inferior frontal cortex (IFC) can be continuous or with an interruption (red arrow). The sulcal pattern of the lateral occipito-temporal sulcus (OTS) can be
continuous or have an anterior or a posterior sulcal interruption. Adapted from Cachia et al. (2014), Borst et al. (2016), Cachia et al. (2018), and Tissier et al. (2018).
(C) Spatial organization. The sulcal pattern of the temporo-parietal junction (TPJ) is characterized by the spatial organization of the posterior part of the right Sylvian
fissure (pSF) including Sylvian fissure (in blue), post-central sulcus (green) and central sulcus (in red). Type I, has both a vertical branch (planum parietale) that ascends
into the supramarginal gyrus and a horizontal branch (planum temporale) that forms the superior surface of the superior temporal gyrus. In Type II, the Sylvian fissure
lacks a vertical branch. In Type III, the horizontal branch extends posteriorly to the supramarginal gyrus into the angular gyrus. In Type IV, the vertical branch connects
the post-central sulcus anterior to the supramarginal gyrus, the horizontal branch is therefore absent. Adapted from Steinmetz et al. (1990) and Plaze et al. (2015).

folds emerge in a specific order during the prenatal life:
stable primary folds appear around 20 weeks of gestational
age, secondary folds around 32 weeks of gestational age and
highly variable tertiary folds around term (Chi et al., 1977).
Gyrification (the emergence/appearance of gyri, the ‘‘mountains’’
of the cortical relief) and sulcation (the emergence/appearance
of sulci, the ‘‘valleys’’ of the cortical relief) become manifest
after 24 weeks of gestational age (Rajagopalan et al., 2011),
and continue to develop during the last weeks before birth
(Dubois et al., 2008b, 2019). Although some inter-individual
variability is observed, the regional pattern is relatively stable

over the brain surface: sulcation starts in the central region
with a first wave towards the temporal, parietal and occipital
lobes, and a second wave towards the frontal lobe (Ruoss
et al., 2001; Dubois et al., 2008b). In contrast to the
primary sulci that highly consistently express across (nearly)
all humans, certain secondary sulci can vary considerably
between individuals (Figure 1). At birth, the area of the
cortical surface is three times smaller than in adults, but the
cortex is similarly folded and the most variable sulci are the
same in newborns and adults (Hill et al., 2010). Longitudinal
studies after birth indicate that the sulcal patterns are stable
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FIGURE 2 | Sulcogenesis before and after birth. (A) Before birth. Cortical folding during from 4–9 months post-conception during fetal life. Adapted from Welker
(1990). (B) After birth. Longitudinal stability of the sulcal pattern of the Anterior Cingulate Cortex (ACC) pattern from 10–22 years in a participant with a “single type”
ACC and in a participant with a “double parallel type” ACC. Adapted from Cachia et al. (2016).

during development (Cachia et al., 2016; Tissier et al., 2018;
Figure 2).

Factors Contributing to the Cortical
Folding Process
Cortical folding is a very complex process, involving factors
at different scales; see (Zilles et al., 2013; Ronan and Fletcher,
2015; Borrell, 2018; Kroenke and Bayly, 2018; Foubet et al.,
2019) for recent reviews on the phylogenetic, cellular and
mechanical factors of the cortical folding process. Briefly,
several intermingled factors contribute to the fetal processes that
influence the shape of the cerebral cortex, including cortical
growth (Kuida et al., 1996; Haydar et al., 1999; Chenn and
Walsh, 2002; Toro and Burnod, 2005), differential expansion
of superior and inferior cortical layers (Richmann et al., 1975;
Kriegstein et al., 2006), apoptosis or programmed cell death
(Haydar et al., 1999), differential growth of the cortical mantle
relatively to the underlying white matter (Tallinen et al., 2016),
transitory compartments such as the subplate (Rana et al.,
2019), differential neuropil developments (Llinares-Benadero
and Borrell, 2019; Mangin et al., 2019), mechanical constraints
(Foubet et al., 2019) along with differential tangential expansion
(Ronan et al., 2013) induced by a genetics-based protomap

and/or structural connectivity through axonal tension forces
(Van Essen, 1997, 2020).

Different hypotheses have been proposed to integrate these
different factors within a coherent general theory. For instance,
the ‘‘axonal tension hypothesis’’ states that axons under tension
pull cortical regions which are strongly connected together
and cause folds (Van Essen, 1997, 2020); the ‘‘radial gradient
hypothesis’’ states that the increase in expansion of the supra-
granular layers relative to the infra-granular layers causes
buckling (Richmann et al., 1975); the ‘‘differential tangential
expansion hypothesis’’ states that tangential expansion of the
cortex causes an increase in tangential pressure which is limited
though buckling (Le Gros Clark, 1945; Ronan et al., 2013); see
Ronan and Fletcher (2015), for a detailed discussion of the pros
and cons for the different theories. These theories, with multiple
influences from micro- and to macroscopic levels, still remain a
topic of intense debates and experimental/simulation studies.

How to Measure the Cortex Sulcation?
The measure of the cortex sulcation is a difficult issue because
the cortical folds are complex 3D structures that are very variable
among individuals (Ono et al., 1990; Petrides, 2018). We provide
below a selection of methods that can provide, directly or
indirectly, information related to the sulcal patterns.
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Several studies of the cortex sulcation focused on the amount
of cortex buried into the folds using the gyrification index (GI).
Such quantitative measure of the gyrification is indirectly related
to some sulcal patterns; for instance, the GI is modulated by the
presence vs. absence of a fold or by a continuous vs. interrupted
fold. This ratio was initially based on contour lengths measured
in 2D sections of the brain (Zilles et al., 1988; Moorhead
et al., 2006). The main limitation of this measure is due to
its 2D approach that cannot capture all the details of the 3D
sulcal morphology. Using automatic segmentation of the cortex
(Mangin et al., 2004c) and its folds (Perrot et al., 2011), it is now
possible tomeasure the 3Dmorphology of the sulci. A 3D version
of the GI has been proposed, based on the ratio between the area
of the sulcal surface area and the area of the convex envelope
of the cortex and completed with regional and local indexes,
restricted to some specific lobes or sulci (Cachia et al., 2008).
The global GI can also be enriched by quantifying the amplitude
of different folding wavelengths in different frequency bands
(Germanaud et al., 2014). This approach is of particular interest
for the study of development, as there is a correspondence
between these bands and primary, secondary and tertiary folds
(Dubois et al., 2019). Local sulcation measures, such as local GI,
local curvature or fractal measures, have also been proposed (Im
et al., 2006; Luders et al., 2006; Pienaar et al., 2008; Fischl, 2012)
but their anatomical interpretation is not straightforward. For
each sulcus, it is also possible to quantify simple morphometric
parameters such as the depth, length or opening of the folds
(distance between the two walls of each fold; Mangin et al.,
2004b; Alemán-Gómez et al., 2013). More sophisticated features
quantifying the complex 3D shape have also been introduced
(Mangin et al., 2004a; Sun et al., 2012).

However, the main limitation of all these quantitative
measures is that they cannot accurately assess the qualitative
features of the sulcal patterns (Figure 1). In addition, these
quantitative measures are state, and not trait, markers of the
cortex anatomy and can therefore capture neurodegenerative
as well as neurodevelopmental processes. One of the major
difficulties of devising qualitative measures of the sulcal
patterns is the huge variability of the sulcal patterns (Ono
et al., 1990; Petrides, 2018). Large sulci are often interrupted,
each sulcus piece being susceptible to connecting with the
others in various ways. This recombination process often
leads to ambiguous configurations for the usual anatomical
nomenclature, which creates difficulties for the morphometric
study of sulci. These difficulties have led to propose a generic
nomenclature of cortical folding defined at a lower scale
level (Mangin et al., 2019). A classical way to perform such
qualitative analysis of the sulcal patterns is based on visual
inspection, which requires anatomical training by an expert,
is time consuming and may suffer from subjective bias. An
important perspective is the development of methods for the
fully automated recognition of cortical folding patterns (Snyder
et al., 2019; Borne et al., 2021). An alternative approach is
based on graph-based analysis of the spatial organization of
the ‘‘sulcal pits’’ (Im et al., 2011; Takerkart et al., 2017), the
local maxima of depth of the cortical surface (Lohmann et al.,
2008).

Amajority of these methods to visualize and analyze the sulcal
morphology are freely available in ‘‘Morphologist’’ toolbox,
within BrainVISA software1.

FETAL FOUNDATION OF NORMAL AND
PATHOLOGICAL COGNITION

Several longitudinal studies have reported that small variations
of the intrauterine environment, assessed by birth weight, are
associated with differences in cognitive abilities after birth
(Shenkin et al., 2004; Raznahan et al., 2012;Walhovd et al., 2012).
Complementary to such a global proxy measure of ‘‘uterine
optimality’’ (Raznahan et al., 2012), analysis of the sulcal patterns
can provide information on prenatal dispositions to normal
and pathological cognitive features via the prenatal constraints
imposed by the anatomy of some specific cortical regions on
cognitive development. As presented below, inter-individual
variation in the sulcal patterns can therefore be used to search
for prenatal differences.

Normal (Non-clinical) Condition
Cortical sulcation at birth in preterm has been shown to
predict infants’ neurobehavioral development several weeks later
(Dubois et al., 2008a; Kersbergen et al., 2016). As detailed
below, several studies analyzed the sulcal patterns of typically
developed participants to investigate the long-term influence of
fetal development on cognition.

Cognitive Control
Cognitive control (CC), also referred as executive control or
self-regulation, including inhibitory control—i.e., the ability
to overcome conflicts and inhibit a dominant response—is
one of the core executive functions that enables us to resist
temptations, automatisms or distractions, habits or interference
and allows us to adapt to complex situations using mental
flexibility, i.e., dynamic activation/inhibition of competing
cognitive strategies (Petersen and Posner, 2012; Diamond, 2013).
It plays an important role in academic (Borst et al., 2015) and
professional success (Moffitt et al., 2011). It is also involved in the
pathophysiology of numerous psychiatric disorders (Diamond,
2013).

A central region of the CC network is the dorsal anterior
cingulate cortex (ACC; Petersen and Posner, 2012). The ACC
can have two qualitatively distinct sulcal patterns: a ‘‘single’’ type
(only the cingulate sulcus is present) and a ‘‘double parallel’’
type (a paracingulate sulcus, PCS, runs parallel to the cingulate
sulcus). The PCS is a complex structure that lies dorsal to the
cingulate sulcus, found only in humans and chimpanzees (Amiez
et al., 2019) with high inter-individual and inter-hemispheric
variability (Paus et al., 1996). The infralimbic sulcus is an
additional variation; when present (that is, in only about 5%
of hemispheres), it runs between the cingulate sulcus and the
supracallosal sulcus (Paus et al., 1996).

In adults, asymmetry in the ACC sulcal pattern (i.e., the
‘‘double parallel’’ type with a PCS in one hemisphere and
the ‘‘single’’ type in the other hemisphere) is associated with

1http://brainvisa.info
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increased CC efficiency at behavioral (Fornito et al., 2004;
Huster et al., 2011) and electrophysiological (Huster et al., 2009,
2012) levels. Similar behavioral findings were found during
development; an asymmetrical ACC sulcal pattern is associated
with increased cognitive control in children at age 5 (Cachia
et al., 2014) and 4 years later (Borst et al., 2014). Asymmetry
effect on CC was also found for the inferior frontal cortex (IFC),
another key region of CC neural network (Tissier et al., 2018).
These early neurodevelopmental constraints on later cognitive
efficacy are not fixed nor deterministic. Indeed, only a part
(∼15–20%) of cognitive variability is explained by the sulcal
pattern variability (Borst et al., 2014; Cachia et al., 2014; Tissier
et al., 2018). These additive effects of ACC and IFC sulcal patterns
suggest that distinct early neurodevelopmental mechanisms,
involving different brain regions, may contribute to CC. Such
interpretation shares analogies with the ‘‘common variant-small
effect’’ model in genetics, which posits that frequent genetic
polymorphisms have small effects but collectively account
for a large portion of the variance. Similarly, each sulcal
polymorphism has a small additive effect: ACC and IFC sulcal
patterns explained 14% and 3% of the variance of the cognitive
scores (of note, effects in genetics are lower since a single
genetic variant with a 3%–14% effect would be considered
a very large effect). In addition, similarly to epigenetics,
different environmental backgrounds, either after birth such
as bilingualism (Cachia et al., 2017; Del Maschio et al., 2019)
or before birth such as twin pregnancy (Amiez et al., 2018),
can modulate the effect of the sulcal pattern on cognition.
Interactions between sulcal patterns, similar to epistasis in
genetics, have not (yet) been reported.

The ACC is involved in CC but also in other cognitive
functions, such as the reality monitoring (Metzak et al., 2015;
Simons et al., 2017) and the temperament (Whittle et al.,
2009). Analysis of ACC sulcal pattern revealed that absence
of the PCS in both left and right hemispheres is associated
with lower reality monitoring, i.e., the ability to distinguish
information that was generated by internal cognitive functions
(e.g., imagination and thought) from information that was
derived from the outside world (Buda et al., 2011). In addition,
a leftward asymmetric pattern was found to be associated
with increased temperamental effortful control and decreased
negative affectivity than a rightward pattern (Whittle et al.,
2009). This effect was found only for males. In both females
and males, a symmetric pattern was associated with increased
temperamental affiliation compared to rightward asymmetric
ACC sulcal pattern.

Academic Abilities
Sulcal studies also revealed that academic abilities requiring
intensive learning and training, such as numeracy or literacy, can
also be traced back to fetal life. Indeed, the pattern (interrupted
or continuous sulcus) of the posterior part of the left lateral
occipito-temporal sulcus (OTS), which hosts the visual word
form area (VWFA), predicts reading abilities in 10-year-old
children (Borst et al., 2016) and also in adults (Cachia et al.,
2018). The position of the sulcal interruption of the OTS plays
a critical role since only interruption located in the posterior

part of the OTS, hosting the VWFA, but not its anterior part,
affects reading fluency (Cachia et al., 2018). Comparison of
adults who learned to read during adulthood (ex-illiterates) and
adults who learned to read during childhood (literates) revealed
that age of reading acquisition modulates the effect of OTS
sulcal pattern on reading abilities: interruption of the posterior
left lateral OTS affected reading abilities in literates but not in
ex-illiterates (Cachia et al., 2018). As for cognitive control, these
early neurodevelopmental constraints on later cognitive efficacy
are not fixed nor deterministic since the effects of the OTS
sulcal pattern accounted for ∼5% of the variability in reading
fluency, as compared to ∼65% for environmental factors such as
socio-economic status. In children with developmental dyslexia,
the sulcal pattern in left parieto-temporal and occipito-temporal
regions is not typical (more sulcal pits basins of smaller size) and
correlates with reduced reading performance (Im et al., 2016); of
note, non-typical sulcal pattern was also found in pre-readers and
beginning readers (preschoolers/kindergarteners) with a familial
risk of developmental dyslexia.

Regarding numeracy, the absence or presence of branches
sectioning the horizontal branch of the intra-parietal sulcus
(IPS), a key region for processing numbers, was found to be
related to individual differences in math fluency abilities and
symbolic number comparison in children and adults (Roell et al.,
2021).

Pathological Conditions
We will detail on this section studies in schizophrenia and
affective disorders, two common psychiatric disorders for which
clinical and genetic data support early neurodevelopmental
deviations (O’shea and Mcinnis, 2016; Murray et al., 2017).
A large number of studies analyzed the cortex sulcation in
these two disorders in order to investigate the contribution
of early neurodevelopment in different clinical features, like
symptomatology, age at onset, treatment resistance. . . We will
also report more recent, but less systematic, studies of sulcation
in other psychiatric.

Schizophrenia
Around one century ago, Elmert Ernest Southard visually
inspected photos of cerebral cortex in order to investigate
the neuropathology of schizophrenia (dementia praecox) and
found atypical sulcal patterns, in particular in the temporal
cortex in patients with hallucinations (Southard, 1915). From
visual inspection of clinical anatomical MRI scans, first-episode
schizophrenia patients were found to have a reduction in the
asymmetry of the lateral sulcus (LS) length, which borders the
planum temporal (Hoff et al., 1992). Of note, such atypical
LS asymmetry was associated with better cognitive function
in patients. Using MR three-dimensional surface rendering
and visual classification of the temporal lobe sulcal patterns,
schizophrenia patients were found to have a more vertical
orientation to the sulci in the temporal lobe in the left hemisphere
(Kikinis et al., 1994).

With the development, of computerized brain morphometry
methods, several studies in schizophrenia then investigated the
sulcation in the whole brain using 2D GI index. An increased
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amount of buried PFC cortex was found in chronic but also
first episode patients with schizophrenia as well as in unaffected
siblings and in subjects at high risk of developing schizophrenia
(Yücel et al., 2003; Falkai et al., 2006; Harris et al., 2007; Stanfield
et al., 2008), suggesting that abnormal PFC folding may be a
vulnerability marker to schizophrenia.

Several studies also investigated the sulcal patterns in the PFC,
particularly for the orbitofrontal cortex (OFC) and the dorsal
anterior cingulate cortex which presents patterns that can be
reliably and easily classified from anatomical MRI.

The OFC presents three qualitatively distinct sulcal patterns
based on the continuity of the medial orbital sulci (MOS) and
lateral orbital sulci (LOS): in Type I, caudal and rostral portions
of the LOS are connected, while theMOS are interrupted between
caudal and rostral portions ofMOS; in Type II, caudal and rostral
portions of both the LOS andMOS are connected and continuous
LOS andMOS are jointed by the horizontally oriented transverse
orbital sulcus (TOS); in Type III, caudal and rostral portions
of both LOS and MOS are interrupted (Chiavaras and Petrides,
2000). Unusual sulcal pattern distributions of OFC have been
repeatedly reported in patients with established schizophrenia
(Nakamura et al., 2007, 2020; Isomura et al., 2017), including
in prodromal stage (Nakamura et al., 2019; Takahashi et al.,
2019). OFC sulcal pattern is associated with socioeconomic
status, cognitive function, symptom severity and impulsivity
(Nakamura et al., 2007). These abnormalities are not restricted
to schizophrenia but were also reported in other psychiatric
conditions (e.g., bipolar disorder, autism spectrum disorder,
attention-deficit/hyperactivity disorder, addiction, obsessive-
compulsive disorder), suggesting that OFC sulcal pattern is a
general transdiagnostic trait marker of brain dysfunction (Patti
and Troiani, 2018; Nakamura et al., 2020).

Several studies reported that the sulcal pattern of the ACC
shows a notable asymmetry among the general population that is
reduced in patients schizophrenia (Yücel et al., 2002; Le Provost
et al., 2003; Fornito et al., 2006) and in subjects at high risk to
develop a psychosis (Yücel et al., 2003; Wood et al., 2005; Park
et al., 2013; Meredith et al., 2014). Reduced ACC asymmetry
is associated with lower executive function in patients with
schizophrenia (Fornito et al., 2006). In addition, a shorter PCS is
associated with a predisposition to hallucinations in patients with
schizophrenia (Garrison et al., 2015, 2019; Rollins et al., 2020).

Sulcation impairments in schizophrenia are not limited
to the PFC, but also in the Superior Temporal Sulcus
(STS). Of note, the STS and PCS overlap in their temporal
emergence during the fetal stage: the PCS appears around
30 weeks of gestation (Nishikuni and Ribas, 2013) and the
STS forms near 26 weeks (Leroy et al., 2015). In patients with
adolescent onset schizophrenia, the collateral sulcus, between the
parahippocampal gyrus and the anterior part of the fusiform
gyrus, was found shorter compared to typically developing
adolescents (Penttila et al., 2008). In patients with auditory verbal
hallucinations (AVH), abnormal sulcation have been found in
the language-related cortex, including shorter STS (Cachia et al.,
2008) and a higher number of duplicated Heshl’s gyrus (Hubl
et al., 2010). In addition, in comparison to healthy controls,
opposite spatial deviations have been reported in the patients’

right temporo-parietal junction (rTPJ) according to the spatial
location of their AVH, i.e., outside head or inside head (Plaze
et al., 2011). Besides, self/other attribution of AVH is also
associated with the sulcal pattern of the posterior part of the
Sylvian fissure, encompassing the TPJ area and the inferior
parietal lobule (IPL; Plaze et al., 2015).

Finally, impaired 3D GI was also associated with visual
hallucinations (VH), suggesting that VH, and likely the
sensory complexity of hallucinations, could be a proxy of the
neurodevelopmental weight of schizophrenia (Cachia et al.,
2015). In addition, an incomplete hippocampal inversion (Cachia
et al., 2020) was also found in patients with VH. Although
the literature reports the classical association between VH
and neurodegenerative mechanisms, for example in Body-Lewy
Dementia or Parkinson’s Disease, these sulcal studies provide
the first evidence of an association between neurodevelopmental
mechanisms and VH.

Affective Disorders
Impaired sulcation have also been found in patients with bipolar
disorder (BD). Abnormal ACC sulcal pattern was reported in BD,
with a decreased frequency of bilateral ‘‘double parallel’’ type in
patients (Fornito et al., 2007).

Several studies in BD also extensively analyzed the GI in PFC.
Decreased 2D GI in PFC was found in BD patients (McIntosh
et al., 2009). Of note, no difference was detected between
schizophrenia patients and BD patients (McIntosh et al., 2009)
but GI in PFC was correlated with patients’ working memory
impairment and IQ, regardless of the diagnostic.

Abnormal GI was also investigated in regard with treatment
resistance in BD. Patients with treatment-resistant depression,
either bipolar or unipolar, were found to have reduced global
3D GI, while euthymic BD patients did not differ from
healthy controls or depressed patients (Penttila et al., 2009b).
These findings support the hypothesis that depression that
responds particularly poorly to treatment might involve fetal
neurodevelopmental factors (Monkul et al., 2005; Ansorge et al.,
2007). However, this GI reduction could also be seen as the
consequence of a neurodegenerative process (Monkul et al., 2005;
Strakowski et al., 2005; Coyle et al., 2006), since quantitative
measure of sulcation is also sensitive to atrophy, as well as
being a neurodevelopmental measure. Furthermore, in BD
patients and healthy subjects, 2D GI in PFC has been shown to
significantly decrease with time (Mirakhur et al., 2009). Besides,
BD patients with at least one methionine alleles of brain-derived
neurotrophic factor (BDNF) showed more important losses in
2D GI, an effect that was associated with gray matter loss in the
left hemisphere.

GI in PFC may also provide intermediate phenotype to
distinguish subgroup of BD patients, a first step to define
genetically more homogenous subtypes of BD. Indeed, studies of
the distribution of the age-at-onset support the existence of three
subgroups of patients:early-onset (<25 years), intermediate-
onset (between 25 and 45 years), and late-onset (>45 years;
Leboyer et al., 2005)—with different genetic vulnerability and
transmission within families (Grigoroiu-Serbanescu et al., 2001).
Intermediate-onset BD patients have lower global 3D GI in the
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FIGURE 3 | Inter-individual variability of the sulcal patterns. (A) Example of
individual ACC sulcal patterns in 12 healthy subjects. (B) Superimposition of
individual sulcal patterns in a common reference space (MNI) after linear
spatial normalization.

left and right hemispheres and a lower regional 3DGI in the right
dorsolateral PFC in comparison to both early-onset patients and
healthy subjects (Penttila et al., 2009a). This study was replicated
on a large multi-site sample of 263 BD patients and 320 healthy
controls (Sarrazin et al., 2018). Early-onset BD patients had
an increased 3D regional GI in the right dorsolateral PFC and
patients with a positive history of psychosis had a decreased
3D regional GI in the left superior parietal cortex. There was
no difference between the whole patient cohort and healthy
subjects. These different studies suggest that BD is associated
with localized, but not generalized, abnormalities of sulcation, in
particular in patients with a heavy neurodevelopmental loading.

Other Disorders
More recently, deviations of the cortex sulcation have also been
found in other disorders (Sasabayashi et al., 2021), but in a less
systematic manner.

Hence, in obsessive-compulsive disorder (OCD), impaired
sulcal pattern have been reported in OFC (Delahoy et al., 2019)
and in ACC (Shim et al., 2009). Impaired OFC has also been
found in addiction (Patti et al., 2020) and in autism spectrum
disorder (ASD; Watanabe et al., 2014). Patient with ASD also
exhibit (poly) microgyria (Piven et al., 1990). Analysis of the

sulcal position revealed spatial shifting of the superior and
inferior frontal sulci, the superior temporal and the Sylvian
fissure (Levitt et al., 2003). More recently, analysis of the
perisylvian area revealed that the right anterior caudal ramus
of the posterior part of the STS is longer in ASD patients and
associated with social cognition deficit (Hotier et al., 2017).

Of note, ‘‘extreme’’ abnormal sulcation can be found in
lissencephaly, rare congenital disorders characterized by a
smooth cortical surface (Fry et al., 2014). This spectrum of
brain malformations, due to the failure of migrating neurons to
reach optimal positions in the developing cortex, leads to severe
cognitive deficits.

DISCUSSION

The sulcal patterns offer a window on the potential fetal
constraints of the brain on cognitive abilities and clinical
symptoms that manifest later in life. Sulcal studies can therefore
inform us as to whether individual cognitive or clinical difference
is associated in part to preexisting factors related to the structure
of the brain defined during the fetal period. Because sulcal
patterns are mainly determined before birth and stable across
the lifespan (Chi et al., 1977; Cachia et al., 2016; Tissier
et al., 2018), findings of sulcal studies suggest a causal role of
sulcation in determining later cognitive abilities or impairments.
However, a direct causal link has yet to be provided. For
instance, for reading abilities (Cachia et al., 2018), longitudinal
studies are required to evidence that pre-reading sulcation
constrains later reading skill in the same participants, similar
to the longitudinal finding that inferotemporal connectivity
constrains the VWFA location (Saygin et al., 2016). Regarding
the interpretation of sulcal studies, it is important to stress
that early neurodevelopmental factors assessed with the cortex
sulcation only explain a part of the inter-individual variability.
Indeed, other factors, including environmental factors like socio-
economic status (SES), schooling, culture, physical activity,
stress. . . also contribute to the cognition and clinical symptoms.
For instance, the OTS sulcal pattern explained around 5% of
the variability in reading fluency, to be compared to ∼65% for
SES, SES summarizing several other environmental variables
such as presence of duration and quality of schooling, books
in the family. . . (Cachia et al., 2018). Furthermore, beside
cumulative effects of sulcation and environmental factors, some
evidence suggest possible interactions between sulcation and
environmental factors (Gay et al., 2016) that would need to
be further investigated. Such interaction between experiential
diversity and early neurodevelopment could explain why trauma
is critical in some hallucinations, but plays a minor or no role
in others (Luhrmann et al., 2019). It also has to be discovered
whether cortical sulcation, in addition to its effect on the
cognitive efficiency and clinical symptoms, can also modulate
the pedagogical and clinical interventions. In the clinical domain,
if therapeutic intervention is found to have different effects
in patients with different sulcal patterns, it would open new
perspectives toward individualized and precision medicine.

Sulcal studies have been performed at the group level
to investigate general mechanisms of early neurodevelopment
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on cognition and clinical symptoms. Even though statistically
significant findings have been reported, it is important to
emphasize the very important variability at individual level.
The translation of sulcal findings towards pedagogical or
clinical applications, which requires moving from group-level
to individual-level, will therefore raise complex methodological
issues; see for instance (Duchesnay et al., 2007, 2011). Another
critical methodological issue regards the classification of the
sulcal pattern that may raise some difficulties due to the very high
inter-individual variability (Figure 3; Ono et al., 1990; Petrides,
2018); see for instance the ambiguities in sulcal identification for
the ACC region (Leonard et al., 2009). Manual (Garrison, 2017)
or semi-automated (Snyder et al., 2019) detailed protocols for the
identification and tracing of sulcal pattern have been developed
to normalize the process and optimize the inter-rater reliability.
A way to overcome sulcal ambiguities is the establishment of
a dictionary of the frequent local folding patterns (Sun et al.,
2009), for instance based on the ‘‘sulcal roots’’ (Regis et al.,
2005), i.e., indivisible and stable sulcal units related to the first
folds during fetal life and that can be detected in mature brain
from the analysis of the local curvature (Cachia et al., 2003;
Mangin et al., 2019) or depth (Yun et al., 2020) of the cortical
surface. Another challenging methodological perspective is the

development of fully automated techniques for sulcal pattern
labeling. The development of such techniques is very complex
because of the possible sulcal ambiguities. Recent attempts using
cutting-edge machine learning approaches based on Scoring
by Non-local Image Patch Estimator (SNIPE), Support Vector
Machine (SVM) and 3D Convolution Neural Network (CNN;
Borne et al., 2021) along with deep neural networks (Yang et al.,
2019) are very encouraging. The development of such ‘‘artificial
anatomists’’, able to automatically identify the sulcal patterns on
the whole cortex, will open the possibilities to analyze very large
database (e.g., HCP, ABCD, UK Biobank), a first step to crack the
‘‘sulcal code’’.
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