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Abstract: The Schrödinger bridge problem (SBP) finds the most likely stochastic evolution between
two probability distributions given a prior stochastic evolution. As well as applications in the natural
sciences, problems of this kind have important applications in machine learning such as dataset
alignment and hypothesis testing. Whilst the theory behind this problem is relatively mature, scalable
numerical recipes to estimate the Schrödinger bridge remain an active area of research. Our main
contribution is the proof of equivalence between solving the SBP and an autoregressive maximum
likelihood estimation objective. This formulation circumvents many of the challenges of density
estimation and enables direct application of successful machine learning techniques. We propose a
numerical procedure to estimate SBPs using Gaussian process and demonstrate the practical usage of
our approach in numerical simulations and experiments.

Keywords: Schrödinger bridges; machine learning; stochastic control

1. Introduction

Analysis of cross-sectional data is ubiquitous in machine learning and science. Tem-
poral data are typically sampled at discrete intervals due to technological or physical
constraints. This means information between time points is lost. This motivates the need
to model the stochastic evolution of a process between sampled time points. The classical
Schrödinger bridge problem [1,2] finds the most likely stochastic process that evolves a
distribution π0(x) to another distribution π1(y) consistently with a pre-specified Brown-
ian motion. We consider a more general dynamical Schrödinger bridge problem for any
pre-specified diffusion prior. Practically, this generalization allows us to exploit domain
knowledge, e.g., oceanic and atmospheric flows might be interpolated from empirical
measurements using previously established dynamics as priors.

In the classical set up numerical approaches to solve the Schrödinger bridge are mainly
based on the Sinkhorn–Knopp algorithm [3]; however, extending those algorithms to
more general diffusion priors and marginals requires complex adaptations. We introduce
an iterative proportional maximum likelihood (IPML) algorithm to solve the general
Schrödinger bridge problem. The IPML algorithm also obtains a good approximation
for the dynamics of the underlying physical process that solves the SBP. This contrasts
to previous approaches [4–6] that estimate the value that extremises the SBP objective.
Practically, this means we obtain physically interpretable solutions that we can leverage for
downstream tasks.

IPML’s inspiration is from probabilistic numerics (PN) [7]. We combine a PN styled
formulation with the iterative proportional fitting procedure (IPFP) [8,9]. The algorithm
iteratively simulates trajectories that converge to the SBP. We prove that IPML converges
in probability at each iteration. Our numerical experiments show the algorithm can be
implemented with Gaussian process (GP) models of the drifts. GPs allow us to incorporate
functional prior information. We demonstrate the practical use of our algorithm on real-
world embryoid cells data (see Figure 4) by quantitatively and qualitatively comparing
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the performance of our algorithm to state-of-the-art deep learning methods and optimal
transport techniques. To summarise, the main contributions of our work are:

• We recast the iterations of the dynamic IPFP algorithm as a regression-based maximum
likelihood objective. This is formalised in Theorem 1 and Observation 1. This differs
to prior approaches such as [10] where their maximum likelihood formulation solves
a density estimation problem. This allows the application of many regression methods
from machine learning that scale well to high dimensional problems. Note that this
formulation can be parametrised with any method of choice. We chose GPs; however,
neural networks would also be well suited,

• We solve the aforementioned regression objectives using GPs [11] motivated by the
connection between the drift of stochastic differential equations and GPs [12],

• We provide a conceptual comparison with the approach by [10] and detail why the
density estimation formulation in [10] scales poorly with dimension,

• Finally we re-implement the approach by [10] and compare approaches across a series
of numerical experiments. Furthermore we empirically show how our approach
works well in dimensions higher than 2.

2. Technical Background

Our solution has three components. (1) We reformulate the SBP as a dynamical
system giving a stochastic differential equation (SDE) with initial value (IV) and final
value (FV) constraints [13]. (2) We reverse the system, reformulating the FV constraint as
an IV constraint. Both IV problems are solved through a stochastic control formulation
(Section 2.1.2). (3) We iterate the IV and FV constrained problems to converge to the full
boundary value constrained SDEs.

2.1. Dynamic Formulation

The dynamic version of the Schrödinger bridge is written in terms of measures over the
space of trajectories, which describe the stochastic dynamics defined over the unit interval.

Definition 1. (Dynamic Schrödinger problem) The dynamic Schrödinger problem is given by

inf
Q∈D(π0,π1)

DKL
(
Q
∣∣∣∣Qγ

0
)
, (1)

where Q ∈ D(π0, π1) is a measure with prescribed marginals of π0, π1 at times 0, 1 that is
(X0)#Q = π0 and (X1)#Q = π1. Qγ

0 is a drift augmented Brownian motion with a scalar
volatility γ acting as the prior, see Figure 1. Traditionally Qγ

0 :=Wγ is a Wiener measure with
volatility γ, however we consider the general setting in this work.

Figure 1. Left: Learned SBP trajectories in the double well experiment of Section 5.1, with prior Qγ
0 expressed in terms of

an energy landscape U(x, y) as dx(t) = −∇xU(x(t)) + γdβ(t). Right: Forwards and backwards diffusion of learned SBP
between unimodal and multimodal boundary distributions (see Section 5 for experimental details).
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The prior Qγ
0 can be written as a solution of the diffusion:

dx(t) = b+
0 (x(t), t)dt +

√
γdβ+(t), x(0) ∼ π

Qγ
0

0 . (2)

From here we use b0 to denote the drift of the prior Qγ
0 . Note that a finite KL implies Q

and Qγ
0 are both Itô SDEs with volatility γ. The diffusion coefficient γ is a time homoge-

neous constant and for the KL-divergence to be finite the process Q must have γ as its
diffusion coefficient.

2.1.1. Time Reversal of Diffusions

When sampling solutions, IV constraints are trivially solved by initialisation of sam-
ples, but FV constraints are more problematic; however, if we can reformulate the SBP as
a time reversed diffusion the FV constraint becomes an IV constraint (Section 3.2). Here we
review how the diffusion is reversed. We reverse time (see Figure 1) in the random variable
x(t) described by the diffusion in Equation (2) such that x−(t) = x(1− t). The reverse time
diffusion x−(t) is also an Itô process. For a modern application of time reversal in machine
learning see [14].

Lemma 1 ([15]). If x+(t) obeys the SDE

dx+(t) = u+(x+(t), t)dt +
√

γdβ+(t), x+(0) ∼ π
Qγ

0
0 ,

then x−(t) = x+(1− t) obeys

dx−(t) = u−(x−(t), t)dt +
√

γdβ−(t), x−(0) = x+(1).

where β−(t) is a Brownian motion adapted to the reverse filtration (F−i )i∈T , that is F−t ⊆ F−s ,
s≤ t. Furthermore, the dual drift u−(x, t) satisfies Nelson’s duality relation:

u+(x, t)− u−(x, t) = γ∇x ln p(x, t), (3)

where p(x, t) solves the associated Fokker–Planck equation.

Proof. A variety of proofs can be found for this result [15–19]. Note the formulation of
Equation (3) varies slightly across studies we use the one from [15,16] (see [15] (p. 87),
definition of osmotic velocity).

2.1.2. Stochastic Control Formulation

Now that the FV constraint has been converted to an IV constraint, we cast the prob-
lem into a stochastic control formulation to estimate the drift of each diffusion process.
Following from the dynamic formulation, the control formulation casts the problem ex-
plicitly in terms of stochastic differential equations. The control formulation is used to
enforce constraints as initial value problems. Furthermore, the drift based formulations of
the SBP admit a reverse time formulation, which starts the chain at the end of the interval
and progresses the dynamics backwards in time to the start.

Lemma 2 ([20]). Let the measure Q be defined by solutions to the SDE

dx+(t) = b+(t)dt +
√

γdβ+(t), x+(0) ∼ πQ
0

Then the KL divergence DKL
(
Q
∣∣∣∣Qγ

0
)

can be decomposed in terms of either the forward or reversed
diffusion as

DKL
(
Q
∣∣∣∣Qγ

0
)
= DKL(π

Q
1∓1

2
||πQγ

0
1∓1

2
) +EQ

[∫ 1

0

1
2γ

∣∣∣∣b±(t)− b±0 (x
±(t), t)

∣∣∣∣2dt
]

, (4)
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where x−(t) is the time reversal of x+(t), and x+(1) ∼ πQ
1 .

Proof. This theorem follows by a direct application of the disintegration theorem
(Appendix B) followed by Girsanov’s theorem. A detailed proof can be found in [20].

Using the above decompositions, we can solve the SBP by minimising either decom-
position in Equation (4) over the space of random processes b±(t) that satisfy a valid Itô
SDE drift. The backwards and forwards objectives are respectively:

min
Q∈D(π0,π1)

DKL
(
Q
∣∣∣∣Qγ

0
)
= min

b±∈B
EQ

[∫ 1

0

1
2γ

∣∣∣∣b±(t)− b±0 (x
±(t), t)

∣∣∣∣2dt
]

,

s.t. dx±(t) = b±(t)dt +
√

γβ±(t), x+(0)∼π0, x+(1)∼π1, x−(1)∼π0, x−(0)∼π1. (5)

While we do not directly use the stochastic control formulations, the drift-based
formulation serves as inspiration for our iterative scheme. Specifically, the existence and
parametrisation of an optimal drift as shown in [10,20].

Lemma 3 ([20]). The objectives in Equation (5) have optimal drifts:

b+∗(t) = γ∇xφ(x+(t), t), b−∗(t) = γ∇xφ̂(x−(t), t) (6)

where the potentials φ, φ̂ solve the Schrödinger system [20].

This Lemma is key in formulating our ML approach to IPFP since it justifies our
parametrisation of the drift in terms of a deterministic function u±∗ i.e., b±∗(t) = u±∗(x±(t),
t). For a brief introduction to the Schrödinger system and potentials see Appendix A.

2.2. Iterative Proportional Fitting Procedure

We now have two boundary value constrained diffusion processes solved through a
stochastic control formulation. We use the iterative proportional fitting procedure (IPFP)
to alternate between the forward and backward formulation with only one initial value
constraint enforced at a time (see Figure 2), such that convergence to the full boundary
value problem is guaranteed.

Algorithm 1: Iterative Proportional Fitting
(IPFP) [21], for the traditional SBP with Brow-
nian prior set Qγ

0 := Wγ.

input : π0(x), π1(y),Q
γ
0

1 Q∗0 = Qγ
0

2 i = 0
3 repeat
4 i := i + 1
5 P∗i = arg infP∈D(·,π1)

DKL(P||Q∗i−1)

6 Q∗i = arg infQ∈D(π0,·) DKL(Q||P∗i )
7 until convergence;
8 return Q∗i ,P∗i

Figure 2. Left: IPFP algorithm. Right: illustration of the convergence of the IPFP Algorithm.

The measure theoretic version of IPFP we introduce is an extension of the continuous
IPFP, initially proposed by [8] to a more general setting over general probability measures
(see [21,22]). The convergence of IPFP has been shown in [9] and further extensions and
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results have been presented in [21,22]. The idea behind this family of approaches is to
alternate minimising KL between the two marginal distribution constraints,

P∗i = arg inf
P∈D(·,π1)

DKL(P||Q∗i−1) Q∗i = arg inf
Q∈D(π0,·)

DKL(Q||P∗i ),

until convergence. The quantities P∗i and Q∗i in the algorithm of Figure 2 are known as half
bridges [10] and can be expressed in closed form in terms of known quantities,

P∗i
(

A[0,1) × A1

)
=
∫

A[0,1)×A1

dπ1

dp
Q∗i−1
1

dQ∗i−1, Q∗i
(

A0 × A(0,1]

)
=
∫

A0×A(0,1]

dπ0

dp
P∗i
0

dP∗i , (7)

where p
Q∗i−1
1 and pP

∗
i

0 are the marginals of Q∗i−1 and P∗i at times 1 and 0, respectively. While
a closed form expression to estimate half bridges is known, its components are usually
not available in closed form and require approximations. Note that the time reversed
formulations (Section 2.1.2) and a simpler variant of Lemma 3 also apply to the half bridge
problems. Applying the disintegration theorem (see Appendix B) we can reduce the IPFP
introduced to the more popular instance of IPFP proposed by [8]. Furthermore for the case
of discrete measures this algorithm reduces to the Sinkhorn–Knopp algorithm [3].

3. Methodology

In this section we introduce IPML by providing the theoretical foundations of our
algorithm and convergence guarantees. Then, we propose a practical implementation of
IPML based on a Bayesian non-parametric model (GP). These components allow us to
solve the general SBP problem.

3.1. Approximate Half Bridge Solving as Optimal Drift Estimation

We present a novel approach to approximately solve the empirical Schrödinger bridge
problem by exploiting the closed form expressions of the half bridge problem. Rather than
parametrising the measures in the half bridge and solving the optimisation numerically,
we seek to directly approximate the measure that extremises the half bridge objective.
We achieve this by using Gaussian processes [11] to estimate the drift of the trajectories
sampled from the optimal half bridge measure.

We start from the following observation, which tells us how to sample from the
optimal half bridge distribution (see Appendix C for proof).

Observation 1. We can parametrise a measure Q with its drift as either of the SDEs,

dx±(t) = b±(t) +
√

γdβ±(t), x±(0) ∼ πQ
0,1.

Then, we can sample from the solution to the half bridges,

P∗−= arg inf
P∈D(·,π1)

DKL(P||Q), P∗+= arg inf
P∈D(π0,·)

DKL(P||Q),

via simulating trajectories (e.g., using the Euler–Maruyama (EM) method) following the SDEs

dx±(t) = b±(t) +
√

γdβ±(t), x±(0) ∼ π0,1.

Solutions to the above SDEs are distributed according to P∗− and P∗+, respectively.

Intuitively, we are performing a cut-and-paste-styled operation by cutting the dynam-
ics of the shortened (unconstrained) time interval and pasting the constraint to it at the
corresponding boundary.
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Theorem 1. (Consistency of Reverse-MLE Formulations) Let
{(

x(n)+tk

)T
k=0

}N

n=0
be sampled/

discretised trajectories from the SDE that represents the half bridge measure P+:

dx+(t) = u+
0 (x

+(t), t) +
√

γdβ+(t), x(0) ∼ π0.

Then carrying out maximum likelihood estimation of the time reversed drift u0
− on time re-

versed samples:

∏
n

p
((

x(n)+tk

)T
k=0

∣∣∣u−)∝∏
n

p(x(n)+tT
)

T

∏
k=0
N
(
x(n)+tk−∆t

∣∣∣x(n)+tk
−∆tu−

(
x(n)+tk

,1−tk

)
,γ∆t

)
, (8)

where u− is the drift of our estimator SDE:

dx−(t) = u−(x−(t), t) +
√

γdβ−(t), x−(t)(0) ∼ p, (9)

converges in probability to the to the true dual drift u−0 (x, t) = u+
0 (x, t)− γ∇x ln p(x, t) where

u+
0 (x, t) is the optimal half bridge drift for P+ as N → ∞, ∆t→ 0 (see Appendix D for proof).

Note that w.l.o.g. the above result also holds for estimating the forward drift from
backward samples. The combination of Observation 1 and Theorem 1 constitute one
the main contributions of this work as they allow us to solve half bridges with a simple
regression objective. Finally it is important to highlight that in practice for most interesting
SDEs we can only sample approximately using schemes such as the Euler Mayurama (EM)
method, for these settings our proof of Theorem 1 does not hold, however we believe it
may be possible to extend/adapt the result for the approximate EM sample case.

3.2. On the Need for Time Reversal

We have already provided the intuition as to how time reversal enables the exchange
of initial value constraints for final value constraints. In what follows we provide a more
detailed technical review of this important simplification. Consider the first half bridge
problem for a given IPFP iteration, P∗− = arg infP∈D(·,π1)

DKL(P||Q). When formulated
without time reversal in terms of the forward drift and the forward diffusion it reduces to a
stochastic control problem which is subject to dynamics,

dx+(t) = b+(t) +
√

γdβ+(t), x(1) ∼ π1,

which is a forward SDE with a terminal hitting condition. Unlike a forward SDE with an
initial value problem the above SDE is not trivial to sample from, one approach would be
to solve the backwards Kolmogorov equation subject to the terminal condition; however,
this approach requires (1) solving a parabolic PDE that typically involves mesh-based
methods that do not scale well in high dimensions and (2) carrying out density esti-
mation on the samples from π1, also problematic in high dimensions; however, if we
consider the time reversed process, the terminal condition becomes an initial value prob-
lem, dx−(t) = b−(t) +

√
γdβ−(t), x(0) ∼ π1, for which it is easy to sample consistent

trajectories via the Euler–Maruyama (EM) discretisation without mesh-based methods or
additional density estimations.

3.3. Iterative Proportional Maximum Likelihood (IPML)

Combining the KL minimisation routines in the original IPFP algorithm with our
MLE-based drift estimation provides Figure 3. The routine DriftFit fits a dual drift on the
EM sampled trajectories, and can be parametrised by any function estimation procedure
with consistency guarantees. The SDESolve routine generates M trajectories using the
EM method.
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Algorithm 2: IPML.

input : π0(x), π1(y),Q
γ
0

1 Initialise: i := 0 Q∗0 := Qγ
0

2 ū−Q0
(x, t) := ObtainBackwardDrift(Q∗0)

3 repeat
4 i := i + 1

5

{
x(m)−
[1:T]

}
m
:=SDESolve

(
− ū−Qi-1

,γ, π1, ∆t
)

6 ū+
Pi

:=DriftFit
(
Reverse

({
x(m)−
[1:T]

}
m

)
, γ

∆t

)
7

{
x(n)+
[1:T]

}
n
:= SDESolve

(
ū+
Pi

, γ, π0, ∆t
)

8 ū−Qi
:= DriftFit

(
Reverse

({
x(n)+
[1:T]

}
n

)
, γ

∆t

)
9 until convergence;

10 return ū−Qi
, ū+

Pi

2 4 6 8 10
Iterations

2.8

3.0

3.2

3.4

3.6

D
is

t(p
rio

r, 
le

ar
ne

d 
br

id
ge

)

GP prior = 0 N=10
GP prior = 0 N=20
GP prior = 0 N=40
GP prior = 1 N=20
GP prior = 1 N=40

Figure 3. Distance between the prior and the learned bridge as a function of the iterations, number of samples used (N) and
whether the prior is used for the GP (T= 1

∆t =100).

Drift Estimation with Gaussian Processes: One can choose any parametric or non
parametric model to carry out the DriftFit routine. In this section, we briefly introduce
our implementation. Our DriftFit routine is based on the work in [12,23] that uses GPs to
estimate the drift of SDEs from observations. We refer to this routine as GPDriftFit. We can
restate the regression problems given by Equation (8) and its reversed counterpart in the
following form:

x(n)−tk
−x(n)−tk−∆t

∆t
=u+

(
x(n)−
(tk−∆t), 1− (tk−∆t)

)
+

√
γ

∆t
ε,

x(m)+
tl−∆t− x(m)+

tl

∆t
=−u−

(
x(m)+

tl
, 1− tl

)
+

√
γ

∆t
ε,

where ε ∼ N (0, Id). Placing GP priors on the drift functions u− ∼ GP and u+ ∼ GP ,
we arrive at standard multi-output GP formulation. Following [12,24], we assume the
dimensions of the drift function are independent (assuming that the drift dimensions
are decoupled is the least restrictive assumption as coupling them would impose a form
of regularization). (equivalent to imposing a block-diagonal kernel matrix on a multi-
output GP) and thus we fit a separate GP for each dimension. See Appendix E.1 for the
specification of the predictive means.

Similar to [12,23], we are not making use of the predictive variances (using the pre-
dictive mean as an estimate for the drift can also be interpreted as a form of kernel ridge
regression under the empirical risk minimisation framework). Instead, we simply use the
predictive mean as an estimate of the drift and subsequently use that estimate to perform
the EM method, thus effectively we could interpret this approach as a form of kernel ridge
regression under the empirical risk minimisation framework.

Note that the advantage of the Bayesian GP interpretation of this procedure is that the
GP posterior under certain conditions is naturally conjugate to the posterior of the SDE
drift when modelled with a GP prior [23,25]. Furthermore, the Bayesian non-parametric
formulation allows for the encoding of the prior drift function as the mean function of the

GP prior (i.e., u∼GP(bQ
γ
0

0 , k)). This becomes helpful when trying to sample unlikely paths
and evaluating the fitted drift at samples that were not observed by the GP during training,
here we want the fitted drift to fall back to the prior rather than to a Brownian motion
given by a GP prior with 0 mean.

We now have the relevant ingredients to carry out IPML as specified in Figure 3. The
computational cost of IPML with a Gaussian process is detailed in Appendix H.5. The
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majority of the computation is spent fitting the GP in DriftFit at each iteration and scales as
a function of the time discretization used as well as the size of π0 and π1.

4. Related Methodology

In this section we carry out a conceptual comparison with two pre-existing numerical
approaches for solving the static SBP. While our goal is to solve the dynamic SBP, the
solution of the static SBP can be used to construct that of the dynamic SBP [10], and
this connection is central to our discussion. We would also like to highlight that an
algorithm akin to IPML has been proposed concurrently and independently by [26], the
main difference with our algorithm is that they estimate the drifts of the SDEs using neural
networks score matching while we use using Gaussian processes and maximum-likelihood-
based ideas.

4.1. Sinkhorn–Knop Algorithms

Within the machine learning community the static SBP with a Brownian motion prior
is popularly known as entropic optimal transport [4]. In this formulation there are no
trajectories and the empirical distributions are treated as discrete measures [π0]j=

1
N and

[π1]i=
1
M thus the objective is given by minQ∈D(π0,π1)〈Q, CQγ

0 〉+ γh(Q), where h is the
discrete entropy, 〈·, ·〉 computes the dot product between two matrices. The cost matrix C

corresponds to the log transition density induced by the prior SDE: C
Qγ

0
ij = ln pQ

γ
0 (yi|xj) ,

which in the case of a Brownian motion prior reduces to a scaled Euclidean distance.
Once the problem has been discretized as described, the Sinkhorn–Knopp algo-

rithm [3] can be applied directly to fit an optimal discrete transport map (and discrete SBP
potentials φ, φ̂) between the two distributions. Recent work [6] has showed empirical
success in forming a continuous approximation of the SBP potentials using the log-
sumexp formula [6]; however, it still remains to formally analyse the accuracy of the
logsumexp potentials.

Estimating the cost matrix C
Qγ

0
ij required by the Sinkhorn algorithm requires a mixture

of both density estimation and further simulation of the prior. Furthermore, once we have
the logsumexp potentials, additional high dimensional integrals must be estimated every
time we wish to evaluate the optimal drift. Details are discussed in Appendix F. In addition,
the Sinkhorn–Knopp algorithm still faces challenges in high dimensional spaces, specially
for small values of γ [27]. Many proposed enhancements and literature [4,5] have focused
on cost functions that implicitly require a Brownian motion prior and thus do not apply to
our general setting.

4.2. Data-Driven Schrödinger Bridge (DDSB)

The method proposed by [10] is perhaps the most similar approach to our approach
and consists of iterating two coupled density estimation objectives (see Appendix G) fitted
at the marginals until convergence. While conceptually similar to our approach, there are
three key differences. As with Sinkhorn–Knopp-based methods, their approach aims to
solve the static SBP. Once converged, it requires further approximation to estimate the
optimal drift. The coupled maximum likelihood formulation of the static half bridges
in [10] is based on un-normalised density estimation with respect to the SBP potentials
φ, φ̂. The coupling of φ, φ̂ in these objectives does not directly admit the application of
modern methods in density estimation since it does not allow us to freely parametrise
MLE estimators for the boundaries, and thus, neural density estimators such as [28–30]
cannot be taken advantage of to circumvent the computation of the partition function.
Regression problems are ubiquitous in machine learning (ML) and thus why we believe
that this formulation can be very impactful as it allows us to leverage all these methods
from ML. Experimentally, regression methods have been observed to scale better to high
dimensional problems than density estimation methods, we observed similar evidence as
we were unable to scale up the DDSB method beyond two dimensions.
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Additionally, to compute the normalising term in the DDSB objective, we have to esti-
mate a multidimensional integral that is not taken with respect to a probability distribution.
This poses a difficult challenge in high dimensions. For a more detailed commentary, see
Appendix G. Note that the method by [20] uses importance sampling to estimate these
quantities which performs poorly beyond two dimensions.

It worth noting that we are interested in a method that can obtain a dynamic interpola-
tion between two distributions. A downside of solving the static bridge either by Sinkhorn
or [10] is that it does not directly provide us with an estimate of the optimal dynamics.
In order to obtain an estimate of the optimal drift we require a series of approximations
to estimate the integrals in Equations (A70) and (A71), thus every time we evaluate the
optimal drift using these approaches we have to simulate the prior SDE O(N + M) times.
This makes the runtime of obtaining the drift and dynamical interpolation expensive, since
for each Euler step we take we have to simulate another SDE and backpropagate through
it to evaluate the drift.

Finally we would like to highlight that a series of modern approaches to generative
modelling [26,31–33] motivate both empirically and theoretically the gain in accuracy
obtained in generative modelling tasks when using a dynamical approach rather than a
static one.

5. Numerical Experiments

In this section, we demonstrate the capability of IPML to solve the Schrödinger
bridge while efficiently incorporating priors on a range of different tasks from synthetic
experiments to embryo cells (code supporting experiments can be found at https://github.
com/franciscovargas/GP_Sinkhorn, accessed on the 22 August 2021).

5.1. Simple 1D and 2D Distribution Alignment

The first experiment considered is a simple alignment experiment where π0 and π1
are either unimodal or bimodal Gaussian distributions (see Appendix H.1 for exact details
on the distributions). In Table 1 we compare the accuracy of the fitted marginals with
our implementation of the Data-Driven Schrödinger Bridge (DDSB) by [10]. The scoring
metrics used are the Earth mover’s distance (EMD) as well as a Kolmogorov–Smirnov (KS)
statistic on both sample sets.

Table 1. Performance comparison of the fitted marginals between DDSB and IPML on unimodal and
bimodal experiment.

Unimodal Bimodal
π0 π1 π0 π1

KS EMD KS EMD KS EMD KS EMD

DDSB 0.17 0.34 0.19 0.13 0.18 0.12 0.07 0.04
IPML 0.06 0.10 0.13 0.04 0.05 0.04 0.07 0.15

We were unable to get DDSB to work well when π0 and π1 were distant from each
other. In these distant settings, DDSB collapses the mass of the marginals to a single data
point (see Appendix H.1.1), as a result for the unimodal experiment we had to set γ = 100
for the DDSB approach to yield sensible results. We can observe IPML obtains better
marginals overall and at a lower value of γ = 1.

We carried out 2D experiments with our approach to show the ability of our method
to diffuse from a simple uni-modal distribution to a multi-modal distribution as in Figure 1
where our learned bridge successfully splits. Furthermore, we can visually observe how
the forward and backwards trajectories are mirror images of each other as expected.

5.2. 2D Double Well Experiments

In the double well experiment, we illustrate how to incorporate an arbitrary functional
prior and learn the distribution over paths connecting π0 and π1. In order to encode

https://github.com/franciscovargas/GP_Sinkhorn
https://github.com/franciscovargas/GP_Sinkhorn
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prior information, we experiment with the potential well illustrated in Figures 1 and A3.
The boundary distributions π1, π0 are taken to be Gaussian distributions centred at the
centre of each well, respectively (See Appendix H.2 for the experiment specification and
IPML parameters).

The motivation behind this experiment is to show that the SBP with this prior follows
low energy (according to the well’s potential function) trajectories for configurations of
particles sampled at the wells. Intuitively, we can expect the learned trajectories to avoid
the high energy peak located at x = (0, 0) and go via the “passes” on either side. Note
that if we estimated the optimal transport (OT) geodesics between π0 and π1 or similarly
ran IPML with a Brownian motion prior, the learned optimal trajectories would go right
through the middle, which is the highest energy path between both wells.

The prior is incorporated in the algorithm in two different ways, (1) by having the
first drift Q∗0 to follow the negative derivative of the potential function dx(t) = −∇xU(x) +
γdβ(t) and (2) by setting the mean function of the GP used to fit the drift as the negative
derivative of the potential function. As illustrated in Figure 1, the learned trajectories
between the two wells avoid the main high energy region and go through via lower energy
passes, thus respecting the potential prior; however, the behaviour of the trajectory will
differ depending on the choice of kernel, as illustrated in Figure A3, underlying the need
for its careful consideration. We compared our approach to DDSB using the mean squared
error distance to the prior in our evaluation. The results were DDSB: 22.1, IPML (no prior):
19.9, IPML: (prior) 18.7. As we can see, IPML considerably outperforms DDSB.

5.3. Finite Sample/Iteration Convergence

Theorem 1 provides us with asymptotic guarantees; however, it does not extend to
the finite sample and discretisation case. To highlight the importance of finite effects on
IPML, we carried out this analysis empirically. In Figure 3 we plot an empirical estimate of
the error term in the control formulation of the SB (Equation (5)). This term is effectively
the mean squared error between the learned drift and the prior drift (gradient field of
the well). We analyse this metric for different values of N (number of samples) and ∆t
(discretization factor). We observe that IPML quickly reaches a low error valley, then, the
cumulative error from the successive finite sample MLE can be observed and the drift
starts to slowly deviate from the prior, this motivates early stopping. As N is increased,
IPML achieves lower error faster and deviates less from the prior in later iterations. Finally,
we observe placing the drift prior via the GP has a significant effect in improving the error
and its convergence. Additionally in Appendix E we detail how this question could be
approached from a theoretical perspective while underlining its significance and difficulty
as illustrated by the lack of such analyses in related algorithms [10,22].

5.4. Single Cell—Embryo Body (EB) Data Set

We perform an experiment on an embryoid body scRNA-seq time course [34]. Single-
cell RNA sequencing enables accurate identification of cells at specific time points; however,
all cells are destroyed by measurement. This prevents modelling single-cell trajectory and
instead we rely on modelling the data-manifold at discrete time points. The datasets consist
of 5 time points illustrated in Figure A4. To evaluate the performance of the algorithms,
we fit the models at the endpoints (T = 1, 5) and predict the intermediate frames. The
metric used is the Earth mover’s distance between the data at intermediate frames and the
predicted distribution. We evaluate the performance at the endpoints by considering the
prediction of the forward model at T = 5 and the backward model at T = 1.

We compare the performance with two methods. The first one, TrajectoryNet [34],
uses continuous normalising flows with a soft constraint based on optimal transport. The
second leverages the McCann interpolant [35,36] to interpolate the discrete OT solution;
this corresponds to the linear interpolation induced by the transport map.

The results are summarised in Table 2. In most frames, IPML outperforms Trajec-
toryNet and performs similarly to OT. As the noise (volatility) in the trajectories goes
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to 0, IPML theoretically converges to the OT solution with linear geodesics. So without
any additional prior information, we would not expect IPML to outperform OT; however,
when dealing with finite data, the DriftFit procedure allows for some non-linearity in the
trajectories if it improves the fit. As a result, we do see some differences in the convex hull
displayed in Figure 4 where we observe a better coverage of the single cell observations.
We hypothesize this explains the improvement in performance vs. OT for frame 4. The per-
formance of IPML may be further improved by incorporating domain-specific knowledge
as a prior. It would outperform OT in those settings.

Table 2. Earth Moving Distance (EMD) on the EB data. EXP stands for the exponential kernel and EQ
for exponentiated quadratic. The column “full” represents EMD averaged over all frames whereas
“path” is averaged over the intermediate frames (T = 2, 3, 4).

T = 1 T = 2 T = 3 T = 4 T = 5 Mean
Path Full

TrajectoryNet 0.62 1.15 1.49 1.26 0.99 1.30 1.18
IPML EQ 0.38 1.19 1.44 1.04 0.48 1.22 1.02
IPML EXP 0.34 1.13 1.35 1.01 0.49 1.16 0.97

OT Na 1.13 1.10 1.11 Na 1.11 Na

Convex hull IPML
Convex hull TrajNet
T=0
T=1
TrajectoryNet
IPML

Figure 4. The left plot represent the first and last frame of the cell’s data and the convex hull of
the forward model for TrajectoryNet and IPML. The right plots represent sample trajectories for
Trajectorynet and IPML.

5.5. Motion Capture

In this experiment, we demonstrate how IPML can be used to model human motion
from sensor data (data from The CMU Graphics Lab Motion Capture Database funded
by the NSF (http://mocap.cs.cmu.edu, accessed on the 22 August 2021)). The motion
corresponds to a basketball movement where the subject raises both arms simultaneously
as illustrated in Figure 5 and each sensor corresponds to an oriented angle. We focus on
modelling the right shoulder and elbow where the starting distribution corresponds to the
leftmost image and the ending one the rightmost. This results in a 4-dimensional space as
we model both position and velocity for each sensor. We compare the fit of IPML using a
Brownian and a 2nd order linear ODE (Langevin) prior. The experimental details can be
found in Appendix H.3. As illustrated in Figure 5, IPML is able to approximately model
the dynamics using both priors. The Brownian prior displays noisy trajectories as expected
in contrast to the Langevin prior that, by construction, smooths out the predicted positions
(due to the 2nd order term). We observe that the Langevin prior approximates the step
function nature of the true trajectory more closely than the Brownian prior, additionally,
we can see that it also produces slightly better alignments.

http://mocap.cs.cmu.edu
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Figure 5. Left: 3D animation of the basketball signal motion modeled in Section 5.4 (motion from left to right). Right:
Trajectories of the shoulder’s oriented angle sensor through the motion. The two plots on the right demonstrate IPML’s fit
using a Brownian and Langevin prior.

6. Limitations and Opportunities

In this work, we propose to use GPs to estimate the drift; however, IPML could also
be used with a parametric function estimator (e.g., a neural network). This could be useful
with high-dimensional data where GPs may underperform. The main advantage of using a
GP is its capacity to incorporate functional priors via the mean function. This can be useful
in applications such as molecular dynamics where a potential function may be available.
In contrast, implementing functional regularization in a neural network would require
approximating a non-trivial high-dimensional integral to estimate the mean squared error
between the parametric estimator and the functional prior.

A particular useful extension would be to adapt the SBP to work with more gen-
eral forms of volatility functions that are not constant. This can be used, for example,
in enforcing positivity constraints on a stochastic process via a geometric Brownian mo-
tion prior; this has applications in modelling biological signals such as transcription
factors [37]. Work in this direction would require extending the theory of SBPs to non
constant volatility functions.

Another promising setting is when multiple frames of data are available rather
than just two boundary conditions. The IPFP algorithm trivially adapts to multiple con-
straints [21] rather than just initial and terminal distributions. Future work could explore
experiments similar to the one presented in [34] where multiple frames are considered
during training and the performance is measured using a leave-one-out procedure.

7. Conclusions

We have presented IPML, a method to solve the Schrödinger bridge for arbitrary
diffusion priors. We presented theoretical results guaranteeing convergence in the limit of
infinite data. We devised a practical application of the algorithm using Gaussian processes
and presented several experiments on a variety of problems from synthetic to biological
data. The approach opens up opportunities in science, where oftentimes, prior knowledge
about the temporal evolution of a process has been developed but needs to be combined
with data-driven methods to scale up to modern problems.
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Assumptions Across Proofs

For abstraction purposes we will list the set of assumptions assumed across all results
in this appendix:

• All SDEs considered have L−Lipchitz diffusion coefficients as well as satisfying
linear growth

• The optimal drifts are elements of a compact space and thus satisfy the HJB equa-
tions. Note for the proposes of Theorem 1 this can be relaxed using notions of
Γ−convergence,

• All SDEs satisfy a Fokker–Plank equation and thus p(x, t) = Law(Xt) is differentiable
with respect to x,

• The boundary distributions are bounded in L2(πi) that is ∃C < ∞, s.t. Eπi [|X|2] ≤ C.

Appendix A. Brief Introduction to the Schrödinger System and Potentials

The Schrödinger system and its potentials are mentioned when introducing some of
the results and connections of the full Schrödinger bridge problem. In this section, we will
provide a brief introduction to how the system arises from the original static Schrödinger
bridge. For brevity we will use x = x(0) and y = x(1) to denote the boundaries.

The static Schrödinger bridge problem can be derived from the full dynamic bridge by
marginalising out the dynamics via the Disintegration Theorem and focusing on the prob-
lem only concerning what is happening at the boundaries. The static SBP is formulated as:

arg min
q(x,y)∈D(π0,π1)

DKL(q||pQ
γ
) (A1)

where pQ
γ
(x, y) is the prior joint distribution for the boundary and can be obtained by

solving the FPK equation corresponding to the prior SDE. Now if we write down the
Lagrangian for the above problem we arrive at:

DKL(q||pQ
γ
) +

∫
λ(x)

[∫
q(x, y)dy− π0(x)

]
dx +

∫
µ(y)

[∫
q(x, y)dx− π1(y)

]
dy (A2)

which via performing the appropriate variations wrt to q leads to the optimal solution:

q∗(x, y) = exp
(

ln pQ
γ
(x)− 1− λ(x)

)
pQ

γ
(y|x) exp(−µ(y)), (A3)

which when relabeling the terms containing the Lagrange multipliers we obtain:

q∗(x, y) = φ̂(x)pQ
γ
(y|x)φ(y), (A4)

such that:

φ̂(x)
∫

pQ
γ
(y|x)φ(y)dy = π0(x) (A5)

φ(y)
∫

pQ
γ
(y|x)φ̂(x)dx = π1(y), (A6)

http://mocap.cs.cmu.edu
http://mocap.cs.cmu.edu/info.php
https://nbviewer.jupyter.org/github/KrishnaswamyLab/PHATE/blob/master/Python/tutorial/EmbryoidBody.ipynb
https://nbviewer.jupyter.org/github/KrishnaswamyLab/PHATE/blob/master/Python/tutorial/EmbryoidBody.ipynb
https://data.mendeley.com/datasets/v6n743h5ng/1
https://data.mendeley.com/datasets/v6n743h5ng/1
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Furthermore, if we relabel the potentials to indicate the times they correspond to we arrive
at the Schrödinger system:

φ(x, 0)φ̂(x, 0) = π0(x), φ(y, 1)φ̂(y, 1) = π1(y), (A7)

where

φ̂(x, 0) = φ̂(x), φ(y, 1) = φ(y), (A8)

φ(x, 0) =
∫

pQ
γ
(y|x)φ(y)dy, φ̂(y, 1) =

∫
pQ

γ
(y|x)φ̂(x)dx. (A9)

The above functional system is refered to as the Schrödinger system and the Schrödinger
potentials are given by φ, φ̂. Furthermore the time interpolates for the potentials can be
obtained by the propagations:

φ(x, t) =
∫

φ(z(1))pQ
γ
0 (z(1)|x(t))dz(1) (A10)

φ̂(y, t) =
∫

φ̂(z(0))pQ
γ
0 (y(t)|z(0))dz(0) (A11)

For a more rigorous and extensive introduction please see [20].

Appendix B. Disintegration Theorem—Product Rule for Measures

In this section, we present the Disintegration Theorem in the context of probability
measures, which serves as the extension of the product rule to measures that do not admit
the traditional product rule. Furthermore we will provide a proof for a direct lemma of
the Disintegration Theorem that is more analogous to the standard product rule. Similar
to the product rule these theorems are essential for decomposing and manipulating path
measures and thus is needed for most results pertaining to the dynamic SBP.

Theorem A1. (Disintegration Theorem for continuous probability measures):
For a probability space (Z,B(Z),P), where Z is a product space: Z = Zx × Zy and

• Zx ⊆ Rd, Zy ⊆ Rd′ ,
• πi : Z → Zi is a measurable function known as the canonical projection operator (i.e.,

πx(zx, zy) = zx and π−1
x (zx) = {y|πx(zx) = z}),

there exists a measure Py|x(·|x), such that∫
Zx×Zy

f (x, y)dP(y) =
∫

Zx

∫
Zy

f (x, y)dPy|x(y|x)dP(π−1(x)), (A12)

where Px(·) = P(π−1(·)) is a probability measure, typically referred to as a push-forward measure,
and corresponds to the marginal distribution.

A direct consequence of the above instance of the disintegration theorem is, with
f (x, y) = 1Ax×Ay(x, y),

P(Ax × Ay) =
∫

Ax
P(Ay|x)dPx(x). (A13)

We can see that, in the context of probability measures, the above is effectively analogous
to the product rule.

RN Derivative Disintegration

We now have the required ingredients to show the following:
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Lemma A1. (RN-derivative product rule) Given two probability measures defined on the same
product space, (Zx × Zy,B(Zx × Zy),P) and (Zx × Zy,B(Zx × Zy),Q), the Radon–Nikodym
derivative dP

dQ (x, y) can be decomposed as

dP
dQ (x, y) =

dPy|x
dQy|x

(y)
dPx

dQx
(x). (A14)

Proof. Note that this is an instructive sketch for a well known result [10,20,38,39]. We
assume that dQy|x >> dPy|x, which is not a trivial fact, yet it follows from the disintegration
theorem in this particular setting (see Theorem 1.6 b in [39]) . Starting from

P(Ax × Ay) =
∫

Ax
P(Ay|x)dPx(x),

we apply the Radon–Nikodym theorem to P(Ay|x) and then to Px:

P(Ax × Ay) =
∫

Ax

∫
Ay

dPy|x
dQy|x

(y)dQy|x(y)dPx(x)

=
∫

Ax

(∫
Ay

dPy|x
dQy|x

(y)dQy|x(y)

)
dPx

dQx
(x)dQx(x)

=
∫

Ax

∫
Ay

dPx

dQx
(x)

dPy|x
dQy|x

(y)dQy|x(y)dQx(x).

Now, via the disintegration we have that

∫
Ax×Ay

dPx

dQx
(x)

dPy|x
dQy|x

(y)dQ(x, y) =
∫

Ax

∫
Ay

dPx

dQx
(x)

dPy|x
dQy|x

(y)dQy|x(y)dQx(x).

Thus, we conclude that

P(Ax × Ay) =
∫

Ax×Ay

dPx

dQx
(x)

dPy|x
dQy|x

(y)dQ(x, y),

which, via the Radon–Nikodym theorem, implies

dP
dQ (x, y) =

dPy|x
dQy|x

(y)
dPx

dQx
(x).

Note that swapping Q for the Lebesgue measure would result in the standard product rule
for probability density functions.

Appendix C. Proof Sketches for Half Bridges

In this section we provide a proof sketch for the closed form solution of the half
bridges as well as a proof for Observation 1.

Theorem A2. The forward half bridge admits the following solution:

P∗
(

A0 × A(0,1]

)
=
∫

A0×A(0,1]

dπ0

dπQ
0

dQ. (A15)

Proof. Via the disintegration theorem, we have the following decomposition of KL:

DKL(P||Q) = DKL(π
P
0 ||π

Q
0 ) +EπP

0
[DKL(P(·|x)||Q(·|x))].
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Thus, via matching terms accordingly, we can construct P∗ by setting P(·|x) = Q(·|x) and
matching the constraints:

P∗
(

A0 × A(0,1]

)
=
∫

A0

Q(A(0,1]|x)dπ0(x), (A16)

P∗ =
∫

A0

dπ0

dπQ
0

(x)Q(·|x)dπQ
0 (x)

=
∫

A0×A(0,1]

dπ0

dπQ
0

(x)dQ. (A17)

Observation A1. We can parametrise a measure Q with its drift as the solution to either of the
following SDEs:

dx±(t) = b±(t) +
√

γdβ±(t),

x+(0) ∼ πQ
0 , x(1) ∼ πQ

1 .

Then, we can sample from the solution to the following half bridges:

P∗− = arg infP∈D(·,π1)
DKL(P||Q),

P∗+ = arg infP∈D(π0,·) DKL(P||Q),

via simulating trajectories following the SDEs

dx−(t) = b−(t) +
√

γdβ−(t), x(1) ∼ π1,

dx+(t) = b+(t) +
√

γdβ+(t), x(0) ∼ π0.

Paths sampled from the above SDEs will be distributed according to P∗− and P∗+, respectively.

Proof. (Sketch) W.l.o.g., consider the decomposition of the KL divergence that follows
from the disintegration Theorem (Appendix B):

DKL(P||Q) =DKL(π
P
0 ||π

Q
0 ) +EπP

0
[DKL(P(·|x)||Q(·|x))].

Furthermore the disintegration Q(·|x(0)) is a solution to the dynamics dx+(t) = b+(t) +√
γdβ+(t). We can make the term EπP

0
[DKL(P(·|x)||Q(·|x))] go to 0 by setting P(·|x(0)) =

Q(·|x(0)), it is clear the dynamics of P(·|x(0)) follows dx+(t) = b+(t) +
√

γdβ+(t). What
is left is to attach the constraint via x(0) ∼ π0(x(0)) which brings DKL(π

P
0 ||π

Q
0 ) to 0.

This is simply enforcing the constraints via the product rule (Disintegration Theorem)
and then matching the remainder of the unconstrained interval with the disintegration for
the reference distribution Q, following Equation (7).

Appendix D. Proof Sketch for Reverse-MLE Consistency

The proof sketch for Theorem 1 will show how the likelihood converges in the large
data and small time step limit to an optimisation of the KL divergence between two reverse
time diffusions, from here one can use the standard arguments to show this quantity is
minimised when the two measures describe the same stochastic process or equivalently
when the drifts are equal.
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Lemma A2. Normalizing the time reversed likelihood with the true discretised backwards SDE
density does not affect the maximum likelihood estimate. That is:

arg max
u

∑
n

T

∑
k=0

lnN
(

x(n)+tk−∆t

∣∣∣µ(n)+
tk−∆t, γ∆t

)
= arg max

u

1
N ∑

n

T

∑
k=0

(
lnN

(
x(n)+tk−∆t

∣∣∣µ(n)+
tk−∆t, γ∆t

)
− lnN

(
x(n)+tk−∆t

∣∣∣x(n)+tk
− ∆tu−0

(
x(n)+tk

, 1− tk

)
, γ∆t

))
(A18)

Proof. The term − lnN
(

x(n)+tk−∆t

∣∣∣x(n)+tk
− ∆tu−0

(
x(n)+tl

, 1− tk

)
, γ∆t

)
does not depend on u

and thus is an additive constant.

Theorem A3. (Consistency of Reverse-MLE Formulations) Let
{(

x(n)+tk

)T
k=0

}N

n=0
be sampled/

discretised trajectories from the SDE that represents the half bridge measure P+:

dx+(t) = u+
0 (x

+(t), t) +
√

γdβ+(t), x(0) ∼ π0.

Then carrying out maximum likelihood estimation of the time reversed drift u0
− on time re-

versed samples:

∏
n

p
((

x(n)+tk

)T
k=0

∣∣∣u−) ∝ (A19)

∏
n

p(x(n)+tT
)

T

∏
k=0
N
(

x(n)+tk−∆t

∣∣∣µ(n)+
tk−∆t, γ∆t

)
,

where,

µ
(n)+
tk−∆t = x(n)+tk

− ∆tu−
(

x(n)+tk
, 1− tk

)
(A20)

and u− is the drift of our estimator SDE:

dx−(t) = u−(x−(t), t) +
√

γdβ−(t), x−(t)(0) ∼ p, (A21)

converges in probability to the to the true dual drift u−0 (x, t) = u+
0 (x, t)− γ∇x ln p(x, t) where

u+
0 (x, t) is the optimal half bridge drift for P+ as N → ∞, ∆t→ 0. Under the assumptions:

• The density p(x, t) is differentiable with respect to x,
• The optimal drift lies in a compact space (this can be relaxed using notions of Γ−convergence),
• The prior drift coefficient is L−Lipchitz and satisfies linear growth.

Proof. For the interest of brevity let u(n)−
t = u−

(
x(n)+tk

, 1− tk

)
. Taking logs and applying

Lemma A2 to Equation (A19) yields:

1
N ∑

n

T

∑
k=0

(
lnN

(
x(n)+tk−∆t

∣∣∣µ(n)+
tk−∆t, γ∆t

)
− lnN

(
x(n)+tk−∆t

∣∣∣x(n)+tk
− ∆tu−0

(
x(n)+tk

, 1− tk

)
, γ∆t

)
+ ln

p(xtT )

q(xtT )

)
(A22)

1
N ∑

n

1
2γ∆t

T

∑
k=0

−∣∣∣∣∣
∣∣∣∣∣x(n)+tk−∆t − (x(n)+tk

− ∆tu(n)−
t )

∣∣∣∣∣
∣∣∣∣∣
2

+

∣∣∣∣∣
∣∣∣∣∣x(n)+tk−∆t − (x(n)+tk

− ∆tu(n)−
0t )

∣∣∣∣∣
∣∣∣∣∣
2

+ ln
p(xtT )

q(xtT )

 (A23)

where q(xtT ) represents the terminal distribution of the forward SDE (i.e., x+(1) ∼ π).
Now we can equivalently write the above expression in terms of the time reversed samples
(i.e., x−ti

= x+tn−i
):

1
N ∑

n

1
2γ∆t

T

∑
k=0

−∣∣∣∣∣
∣∣∣∣∣x(n)−tk

− (x(n)−tk−∆t − ∆tu(n)−
t )

∣∣∣∣∣
∣∣∣∣∣
2

+

∣∣∣∣∣
∣∣∣∣∣x(n)−tk

− (x(n)tk−∆t − ∆tu(n)−
0t )

∣∣∣∣∣
∣∣∣∣∣
2

+ ln
p(x(n)−t0

)

q(x(n)−t0
)

 (A24)
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Expanding the squares and re-arranging:

1
N ∑

n

1
γ

T

∑
k=0

(∆x(n)−)>(u(n)−
1−t − u(n)−

0(1−t))−
1
2
(||u(n)−

1−t ||
2 − ||u(n)−

0(1−t)||
2)∆t + ln

p(x(n)−t0
)

q(x(n)−t0
)

, (A25)

where ∆x(n)− = x(n)−tk
− x(n)−tk−∆t. Now we can consider the limit of Equation (A25):

lim
N→∞

lim
∆t→0

1
N ∑

n

1
γ

T

∑
k=0

(∆x(n)−)>(u(n)−
1−t − u(n)−

0(1−t))−
1
2
(||u(n)−

1−t ||
2 − ||u(n)−

0(1−t)||
2)∆t + ln

p(x(n)−t0
)

q(x(n)−t0
)

, (A26)

lim
N→∞

1
N ∑

n

1
γ

lim
∆t→0

T

∑
k=0

(∆x(n)−)>(u(n)−
1−t − u(n)−

0(1−t))−
1
2
(||u(n)−

1−t ||
2 − ||u(n)−

0(1−t)||
2)∆t + ln

p(x(n)−t0
)

q(x(n)−t0
)

, (A27)

We can write the sum over the time grid as a stochastic integral if we express the inner
terms using the continuous time approximation from Lemma A3:

lim
N→∞

1
N ∑

n

1
γ

lim
∆t→0

∫ 1

0
(u(n)−

1−t − u(n)−
0(1−t))

>dx̂(n)−(t)− 1
2

∫ 1

0
(||u(n)−

1−t ||
2 − ||u(n)−

0(1−t)||
2)dt + ln

p(x(n)−t0
)

q(x(n)−t0
)

, (A28)

From [15,16,18] it follows that x̂(n)−(t) is a semi-martingale (w.r.t. to the backwards filtra-
tion, see [17,40]) then in the limit the stochastic integrals are taken with respect to the true
time reversed stochastic process adapted to the backwards filtration (F−i )i∈T (see Theorem
2.13 in [41]):

lim
∆t→0

∫ 1

0
(u(n)−

1−t − u(n)−
0(1−t))

>dx̂(n)−(t) P−→
∫ 1

0
(u−(x(n)−(t), t)− u−0 (x(n)−(t), t))>dx(n)−(t) (A29)

lim
∆t→0

∫ 1

0
(||u(n)−

1−t ||
2 − ||u(n)−

0(1−t)||
2)dt P−→

∫ 1

0
(||u−(x(n)−(t), t)||2 − ||u−0 (x(n)−(t), t)||2)dt, (A30)

now we have:

lim
N→∞

1
N ∑

n

1
γ

∫ 1

0
(u−(x(n)−(t), t)− u−0 (x(n)−(t), t))>dx(n)−(t)

− 1
2γ

∫ 1

0
(||u−(x(n)−(t), t)||2 − ||u−0 (x(n)−(t), t)||2)dt + ln

p(x(n)−(0))
q(x(n)−(0))

, (A31)

where by Lemma A3 each random function x(n)−(t) is sampled i.i.d from the SDE:

dx−(t) = u−0 (x
−(t), t) +

√
γdβ+(t), x−(0) ∼ q, (A32)

we can now apply the weak law of large numbers (WLLN):

EQ

[
1
γ

∫ 1

0
(u−(x(n)−(t), t)− u−0 (x(n)−(t), t))>dx(n)−(t)

− 1
2γ

∫ 1

0
(||u−(x(n)−(t), t)||2 − ||u−0 (x(n)−(t), t)||2)dt + ln

p(x(n)−(0))
q(x(n)−(0))

]
, (A33)
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Now using that the log RN derivative between the estimator SDE and the true SDE is given
by Girsanov’s theorem [20,42,43]:

ln
dQ
dPu

=
1
γ

∫ 1

0
(u−0 (x(n)−(t), t)− u−(x(n)−(t), t))>dx(n)−(t)

− 1
2γ

∫ 1

0
(||u−0 (x(n)−(t), t)||2 − ||u−(x(n)−(t), t)||2)dt− ln

p(x(n)−(0))
q(x(n)−(0))

, (A34)

we arrive at:

EQ

[
− ln

dQ
dPu

]
= −D(Q||Pu). (A35)

Thus using 1
NL(u) to denote the negative normalized log-likelihood we have shown the

following pointwise (i.e., for u ∈ B) convergence in probability:∣∣∣∣ 1
N
L(u)− D(Q||Pu)

∣∣∣∣ P−→ 0. (A36)

Then if B , is compact plus additional continuity and boundedness assumptions on L(u) a
stronger form of uniform convergence in probability can be attained:

sup
b∈B

∣∣∣∣ 1
N
L(u)− D(Q||Pu)

∣∣∣∣ P−→ 0, (A37)

from the above it directly follows that:∣∣∣∣ 1
N
L(u∗N)− D(Q||Pu∗N ,)

∣∣∣∣ P−→ 0, (A38)

where u∗N is the MLE estimate of the dual drift at N samples. Which implies:

lim
N

P−→∞

D(Q||Pu∗N
) = 0, (A39)

lim
N

P−→∞

u∗N = u−0 (A40)

See Chapter 4.5 of [44] for a more detailed discussion on the required assumptions of L.

Extending Theorem 1 to EM Samples

Note that the above proof holds for discretised samples from the original SDE, however
we have been unable to extend it to approximate sampling schemes such as EM. We believe
that the following result motivates the possibility that Theorem 1 holds when the samples
are obtained from a consistent scheme such as EM:

Lemma A3. (Convergence of discrete time reversal) The time reversal of discrete Euler-Mayurama samples:

x−ti
= x+tn−i

(A41)

converges in probability to the solutions of the time reversed diffusion:

dx−(t) = b−(t)dt +
√

γdβ−(t) (A42)

where x−(t) = x+(1− t)
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Proof. First let’s consider the continuous time step-wise approximation induced by the the
EM samples:

x̂(t) =
T

∑
i=1

xti−1 δt∈[ti−1,ti)
,

From [45] it is a well known result that under the standard regularity assumptions on the
drift u(x, t) (i.e., Lipchitz continuity in t and and x) that the above approximation converges
in probability to the SDE solution x+(t) as ∆t→ 0.

Observing that that the time reversal of the above corresponds to the approximation induced
by the reverse samples we now consider the continuous time reversed approximation:

x̂−(t) = x̂(1− t) =
T

∑
i=1

xti−1 δ1−t∈[ti−1,ti)
,

Using x̂(t) converges in probability to x+(t) we have that ∀t ∈ [0, 1], ε > 0:

lim
∆t→0

P

(
sup

t∈[0,1]

∣∣x̂(t)− x+(t)
∣∣ > ε

)
= 0, (A43)

we carry out the following substitution s = 1− t then ∀s ∈ [0, 1], ε > 0:

lim
∆t→0

P

(
sup

t∈[0,1]

∣∣x̂(1− s)− x+(1− s)
∣∣ > ε

)
= 0, (A44)

lim
∆t→0

P

(
sup

t∈[0,1]

∣∣x̂−(s)− x−(s)
∣∣ > ε

)
= 0, (A45)

which completes the proof. Note that showing that reversing backwards samples reversed
to a forward direction converges in probability follows the same sketch structure.

Now it requires to be proved that x̂(n)−(t) is a semi-martingale which may follow
from Lemma A3 as ∆t→ 0. Another potential proof strategy would be to try and exploit
the strong convergence properties of the Euler scheme to show that the stochastic integral
from Theorem 1 also converges in the case of Euler samples. It may be the case that a
correction term needs to be introduced in order for the integrals built from the reversed
EM sample to converge to the backwards integrals. This remains an interesting question
for future work.

Appendix E. Towards a Finite Sample Analysis of Approximate IPFP Schemes

We use the term approximate IPFP schemes for methodologies such as the one we
present in this paper (i.e., IPML) where steps 5, 6 of IPFP algorithm (Figure 2) are replaced
with inexact approximations. In this section we will present a rough sketch that takes
the first step towards formally analysing approximate IPFP schemes in the finite sam-
ple/discretisation regime. This will serve to illustrate many of the challenges that still
remain in this analysis as well as provide some initial results.

Conjecture A1. (Heuristic Finite Sample Bound)
Given that:

• The exact IPFP at the ith iteration can be bounded from above as:

||u+
∗ − u+

i || ≤
S
Qγ

0
π0,1

i
(A46)

• The approximate IPFP projection operators P̂±π : X → X are K−Lipchitz
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• and the approximate finite sample projection error can be bounded by a constant:

||u+
i − P̂π0,1 [u

+
i−1]|| ≤ ε∆T,N , (A47)

Then it follows that the approximate IPFP iteration error can be bounded from above by:

||u+
∗ − û+

i || ≤ ε∆T,N i +
S
Qγ

0
π0,1

i
(A48)

when P±π are non-expansive operators (K = 1), and:

||u+
∗ − û+

i || ≤ ε∆T,N
1− Ki

1− K
+

S
Qγ

0
π0,1

i
(A49)

when K 6= 1. Where S
Qγ

0
π0,1 = infQ∈D(π0,π1)

DKL
(
Q
∣∣∣∣Qγ

0
)
, and ||.|| is the L2(Q∗) norm error as

per Equation (4), that is it is just the half bridge in Line 6 of the algorithm in Figure 2 written in
terms of the drifts.

Proof. (Sketch) For notational simplicity we will relabel the half bridges in the algorithm
of Figure 2 as projection operators P±π : X → X in a function space X . This leads to the
following iterates:

u−i = P−π1
[u+

i−1] (A50)

u+
i = P+

π0
[u−i ] (A51)

For the approximate IPFP we have the iterates:

û−i = P̂−π1
[û+

i−1] (A52)

û+
i = P̂+

π0
[û−i ]. (A53)

Furthermore, to simplify the analysis further we will consider the composition of the two
projection operators (i.e., Pπ0,1 = P+

π0
◦ P−π1

) combined into a single operator (for both
exact and approximate projections):

u+
i = Pπ0,1 [u

+
i−1] = P

+
π0
[P−π1

[u+
i−1]] (A54)

We will now proceed to bound the error:

||u+
∗ − û+

i || ≤ ||u
+
i − û+

i ||+ ||u
+
∗ − u+

i || (A55)

From the assumptions it follows that:

||u+
∗ − u+

i || ≤
S
Qγ

0
π0,1

i
(A56)

yielding:

||u+
∗ − û+

i || ≤ ||u
+
i − û+

i ||+
S
Qγ

0
π0,1

i
, (A57)

Now we will proceed to analyse the first term:

||u+
i − û+

i || ≤ ||u
+
i − P̂π0,1 [u

+
i−1]||+ ||P̂π0,1 [u

+
i−1]− û+

i || (A58)

≤ ||u+
i − P̂π0,1 [u

+
i−1]||+ ||P̂π0,1 [u

+
i−1]− P̂π0,1 [û

+
i−1]|| (A59)

≤ ε∆T,N + K||u+
i−1 − û+

i−1|| (A60)
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Now we can expand the recurrence until the first iteration, yielding:

||u+
i − û+

i || ≤
i

∑
j=0

ε∆T,NK j (A61)

When K 6= 1 we attain the bound:

||u+
i − û+

i || ≤ ε∆T,N
(1− Ki)

1− K
(A62)

When the projection operator P̂π0,1 is non expansive this gives the bound:

||u+
i − û+

i || ≤
i

∑
j=0

ε∆T,NK j (A63)

≤ ε∆T,N i (A64)

Note that the above sketch is more of a strategy to outline the challenges and steps
required for this analysis rather than a proof itself. We believe that the formal finite sample
analysis on approximate IPFP schemes merits its own separate work and is thus not the
focus of this work; however, in order to highlight its importance we have provided a
template towards this formal analysis following a strategy similar to [46]. This analysis
allows us to understand what conditions are needed to be shown and how they will affect
the finite sample convergence rates.

We will now proceed to discuss each of the assumptions that are required as elements
of the above analysis strategy.

Assumption A1. The exact IPFP at the ith iteration can be bounded from above as:

||u+
∗ − u+

i || ≤
S
Qγ

0
π0,1

i
(A65)

This assumption/conjecture is somewhat reasonable since Proposition 2.1 in [22]

proves formally that the sum of the KL errors of the ith marginals are bounded by
S
Qγ

0
π0,1
i ,

furthermore via the disintegration theorem one can show that the half bridge error terms
are in fact bounded by the sum of the error of the ith marginals [20]. Thus it seems feasible
to extend the result in [22] to the path error we use in our conjecture.

Assumption A2. The approximate IPFP projection operators P̂±π : X → X are K−Lipchitz.
Specifically we are interested in the cases where they may be non-expansive and contractive.

This assumption is specific to the approximation method used to estimate the half
bridges. It requires going into rigorous details on the nature of the approximation and
imposing suitable regularity assumptions. Not that ideally we want the operator to be
contractive or at the very least not expansive since for Lipchitz constants greater than one
the cumulative error would potentially accumulate exponentially.

It is interesting to note that in the contractive case we can attain the bound:

||u+
∗ − û+

i || ≤
ε∆T,N

1− K
+

S
Qγ

0
π0,1

i
(A66)

where the error term is constant with respect to the iteration number. Additionally the
bound in Equation (A48) also trivially applies.
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Assumption A3. The approximate finite sample projection error can be bounded by a constant:

||u+
i − P̂π0,1 [u

+
i−1]|| ≤ ε∆T,N , (A67)

This should typically be something that one shows; however, as seen in [46], it is
something that is often assumed in these proof strategies. The reason for assuming the
result is that the projection varies depending on how we approximate the KL minimisation,
in our case we combine our proposed IPML with drift estimation via Gaussian processes.
The error of the drift estimation (i.e., ε∆T,N) via this approach is not straightforward to
obtain and is still an area of active research see [23,25] for more details. As mentioned
earlier this is not the focus of our work thus it is reasonable for us to assume that the drift
estimation machinery proposed by prior authors is sound and should be possible to bound
with a reasonable error.

Appendix E.1. GPDriftFit Implementation Details

In this section we provide the closed form predictive formulas used by our method
to estimate the drift. Our GP formulation for the half bridge approximations yield the
following mean per dimension d estimates of the drift:

[ū+(x, t)]d =vec
(
k+

d (x⊕t)
)>(K̃+

d +
γ

∆t
IMT

)−1
vec(Y+

d ), (A68)

[u−(x, t)]d =vec
(
k−d (x⊕t)

)>(K̃−d +
γ

∆t
INT

)−1
vec(Y−d ), (A69)

where

[K̃±d ]i·T+l,i′ ·T+l′ = [K±d ]ii′ ll′ ,

[K+
d ]mm′ ll′=Kd

(
x(m)−

tl−∆t ⊕(tl−∆t), x(m
′)−

tl′−∆t⊕(tl′−∆t)
)
,

[K−d ]nn′kk′ = Kd
(

x(n)+tk
⊕ tk, x(n

′)+
tk′

⊕ tk′
)
,

[k+
d (x⊕ t)]lm = Kd(x⊕ t, x(m)−

tl−∆t ⊕ (tl − ∆t)),

[k−d (x⊕ t)]kn = Kd(x⊕ t, x(n)−tk
⊕ (tk)),

[Y±d ]li =

±x(i)∓tl
∓ x(i)∓tl−∆t

∆t


d

,

where ⊕ is the concatenation operator, vec is the standard vectorisation operator, and
Kd : Rd+1 ×Rd+1 → R is a valid kernel function.

Appendix E.2. Coupled vs. Decoupled Drift Estimators

A careful reader may enquire if the decoupled drift parametrisation we have used
imposes any limitations on the generality of the drifts that our method can estimate in
contrast to an approach that couples/correlates drift dimensions. While it may seem
counter-intuitive, correlating the GP outputs (i.e., coupling the drift dimensions) is more
restrictive than the decoupled approach we have taken. This point is discussed and
motivated in [47,48], where it is illustrated that the coupling of the drift outputs correspond
to regularising the RKHS hypothesis space. So in fact the decoupled approach we take
in this work is more flexible (less limited) than coupling the drift outputs as discussed
in [47,48]. It is important to note that the regularisation effects of coupling may be desirable
in certain physical systems where we wish to impose a constraint; however, this would
come at a large computational cost. Finally note that our method parametrises the drift
[u]i = fi(x, t) with a function that depends on all dimensions of the dynamical process x(t),
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that is each drift coordinate depends on the entire input space and thus no simplifying
assumptions have been made in this setting.

Appendix F. Estimates Required by the Sinkhorn–Knop Algorithm

In order to adapt the Sinkhorn–Knop algorithm to a general prior we require the
following considerations:

• The Sinkhorn–Knop algorithm requires computing the cost C
Qγ

0
ij = ln pQ

γ
0 (yi|xj). For

more general SDE priors whose transition densities are not available in closed form
can be challenging:

– First we have to estimate the empirical distribution for ln pQ
γ
0 (yi|xj) by generat-

ing multiple x(1) samples from the priors SDE for each xj in the dataset:

dx(t) = u(x(t), t)dt + γdβ(t), x(0) = xj

– Once we have samples {xk}j we must carry out density estimation for each j in

order to evaluate ln pQ
γ
0 (yi|xj).

• The Sinkhorn–Knop algorithm produces discrete potentials, which can be interpolated
using the logsumexp formula; however, how do we go from these static potentials to
time dependant trajectories?

– From [10] we can obtain expressions for the optimal drift as a function of the
time extended potentials:

φ(x, t) =
∫

φ(z(1))pQ
γ
0 (z(1)|x(t))dz(1) (A70)

φ̂(y, t) =
∫

φ̂(z(0))pQ
γ
0 (y(t)|z(0))dz(0) (A71)

The first integral can be approximated using the Montecarlo approximation via
sampling from the prior SDE to draw samples from pQ

γ
0 (y(t)|z(0)); however,

computing the φ̂ potential integral is less clear and requires careful thought.
– Note that in order to estimate the drift we would have to simulate the SDE prior

every time we want to evaluate the drift, which itself will be run in another SDE
simulation to generate optimal trajectories.

Appendix G. Approximations Required by DDSB

The approach in [10] iterates the following two objectives.

β̂∗i = arg max
β̂

1
M ∑

s
ln φ̂0(xs; β̂)φ

(i)
0 (xs) (A72)

−
∫

φ̂0(x; β̂)φ
(i)
0 (x)dx, xs ∼ π0(x),

and

β∗i = arg max
β

1
N ∑

s
ln φ1(ys; β)φ̂

(i)
1 (ys) (A73)

−
∫

φ1(y; β)φ̂
(i)
1 (y)dy, ys ∼ π1(y).

where φ̂0, φ1 are parametric functions aimed at estimating the potentials, and:∫
φ̂0(x; β̂)φ

(i)
0 (x)dx =

∫
φ1(y; β)φ̂

(i)
1 (y)dy

=
∫

φ̂0(x; β̂)
∫

pQ
γ
0 (y|x)φ(i)

1 (x; β)dydx, (A74)
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Note that in Equation (A74) the outer most integral is not taken with respect to a probability
distribution and thus does not admit standard approximations. The authors in [10] propose
the method of importance sampling [49]; however, this does not scale well to higher
dimensions. This is contrasting to our approach where all integrals are expectations with
respect to the empirical distribution and the SDEs being fitted.

Figure A1. Unimodal experiment on the left and bimodal on the right.

Appendix H. Experiments

In this section we provide in depth details regarding the parameter configurations of
our approach plus our experimental setup. For all the experiments below, unless stated
otherwise, we used the exponential kernel with a lengthscale set at the default value of 1.
We ran IPML for 5 iterations with a discretization factor ∆t = 0.01 and γ = 1. The iteration
number (5) was selected by observing that the algorithm converged after that number in
all experiments considered.

Appendix H.1. 1D Experiment

The prior Qγ
0 in IPM (the practical implementation of Qγ

0 will be added in the main pa-
per during the revision period) is specified by a prior drift and an initial value distribution

π
Qγ

0
0 . We set π

Qγ
0

0 = π0 and the prior to a Brownian motion Wγ unless stated otherwise. The
initial value distribution does not affect the argmax of the SBP and is thus a free parameter.

Note that π
Qγ

0
0 is used in practice to estimate the backwards drift of the prior before entering

the IPFP loop by first sampling from Qγ
0 using the SDESolve subroutine. It is possible to

encourage more exploration of the space by increasing the variance of π
Qγ

0
0 .

For the unimodal boundary distributions we used:

π0 ∼ N (0, 1), π1 ∼ N
(

4, 0.12
)

(A75)

and for the bimodal experiment we used:

π0 ∼ N (0, 1) π1 ∼
1
2
N (1.8, 0.62) +

1
2
N (−1.9, 0.62). (A76)

Appendix H.1.1. Delta Collapse in DDSB

Here we will illustrate a common failure case of the approach in [10]. That is when
the distributions π0 and π1 are distant from each other the methodology proposed in [10]
breaks for suitable values of γ (i.e., γ = 1, 2, 3...). Using the same marginals π0, π1 as in
Experiment 1 we re-train the method by [10] with γ = 1. In Figure A2 we can see the
results of this experiment. We can see the marginals learned by DDSB collapse all the mass
in a very small low density region for the true marginals. We found this phenomena to
occur often and harder to overcome in 2-dimensional experiments and thus did not pursue
further comparisons with this method. Note we normalised the delta spike of the DDSB
marginals to have a range in [0, 1] so we could compare to the true density, its actual value
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is on the order of 1011, which confirms that the model is collapsing to a point mass (dirac
delta function).

Figure A2. Schrödinger Bridge results using the method by [10] on unimodal to bimodal Gaussian
1D data. This example illustrates the Dirac delta collapse of the marginals.

Appendix H.2. Well Experiment

We used the following potential to model the double wells:

U(x, y) =
5
2
(x2 − 1)2 + y2 +

1
δ

exp
(
− x2 + y2

δ

)
, (A77)

furthermore, we used the boundary distributions:

π0 ∼ N
((
−1
0

)
,
(

0.0125 0
0 0.15

))
, π1 ∼ N

((
1
0

)
,
(

0.0125 0
0 0.15

))
where we selected the boundary distributions to be located at the wells and visually follow
a similar spread/curvature as the contour of the well. For these experiments we use γ = 3.

As highlighted previously π
Qγ

0
0 is a free parameter, which in this section we set as:

π
Qγ

0
0 ∼ N

((
0
0

)
,
(

0.5 0
0 0.5

))
, (A78)

we select this as the marginal prior since its samples cover the space over which the
wells is defined well, and helps estimate the backwards drift of the prior more accurately.
As mentioned in the paper, using different kernels as well as lengthscales resulted in
slightly different behaviour on the well experiment where the trajectory would not split as
illustrated in Figure A3. The splitting pattern was obtained using an exponential kernel
with a lower lengthscale (0.25) underlying the need for careful consideration of the kernel
and its parameters.
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Figure A3. IPML forward trajectories on potential well. Exponentiated kernel on the left and
exponential quadratic on the right.

Discussion on Kernel Choice

We can observe that when using EQ kernel, the trajectories do not cross both passes
but instead choose one. We conjecture that this is due to the fitted predictive means
having a preference for simpler functions that send nearby particles in the same direction.
We empirically verify this conjecture by experimenting with alternative kernels to EQ
(i.e., exponential) that model a wider class of functions. We believe that these alternative
kernels are less prone to discouraging splitting since, when viewed within the kernel ridge
regression framework, they span an RKHS of functions that do not have the smoothness
constraint of the EQ kernel.

The data used for this experiment were taken directly from the GitHub repository
published by [34]. PCA is first applied to the data and the first five components are selected.
We used the code available at https://github.com/KrishnaswamyLab/TrajectoryNet/tree/
master/TrajectoryNet (accessed on the 22 August 2021) to reproduce the performance of
TrajectoryNet as well as the optimal transport baseline.

Appendix H.3. Motion Experiment

For this experiment we use a second order SDE prior (i.e., Langevin dynamics). This
can be encoded in first order SDE using the companion/controllable form of a dynami-
cal system:

d
(

x(t)
v(t)

)
=

(
v(t)

Kx(t)− βv(t)

)
dt + γ

(
0d
1d

)
dβ(t) (A79)

For simplicity we set the dampening factor β to 0 and γ = 0.5. As for the spring matrix we
explored the following decoupled and coupled forms:

K = kI K = k
3
2
I− k

2
11> (A80)

where k defines the frequency of the solution via ω =
√

k/m in our setting we ignore
the mass (imagine is at absorbed in the matrix K and work directly with setting ω. Since
the movement we select moves from rest to a high position and does not return to its
starting point/or repeat itself we set ω ≈ π that corresponds to 0.5 Hz which describes

https://github.com/KrishnaswamyLab/TrajectoryNet/tree/master/TrajectoryNet
https://github.com/KrishnaswamyLab/TrajectoryNet/tree/master/TrajectoryNet
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half a revolution. We visually confirmed with the true trajectories that this seems like a
reasonable prior.

Figure A4. Fitted SBP distribution on the start and end data slices with Brownian prior on single-cell
human Embryo data from [34]. Observations depicted as red point clouds. See Section 5.3 for
experimental details.

Appendix H.4. Cell Experiment

For the Brownian motion prior that we use as a baseline comparison in Appendix H.3
we explored several values of γ and selected the best performing one (visually) of γ = 0.3.
Note we do pick a smaller value of γ for the Brownian motion and this is partly to
compensate that the Langevin prior trajectories will always look smooth by construction
thus we pick a not so noisy Brownian motion that still gives good results.

Note that the volatility term here is singular and in our mocap application setting it is
exactly the vector:

γ

(
0d
1d

)
(A81)

where the dimension d is given by the number of sensors we use to fit the motion. A
careful reader may wonder weather the SBP machinery still applies to such a sparsely
structured diffusion and in fact it does. Following Theorem 4 of [43] we can see how the
Radon–Nikodym derivative is finite and can be expressed in an almost identical fashion to
the original controlled SBP formulation and thus justifying the existence of the SBP in this
scenario as well as the application of the IPML algorithm and its derivatives.
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Figure A5. Trajectories of the shoulder and arm oriented angle sensor through the motion. The two
plots on the right demonstrate IPML’s fit using a Brownian and Langevin prior.
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Appendix H.5. Computational Resources

Appendix H.5.1. Computational Costs

The main computational cost of IPML comes from fitting a Gaussian process to model
the drift (DriftFit). Assuming the cardinality of |π0| = |π1| = N and a discretization
factor ∆t, at each iteration, IPML requires fitting a Gaussian process on N

∆t
samples. It is

a well-known fact that GPs have a cubic time complexity making the costs of the DriftFit
subroutine O(( N

∆t
)3). This could be scaled down by using GP approximations (Nystrom)

and was successful in our preliminary results. The computational costs of the SDESolve
sub-routine in comparison is O(( N

∆t
)2) due to the GP predictions costs. Finally, the memory

complexity of the algorithm is O(( N
∆t
)2) due to the GP fitting in DriftFit. The running time

of IPML on the machine described in the section below for the well experiment is around
5 min. For the cell experiment, the running time is between 1 and 2 h depending on the
discretization factor chosen.

Appendix H.5.2. Infrastructure Used

The experiments were performed on Compute Canada clusters. Specifically, they
ran on a CPU cluster composed of Intel CPUs. Each node contains 20 Intel Skylake cores
(2.4 GHz, AVX512), for a total of 40 cores per node and 202 GB of RAM. The computa-
tional costs for the toy experiments (Well and 1D) was quite small; however, the RAM
consumption of the cell experiment was significant due to the use of a Gaussian process.
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