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Aim: Mechanical dyssynchrony (MD) is associated with heart failure (HF) and may be

prognostically important in cardiac resynchronization therapy (CRT). Yet, little is known

about its patterns in healthy or diseased hearts. We here investigate and compare systolic

and diastolic MD in both right (RV) and left ventricles (LV) of canine, primate and healthy

and failing human hearts.

Methods and Results: RV and LV mechanical function were examined by pulse-

wave Doppler in 15 beagle dogs, 59 rhesus monkeys, 100 healthy human subjects

and 39 heart failure (HF) patients. This measured RV and LV pre-ejection periods

(RVPEP and LVPEP) and diastolic opening times (Q-TVE and Q-MVE). The occurrence

of right (RVMDs) and left ventricular systolic mechanical delay (LVMDs) was assessed by

comparing RVPEP and LVPEP values. That of right (RVMDd) and left ventricular diastolic

mechanical delay (LVMDd) was assessed from the corresponding diastolic opening times

(Q-TVE andQ-MVE). These situations were quantified by values of interventricular systolic

(IVMDs) and diastolic mechanical delays (IVMDd), represented as positive if the relevant

RV mechanical events preceded those in the LV. Healthy hearts in all species examined

showed greater LV than RV delay times and therefore positive IVMDs and IVMDd.

In contrast a greater proportion of the HF patients showed both markedly increased

IVMDs and negative IVMDd, with diastolic mechanical asynchrony negatively correlated

with LVEF.

Conclusion: The present IVMDs and IVMDd findings have potential clinical implications

particularly for personalized setting of parameter values in CRT in individual patients to

achieve effective treatment of HF.

Keywords: mechanical synchrony, interventricular mechanical delays (IVMD), systolic interventricular mechanical

delays (IVMDs), diastolic interventricular mechanical delays (IVMDd), pulsed-wave Doppler echocardiography
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INTRODUCTION

Heart failure (HF), a condition associated with high mortality
and morbidity, constitutes a major and growing worldwide
public health problem (1–4), resulting in a requirement for
the development of effective management. To this end, cardiac
resynchronization therapy (CRT) implantation has proved useful
as a therapeutic strategy for managing HF (5, 6). However, 30%
of such treated patients fail to show beneficial outcomes (7)
or even show further deterioration in cardiac mechanics and
function with CRT implantation (8–10). CRT likely addresses
the association of HF with mechanical dyssynchrony (MD) or
disparities in wall contraction timing (8). This may therefore
reflect the importance of variations in the contributory factors
for HF in individual patients. These include delayed electrical
conduction or electromechanical coupling, or altered regional
myocardial properties following ischemic damage or myocardial
infarction (8). Previous experimental reports had positively
correlated durations of canine ventricular depolarization and
repolarization intervals with wall thickness and cardiac size.
The latter potentially alter in HF (11) causing both pro-
arrhythmic effects (12, 13) and mechanical dyssynchrony.
However, contributions of electromechanical coupling are less
well understood.

Nevertheless, left ventricular mechanical delays (LVMDs),
assessed using ultrasound methods (14) are useful
prognosticators in both ischemic (15) and nonischemic
dilated cardiomyopathy (16), acute myocardial infarction (17)
and coronary artery disease (18). They may also be of prognostic
importance following CRT implantation (7).

However, to this end, little is known about patterns of either
normal or abnormal ventricular mechanical synchronization.
This applies to both the right or left ventricle, whether to
systolic or diastolic function, or to disparities between them,
between different species of large mammals, or between healthy
and diseased human hearts. Previous studies using M-mode,
pulse-wave Doppler and tissue Doppler imaging have been
confined to human studies of systolic as opposed to diastolic,
and left ventricular asynchrony in HF patients (19–23). In
particular, few studies to date have explored their diastolic
ventricular asynchrony.

The present study therefore extends these previous studies
in the following respects for the first time. We examine
diastolic in addition to systolic ventricular synchrony. We also

Abbreviations: BSA, body surface area; BW, body weight; CRT, cardiac

resynchronization therapy; DBP, diastolic blood pressure; FAC, fractional area

change; HF, heart failure; HR, heart rate; IVMD, inter-ventricular mechanical

delay; IVMDd, diastolic interventricular mechanical delay; IVMDs, systolic

interventricular mechanical delay; LV, left ventricle; LVEDV, left ventricular end-

diastolic volume; LVEF, left ventricular ejection fraction; LVESV, left ventricular

end-systolic volume; LVMDd, left ventricular mechanical delay in diastole;

LVMDs, left ventricular mechanical delay in systole; LVPEP, left ventricular pre-

ejection period; Q-MVe, the time interval from the onset of theQRS complex to the

onset of early diastolic E wave of themitral valve; Q-TVe, the time interval from the

onset of QRS complex to the onset of early diastolic E wave of tricuspid valve; RV,

right ventricle; RVMDd, right ventricular mechanical delay in diastole; RVMDs,

right ventricular mechanical delay in systole; RVPEP, right ventricular pre-ejection

period; SBP, systolic blood pressure.

provide simultaneous readouts from the right in addition to
the left ventricle. Such measures are surveyed and compared in
exemplars of large mammalian canine and nonhuman primate
species, of potential value in future experimental studies, in
addition to human hearts. Finally the analyses are extended
to HF patients. We thus characterize and compare left and
right ventricular, systolic and diastolic mechanical sequences in
canine, primate, and normal and failing human hearts for the
first time.

We accordingly applied clinically accepted diagnostic
electrocardiographic and echocardiographic methods to obtain
and compare: (a) As systolic indicators: right and left ventricular
pre-ejection periods (RVPEP and LVPEP) and (b) As diastolic
indicators: mitral and tricuspid diastolic opening times (Q-MVE
and Q-TVE). Corresponding values from these measurements
were also compared between the right and left ventricles,
between normal hearts in the species examined and in failing
human hearts. This additionally provided incidences of the
situations where there were relative right or left ventricular
delays as well as the resulting interventricular, systolic or
diastolic delays.

We have demonstrated for the first time that (a) normal
animal and human hearts show greater left than right delay
times and therefore positive systolic (IVMDs) and diastolic
IVMD delays (IVMDd). (b) In contrast, a greater proportion of
individual HF patients show reversals in both these IVMDs and
IVMDd trends.

Our demonstration of such left/right mechanical differences
and variations in patterns of both systolic and diastolic function
between individual hearts thus have potential implications for
clinical therapeutic techniques based on correcting mechanical
activation times such as cardiac resynchronization therapy.
Thus, the findings suggest that systolic and diastolic ventricular
mechanical sequence assessment by echocardiography
should be performed before and after CRT, in individual
patients as a guide for the optimization of pacing indices.
Furthermore, effectiveness of the therapeutic response may
be optimized with the aid of determinations of ventricular
mechanical sequence in individual patients and monitored by
echocardiographic examinations.

METHODS

Study Populations
The experimental studies were performed on fifty-nine
rhesus monkeys (age 15.5 ± 3.1 years) and fifteen beagle
dogs (age 2 years). The animals were anesthetized (14
mg/kg ketamine for monkeys; 1–2% isoflurane for dogs)
for echocardiography. All procedures were approved by
the Animal Care and Use Committee of Peking University
(2011-0010) and complied with the principles of laboratory
animal care of the National Academy of Sciences/National
Research Council of the People’s Republic of China. The clinical
studies were performed on 100 healthy subjects (range: 19–56
years; mean age: 29.7 ± 7.18 years, 50 males, 50 females)
and 39 patients with systolic heart failure (age range 31–80
years; mean age: 57.1 ± 17.2 years, 30 males). All human
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subjects provided clinical histories and underwent physical,
electrocardiogram and transthoracic echocardiographic
examination. This study was approved by the local Ethics
Committee and the informed consents were obtained from
all subjects.

The inclusion criteria for normal subjects included:

(1) normal electrocardiogram; (2) normal values in all

echocardiographic measurements; left ventricular ejection

fraction (LVEF) ≥ 55%, Peak velocity of mitral valve measured

by Pulse wave Doppler / Peak velocity of mitral annulus

measured by tissue Doppler in early diastolic of left ventricle

(E/e’) < 15 for the septum and E/e’ < 13 for the lateral

wall; (3) absence of any history of cardiovascular disease
including hypertension, coronary, myocardial, diabetic and
thyroid disease; (4) close to ideal echocardiographic image
quality. The inclusion criteria for the HF patients were:
(1) clinical diagnosis of heart failure with New York Heart
Association (NYHA) Functional Classification grades II∼IV;
(2) LVEF derived using Bi-plane Simpson’s rule ≤45%; (3)
electrocardiographic sinus rhythm with QRS complex < 120ms

in duration with no evidence of conduction abnormality; (4) no
echocardiographic evidence for valvular disease; (5) no history
of thoracotomy operations; (6) close to ideal echocardiographic
image quality.

Echocardiographic Measurements
Transthoracic echocardiographic examinations were performed
in all subjects (GE Vivid 7 for animal studies, Vivid E9, GE
Vingmed, Horten, Norway; ALOKA Prosound F75, Tokyo,
Japan, for human studies with a 3–6 MHz phased array
transducer). Standard two-dimensional echocardiography with
Doppler examination was performed according to American
Society of Echocardiography guidelines (24). All acquired images
were stored for three consecutive cardiac cycles. The spectrum
of Pulse wave Doppler for the left ventricular outflow tract
(LVOT) was obtained from the apical five-chamber views,
and that for the right ventricular outflow tract (RVOT) was
obtained from the pulmonary long-axis views using pulsed-wave
Doppler echocardiography. Left ventricular pre-ejection period
(LVPEP) was measured as the interval from the beginning of the

FIGURE 1 | Four mechanical delay patterns. LVMDs, left ventricular mechanical delay in systole; RVMDs, right ventricular mechanical delay in systole; LVMDd, left

ventricular mechanical delay in diastole; RVMDd, right ventricular mechanical delay in diastole; IVMDs, systolic interventricular mechanical delay; IVMDd, diastolic

interventricular mechanical delay; LVPEP, left ventricular pre-ejection period; RVPEP, right ventricular pre-ejection period; Q-MVe, the time interval from the onset of QRS

complex to the onset of the early diastolic E wave of the mitral valve; Q-TVe, the time interval from the onset of QRS complex to the onset of the early diastolic E wave

of the tricuspid valve.
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FIGURE 2 | Mechanical sequences in the LV and RV in a normal healthy subject. In diastole (A,B), RV filling occurred 55ms prior to LV filling giving a LVMDd pattern.

For systolic ejection (C,D), LV ejection preceded RV ejection by 35ms in RVMDs pattern. Abbreviations as in legend to Figure 1.

FIGURE 3 | Mechanical sequences between LV and RV in a patient with HF. In diastole (A,B), LV filling occurred 138ms prior to RV filling giving a RVMDd pattern.

This was in marked contrast to most healthy subjects. For systolic ejection (C,D), RV ejection preceded LV ejection by 12ms in a LVMDs pattern. Abbreviations as in

legend to Figure 1.
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QRS complex to the onset of aortic valve opening. The right
ventricular pre-ejection period (RVPEP) was measured as the
interval from the beginning of the QRS complex to the onset
of pulmonary valve opening. Transmitral and transtricuspid

TABLE 1 | Baseline characteristic of the study subjects.

Animals

Primates (n = 59) Canines (n = 15) p Value

Age (year) 15.5 ± 3.09 2.1 ± 0.03 <0.001

BW (kg) 13.8 ± 4.03 13.36 ± 3.93 0.325

Male (%) 100 100 1.000

Heart rate (bpm) 129.0 ± 26.1 114.2 ± 43.3 0.018

SBP (mmHg) 149.0 ± 24.0 65.3 ± 17.9 <0.001

DBP (mmHg) 80.4 ± 15.9 48.4 ± 16.6 <0.001

LVEF (%) 70.1 ± 5.7 59.8 ± 9.3 <0.001

Humans subject

Normal (n = 100) HF (n = 39) p Value

Age (year) 29.7 ± 7.2 57.1 ± 17.2 <0.001

Male (%) 50.0 76.9 <0.001

Heart rate (bpm) 67.1 ± 8.4 77.2 ± 16.4 0.056

BSA (m2) 1.7 ± 0.2 1.8 ± 0.2 0.568

LVEF (%) 64.8 ± 4.8 33.8 ± 7.2 <0.001

LVEDV (ml) 101.5 ± 24.2 204.0 ± 86.9 <0.001

LVESV (ml) 35.8 ± 10.3 146.4 ± 59.1 <0.001

E/e’ (sep) 6.7 ± 1.1 21.1 ± 26.9 <0.001

E/e’ (lat) 4.8 ± 0.9 12.4 ± 7.1 <0.001

RV-S’ (m/s) 0.15 ± 0.02 0.12 ± 0.03 0.329

QRS duration (ms) 92.6 ± 9.1 105.6 ± 13.5 0.102

PR (ms) 146.0 ± 11.5 150.0 ± 40.0 0.168

QTc (ms) 415.0 ± 18.5 499.6 ± 24.2 <0.001

Data are represented as mean ± SD.

HF, heart failure; BSA, body surface area; BW, body weight; DBP, diastolic blood pressure;

FAC, fractional area change; LVEF, left ventricular ejection fraction; LVEDV, left ventricular

end-diastolic volume; LVESV, left ventricular end-systolic volume; RV, right ventricle; SBP,

systolic blood pressure.

TABLE 2 | Species comparison of ventricular mechanical delays in healthy hearts.

Canines Primates Humans p value

(n = 15) (n = 59) (n = 100)

LVPEP (ms) 58.3 ± 18.8 43.6 ± 8.8 46.8 ± 12.4 <0.001

RVPEP (ms) 47.7 ± 13.6 42.0 ± 8.8 40.3 ± 11.1 0.041

Q-MVe (ms) 297.9 ± 31.1 282.7 ± 33.8 396.8 ± 33.0 <0.001

Q-TVe (ms) 258.0 ± 35.3 253.8 ± 35.3 379.1 ± 33.1 <0.001

IVMDs (ms) 7.4 ± 12.8 1.6 ± 6.5 6.5 ± 1.3 <0.001

IVMDd (ms) 38.6 ± 26.7 28.9 ± 13.6 17.7 ± 0.1 <0.001

Data are represented as mean ± SD.

LVPEP, left ventricular pre-ejection period; RVPEP, right ventricular pre-ejection period;

Q-MVe, time interval from the onset of QRS complex to the onset of early diastolic E

wave of mitral valve; Q-TVe, time interval from the onset of QRS complex to the onset of

early diastolic E wave of tricuspid valve; IVMDs, systolic interventricular mechanical delay;

IVMDd, diastolic interventricular mechanical delay.

inflow Doppler wave patterns were respectively recorded in
apical five-chamber views. The diastolic opening time of the
left and right ventricles was measured as the interval between
the onset of the QRS complex and the beginning of the E
wave for the mitral valve (Q-MVE) and for the tricuspid
valve (Q-TVE) respectively. Four mechanical delay patterns
are shown in Figure 1. The occurrence of a left ventricular
mechanical delay in systole (LVMDs) was identified when
RVPEP < LVPEP. Conversely, the existence of a right ventricular
mechanical delay in systole (RVMDs) was identified when RVPEP

> LVPEP (Figure 2). Similarly, the existence of a left ventricular
mechanical delay in diastole (LVMDd) was identified when
Q-MVe > Q-TVe, and the existence of a right ventricular
mechanical delay in diastole (RVMDd) was identified when Q-
MVe<Q-TVe (Figure 3). The interventricular mechanical delay
(IVMD) was defined as the interval between the LV and RV
mechanical delays. IVMDwas defined as positive if RV activation
preceded the LV activation and negative if LV activation preceded
RV activation.

Statistical Analysis
Continuous variables were expressed as mean ± SD and
compared between two groups by t test for independent samples.
When not normally distributed, continuous data was expressed
as median (± the interquartile range, IQR) and compared
between two groups by the non-parametric Mann-Whitney
test. Categorical variables were expressed as percentages and
compared between two groups by χ

2 testing. Linear regression
was performed to compare values of IVMDs, IVMDd and LVEF
in the HF patients. Binary logistic regression analyses were
performed to determine the influencing factors on the ventricular
mechanical sequence. All tests were two-tailed and p-values were
assessed with a significance level of 0.05. All statistical analyses
were performed using SPSS version 21.0 (IBM Corporation,
Armonk, NY, USA).

RESULTS

Baseline Characteristics
Table 1 lists overall baseline characteristics for all the study
subjects. All animals were males with normal echocardiographic

TABLE 3 | Ventricular mechanical delays compared in normal and failing human

hearts.

Normal HF p value

(n = 100) (n = 39)

LVPEP (ms) 46.8 ± 12.4 92.3 ± 29.9 <0.001

RVPEP (ms) 40.3 ± 11.1 75.8 ± 25.4 <0.001

Q-MVe (ms) 396.8 ± 33.0 421.2 ± 54.6 <0.001

Q-TVE (ms) 379.1 ± 33.1 430.3 ± 54 <0.001

IVMDs (ms) 6.5 ± 1.3 16.5 ± 20.6 <0.001

IVMDd (ms) 17.7 ± 0.1 −9.1 ± 54.1 <0.001

HF, heart failure.

Other abbreviations as in legend to Table 2.
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TABLE 4 | Comparative analysis of the ventricular mechanical sequence in healthy hearts.

Canines Primates Humans P value

(n = 15) (n = 59) (n = 100)

Systolic mechanical sequence [% (95% CI)]

RVMDs 23.1 (0–46) 42.4 (30–55) 25.0 (17–33) 0.003

LVMDs 76.9 (54–100) 55.9 (43–69) 74.0 (65–83) 0.365

LV-RV synchrony - 1.7 (0–5) 1.0 (0–3) 0.638

Diastolic mechanical sequence [% (95% CI)]

RVMDd 6.7 (0–19) 1.7 (0–5) 19.0 (11–27) 0.103

LVMDd 93.3 (81–100) 98.3 (95–100) 81.0 (73–89) 0.368

LV-RV synchrony - - -

CI, confidence intervals; LV, left ventricle; RV, right ventricle; LVMDs, left ventricular mechanical delay in systole; LVMDd, left ventricular mechanical delay in diastole; RVMDs, right

ventricular mechanical delay in systole; RVMDd, right ventricular mechanical delay in diastole.

TABLE 5 | Analysis of the ventricular mechanical sequence- normal humans vs

HF patients.

Normal HF P value

(n = 100) (n = 39)

Systolic mechanical sequence [% (95%CI)]

RVMDs 25.0 (17–33) 15.4 (4–27) 0.168

LVMDs 74.0 (65–83)84.6 (73–96) 0.365

LV-RV synchrony 1.0 (0–3) -

Diastolic mechanical sequence [% (95%CI)]

RVMDd 19.0 (11–27) 59.0(44–74) <0.001

LVMDd 81.0 (73−89)41.0(26–56) <0.001

LV-RV synchrony - -

HF, heart failure.

Other abbreviations as in legend to Table 4.

ejection fractions. One hundred healthy subjects (Age: 19–56
years; mean age: 29.7 ± 7.18 (SD) y, 50 males) and 39 patients
with HF (Age: 31–80 years; mean: 57.1 ± 17.2 (SD) years, 30
males) were studied. The healthy subjects were much younger
than the patients owing to the strict study inclusion criteria.

Ventricular Mechanical Delays
Tables 2, 3 summarize the Doppler echocardiographic
measurements of the mechanical delays in left and right
ventricular contraction and relaxation. The healthy canine,
monkey and human hearts showed differing ventricular
mechanical delays (Table 2). Nevertheless, the ventricular
diastolic delay time (Q-MVE, Q-TVE) was greater than the
systolic delay time (LVPEP, RVPEP), giving greater diastolic
than systolic interventricular mechanical delays (IVMD). The
human studies went on to demonstrate that HF patients showed
greater RV and LV mechanical delays than normal subjects in
systole and diastole. Furthermore, patients with HF showed
significantly reduced or even negative IVMDd, suggesting a
proportionally greater increase in RVMDd compared to normal
subjects (Table 3).

FIGURE 4 | Ventricular mechanical sequences in (A) systole and (B) diastole.

LVMDs, left ventricular mechanical delay in systole; LVMDd, left ventricular

mechanical delay in diastole; RVMDs, right ventricular mechanical delay in

systole; RVMDd, right ventricular mechanical delay in diastole. **denotes

results satisfying the significance criterion p < 0.01.

Ventricular Mechanical Sequences
To compare differences inmechanical sequence patterns between
LV and RV, echocardiographic parameters related to systole
or diastole were assessed in each individual experimental or
human subject. The percentage occurrences of LVMDs, RVMDs,
LVMDd and RVMDd were then determined (Tables 4, 5). The
percentage occurrences of LVMDs in normal canine, primate
and human hearts was 76.9% (95%CI, 0.54–1.0), 55.9% (95%CI,
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FIGURE 5 | Correlation between IVMD and LVEF in patients with heart failure. No significant correlation between (A) IVMDs and LVEF (r = 0.06, p = 0.712), but a

positive correlation between (B) IVMDd and LVEF (r = 0.54, p < 0.001). Significant differences in LVEF between HF patients with different ventricular mechanical

sequences (C,D). LVMDs, left ventricular mechanical delay in systole; LVMDd, left ventricular mechanical delay in diastole; RVMDs, right ventricular mechanical delay

in systole; RVMDd, right ventricular mechanical delay in diastole; IVMD, interventricular mechanical delay; IVMDs, systolic interventricular mechanical delay; IVMDd,

diastolic interventricular mechanical delay; LVEF, left ventricular ejection fraction. **denotes results satisfying the significance criterion p < 0.01.

0.43–0.69), and 74.0% (95%CI, 0.65–0.83) respectively. That
for patients with HF was 84.6%, (95%CI, 0.73–0.96). The
corresponding percentage occurrences of LVMDd was 93.3%
(95%CI, 0.81–1.0), 98.3% (95%CI, 0.95–1.0) and 81.0% (95%CI,
0.73–0.89). In contrast, that for patients with HF was only 41.1%
(95%CI, 0.26–0.56). Figures 3A,B summarizes the occurrences
for LVMDs and RVMDs, and LVMDd and RVMDd respectively,
illustrating the highly consistent tendency for a later RV filling
in the patients with HF. Finally, binary logistic regression
analyses did show associations with variations in the ventricular
mechanical sequence like age, sex, BSA, and heart rate (p > 0.05)
(Supplementary Materials).

Correlations Between IVMDs and IVMDd
and LVEF in HF Patients
Linear regression was performed to compare IVMDs/IVMDd
and LVEF in the patients with HF (Figure 5). This demonstrated
no significant correlation between IVMDs and LVEF (r = 0.06,
p= 0.712), but a positive correlation between IVMDd and LVEF
(r = 0.54, p < 0.001). The greater the negative value of IVMDd
(RVMDd pattern), the lower the LVEF. Furthermore, HF showed
differing occurrences in their patterns of particular systolic and
diastolic characteristics. A greater proportion of HF patients
showed associations between LVEF and RVMDs, than between

LVEF and LVMDs (43.2 ± 1.21 vs. 34.1 ± 1.32%, p = 0.006). In
contrast, HF patients showed less marked associations between
LVEF and RVMDd than between LVEF and LVMDd (31.0± 1.27
vs. 42.0± 1.15%, p < 0.001).

DISCUSSION

We performed comparative echocardiographic analyses of
ventricular mechanical activation sequences bearing on the
synchrony of left and right ventricular systole and diastole in
experimental animals, normal human subjects and HF patients.
We report a predominance of left ventricular mechanical delay in
systole (LVMDs) (76.9, 55.9, and 74.0% respectively) and highly
consistent diastolic filling patterns (LVMDd) (93.3, 98.3, and
81.0% respectively) on the basis of paired comparisons of LV
and RV parameters in each subject, in normal canine, primate
and human hearts. Previous reports (21, 22) had not detected
deviations from synchronous or slightly earlier LV relative
to RV mechanical activation on the basis of their unpaired
comparisons of mean LV and RV ejection time through entire
experimental groups. The later LV repolarization times observed
here may reflect the thicker LV walls resulting in prolonged
LV repolarization times. Previous animal studies have positively
correlated such repolarization times with wall thickness (25, 26).
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Our present observation of significantly reduced LVMDd to
41.1% in HF patients, could then reflect changes in LV wall
anatomy and electrical conduction. This would be consistent with
our findings that the negative value of IVMDd was positively
associated with the reduction in LVEF (Figure 5). IVMDd may
thus have potential prognostic significance in HF.

The present echocardiographic ventricular mechanical
sequence findings have potential implications for therapeutic
cardiac resynchronization therapy (CRT), with applicability
to assessment and optimization of CRT. First, current bi-
ventricular pacing in CRT typically sets the LV pacing time
to be simultaneous with or slightly later than that of the RV.
However, we here report differing ventricular mechanical
sequences between individuals which could then confound the
effectiveness of CRT. Furthermore, HF patients showed altered
RV and LV mechanical sequences with potential implications for
CRT optimization. Such differences in RV and LV systolic and
diastolic sequences may require transthoracic echocardiographic
determination for optimization and monitoring of CRT.

Secondly, prolonged QRS duration is currently used to
measure ventricular mechanical dyssynchrony as an indication
for CRT in HF. However, electrical dyssynchrony may not
exactly parallel mechanical dyssynchrony. Thus, Yu et al. (27)
reported that LV systolic and diastolic mechanical asynchrony
are common in HF patients with normal QRS durations.
Significant systolic asynchrony was thus observed in >40%
of patients with narrow QRS complexes. Conversely, ∼36%
of HF patients with wide QRS complexes (>120ms) did not
have obvious intraventricular asynchrony. Furthermore, there
was no correlation between the degree of LV asynchrony
and QRS duration. Gabe B et al. reported a similar result
(28). Furthermore, baseline QRS duration was not a good
predictor for a better response to CRT in HF patients. Neither
baseline nor shortening of QRS duration were good predictors
for hemodynamic, clinical or echocardiographic improvement.
However, the baseline severity of ventricular dyssynchrony
assessed by echocardiography proved of predictive value (29, 30).

Thirdly, assessment of interventricular dyssynchrony may
be critical for optimizing interventricular delays (V-V delays)
in CRT. Their optimal timing improves ventricular filling
capacity and stroke volume, reducing mitral regurgitation and
reversing LV remodeling with subsequent reductions in short-
term morbidity and mortality. Admittedly, there is evidence
for intraventricular but not interventricular synchrony as an
independent prognostic indicator in CRT patients. However,
previous work had assessed IVMDs as a predictor without
considering the interventricular mechanical sequence with V-V
delays, setting LV timing simultaneously with or slightly earlier
than RV. This contrasts with the LVMDs patterns we report here.

Limitations
The pressure difference between left and right ventricles may be
one of the factors affecting the mechanical asynchrony between
ventricles, but obtaining intraventricular pressure may need
invasive examination. For healthy volunteers and some patients
with hemodynamic instability, it is difficult to obtain such
invasive intraventricular pressure measurement data.

In addition, left ventricular systolic pressure and end diastolic
pressure could also affect left and right ventricular synchrony.
Finally, the consequent effects of parameters such as blood
pressure and E/e ’may merit further research.

CONCLUSION

By using Pulse-wave Doppler echocardiographic approaches,
we have explored and characterized the cardiac mechanical
sequence in LV and RV and their relationships in three large
species. Significant variations in LV and RV systolic and diastolic
mechanical sequences are demonstrated between healthy subjects
and HF patients. Systolic and diastolic ventricular mechanical
sequence assessment by echocardiography should be done before
and after CRT, as a guide for the optimization of pacing indices.
To gain a highly effective therapeutic response, ventricular
mechanical sequence should be considered for individual
patients and recorded in routine echocardiographic examination.
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