
Injecting Inductive Biases into

Distributed Representations of Text

Victor Prokhorov

Department of Theoretical and Applied Linguistics

University of Cambridge

This dissertation is submitted for the degree of

Doctor of Philosophy

Selwyn College August 2021





Declaration

I hereby declare that my dissertation is the result of my own work and includes nothing

which is the outcome of work done in collaboration except as declared in the Preface and

specified in the text. It is not substantially the same as any that I have submitted, or, is

being concurrently submitted for a degree, diploma or other qualification at the University of

Cambridge or any other University or similar institution except as declared in the Preface

and specified in the text. I further state that no substantial part of my dissertation has already

been submitted, or, is being concurrently submitted for any such degree, diploma or other

qualification at the University of Cambridge or any other University of similar institution

except as declared in the Preface and specified in the text. It does not exceed the prescribed

word limit for the relevant Degree Committee.

Victor Prokhorov

August 2021





Injecting Inductive Biases into Distributed Representations of Text

Victor Prokhorov

Abstract
Distributed real-valued vector representations of text (a.k.a. embeddings), learned by

neural networks, encode various (linguistic) knowledge. To encode this knowledge into

the embeddings the common approach is to train a large neural network on large corpora.

There is, however, a growing concern regarding the sustainability and rationality of pursuing

this approach further. We depart from the mainstream trend and instead, to incorporate the

desired properties into embeddings, use inductive biases.

First, we use Knowledge Graphs (KGs) as a data-based inductive bias to derive the

semantic representation of words and sentences. The explicit semantics that is encoded

in a structure of a KG allows us to acquire the semantic representations without the need

of employing a large amount of text. We use graph embedding techniques to learn the

semantic representation of words and the sequence-to-sequence model to learn the semantic

representation of sentences. We demonstrate the efficacy of the inductive bias for learning

embeddings for rare words and the ability of sentence embeddings to encode topological

dependencies that exist between entities of a KG.

Then, we explore the amount of information and sparsity as two key (data-agnostic)

inductive biases to regulate the utilisation of the representation space. We impose these prop-

erties with Variational Autoencoders (VAEs). First, we regulate the amount of information

encoded in a sentence embedding via constraint optimisation of a VAE objective function.

We show that increasing amount of information allows to better discriminate sentences. Af-

terwards, to impose distributed sparsity we design a state-of-the-art Hierarchical Sparse VAE

with a flexible posterior which captures the statistical characteristics of text effectively. While

sparsity, in general, has desired computational and statistical representational properties, it

is known to compensate task performance. We illustrate that with distributed sparsity, task

performance could be maintained or even improved.

The findings of the thesis advocate further development of inductive biases that could

mitigate the dependence of representation learning quality on large data and model sizes.
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Preface

The major content of all chapters was developed during the PhD. However, the Chapter 3 is

partly built on the ideas I explored during my MPhil in Advanced Computer Science. As

such there is some overlap between Section 3.3 and the MPhil dissertation. The overlap

regards presentation of node2vec (see Subsection 3.3.2) and CCA (see Subsection 3.3.3)

models.
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1
Introduction

1.1 Motivation

One of the long-standing goals in Natural Language Processing (NLP) has been to represent

the ‘meaning’ of language units such as words, phrases and sentences in a mathematical

construct that would allow a computer to understand the intent conveyed by the unit. To

pursue this goal, many different schemes to meaning representation have been proposed.

In the literature, however, one can distinguish two broad categories: 1) representation of

meaning in a symbolic structure, and 2) representation of meaning in a numeric vector. In

principle, there are two differences between them. First, is the mathematical object for

meaning representation: discrete vs continuous. Second, is the amount of domain-specific1

information we need to incorporate into the models to represent the meaning of language

units; the first category “hard-code” the representation of meaning according to some formal

system, while the models from the second category learn the meaning from data with the

minimum set of assumptions. This second difference is especially of interest to this thesis.

The common principle of schemes from the first category is to rely on atomic symbols

and some form of structure, represented either with formulae or as a graph, that establishes a

relation between these symbols. This category includes, but is not limited to methods such

as Abstract Meaning Representation (AMR; Banarescu et al. (2013)) and approaches from

1Domain is a quite general term and used differently depending on the context. It can refer to: 1) a corpus
(e.g. biomedical vs movie or more generally to corpora that we constructed using different heuristics (McCoy
et al., 2019)), 2) a task, 3) types of data (text or image), and 4) types of knowledge required (e.g. linguistic
knowledge). In this chapter we also use it broadly, mainly referring to 3 and 4. However, in Chapters 3-6 we
mainly mean 1 and 2.

1
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formal semantics (FS; Montague (1973); Blackburn and Bos (2005)). These methods are

usually interpretable - that is following the predefined rules we can understand what and how

meaning has been assigned to a linguistic unit. Also, having the predefined rules allows us to

express regularities in terms of how meaning is assigned to a previously unseen language unit

which in turn leads to generalisation. Unfortunately, AMR and FS methods are not robust

if the language units have unfamiliar symbols e.g. a sentence may have a new word, or if

the language unit has a novel meaning which cannot be expressed with existing rules2 (e.g.

polysemy, neologism, etc.). This would require an addition of new rules and symbols, and

their incorporation into an existing scheme may be time-consuming and expensive as domain

expertise is needed. Despite the ongoing research that aims at improving the understanding

of existing schemes and addressing their shortcomings (Abend and Rappoport, 2017) the

aforementioned problems lead to the decline of the popularity of these methods.

Instead, methods from the second category have gained a lot of attention.3 The unifying

characteristic of these methods is that meaning of a linguistic unit is distributed in a high-

dimensional numeric vector. Where each dimension of the vector represents a certain aspect

of the meaning. To derive values of the vector, the approach relies on statistical models

and large amounts of text which can be in a raw form, or along with additional attributes to

characterise specific semantic properties of text e.g. a label expressing positive or negative

sentiment of a sentence. The most successful methods from this category use neural networks

as a statistical model and the distributed real-valued vector representations of text (a.k.a.

embeddings; Bengio et al. (2003), Mikolov et al. (2013)). In this thesis, we solely concentrate

on these models.

Compared to their symbolic counterpart, neural networks eschew any use of symbolic

structure. Moreover, they are generic models in a way that they can be applied both to

2Language is creative which implies the use of words and semantic/syntactic structure in an “unconventional”
way. As such, there is a high chance that there could be a sentence/phrase that has a novel semantic/syntactic
structure that are not covered by the existing rules.

3We refer to two periods: statistical NLP (1990) and neural NLP. Neural networks became popular in
2013 (Ruder, 2018). However, worth noting that the first neural language model, which learns distributed
representation of words, was introduced in 2001/2003 (Bengio et al. (2003) the publication date varies for this
paper). We refer a reader to Ruder (2018) for a review of the history of neural networks in natural language
processing.
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the text and image data without significant change in the architecture of the models.4 Still,

neural models such as BERT (Devlin et al., 2019), which are mainly trained on an unlabeled

corpus,5 achieve state-of-the-art (SOTA) performance on language tasks that are designed to

test the competence of a model on understanding the meaning of language unit(s), e.g. GLUE

(Wang et al., 2018) and SuperGLUE (Wang et al., 2019). Motivated by these empirical

results, the field of NLP has been progressing by scaling up the models and training them on

larger corpora. This allowed to achieve even better performance on downstream tasks (Liu

et al., 2019b).

Recently, however, the success that these neural models achieved on downstream tasks

has been questioned in terms of evaluation techniques (Yogatama et al., 2019; Lazaridou

et al., 2021), their abilities to perform reasoning tasks (Marcus, 2020) and their capabilities

to capture meaning (Bender and Koller, 2020). Moreover, there have been recent findings

that question the robustness of the neural networks to unfamiliar language units in out-of-

distribution settings (McCoy et al., 2020b). These findings and discussions indicate that we

may need something more than just scaling up domain-agnostic neural network models and

data to represent the meaning of language units.

One paradigm that can address many of the mentioned above limitations (e.g. reasoning

and robustness) and as such should be considered as a promising direction to bridge the gap

between human and machine intelligence (Marcus, 2020) is the integration of the neural

and rule-based models from formal semantics, also known as neural-symbolic models.6

This paradigm has been adopted by many researches (Andreas et al., 2016; Minervini et al.,

2018; Yi et al., 2018, 2020) and shapes an active area of research. Recently, though, it has

been challenged by Ding et al. (2020). They demonstrated that neural networks, without

the use of symbolic programs, can outperform neural-symbolic models on visual-based

reasoning tasks (Girdhar and Ramanan, 2020; Yi et al., 2020). Hence, this questions the

4For example, Transformer (Vaswani et al., 2017) model which was originally designed to model text data,
however, has been recently adapted with minimum changes to images (Dosovitskiy et al., 2021).

5Usually, the models are first trained on large unlabelled corpus and then are fine-tuned with a small number
of labeled examples.

6Here we mainly refer to the models that: 1) use a neural network as a component that produces an output
to a symbolic program (Yi et al., 2018) and 2) use neural networks as a soft relaxation of a predefined (not
learned) symbolic program (Andreas et al., 2016).

3



Introduction

necessity of the symbolic components in the neural networks, at least for visual-based

reasoning. Nevertheless, in this thesis: 1) we do not exclude the possibility that a hybrid

of symbolic/discrete and continuous variables (Martins, 2021) maybe needed in order to

model the meaning of a language unit (Baroni, 2019), 2) we argue not against the neuro-

symbolic integration and rather leverage them in parts of our work for injecting inductive

biases (Mitchell, 1980; Griffiths et al., 2010; Battaglia et al., 2018; Goyal and Bengio, 2021).

Inductive biases is another paradigm that may allow us to alleviate the aforementioned

limitations of neural networks.7 Usually, there are many equally good solutions to a task; an

inductive bias is what allows a learning algorithm to prefer one solution over the others. There

are many different ways in which an inductive bias can be incorporated into neural networks.

Common approaches include but not limited to: 1) including it directly into an architecture

of the neural networks e.g. use of convolution and pooling operations (Gholamalinezhad and

Khosravi, 2020) in the convolutional neural network networks (CNNs; LeCun et al. (1989),

Ciresan et al. (2011)) makes them invariant to translations in the input data, 2) using data

augmentation techniques that construct synthetic text out of existing corpus to allow a model

generalise better to previously unseen text (Andreas, 2020), and 3) using multitask learning

to force a neural network to learn the weights such that it would generalise to multiple tasks

(Caruana, 1993).

This poses an interesting question - what inductive biases do we need to model language

units and meaning that they convey? There are two main lines of research that try to answer

this question. The first line investigates how the existing inductive biases in the neural

architectures affect their ability to model the language units (Tran et al., 2018; Ravfogel et al.,

2019; McCoy et al., 2020a). The second line tries to incorporate explicit inductive biases of

interest into neural networks and then study the effect these biases have on modeling language

units (Dyer et al., 2016; Bahdanau et al., 2019; Shen et al., 2019; Ding et al., 2020; Słowik

et al., 2020). The ideas presented in this thesis are closer to the second line of research. We

7Inductive biases are powerful but as general principles they are highly varied, and have also been
successfully employed in other machine learning paradigms: Bayesian models (prior belief; Griffiths et al.
(2010)), regularization (Occam’s razor), k-neareast neighbours (smoothing; Wagner et al. (2018)), support
vector machines (iter-class distance Zhang et al. (2012)), etc.
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explore various ways of incorporating inductive biases into distributed text representations,

where the granularity of text representations varies from word level to sentence level. There

are three main inductive biases that are explored in this thesis:

• relational inductive bias - bias a learning algorithm to be reflective of relationships that

exist between language units;

• information-theoretic inductive bias - bias a learning algorithm to be constrained by an

information-theoretic notion, encoding channel capacity;

• sparsity inductive bias - bias a learning algorithm to utilise different subspaces of the

representation space by inducing sparse representations of the language units;

In the next section, we will elaborate more on these biases.

1.2 Research Questions (RQs)

In what follows we provide an overview of research questions and contributions of this thesis.

1.2.1 RQ 1: Relational Inductive Bias for Words (Data-Based)

Research Questions. To learn reliable word embeddings SOTA models need large

amount of text (frequently) containing these words. One of the reasons for this is

the lack of inductive biases that would allow the models to select the meaning of a

word out of possible alternatives. Hence, words that are not frequent or absent in

the text cannot be represented reliably with the embedding. However, can we use an

inductive bias that allows us to use much smaller amount of data and still learn a good

representation for these rare and unseen words? We hypothesise that if such a bias

exists, in order to reduce the amount of data needed to learn the meaning of a word,
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it should explicit express (bias) the meaning of the word. Here, we investigate if a

Knowledge Graph8(KG) can be used as such inductive bias.

Use of Inductive Bias. We bias the learning algorithm to derive a semantic repre-

sentation of a word in terms of relationships that exist between the word and other

words in a KG.

Main Contributions. We propose a framework that exploits the semantic structure

of the lexical resource for inducing embeddings of unseen words.

Summary. Word embedding techniques heavily rely on the abundance of training data

for individual words. Given the Zipfian distribution of words in natural language texts,

a large number of words do not usually appear frequently or at all in the training data.

In this work we put forward a technique that exploits the knowledge encoded in lexical

resources, such as WordNet, to induce embeddings for rare and unseen words. Our approach

adapts graph embedding and cross-lingual vector space transformation techniques in order

to merge lexical knowledge encoded in KGs with that derived from corpus statistics. We

show that the approach can provide consistent performance improvements across multiple

evaluation benchmarks: intrinsic, on multiple rare word similarity datasets, and extrinsic, in

two downstream text classification tasks.

1.2.2 RQ 2: Relational Inductive Bias for Sentences (Data-Based)

Research Questions. Learning semantic representation of sentences/phrases is an

immensely hard task because numerous possible meanings can be expressed by com-

posing the words in the sentences/phrases. One way to alleviate this issue is via a

supervision signal that expresses (or biases) the meaning of the sentences. However,

what would be the ‘right‘ supervision signal to learn the meaning of sentences? We

8Because of confusion between Knowledge Bases, Ontologies and Knowledge Graphs (KGs) terminology
(Ehrlinger and Wöß, 2016), KGs are used here as a general term for representing knowledge in the form of a
graph.
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follow the work of Hill et al. (2015a) who proposed to use dictionary definitions

to learn the meaning of sentences. We extend this idea and instead of mapping a

dictionary definition to a single word we map it to path graphs extracted from a KG.

As a first step towards investigating whether this is a right bias to learning meaning of

sentences we pose the following question: can we bias semantic representation of a

sentence to be reflective of topological dependencies that exist in a KG?

Use of Inductive Bias. We bias the learning algorithm to restrict the semantic

representation of sentences in terms of relationships that exist between the entities in a

KG.

Main Contributions. We present a framework that allows to learn semantic repre-

sentation of sentences in terms of topological dependencies that exist between entities

of a KG.

Summary. We present a novel method for mapping unrestricted text to knowledge graph

entities by framing the task as a sequence-to-sequence problem. Specifically, given the

encoded state of an input text, our decoder directly predicts paths in the knowledge graph,

starting from the root and ending at the target node following hypernym-hyponym rela-

tionships. In this way, and in contrast to other text-to-entity mapping systems, our model

outputs hierarchically structured predictions that are fully interpretable in the context of the

underlying KG, in an end-to-end manner. We present a proof-of-concept experiment with

encouraging results, comparable to those of state-of-the-art systems, indicating that sentence

embeddings do incorporate the semantics of the path graph. In this case, the semantics is the

hypernymy hierarchy of concepts.
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1.2.3 RQ 3: Information-Theoretic Inductive Bias for Sentences (Data-

Agnostic)

Research Questions. Taking the amount of information that is encoded about a

sentence in its embedding as a form of inductive bias, what would be the implications

of regulating this?

Use of Inductive Bias. We control the amount of information about a sentence that

is encoded in its sentence embedding.

Main Contributions. Autoencoders are popular for unsupervised representation

learning. In principle, autoencoders try to preserve as much as possible informa-

tion about the data they model. However, it is yet poorly understood how much

information should be preserved. In this thesis, we study a variant of Variational Au-

toencoder (VAE) model that allows us to explicitly control the amount of information

that is encoded in a sentence embedding. We treat it as a form of inductive bias that

the model uses to learn sentence embeddings. We further analyse the effect of this

bias on the quality of the learned sentence representations on two downstream tasks:

text generation and text classification.

Summary. We explore the effect of the amount of mutual information between a sentence

and its representation on downstream tasks. For this we use VAE framework. VAEs are

known to learn rich representation of text. Besides, thanks to the encoder-decoder architecture

we can study the goodness of learned sentence embeddings on discriminative tasks as well

as text generation. Part of its success is attributed to the Kullback-Leibler (KL) divergence

term inside the VAE objective function. We impose an explicit constraint on the KL term

to understand its significance in controlling the amount of information about a sentence is

transmitted to its representation. Within this framework, we explore different properties

of the estimated posterior distribution, and highlight the trade-off between the amount

of information encoded in a sentence representation during training, and the generative
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behaviour of the model. Furthermore, we analyse the discriminative performance of learned

representations on three text classification tasks.

1.2.4 RQ 4: Sparsity Inductive Bias for Sentences (Data-Agnostic)

Research Questions. Can sparse sentence embeddings, learned with sparsity in-

ductive bias, match (or outperform) the performance of their dense counterpart on

downstream tasks? What are the necessary conditions for this to happen?

Use of Inductive Bias. We bias a learning algorithm to utilise separate subspaces of

the representation space.

Main Contributions. We present a novel VAE model - Hierarchical Sparse Vari-

ational Autoencoder (HSVAE) that allows to induce sparse representations of large

units of text. Also, using HSVAE as a testbed, we establish how statistical properties

of a corpus such as word distribution in a class affect the ability of learned sparse

codes to represent task-related information, and show its impact on text classification

tasks.

Summary. It has been long known that sparsity is an effective inductive bias for learning

efficient representation of data in vectors with fixed dimensionality, and it has been explored

in many areas of representation learning. Of particular interest to this work is the investigation

of the sparsity within the VAE framework which has been explored a lot in the image domain,

but has been lacking even a basic level of exploration in NLP. Additionally, NLP is also

lagging behind in terms of learning sparse representations of large units of text e.g., sentences.

We use the VAEs that induce sparse latent representations of large units of text to address the

aforementioned shortcomings. First, we move in this direction by measuring the success of

unsupervised state-of-the-art (SOTA) and other strong VAE-based sparsification baselines

for text and propose a hierarchical sparse VAE model to address the stability issue of SOTA.

Then, we look at the implications of sparsity on text classification across 3 datasets, and
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highlight a link between performance of sparse latent representations on the downstream

tasks and its ability to encode task-related information.
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Chapter 2. In this chapter, we introduce the relevant NLP and Machine Learning (ML)

concepts. This would make this thesis self-contained and allow a reader to better understand

the work presented in the content chapters: Chapters 3, 4, 5 and 6.

Chapter 3. This chapter builds on RQ 1 (see Subsection 1.2.1). We study if the relational

semantic constraints that exist between the entities in an ontology serve as a good inductive

bias to learn word representations for rare or unseen words. To demonstrate this, our

approach adapts graph embedding and cross-lingual vector space transformation techniques.

We show that the approach can provide consistent performance improvements across multiple

evaluation benchmarks: on multiple rare word similarity datasets and in two downstream

text classification tasks.

Chapter 4. This chapter builds on RQ 2 (see Subsection 1.2.2). We investigate whether

semantic relationships that exist between the entities in an ontology can be incorporated

into larger units of text such as sentences. For this, we present a novel method for mapping

dictionary definitions to knowledge graph entities by framing the task as a sequence-to-

sequence problem. In this work, we only perform an intrinsic evaluation of the model, by

demonstrating that sentence embeddings do incorporate the semantic relationships between

the entities. Evaluation of the effectiveness of this inductive bias on other downstream tasks

is left for further work.

Chapter 5. This chapter builds on RQ 3 (see Subsection 1.2.3). We concentrate on an

aspect of the representation learning process via VAEs which is motivated from information-

theoretic perspective: the amount of information the latent sentence representation stores

about a sentence. We conduct a set of qualitative and quantitative experiments to demonstrate

how this quantity affects the generative capacity of VAEs as well as the discriminative

performance of latent representations on three text classification tasks.

Chapter 6. This chapter builds on RQ 4 (see Subsection 1.2.4). We propose a novel

framework, Hierarchical Sparse Variational Autoencoder (HSVAE), that imposes sparsity
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on sentence representations via direct optimisation of Evidence Lower Bound (ELBO). Our

experimental results illustrate that HSVAE is flexible and adapts nicely to the underlying

characteristics of the corpus which is reflected by the level of sparsity and its distributional

patterns. Thus, we highlight a link between performance of sparse latent representations

on three text classification tasks and its ability to encode task-related information. Also,

using the text classification corpora as a testbed, we established how statistical properties

of a corpus such as word distribution in a class affect the ability of learned sparse codes to

represent task-related information.

Chapter 7. We summarise the work that is presented in the content chapters and also

discuss potential future directions based on the findings of the thesis.
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2
Background

The works we present in this thesis are built on two core concepts: distributed representations

of language units, and inductive biases, which are in turn discussed within the context of

neural networks. In this chapter, we introduce these principles. This serves two purposes.

First, by providing a reader with the necessary foundations, we make this thesis self-contained.

Second, we also ground our work in the existing literature and give a broader perspective on

the research we present here. At the same time, we neither provide an exhaustive literature

review nor, unless necessary, formally state existing algorithms. We start with an introduction

of neural networks in Section 2.1 then we talk about distributed representation of text in

Section 2.2 and finally we put forward a discussion about inductive biases in NLP in Section

2.3.

2.1 A Brief Introduction to Neural Networks

In this section, we aim to briefly introduce neural networks. As a result, we give a crude

introduction to this rich topic; quite often omitting the formal definitions of the concepts. We

familiarise the reader with all the main concepts applied in this thesis. We refer the reader

to Goodfellow et al. (2016), for a more detailed introduction.

2.1.1 Neural Network’s Concepts

A neural network is a differentiable, nonlinear, parametric function f (·;q), with the param-

eter q , that relates two types of variables: x with y, commonly know as input and output
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variables, respectively. The mapping of x into y is performed by a series of affine transforma-

tions followed by dimension-wise nonlinear mappings. A neural network can comprise of

several layers (sub-neural networks): f (·;q) = f3( f2(( f1(x;q1));q2);q3), where fi(·;qi) is

also a neural network. These intermediate layers (layers that are not an input layer1 and do

not directly map to output) are also known as hidden layers because we do not have explicit

variables into which they should map domain points.2

Depending on the type of the input and output variables and how one processes them

the form of the function, f (·;q), varies (see Subsection 2.1.2). For example, x can be a

simple vector and y be a scalar value in which case a feedword neural network can be

used. However, one may have more complex objects for both input and output variables,

i.e. x can be a sentence and y be a syntax tree, in which case one can use an encoder-

decoder neural network, with both encoder and decoder suitable to process these variables. In

principle though, whether to use a data specific neural network is often a matter of efficiency.3

Furthermore, neural networks are universal function approximators (Cybenko, 1989; Hornik,

1991). That is, given large enough number of parameters, one can always represent an

association between the input and output variable, up to some error.

With a variable degree of “correctness”, there are many possible functions that allow

us to relate the two variables. However, one needs to choose a function, f (·;q), out of

the possible alternatives, { f (·;q)|q 2 Q}, where Q is the set of possible parameters q the

function can have, that results in the best association. A common way to achieve this is to

use an algorithm (see Subsection 2.1.3) that adjusts the parameter q to minimise an error

function (or objective function). This error function estimates the fitness of the mapping

from x to y, given the ‘true’ y. If the error is “small enough” then the function is thought to

associate the two variables correctly. This process, in the literature, is known as training of

neural networks (see Subsection 2.1.3).

1An input layer is simply an input variable x.
2Here we refer to the domain as a set which comprises of inputs of a function.
3Some neural network were specifically designed to process data with certain properties. For example,

recurrent neural network (Rumelhart et al., 1988) were designed to process sequential data such as sentences.
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To train a neural network one uses a training dataset (or corpus), which is a set of (x, y)

pairs.4 During the training, to judge how well the neural network learned the association

between the input and output variables a validation dataset is used. It, however, is not used

to train the model but instead allows us to understand if the neural network is overfitting5

to the training examples. After the neural network is trained it is further evaluated on the

test dataset. Test dataset, also, is not used during the traning of the neural network and

instead allows us to compare performance of various neural architectures that are proposed

to associate the variables.

2.1.2 Types of Neural Networks

In this section we introduce five main types of neural networks: 1) feedforward neural

networks, 2) recurrent neural networks, 3) neural networks with input-dependent structure,

4) encoder-decoder neural networks, and 5) attention-based neural networks. There are,

potentially, many ways to group the existing architectures into meaningful taxonomies. Our

classification scheme is based on the flow of information (that is a process of how an input

variable is being mapped into output variable) in the neural networks and it also covers the

types of neural architectures we use in this thesis. Furthermore, this classification scheme

allows us to abstract from the specifics of a particular architecture and instead focus on

high-level properties of the neural networks.

Feedforward Neural Networks. As the name suggests, the information flows in the for-

ward direction from an input variable x until it reaches the output variable y. For example, in

a feedforward neural network with three layers,6 the flow of information can be represented

as a composition of functions (layers) i.e. y = f3( f2(( f1(x;q1));q2);q3). There are two

distinguishing characteristics of feedforward neural networks: 1) fi(·;qi) can not reuse its

output values, in other words, it does not have recurrent connections, and 2) there are no

4In unsupervised learning (see Subsection 2.1.3), a dataset only comprises of x.
5A neural network may fit the training examples too closely to an extent that it may become useless to

predict any future associations between the pair of variables (x, y).
6Excluding the input layer
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loops, i.e. information can not flow from fi+1(·;qi) back to fi(·;qi). The functional form of

fi(·;qi) depends on the data (x,y) one wants to process. Two archetypal examples of these

networks are a multilayer perceptron and a convolutional neural network (Lecun et al., 1998).

Recurrent Neural Networks. Given a sequence {xt}N
t=1 of N symbols, recurrent neural

network (RNN; Rumelhart et al. (1988)) allows the information to flow from a symbol

xt , where t is the position of the symbol in the sequence, to all the consecutive symbols

xt+1,xt+2, ..,xN . To achieve this, it uses the following parametric function: ht = f (ht�1,xt ;q),

where ht is the vector representation of the sequence xt ,xt�1, ..,x1. In other words, RNN uses

both its previous output ht�1 and the current input xt to process information. Also note, in

this case, there is either an output variable yt for each symbol xt or only one output variable y

for xN . Two of the most common variants of RNN are Long Short-Term Memory Network

(LSTM; Hochreiter and Schmidhuber (1997)) and Gated Recurrent Neural Network (GRU;

Cho et al. (2014a)). Similar to the feedforward neural networks, one can also compose

several RNNs together. The way the RNNs are composed is task dependent, but the most

common way is to feed the sequence {hi
t}N

t=1 of length N, produced by fi(hi
t�1,xt ;q), to

fi+1(hi+1
t�1,h

i
t ;q).

Neural Networks with Input-Dependent Structure. Neural network with the input-

dependent structure, rely on a predefined symbolic structure (the structure varies with the

input), i.e. graph, to explicitly define information flow. For example, with Recursive Neural

Networks (Pollack, 1990) one can combine word embeddings into sentence embeddings

according to a predefined tree structure (Socher et al., 2011). To use more generic graphs,

one can use Graph Neural Networks (Scarselli et al., 2009; Kipf and Welling, 2017). In this

case, we can have an output variable y for the whole graph or for each node of the graph.

Also, worth noting that the RNNs and CNNs are also structured neural networks. However,

the structure is the same for all the inputs. For example, if in Recursive Neural Networks we

fix the structure to a linear chain then they will be equivalent to RNN.7 Also, in CNN we

define structure with the convolutional filters.

7One remark, depending on the number of words in a sentence, the number of nodes in the chain will vary.
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Encoder-Decoder Neural Networks. With the encoder-decoder neural network the infor-

mation flows as follows: First, an input variable is encoded into a hidden representation h and

then, the output variable is decoded while being conditioned on the hidden representation.

The first step is done with an encoder network and the second step with a decoder network.

A functional form of a parametric function both in encoder and decoder can be any of the

aforementioned neural networks. A special case of the encoder-decoder neural network

is called autoencoder. The distinguishing characteristic of autoencoders is that the output

variable is the same as an input variable, i.e y = x.

Attention Based Neural Networks. Attention-based neural networks were first introduced

in the context of machine translation (Bahdanau et al., 2014), where the neural network is an

encoder-decoder, with an RNN encoder and decoder. At each decoding step, the attention

mechanism allows selecting the most suitable ht produced by the encoder. In other words,

it facilitates a dynamic flow of information from the encoder to the decoder. The attention

mechanism is not only being used during the decoding, it can also be used in the encoding

of sequence. For example, in the encoder, one can use self-attention mechanism (Vaswani

et al., 2017) to learn context based representation ht , where suitable context is selected via

the attention mechanism. This, also, allows to dynamically select a suitable context for

each input variable x. Furthermore, recent works try to establish the connection between the

attention based models e.g. Transformers (Vaswani et al., 2017) and the structured neural

networks (Liu et al., 2019a; Joshi, 2020).

2.1.3 Training of Neural Networks

To train the aforementioned neural networks one, most often, uses gradient-based learning

algorithms (Duchi et al., 2011; Kingma and Ba, 2015; Dozat, 2016; Bottou et al., 2018). The

gradient-based learning comprises of three steps. The first step is forward propagation. At

this step the information propagates from x through a neural network until it reaches the

output variable y. During the forward propagation, we get an estimate ŷ of y and calculate

how close the estimate ŷ is to the true value of y via an error function. The second step is the
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back-propagation (Rumelhart et al., 1986) computing a gradient (—q ) of the error function

(L(y, ŷ)) with respect to parameter q of a neural network. Finally, once we calculated the

gradient we can use one of the gradient-based learning algorithms to update the value of the

q . One of the most popular techniques is Stochastic Gradient Descent (SGD; (Kiefer and

Wolfowitz, 1952; Robbins, 2007; Bottou et al., 2018)) which updates the weights as follows:

q  q �b—q L(y, ŷ),

where b is a learning rate.

Depending on the availability of output variable y one can distinguish two types of

learning: supervised learning and unsupervised learning. We discuss these two types of

learning below:

Supervised Learning. In supervised learning, the output variable y is available and also

differs from the input variable x. In NLP, it is usually expressing some explicit form of

semantics, e.g. in a dataset we can have a sentence as an input variable x and its sentiment,

represented as an integer number, as an output variable y. Also, y can be a desired output that

neural network should produce once it processed the input variable x. For example, x can be

a sentence and y can be its syntactic parse tree. The variable y, in supervised learning, is also

commonly referred to as a label.

Unsupervised Learning. In unsupervised learning, the output variable y is not available

or a version of the input variable x. This type of learning is most commonly used to train

autoencoders, where it learns to represent x in some latent representation h produced by the

encoder. Also, closely related to unsupervised learning is self-supervised learning, where we

modify the input variable x, according to some heuristics and use the modified version as an

output variable y. For example, we can remove some words from a sentence x and make the

neural network predict these words (Devlin et al., 2019).
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2.2 Distributed Text Representations

A distributed representation instantiates a meaning of a discrete language unit8 in a continuous

vector (embedding), where the meaning is distributed along each dimension. A collection of

such embeddings form a semantic space where semantically similar language units are of

closer proximity to each other than language units that are semantically distinct. In this thesis,

we assume that the meaning can be learned either from a distribution of words/sentences in a

raw text (the distributional hypothesis (Harris, 1954; Firth, 1957), which equates meaning of

a word to the context in which this word occurs; thus words that occur in a similar context

tend to have similar meaning) or (and) from a supervised signal.

2.2.1 Word Embeddings

In modern NLP, the most prominent models that have been used to learn the word embeddings–

real-valued vector representations of words–are neural networks (Bengio et al., 2003; Mikolov

et al., 2013; Peters et al., 2018; Devlin et al., 2019). These models vary in design, but their

unifying characteristic is the reliance on a form of word prediction given a context. This

approach to learning is inspired by the distributional hypothesis.

Earlier approaches focus on learning static word embeddings (Bengio et al., 2003;

Mikolov et al., 2013). That is after training of the model their representation stays the

same;9 given a symbolic representation of a word one can always retrieve the same vector

representation. In other words, we have a deterministic function e : W! Rd that maps a

symbolic representation of a word 2W into a d-dimensional vector Rd , e.g. e(’cat’)!

(a1,a2, ...,ad), where ai 2 R. However, this is somewhat a sub-optimal approach, because

a word can have multiple related (polysemy) or unrelated (homonymy) meanings and its

meaning often depends on the context in which it occurs.

One approach to remedy this issue is to learn multiple embeddings per word - where

each embedding represents a sense of that word (Reisinger and Mooney, 2010; Neelakantan

8In this thesis we only consider written language.
9The word embeddings can be further updated with a supervision signal if reused on downstream, but

otherwise their representation is constant.
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et al., 2014). An apparent limitation of this approach is that we need to store multiple vectors

per-word instead of one. Another approach proposes to learn a function that maps a symbolic

word to a continuous vector depending on the context of this word. This removes the need

to store multiple sense embeddings for each word. That is, in an abstract form, there is

a function e : W⇥WN ⇥Q! Rd that takes as an input a word 2W, its context 2WN

of N words, and parameters Q (which is represented by a neural network) and outputs an

embedding of this word. When the context in which the word occurs changes, so does its

representation. This type of word embeddings is commonly known as contextualised word

embeddings (McCann et al., 2017; Peters et al., 2018; Devlin et al., 2019).

Modelling the meaning of smaller language units such as words with embeddings has

had great success. It has been shown that learning such embeddings on large unlabelled

corpora and reusing them in a model that solves a downstream task, usually, improves the

performance (Turian et al., 2010; Peters et al., 2018; Devlin et al., 2019). This approach of

training a neural network model on one task and then repurposing its parameters (or a subset)

for the other task in machine learning literature is known as transfer learning. This allows

better generalisation to various language task. However, how to model word embeddings is

still an open question. To illustrate this we discuss below the two most prominent pitfalls

that the aforementioned models have:

The amount of text and size of the models (Pitfall 1): Current neural models comprise

of millions and sometimes billions of parameters and are trained on billions of words. Their

training is very expensive and time consuming (Sharir et al., 2020). Moreover, as it was

discussed in Lazaridou et al. (2021) simply scaling the size of neural networks cannot solve

the problem such as temporal generalization - ability of a model to adapt to continuous change

of language use, i.e. use of novel words and novel information generated in ever-changing

world. This raises a reasonable question: Whether we need to rethink our approach to the

model design and devote more time to incorporate inductive biases that allow the expected

generalisations.
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Modelling rare and unseen words (Pitfall 2): Quality of a learned word embedding

depends on the frequency of its appearing in a corpus. As such, these models cannot learn

a good representation when a word is not (frequently) present in a training corpus, which

can happen due to Zipfian distribution of words in a natural text. One way to address this

problem is to segment a word into characters or subwords - a substring of characters that

can be smaller than a word, e.g. BPE (Sennrich et al., 2016b). These approaches have been

tried both for static word embeddings (Bojanowski et al., 2017) and contextualised word

embeddings (Peters et al., 2018; Devlin et al., 2019). While with this approach one can

represent a previously unseen word, as the recent study shows (Lazaridou et al., 2021), the

quality of embeddings induced for rare and unseen words is still lagging behind. We address

this pitfall in Chapter 3.

2.2.2 Sentence Embeddings

In a natural language, larger units are constructed from smaller ones following certain ‘rules’

of that language. For example, to construct a sentence we combine individual words together

according to syntactic rules of that language. Furthermore, when constructing multiple larger

units that convey different meaning, smaller units are, most often, reused. For instance, in the

following two sentences: 1) A dog chases a cat and 2) A cat chases a dog, the words that we

use are the same, but these two sentences convey different meanings. In other words, natural

language is productive. That is, in case of sentence construction, we can generate, potentially

unlimited number of sentences conveying novel meanings reusing a finite set of words.

As such, to extend the distributed semantics to phrases and sentences, referred to as

compositional distributed semantics, one needs to propose a compositional operator (function)

to combine word embeddings into a sentence embedding preserving the aforementioned

properties of a natural language. One possibility is to use a basic arithmetic operator, e.g.

addition ‘+’. However, this has an obvious drawback, the addition of two vectors is invariant

to order. As such, with ‘+’ we can not distinguish the meanings of the two mentioned

English sentences as they would have identical sentence embeddings. Surprisingly, despite
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failing to model some properties of a natural language, this approach10 is shown to be a

strong baseline for many downstream tasks (Blacoe and Lapata, 2012; Arora et al., 2017;

Reimers and Gurevych, 2019).

Alternatively, since we do not know the right way to combine words, we can create

a model with a minimum set of assumptions and let it learn how to compose the words

into sentences by training it on a corpus. In contemporary NLP, this model is typically a

neural network. Despite having a more complex compositional capacity, they have also been

criticised (Baroni, 2019). One of the most ubiquitous criticism is that they do not reuse

previously learned compositional ‘rules’. For example, if a neural model learned that jump

twice means JUMP JUMP it may fail to infer that dax twice means DAX DAX. Additionally,

a neural network’s compositional capacity depends on its architecture and, most importantly,

one’s formalisation of the principle of compositionality (Janssen, 1997).

Scaling the distributed semantics to larger language units is still an open problem. In

general, research in compositional distributed semantics has two main priorities (Hill et al.,

2016). The first priority is the design of architecture of neural networks (Elman, 1990;

Socher et al., 2010; Kalchbrenner et al., 2014; Vaswani et al., 2017), such that they would

better model properties of a natural language. For example, Socher et al. (2011) proposed

to use recursive autoencoders to exploit the hierarchical structure of the sentences. Also,

Kalchbrenner et al. (2014) accentuate their attention on the encoder and propose to use

Dynamic Convolutional Neural Network to better model semantics of sentences.

The second priority is the design of a task or/and objective function, either in supervised

or unsupervised settings, to train the neural networks that would allow them to represent

semantics of an arbitrary language unit. In the supervised setting, Stanford Natural Language

Inference (Bowman et al., 2015a) is the most common task that is used to improve the

semantic representation of sentence embeddings (Conneau et al., 2017; Cer et al., 2018;

Reimers and Gurevych, 2019). Though, Subramanian et al. (2018b) argues that training a

model on multiple tasks allows it to generalise better. In the unsupervised setting, the most

10Here, we only talk about ‘+’, but the majority of the works use averaging of word embeddings s= 1
N ÂN

i wi.
Since, the averaging also violate the properties of a natural language we discuss above, in this brief discussion
we do not differentiate between the two compositional operators.
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prominent model was proposed by Kiros et al. (2015), where they use a similar strategy as

skip-gram word2vec model (Mikolov et al., 2013) by encoding a sentence and predicting its

adjacent sentences. Nowadays, it is more common to use BERT model (Devlin et al., 2019)11

to represent a sentence embedding, either by summation/averaging of token embeddings or

just with the embedding of the special token ‘[CLS]’.

To summarise, in order to extend the success of the distributed representations to phrases

and sentences we still need to get more definite answers to the following questions:

• What is a preferable neural network architecture to compose words into the larger

grammatical units?

• What are preferable distributed representations of the grammatical units - is it a vector

or is it a matrix, should it be dense or sparse, should the dimensions of the vector/matrix

be structured somehow?

• What task should such a network be trained on?

We address question two in Chapters 5 and 6, and question three in Chapter 4.

2.3 Inductive Biases in NLP Models

There have been multiple works that formulate an inductive bias within a particular machine

learning framework (Mitchell, 1980; Caruana, 1993; Griffiths et al., 2010; Battaglia et al.,

2018) or overview it for broader machine learning techniques (Goyal and Bengio, 2021). In

order not to repeat what has already been said, after introducing some key terminology (see

Subsections 2.3.1, 2.3.2, and 2.3.3), we tailor the discussion of the inductive bias to NLP

only. To the best of our knowledge, no one has yet made an overview of inductive biases that

are used in neural natural language processing systems. Here we initiate this discussion (see

Subsections 2.3.4 - 2.3.8)

11Also, there have been recent improvement of BERT based sentence embeddings (Li et al., 2020a; Su et al.,
2021) that are learned in the unsupervised setting.
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2.3.1 What is an Inductive Bias?

To train a neural network we use a training dataset - a set of data points (x,y), see Subsection

2.1.3. Usually, the training dataset is limited in the sense that we are not given every possible

x and y pair. This can be due to several reasons. One reason is that it may be impossible to

collect all possible pairs of x and y. Another reason can be the cost12 of collecting the pairs.

As such, from the limited number of data points that are available in a training dataset we

want a neural network to learn a mapping between the x and y variables that would also hold

for unseen (x, y) pairs - this is also known as induction (Hume, 1978).

One problem with learning a relation via induction is that given a training dataset there are

can be multiple relations that are equally good (Goodman, 1955). However, these relations

may not relate previously unseen (x,y) pairs equally well. So, how shall we select a relation

out of equally good alternatives? One way of doing this is to use a bias - a principle to prefer

one relation over the other. This is known as an inductive bias (Mitchell, 1980; Caruana,

1993), which we discuss in this section. There are exist two main definitions of inductive

bias:

1. “bias refers to any basis for choosing one generalization over another, other than strict

consistency with the observed training instances” - Mitchell (1980).

2. “bias is anything that causes an inductive learner to prefer some hypotheses over

others” - Caruana (1993).

We employ the second definition as it is much broader13 and allows us to cover the types of

inductive biases that we discuss in this thesis.

2.3.2 Types of Inductive Biases

In this thesis, we distinguish two types of inductive biases: 1) data-agnostic (Mitchell, 1980)

and 2) data-based (Caruana, 1993). They differ in how they incorporate the bias into the

learning process:
12It can be either too expensive or time-consuming or sometimes both to collect the pairs.
13The second definition subsumes the first.
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• Data-agnostic inductive biases make a learning algorithm to prioritise one solution

(hypothesis/mapping) over the other independently of training data. This means

that we can introduce an inductive bias only to the learning algorithm itself. For

example, using l1 regularisation in the parameters of a neural network or attention

mechanism (Bahdanau et al., 2014).

• Data-based inductive biases are based on the assumption that inductive biases can be

incorporated into a neural network via a supervision signal presented in training data.

It includes approaches ranging from multi-task learning to training data augmentation

algorithms.

2.3.3 The Necessity and Danger of Inductive Biases

As argued by Mitchell (1980), bias-free learning is impossible.14 To better understand this

argument lets consider the following scenario.15 Assume we train our model on a sentiment

classification task, where x is a sentence and y 2 {0,1} is sentiment label, with 0 indicating a

negative sentiment and 1 is positive sentiment. Furthermore, let the training dataset comprises

of the following two pairs: (x1: I liked this movie, y1: 1) and (x2: This was a horrible movie,

y2: 0). A learning algorithm that tries to distinguish a positive movie review from a negative

just from these two examples may consider the following two hypotheses:

• h1 : classify a review as positive if it has a positive adjective i.e. like, love, etc and

negative if it has negative adjectives i.e. horrible, bad, etc.

• h2 : classify a review as positive if it is shorter than a certain length (4 or shorter in

this case) and negative if it is longer than a certain length (5 or longer in this case).

Under the observed training examples these two hypotheses16 are equally possible.

However, it is clear that we would prefer the model to use h1 in order to classify the
14Furthermore, according to the No Free Lunch Theorem (Wolpert, 1996; Wolpert and Macready, 1997), it

is impossible to design inductive biases that would suit all the tasks.
15This example was greatly inspired by the following work Gordon and desJardins (1995).
16For h1 the model needs to know a prior meaning of positive and negative adjectives in order to extend to

the examples given above. However, for the sake of this example lets assume that the model can do this.
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previously unseen examples. As it is likely that we encounter the positive review that are

longer than four words as well as negative reviews that are shorter than five words. Which of

the hypotheses the model chooses during the learning process will depend on the inductive

biases. That is if we incorporate the ‘wrong’ inductive bias we may end up with the second

hypothesis h2 and as a result, have a detrimental performance trying to classify the previously

unseen reviews. Also, the inductive biases reduce the initial space of possible hypotheses

and biasing the model ‘too much’ can eliminate the hypotheses that are useful for the task.

2.3.4 The Need of Inductive Biases in Neural Language Models17

Judging from the reported performance on tasks that require competence in understanding

the meaning of language expressions (Wang et al., 2018, 2019) alone, one may conclude

that neural models are very close, sometimes, superior to humans (Devlin et al., 2019; Niven

and Kao, 2019) in terms of understanding of the language. Partly, such performance can

be explained by the ability of the models to acquire certain aspects of linguistic knowledge,

as it has been demonstrated with various probing techniques (Belinkov and Glass, 2018;

Alishahi et al., 2019; Clark et al., 2019; Coenen et al., 2019; Zhang et al., 2020b). However,

to understand if we have the ‘right’ neural architectures to model a natural language we need

to answer the following questions: 1) to what extent the task at hand allow us to make claims

regarding the linguistic competence of the model, 2) whether the performance, on the tasks,

is achieved due to utilisation of the linguistic knowledge that the models acquire, and 3) how

efficient our models are in terms of their size and amount of training data that is needed to

acquire the knowledge to reach the performance on the task. To answer these questions we

need to look at how these models are being evaluated and understand how efficient they are.

17Here, we focus only on neural language models as they have been the main driving force of recent progress
in MLP. However, many of the arguments presented here also apply to other neural NLP models. For example,
Jia and Liang (2017) used a question answering task to demonstrate that the neural machine comprehension
models are not capable to differentiate between a sentence that has a correct answer and a sentence that has a
wrong answer but related words with the question.
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The Problem of Evaluation and Spurious Patterns in Neural Language Models:

Most of the neural language models are evaluated on a test dataset that is closely related

(coming from the same distribution) to the training dataset. However, this may not be enough

to test their understanding of the language, as it may simply exploit spurious patterns18

presented in the training dataset (Niven and Kao, 2019; McCoy et al., 2020b) instead of

capturing the “meaning”. Indeed, recent works designed more sophisticated evaluation

protocols19 that demonstrate the competence of the models in understanding natural language

is far from human.

For example, Yogatama et al. (2019) argue that the models are merely tested to solve a

particular dataset rather than a task itself. That is a model may perform well on the SQuAD

(Rajpurkar et al., 2016) question answering dataset but if tested again (without further fine-

tuning) on the same task but different dataset it is unlikely that it will demonstrate any

significant performance. A similar observation was made by McCoy et al. (2020b), where

they refer to this phenomenon as inability of the model to generalise to the out-of-distibution

(OOD) datasets.20 As such the evaluation techniques should be designed to test a model on

a task rather than a dataset to make a stronger claim about the competence of the model to

capture the meaning.

Lazaridou et al. (2021) stress the importance of testing the temporal generalization of

neural language models. This is the ability of the models to perform robustly when evaluated

on a test dataset that is coming from a different time period21 e.g. News article for the

training dataset is from 1998-2000 period while the test dataset cover the 2005-2007 period.

They found that the current state-of-the-art models perform poorly on this test.
18Lovering et al. (2021) and Warstadt et al. (2020) explain why a pretrained language model, on a downstream

task, may prefer to exploit spurious patterns instead of the linguistic knowledge that it acquired.
19Alternatively, conducting an empirical study, Bender and Koller (2020) provide a philosophical discussion

where they elaborate why neural language models, which are pretrained only on the language modeling task,
are unlikely to capture the meaning of language units but rather artifacts (patterns) presented on a training
dataset.

20Note, there are works that claim robustness of some neural language models (e.g. BERT (Devlin et al.,
2019)) to OOD datasets. For example, (Hendrycks et al., 2020) show that the models are robust to OOD when
they are pretrained on many diverse corpora. However, one may argue that because of the size of the training
data it may already contain many language expressions that are similar to one in OOD task.

21Most of the neural language models are evaluated on a test dataset that has overlapping time periods with
the training dataset.
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Another line of work uses adversarial examples to demonstrate that the models use

spurious patterns available in the data rather than capturing the meaning of a language unit.

For example, Niven and Kao (2019) demonstrate, on the argument reasoning comprehension

task, that the models rely on the appearance of cue words in a language expression rather

than its ‘deeper’ understanding. Jin et al. (2020) show the same but on text classification and

natural language inference tasks.

The Problem of Efficiency in Neural Language Models:

Since the introduction of the word embeddings, the progress in NLP has been mainly driven

by scaling both neural language models and training corpora to even larger sizes (Devlin et al.,

2019; Liu et al., 2019b; Radford et al., 2019). As we discussed above, this approach was

justified by reporting state-of-the-art performance on various tasks that require competence

in understanding the meaning of language expressions. Furthermore, Warstadt et al. (2020)

and Zhang et al. (2020b) show that there is a link between the amount of data Transformer-

based (Vaswani et al., 2017) language models are trained on and their ability to acquire

certain linguistic knowledge (e.g. subject-verb agreement). They found the more training

data is provided the more linguistic knowledge it acquires. However, is this approach efficient

at acquiring the competence in a natural language and whether it is the right way forward?

There are some evidence that the answers to both questions are no.

Indeed, Warstadt et al. (2020) further assert that scaling amount of training data may

not be the best way forward and we may need more efficient inductive biases in the model.

Furthermore, Zhang et al. (2020b) observe that the models keep improving the performance

on SuperGLUE tasks even after it has observed 30 billion of words and that it is likely

to improve this performance with 100 times more data. However, if a model requires

exponentially more data to become competent in the natural language understanding tasks

then it becomes impractical to train such a model (Bender et al., 2021). Also, the enormous

size of the models is not very justified. One argument is that the success of the distillation

techniques (Sanh et al., 2019; Jiao et al., 2020) to a degree indicates that we may use smaller

neural language models to achieve comparable performance to the larger models on the tasks.
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Another argument that supports this is that simple scaling of the model size does not remedy

some existing issues. For example, Lazaridou et al. (2021) state that it does not alleviate the

issue of temporal generalisation.

A Way Forward:

The performance on the downstream tasks that we mentioned in the beginning and the

linguistic knowledge that these models acquire is impressive and should not be diminished

but more thorough evaluation techniques show that the current SOTA neural language models

are far from human-level understanding of natural language expressions. Furthermore, the

large size of the models and amount of data they require makes them inefficient. One may

then ask how can we make models both efficient in terms of amount of data and model

size and at the same time bridge the gap between humans and neural language models in

terms of understanding of natural language expressions? In this thesis we hypothesis that a

solution is incorporation of inductive biases. However, what inductive biases do we need?

We focus on the following three inductive biases:22 information-theoretic inductive bias,

sparsity inductive bias, and a relational inductive bias encoded in knowledge graphs. In this

section, we also talk about the structural inductive bias as we briefly discuss it in Chapter 5,

though it is not the focus of the thesis. Below, we introduce each of the biases and discuss

their importance in modelling of language expression.

2.3.5 Structural Inductive Bias

According to Chomsky (1965) to process a language expression one needs to prefer structural

processing of the units of the expression over the linear (this is how the surface form of a

language expression is presented to a learner). For example, a main verb of a sentence needs

to agree with the subject of the sentence but not with its closest noun. To achieve this, a

22We need to acknowledge that there is the wide space of inductive biases and as it was discussed in McCoy
et al. (2020a) there are numerous modelling decisions that can influence generalisations of a model. Hence, to
make a study feasible one would need to make a choice of the biases he/she wishes to explore. We believe the
ones that we choose to explore in this thesis are representative of this wide space and therefore help illuminate
the advantages and disadvantages that inductive biases can bring to neural language modeling. In what follows
we elaborate more on why we have chosen each of the biases.
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neural network needs to relate the units (implicitly or explicitly) in a graph-like structure e.g.

a tree graph. Since this theory has been influential in linguistics there have been attempts

made to make neural models imitate this property by incorporating inductive biases. In this

subsection, we discuss the most prominent approaches.

One approach to bias the neural models to prefer structural generalisation over the

alternatives is via their architectural design. For example, RNNG (Dyer et al., 2016) and

Tree-RNN23 both allow explicit incorporation of a graph structure to guide the processing of

the language expressions within the neural networks. Moreover, Shen et al. (2019) propose

a new model, ON-LSTM, that extends the vanilla LSTM by introducing a new activation

function and gating mechanism into the model that allows it to perform tree-like compositions.

The benefit of ON-LSTM is that it does not require parse trees to be present in a dataset.

However, the recent discussion brought by McCoy et al. (2020a) indicates that architectural

inductive biases alone may not be enough to bias a model. As such RNNG and Tree-RNN

may be a better alternative (Kuncoro et al., 2019; McCoy et al., 2020a). One disadvantage of

these models is that it is hard to scale their training on a large corpus as it is quite expensive

to annotate each sentence with a parse tree. Recently though, an unsupervised version of

RNNG (Kim et al., 2019) was proposed that does not require the parse tree and it learns it by

itself, but it is yet to match the performance of RNNG.

Bias injection via objective function is another approach. For example, Zhang and

Hashimoto (2021) explain how the masked language model objective (Devlin et al., 2019),

which is used to train SOTA neural language models, can bias the model to learn syntactic

structures. The explanation is based on two arguments: First, they argue that there is a

correspondence between the mask language model objective and Gaussian graphical model.

They further elaborate that this association is why the model learns statistical dependencies

between the units of a language expression. Second, they further argue that there is a close

similarity between the statistical dependencies and syntactic dependencies, which explains

23Here, by Tree-RNN we mean a broad class of tree recurrent neural networks i.e. Tree-GRU (Chen et al.,
2017), Tree-LSTM (Tai et al., 2015) including its specific instantiation of the model - Tree-RNN (Goller and
Kuchler, 1996).
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why the model can acquire (some) syntactic knowledge. Also, one can use a parsing objective

to bias the structural generalisation (Dozat and Manning, 2017).

Finally, there are approaches that use data-based inductive biases. Such that, Min

et al. (2020) introduce a data augmentation technique that allows to learn abstract syntactic

representation for the models like BERT.

2.3.6 Sparsity Inductive Bias

In this subsection, we discuss how sparsity can allow us to model two properties of a natural

language in neural networks: sparse “interaction” between language units and varying amount

and type24 of information contained in language units.

Let us elaborate more on the first property. Given a language unit such as sentence

one can observe (performing either syntactic or semantic analysis of the sentence) that the

interaction (both syntactic and semantic) between its smaller units - words - is sparse. For

example, in English language main verb of a sentence needs to agree only with the subject

and not with all the words in the sentence. The sparse interaction between language units can

also be incorporated into a neural network in a form of inductive bias.

Modelling of the sparse interactions has especially been popular (Child et al., 2019;

Correia et al., 2019; Ye et al., 2019; Zhao et al., 2019; Zhang et al., 2020a) in SOTA neural

language model - Transformer. The vanilla Transformer models the interaction between the

words/tokens via a fully connected graph (Joshi, 2020). However, this turns out to be not

efficient both in terms of memory and time requirements.25 Furthermore, it does not allow us

to model sparse interaction between the units. To alleviate these issues, the most common

approach has been sparsifying the Transformer by reducing a number of connections between

the words/tokens. The former problem has been addressed by predefining the sparsity

patterns in advance or limiting the way the units interact (Child et al., 2019; Ye et al., 2019).

However, these approaches are not suitable to address the latter problem because depending

on a sentence the interaction between units varies and cannot be predefined in advance. The

24By type we mean what information is conveyed by the unit, e.g. words may refer to different objects.
25Both of which grow quadratically with the length of a sequence.
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solution to this problem was proposed by Correia et al. (2019), where the sparsity patterns

adapt to a sentence.

Now lets discuss the second property in more detail. The amount and type of information

conveyed by a language unit varies. As such, it makes sense to reflect this property in a

vector representation of the sentence. Learning sparse representations of data can be dated

back to Olshausen and Field (1996). This work motivates encoding of images in sparse

linear codes for its biological plausibility and efficiency. Furthermore, it was later argued by

Bengio (2009) that compared to the dimensionality reduction approaches, sparsity is a more

efficient method for representation learning on vectors with fixed dimensionality for data of

varying information content.

In NLP, learning sparse representations has been explored for various units of text with

most of the focus placed on sparse representation of words. However, many of them only

used sparsity to make the word embeddings and sentence embeddings (Trifonov et al., 2018)

more interpretable (Faruqui and Dyer, 2015; Sun et al., 2016; Li and Hao, 2019), which is an

important research direction but not of relevance for the current discussion. Although some

of the works (Yogatama et al., 2015; Arora et al., 2018) employ sparsity to model properties

of a natural language. Arora et al. (2018) use it to model polysemy and Yogatama et al. (2015)

use sparsity to organise the dimensions of word embeddings into a hierarchical structure

which in turn is a more biological plausible semantic representation (Collins and Quillian,

1969; Raposo et al., 2012). In Chapter 6 we further discuss how sparse representations may

be a more natural way of modelling sentences in a fixed dimensional vector.

2.3.7 Information-Theoretic Inductive Bias

In various branches of linguistics: syntax, semantics morphology etc, information the-

ory (Shannon, 1948) has been used to explain (or formulate) various language phenomena.

In syntax, Head–Dependent Mutual Information hypothesis was put forward (Futrell et al.,

2019) to explain the presence of a syntactic dependency between two words with the high

mutual information between the words. In semantics, Zaslavsky et al. (2018) propose to use

Information Bottleneck (IB; Tishby et al. (1999)) to explain how to efficiently assign surface

34



2.3 Inductive Biases in NLP Models

form of words to their meanings. In morphology, Cotterell et al. (2019) propose a new metric

based on conditional entropy to quantify complexity of inflectional systems. In language

production, its information-theoretic principle - Uniform Information Density (UID) - was

proposed by Jaeger (2010). It states that information content should be distributed uniformly

across a language expression.

Information theory, however, has not only been useful in explaining linguistic phenomena

but also it has been used to design information-theoretic inductive biases for neural language

models. For example, Wei et al. (2021) use UID as an inductive bias for better language

modelling. The UID bias increases lexical diversity of generated text as well as improves

language modelling perplexity. Mahabadi et al. (2021) use IB as a fine-tuning objective for

low-resource language tasks. In these settings, they found IB to be useful regulariser that

prevents overfitting and allows better generalisation to out-of-domain data. Furthermore,

Wang et al. (2020) find IB to be a useful bias to improve the robustness of neural language

models to adversarial attacks. In Chapter 5 we employ the Variational Autoencoder (VAE)

framework to learn unsupervised sentence embeddings. We show how Kullaback-Leibler

divergence can be used to regularise (or bias) the amount of information encoded in the

sentence embeddings and demonstrate the effect that this bias has on the quality of the learned

sentence representations using two downstream tasks: text generation and text classification.

2.3.8 Knowledge Graph Relational Inductive Bias

Knowledge Graphs (KGs) are a form of knowledge representation (Davis et al., 1993). They

are shown to be useful as a standalone unit e.g., a KG can be used to predict new facts

about the world (Nickel et al., 2015; Wang et al., 2017) it models as well as become key

components in many NLP systems (Nastase, 2008; Pilehvar et al., 2013; Moro et al., 2014;

Yih et al., 2015; Thorne et al., 2018). In this thesis, we view a KG as a form of an inductive

bias that restricts the meaning of a language unit to the structure of the KG. That is, by

defining the semantic relations between the units we strongly bias their meaning both by the

choice of the relations and the choice of which units we connect together. This idea is similar

to the one discussed in Battaglia et al. (2018), where various relational inductive biases are
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discussed within a neural network model and how they bias the learning process. However,

why we would need such an inductive bias?

Weissenborn (2017) argues that maintaining a large corpus that would contain all the

relevant information about the world is not practical to train a neural network. Hence, there

is no guarantee that all the required knowledge to solve a task would be presented in the

training data. Moreover, Zhang et al. (2020b) remark on a large amount of data that is needed

to learn common sense knowledge. However, if current SOTA models are not data efficient

and keep all of the relevant information about the world in a corpus is not practical what

would be an alternative? We argue that this alternative can be a KG - which can provide

a strong inductive bias for a semantic representation. Since the semantic information in a

KG is explicitly defined, the model may not need large amount of data to learn its meaning

especially if the task is known.26 Indeed it has been shown that the SOTA neural language

models do indeed benefit from information incorporated in a KG (Zhang et al., 2019; Bauer

et al., 2021). In Chapter 3 and 4 we show how to learn word and sentence embeddings

respectively via KG.

26If the task is known we can use a KG design for that task
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3
Learning Word Embeddings with

Relational Inductive Bias

3.1 Introduction1

Word embeddings can be seamlessly integrated into various NLP systems, effectively en-

hancing their generalisation power (Camacho-Collados and Pilehvar, 2018). However, as

we discussed in Subsection 2.2.1, SOTA neural language models that are pretrained on large

amount of text are unable to provide reliable representations for words such as domain-

specific terms (Lazaridou et al., 2021) that are infrequent or unseen during training. One of

the reasons for this is the lack of inductive biases that would allow the models to select the

meaning of a word out of possible alternatives.

To address the unseen word representation problem, both for static and contextualised

embeddings, several techniques have been proposed. Earlier works have mainly focused

on morphologically complex words (Luong et al., 2013; Botha and Blunsom, 2014; Soricut

and Och, 2015), whereas more recently, character-based and subword2 unit information

has garnered a lot of attention (Bojanowski et al., 2017) because of its ability to generalise

to new words. In this case, out of the possible meanings that the unseen words can have,

the semantics of the words is biased in terms of the units (characters, subwords, etc) of

1This chapter draws from the following publication: Victor Prokhorov, Mohammad Taher Pilehvar,
Dimitri Kartsaklis, Pietro Lio, Nigel Collier (AAAI, 2019) “Unseen Word Representation by Aligning Hetero-
geneous Lexical Semantic Spaces”.

2Note, that the algorithms that induce the subwords do not always capture what linguists would think of as
morphemes.
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the frequent words. Despite their success, such subword models make two assumptions

around the unseen word: (1) variations of the word exist in the training corpus (for instance,

occurrences of track—or even untrack—should exist to induce embeddings for untracked);

and (2) the semantics of the word can be estimated based on its subword units which

might not hold for single-morpheme words, e.g., galaxy, or for exocentric compounds (non-

compositional compounds; also certain types of idiomatic expressions), e.g., honeymoon. As

a result, they fall short of effectively representing the semantics of unseen single-morpheme

words for which no variation has been observed during training, essentially ignoring most of

the rare domain-specific entities which are crucial for NLP systems when applied to those

domains (Pilehvar and Collier, 2016).

Alternatively, to learn a reliable semantic representation of a word, in the absence of large

amounts of text containing this word, one can use a lexical resource i.e. dictionaries, KG, etc

that encode the lexical knowledge of the word. The lexical resource gives an explicit definition

of the words either in a form of text or in form of structural relations (e.g. hypernymy-

hyponymy relations) that exist between the words. Thus can strongly bias the meaning of

the words, which we can employ to guide the model to select the meaning of a word out

of possible alternatives. There exist many high coverage and domain-specific3 KG which

contain valuable information for infrequent words. Recently, various embedding induction

techniques have attempted to leverage lexical resources, such as WordNet (Bahdanau et al.,

2017; Pilehvar and Collier, 2017) or Wikipedia (Lazaridou et al., 2017). Despite their success,

they either rely on word definitions (glosses) or related words extracted from the lexical

resource while ignoring the knowledge encoded in the semantic structure.

In this chapter, we present a methodology that exploits the semantic structure of the KG

as a from of inductive bias4 for unseen word representation. The technique first embeds a

knowledge graph into a vector space and then maps the embedded words from this space

to a corpus-based space, in order to expand the vocabulary of the latter with additional

3We should clarify that some domains such as biological/medical have hundred or so high quality high
coverage KG, but others for example for engineering an aircraft or for understanding moon rocks may have
none.

4More concretely, we bias the learning algorithm to derive a semantic representation of a word in terms of
relationships that exist between the word (entity) and other words (entities) in a KG.
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representations for rare and unseen words. We evaluate the reliability of our approach on

several datasets across multiple tasks: six datasets for word similarity measurement and eight

sentiment analysis and topic categorization datasets. Experimental results show that, unless

ample occurrences exist in the training data, we can compute more reliable embeddings than

the ones generated by state-of-the-art corpus based embedding techniques.

3.2 Background

Given its importance, unseen word representation has attracted considerable research attention

for the past few years. Earlier techniques have mainly focused on improving distributional

models for better handling of infrequent words (Sergienya and Schütze, 2015), or on inducing

embeddings for morphological variations (Alexandrescu and Kirchhoff, 2006; Lazaridou

et al., 2013; Luong et al., 2013; Botha and Blunsom, 2014; Soricut and Och, 2015). The

latter branch often utilizes a morphological segmenter, such as Morfessor (Creutz and Lagus,

2007), in order to break inflected words into their components and to compute representations

by extending the semantics of an unseen word’s morphological variations.

More recently, character-based models have garnered a lot of attention. In these models

words are broken down into subword units and characters (Bojanowski et al., 2017), usually

irrespective of their morphological structure. An unseen word’s representation is induced by

combining the information for its subword units; for instance, by averaging the vector repre-

sentations of its constituent character n-grams as done by FastText (Bojanowski et al., 2017).

Character-based models have been successfully tested in different NLP tasks, including

language modeling (Sutskever et al., 2011; Graves, 2013), part-of-speech tagging (Dos San-

tos and Zadrozny, 2014; Ling et al., 2015) and syntactic parsing (Ballesteros et al., 2015).

However, all these techniques fall short of inducing representations for single-morpheme

words that are not seen frequently during training as they base their modeling on information

available from sub-word units. In contrast, our alignment-based model can also induce

embeddings for single-morpheme words that are infrequent or unseen in the training data,

such as domain-specific entities.
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Fig. 3.1 Our coverage enhancement procedure. The dashed lines represent semantic bridges
and the solid line represents a rare word that is projected from the knowledge vector space to
the corpus vector space.

Most related to our work are the WordNet-based approaches of Pilehvar and Collier

(2017) and Bahdanau et al. (2017). The former computes an unseen word’s embedding by

extracting the set of its semantically similar words (“semantic landmarks”) from WordNet and

combining their embeddings, whereas the latter trains a recurrent neural network, specifically,

an LSTM, to estimate a word’s embedding given its definition from WordNet. Moreover,

the additive model of Lazaridou et al. (2017) is analoguous to the LSTM model (though

less complex) and computes an embedding as the centroid of the embedding of the words

in its definition. Despite addressing the single-morpheme word representation limitation

of morphological models, these approaches ignore the information encoded in WordNet’s

lexical-semantic relations. We improve over these by proposing a model that effectively

leverages the semantic network of WordNet.

3.3 Methodology

Figure 3.1 illustrates our procedure for enriching an existing corpus vector space SC based

on the lexical knowledge in an external knowledge graph K. The proposed algorithm

mainly relies on techniques from two research areas: graph embedding and vector space

transformation. Two main steps are involved in the process. First, it views K as a knowledge

graph and transforms it to a vector space representation (SK) by leveraging graph embedding

techniques (Subsection 3.3.2). Then, it aligns the two vector spaces, i.e., KG- (SK) and
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corpus-based (SC), by using vector space transformation algorithms (Subsection 3.3.3). As

a result of this alignment, new embeddings are induced for unseen words in SC. In our

toy example in Figure 3.1, the term acidosis is missing from the vocabulary of SC but it is

covered by the knowledge graph K. First, a graph embedding algorithm is used to embed

K, represented as a graph, into a vector space SK . Then, based on common clues from the

two spaces, a transformation function is learnt in order to map the vectors across the two

spaces. The transformation function (from the embedded KG space SK to the corpus space

SC) allows us to project the vector for acidosis to the latter space, hence inducing a new

representation for the word.

3.3.1 Prerequisites

In our experiments, we used WordNet 3.0 (Fellbaum, 1998) as external knowledge graph.

The resource contains around 120K groups of synonyms, referred to as synsets, which

are connected to each other by means of around 200K lexical semantic relations, such as

hypernymy and meronymy. We further enrich the network by connecting a synset to all

other synsets that appear in its disambiguated gloss5. This approach more than doubles

the number of edges in WordNet’s semantic network. As for the corpus vector space, any

distributional semantic representation can be used. In our experiments, we opted mainly

for word embeddings (rather than conventional count-based representations) due to their

popularity.

Our procedure requires two additional conditions. Let VK and VC be the respective

vocabularies of knowledge graph and corpus vector spaces. The first condition to be met

is that VK and VC should have overlapping words, i.e., VK \VC 6= f . This is required for

enabling the alignment of the two spaces (to be discussed in Subsection 3.3.3). The second

condition is that the knowledge graph K has to provide lexical knowledge for unseen or

infrequent words in the corpus vector space. Thanks to the abundance of knowledge graphs

and the long tail of words in distributional representations, this condition is not difficult to be

fulfilled.

5wordnet.princeton.edu/glosstag.shtml
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3.3.2 Knowledge Graph Embedding

The proposed coverage enhancement procedure starts by transforming the lexical knowledge

representation in the knowledge graph K to a form which is comparable to the corpus-based

representation SC. To this end, we embed the structural lexico-semantic knowledge of K into

a vector space SK .

We opted for node2vec6 (Grover and Leskovec, 2016), a random walk based graph

embedding technique which has proven its potential in the reliable representation of graph

nodes. Given a graph G, the algorithm first generates a stream of artificial “sentences” by

performing a series of random walks over G. Each such “sentence” contains a sequence of

“words" (i.e, vertices) such that consecutive words correspond to neighbouring vertices in G.

Analogously to the natural language text in which semantically similar words are expected to

appear in similar contexts, an artificial sentence encodes local information for a node from

the graph by placing topologically close vertices in similar contexts. Representations are

then computed for individual vertices by taking a similar objective to the Skip-gram model

(Mikolov et al., 2013), i.e., by maximizing ’i+z
j=i�z, j 6=i Pr(w j|wi) which is the probability of

a word wi given its context, where z is the window size or the length of the random walk.

The only difference from the original Skip-gram model lies in the way input “sentences” are

constructed.

In our experiments, we set the parameters of node2vec as follows: walk length to 100,

window size to 10, and embedding dimensionality to 100. To decide on these parameters,

we carried out experiments on the MTURK-771 dataset (Halawi et al., 2012). Also, note

that nodes in the semantic graph of WordNet represent synsets. Hence, a polysemous word

would correspond to multiple nodes. In our word similarity experiments (Subsections 3.4.1

and 3.4.2) we use the MaxSim assumption of Reisinger and Mooney (2010) in order to map

words to synsets: the similarity of two words is computed as that of their closest associated

meanings. In the downstream experiment (Subsection 3.4.3), we compute a single word

vector as the average of its corresponding synsets’ vectors.

6https://github.com/snap-stanford/snap/tree/master/examples/node2vec

44

https://github.com/snap-stanford/snap/tree/master/examples/node2vec


3.3 Methodology

3.3.3 Vector Space Alignment

Once the KG K is represented as a vector space SK , we project it to SC in order to improve the

word coverage of this space with additional words from SK . In this procedure we make two

assumptions. Firstly, the two spaces provide reliable models of word semantics; hence, the

relative within-space distances between words in the two spaces are comparable. Secondly,

there exists a set of shared words between the two spaces (also mentioned in Subsection

3.3.1); we refer to these words as semantic bridges.

For this transformation we opted for Canonical Correlation Analysis (Faruqui and Dyer,

2014; Upadhyay et al., 2016, CCA), which is widely used for the projection of spaces

belonging to different languages with the purpose of learning multilingual semantic spaces.

The model receives as input two vector spaces for two different languages and a seed lexicon

for that language pair, and learns a linear mapping between the two spaces. Ideally, words

that are semantically similar across the two languages will be placed in close proximity to

each other in the projected space.

Specifically, let S0C ⇢ SC and S0K ⇢ SK be the corresponding subsets of semantic bridges,

i.e., words that are monosemous according to the WordNet sense inventory, for corpus and

KG spaces, respectively. Note that S0C and S0K form matrices that contain representations for

the same set of words, i.e., |S0C| = |S0K|. CCA finds a linear combination of dimensions in

SC and SK which have maximum correlation with each other. Given two column vectors S0C
and S0K of embeddings in the two spaces, CCA computes vectors wC and wK such that the

random variables wCS0C and wKS0K maximize the correlation r(wCS0C,wKS0K):

w⇤C,w
⇤
K = CCA(S0K,S

0
C)

= argmax
wC,wK

r(wCS0C,wKS0K)

= argmax
wC,wK

wCSCKwKq
wCSCwT

C

q
wKSKwT

K
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where SX and SX ,Y denote covariance and cross-covariance, respectively. Note that the

maximization is invariant to scaling of wC and wK . Hence, we can have a constraint for unit

variance:

w⇤C,w
⇤
K = argmax

wCSCwT
C=wKSKwT

K=1
wCSCKwK

The dimensionality of the resultant space in our experiments is min(dC,dK) = dK = 100,

where dC and dK are the dimensionalities of the corpus and KG spaces, respectively. The

enhanced space S⇤ is obtained as the union of wCSC and wKSK . Note that this procedure is

slightly different from the one illustrated in Figure 3.1. The enriched space is a third space

which is independent from the two initial spaces SK and SC.

As for the seed lexicon (the set of semantic bridges S0C and S0K), we used the set of

monosemous words in the WordNet’s vocabulary which are deemed to have the most reliable

semantic representations in the corpus vector space. Of the 155K words in WordNet’s

vocabulary, around 128K are monosemous, which provides us with a large set of semantic

bridges to use for the alignment step. However, in our experiments we found that a small

subset of 5K semantic bridges is enough for achieving reliable transformations.

Graph embedding and space alignment. For this work we experimented with node2vec.

We note that there is a rich literature for graph embeddings (Cai et al., 2017). A series of

algorithms first construct an adjacency matrix of the graph and obtain embeddings by directly

factorising this matrix (Roweis and Saul, 2000; Cao et al., 2015), whereas others employ

deep learning techniques, such as autoencoders (Wang et al., 2016). Relation embedding

techniques such as TransE (Bordes et al., 2013) and HOLE (Nickel et al., 2016) are not

suitable candidates for our purpose since their focus is rather on the embedding of edges (as

opposed to nodes). As noted before, for the space alignment we experimented with CCA

which is a linear model of projection.
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3.4 Experiments

In this section7 we provide three different sets of experiments that were carried out to evaluate

the reliability of our rare word embedding induction technique (which we will refer to as

ALIGN). First, we report results for in-vitro evaluations on the Stanford Rare Word similarity

dataset (Subsection 3.4.1) and in a simulated rare word similarity setting (Subsection 3.4.2).

We then verify the reliability of our induced embeddings in two downstream NLP tasks,

sentiment analysis and topic categorization. This experiment is detailed in Subsection 3.4.3.

3.4.1 Rare Word Similarity

The Stanford Rare Word (RW) Similarity dataset (Luong et al., 2013) has been regarded

as a standard benchmark for evaluating embedding induction techniques. The dataset

comprises 2034 pairs of infrequent words, such as ulcerate-change and nurturance-care. In

the first evaluation, we use this benchmark to compare our model against recent rare word

representation techniques.

Experimental setup. We experimented with two sets of word2vec (Mikolov et al., 2013)

embeddings trained on two different corpora: (1) W2V-GN, the Google News (vocab: 3M,

dim: 300)8, and (2) W2V-WP, the Wikipedia corpus (Shaoul and Westbury, 2010) (vocab:

2.4M, dim: 300). As for comparison systems, we benchmark our results against four other

approaches: (1) SemLand (Pilehvar and Collier, 2017) which extracts for an unseen word the

set of its semantically related words from WordNet and induces an embedding by combining

their embeddings; (2) the Additive model of Lazaridou et al. (2017) which takes the unseen

word’s definition as semantic clue and induces an embedding by adding (averaging) the

embeddings of content words in the defintion; (3) LSTM-based strategy of Bahdanau et al.

(2017) which is a more complex version of the additive model that relies on an LSTM

network which receives as its input the WordNet definition of the unseen word; and (4)

7It is worth noting that the experiments in this Chapter were conducted in year 2018-2019 and techniques
employed as SOTA embedding techniques were from that time.

8code.google.com/archive/p/word2vec/

47

code.google.com/archive/p/word2vec/


Learning Word Embeddings with Relational Inductive Bias

Embedding W2V-GN W2V-WP

r r r r

W2V-GN 0.44 0.45 0.41 0.43
+ Additive 0.46 0.48 0.41 0.43
+ SemLand 0.48 0.51 0.39 0.40
+ LSTM 0.48 0.50 0.40 0.40
+ ALIGN 0.48 0.48 0.42 0.42

Table 3.1 Pearson (r) and Spearman (r) correlation for our approach (ALIGN) on the RW
dataset with two pre-trained sets of word embeddings, before and after enhancement with
various methods. FastText-WP (trained on the Wikipedia corpus): r = 0.44, r = 0.44 and
node2vec (without any alignment and independent from corpus embeddings): r = 0.16,
r = 0.16.

FastText9 (Bojanowski et al., 2017) which computes a word embedding by combining the

embeddings of its sub-word character n-grams (see Section 3.2 for more details).

Results. Table 3.1 shows correlation performance on the dataset for the two pre-trained

word embeddings, in their initial form and when enhanced with additional induced word

embeddings. Among the two initial embeddings, W2V-GN provides a lower coverage (173

out-of-vocabulary words vs. 88 for W2V-WP) despite its larger vocabulary (3M vs. 2.4M).

All enhanced embeddings attain near full coverage (over 99%), thanks to the vocabulary

expansion offered by WordNet. Our approach (ALIGN) produces competitive performance

across the two settings and according to both Pearson and Spearman correlation metrics. The

performance (r = 0.16, r = 0.16) of node2vec, when independently applied to this dataset,

is notably lower than that of the initial corpus embeddings. However, it is interesting to

note that these non-optimal embeddings can better the performance of corpus embeddings

when combined with them, showing the complementarity of the two sources of information.

Moreover, we hypothesise that the non-optimality of node2vec embeddings can also be

attributed to the poor quality of the dataset (Pilehvar et al., 2018). We evaluate the quality of

9Another alternative to FastText is to use a more powerful model - Transformers with Byte Pair Encoding
(BPE) (Vaswani et al., 2017), however as the recent findings show it also perform poorly on induction of
embeddings for rare words (Schick and Schütze, 2020; Lazaridou et al., 2021). Moreover, it has been shown (Yu
et al., 2021) that the Transformer based model BERT (Devlin et al., 2019) benefits form dictionaries in task of
induction embeddings for rare words.
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node2vec embeddings on the other word similarity dataset and find that they are competitive

with the two SOTA word embeddings: W2V-GN and GLOVE, see Appendix A.1.

Comparison with FastText. FastText proves competitive on the dataset (r = 0.44, r =

0.44), highlighting the effectiveness of induced word embeddings from sub-word (character)

information. This is not a surprise given that around a third of the rare words in the RW

dataset are plural or -ed forms which can be easily handled by resorting to the embedding

of their singular or uninflected forms. For instance, kindergarteners and postponements are

highly similar to their singular forms and the semantics of encrusted and entrapped can be

estimated to a good extent from encrust and entrap which are relatively more frequent terms.

None of the other models in the table have access to this information. However, as mentioned

earlier, the sub-word backoff strategy might not be effective for single-morpheme words and

exocentric compounds, which in a real-world scenario account for the most frequent cases of

unseen words and can be effectively handled by our model.

Reliability of the RW dataset. The Stanford Rare Word Similarity dataset has been re-

garded as a standard evaluation benchmark for rare word representation and similarity, and

as such it is included in the experiments of this chapter. However, the variance across the

scores provided by different annotators for the same pair is generally high in this dataset.

This is mainly due to the reliance of the dataset on crowdsourcing without having rigorous

checkpoint on the raters. As also highlighted by Pilehvar et al. (2018), the low-confidence

annotations are also reflected by contradictory instances, such as the two (almost) identical

pairs tricolour-flag and tricolor-flag which have received the two very different scores of

5.80 and 0.71. Hence, further improvements on the dataset (over the W2V-GN baseline),

provided by different techniques, cannot be meaningfully interpreted. Given the unreliability

of the benchmark, in the following section, we provide an alternative evaluation based on

standard (common) word similarity benchmarks.
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Embedding Setting RG-65 SimLex-999 MEN-3000 SimVerb-3500 WS-353 Sim
r r r r r r r r r r

Initial word2vec

T = 10 0.40 0.42 0.15 0.12 0.46 0.45 0.07 0.08 0.53 0.54
T = 20 0.54 0.56 0.22 0.21 0.53 0.52 0.12 0.11 0.63 0.62
T = 50 0.63 0.63 0.26 0.24 0.63 0.62 0.15 0.15 0.68 0.69
T = 100 0.68 0.69 0.30 0.28 0.65 0.64 0.19 0.18 0.73 0.73

ALIGN T = 0 0.86 0.88 0.40 0.37 0.65 0.66 0.42 0.39 0.71 0.69
LSTM T = 0 0.52 0.57 0.19 0.19 0.19 0.20 0.28 0.29 0.18 0.21
Additive T = 0 0.56 0.59 0.17 0.13 0.24 0.23 0.21 0.20 0.31 0.32
SemLand T = 0 0.52 0.53 0.22 0.20 0.38 0.38 0.23 0.22 0.43 0.40

FastText T = 0 0.77 0.80 0.32 0.32 0.76 0.76 0.22 0.21 0.74 0.73

Table 3.2 Results of corpus-based and enhanced embeddings in the simulated rare word
similarity setting.

3.4.2 Simulated Rare Word Similarity

For a word similarity dataset to be suitable for this evaluation, it has to contain words that

are infrequent in generic texts. However, most of the existing standard word similarity

datasets contain only high frequency words, which makes them unsuitable for evaluating rare

word representation techniques. To work around this limitation, we follow Sergienya and

Schütze (2015) and leverage corpus downsampling in order to artificially transform standard

word similarity datasets to rare word similarity benchmarks. This enables us to evaluate our

embedding induction technique on a variety of standard datasets.

Experimental setup. Let T be the rarity threshold, i.e., the expected occurrence frequency

of an artificial rare word in the training text corpus. We process the original text corpus in

order to guarantee that each word in the similarity dataset appears at most T times in the

training corpus. This can be achieved by replacing all but T occurrences of the word with

another unique token (e.g., the word concatenated by some unique character). As a result

of this procedure, we obtain a corpus for each T value and for each dataset. Training word

embeddings on these corpora simulates a setting in which all the words in the word similarity

dataset are rare as they occur infrequently in the training corpus. Except from the corpus

downsampling step, the experimental setup is similar to that of the previous experiment.
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Datasets. For this experiment, we opted for five standard word similarity datasets: RG-65

(Rubenstein and Goodenough, 1965), SimLex-999 (Hill et al., 2015b), MEN (Bruni et al.,

2014), WordSim-353 similarity subset (Agirre et al., 2009), and SimVerb-3500 (Gerz et al.,

2016) which contains verbs only.

Results. Table 3.2 lists correlation performance results on the five datasets and for four

different values of T (10, 20, 50, and 100) for the initial downsampled W2V-WP embeddings10

as well as for enhanced embeddings using different techniques for T = 0 (unseen word

setting). As expected, there is a steady improvement for the corpus-based embeddings with

increasing values of T . On all the datasets and according to both evaluation measures, ALIGN

significantly improves over the three other WordNet-based approaches. Interestingly, our

induced embeddings consistently outperform corpus embeddings which are constructed with

T = 10, 20, and 50 on all the datasets and are often better or on par with T = 100. This means

that our approach can produce embeddings that are as reliable as those corpus embeddings

that are computed based on 100 occurrences. This is important as around 80% of the words

in the vocabulary of the Wikipedia corpus appear fewer than 50 times in the whole corpus.11

Moreover, surprisingly, on the SimVerb dataset the induced embeddings perform significantly

better than the corpus-based embeddings, even at T = 100. This shows the superior quality of

the induced verb embeddings, thanks to the hand-crafted part-of-speech-specific knowledge

encoded for them in WordNet.

Similarly to the previous experiment, FastText proves to be a competitive baseline,

outperforming our induced embeddings on two datasets. However, again, we note that

FastText benefits from the advantage of having access to all plural forms of these (originally

frequent) downsampled words in the training dataset, which might not establish a fair

comparison. The simulated rare word similarity datasets address the unreliability issue of

Stanford RW but still do not represent a real-world rare word scenario. Ideally, such a

10Obviously, for T = 0, word2vec would be unable to learn any embeddings, hence we do not show that
setting.

11In the 2015 Wikipedia dump corpus with around 1.6B tokens, there are slightly over 1.9M word types
with at least three occurrences. Of these word types, more than 80% appear at most 50 times in total, whereas
more than two thirds of words in the vocabulary have frequency  20.
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Initialization Setting Sentiment Analysis Topic Categorization
PL04 PL05 RTC IMDB Stanford BBC NG OH

X = 0% Initial 66.2 75.4 79.7 85.4 80.4 96.7 86.5 27.8
+ALIGN 63.7 75.6 79.4 86.8 80.5 96.5 87.0 29.3

X = 20% Initial 59.1 67.2 63.8 71.1 70.1 93.1 67.4 16.4
+ALIGN 58.9 69.9 74.5 79.3 77.6 95.1 80.3 25.7

X = 40% Initial 56.2 63.5 62.7 70.3 66.1 91.0 62.8 15.7
+ALIGN 55.6 68.0 74.5 81.8 76.2 94.5 79.7 28.5

Table 3.3 Accuracy performance on eight datasets for sentiment analysis and topic cat-
egorization. The best results for each setting are shown in bold. NG and OH stand for
Newsgroups and Ohsumed, respectively.

dataset would contain named entities, domain-specific terms or other uncommon words that

tend to appear infrequently in generic text corpora (which are often used for training word

embeddings). We believe that rare word representation research requires such a high quality

benchmark for more rigorous evaluations. We leave the possibility of the creation of such

datasets to future work.

3.4.3 Evaluation in Downstream Tasks

We were also interested in having an in-vivo evaluation of the reliability of our induced

embeddings in a real-world NLP system. Given that currently the most important application

of word embeddings is in the initialization of the input layer in neural networks, we opted for

a standard neural system as our evaluation benchmark.

Experimental setup. We experimented with a neural text classification system applied to

two tasks: sentiment analysis (binary classification) and topic categorization (multi-class

classification). The embedding layer of this system is initialized with pre-trained word2vec

embeddings. Let L be the vocabulary of a given dataset. We dropped the pre-trained corpus

embeddings for X% of the words in L and replaced them with our induced embeddings.

We experimented with three X values: 0 (in which we used all the corpus embeddings to

initialize the layer; new embeddings were induced to further improve coverage for those

words missing in corpus embeddings’ vocabulary), 20 and 40 (in which, respectively, 20%
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and 40% of corpus embeddings were dropped, i.e., their corresponding words were treated as

out of vocabulary). We were mainly interested in observing if the induced embeddings, first,

could improve over corpus embeddings and, second, were able to re-gain system performance

lost when dropping a part of the corpus embeddings. In all settings the embedding layer

was not updated during training (static). This allows us to have a direct evaluation on the

reliability of embeddings, independently from any updates and alteration they can undergo

during training. In each configuration we repeat the experiment three times and report the

average performance.

Text classification system. In our experiments, we used a CNN text classifier which is

similar to that of Kim (2014). The only difference is that in our model, instead of directly

inputting the pooled features from the convolutional layer to a fully connected softmax

layer, they are first passed through a recurrent layer in order to enable a better capturing of

long-distance dependencies. Specifically, as our recurrent layer we used LSTM (Hochreiter

and Schmidhuber, 1997).

Datasets. For sentiment analysis we used five standard datasets, including PL04 (Pang and

Lee, 2004), PL05 (Pang and Lee, 2005),12 RTC13, and IMDB (Maas et al., 2011) which

are all binary datasets (with positive and negative labels) containing snippets of or full

movie reviews. We also experimented with Stanford Sentiment dataset (Socher et al., 2013)

which associates phrases with values that denotes their sentiments. To be consistent with the

other four datasets’ binary classification setting, we removed the neutral phrases with scores

0.4 to 0.6 and considered the reviews with values below 0.4 as negative and above 0.6 as

positive. For the topic categorization task we used two newswire datasets: The BBC news

dataset CR 14 (Greene and Cunningham, 2006) and Newsgroups (Lang, 1995) with 5 and 20

12Both PL04 and PL05 are obtained from http://www.cs.cornell.edu/people/pabo/movie-review-
data/

13http://www.rottentomatoes.com
14http://mlg.ucd.ie/datasets/bbc.html
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classes, respectively. We also experimented with a domain-specific categorization dataset:

Ohsumed15, which contains medical texts categorized into 23 classes.

Results. Table 3.3 shows the results. We report classification accuracy for the baseline

system (“Initial”) which is initialized by full (X = 0%) or partial (X > 0%) corpus-based

embeddings, and for the enhanced systems with additional induced embeddings (“+ALIGN”).

Generally, the enhancement proves to be beneficial as it provides improvements in most

of the configurations across the eight datasets. In the X = 0% setting, the improvement

is particularly noticeable for the IMDB, Newsgroup and Ohsumed datasets which have a

fair portion of their vocabularies not covered by word2vec embeddings. However, lower

or no improvement is observed for other datasets (particularly, PL04) whose vocabularies

are largely covered by the corpus embeddings. In the X > 0% settings, the performance

of the baseline system drops significantly on most datasets. In the 20% setting, which

is the closest to a real-world scenario, the enhanced system can recover a large part of

the lost performance on most of the datasets. The same trend is observed for X = 40%.

Interestingly, on the Ohsumed dataset, which belongs to the medical domain, the enhanced

system gets close to the initial system initialized by corpus embeddings. This is a strong

indication of the effectiveness of our approach in filling lexical gaps for specific domains.

Overall, the results show that our induced embeddings, though not sufficient to replace

corpus embeddings for frequent words, can significantly improve over infrequent or unkown

embeddings, particularly for specific domains.

3.5 Conclusions and Future Work

To learn reliable word embeddings SOTA models need large amount of text (frequently)

containing these words. One of the reasons for this is the lack of inductive biases that would

allow the models to select the meaning of a word out of possible alternatives. Hence, words

that are not frequent or absent in the text cannot be represented reliably with the embedding.

15ftp://medir.ohsu.edu/pub/ohsumed
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However, can we use an inductive bias that allows us to use much smaller amount of data

and still learn a good representation for these rare and unseen words?

In this chapter, we investigated if a KG can be used as such inductive bias. Such that, we

presented a methodology for marrying distributional semantic spaces with lexical knowledge

graphs and applied it to the task of extending the vocabulary of the former with the help of

information extracted from the latter. By evaluating the induced embeddings on multiple

word similarity benchmarks as well as on a downstream NLP evaluation framework, we

showed that the KG is a reliable inductive bias to learn the semantic representation of words.

In future work, we plan to experiment with domain-specific KGs, such as medical KGs,

and study the efficacy of our methodology. Moreover, we plan to further experiment with

non-linear transformation techniques16, such as Kernel CCA (Akaho, 2006) and Deep CCA

(Andrew et al., 2013) and also explore how can we learn representations of words that are in

KG and words that are in a corpus, jointly.

In the next chapter, we extend the idea of biasing semantic representation of words to

phrases/sentences, where we map a dictionary definition to path graphs extracted from a KG.

16Most of the cross-lingual (our work can be thought as a type of cross-lingual mapping) word embedding
mappings assume that the two vector spaces are isomorphic (or assume that their structure is similar) hence
use linear transformation, however if two vector spaces are not similar then the linear transformation has
its limitations (Ormazabal et al., 2019). In this work, this assumption is also reasonable as we discuss in
Subsection 3.3.3. However, if one uses KG and text from the different domains e.g. a KG is in engineering and
text is a news corpus then this assumption may no longer be valid. Hence, non-linear mapping may perform
better (Glavaš and Vulić, 2020). One potential difficulty with using powerful linear mappings proposed above
is availability of large quantity of data. Thus one may need to find a KG and text where there will be plenty of
semantic bridges between the two vector spaces.
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4
Learning Sentence Embeddigns with

Relational Inductive Bias

4.1 Introduction1

In the previous chapter, we discussed how a KG can be used as an inductive bias to learn

word embeddings. Inspired by the work of Hill et al. (2015a) and Hill et al. (2016), in this

chapter, we present a work that demonstrates how one can further use relations between

entities in a KG as a relational inductive bias for learning phrase/sentence2 embeddings.

Learning semantic representation of sentences is an immensely hard task because numer-

ous possible meanings can be expressed by composing the words in the sentences. One way

to alleviate this issue is via a supervision signal that expresses (or biases) the meaning of the

sentences. However, what would be the ‘right‘ supervision signal to learn the meaning of

sentences? Hill et al. (2015a) propose to learn embeddings of phrases by mapping dictionary

definition to word embeddings. Here, we take this idea one step further and instead map

unrestricted text to the sequence of entities in a KG. As a first step towards investigating

whether this is a right bias to learning the meaning of sentences we pose the following

question: can we bias semantic representation of a sentence to be reflective of topological

dependencies that exist in Knowledge Graph (KG)? To perform the mapping we formulate

this approach as the text-to-entity mapping.
1This chapter draws from the following publication: Victor Prokhorov, Mohammad Taher Pilehvar and

Nigel Collier (NAACL, 2019) “Generating Knowledge Graph Paths from Textual Definitions using Sequence-
to-Sequence Models”.

2Textual definitions of concepts (or nodes of the graph) in a KG are defined via both sentences and phrases,
however in this chapter, for ease of reading, we refer to both (phrase/sentence) as sentences.
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Text-to-entity mapping is the task of associating a text with a concept in a knowledge

graph (KG) or an ontology (we use two terms, interchangeably). Recent works (Hill et al.,

2015a; Kartsaklis et al., 2018) use neural networks to project a text to a vector space where

the entities of a KG are represented as continuous vectors. Despite being successful and

also being able to bias semantic representation of a sentence, these models have two main

disadvantages. First, they rely on a predefined vector space which is used as a gold standard

representation for the entities in a KG. Therefore, the quality of these algorithms depends

on how well the vector space is represented. Second, these algorithms are not interpretable;

hence, it is impossible to understand why a certain text was linked to a particular entity which

makes it hard to probe semantic information that is encoded in the sentence embedding.

To address these issues we propose a novel technique that first represents a KG concept as

a sequence of its ancestors in the KG (hypernyms) and then maps the corresponding textual

description to this unique representation. For example, given the textual description of the

concept swift (“small bird that resembles a swallow and is noted for its rapid flight”), we map

it to the hierarchical sequence of entities in a KG: animal! chordate! vertebrate! bird

! apodiform_bird. This sequence of nodes constitutes a path.3

Our model is based on a sequence-to-sequence neural network (Sutskever et al., 2014)

coupled with an attention mechanism (Bahdanau et al., 2014). Specifically, we use a LSTM

(Hochreiter and Schmidhuber, 1997) encoder to project the textual description into a vector

space and a LSTM decoder to predict the sequence of entities that are relevant to this

definition. With this framework, we do not need to rely on the pre-existing vector space of

the entities, since the decoder explicitly learns topological dependencies between the entities

of the KG. Furthermore, the proposed model is more interpretable. Instead of the closest

points in a vector space, it outputs paths; therefore, we can trace all predictions the model

makes. In this chapter, we consider rooted tree graphs4 only and leave the extension of the

algorithm for more generic graphs to future work.

3We only consider hypernymy relations, from the root to the parent node (apodiform_bird) of the entity
swift.

4Only a single root is allowed. If a tree has more than one root, one can create a dummy root node and
connect the roots of the tree to it.
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We evaluate the ability of our model in generating graph paths for previously unseen tex-

tual definitions on seven KGs (Section 4.3). We further demonstrate that our technique either

outperforms or performs on a par with a competitive multi-sense LSTM model (Kartsaklis

et al., 2018) by better utilising external information in the form of word embeddings. We use

these results as the indicators that sentence embeddings do incorporate the semantics of the

pathgraph; in this case the semantics is the hypernymy hierarchy of concepts.

4.2 Methodology

We assume that a KG is represented as a rooted tree graph G = (V,E,T ), where V is a set of

entities (e.g. synsets in WordNet), E is a set of hyponymy edges, and T is a set of textual

descriptions such that 8v 2V there is a tv 2 T .

4.2.1 Node representation

We assume that a KG concept can be defined by either using a textual description from a

dictionary or hypernyms of the defining concept in the KG. For example, to define the noun

swift one can use the dictionary definition mentioned previously. Alternatively, the concept

of swift can be understood from its hypernyms, e.g. in the trivial case one can say that swift

is an animal. This definition is not very useful since animal is a hypernym for many other

nouns. To provide a more specific definition, one can use a sequence of hypernyms e.g.

animal! chordate! vertebrate! bird! apodiform_bird starting from the most abstract

node (root of a KG) to the most specif (parent node of the noun).

More formally, for each entity v 6= vroot 2 V we create a path pv. Each pv starts from

vroot and ends with a hypernym of v, i.e., the hierarchical order of entities is preserved. Then

the path pv is aligned with tv such that each node is defined by a textual definition and a path.

This set of aligned representations is used to train the model.

The path representation of an entity ends with its parent node. Therefore, a leaf node will

not be present in any of the paths. This is problematic if a novel definition should be attached

to a leaf. To alleviate this issue we employ the “dummy source sentences" technique from
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neural machine translation (NMT) (Sennrich et al., 2016a). We create an additional set of

paths from the root node to each leaf. As for the textual definition we leave it empty.

4.2.2 Model

We use a sequence-to-sequence model with an attention mechanism to map a textual descrip-

tion of a node to its path representation.

Encoder. To encode a textual definition tv = (wi)N
i=1, where N is sentence length, we first

map each word wi to a dense embedding ewi and then use a bi-directional LSTM to project the

sequence into a latent representation. The final encoding state is obtained by concatenating

the forward and backward hidden states of the bi-LSTM.

Decoder. Decoding5 the path representation of a node from the latent state of the textual

description is done again with an LSTM decoder. Similarly to the encoding stage, we

map each symbol in the path pv = (s j)M
j=1 to a dense embedding es j , where M is the path

length. To calculate the probability of the path symbol s j at time step j we first represent

the path sequence as h⇤j = LSTM(e j
s ,h⇤j�1). Then, we concatenate h⇤j with the context vector

c j (defined next) and pass the concatenated representation [h⇤j ;c j] through the softmax

function, i.e. s j = max(softmax(W[h⇤j ;c j])), where W is a weight parameter. To calculate

the context vector c j we use an attention mechanism, e ji = vT
a tanh(Wahi +Uah⇤j) and c j =

ÂN
i softmax(e ji)hi, where va, Wa and Ua are the weight parameters, over the words in the

text description.

5Note, potentially, our model can decode paths that do not exist in a KG. This is because, at each decoding
step, the model outputs probability distribution over all nodes in KG. An alternative could be masking nodes
that are not neighbours of the currently decoded node. This, potentially, should boost the performance of our
model, however we leave testing of this hypothesis for future work. Presently, we test if a sequence-to-sequence
model can be a competitive text-to-entity model without prior knowledge of a topology of a KG. See Subsection
4.3.4 for further discussion.
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Graphs |V| Depth Branch A.D

PATO 1742 (4.94,10) (3.95,92) 20
WNanimal.n.01 3999 (6.94,12) (3.79,52) 26
WNplant.n.02 4487 (4.70,9) (5.91,357) 28
HDO 9095 (5.92,12) (4.59,222) 27
HPO 13348 (6.95,14) (3.40,32) 24
GO 29682 (6.40,14) (3.28,172) 21
WNentity.n.01 74374 (8.01,18) (4.52,402) 36

Table 4.1 Statistics of the Graphs. |V| is the number of nodes, depth is the path length from
the root of a graph to a node, branch is the number of neighbours a node has (leaves were
removed from the calculation). The first value in the parentheses corresponds to the average
and the second to the maximum value. A.D stands for average number of decisions the model
makes to infer a path, i.e A.D = average depth ⇥ average branch.

4.3 Experimental Setup

KGs. We experimented with seven graphs four of which are related to the bio-medical

domain: Phenotype And Trait Ontology6 (PATO), Human Disease Ontology (Schriml et al.,

2012, HDO), Human Phenotype Ontology (Robinson et al., 2008, HPO) and Gene Ontology7

(Ashburner et al., 2000, GO). The other three graphs, i.e. WNanimal.n.01
8, WNplant.n.02 and

WNentity.n.01 are subgraphs of the WordNet 3.0 (Fellbaum, 1998). We present the statistics of

the graphs in Table 4.1.

KG Preprocessing. All the KGs we experimented with are represented as directed acyclic

graphs (DAGs). This creates an ambiguity for node path definitions since there are multiple

pathways from a root concept to other concepts. We have assumed that a single unambiguous

pathway will reduce the complexity of the problem and leave the comparison with ambiguous

pathways (which potentially would involve a more complex model) to future work. To

convert a DAG to a tree we constrain each entity to have only one parent node. The edges

between the other parent nodes are removed.9

6http://www.obofoundry.org
7After prerocessing GO we took its largest connected component.
8The subscript in ‘WN’ indicates the name of the root node of the graph.
9The choice of an edge is performed on random basis. An alternative would be to hire a domain expert

who can determine which edges can be removed to reduce overall effect on the KG structure. However, this
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Path Representations. We also experiment with two path representations. Our first ap-

proach, text2nodes, uses the label of an entity (Section 4.1) to represent a path. This is not

efficient since the decoder of the model needs to select between all of the entities in a KG and

also requires more parameters in the model. Our second approach, text2edges, to reduce the

number of symbols for the model to choose from, uses edges to represent the path. To do this

we create an artificial vocabulary of the size D(G), where D(G) corresponds to the maximum

degree of a node. Each edge in the graph is labeled using the artificial vocabulary. For the

example in Section 4.1, the path would be animal�[a]! chordate�[b]! vertebrate�[c]!

bird �[d]! apodiform_bird where {a,b,c,d} is the artificial vocabulary. In the resulting path

we discard labels for the entities; therefore, the path reduces to: [a]! [b]! [c]! [d].

4.3.1 Baselines

Bag-of-Words Linear Regression (BOW-LR). To represent a textual definition in a vector

space we first use a pre-trained set of word embeddings (Speer et al., 2017) to represent

words in the definition and then find the mean of the word embeddings. As for the KG, we

use node2vec (Grover and Leskovec, 2016), to represent each entity in a vector space. To

align the two vector spaces we use linear regression.

Multi-Sense LSTM (MS-LSTM). Kartsaklis et al. (2018) proposed a model that achieves

state-of-the-art results on the text-to-entity mapping on the Snomed CT10 dataset. The

approach uses a novel multi-sense LSTM, augmented with an attention mechanism, to

project the definition to the KG vector space. Additionally, for a better alignment between

the two vector spaces, the authors augmented the KG graph with textual features.

approach would not be practical because of costs: time it would take for the expert to preprocess such a graph
and money to hire such an expert. Even for the smallest graph (preprocessed) used in this work, on average,
there are 1742*92=160,264 edges to consider. Also, in Appendix B we report the average number of nodes that
have more than one parent and the average number of parents the nodes have (which is around 2 for all the KGs
except PATO and GO, which is around 3).

10https://www.snomed.org/snomed-ct
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4.3.2 Evaluation Metric

To perform evaluation of the models described above we used Ancestor-F1 score (Mao

et al., 2018). This metric compares the ancestors (is�amodel) of the predicted node with the

ancestors (is�agold) of the gold node in the taxonomy.

P =
|is�amodel ^ is�agold|

|is�amodel|
,

R =
|is�amodel ^ is�agold|

|is�agold|
,

where P and R are precision and recall, respectively. The Ancestor-F1 is then defined as:

2⇥ P⇥R
P+R

.

4.3.3 Intrinsic Evaluation

To verify the reliability of our model on text-to-entity mapping we did a set of experiments

on the seven graphs (Section 4.3) where we map a textual definition of a concept to a path.

To conduct the experiments we randomly sampled 10% of leaves from the graph. From

this sample, 90% are used to evaluate the model and 10% are used to tune the model. The

remaining nodes in the graph are used for training. We sample leaves for two reasons: (1) to

predict a leaf, the model needs to make the maximum number of (correct) predictions and (2)

this way we do not change the original topology of the graph. Note that the sampled nodes

and their textual definitions are not present in the training data.

Both baselines predict a single entity instead of a path. To have the same evaluation

framework for all the models, for each node predicted by the baselines we create11 a path

from the root of the node to the predicted node. However, we want to emphasize that this is

disadvantageous for our model, since all the symbols in the path are predicted by it and in

the case of the baselines only a single node is predicted.

11We used NetworkX (https://networkx.github.io) to find a path from predicted node to the root of a
graph.
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Models PATO WNanimal.n.01 WNplant.n.02 HDO HPO GO WNentity.n.01

BOW-LR 0.79 0.75 0.65 0.55 0.63 0.32 0.41
MS-LSTMl = 0 0.77 0.73 0.62 0.70 0.72 0.69 0.51
MS-LSTMl = 0.5 0.80 0.76 0.65 0.70 0.73 0.70 0.57
MS-LSTMl = 1 0.75 0.66 0.57 0.65 0.63 0.62 0.51
text2nodes 0.75 0.66 0.66 0.69 0.62 0.67 0.60
text2edges 0.76 0.68 0.66 0.69 0.69 0.69 0.61
MS-LSTM⇤l=0.5 0.81 0.76 0.66 0.71 0.74 0.71 0.58
text2nodes⇤ 0.83 0.71 0.68 0.71 0.69 0.70 0.62
text2edges⇤ 0.83 0.77 0.70 0.73 0.74 0.72 0.65

Table 4.2 Ancestor F1 results. Numbers in bold represent the best performing system on
a graph. Models marked with ⇤ make use of pre-trained word embedding in their encoder.
Lambda (l ) is defined in Subsection 4.3.1. We use the same number of epochs, batch size
and number of latent dimensions both for MS-LSTM and our models (Appendix B.2).

The results are presented in Table 4.2. Models that are in the last three rows of Table

4.2 use pre-trained word embeddings (Speer et al., 2017) in the encoder. MS-LSTM and

our models that are above the last three rows use randomly initialised word vectors. We

had four observations: (1) without pre-trained word embeddings in the encoder our model

outperforms the best MS-LSTMl = 0.5 only on two of the seven graphs, (2) the text2edges⇤

model outperforms all the other models including MS-LSTM⇤l=0.5, (3) the text2edges model

can better exploit pre-trained word embeddings than MS-LSTM, (4) our model performs

better when the paths are represented using edges (rather than nodes). We also found

that there is a strong negative correlation (Spearman: �0.75, Pearson: �0.80) between

A.D. (Table 4.3) and the Ancestor F1 score for the text2edges⇤ model, meaning that with an

increase in A.D. the Ancestor F1 score decreases.

4.3.4 Error Analysis

We carried out an analysis on the outputs of our best-performing model, i.e. text2edges⇤ with

pre-trained word embeddings. One factor that affects the performance is the number of invalid

sequences predicted by the text2nodes and text2edges models. An invalid sequence is the path

that does not exist in the original graph. This happens because at each time step the decoder

outputs a distribution over all the nodes/edges and not just over possible children nodes. We
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therefore performed a count of the number of invalid sequences produced by the model. The

percentage of invalid sequences is in the range of 1.82% - 8.50% (Appendix B.1.1), which is

relatively low. This analysis was also performed by J. Kusner et al. (2017). To guarantee that

the model always produces valid graphs, they use a context-free grammar. A similar method

can be adapted in our work.

(a) (b)

Fig. 4.1 The graph on top shows the length of sequence vs length frequency on a training set.
The graph on the bottom shows the length of the gold sequence vs mean length of decoded
sequence on the test set.

Another factor that affects the performance is the length of the generated paths which is

expected to match the length of the gold path. To test this, we compared the mean length

of the generated sequences with the length of the gold path (the graph on the bottom of

Figure 4.1). Also, in the training set, we associate the length of the sequences with their

frequencies (the graph on the top of Figure 4.1). We found that (1) the length of the generated

paths are biased towards the more frequent paths in the training data, (2) if the length of a

path is not frequent in the training data, the model either under-generates or over-generates

the length (Appendix B.3).

4.4 Conclusion and Future Work

One of the existing problems in the learning of phrase/sentence embeddings is to find a task

that would allow us to assign a meaning to the composition of the words. It is a complex
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task because numerous possible meanings can be expressed by composing the words in the

sentences/phrases. A potential task would include a supervision signal that would explicitly

express a meaning of the phrases and sentences. However, what can we use as a supervision

signal to express the meaning?

We followed the work of Hill et al. (2015a) who proposed to relate the meaning of

phrases/sentences with words via a lexical resource. We presented a model that biases

the semantic representation of sentences in terms of relationships that exist between the

entities in a KG and used intrinsic experiments to demonstrate this. We evaluated the

proposed technique on seven KGs: 1) showing that it can bias semantic representation

of a sentence to be reflective of topological dependencies that exist in the KGs, and 2) it

performs competitively with respect to existing SOTA text-to-entity systems, while being

more interpretable and self-contained.

We have indirect evidence that this inductive bias may lead to better generalisation than

alternative techniques that learn sentence embeddings (Hill et al., 2016). However, we leave

it for future investigation. One reason for this is that modern NLP is driven by a large amount

of data and models, which in turn require a lot of computing power and resources (Liu et al.,

2019b). As such to make this further experiment meaningful (to adequately compare with

SOTA models) we will require to train (or fine-tune) these models with large KG which is

beyond our compute resource.

A natural next step will be to extend our framework to DAGs and use a pretrained Trans-

former based neural language model instead of LSTMs, and also testing the generalisation

ability of the models on downstream tasks. We also hope that this work will motivate further

exploration of KG as a data-based inductive bias for learning sentence embeddings.

In Chapter 3 and this chapter, we used data (data-based inductive biases) to bias repre-

sentations of words and sentences. Despite being effective, creation of the data i.e. corpora,

KG, etc with labels (or certain properties as in Andreas (2020)) that would allow us to

bias the embeddings of words/sentences can be and expensive and time-consuming process.

In the next two chapters, instead, we incorporate an inductive bias into the model itself

(data-agnostic inductive biases).
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Data-Agnostic Inductive Biases
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5
Learning Sentence Embeddings with

Information-Theoretic Inductive Bias

5.1 Introduction1

Due to the flexibility of (un/self)supervised representation learning the use of autoencoder

neural architectures received a lot of attention. In principle, autoencoders try to preserve as

much as possible information about the data they model (Valpola, 2014). However, as an

inductive bias it is poorly understood what kinds of implications the amount of information

would have on downstream tasks. In this chapter, we explore this question for learning

representation of sentences using Variational Autoencoder (VAE) framework.2

The vanilla VAE (Kingma and Welling, 2014) applied to text has been shown to be a

promising framework for learning sentence embeddings (Bowman et al., 2015b). It consists

of an encoder (inference or approximate posterior) and decoder (generative) networks: Given

an input x, the encoder network parameterizes qf (z|x) and infers about latent continuous

representations of x, while the decoder network parameterizes pq (x|z) and generates x from

the continuous code z. The two models are jointly trained by maximizing the Evidence

1This chapter draws from the following publication: Victor Prokhorov, Ehsan Shareghi, Yingzhen Li,
Mohammad Taher Pilehvar and Nigel Collier (WNGT, 2019) “On the Importance of the Kullback-Leibler
Divergence Term in Variational Autoencoders for Text Generation”.

2Here we take an information-theoretic view of VAE and link it to mutual information. Potentially, similar
questions that we investigate here can be studied using other formulation of mutual information maximisation
principle (Barber and Agakov, 2003; Hjelm et al., 2019; Kong et al., 2020). However, with these frameworks
discriminative (Li et al., 2021) and generative (Zhang et al., 2018; Pan et al., 2020) tasks, to best of our
knowledge, are studied separately, but VAE allow us to study both these tasks using the same model.
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Lower Bound (ELBO), L (q ,f ;x,z):

Eqf (z|x)[log pq (x|z)]�DKL
�
qf (z|x)||p(z)

�
(5.1)

where the first term is the reconstruction term, and the second term is the Kullback-

Leibler (KL) divergence between the posterior distribution of latent variable z3 and its

prior p(z) (i.e., N(0, I)). The KL term can be interpreted as a regularizer which prevents the

inference network from copying x into z, and for the case of a Gaussian prior and posterior

has a closed-form solution.

In this chapter, we propose to use an extension of VAE (Burgess et al., 2018) which

permits us to explicitly control the magnitude of the KL term. We show that by controlling

this term we can bias the amount of information that is encoded in the sentence embedding.

We use an existing theoretical framework (see Section 5.2) as well as empirical results that

support this claim (see Subsection 5.3.1). Since we can control the amount of information a

VAE model encodes in the sentence embeddings, during the learning, it can be treated as an

inductive bias. We study the implications this information-theoretic inductive bias has on

components (generative and inference networks ) of the VAE model via intrinsic analysis of

the components and performance of the model on downstream tasks.

First, we study how the amount of information that is encoded in the sentence embeddings

affects the shape of the approximate posterior as well as the proximity of aggregated posterior

(see Subsection 5.3.2) to the prior distribution. Then we conduct a set of qualitative and

quantitative experiments analysing the effect this inductive bias has on the generative capacity

of VAEs. Moreover, we establish a link between the discriminative performance of latent

sentence representations (on three text classification tasks) and the amount of information

that is encoded in the representations. Finally, we test if biasing the amount of information in

the sentence embeddings results in the encoding of structural4 signal (see Subsection 2.3.5)

in them.

3Here, the latent variable represents the sentence embedding. We use the two interchangeably.
4We test for the presence of syntactic information. This also opens a broader discussion on what information,

about a sentence, should be modelled globally by the encoder and what information should be modelled locally
by the decoder (Chen et al., 2016).
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5.2 Information-Theoretic View of VAE

We take the encoder-decoder of VAEs as the sender-receiver in a communication network.

Given an input message x, a sender generates a compressed encoding of x denoted by z,

while the receiver aims to fully decode z back into x. The quality of this communication can

be explained in terms of rate (R) which measures the compression level of z as compared

to the original message x, and distortion (D) which quantifies the overall performance of

the communication in encoding a message at the sender and successfully decoding it at the

receiver. Additionally, the capacity of the encoder channel can be measured in terms of the

amount of mutual information between x and z, denoted by I(x;z) (Cover and Thomas, 2012).

5.2.1 Reconstruction, KL and Mutual Information

The reconstruction loss can naturally measure distortion (D :=�Eqf (z|x)[log pq (x|z)]), while

the KL term quantifies the amount of compression (rate; R := DKL[qf (z|x)||p(z)]) by measur-

ing the divergence between a channel that transmits zero bit of information about x, denoted

by p(z), and the encoder channel of VAEs, qf (z|x). Alemi et al. (2018) introduced the

H�D  I(x;z)  R bounds5, where H is the empirical data entropy (a constant). These

bounds on mutual information allow us to analyze the trade-off between the reconstruction

and KL terms in equation 5.1. For instance, since I(x;z) is non-negative (using Jensen’s

inequality), in the situation where I(x;z) = 0, the encoder transmits no information about

x, causing R = 0,D = H. Increasing I(x;z) can be encouraged by increasing both bounds:

increasing the upper-bound (KL term) can be seen as the mean to control the maximum

capacity of the encoder channel, while reducing the distortion (reconstruction loss) will

tighten the bound by pushing the lower bound to its limits (H�D! H). Similarly, channel

capacity can be decreased.

5This is dependent on the choice of the encoder. For other bounds on mutual information see Johnson
(2016); Poole et al. (2018).
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5.2.2 Explicit KL Control via b -VAE

Given the above interpretation, we now turn to a slightly different formulation of ELBO

based on b -VAE (Higgins et al., 2017). This allows control of the trade-off between the

reconstruction and KL terms, as well as to set explicit KL value. While b -VAE offers

regularizing the ELBO via an additional coefficient b 2 IR+, a simple extension (Burgess

et al., 2018) of its objective function incorporates an additional hyperparameter C to explicitly

control the magnitude of the KL term,

Eqf (z|x)[log pq (x|z)]�b |DKL
�
qf (z|x)||p(z)

�
�C| (5.2)

where C2IR+ and |.| denotes the absolute value. While we could apply constraint optimization

to impose the explicit constraint of KL=C, we found that the above objective function

satisfies the constraint (Section 5.3). Alternatively, it has been shown (Pelsmaeker and Aziz,

2019) the similar effect could be reached by replacing the second term in equation 5.2 with

max
�
C,DKL

�
qf (z|x)||p(z)

��
at the risk of breaking the ELBO when KL<C (Kingma et al.,

2016).

5.3 Experiments

We conduct various experiments to illustrate the properties that are encouraged via different

KL magnitudes. In particular, we start by revisiting the intrinsic properties of VAE: 1) the

interdependence between rate and distortion, and 2) the impact of KL on the aggregated

posterior (see Subsection 5.3.2) and approximate posterior. These two properties help us to

understand the following experiments better. Then, through a set of qualitative and quantita-

tive experiments for text generation, we demonstrate how certain generative behaviours could

be imposed on VAEs via a range of maximum channel capacities. After that, we evaluate the

discriminative performance of latent representations on three text classification tasks. Finally,

we run some experiments to find if any form of syntactic information is encoded in the latent
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Fig. 5.1 Rate-Distortion and LogDetCov (see Subsection 5.3.2) for C = {10,20, ...,100} on
Yahoo and Yelp corpora.

space. For all experiments, we use the objective function of equation 5.2 with b = 1. We do

not use larger b s because the constraint KL =C is always satisfied with b = 1. 6, 7

Corpora. We use 5 different corpora covering different domains and sizes through this

section: Yelp and Yahoo (Yang et al., 2017) both have (100k,10k,10k) sentences in (train,

dev, test) sets and 20k words in the vocabulary, Children’s Book Test (CBT; Weston et al.

(2016)) has (192k,10k,12k) sentences and 12k vocab, Wikipedia (WIKI; Marvin and Linzen

(2018)) has (2m,270k,270k) sentences and 20k vocab, and WebText (Radford et al., 2019) has

(1m,23k,24k) sentences and 22k vocab. Additionally, for the text classification experiment

we use three corpora: Yelp, DBpedia and Yahoo. We use the same Yelp corpora as in the

previous experiments, without any additional preprocessing. As for DBpedia8 and Yahoo9,

the preprocessing is as follows: (1) removing all non-ASCII characters, quotations marks,

and hyperlinks, (2) tokenising with spaCy10, (3) lower-case conversion for all tokens, then

(4) for each class we randomly sample 10,000 sentences for the training corpus and 1,000

sentences for the test and validation respectively. The vocabulary size of the both corpora is

6b can be seen as a Lagrange multiplier and any b value that allows for constraint satisfaction (R =C) is
fine.

7Note, with values of b < 1 the constraint KL =C, potentially, may not be satisfied. We did not test this
further as in our work we require KL =C to be satisfied.

8https://github.com/srhrshr/torchDatasets/blob/master/dbpedia_csv.tar.gz
9https://github.com/jxhe/vae-lagging-encoder/blob/master/prepare_data.py.

10https://spacy.io

73

https://github.com/srhrshr/torchDatasets/blob/master/dbpedia_csv.tar.gz
https://github.com/jxhe/vae-lagging-encoder/blob/master/prepare_data.py
https://spacy.io


Learning Sentence Embeddings with Information-Theoretic Inductive Bias

Bucket 1 Bucket 2 All

C D R LogDetCov ||µ||22 AU BL2/RG2 BL4/RG4 BL2/RG2 BL4/RG4 BL2/RG2 BL4/RG4

C
BT

3 62 3 -0.4 0.1 8 9.0/3.5 1.5/0.1 10.4/4.8 1.7/0.1 9.5/3.5 1.6/0.1
15 53 15 -0.4 0.1 29 14.8/7.0 4.3/0.8 14.7/6.7 3.3/0.4 15.9/8.9 4.6/1.4
100 32 99 -43.8 1.3 64 26.8/18.5 16.0/9.2 19.2/9.9 7.7/2.2 27.7/24.3 16.1/14.2

W
IK

I 3 81 3 -0.4 0.0 5 5.9/2.7 1.1/0.2 7.4/3.0 1.2/0.1 6.8/3.1 1.3/0.4
15 70 15 -0.6 0.0 12 10.1/4.5 3.9/1.3 9.9/3.3 2.0/0.3 10.1/5.4 3.4/1.8
100 17 100 -4.97 0.2 64 37.3/32.8 30.9/26.3 18.7/11.4 11.2/6.2 31.8/35.4 24.2/29.1

W
eb

Te
xt 3 77 3 -0.2 0.0 4 9.6/4.6 1.7/0.2 12.6/6.4 4.0/1.0 11.9/5.5 3.4/0.7

15 67 15 -0.5 0.0 16 15.5/7.4 5.4/1.5 15.6/7.3 5.6/1.6 15.8/7.9 5.7/1.8
100 22 100 -7.9 0.4 64 61.7/58.3 56.4/53.1 35.1/27.3 27.31/21.0 45.8/45.3 38.7/39.7

Table 5.1 bC-VAELSTM performance with C = {3,15,100} on the test sets of CBT, WIKI,
and WebText. Each bucket groups sentences of certain length. Bucket 1: 10 < length  20;
Bucket 2: 20 < length  30, and All contains all sentences of the corpus. BL2/RG2 denotes
BLEU-2/ROUGE-2, BL4/RG4 denotes BLEU-2/ROUGE-2 BLEU-4/ROUGE-4, AU denotes
active units, D denotes distortion and R denotes rate. For definition of LogDetCov and ||µ||22
see Subsection 5.3.2.

reduced to the first 20,000 most frequent words. More information on the text classification

corpora can be found in Appendix C.1.

Models. We examine two VAE architectures: bC-VAELSTM with (LSTM encoder, LSTM

decoder) and bC-VAEGRU with (GRU encoder (Cho et al., 2014b), GRU decoder). The

dimension of word embeddings is 256 and the dimension of the latent variable is 64. The en-

coder and the decoder, for both VAELSTM and VAEGRU, have hidden size of 512 dimensions.

Both models were trained for 10 epochs and optimised the objective function (equation 5.2)

with Adam (Kingma and Ba, 2015) with the following learning rate: 8.5⇥10�4.11 To couple

the encoder with the decoder we concatenate the latent variable to word embeddings at each

time step without initialisation of hidden state.

11Learning rate and number of epochs: we use the vanilla VAE with the collapsed KL term to decide on
the learning rate and the number of epochs. With the chosen, aforementioned, parameters the vanilla VAE has
enough training iterations before it starts overfitting on the validation data.
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5.3.1 Rate and Distortion

To analyse the dependence between the values of explicit rate (C) and distortion, we trained

our models with different values of C, ranging from 10 to 100. Figure 5.1 reports the

results for bC-VAEGRU and bC-VAELSTM models on Yahoo and Yelp corpora. In all our

experiments we found that C�1 KLC+1, demonstrating that the objective function

effectively imposed the desired constraint on KL term.

The general trend is that by increasing the value of C one can get a better reconstruction

(lower distortion) while the amount of gain varies depending on the VAE’s architecture

and corpus. 12 Additionally, we measured rate and distortion on CBT, WIKI, and WebText

corpora using bC-VAELSTM and observed the same trend with the increase of C, see Table 5.1.

This observation is consistent with the bound on I(x;z) we discussed earlier (Subsection 5.2.1)

such that with an increase of KL we increase an upper bound on I(x;z) which in turn allows to

have smaller values of reconstruction loss. Additionally, as reported in Table 5.1, encouraging

higher rates (via larger C) encourages more active units (Burda et al., 2015, AU) in the latent

code z.

As an additional verification, we also group the test sentences into buckets based on their

length and report BLEU-2/4 and ROUGE-2/4 metrics to measure the quality of the recon-

struction step in Table 5.1. As expected, we observe that increasing rate has a consistently

positive impact on improving BLEU and ROUGE scores.

5.3.2 Impact of the Magnitude of KL Term on Aggregated Posterior

and Approximate Posterior

During the text generation experiment (see Subsection 5.3.3) we generate samples from the

prior p(z) and in the text classification experiment we sample zs from q(z|x). Hence we

12We attribute the difference in performance across our models to the non-optimal selection of training
hyperparameters, and corpus-specific factors such as sentence length. Achieving SOTA results is not the goal
of the experiment but rather show how change of C values influences the R for different architectures on neural
networks and corpora.
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would like to have a better understating of how the magnitude of the KL term can affect the

approximate posterior and aggregated posterior, qf (z) = Âx⇠q(x) qf (z|x), distributions.

For the text generation experiment, ideally, we would like the aggregated posterior to be

as close as possible to the prior. This means that when we sample z from the prior distribution

it will be in the same region that is covered by the approximate posterior distributions that

we estimated for each point (sentence) in the training corpus. For the text classification

experiment, we would expect better discriminative performance if there is a minimum

overlap between the approximate posterior distributions - it would allow a classifier to better

distinguish the sentences. This can be achieved if either the mean of the distributions are far

apart or their shape is sharp - small standard deviation.

To understand how the approximate posterior are being affected by the magnitude of the

KL, we adopted an approach from Zhao et al. (2017). We obtained unbiased samples of z

first by sampling an x from data and then z⇠ qf (z|x), and measured the log determinant of

covariance (LogDetCov) of the samples (logdet(Cov[qf (z)])). As reported in Figure 5.1,

we observed that logdet(Cov[qf (z)]) decreases as C grows, indicating sharper approximate

posteriors.

We consider the difference of p(z) and q(z) in their means and variances, by computing

the KL divergence from the moment-matching Gaussian fit of q(z) to p(z): This returns

smaller values for bC=5-VAEGRU (Yelp: 0, Yahoo: 0), and larger values for bC=100-VAEGRU

(Yelp: 8, Yahoo: 5), which illustrates that the overlap between qf (z) and p(z) shrinks further

as C grows. The above observation is better pronounced in Table 5.1, where we also report

the mean (||µ||22) of unbiased samples of z, highlighting the divergence from the mean of the

prior distribution as rate increases.

5.3.3 Text Generation

To empirically examine how the channel capacity translates into the generative capacity of

the model, we experimented with the bC-VAELSTM models from Table 5.1. To generate

a novel sentence, after a model was trained, a latent variable z is sampled from the prior

distribution and then transformed into a sequence of words by the decoder pq (x|z).
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During decoding for the generation we try three decoding schemes: (i) Greedy: which

selects the most probable word at each step, (ii) Top-k (Fan et al., 2018): which at each step

samples from the K most probable words, and (iii) Nucleus Sampling (Holtzman et al., 2019,

NS): which at each step samples from a flexible subset of most probable words chosen based

on their cumulative mass (set by a threshold p, where p = 1 means sampling from the full

distribution). While similar to Top-k, the benefit of NS scheme is that the vocabulary size at

each time step of decoding varies, a property that encourages diversity and avoids degenerate

text patterns of greedy or beam search decoding (Holtzman et al., 2019). We experiment

with NS (p = {0.5,0.9}) and Top-k (k = {5,15}).

Qualitative Analysis

We follow the settings of the homotopy experiment (Bowman et al., 2015b) where first a

set of latent variables was obtained by performing a linear interpolation between z1 ⇠ p(z)

and z2 ⇠ p(z). Then each z in the set was converted into a sequence of words by the

decoder pq (x|z). Besides the initial motivation of Bowman et al. (2015b) to examine how

neighbouring latent codes look like, our additional incentive is to analyse how sensitive

the decoder is to small variations in the latent variable when trained with different channel

capacities, C = {3,15,100}.

Table 5.2 shows the generated sentences via different decoding schemes for each channel

capacity. Also, to make the generated sequences comparable across different decoding

schemes or C values, we use the same samples of z for decoding. We only report the

generated sentences for greedy, Top-k = 15, and NS p = 0.9. For the other values of k(=5)

and p(=0.5) the generated sentences, under visual inspection, are of similar quality to the one

we report.

Sensitivity of Decoder. To examine the sensitivity13 of the decoder to variations of the

latent variable, we consider the sentences generate with the greedy decoding scheme (the first

column in Table 5.2). The other two schemes are not suitable for this analysis as they include

13Note: we vary z in one (randomly selected) direction (interpolating between z1 and z2). Alternatively, the
sensitivity analysis can be done by varying z along the gradient direction of log pq (x|z).
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Greedy Top-15 NS(p=0.9)

C
=3

1: oh, i m not going to be a good man. 1: come - look on my mind, said he. 1: and what is one of those trees crea-
tures?

2: oh, it s a good thing, said the story
girl.

2: how could i tell you, that it s a great
deal?

2: here s a nice heart among those wa-
ters!

3: oh, how can you do it, dear? 3: said i. my sister, what a fool! 3: good-bye, said reddy fox, hardly
frightened was out of his life.

4: oh, how can you do it, dear? 4: and how was the way, you? 4: now, for a neighbor, who knows him.
5: oh, how can you do it, miss? 5: said the other little breezes, but i do

n t .
5: oh, prince ivan, dear me!

6: and what is the matter with you? 6: and where s the news of the world? 6: cried her mother, who is hidden or
power.

7: and what is the matter with you? 7: 〈unk〉 of 〈unk〉, said i. ay, 〈unk〉! 7: but this was his plight, and the smith
knew.

C
=1

5

1: old mother west wind and her eyes
were in the same place, but she had
never seen her.

1: eric found out this little while, but
there in which the old man did not see
it so.

1: aunt tommy took a sudden notion
of relief and yellow-dog between him
sharply until he tried to go to.

2: old mother west wind and his wife
had gone and went to bed to the palace.

2: old mother west wind and his wife
gave her to take a great 〈unk〉, she said.

2: his lord marquis of laughter ex-
pressed that soft hope and miss cornelia
was not comforted.

3: little joe otter and there were a 〈unk〉
of them to be seen.

3: little joe otter got back to school all
the 〈unk〉 together.

3: meanwhile the hounds were both
around and then by a thing was not yet.

4: little joe otter s eyes are just as big as
her.

4: little joyce s eyes grew well at once,
there.

4: in a tone, he began to enter after din-
ner.

5: a few minutes did not answer the
〈unk〉.

5: pretty a woman, but there had van-
ished.

5: once a word became, just got his way.

6: a little while they went on. 6: from the third day, she went. 6: for a few moments, began to find.
7: a little while they went. 7: three months were as usual. 7: meantime the thrushes were 〈unk〉.

C
=1

00

1: it will it, all her 〈unk〉, not even her
with her?

1: it will her you, at last, bad and never
in her eyes.

1: it s; they liked the red, but i kept her
and growing.

2: it will get him to mrs. matilda and
nothing to eat her long clothes.

2: other time, i went into a moment –
she went in home and.

2: it 〈unk〉 not to her, in school, and
never his bitter now.

3: the thing she put to his love, when it
were 〈unk〉 and too.

3: going quite well to his mother, and
remember it the night in night!

3: was it now of the beginning, and dr.
hamilton was her away and.

4: one day, to the green forest now and
a long time ago, sighed.

4: one and it rained for his feet, for she
was their eyes like ever.

4: of course she flew for a long distance;
and they came a longing now.

5: one and it became clear of him on
that direction by the night ago.

5: the thing knew the tracks of 〈unk〉
and he never got an 〈unk〉 before him.

5: one door what made the pain called
for her first ear for losing up.

6: every word of his horse was and the
rest as the others were ready for him.

6: of course he heard a sound of her as
much over the 〈unk〉 that night can.

6: one and he got by looking quite like
her part till the marriage know ended.

7: a time and was half the 〈unk〉 as be-
fore the first 〈unk〉 things were ready
as.

7: every, who had an interest in that till
his legs got splendid tongue than him-
self.

7: without the thought that danced in
the ground which made these delicate
child s teeth so.

Table 5.2 Homotopy (CBT corpus) - The three blocks correspond to C = {3,15,100} values
used for training bC-VAELSTM. The columns correspond to the three decoding schemes:
greedy, top-k (with k=15), and the nucleus sampling (NS; with p=0.9). Initial two latent
variables z were sampled from a the prior distribution i.e. z⇠ p(z) and the other five latent
variables were obtained by interpolation. The sequences that highlighted in gray are the
one that decoded into the same sentences condition on different latent variable. Note: Even
though the learned latent representation should be quite different for different models (trained
with different C) in order to be consistent all the generated sequences presented in the table
were decoded from the same seven latent variables.
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sampling procedure. This means that if we decode the same latent variable twice we will get

two different sentences. We observed that with lower channel capacity (C = 3) the decoder

tends to generate identical sentences for the interpolated latent variables (we highlight these

sentences in gray), exhibiting decoder’s lower sensitivity to z’s variations. However, with

the increase of channel capacity (C = 15,100) the decoder becomes more sensitive. This

observation is further supported by the increasing pattern of active units in Table 5.1: Given

that AU increases with the increase of C one would expect that the activation pattern of a

latent variable becomes more complex as it comprises more information. Therefore a small

change in the pattern would have a greater effect on the decoder.

Coherence of Sequences. We observe that the model trained with large values of C com-

promises sequences’ coherence during the sampling. This is especially evident when we

compare C = 3 with C = 100. Analysis of Top-15 and NS (p=0.9) generated samples reveals

that the lack of coherence is not due to the greedy decoding scheme per se, and can be at-

tributed to the model in general. To understand this behavior further, we need two additional

results from Table 5.1: LogDetCov and ||µ||22. One can notice that as C increases LogDetCov

decreases and ||µ||22 increases. This indicates that the aggregated posterior becomes further

apart from the prior, hence the latent codes seen during the training diverge more from

the codes sampled from the prior during generation. We speculate this contributes to the

coherence of the generated samples, as the decoder is not equipped to decode prior samples

properly at higher Cs.

Quantitative Analysis

Quantitative analysis of generated text without gold reference sequences (e.g. in Machine

Translation or Summarization) has been a long-standing challenge. Recently, there have been

efforts towards this direction, with proposal such as self-BLEU (Zhu et al.), forward cross

entropy (Cífka et al., 2018, FCE) and Fréchet InferSent Distance (Cífka et al., 2018, FID).

We opted for FCE as a complementary metric to our qualitative analysis.
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To calculate FCE, first a collection of synthetic sentences are generated by sampling

z⇠ p(z) and decoding the samples into sentences. The synthetic sequences are then used to

train a language model (an LSTM with the parametrisation of our decoder). The FCE score

is estimated by reporting the negative log likelihood (NLL) of the trained LM on the set of

human-generated sentences.

We generated synthetic corpora using trained models from Table 5.1 with different C and

decoding schemes and using the same exact z samples for all corpora. Since the generated

corpora using different C values would have different coverage of words in the test set (i.e.,

Out-of-Vocabulary ratios), we used a fixed vocabulary to minimize the effect of different

vocabularies in our analysis. Our dictionary contains words that are common in all of the

three corpora, while the rest of the words that don’t exist in this dictionary are replaced with

〈unk〉 symbol. Similarly, we used this fixed dictionary to preprocess the test sets. Also, to

reduce bias to a particular set of sampled z’s we measure the FCE score three times, each

time we sampled a new training corpus from a bC-VAELSTM decoder and trained an LM

from scratch. In Table 5.3 we report the average FCE (NLL) for the generated corpora.

In the qualitative analysis we observed that the text generated by the bC-VAELSTM trained

with large values of C = 100 exhibits lower quality (i.e., in terms of coherence). This

observation is supported by the FCE score of NS(p=0.9) decoding scheme (Table 5.3), since

the performance drops when the LM is trained on the corpus generated with C = 100. The

generated corpora with C = 3 and C = 15 achieve similar FCE score. However, these patterns

are reversed for Greedy decoding scheme14, where the general tendency of FCE scores

suggests that for larger values of C the bC-VAELSTM seems to generate text which better

approximates the natural sentences in the test set. To understand this further, we report

additional statistics in Table 5.3: percentage of 〈unk〉 symbols, self-BLEU and average

sentence length in the corpus.

The average sentence length, in the generated corpora is very similar for both decoding

schemes, removing the possibility that the pathological pattern on FCE scores was caused

by difference in sentence length. However, we observe that for Greedy decoding more

14For the other decoding schemes: Top-{5,15} and NS(p=0.5) the pattern is the same as for the Greedy.
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Greedy NS(p=0.9)
C |V| FCE # %unk len. SB # |V| FCE # %unk len. SB #

CBT
3 335 86.6(0.4) 9.7 15.3 4.2 9.8k 70.4(0.0) 2.1 15.6 0.0

15 335 52.3(0.3) 12.7 15.2 0.3 9.8k 70.7(0.2) 2.4 15.4 0.0
100 335 47.3(0.1) 21.3 17.5 0.0 9.8k 75.1(0.1) 2.2 17.6 0.0

Test 328 - 30.7 15.3 - 6.1k - 3.6 15.3 -

WIKI
3 1.5k 134.6(0.8) 27.3 19.9 7.6 20k 89.8(0.1) 5.8 19.4 0.0

15 1.5k 69.2(0.1) 18.9 19.8 0.2 20k 89.3(0.1) 5.6 19.8 0.0
100 1.5k 58.9(0.1) 34.8 20.7 0.0 20k 96.5(0.1) 4.5 20.7 0.0

Test 1.5k - 32.7 19.6 - 20k - 5.2 19.6 -

WebText
3 2.3k 115.8(0.7) 18.8 17.5 2.0 21.9k 86.4(0.1) 7.1 15.6 0.0

15 2.3k 74.4(0.1) 15.5 15.8 0.1 21.9k 85.8(0.1) 6.9 15.9 0.0
100 2.3k 62.5(0.1) 27.3 18.0 0.0 21.9k 93.7(0.1) 4.8 18.0 0.0

Test 2.2k - 30.1 16.1 - 17.1k - 6.8 16.1 -

Table 5.3 Forward Cross Entropy (FCE). Columns represent stats for Greedy and NS decoding
schemes for bC-VAELSTM models trained with C = {3,15,100} on CBT, WIKI or WebText.
Each entry in the table is a mean of negative log likelihood of an LM. The values in the
brackets are the standard deviations. |V| is the vocabulary size; Test stands for test set; %unk
is the percentage of 〈unk〉 symbols in a corpora; len. is the average length of a sentence in
the generated corpus; SB is the self-BLEU:4 score calculated on the 10K sentences in the
generated corpus.

than 30% of the test set consists of 〈unk〉. Intuitively, seeing more evidence of this symbol

during training would improve our estimate for the 〈unk〉. As reported in the table, the %unk

increases on almost all corpora as C grows, which is then translated into getting a better

FCE score at test. Therefore, we believe that FCE at high %unk is not a reliable quantitative

metric to assess the quality of the generated syntactic corpora. Furthermore, for Greedy

decoding, self-BLEU decreases when C increases. This suggests that generated sentences

for higher value of C are more diverse. Hence, the LM trained on more diverse corpora can

generalise better, which in turn affects the FCE.

In contrast, the effect the 〈unk〉 symbol has on the corpora generated with the NS(p=0.9)

decoding scheme is minimal for two reasons: First, the vocabulary size for the generated

corpora, for all values of C is close to the original corpus (the corpus we used to train

the bC-VAELSTM). Second, the vocabularies of the corpora generated with three values of

C is very close to each other. As a result, minimum replacement of the words with the

〈unk〉 symbol is required, making the experiment to be more reflective of the quality of the
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generated text. Similarly, self-BLEU for the NS(p=0.9) is the same for all values of C. This

suggests that the diversity of sentences has minimal, if any, effect on the FCE.

5.3.4 Text Classification

Prior to use of a VAE encoder in the classification experiment, we pretrain it using the full

VAE model with the VAE’s objective function (equation 5.2) using one of the following C

values: 0, 3, 15 and 100. We train each of the VAE models on the three text classification cor-

pora: Yelp, Yahoo or DBpedia. Furthermore, we experiment with the two VAE architectures:

bC-VAEGRU and bC-VAELSTM.

To train the classifier, p(y|x), with a probabilistic VAE encoder we marginalise the latent

variable(s). This is done as follows, given the classifier:

p(yi|xi) =
Z

z
p(yi|z)qf (z|xi)dz,

where the (yi,xi) is a single input/output pair in the corpus, we use Monte Carlo (MC)

approximation to estimate the integral of the classifier. We approximate the integral by taking

five samples from the probabilistic encoder both to train and to test the classifier: For each xi

in a batch {x1, ...,xp} sample five of zi, j from qf (z|xi) i.e. a set of sampled z’s is {zi,1, ...,zi,5}.

With the MC approximation: p(yi|xi)⇡ 0.2⇥Â5
j=1 p(yi|zi, j).

In Table 5.4, we compare the performance of the VAE models trained with the various

values of C on the three text classification tasks. To establish whether the performance gain

or loss on the tasks is achieved thanks to the information-theoretic inductive bias, for all the

VAE models we freeze the parameters of the encoder and only train the classifier15 which we

put on top of the encoder.

The general trend that we observe is that with the increase of the value of C the classifica-

tion performance is increasing. We attribute this to both the narrow approximate posterior

distribution, which allows the classifier to better distinct between the points, and the increased

15The classifier comprises of the feedforward neural networks (with dense or fully connected layers). The
first two layers are of 32 dimensions each with LekyReLU activation functions. The final layer of the classifier
has softmax activation function and the number of its dimensions is equal to the number of classes.

82



5.3 Experiments

Models Yelp DBPedia Yahoo
Acc. " KL. " R # Acc. " KL " R # Acc. " KL " R #

bC=0-VAEGRU 0.2 ± 0.0 0.0 ± 0.0 386.3 ± 1.3 0.1 ± 0.0 0.0 ± 0.0 113.0 ± 0.0 0.1 ± 0.0 0.0 ± 0.0 58.0 ± 0.0
bC=0-VAELSTM 0.2 ± 0.0 0.0 ± 0.0 392.0 ± 0.8 0.1 ± 0.0 0.0 ± 0.0 113.0 ± 0.0 0.1 ± 0.0 0.0 ± 0.0 57.0 ± 0.0

bC=3-VAEGRU 0.5 ± 0.0 3.3 ± 0.5 382.7 ± 0.9 0.4 ± 0.0 3.0 ± 0.0 110.0 ± 0.0 0.2 ± 0.0 3.0 ± 0.0 55.0 ± 0.0
bC=15-VAEGRU 0.5 ± 0.0 15.0 ± 0.0 373.0 ± 0.0 0.8 ± 0.0 15.0 ± 0.0 101.0 ± 0.0 0.3 ± 0.0 15.7 ± 0.5 45.0 ± 0.0
bC=100-VAEGRU 0.6 ± 0.0 100.0 ± 1.4 336.0 ± 0.0 0.9 ± 0.0 99.7 ± 0.5 81.0 ± 0.0 0.4 ± 0.0 99.7 ± 0.9 25.7 ± 0.5

bC=3-VAELSTM 0.5 ± 0.0 3.0 ± 0.0 389.0 ± 0.0 0.6 ± 0.0 3.0 ± 0.0 110.0 ± 0.0 0.2 ± 0.0 3.0 ± 0.0 54.3 ± 0.5
bC=15-VAELSTM 0.5 ± 0.0 15.0 ± 0.0 381.3 ± 1.3 0.7 ± 0.1 15.0 ± 0.0 104.7 ± 3.8 0.3 ± 0.0 15.0 ± 0.0 45.0 ± 0.0
bC=100-VAELSTM 0.5 ± 0.0 100.0 ± 0.8 373.3 ± 4.5 0.7 ± 0.2 100.0 ± 0.0 101.7 ± 4.8 0.4 ± 0.0 99.3 ± 0.5 30.3 ± 0.5

Table 5.4 The reconstruction loss (R), Kullback-Leibler term (KL) and the classification
accuracy (Acc.) for the VAEs evaluated on the corresponding test corpus. We train each VAE
model three times; in the table we report the mean and the standard deviation of R, KL and
Acc. over the three runs of the models. The latent code of the VAEs is 64 dimensions. The
weights of the VAE encoders are frozen during the training of the classifiers.

amount of information that is stored in the sentence embeddings. Also, as we discussed in

Subsection 5.3.1, the gain we get by increasing the value of C depends on VAE architecture.

In our experiments, bC-VAEGRU benefits more than bC-VAELSTM from larger value of Cs.

We hypothesis that could be due to the non-optimal16 selection of training hyperparameters

that we use to train the bC-VAELSTM. We leave this to future investigation.

5.3.5 Syntactic Test

In this section, we explore if any form of syntactic information is captured by the encoder

and represented in the latent codes despite the lack of any explicit syntactic signal during

the training of the bC-VAELSTM. To train the models we used the same WIKI data set as

in Marvin and Linzen (2018), but we filtered out all the sentences that are longer than 50

space-separated tokens.17

We use the data set constructed by Marvin and Linzen (2018), which comprises of

337,072 pairs of grammatical and ungrammatical English sentences,18 to test three syntactic

phenomena: subject-verb agreemnet, reflexive anaphora and negative polarity items. For

16Different learning rate, initialisation of weights of LSTM neural networks and different ways of coupling
of encoder and decoder can potentially improve the performance.

17We applied the filtering to decrease the training time of our models.
18The sentences were constructed using the templates which are based on nonrecursive context-free gram-

mars.
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C = 3 C = 100

Syntactic Categories p1 p2 p̄1 p̄2 p1 p2 p̄1 p̄2

SUBJECT-VERB AGREEMENT
Simple 0.81 0.81 0.81 0.81 1.0 0.23 0.68 0.47
In a sentential complement 0.79 0.79 0.79 0.79 0.98 0.14 0.69 0.48
Short VP coordination 0.74 0.73 0.73 0.73 0.96 0.08 0.78 0.43
Long VP coordination 0.61 0.61 0.60 0.60 0.97 0.06 0.55 0.47
Across a prepositional phrase 0.78 0.78 0.82 0.82 0.97 0.07 0.62 0.49
Across a subject relative clause 0.77 0.77 0.77 0.77 0.93 0.08 0.68 0.41
Across an object relative clause 0.69 0.69 0.69 0.69 0.92 0.11 0.61 0.45
Across an object relative (no that) 0.58 0.58 0.58 0.58 0.94 0.09 0.61 0.44
In an object relative clause 0.74 0.74 0.74 0.74 0.99 0.01 0.60 0.45
In an object relative (no that) 0.74 0.74 0.74 0.74 0.99 0.02 0.61 0.46

REFLEXIVE ANAPHORA
Simple 0.79 0.78 0.80 0.79 0.99 0.07 0.70 0.39
In a sentential complement 0.74 0.73 0.74 0.73 1.00 0.00 0.70 0.38
Across a relative clause 0.63 0.62 0.63 0.62 0.99 0.03 0.69 0.35

NEGATIVE POLARITY ITEMS
Simple 0.42 0.33 0.41 0.37 1.00 0.00 0.76 0.20
Across a relative clause 0.37 0.36 0.35 0.34 1.00 0.00 0.98 0.02

Table 5.5 p1: p(x�|z+)< p(x+|z+) and p2: p(x�|z�)< p(x+|z�); p̄1: p(x�|z̄+)< p(x+|z̄+)
and p̄2: p(x�|z̄�) < p(x+|z̄�); bC=3-VAELSTM (D:103, R:3); bC=100-VAELSTM (D:39,
R:101).

example, a pair in subject-verb agreement category would be: (The author laughs, The author

laugh).

We encode both the grammatical and ungrammatical sentences into the latent codes z+

and z�, respectively. Then we condition the decoder on the z+ and try to determine whether

the decoder assigns a higher probability to the grammatical sentence (denoted by x+):

p(x�|z+)< p(x+|z+) (denoted by p1 in Table 5.5). We repeat the same experiment but this

time try to determine whether the decoder, when conditioned on the ungrammatical code (z�),

still prefers to assign higher probability to the grammatical sentence: p(x�|z�)< p(x+|z�)

(denoted by p2 in Table 5.5). Table 5.5 shows the p1 and p2 for the bC-VAELSTM model

trained with C = {3,100}. Both the p1 and p2 are similar to the accuracy and correspond to

how many times a grammatical sentence was assigned a higher probability.

As reported for C=3, p1 and p2 match in almost all cases. This is to some degree expected

since the dependence of the decoder on the latent code is so negligible that the decoder

hardly distinguishes the grammatical and ungrammatical inputs. This changes for C = 100,
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as in almost all the cases the decoder becomes strongly dependent on the latent code and

can differentiate between what it has seen as input and the closely similar sentence it hasn’t

received as the input: the decoder assigns larger probability to the ungrammatical sentence

when conditioned on the z� and, similarly, larger probability to the grammatical sentence

when conditioned on the z+.

However, the above observations neither confirm nor reject existence of a grammar signal

in the latent codes. We run a second set of experiments where we aim to discard sentence

specific information from the latent codes by averaging the codes19 inside each syntactic

category. The averaged codes are denoted by z̄+ and z̄�, and the corresponding accuracies

are reported by p̄1 and p̄2 in Table 5.5. Our hypothesis is that the only invariant factor

during averaging the codes inside a category is the grammatical property of its corresponding

sentences.

As expected, due to the weak dependence of the decoder on the latent code, the per-

formance of the model under C = 3 is almost identical when comparing p1 vs. p̄1, and p2

vs. p̄2. However, for C = 100 the performance of the model deteriorates. We leave further

exploration of this behavior to our future work.

5.4 Conclusion

In this chapter we used an information-theoretic inductive bias, formulated within a VAE

model, to control the amount of information transmitted between the encoder and decoder via

the sentence embedding z. We control the amount of information via the KL term. To study

the implications this inductive bias has on components (generative and inference networks )

of the VAE model we used downstream tasks.

First, we tested the impact this bias has on the generative capacity of the VAE model.

We showed that small and large values of the KL term impose different properties on the

generated text: the decoder trained under the smaller KL term tends to generate repetitive

but mainly plausible sentences, while for larger KL the generated sentences were diverse

19Each syntactic category is further divided into sub-categories, for instance simple subject-verb agreement
We average z’s within each sub-categories.
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but incoherent. This behaviour was observed across three different decoding schemes and

complemented by a quantitative analysis where we measured the performance of an LSTM

LM trained on different VAE-generated synthetic corpora via different KL magnitudes, and

tested on human-generated sentences.

Then, we analysed how the bias affects the encoder network. We used three text classifi-

cation tasks for this. We demonstrated that sentence embeddings that store more amount of

information are superior, performance (accuracy) wise, on the tasks compared to sentence

embeddings that store less amount of information. This means that the encoder network

infers more representative latent representations of the sentences.

Finally, using a language modeling task, we attempted to understand if the bias allows the

model to distinguish between grammatical and ungrammatical sentences. By increasing the

amount of information, in order to better represent the sentence in the latent code, the model

may decide to encode syntactic information into the sentence embeddings. We verified that

at lower (and still non-zero) KL the decoder tends to pay less attention to the latent code, but

our findings regarding the presence of a syntactic signal in the latent code were inconclusive.

We leave it as a possible avenue to explore in our future work.

In the next chapter, we built on our VAE framework and explore sparsity inductive bias.

More concretely, we discuss how sparse representations could be a more natural way of

modeling sentences in a fixed dimensional vector.
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6
Learning Sentence Embeddings with

Sparsity Inductive Bias

6.1 Introduction1

Representation learning has been pivotal in many success stories of modern days NLP.

Observing its success, two fundamental questions arise: How is the information encoded

in them? and What is encoded in them? While the latter has received a lot of attention by

designing probing tasks, the former has been largely neglected.

In this chapter, we take small steps in this non-trivial direction by building on the knowns:

One property we know about the encoding of information is that different data points embody

different characteristics (e.g. statistically, semantically, or syntactically) which should ideally

utilise different sub-regions of the representation space. Therefore, the high-dimensional

learned representations should ideally be sparse (Bengio et al., 2013; Burgess et al., 2018;

Tonolini et al., 2019) to have varying number of active dimension per sentence (Bengio,

2009) in a fixed dimensional vector.2 But if sparsity is expected, could it be learned from

data without supervision? We investigate the answer to this question with a sparsity inductive

bias, incorporated into a model.

1This chapter draws from the following publication: Victor Prokhorov, Yingzhen Li, Ehsan Shareghi and
Nigel Collier (RepL4NLP, 2021) “Learning Sparse Sentence Encoding without Supervision: An Exploration of
Sparsity in Variational Autoencoders”.

2More on speculative side, sparse representations may be a more natural way of modelling sentences of a
language in a fixed dimensional vector. Sentences vary in length and the amount of information they convey.
As such it makes sense to reflect this property in a vector representation of the sentence.
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A handful of studies in NLP that have delved into building sparse representations of words

either during the learning phase (Faruqui and Dyer, 2015; Yogatama et al., 2015) or as a

post-processing step on top of existing representations (e.g., word2vec embeddings) (Faruqui

et al., 2015; Sun et al., 2016; Arora et al., 2018; Subramanian et al., 2018a; Li and Hao,

2019). These methods have not been developed for sentence embeddings, with the exception

of Trifonov et al. (2018) which makes a strong assumption by forcing the latent sentence

representation to be a sparse categorical distribution.

In parallel, Variational Autoencoders (VAEs; Kingma and Welling (2014)) have been ef-

fective in capturing semantic closeness of sentences in the learned representation space (Bow-

man et al., 2015b; Prokhorov et al., 2019; Xu et al., 2019; Balasubramanian et al., 2020).

Furthermore, methods have been developed to encourage sparsity in VAEs via learning a

deterministic selection variable (Yeung et al., 2017) or sparse priors (Barello et al., 2018;

Mathieu et al., 2019; Tonolini et al., 2019). However, the success of these is yet to be

examined on text domain.

To bridge this gap, we make a sober evaluation of existing state-of-the-art (SOTA) VAE-

based sparsification model (Mathieu et al., 2019) against several VAE-based baselines on

two experimental tasks: text classification accuracy, and the level of representation sparsity

achieved. Additionally, we propose Hierarchical Sparse Variation Autoencoder (HSVAE),

to improve the stability issue of existing SOTA model3 and demonstrate its performance on

both experimental tasks.4

Our experimental findings demonstrate that: (I) neither the simpler baseline models nor

the SOTA manage to impose a satisfactory level of sparsity on text, (II) as expected, sparsity

level and task performance have a negative correlation, while giving up task performance

and having sparse codes helps with the analysis of the representations, (III) presence/absence

of task related signal in the sparsity codes affects the task performance, (IV) the success

of capturing the task related signal in the sparsity codes depends on the strength of the

3Please refer to Appendix D.2 to further understand the difference between the two VAEs; HSVAE and
MAT-VAE.

4As in Mathieu et al. (2019), we induce sparse representations for each data point, also known as ephemeral
sparsity (Hoefler et al., 2021).
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𝜸𝜸𝒛𝒛x𝒛𝒛x

(a) (b)Fig. 6.1 Graphical Models of VAE (left) and HSVAE (right). Solid and dashed lines represent
generative and inference paths, respectively.

signal presented in a corpus, and representation dimensionality, (V) the success of SOTA in

image domain does not necessarily transfer to inducing sparse representations for text, while

HSVAE addresses this shortcoming.

6.2 Hierarchical Sparse VAE (HSVAE)

We propose the hierarchical sparse VAE (HSVAE), Figure 6.1 (right), to learn sparse latent

codes automatically. We treat the mixture weights g = (g1, ...,gD) as a random variable

and assign a factorised Beta prior pq (gi) = Beta(a,b ) on it. The latent code z is then

sampled from a factorised Spike-and-Slab distribution5 (Mitchell and Beauchamp, 1988;

Ishwaran and Rao, 2005) pq (z|g) conditioned on g , and the observation x is generated by

decoding the latent variable x ⇠ pq (x|z) using a GRU (Cho et al., 2014b) decoder. This

returns a probabilistic generative model pq (x,z,g) = pq (x|z)pq (z|g)pq (g). For posterior

inference, the encoder distribution is defined as qf (z,g|x) = qf (g|x)qf (z|g,x), where qf (g|x)

is a learnable and factorised Beta distribution, and qf (z|g,x) is a factorised Spike-and-Slab

distribution with mixture weights gi and learnable “slab” components for each dimension.

The q distribution is computed by first extracting features from the sequence using a GRU,

then applying MLPs to the extracted feature (and g for qf (z|g,x)) to produce the distributional

parameters.

ELBO. We derive the ELBO, L (q ,f ;x):

5This is a mixture of two Gaussians with mixture weight gi, where the slab component is a standard
Gaussian while the spike component is a Gaussian with s ! 0:

p(z) =
D

’
i
(1� gi)N(zi;0,1)+ gi N(zi;0,s �! 0)

where i denotes the ith dimension of z and D is the total number of dimensions of z.
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Eqf (z,g|x)[log pq (x|z)]�yEqf (g|x)[DKL
�
qf (z|g,x), pq (z|g)

�
]�lDKL

�
qf (g|x)||pq (g)

�
,

where y 2 R and l 2 R are the coefficients for the KL terms. This ELBO (see Appendix

D.1 for ELBO derivation) is approximated with Monte Carlo (MC) in practice, L (q ,f ;x):

1
N

N

Â
g⇠qf (g|x)


1
M

M

Â
z⇠qf (z|x,g)

log pq (x|z)
�
� y

N

N

Â
g⇠qf (g|x)


DKL(qf (z|x,g)||pq (z|g))

�
�

�lDKL(qf (g|x)||pq (g)),

where M and N are scalar numbers corresponding to a number of samples taken from

qf (z|x,g) and qf (g|x) respectively. In this work, we set both M and N to 1. Similar to the

vanilla VAE, the first term is the reconstruction, the second and the third KL terms6 control

the distance between the posteriors and their corresponding priors. The parameters of the

priors are fixed to some constant values (can be also thought as the hyperparameters) during

the training.

Control of Sparsity. The random variable gi, in our model, can be viewed as a “probabilis-

tic switch” that determines how likely is for the ith dimension of z to be turned off. Intuitively,

since for both generation and inference the latent code z is sampled from a Spike-and-Slab

distribution with the mixture weights g , gi! 1 means zi is drawn from a delta mass centered

at zi = 0. As the switch follows a Beta distribution gi ⇠ Beta(gi;a,b ), we can select the

parameters a and b to control the concentration of the probability mass on gi 2 [0,1] interval.

There are three typical configurations of the (a,b ) pair: (1) a < b : density is shifted

towards gi = 0 hence ith unit is likely to be on and dense representation is expected, (2)

a = b : the density is centered at gi = 0.5, and (3) a > b : density is shifted towards gi = 1,

hence the unit is likely to be off, leading to sparsity. The magnitude of these parameters also

plays a role as it controls the spread and uni/bi-modal structure of the density.

6The first KL term is estimated via MC and the the second KL term is calculated in the closed form.
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6.3 Experiments

As in Chapter 5, we conduct a set of experiments on three text classification corpora (see

Appendix C.1): Yelp (sentiment analysis - 5 classes) (Yang et al., 2017), DBpedia and

Yahoo (topic classification - 14 and 10 classes respectively) (Zhang et al., 2015). First,

we compare performance of the sparse latent representations with their dense counterpart

on the text classification tasks (Subsection 6.3.2). Second, the stability of sparsification of

HSVAE is compared with the state-of-the-art MAT-VAE (Subsection 6.3.3). Then, to better

understand performance of our model on the downstream task, we examine the sparsity

patterns (Subsection 6.3.4).

An integral part of the experiments is the analysis of the learned representations. In this

sense, tasks that rely on understanding of semantics (e.g., GLUE Wang et al. (2018)) or

syntax (e.g., Marvin and Linzen (2018)) would be non-trivial to analyse due to their inherent

complexity. We consider classification tasks because the distribution of words alone could be

a good indicator of class labels. Given the unsupervised nature of the models, we explore

if this surface-level distribution of words could be captured by the sparsity patterns in the

learned representation.

6.3.1 Experimental Setup

Baselines and Models

To ground the performance of HSVAE we use 4 baselines: 1) VAE is a version of the vanilla

VAE used in Higgins et al. (2017), 2) the same VAE model but the activation of µ and s

of qf (z|x) regularised by either L1 (VAEL1) or L2 (VAEL2) norms, 3) MAT-VAE is a VAE

framework introduced by Mathieu et al. (2019) and 4) simple classifier which is simply a text

encoder with a classifier on top of it. For all these models we use a GRU network to encode

and decode text sequences. We set the dimesnionality of the both encoder and the decoder

GRU’s to 512D and the dimensionality of the word embeddings is 256D. The decoder and
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the encoder share the word embeddings. To train the model we use the Adam optimiser

(Kingma and Ba, 2015) with the learning rate: 0.0008.7

BERT vs GRU Encoder. Inspired by Li et al. (2020b), we replace the GRU network used

in VAE and HSVAE encoders with a pretrained BERT8 (Devlin et al., 2019), while keeping

the GRU decoder. We refer to these models as B-VAE and B-HSVAE, respectively. Also, we

compare the task performance of these VAE models with the plain pretrained base-BERT.9

To train B-VAE and B-HSVAE, we use the Adam optimiser with the learning rate: 0.00008.10

Dimensionality of z. We use the following two dimensions: 32D and 768D. Since, HSVAE

and MAT-VAE induce sparse latent representations we want to make sure that they perform

robustly regardless of the number of the dimensions.

KL-Collapse. None of the used VAE models is immune to the KL-collapse (Bowman

et al., 2015b) - when the KL term becomes zero and the decoder ignores the information

provided by the encoder through z. To address this issue, in all the models, we put a scalar

value y,l < 1 on the KL terms of the VAE’s objective function (He et al., 2019).

Coupling Encoder with Decoder. To connect the encoder with the decoder we concatenate

the latent variable z, sampled from the posterior distribution, to word embeddings of the

decoder at each time step (Prokhorov et al., 2019). Also, for GRU encoders we take the last

hidden state to parameterise the posterior distribution. For BERT encoder, we take average

pooling of all token’s embeddings produced by the last layer of BERT.

7Learning rate and number of epochs: we use the vanilla VAE with the collapsed KL term to decide on
the learning rate and the number of epochs. With the chosen, aforementioned, parameters the vanilla VAE has
enough training iterations before it starts overfitting on the validation data. We train the models for 15 epochs.

8After extracting features from a sequence with BERT, we then applying MLPs to extract features for the
posterior distributions, as it is the case for the encoder with GRU network.

9https://huggingface.co/transformers/model_doc/bert.html
10We empirically found that with the BERT encoder, decreasing the learning rate by factor of 10 results in

better reconstruction performance of VAE. We train the models with BERT encoder for 3 epochs.
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Evaluation Metrics

Text Classification. To report the classification performance we use accuracy as a metric.

Sparsity. We measure Hoyer11 (Hurley and Rickard, 2009) on the representations of all

data points in a corpus and report its average as our sparsity metric (Mathieu et al., 2019).

Hoyer, in a nutshell, is ratio of the L2 to L1 norm, normalised by the number of dimensions.

Higher indicates more sparsity. More specifically, to evaluate the average Hoyer, or as we

refer to it as Average Hoyer (AH) in the experiments, either on a validation or test corpus

we employ the following procedure. First, for each xi in the corpus {x1, ...,xn} we obtain

its corresponding zi by sampling it from a probabilistic encoder of a VAE model, such

that for each xi we sample one zi: e.g. x1 �! z1. Then we normalise z̄i = zi/s(z), where

z = {z1, ...,zn}, and s(.) is the standard deviation. Finally, for each z̄i we compute Hoyer as

follows:

Hoyer(z̄i) =

p
d� ||z̄i||1/||z̄i||2p

d�1
, (6.1)

where d is the dimensionality of z̄i. To report the Hoyer for the whole corpus we compute

the Average Hoyer = 1
N ÂN

i Hoyer(z̄i), where N is the number of data points in a test or

validation corpus.

6.3.2 Text Classification

Prior to use of a VAE encoder in the classification experiment, we pretrained it using the full

VAE model with the corresponding VAE’s objective function on one of the target corpus:

Yelp, Yahoo or DBpedia. We compare performance of the sparse latent representations with

their dense counterparts on the three text classification tasks (Figure 6.2). The classifier

that we use comprises of the two dense layer of 32D each with the Leaky ReLU (Maas,

2013) activation function. To establish whether the performance gain or loss on the tasks

11Note, the Hoyer metric does not give credit for actual zeros, only to distributions that are closer to sparse.
In our work this is acceptable because spike distribution is Normal centered at zero, hence in practice we sample
values that are very close to zero but not exactly zero.
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is achieved thanks to the sparsity inductive bias, for all the VAE models and BERT we

freeze the parameters of the encoder and only train the classifier which we put on top of the

encoder. However, for the simple classifier model its text encoder is being trained together

with the classifier. When the classifier, p(y|x), is trained with a probabilistic VAE encoder

we marginalise the latent variable(s). This is done for instance for HSVAE as,

p(y|x) =
Z

z,g
p(y|z)q(z|x,g)qf (g|x)dzdg

We approximate the integral with MC by taking K = 5 samples from the probabilistic

encoder both to train and to test the classifier: For each xi in a batch {x1, ...,xp}:

1. sample K of gi, j from qf (g|xi) i.e. a set of sampled g’s is {gi,1, ...,gi,K}

2. sample K of zi, j from qf (z|xi,gi, j) i.e. a set of sampled tuples of zi, j and gi, j is

{(zi,1,gi,1), ...,(zi,K,gi,K)} in other words for each gi, j we sample only one zi, j.

For the other VAEs the procedure is similar. With the MC approximation : p(y|x) ⇡

0.2⇥Â5
i p(y|zi).

For a systematic comparison of various VAEs, we collate classification performance of

VAEs with comparable reconstruction loss - which indicates how informative the latent code

is for the decoder during reconstruction. In other words the reconstruction loss serves as

an intrinsic metric. Thus, for an example, in Figure 6.2a, for the Yelp corpus all the VAE

models have a similar reconstruction loss. The same applies to Figure 6.2b and Figure 6.2c.

Comparing the accuracy of the classifiers that are trained with the different latent repre-

sentations i.e. sparse and dense (Figure 6.2), shows that in general the performance of the

sparse latent representations induced by HSVAE or MAT-VAE is on par with their dense

latent counterparts inferred by the VAEs. However, the performance of HSVAE slightly

lagging behind on the Yelp corpus when the dimensionality of the latent representation is

32D (Figure 6.2a). We put forward a hypothesis that may explain this in Subsection 6.3.4.

Also, when the dimensionality of the latent representation is 32D, the accuracy of MAT-VAE

is slightly better than of HSVAE, but this performance is reached at lower levels of sparsity.
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(a)

(b)

(c)

Fig. 6.2 Classification Accuracy and Average Hoyer (higher means sparser z) for various
VAE variants and the two baselines: simple classifier and BERT evaluated on Yelp, Yahoo
or DBpedia test. The latent code of the VAEs is 32 D Figure (a) and 768 D Figures (b) and
(c). Hoyer metric is not applicable to the simple classifier in the panels (a) and (b) and to the
vanilla BERT model in the panel (c). The weights of the VAE encoders and BERT are frozen
during the training of the classifiers. While the encoder of the simple classifier is updated
during the training.
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Additionally, we found that regularising the posterior parameters of the VAE model with

either L1 or L2 norm, in some cases, helps to increase the classification accuracy, but does

not reach AH higher than the vanilla VAE. Notably, the classification performance of all

the VAE models becomes almost identical when the dimensionality of the latent space is

increased from 32D to 768D, with HSVAE slightly outperforming all other VAEs on the

DBpedia corpus (Figure 6.2b). We further elaborate on it in Subsection 6.3.4.

Use of BERT as an encoder, in our settings, only gives an improvement on the Yahoo

corpus with B-HSVAE performing on par with B-VAE, but does not reach the classification

accuracy of the plain BERT. We hypothesise that to reach the full potential of the use of a

pretrained encoder in a VAE model one needs to pair it with a powerful decoder such as

GPT-2 (Radford et al., 2019) as it is the case in the Li et al. (2020b) VAE model. Further

exploration of this was beyond our compute resource.

Finally, one can observe that the simple classifier model performs on a par (in Figure

6.2a) or even worse (Figure 6.2b ) than the VAE models on the Yelp corpus. Putting it into

the context that the VAE encoders are not being trained with a supervision signal while the

encoder of the simple classifier is, we speculate that this can be explained by the discussion

put forward in Valpola (2014). A classifier in nature tries to remove all the information that

is not relevant to the supervision signal, while an autoencoder tries to preserve as much

as possible information in the latent code in order to reconstruct the original input data

reliably. Thus, if the distribution of class related words in a text alone (see Subsection

6.3.4) is not indicative enough of a class then the classifier may perform poorly. In our case,

we hypothesise that the VAE models capture some additional information other than class

distribution of words in text that allows it to better discriminate the classes. For example,

some class may have shorter sentences, on average, than the sentences presented in the other

classes. This may provide an additional bias that allows the VAE models to discriminate

sentences from this class from the sentences from the other classes. Thus, with this additional

bias VAEs can perform better than the simple classifier. We leave this investigation for a

future work.
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Fig. 6.3 Average Hoyer (Av.Hoyer; AH) on DBpedia corpus dev set for different parameter-
isations of Mathieu et al. (2019) (left) vs. HSVAE (right). Same is observed on Yelp and
Yahoo (see Appendix). Lines are an average over the 3 runs of the models, the shaded area is
the standard deviation. The dimensionality of the latent variable of the models is 32D.

6.3.3 Representation Sparsity

In Figure 6.3 we compare HSVAE with MAT-VAE. We report AH both on the mean and

samples from the posterior distributions. As illustrated, MAT-VAE struggles to achieve

steady and consistent AH regardless of the configurations of its hyperparameters (y,l ).

However, HSVAE stably controls the level of sparsity with a and b parameters, a positive

effect of its more flexible posterior distribution and the learnable distribution over g .

6.3.4 Can Sparsity Patterns Encode Classes?

In order to identify pertinent features, the unsupervised representation learning models are

typically trained/fine-tuned on corpora that are closely related to the downstream task. As

such, without a supervisory signal, the model can only rely on the distribution of words

in a text in order to identify these relevant features for the task. Ideally, compared to their

dense counterparts, an unsupervised sparsification model such as HSVAE could result in

performance improvement on downstream tasks if they capture the task-related features and

discard the noisy features. However, if the sparsification model fail to capture the task related

signal in its sparsity pattern; it can hurt the performance of the model on the downstream task

as the task-related information can be removed. In what follows we investigate this direction
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by analysing the sparsity patterns and relate this analysis to the classification performance of

the model

Analysis of g . We hypothesise that if g captures a class of a sentence then the sentences that

belong to the same class should have a similar sparsity patterns in g . To obtain a class specific

gclass, first, for each sentence x we obtain the mean of the posterior distribution: qf (g|x)

and we denote it as µg(x). Then we binarise the mean such as µb
g(x) = Binarise(µg(x)), where

Binarise(·) is defined as: 0 if µg(x) < 0.5 and 1 otherwise. Finally, for each class we average

its µb
g(x) vectors to obtain a single vector that represent this class: gclass =

1
M Âx2class µb

g(x),

where M is a number of sentences in the class. The averaging removes the information that

differentiate these sentences, while preserving the class information that is shared among

them. A similar approach was also used in Mathieu et al. (2019).

Figure 6.4 reports the magnitudes of the gclass vectors as heat maps for the three corpora.

One would expect that gclass of different classes should differ. For 32D gclass (Figure 6.4a) this

is the case when HSVAE is trained on the DBpedia and Yahoo but not on Yelp. Taking into

account the unsupervised nature of these models, this difference is echoing the distribution

of words in the classes, which is more distinct in DBpedia and Yahoo, but not in Yelp (see

Subsection 6.3.4). We also hypothesis that this observation can explain inferior performance

of the model on the Yelp corpus (Figure 6.2a).

In contrast, for gclass in 768D (Figure 6.4b) one can observe that the different classes

have different activation patterns even when HSVAE is trained on the Yelp corpus.12 Also,

the distributedness of the activation patterns now becomes more apparent when HSVAE is

trained on the Yahoo corpus. This observation is also related to the distribution of words in

the text (further elaborated in Subsection 6.3.4).

Intuitively, to reconstruct a sentence a VAE model first captures aspect of data that are

the most conducive for reconstruction error reduction (Burgess et al., 2018). Therefore,

given the limited dimensionality of the latent vector, the model will prioritised aspects of

12In Figure 6.4b we only show 32D out of 768D. This is one of the subsets of the 768 dimensions where the
distributedness is present. It is not unique and the distributedness is also present in other dimensions of the
768D code.
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Fig. 6.4 Heat maps of gclass (Subsection 6.3.4). (a) gclass of 32D - from left to right: Yahoo,
Yelp, DBpedia. (b) contiguous 32D out of 768D of gclass - from left to right: Yahoo, Yelp.
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Fig. 6.5 Experimental results for KL between classes on the three corpora: DBpedia (a),
Yahoo (b) and Yelp (c).

data during encoding. As such, if the information such as sentence class is not strongly

presented in the corpus the model could potentially ignore it during encoding. However,

when the dimensionality of the latent space is increased, the model has more capacity to

represent various aspects of data that may otherwise be ignored in the smaller dimensionality.

We speculate this could explain the presence of distributedness of gclass on Yelp for 768D

as opposed to 32D, which also translates into matching the task performance of its dense

counterpart (Figure 6.2b).
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Class Kullback–Leibler Divergence

The question that has yet not been addressed is why in some cases the HSVAE model is more

successful at capturing the class distribution when trained on DBpedia compared to Yelp.

We previously hypothesised that the reason for this can be a word distribution in a text. To

empirically test our hypothesis, we calculate the add-1 smoothed probabilities of words in

the classes and measure the pairwise KL divergence across them. The magnitudes of the

pairwise KL divergences are shown in Figure 6.5. As demonstrated, the magnitude of the KL

divergence is the largest for DBpedia and smallest for Yelp. This indicates that separating

classes in Yelp would rely on more subtle aspects of data, whereas surface-level cues are

more present in DBpedia and allow for an easier discrimination.

6.4 Conclusion

When the sparsity inductive bias is employed in supervised learning settings the model can

rely on a supervisory signal to identify features that are relevant to the task and remove

the rest. However, in unsupervised settings - the setting which is now commonly used

to pretrain the neural language models - the model can only rely on the distribution of

words in a text in order to identify pertinent features. The absence of task, poses a series of

reasonable questions. First, can we sparsify sentence embeddings with a sparsity inductive

bias in unsupervised settings? Second, can sparse sentence embeddings, learned with sparsity

inductive bias in an unsupervised setting, match (or outperform) the performance of their

dense counterpart, and what are the necessary conditions for this to happen?

We studied these questions on three text classification tasks with a novel VAE model

that we presented - Hierarchical Sparse Variational Autoencoder (HSVAE). HSVAE13 uses

13Note, an alternative way to induce sparsity bias is to use discrete latent variables e.g. vectors of Bernoullis,
or VQ-VAE (van den Oord et al., 2017). However, a disadvantage of the former approach is that the binary
variables cannot model continuous information e.g. if a dimension of the latent vector encode a colour then
the continuous dimension can be useful to further encode shade of the colour. For the later approach similar
arguments can be put forward. Also, VQ-VAE does not sparsify the vectors in the dictionary that are inputted
to the decoder. Studying how sparse vectors affect the decoding can be also interesting future work, which is
possible with HSVAE.
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sparsity inductive bias to learn a sparse latent representation of text. We demonstrated that

using a prior distribution (Mathieu et al., 2019) that encourages sparsity does not necessarily

transfer to inducing sparse representations for text, while HSVAE addresses this shortcoming

by also using a more flexible posterior. Also, we showed that sparse representations, learned

by HSVAE, are capable of encoding the underlying characteristics of a corpus (e.g. class

labels), in their activation patterns. We established how statistical properties of a corpus such

as a word distribution in a class and representation dimensionality of sentence embeddings

affect the ability of learned sparse codes to represent task-related information. Finally, we

showed how the presence/absence of task-related signal in the sparsity patterns affects the

task performance of the model on the text classification tasks.

In this chapter, we only studied the effect the sparsity has on the discriminative tasks

such as text classification. However, VAEs also allow us to perform generative tasks and can

be used for text generation (see Chapter 5). Hence, in future work we plan to investigate if

the sparsity patterns may allow us to use HSVAE for more controllable text generation (Hu

et al., 2017). It was discussed in several works that sparsity can improve interpretability

and disentanglement (Correia et al., 2019; Cui et al., 2019; Zhang et al., 2021). We expect,

the generation to be more controllable thanks to, potentially, more interpretable sentence

embeddings. Moreover, the objective of sparsity is to only keep the most important features

relevant to the task and removing the rest - in other words removing the noise or spurious

features. Hence, it potentially can be a factor that improves the performance on the out-of-

distribution tasks; we plan to investigate if the sparsity can help us on out-of-distribution

tasks (McCoy et al., 2020b).

In the next chapter we provide a summary of the contributions of this thesis and future

research directions and questions emerging from this work.

101





7
Conclusion and Future Directions

Contemporary neural language models that are trained on a large amount of data achieve

SOTA performance on many downstream tasks that require understanding of the meaning of

language units. Moreover, they have been shown to acquire certain knowledge of syntax and

semantics.

Despite the achieved success these models still have a lot of drawbacks (see Chapter 2).

One way to advance their linguistic competence is to train them on even bigger corpora. This

approach is attractive because it does not require any expertise in the design of the models.

However, if a model requires exponentially more data to acquire certain knowledge/skill (e.g.

reasoning) to become competent in a natural language understanding task (Warstadt et al.,

2020; Zhang et al., 2020b) then it becomes impractical to train such a model.

Another alternative which we explore in this thesis is the use of inductive biases. Inductive

biases allow a learning algorithm to prefer one solution over the alternatives. Hence, we may

need less data to train a neural network as we explicitly state preferable solutions. Also, with

inductive biases we can incorporate desirable properties that we may want a neural network

to have e.g. sparse activation patterns.

7.1 Summary

We presented four lines of work that address various existing limitations in the learning of

word and sentence embeddings.
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7.1.1 RQ 1: Relational Inductive Bias for Words (Data-Based)

One such limitation that we discussed concerns learning a reliable word embedding for

infrequent or unseen words in a corpus. To assign a meaning to a word the neural model needs

to select a meaning out of many possible alternatives (not to mention homonymy/polysemy),

and without a bias that would allow the model to narrow down the alternatives, it would

rely on the sufficient occurrences of the word to create an adequate representation of word

meaning. In Chapter 3, we proposed to use a KG-based relational inductive bias to learn

embeddings of rare and unseen words. Our approach used a graph embedding technique

that allows us to derive a semantic representation of a word in terms of relationships that

exist between the word and other words in a KG. Also, we used a cross-lingual vector space

transformation technique in order to merge lexical knowledge encoded in KGs with that

derived from corpus statistics. We showed the reliability of our approach by evaluating the

induced embeddings on multiple word similarity benchmarks as well as on a downstream

NLP evaluation framework.

7.1.2 RQ 2: Relational Inductive Bias for Sentences (Data-Based)

In the remaining works, we switched focus from word embeddings to sentence embeddings.

Scaling the distributed representations to larger language units such as phrases and sentences

is still a non-trivial task (see Subsection 2.2.2). One reason for this is that there is still no

known task that would allow us to effectively learn the composition of words in sentences.

Without such a task there are numerous possible meanings that can be expressed by compos-

ing the words in sentences/phrases. One way to approach this challenge is via supervised

learning where the supervisory signal expresses (or biases) the meaning of the sentences.

Inspired by Hill et al. (2015a), who proposed to relate the meaning of word embeddings with

embeddings of phrases via lexical resources, in Chapter 4 we presented a novel method for

mapping text to KG entities by framing the task as a sequence-to-sequence problem. Instead

of relying on the semantic representation of word embeddings as in Hill et al. (2015a), we

used the structure of KG that at the same time allows us to reduce possible meanings a
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phrase/sentence can have and also allows us to ground the meaning of the phrase/sentences.

The encouraging results, comparable to those of state-of-the-art systems, is an indicator that

our sentence embeddings do incorporate the semantics of the path graph.

Another gap in the induction of sentence embeddings is that we poorly understand what

properties the sentence embeddings need to have in order to represent a sentence. In Chapters

5 and 6 we studied and controlled two properties of sentence embeddings: the amount

of information they contain and sparsity. To impose these properties we incorporated the

corresponding inductive biases via the VAE framework.

7.1.3 RQ 3: Information-Theoretic Inductive Bias for Sentences (Data-

Agnostic)

Autoencoders are popular for unsupervised representation learning. In principle, autoen-

coders try to preserve as much as possible information about the data they model. However,

it is yet poorly understood how much information should be preserved. In Chapter 5, we

explored a VAE model from information-theoretic perspective. This perspective allowed us to

treat the terms of the ELBO function as bounds on the mutual information between a sentence

and its embedding. By controlling the bounds, we regulated the amount of information the

learned representation stores about a sentence. We analysed the effect of this bias on the

quality of the learned sentence representation via two downstream tasks: text generation and

text classification.

7.1.4 RQ 4: Sparsity Inductive Bias for Sentences (Data-Agnostic)

As we discussed in Subsection 2.3.6 sparsity can allow us to reflect many linguistic properties

in the neural language models and embeddings. However, can sparse sentence embeddings,

learned with sparsity inductive bias, match (or outperform) the performance of their dense

counterpart on downstream tasks? What are the necessary conditions for this to happen? In

Chapter 6, we proposed a novel Hierarchical Sparse Variational Autoencoder, that imposes

sparsity on sentence representations via direct optimisation of ELBO. We looked at the
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implications of sparsity on text classification across three datasets and highlighted a link

between the performance of sparse latent representations on downstream tasks and its ability

to encode task-related information. Our frameworks, while achieving sparsity, allowed

efficient utilisation of the representation space without compromising task performance.

In this thesis, we initiate the discussion of the proposed inductive biases. Moving forward,

we outline possible directions in the next section.

7.2 Future Directions

Current SOTA representation learning neural models that do not use inductive biases do not

perform well on commonsense reasoning/language understanding tasks (Zhang et al., 2019;

Ding et al., 2020; Yamada et al., 2020). Zhang et al. (2020b) explain this shortcoming based

on the large amount of unstructured text that is needed to acquire such fine-grained knowledge.

KG, in turn, can encode commonsense knowledge about the world, in a structured form,

and could potentially help neural networks in the aforementioned tasks. However, how to

effectively bias the models with the structural information encoded in the KG is still an open

question. Most of the existing works (Zhang et al., 2019; Kalinowski and An, 2020) use

relational knowledge graph embedding techniques such as TransE (Bordes et al., 2013) where

the emphasis is put on modeling the relationships between the entities in a KG in a form of

triplets, while utilising the structure of KGs is not very well explored. One can investigate

how the proposed approach in Chapter 4 can benefit sequence-to-sequence models such as

T5 when used as an auxiliary task to train the model - in other words whether this additional

task improves the transfer learning.1

Given a language unit such as sentence one can observe (performing either syntactic or

semantic analysis of the sentence) that the interaction (both syntactic and semantic) between

1In Chapter 4 we proposed to use a KG structure as a supervision signal to learn the meaning of sentences.
The supervision signal is represented as path graph that encodes topological dependencies that exist between
entities of the KG. Such a relation between two sequences: text and path graph can me modeled by a sequence-
to-sequence model. Moreover, we showed that the sequence-to-squence models do encode the structural
information of the KG in the sentence embeddings. The formulation of the task and our empirical results
demonstrates how the sequence-to-sequence models such as T5 could be useful to extract the commonsense
knowledge from structure resource such as KG.
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its smaller units - words - is sparse. Thus sparsity inductive bias can allow us to capture this

property in modelling phase. Guiding the representation learning to preserve the syntactic

and semantic connections and remove the spurious ones, is a potential area of future work.

Also, from a practical (downstream task oriented) point of view, removing the spurious

information can potentially benefit the generalisation of the model on out-of-distribution

tasks (McCoy et al., 2020b), where currently SOTA models struggle. A potential approach

could be the incorporation of explicit linguistic biases into the learned representations with

the group sparsity (Huang and Zhang, 2010). Yogatama et al. (2015) take inspiration from

hierarchical organisation of words/concepts in the brain and propose to group activation of

the dimensions of word embeddings according to a tree structure. Future works can take

inspiration from the group sparsity that has been done for the other domains (Cevher et al.,

2009; Andersen et al., 2014). For example, Andersen et al. (2014) propose to use Gaussian

process (Rasmussen and Williams, 2005) together with the Spike-and-Slab distribution to

structure the sparsity patterns for modelling of electroencephalogram (EEG) data. To adapt

this work to text, one can take an inspiration form Gaussian processes for text (Beck, 2017).

Moreover, sparsity can potentially allow us to interpret2 the internal representations of

the models e.g., attention (Bahdanau et al., 2014) or word/sentence embeddings more easily.

To what extend this is indeed the case has been debated by the community. Some question

the role of sparsity in interpretability (Kim et al., 2014; Meister et al., 2021) while others find

it to be a useful proxy to interpretability (Correia et al., 2019; Cui et al., 2019; Treviso and

Martins, 2020). Indeed, in our work (see Chapter 6) sparsity patterns learned by the model

helped us understand when sparse sentence embeddings fail to perform on par with dense

sentence embeddings.

However, there is still an obstacle that can make it harder for one to interpret the sparse

sentence embeddings - the dimensions that are active can be entangled and thus it can be

difficult to interpret how each active dimension influences the output of the model. Two

approaches that can potentially address this issue are disentanglement (Higgins et al., 2018)

2By interpretability, here, we mean being able to analyse a relation between internal representations of the
model and output that the model produces. For example, how a change in a value of a certain dimension of a
sentence embedding results in the change of the output that the model produces.

107



Conclusion and Future Directions

and group sparsity - activate dimensions in groups, where we can interpret why each group

of dimensions has been activated (Yogatama et al., 2015).

In future work, we also plan to further explore the interpretability aspect of the sentence

embedding learned by HSVAE model. A task the we plan to use is controllable text genera-

tion (Hu et al., 2017). Potentially by changing the sparsity patterns and/or experimenting

with the values of active dimensions we can generate sentences with certain properties. For

example, if we can find that a certain sparsity pattern is responsible for the tense of a sentence

we can use this pattern to generate the sentence in the intended tense.

Finally, adaptive sparsity has been shown to be beneficial for unsupervised disentan-

glement in text (Zhang et al., 2021). This is encouraging because the aforementioned

interpretability issue of active dimensions of sparse representations may be not so severe. A

potential reason for this is that sparsity allows to utilise different sub-regions of the repre-

sentation space which in turn may lead to decoupling (disentanglement) of the dimensions.

However, the scope of experiments conducted by Zhang et al. (2021) that regards sparse

sentence embeddings is limited. Authors use only one model (Mathieu et al., 2019) that

biases sentence embeddings towards sparsity. In further studies, we plan to conduct a more

thorough investigation of this phenomenon by employing more models with sparsity induc-

tive bias. For example, similar experiments conducted by Locatello et al. (2019) would allow

us to better understand the role of sparsity in disentanglement.
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and Relatedness Using Distributional and WordNet-based Approaches. In Proceedings of
HLT-NAACL, pages 19–27, 2009.

Y. Bengio. Learning Deep Architectures for AI. Found. Trends Mach. Learn., 2:1–127, 2009.

V. Cevher, M. Duarte, C. Hegde, and R. Baraniuk. Sparse Signal Recovery Using Markov
Random Fields. In Advances in Neural Information Processing Systems, volume 21.
Curran Associates, Inc., 2009.

111

https://openreview.net/forum?id=HJZ_C_-u-H
https://openreview.net/forum?id=HJZ_C_-u-H
http://dl.acm.org/citation.cfm?id=944919.944966
https://aclanthology.org/P04-1035/
https://aclanthology.org/P04-1035/
http://dx.doi.org/10.1214/009053604000001147
http://dx.doi.org/10.1214/009053604000001147
https://aclanthology.org/P05-1015/
https://aclanthology.org/P05-1015/
https://arxiv.org/abs/cs/0609071
https://aclanthology.org/N06-2001/
https://dl.acm.org/doi/10.1145/1143844.1143892
https://dl.acm.org/doi/10.1145/1143844.1143892
https://dl.acm.org/doi/10.1145/1187415.1187418
https://dl.acm.org/doi/10.1145/1187415.1187418
https://aclanthology.org/D08-1080/
https://aclanthology.org/D08-1080/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2668030/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2668030/
https://aclanthology.org/N09-1003/
https://aclanthology.org/N09-1003/
https://doi.org/10.1561/2200000006
https://proceedings.neurips.cc/paper/2008/file/287e03db1d99e0ec2edb90d079e142f3-Paper.pdf
https://proceedings.neurips.cc/paper/2008/file/287e03db1d99e0ec2edb90d079e142f3-Paper.pdf


References

N. Hurley and S. Rickard. Comparing Measures of Sparsity. IEEE Transactions on Informa-
tion Theory, 55:4723–4741, 2009.

F. Scarselli, M. Gori, A. Tsoi, M. Hagenbuchner, and G. Monfardini. The Graph Neural
Network Model. IEEE Transactions on Neural Networks, 20:61–80, 2009.

T. Griffiths, N. Chater, C. Kemp, A. Perfors, and J. Tenenbaum. Probabilistic models of
cognition: exploring representations and inductive biases. Trends in Cognitive Sciences,
14:357–364, 2010.

J. Huang and T. Zhang. The Benefit of Group Sparsity. The Annals of Statistics, pages
1978–2004, 2010. URL http://www.jstor.org/stable/20744481.

T. Jaeger. Redundancy and reduction: Speakers manage syntactic information density.
Cognitive Psychology, 61:23–62, 2010.

J. Reisinger and R. J. Mooney. Multi-Prototype Vector-Space Models of Word Meaning.
In Human Language Technologies: The 2010 Annual Conference of the North American
Chapter of the Association for Computational Linguistics, pages 109–117. Association for
Computational Linguistics, 2010.

C. Shaoul and C. Westbury. The Westbury Lab Wikipedia Corpus. 2010. Accessed:
2016-11-10.

R. Socher, C. D. Manning, and A. Y. Ng. Learning continuous phrase representations and
syntactic parsing with recursive neural networks. In In Proceedings of the NIPS-2010
Deep Learning and Unsupervised Feature Learning Workshop, 2010.

J. Turian, L.-A. Ratinov, and Y. Bengio. Word Representations: A Simple and General
Method for Semi-Supervised Learning. In Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics, pages 384–394. Association for Computational
Linguistics, 2010.

D. Ciresan, U. Meier, J. Masci, L. M. Gambardella, and J. Schmidhuber. Flexible, High
Performance Convolutional Neural Networks for Image Classification. pages 1237–1242,
2011.

J. Duchi, E. Hazan, and Y. Singer. Adaptive Subgradient Methods for Online Learning and
Stochastic Optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.

A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts. Learning Word Vectors
for Sentiment Analysis. In Proceedings of ACL-HLT, pages 142–150, 2011.

R. Socher, J. Pennington, E. H. Huang, A. Y. Ng, and C. D. Manning. Semi-supervised
Recursive Autoencoders for Predicting Sentiment Distributions. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing, EMNLP ’11, pages
151–161. Association for Computational Linguistics, 2011.

I. Sutskever, J. Martens, and G. Hinton. Generating Text with Recurrent Neural Networks.
In Proceedings of the 28th International Conference on Machine Learning (ICML-11),
pages 1017–1024, 2011.

112

https://arxiv.org/pdf/0811.4706.pdf
https://ieeexplore.ieee.org/document/4700287
https://ieeexplore.ieee.org/document/4700287
https://www.cell.com/trends/cognitive-sciences/fulltext/S1364-6613(10)00112-9
https://www.cell.com/trends/cognitive-sciences/fulltext/S1364-6613(10)00112-9
http://www.jstor.org/stable/20744481
http://www.jstor.org/stable/20744481
https://www.aclweb.org/anthology/N10-1013
https://ai.stanford.edu/~ang/papers/nipsdlufl10-LearningContinuousPhraseRepresentations.pdf
https://ai.stanford.edu/~ang/papers/nipsdlufl10-LearningContinuousPhraseRepresentations.pdf
https://www.aclweb.org/anthology/P10-1040
https://www.aclweb.org/anthology/P10-1040
https://people.idsia.ch//~juergen/ijcai2011.pdf
https://people.idsia.ch//~juergen/ijcai2011.pdf
http://jmlr.org/papers/v12/duchi11a.html
http://jmlr.org/papers/v12/duchi11a.html
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015
http://dl.acm.org/citation.cfm?id=2145432.2145450
http://dl.acm.org/citation.cfm?id=2145432.2145450
https://icml.cc/Conferences/2011/papers/524_icmlpaper.pdf


References

W. Blacoe and M. Lapata. A Comparison of Vector-based Representations for Semantic
Composition. In Proceedings of the 2012 Joint Conference on Empirical Methods in
Natural Language Processing and Computational Natural Language Learning, pages
546–556. Association for Computational Linguistics, 2012.

T. M. Cover and J. A. Thomas. Elements of information theory. John Wiley & Sons, 2012.

G. Halawi, G. Dror, E. Gabrilovich, and Y. Koren. Large-scale Learning of Word Relatedness
with Constraints. In Proceedings of KDD, pages 1406–1414, 2012.

A. Raposo, M. Mendes, and J. F. Marques. The hierarchical organization of semantic
memory: Executive function in the processing of superordinate concepts. NeuroImage, 59:
1870–1878, 2012.

L. M. Schriml, C. Arze, S. Nadendla, Y.-W. W. Chang, M. Mazaitis, V. Felix, G. Feng, and
W. A. Kibbe. Disease Ontology: a backbone for disease semantic integration. In Nucleic
Acids Research, 2012.

X. Zhang, J. Zhou, C. Wang, C. Li, and L. Song. Multi-class support vector machine
optimized by inter-cluster distance and self-adaptive deferential evolution. Applied Mathe-
matics and Computation, 218:4973–4987, 2012.

G. Andrew, R. Arora, K. Livescu, and J. Bilmes. Deep Canonical Correlation Analysis. In
Proceedings of ICML, 2013.

L. Banarescu, C. Bonial, S. Cai, M. Georgescu, K. Griffitt, U. Hermjakob, K. Knight,
P. Koehn, M. Palmer, and N. Schneider. Abstract Meaning Representation for Sembanking.
In Proceedings of the 7th Linguistic Annotation Workshop and Interoperability with
Discourse, pages 178–186. Association for Computational Linguistics, 2013.

Y. Bengio, A. C. Courville, and P. Vincent. Representation Learning: A Review and New
Perspectives. IEEE Trans. Pattern Anal. Mach. Intell., 35:1798–1828, 2013.

A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko. Translating Em-
beddings for Modeling Multi-relational Data. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors, Advances in Neural Information Processing
Systems, volume 26. Curran Associates, Inc., 2013.

A. Graves. Generating Sequences With Recurrent Neural Networks. CoRR, abs/1308.0850,
2013.

A. Lazaridou, M. Marelli, R. Zamparelli, and M. Baroni. Compositionally Derived Represen-
tations of Morphologically Complex Words in Distributional Semantics. In Proceedings
of ACL, pages 1517–1526, 2013.

T. Luong, R. Socher, and C. Manning. Better Word Representations with Recursive Neural
Networks for Morphology. In Proceedings of CoNLL, pages 104–113, 2013.

A. L. Maas. Rectifier Nonlinearities Improve Neural Network Acoustic Models. 2013.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient Estimation of Word Representations
in Vector Space. In Workshop at ICLR, 2013.

113

https://www.aclweb.org/anthology/D12-1050
https://www.aclweb.org/anthology/D12-1050
https://dl.acm.org/doi/10.1145/2339530.2339751
https://dl.acm.org/doi/10.1145/2339530.2339751
https://pubmed.ncbi.nlm.nih.gov/22080554/
https://www.sciencedirect.com/science/article/pii/S0096300311013099
https://www.sciencedirect.com/science/article/pii/S0096300311013099
https://proceedings.mlr.press/v28/andrew13.html
https://www.aclweb.org/anthology/W13-2322
https://doi.org/10.1109/TPAMI.2013.50
https://doi.org/10.1109/TPAMI.2013.50
https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://proceedings.neurips.cc/paper/2013/file/1cecc7a77928ca8133fa24680a88d2f9-Paper.pdf
https://arxiv.org/abs/1308.0850
https://aclanthology.org/P13-1149/
https://aclanthology.org/P13-1149/
https://aclanthology.org/W13-3512/
https://aclanthology.org/W13-3512/
https://ai.stanford.edu/~amaas/papers/relu_hybrid_icml2013_final.pdf
https://arxiv.org/abs/1301.3781
https://arxiv.org/abs/1301.3781


References

M. T. Pilehvar, D. Jurgens, and R. Navigli. Align, disambiguate and walk: A unified
approach for measuring semantic similarity. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), volume 1, pages
1341–1351, 2013.

R. Socher, A. Perelygin, J. Wu, J. Chuang, C. Manning, A. Ng, and C. Potts. Parsing With
Compositional Vector Grammars. In Proceedings of EMNLP, pages 455–465, 2013.

M. Andersen, O. Winther, and L. Hansen. Bayesian inference for structured spike and slab
priors. In Proceedings of the 28th Annual Conference on Advances in Neural Informa-
tion Processing Systems 27, pages 1745–1753. Neural Information Processing Systems
Foundation, 2014.

D. Bahdanau, K. Cho, and Y. Bengio. Neural Machine Translation by Jointly Learning to
Align and Translate. CoRR, abs/1409.0473, 2014.

J. A. Botha and P. Blunsom. Compositional Morphology for Word Representations and
Language Modelling. In Proceedings of ICML, pages 1899–1907, 2014.

E. Bruni, N. K. Tran, and M. Baroni. Multimodal Distributional Semantics. JAIR, 49:1–47,
2014.

K. Cho, B. van Merriënboer, D. Bahdanau, and Y. Bengio. On the Properties of Neural
Machine Translation: Encoder–Decoder Approaches. In Proceedings of SSST-8, Eighth
Workshop on Syntax, Semantics and Structure in Statistical Translation, pages 103–111.
Association for Computational Linguistics, 2014a.

K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares, H. Schwenk, and Y. Bengio. Learning
Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation.
CoRR, abs/1406.1078, 2014b.

C. N. Dos Santos and B. Zadrozny. Learning Character-level Representations for Part-of-
speech Tagging. In Proceedings of ICML, pages II–1818–II–1826, 2014.

M. Faruqui and C. Dyer. Improving Vector Space Word Representations Using Multilingual
Correlation. In Proceedings of EACL, pages 462–471, 2014.

N. Kalchbrenner, E. Grefenstette, and P. Blunsom. A Convolutional Neural Network for
Modelling Sentences. CoRR, abs/1404.2188, 2014. URL http://arxiv.org/abs/1404.2188.

B. Kim, C. Rudin, and J. Shah. The Bayesian Case Model: A Generative Approach for
Case-Based Reasoning and Prototype Classification. In NIPS, 2014.

Y. Kim. Convolutional Neural Networks for Sentence Classification. In Proceedings of the
2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages
1746–1751. Association for Computational Linguistics, 2014.

D. P. Kingma and M. Welling. Auto-Encoding Variational Bayes. In 2nd International
Conference on Learning Representations, ICLR, 2014.

A. Moro, A. Raganato, and R. Navigli. Entity linking meets word sense disambiguation:
a unified approach. Transactions of the Association for Computational Linguistics, 2:
231–244, 2014.

114

https://aclanthology.org/P13-1132/
https://aclanthology.org/P13-1132/
https://aclanthology.org/P13-1045/
https://aclanthology.org/P13-1045/
http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1405.4273
https://arxiv.org/abs/1405.4273
https://www.jair.org/index.php/jair/article/view/10857
https://www.aclweb.org/anthology/W14-4012
https://www.aclweb.org/anthology/W14-4012
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
http://proceedings.mlr.press/v32/santos14.pdf
http://proceedings.mlr.press/v32/santos14.pdf
https://aclanthology.org/E14-1049/
https://aclanthology.org/E14-1049/
http://arxiv.org/abs/1404.2188
http://arxiv.org/abs/1404.2188
http://arxiv.org/abs/1404.2188
https://arxiv.org/abs/1503.01161
https://arxiv.org/abs/1503.01161
https://www.aclweb.org/anthology/D14-1181
http://arxiv.org/abs/1312.6114
https://aclanthology.org/Q14-1019/
https://aclanthology.org/Q14-1019/


References

A. Neelakantan, J. Shankar, A. Passos, and A. McCallum. Efficient Non-parametric Esti-
mation of Multiple Embeddings per Word in Vector Space. In Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing (EMNLP), pages
1059–1069. Association for Computational Linguistics, 2014.

I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to Sequence Learning with Neural Networks.
page 3104–3112, 2014.

H. Valpola. From neural PCA to deep unsupervised learning. CoRR, abs/1411.7783, 2014.

M. Ballesteros, C. Dyer, and N. A. Smith. Improved Transition-based Parsing by Modeling
Characters instead of Words with LSTMs. In Proceedings of EMNLP, pages 349–359,
2015.

S. R. Bowman, G. Angeli, C. Potts, and C. D. Manning. A large annotated corpus for learning
natural language inference. In Proceedings of the 2015 Conference on Empirical Methods
in Natural Language Processing (EMNLP). Association for Computational Linguistics,
2015a.

S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. Józefowicz, and S. Bengio. Generating
Sentences from a Continuous Space. CoRR, abs/1511.06349, 2015b. URL http://arxiv.or
g/abs/1511.06349.

Y. Burda, R. B. Grosse, and R. Salakhutdinov. Importance Weighted Autoencoders. CoRR,
abs/1509.00519, 2015.

S. Cao, W. Lu, and Q. Xu. GraRep: Learning Graph Representations with Global Structural
Information. In Proceedings of CIKM, pages 891–900, 2015.

M. Faruqui and C. Dyer. Non-distributional Word Vector Representations. In Proceedings
of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (Volume 2: Short Papers),
pages 464–469. Association for Computational Linguistics, 2015.

M. Faruqui, Y. Tsvetkov, D. Yogatama, C. Dyer, and N. A. Smith. Sparse Overcomplete Word
Vector Representations. In Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and the 7th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 1491–1500. Association for Computational
Linguistics, 2015.

F. Hill, K. Cho, A. Korhonen, and Y. Bengio. Learning to Understand Phrases by Embedding
the Dictionary. CoRR, abs/1504.00548, 2015a. URL http://arxiv.org/abs/1504.00548.

F. Hill, R. Reichart, and A. Korhonen. SimLex-999: Evaluating Semantic Models With
(Genuine) Similarity Estimation. Computational Linguistics, 41:665–695, 2015b.

D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. CoRR, abs/1412.6980,
2015.

R. Kiros, Y. Zhu, R. Salakhutdinov, R. S. Zemel, A. Torralba, R. Urtasun, and S. Fidler.
Skip-Thought Vectors. CoRR, abs/1506.06726, 2015.

115

https://www.aclweb.org/anthology/D14-1113
https://www.aclweb.org/anthology/D14-1113
http://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1411.7783
https://aclanthology.org/D15-1041/
https://aclanthology.org/D15-1041/
https://aclanthology.org/D15-1075/
https://aclanthology.org/D15-1075/
http://arxiv.org/abs/1511.06349
http://arxiv.org/abs/1511.06349
http://arxiv.org/abs/1511.06349
http://arxiv.org/abs/1511.06349
https://arxiv.org/pdf/1509.00519
https://dl.acm.org/doi/10.1145/2806416.2806512
https://dl.acm.org/doi/10.1145/2806416.2806512
https://www.aclweb.org/anthology/P15-2076
https://www.aclweb.org/anthology/P15-1144
https://www.aclweb.org/anthology/P15-1144
http://arxiv.org/abs/1504.00548
http://arxiv.org/abs/1504.00548
http://arxiv.org/abs/1504.00548
https://aclanthology.org/J15-4004/
https://aclanthology.org/J15-4004/
https://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1506.06726


References

W. Ling, C. Dyer, A. W. Black, I. Trancoso, R. Fermandez, S. Amir, L. Marujo, and T. Luis.
Finding Function in Form: Compositional Character Models for Open Vocabulary Word
Representation. In Proceedings of EMNLP, pages 1520–1530, 2015.

M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich. A Review of Relational Machine
Learning for Knowledge Graphs: From Multi-Relational Link Prediction to Automated
Knowledge Graph Construction. CoRR, abs/1503.00759, 2015.

M. T. Pilehvar and R. Navigli. From senses to texts: An all-in-one graph-based approach for
measuring semantic similarity. Artificial Intelligence, 228:95–128, 2015.

I. Sergienya and H. Schütze. Learning Better Embeddings for Rare Words Using Distribu-
tional Representations. In Proceedings of EMNLP, pages 280–285, 2015.

R. Soricut and F. Och. Unsupervised Morphology Induction Using Word Embeddings. In
Proceedings of NAACL-HLT, pages 1627–1637, 2015.

K. S. Tai, R. Socher, and C. D. Manning. Improved Semantic Representations From Tree-
Structured Long Short-Term Memory Networks. In Proceedings of the 53rd Annual
Meeting of the Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), pages 1556–1566.
Association for Computational Linguistics, 2015.

W.-t. Yih, M.-W. Chang, X. He, and J. Gao. Semantic Parsing via Staged Query Graph
Generation: Question Answering with Knowledge Base. In Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics and the 7th International
Joint Conference on Natural Language Processing (Volume 1: Long Papers), volume 1,
pages 1321–1331, 2015.

D. Yogatama, M. Faruqui, C. Dyer, and N. A. Smith. Learning Word Representations with
Hierarchical Sparse Coding. In F. R. Bach and D. M. Blei, editors, Proceedings of the
32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July
2015, volume 37, pages 87–96. JMLR.org, 2015.

X. Zhang, J. Zhao, and Y. LeCun. Character-Level Convolutional Networks for Text Clas-
sification. In Proceedings of the 28th International Conference on Neural Information
Processing Systems - Volume 1, NIPS’15, page 649–657. MIT Press, 2015.

J. Andreas, M. Rohrbach, T. Darrell, and D. Klein. Learning to Compose Neural Networks
for Question Answering. CoRR, abs/1601.01705, 2016.

X. Chen, D. P. Kingma, T. Salimans, Y. Duan, P. Dhariwal, J. Schulman, I. Sutskever, and
P. Abbeel. Variational Lossy Autoencoder. CoRR, abs/1611.02731, 2016.

T. Dozat. Incorporating Nesterov Momentum into Adam. 2016.

C. Dyer, A. Kuncoro, M. Ballesteros, and N. A. Smith. Recurrent Neural Network Grammars.
In Proceedings of the 2016 Conference of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Language Technologies, pages 199–209.
Association for Computational Linguistics, 2016.

L. Ehrlinger and W. Wöß. Towards a definition of knowledge graphs. In SEMANTiCS, 2016.

116

https://aclanthology.org/D15-1176/
https://aclanthology.org/D15-1176/
http://arxiv.org/abs/1503.00759
http://arxiv.org/abs/1503.00759
http://arxiv.org/abs/1503.00759
https://www.sciencedirect.com/science/article/pii/S000437021500106X
https://www.sciencedirect.com/science/article/pii/S000437021500106X
https://aclanthology.org/D15-1033/
https://aclanthology.org/D15-1033/
https://aclanthology.org/N15-1186/
https://www.aclweb.org/anthology/P15-1150
https://www.aclweb.org/anthology/P15-1150
https://aclanthology.org/P15-1128/
https://aclanthology.org/P15-1128/
http://proceedings.mlr.press/v37/yogatama15.html
http://proceedings.mlr.press/v37/yogatama15.html
https://papers.nips.cc/paper/5782-character-level-convolutional-networks-for-text-classification.pdf
https://papers.nips.cc/paper/5782-character-level-convolutional-networks-for-text-classification.pdf
http://arxiv.org/abs/1601.01705
http://arxiv.org/abs/1601.01705
http://arxiv.org/abs/1611.02731
https://openreview.net/pdf/OM0jvwB8jIp57ZJjtNEZ.pdf
https://www.aclweb.org/anthology/N16-1024


References
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A
Introducing Relational Inductive Bias to

Word Embeddings with Knowledge Graph

A.1 Intrinsic Evaluation of Knowledge Graph Embeddings

To verify the reliability of node2vec vector representations, we carried out an experiment

on three standard word similarity datasets: RG-65 (Rubenstein and Goodenough, 1965),

WordSim-353 similarity subset (Agirre et al., 2009), and SimLex-999 (Hill et al., 2015b).

Table A.1 reports Pearson and Spearman correlations for the KG embedding technique

(on WordNet’s graph) and, as the baseline, for our two word embeddings, i.e. W2V-GN

and GLOVE. We note that the performances are close to those of state-of-the-art WordNet

approaches (Pilehvar and Navigli, 2015), which shows the efficacy of these embedding

techniques in capturing the semantic properties of WordNet’s graph.

KG/Word RG-65 WSS-353 SimLex-999

Embedding r r r r r r

node2vec 0.82 0.83 0.65 0.67 0.36 0.39
W2V-GN 0.75 0.77 0.77 0.76 0.44 0.45
GLOVE 0.76 0.75 0.66 0.66 0.37 0.39

Table A.1 Pearson (r) and Spearman (r) correlation results on three word similarity datasets.
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B
Introducing Relational Inductive Bias to

Sentence Embeddigns with Knowledge
Graphs

B.1 DAGs

Graphs Mult.P% AV.P

PATO 31.29 2.97

WNanimal.n.01 0.88 2.00

WNplant.n.02 0.16 2.00

HDO 16.23 2.13

HPO 23.24 2.23

GO 64.01 2.77

WNentity.n.01 1.91 2.03

Table B.1 Statistics of nodes with multiple inheritances. Mult.P% stands for the percentage
of nodes with more than one parent node. AV.P stands for the average number of parents a
node with multiple inheritance has.
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Introducing Relational Inductive Bias to Sentence Embeddigns with Knowledge
Graphs

B.1.1 Invalid Sequences

Graphs Invalid% Ntotal

PATO 1.82 110

WNanimal.n.01 4.56 263

WNplant.n.02 2.23 314

HDO 4.02 622

HPO 7.08 847

GO 6.94 1845

WNentity.n.01 8.50 5191

Table B.2 Statistics of invalid sequences. Invalid% is the percentage of invalid sequences and
Ntotal is the total number of sequences that were tested.

B.2 Settings for Models

BOW-LR. To represent a KG in a vector space we use node2vec https://snap.stanford.edu/

node2vec/. For all the graphs the following hyper-parameters of the algorithm are the same:

walk-length= 5, window-size=5 and iter=40. As for the number of dimensions we set it to

128 for PATO, WNanimal.n.01, WNplant.n.02, HDO and HPO graphs. For GO and WNentity.n.01

graphs we set it to 256. All the other parameters of node2vec are default.

We do not modify the numberbatch embeddings https://github.com/commonsense/conce

ptnet-numberbatch. If a word in a textual definition is missing we initilised the embedding

for this word with zeros.

For all the graphs to map the textual vector space into a KG vector space we use the

linear regression model from the scikit-learn API https://scikit-learn.org/stable/modules/ge

nerated/sklearn.linear_model.LinearRegression.html
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B.2 Settings for Models

Fig. B.1 On the left graphs show: length of gold sequence vs mean length of decoded
sequence on a test set; On the right graphs show: length of sequence vs length frequency on
a training set. 133



Introducing Relational Inductive Bias to Sentence Embeddigns with Knowledge
Graphs

Fig. B.2 Continuation of Figure B.1. On the left graphs show: length of gold sequence vs
mean length of decoded sequence on a test set; On the right graphs show: length of sequence
vs length frequency on a training set.

MS-LSTM. There are only two hyper-parameters that we vary during the embedding of

KG concepts: l (we report the values in the chapter) and the embedding size of the concepts.

We set it to 128 for PATO, WNanimal.n.01, WNplant.n.02, HDO and HPO graphs. For GO and

WNentity.n.01 graphs we set it to 256.
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B.3 Length of Generated Path

For all the graphs the model is trained for 300 epochs, dimension of word embeddings is

set to 64 and bi-LSTM is used instead of LSTM. Batch size is set to 16 and the number of

latent dimensions in bi-LSTM is set to 128 for the PATO, WNanimal.n.01, WNplant.n.02, HDO

and HPO graphs. For GO and WNentity.n.01 graphs we set these parameters to 128 and 256

respectively. All the other hyper-parameters are default.

When we use pre-trained word embeddings we reduce (with PCA https://scikit-learn.org

/stable/modules/generated/sklearn.decomposition.PCA.html) its dimensions from 300 to 64.

Our Model. For all the graphs the model is trained for 300 epochs, dimensions of word

embeddings (also for node/edges embeddings) is set to 64 and bi-LSTM is used in the encoder

and LSTM in the decoder. Batch size is set to 16 and the number of latent dimensions in

bi-LSTM encoder and LSTM decoder is set to 128 for the PATO, WNanimal.n.01, WNplant.n.02,

HDO and HPO graphs. For GO and WNentity.n.01 graphs we set these parameters to 128 and

256 respectively. For optimizer we used RMSProp (https://www.tensorflow.org/api_docs/py

thon/tf/train/RMSPropOptimizer) with learning rate = 0.001.

When we use pre-trained word embeddings we reduce (with PCA https://scikit-learn.org

/stable/modules/generated/sklearn.decomposition.PCA.html) its dimensions from 300 to 64.

B.3 Length of Generated Path

In Figures B.1 and B.2 the blue line indicates the ideal scenario i.e. mean length of the

generated sequences is equal to the gold length. The black dot is the mean of the length

of decoded sequences and the red bars are the standard deviation. One can notice that the

general trend is the following: for short sequences the model generates (slightly) longer

sequences and for the long sequences it generated (slightly) shorter sequences than the gold

standard. Another trend is that the sequences of the certain length are matching the gold

standard. To understand why this is happening one needs to look at the graph which relates

the length of the sequence in the training corpus and the frequency of this length in the corpus.

It is clear that there is a correlation between the two. Such as the model tends to generate the

sequence of the length that is presented the most in the training data.
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C
Learning Sentence Embeddings with VAE

(Information-Theoretic Inductive Bias)

C.1 Statistics of Corpora

Yelp DBpedia Yahoo

# sent. (train corpus) 100K 140K 100K

# sent. (valid corpus) 10K 14K 10K

# sent. (test corpus) 10K 14K 10K

vocabulary size 19,997 20K 20K

min sent. length. 20 1 5

av. sent. length. 96 35 12

max. sent. length. 200 60 30

# classes 5 14 10

# sent. in each class (train/test corpus) 20K/2K 10K/1K 10K/1K

Table C.1 Statistics of corpora. Vocabulary size excludes the 〈pad 〉and 〈EOS 〉symbols.
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D
Learning Sentence Embeddings with VAE

(Sparsity Inductive Bias)

D.1 Derivations of ELBO

Starting from the DKL(qf (z,g|x)||pq (z,g|x)), we derive the Evidence Lower Bound (ELBO)

as follows:

DKL(qf (z,g|x)||pq (z,g|x)) =
Z

z,g

dzdg qf (z,g|x) log
qf (z,g|x)
pq (z,g|x)

, (D.1)

after rearranging terms in equation D.1 we can obtain:

log pq (x)�DKL(qf (z,g|x)||pq (z,g|x)) =
Z

z,g

dzdg qf (z,g|x) log
pq (z,g,x)
qf (z,g|x)

| {z }
ELBO

,
(D.2)

Based on the independence assumption that we make in our graphical model (Figure

1) the generative model factorises as: pq (z,g,x) = pq (x|z)pq (z|g)pq (g) and the inference

model factorises as: qf (z,g|x) = qf (z|g,x)qf (g|x). Therefore, we can rewrite the ELBO as

follows: Z

z,g

dzdg qf (z|g,x)qf (g|x) log
pq (x|z)pq (z|g)pq (g)

qf (z|g,x)qf (g|x)
, (D.3)
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We can further rewrite the ELBO as a sum of the three separate terms. Where the first term

is: Z

z,g

dzdg qf (z|x,g)qf (g|x) log pq (x|z)

Z

g

dg qf (g|x)
Z

z

dzqf (z|x,g) log pq (x|z) )

⌧Z

z

dzqf (z|x,g) log pq (x|z)
�

qf (g|x)
)

(D.4)

The second term is:

Z

z,g

dzdg qf (z|x,g)qf (g|x)[logqf (z|x,g)� log pq (z|g)]

⌧Z

z

dzqf (z|x,g)[logqf (z|x,g)� log pq (z|g)]
�

qf (g|x)
)

⌧
DKL(qf (z|x,g)||pq (z|g))

�

qf (g|x)
)

(D.5)

Finally, the third term is:

Z

z,g

dzdg qf (z|x,g)qf (g|x)[logqf (g|x)� log pq (g)]

Z

g

dg qf (g|x)[logqq (g|x)� log pq (g)]
Z

z

dzqf (z|x,g)

| {z }
sums to 1 for each:g

)

Z

g

dg qf (g|x)[logqf (g|x)� log pq (g)] )

DKL(qf (g|x)||pq (g)) )

(D.6)

Collecting all the three terms into the single ELBO:

⌧Z

z

dzqf (z|x,g) log pq (x|z)
�

qf (g|x)
�
⌧
DKL(qf (z|x,g)||pq (z|g))

�

qf (g|x)
�DKL(qf (g|x)||pq (g)),

(D.7)
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D.2 Objective Functions of Mathieu et al. (2019) and Tonolini et al. (2019)

D.2 Objective Functions of Mathieu et al. (2019) and Tono-

lini et al. (2019)

The objective function of Mathieu et al. (2019) is:

⌦
log pq (x|z)

↵
qf (z|x)

�yKL(qf (z|x)||pq (z))�lD(qf (z), pq (z)),

where y and l are the scalar weight on the terms and Tonolini et al. (2019) is:

⌦
log pq (x|z)

↵
qf (z|x)

�KL(qf (z|x)||qf (z|xu)� J⇥DKL
�
ḡu||a)

�
,

where J is the dimensionality of the latent variable z, xu is a learnable pseudo-input (Tomczak

and Welling, 2018) and a is prior sparsity.

D.3 Deriving Marginal of (Univariate) Spike-and-Slab Prior

We derive the Spike-and-Slab distribution by integrating out the index component which

is distributed as a Bernoulli variable. This result is quite well-known in machine learning,

however for the ease of the reader we present it here as a quick reference.

The derivation: assume 1) p ⇠ p(p;g) is a Bernoulli(g) and 2) p(z|p) = (1� p)⇥

p1(z)+p⇥ p2(z), where p1(z)⇠ N(z;0,1) and p2(z)⇠ N(z;0,s ! 0) is a Spike-and-Slab

model. The the marginal Spike-and-Slab prior over z can be obtained in the following way:

p(z;g) =
1

Â
i=0

p(z|p = i)p(p = i;g)

p(z|p = 0)p(p = 0;g)+ p(z|p = 1)p(p = 1;g) )

[(1�0)⇥ p1(z)+0⇥ p2(z)]p(p = 0;g)+ [(1�1)⇥ p1(z)+1⇥ p2(z)]p(p = 1;g) )
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Expanding brackets:

p1(z)p(p = 0;g)+ p2(z)p(p = 1;g) )

N(z;0,1)p(p = 0;g)+N(z;0,s ! 0)p(p = 1;g) )

(1� g)N(z;0,1)+ gN(z;0,s ! 0) )

Therefore,

p(z;g) = (1� g)N(z;0,1)+ gN(z;0,s ! 0).

D.4 End-to-end Differentiable

Sampling a value from the Spike-and-Slab posterior distribution q(z|x,g) is a two step

process. First a spike or slab component is sampled which is a binary decision, we use

Binary Concrete distribution (Maddison et al., 2016) to make this sampling step end-to-end

differentiable. Then the value is sampled from the corresponding component, for this we

employ the reparameterisation trick (Kingma and Welling, 2014). Also, samples from the

Beta distribution are pathwise differentiable (Figurnov et al., 2018).

D.5 Hoyer

This section reports Average Hoyer, for the two corpora Yelp and Yahoo, both on the mean

and samples from the posterior distributions of the HSVAE and MAT-VAE models.
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D.5 Hoyer

Fig. D.1 Average Hoyer (Av.Hoyer) on Yelp (left) and Yahoo (right) corpora dev set for
MAT-VAE. Lines are an average over the 3 runs of the models, the shaded area is the standard
deviation. The dimensionality of the latent variable of the models is 32D.

Fig. D.2 Average Hoyer (Av.Hoyer) on Yelp (left) and Yahoo (right) corpora dev set for
HSVAE. Lines are an average over the 3 runs of the models, the shaded area is the standard
deviation. The dimensionality of the latent variable of the models is 32D.
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