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be effective not only for texture, but also for object categization, even in the presence of

substantial clutter and intra-class variation. We also show how to augment the purely local

image representation with statistical co-occurrence relations between pairs of nearby features,

and develop a learning and classification framework for the task of classifying individual

features in a multi-texture image. Next, we present a more structured alternative to bags of

features for object recognition, namely, an image representation based on semi-local parts,

or groups of features characterized by stable appearance and geometric layout. Semi-local

parts are automatically learned from small sets of unsegmented, cluttered images. Finally, we

present a global method for recognizing scene categories that works by partitioning the image

into increasingly fine sub-regions and computing histograms of local features found inside

each sub-region. The resulting spatial pyramid representation demonstrates significantly

improved performance on challenging scene categorization tasks.



LOCAL, SEMI-LOCAL AND GLOBAL MODELS FOR TEXTURE, OBJECT
AND SCENE RECOGNITION

BY

SVETLANA LAZEBNIK

B.S., DePaul University, 2000
M.S., University of Illinois at Urbana-Champaign, 2002

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2006

Urbana, Illinois



c©Copyright by Svetlana Lazebnik, 2006



ABSTRACT

This dissertation addresses the problems of recognizing textures, objects, and scenes

in photographs. We present approaches to these recognition tasks that combine salient

local image features with spatial relations and effective discriminative learning techniques.

First, we introduce a bag of features image model for recognizing textured surfaces under a

wide range of transformations, including viewpoint changes and non-rigid deformations. We

present results of a large-scale comparative evaluation indicating that bags of features can

be effective not only for texture, but also for object categization, even in the presence of

substantial clutter and intra-class variation. We also show how to augment the purely local

image representation with statistical co-occurrence relations between pairs of nearby features,

and develop a learning and classification framework for the task of classifying individual

features in a multi-texture image. Next, we present a more structured alternative to bags of

features for object recognition, namely, an image representation based on semi-local parts,

or groups of features characterized by stable appearance and geometric layout. Semi-local

parts are automatically learned from small sets of unsegmented, cluttered images. Finally, we

present a global method for recognizing scene categories that works by partitioning the image

into increasingly fine sub-regions and computing histograms of local features found inside

each sub-region. The resulting spatial pyramid representation demonstrates significantly

improved performance on challenging scene categorization tasks.
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CHAPTER 1

Introduction

The recognition of materials, objects, and scene categories from photographs are among

the most central problems in the field of computer vision. However, despite decades of

intensive research, even the most sophisticated recognition systems today (see [139] for a

summary of the state of the art) remain incapable of handling more than just a few simple

classes, or of functioning under unconstrained real-world conditions. What makes recognition

so difficult is the seemingly limitless variability of natural imagery that arises from viewpoint

and lighting changes, movement and deformation of non-rigid or articulated objects, intra-

class appearance variations, and the presence of occlusion and background clutter (see Figure

1.1 for examples of different kinds of visual classes with some representative variations). This

dissertation proposes novel models of image content that are robust to many of these sources

of variability and can achieve high recognition performance on challenging datasets.

As basic building blocks for our models, we use local image features, or appearance-based

descriptors computed over regions of support whose size is typically much smaller than that

of the entire image. As shown in Figure 1.2, a patch-based description or representation of

an image can be obtained by processing the image with one of the specialized scale- or affine-

invariant salient region detectors that have been introduced over the last decade [61, 62, 83,

90, 101, 104, 153]. Alternatively, for applications that do not require geometric invariance,

we can simply sample rectangular patches randomly [100] or on a regular grid [30]. In recent

literature, local features have been used for image indexing and retrieval [103, 137, 138],

1



Texture and material recognition: Textured surfaces may be photographed in a wide
range of scales and orientations, and significant perspective distortions may be present in
images. Some materials, like marble, are highly nonhomogeneous, and others, like cloth, are
non-rigid.

Object recognition: Objects may be difficult to detect because of clutter and occlusion.
Animals are non-rigid and appear in different poses. Some classes, like giraffes, can be
characterized well by their texture, but others, like egrets, are textureless and require a more
structured representation.

Scene recognition: Natural scene categories have significant intra-class variation. Some
indoor categories, such as kitchen and living room, may be difficult to distinguish from one
another.

Figure 1.1 Examples of images for each of the recognition tasks considered in this disser-
tation.
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Figure 1.2 Two alternative patch-based representations of two natural images. Left: orig-
inal images, center: patches found by the Harris detector, right: patches found by the
Laplacian detector.

wide-baseline matching [3, 134, 135, 153], description and matching of video clips [129, 144],

recognizing different views of the same object [34, 130] and different instances of the same

object class [1, 23, 33, 163]. Indeed, using local features as image primitives has several

important advantages:

• Robustness: Because local features are relatively small and compact, they can be

preserved even when large portions of an image are affected by clutter or occlusion.

• Repeatability: Many existing local feature detectors can reliably identify corresponding

features in different images despite geometric transformations, changes in lighting,

or minor appearance variations. These may be features corresponding to the same

surface patch in two views of the same object, or features corresponding to analogous

structures, such as eyes, on different instances of the same class.

3



• Expressiveness: Unlike the geometric features historically used in computer vision

(points or line segments), today’s local features contain information not only about

their shape (circular, elliptical, or rectangular), but also about their appearance. Rich

high-dimensional descriptors of appearance provide strong consistency constraints for

matching tasks.

• Local geometric invariance: Depending on the requirements of a particular application,

one may choose to use scale-, rotation- or affine-invariant local features. In particular,

affine invariance offers robustness to a wide range of geometric transformations that

can be locally approximated by a linear model, including perspective distortions and

non-rigid deformations.

• Compactness or sparsity: The number of features returned by most detectors is typi-

cally orders of magnitude smaller than the total number of pixels in the original image.

The resulting patch-based description is extremely compact, thus reducing processing

time and storage requirements.

In this dissertation, we present several novel approaches for modeling visual classes. These

approaches can be classified into three types, based on the kinds of geometric relations

between local features that they encode (Figure 1.3): local models disregard all spatial

information; semi-local models capture relations between groups of nearby regions; and global

models encode the spatial layout of all features in the image. In our work, local models

(Chapter 3) are aimed primarily at texture recognition, though in Section 3.2, we show them

to be surprisingly effective for object categorization as well. Semi-local models (Chapter 5)

are used to create a part-based object representation. Finally, global models (Chapter 6) are

used to describe scenes, though they can also work well for recognizing object classes in the

absence of geometric deformations. The next section discusses the tasks of texture, object

and scene recognition in more detail, together with their associated models.

4



Local model Semi-local model

Global model

Figure 1.3 The three kinds of models used in this thesis. Top left: a local model is a
distribution or histogram of appearance descriptors of salient regions extracted from the
image. This model is most appropriate for texture recognition. Top right: a semi-local
model is a geometrically stable group of neighboring local features lying on the object of
interest. We use semi-local parts to represent object structure. Bottom: a global model is
a set of histograms computed over a multi-level pyramid decomposition of the image. This
model is most effective for scene recognition.
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1.1 Recognition Tasks

1.1.1 Texture Recognition

We want to recognize images of textured surfaces subject to viewpoint changes and non-

rigid deformations. For this task, we use a local model in which spatial constraints are absent,

i.e., each patch is considered separately, without any information about its neighborhood or

its position in the image. In the framework presented in Chapter 3, each image is represented

by the distribution of appearance descriptors of the features contained in it. The distribution

is learned by quantizing the descriptors in the image and forming a signature, or a set of all

cluster centers together with weights indicating the relative sizes of the clusters. Signatures

of different images are compared using Earth Mover’s Distance (EMD) [131, 132], which

solves a partial matching problem between sets of possibly unequal cardinality, and is robust

to noise, clutter, and outliers. We also investigate an alternative bag-of-features approach,

in which local features are quantized into “textons” or “visual words” drawn from some

universal vocabulary, and their distributions in images are represented as histograms of

texton labels. This approach is analogous to the bag-of-words paradigm for text document

analysis [9, 52, 102, 114, 133].

A major shortcoming of bag-of-features methods is their disregard of spatial relations.

For many natural textures, the spatial layout of local features captures perceptually impor-

tant information about the class. Augmenting our texture representation with geometric

information can be expected to increase its ability to discriminate between textures that

have similar local elements but different geometric patterns. In the first part of Chapter 4,

we present a texton-and-relations model that takes inspiration from bigram models used to

describe text documents. Specifically, our model represents not only the frequencies of indi-

vidual textons, but also the frequencies of co-occurrences of pairs of texton labels at nearby

locations in the image. In the second part of Chapter 4, we consider the task of labeling

individual features in multi-texture images. This task is more challenging than classification

6



of single-texture images, because the local appearance of the feature itself is often insuffi-

ciently discriminative (for example, if we observe a uniformly blue image patch, we do not

know whether it is water or sky). To reduce this ambiguity, we introduce a two-level model

that first computes the probabilities of class membership of individual regions using a purely

local model, and then refines these probabilities using a relaxation framework that relies on

spatial relations to obtain contextual information.

1.1.2 Object Recognition

Our second target problem is recognizing object categories despite 3D viewpoint changes,

intra-class appearance variations, non-rigid motions, as well as clutter and occlusion in the

test images. At the most basic level, object recognition may be considered as a whole-image

classification problem, i.e., identifying which object class is present in an image, without

attempting to segment or localize that object. For this (admittedly simplified) task, it is

possible to represent the “visual texture” of images containing objects using the orderless bag-

of-features model described in Section 1.1.1. Such models have been used in several recent

approaches to visual categorization [20, 164], unsupervised discovery of visual “topics” [30,

122, 143], and video retrieval [144]. In these publications and in the evaluation presented

in the second half of Chapter 3, orderless models have achieved surprisingly high levels of

accuracy on several challenging datasets.

Despite its practical advantages, a bag of features is an extremely impoverished repre-

sentation for object classes, since it ignores all geometric information about the object class,

fails to distinguish between foreground and background features, and cannot segment an ob-

ject from its surroundings. In chapter 5, we propose a more structured object representation

based on composite semi-local parts, defined as geometrically stable configurations of mul-

tiple local features that are robust against approximately rigid deformations and intra-class

variations. An object model consists of a collection of multiple semi-local parts, and these
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parts, in turn, can be connected to each other by looser geometric relations. Semi-local parts

are detected using an alignment-like geometric search, which can in principle work with any

rigid 2D transformation model, from translation to projective (in the experiments presented

in Chapter 5, we demonstrate scale- and affine-invariant parts). Note, however, that in

searching for semi-local parts, we do not assume that the entire object of interest is globally

planar and/or rigid, only that it possesses some sub-components that can be approximately

characterized in this way. Thus, our approach extends the level of geometric invariance of

existing part-based object models [1, 28, 33, 163] which are mostly limited to recognizing

fronto-parallel views of upright objects. Our learning framework does not require objects in

training images to be hand-segmented or hand-aligned, it can work with minimal amounts

of training data, and is robust to substantial noise, background variation, and occlusion.

1.1.3 Scene Recognition

Our third problem is recognizing semantic scene categories such as beach, mountain,

school, office, etc. Just as texture and object recognition, this task can be approached

using purely local models [30, 91]. However, in this dissertation we show that improved

performance can be achieved by a global model that takes into account the absolute positions

of the features. Intuitively, a global model has improved discriminative power because it

captures spatial regularities that are important to our perception of natural scenes (for

example, sky is usually above ground or water, building walls are usually vertical, the horizon

is usually a horizontal line, etc.). In Chapter 6, we propose a spatial pyramid model that is

based on forming a multi-level quadtree decomposition of an image and aggregating statistics

of local features over each cell of the decomposition at each level (Figure 1.3, bottom). This

approach is inspired by the pyramid matching framework of Grauman and Darrell [45], who

form a multi-scale decomposition of the high-dimensional space of appearance descriptors,

instead of the two-dimensional image space. Note that the number of levels in the image

8



decomposition is an implementation parameter of our approach; the higher it is, the more

precisely individual features are localized. When the number of levels is zero, the spatial

pyramid representation reduces to a standard bag of features. Our experiments demonstrate

that the spatial pyramid achieves a significant improvement in performance over bags of

features not only for scene classification tasks, but also for object classification tasks that do

not require geometric invariance.

1.2 Themes, Contributions and Outline

The recognition approaches presented in this dissertation are based on combining salient

local features with various kinds of geometric relations and effective discriminative learning

techniques. Let us briefly discuss the major issues or themes associated with each of these

components.

When dealing with local features, we are usually most concerned with the issue of invari-

ance. In computer vision literature, there exist feature extraction schemes that are invariant

to scaling, scaling with rotation, and to affine transformations (see Section 2.1 for a liter-

ature review). As discussed in Chapter 3, by using these features, we can compensate for

various geometric transformations in the images, from global scale changes, rotations and

affine deformations, to perspective changes and even non-rigid distortions. Given datasets

that contain a wide range of these transformations, approaches that do not have intrinsically

invariant features are at a disadvantage, since they require training exemplars to sample all

the possible changes that may appear in the test set. Thus, with geometrically invariant

features, we can learn from much smaller training sets. However, there is a tradeoff: the

higher the level of invariance, the greater the amount of discriminative information that is

lost during the feature normalization process. In the course of the experimental evaluation

reported in Section 3.2, we have found that the best results are usually achieved with the

lowest level of invariance absolutely required for a given application. Finally, in some ap-
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plications such as scene recognition (Chapter 6), the sources of intra-class variability are

so complex that they are best dealt with by statistical methods instead of geometric ones.

In these cases, invariant features are not likely to bring much of a benefit at all, and an

exemplar-based approach is more appropriate.

Another theme that runs through this dissertation is that of matching or correspondence.

The bag-of-features method of Chapter 3 is based on comparing distributions of features in

two images. To perform this comparison, we represent the distributions as two discrete sets

of points in high-dimensional appearance space and use the Earth Mover’s Distance (EMD)

to find the lowest-cost matching between these two sets. Note that in this case, the matching

does not take into account any spatial information. By contrast, our global model of Chapter

6 is based on the idea of matching two sets of features in image space, not in appearance

space. Since our target application of scene recognition requires only a rough notion of spatial

consistency, we obtain an efficient approximation to the matching cost using a pyramid

match kernel that can also be used to approximate EMD [45]. Finally, our part-based object

recognition approach of Chapter 5 uses a much more precise operation of matching two

sets of features that have consistent appearance and geometric layout. We implement this

operation as a constrained alignment search. While it is more computationally expensive

than pyramid matching, it has the advantage of providing us with explicit correspondences,

and also allowing us to match groups of features that have been subjected to (approximately

rigid) affine transformations.

An important unifying theme associated with the learning component of our methods

is our emphasis on weakly supervised learning, i.e., the ability to construct texture, object

and scene models from unsegmented and cluttered training images. Today, fully supervised

learning is still the standard for many recognition approaches — it is routine, for example,

to hand-segment training images and hand-label individual features as belonging to various

object classes. However, the effort and expense associated with these tasks will make detailed
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annotation impractical for the large-scale datasets that vision algorithms will have to handle

in the future. Therefore, reducing the amount of manual supervision required by vision

systems is crucial for enabling them to function in real-world applications.

The main contributions of this dissertation can be summarized as follows:

• Our approach to texture recognition (Chapter 3) is the first one to rely on local fea-

tures produced by scale- and affine-invariant interest region detectors. The resulting

texture representation is intrinsically invariant to a wide range of geometric transfor-

mations, and therefore can be learned from relatively few images, unlike other existing

approaches, which require exemplars of every possible transformation to be included

in the training set.

• In Section 3.2, we extend our bag-of-features method with a Support Vector Ma-

chine (SVM) classifier, and the resulting system outperforms other state-of-the-art ap-

proaches on several challenging object databases. This part of our work is performed

in collaboration with Jianguo Zhang and Marcin Marszalek at INRIA Rhône-Alpes.

• To our knowledge, our approach for labeling individual texture regions (Section 4.2) is

the only one to date that can learn texture models in a weakly supervised manner, i.e.,

from multi-texture images that are not segmented, only labeled by the textures that

they contain.

• Our object representation in terms of semi-local parts (Chapter 5) has a number of

advantages over constellation models [163, 33] and methods based on low-distortion

correspondence [5]: it does not assume that the object is globally planar and/or rigid, it

can achieve a higher degree of geometric invariance (up to affine, which can approximate

viewpoint changes), and can tolerate a much greater degree of clutter during learning.

• The spatial pyramid method introduced in Chapter 6) is a simple, yet effective ex-

tension of the basic bag-of-features model, capable of achieving significantly higher
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performance on scene classification, and on object classification in the absence of clut-

ter and geometric variation. In particular, our method exceeds the state of the art on

the Caltech101 dataset [29].

The rest of this dissertation is organized as follows. Chapter 2 reviews existing computer

vision literature on local image features, as well as methods for texture, object, and scene

recognition. Chapter 3 presents our bag-of-features model for texture and object classifica-

tion. Chapter 4 describes two extensions to this model that incorporate pairwise relations

between nearby features. Chapter 5 presents our representation of object classes in terms of

semi-local parts, and Chapter 6 presents our global spatial pyramid model for scene classifi-

cation. Finally, Chapter 7 closes the dissertation with a summary of our contributions and

discussion of possible extensions and future research directions. The work described in this

dissertation has been previously published in [71, 72, 73, 74, 75, 76, 168].
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CHAPTER 2

Previous Work

This chapter reviews existing work on feature detectors and descriptors, as well as meth-

ods for texture, object, and scene recognition.

2.1 Feature Detectors and Descriptors

Early work on the extraction of local features in natural images includes the interest

operators of Moravec [108] and Harris [50], as well as various image decompositions into

perceptually salient blob-like primitives [19, 95, 160]. Blostein and Ahuja [10] were the first

to introduce a multiscale blob detector based on maxima of the Laplacian. Lindeberg [82]

has extended this detector in the framework of automatic scale selection, where a “blob”

is defined by a scale-space location where a normalized Laplacian measure attains a local

maximum. Informally, the spatial coordinates of the maximum become the coordinates of the

center of the blob, and the scale at which the maximum is achieved becomes its characteristic

scale. G̊arding and Lindeberg [40] have also shown how to design an affine blob detector

using an affine adaptation process based on the second moment matrix. This process forms

an important part of two affine-invariant1 region detection schemes [3, 104] that rely on a

multiscale version of the Harris operator to localize interest points in space.

1It is more technically correct to refer to these regions as affine-covariant, which means that the regions
detected in an affinely transformed version of an image can be obtained by subjecting the regions found
in the original image to the same transformation. However, the term affine-invariant is common in the
literature [104, 105], and so we use it throughout this dissertation for consistency.

13



SIFTShape Context

Figure 2.1 The decomposition of the region of support used by the shape context (left) and
the SIFT descriptor (right).

In the work presented in Chapters 3 - 5 of this dissertation, we use the Laplacian detector

of G̊arding and Lindeberg [40] and the Harris detector of Mikolajczyk and Schmid [104,

105]. A brief description of these detectors, including details of the scale selection and

affine adaptation procedures mentioned above, is given in the Appendix. Alternative region

extraction schemes include the “entropy detector” of Kadir and Brady [62], the difference-

of-Gaussians (or DoG) detector of Lowe [90] (see also Crowley and Parker [19] for related

work), the “maximally stable extremal regions” of Matas et al. [101], and the corner- and

intensity-based operators of Tuytelaars and Van Gool [153]. Of the above, [62, 90] are scale-

invariant, while [101, 153] are fully affine-invariant. This proliferation of region detectors,

motivated primarily by applications to wide-baseline stereo matching and image retrieval,

attests to the increased importance accorded to the spatial and shape selection principles in

the computer vision community. A comparative evaluation of several state-of-the-art region

detectors is presented in [107].

Detection of local image regions is only the first part of the feature extraction process; the

second part is the computation of descriptors to characterize the appearance of these regions.

A good descriptor should be distinctive, so as to provide strong consistency constraints

for image matching, yet robust to illumination changes and other “nuisance” appearance
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variations. A classic method of image description is in terms of differential invariants derived

from the local jet, or the vector of image derivatives computed up to a specified order [65].

Another classic method is to describe the appearance of an image region by the outputs of a

set of linear filters, such as Gabor filters [39, 98], wavelets [158], or steerable filters [37]. In

current literature, there exists a wide variety of filter banks custom-engineered for specific

applications (see [125] for a survey). Despite the historical popularity of filter banks, they

do not always provide the best method of image description. For example, it has been shown

that raw pixel values can be more effective than filter outputs for texture classification [157].

In recent literature, very promising results have been achieved by so-called distribution-based

descriptors [106], such as the shape context [4] and the Scale-Invariant Feature Transform

(SIFT) [89, 90], that work by subdividing the region of support and counting appearance

attributes (edge points or oriented edge points) inside each subregion. The shape context

uses a log-polar decomposition of a circular image region, and computes counts of edge

points in each spatial bin. The example in Figure 2.1, left uses 12 angular bins and 4

radial bins, for a 48-dimensional descriptor. The SIFT descriptor (Figure 2.1, right) divides

a square patch into a 4 × 4 grid and computes a histogram of gradient orientations in

each subregion. Eight gradient orientations are used, resulting in a 128-dimensional feature

vector. Histogramming provides stability against deformations of the image pattern, while

subdividing the support region offsets the potential loss of spatial information. In this way, a

compromise is achieved between the conflicting requirements of greater geometric invariance

on the one hand and greater discriminative power on the other. Intuitively, descriptors based

on this compromise should be simultaneously richer and more robust than filter banks and

differential invariants, which are functions of the entire region of support. Indeed, in a recent

comparative evaluation [106], SIFT descriptors and shape contexts decisively outperform

these more traditional methods. In Section 3.1.1.2, we introduce two new distribution-based
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descriptors, spin image and RIFT, that are tailored to achieve greater geometric invariance

and computational efficiency as opposed to greater distinctiveness.

2.2 Texture Recognition

The automated analysis of image textures has been the topic of extensive research in

the past forty years, dating back at least to Julesz in 1962 [59]. Traditional techniques for

modeling texture include co-occurrence statistics [49, 59], filter banks [97, 125], and random

fields [99, 167]. One of the most important challenges in the field of texture analysis and

recognition is achieving invariance to a wide range of geometric and photometric transforma-

tions. Early research in this domain has concentrated on global 2D image transformations,

such as rotation and scaling [18, 99]. However, such models do not accurately capture the

effects of 3D transformations (even in-plane rotations) of textured surfaces. More recently,

there has been a great deal of interest in recognizing images of textured surfaces subjected

to lighting and viewpoint changes [21, 22, 80, 87, 156, 157, 165]. A few methods [80, 87, 165]

are based on explicit reasoning about the 3D structure of the surface, which may involve

registering samples of a material so that the same pixel across different images corresponds

to the same physical point on the surface [80] or applying photometric stereo to reconstruct

the depth map of the 3D texture [87, 165]. While such approaches capture the appearance

variations of 3D surfaces in a principled manner, they require specially calibrated datasets

collected under controlled laboratory conditions. For example, the 3D texton representation

of Leung and Malik [80] naturally lends itself to the task of classifying a “stack” of registered

images of a test material with known imaging parameters, but its applicability is limited in

most practical situations.

In our own work, we are interested in classifying unregistered texture images. This prob-

lem has been addressed by Cula and Dana [21] and Varma and Zisserman [156, 157], who

have developed several dense 2D texton-based representations capable of very high accuracy
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on the challenging Columbia-Utrecht reflectance and texture (CUReT) database [22]. The

descriptors used in these representations are filter bank outputs [21, 156] and raw pixel val-

ues [157]. Even though these methods have proven effective in the complex task of classifying

images of materials despite significant appearance changes, the representations themselves

are not invariant to the changes in question. In particular, the support regions for computing

descriptors are the same in all images; no adaptation is performed to compensate for changes

in surface orientation with respect to the camera.

Because they lack representation-level invariance, the above methods require the use of

multiple models or prototypes to represent a single texture. As long as the training set

adequately samples all viewpoints and lighting directions that can be encountered at test

time, the texture can be successfully recognized. On the other hand, when the test set

contains images not represented in the training set (e.g., images at significantly different

scales), performance drops dramatically [156]. In Chapter 3, we show how to reduce this

dependence on representative training sets by developing a texture representation with built-

in geometric invariance.

2.3 Object Recognition

The earliest recognition systems [13, 88, 112, 127] were model-based, i.e., designed to

perform localization and pose estimation from a single view of an object given a represen-

tation of its 3D shape (possibly as a combination of “parts” or geometric primitives such as

generalized cylinders). This work has emphasized the relatively abstract issues of viewpoint-

independent representation of generic 3D shapes and formal rule-based geometric reasoning.

While model-based vision systems represent important conceptual milestones in the field of

recognition, their practical usefulness is severely limited by their reliance on relatively weak

and uninformative image features such as line and curve segments and their lack of flexi-

bility for modeling non-parametric deformations or complex intra-class variations (though
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some model-based approaches [170] have made a systematic attempt to represent deformable

objects such as animals from their 2D silhouettes). In this dissertation, we follow instead

an alternative appearance-based recognition paradigm, which emphasizes not precise 3D ge-

ometric description, but statistical modeling of 2D object apperance using highly expressive

and discriminative image features.

Initial work on appearance-based object recognition has mainly utilized global descrip-

tions: The raw images themselves can be subjected to eigenspace analysis [110, 152] or used

as feature vectors for support vector machine classification [120]. Another class of early meth-

ods [113, 136] is based on characterizing the entire image using color or texture histograms.

The main drawback of such methods is their lack of robustness to clutter and occlusion.

For this reason, recognition methods that work by characterizing the entire image have been

gradually supplanted over the last decade by part-based methods that seek to identify sta-

tistically or structurally significant “atoms” of object appearance. In the older model-based

literature, a part was usually understood to be a 3D geometric primitive in some formal

scheme for representing general shapes. By contrast, appearance-based approaches have a

much more flexible image-based notion of a part. Schneiderman and Kanade [140] define

parts as groups of highly correlated input variables (in their case, wavelet coefficients). Most

other approaches obtain parts by sampling image fragments [93, 142, 154], or by detecting

corner-like interest points [1, 162, 163] or scale-invariant salient regions [29, 33].

In the current literature, a popular object recognition paradigm is that of probabilistic

constellation or parts-and-shape models that represent not only the statistics of individual

parts, but also their spatial layout [14, 29, 33, 163]. The idea of such models goes back

at least thirty years to the pictorial structures of Fischler and Elschlager [35]. Unfortu-

nately, the level of geometric invariance of existing constellation models is limited to scale

and translation, since a principled probabilistic treatment of rotation or affine invariance is

prohibitively complex [78]. Learning and inference problems for these models become even
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more intractable in a weakly supervised setting where the location of the object in a train-

ing image has not been marked by hand. This setting requires the use of the Expectation

Maximization (EM) algorithm [8] to perform the assignment of object parts to image regions

in the presence of occlusion and clutter. However, the combinatorics of EM-based learning

severely limits both the expressiveness of the corresponding object models and the amount

of clutter and/or occlusion that can be tolerated during learning.

In response to the above difficulties with parts-and-shape models, several vision re-

searchers have proposed orderless bag-of-features models [20, 164, 143], which are obtained by

extracting scale- or affine-invariant local features from images, quantizing them into “visual

words,” and learning the distributions of these words for each object class. This is essentially

the same strategy that we use in designing the local texture model presented in Chapter 3.

However, while an orderless representation is appropriate for texture images, which lack

clutter and have uniform statistical properties, it is somewhat problematic as a method for

representing object classes, since it ignores spatial relations and makes no distinction between

features generated by the object and those generated by the background. In fact, bag-of-

features methods are prone to much the same pitfalls as earlier global and histogram-based

recognition approaches. One way to increase the robustness of bag-of-features methods to

clutter and occlusion is to use statistical techniques such as feature selection [24] or boost-

ing [118] to retain only the most discriminative features for recognition. Another solution

is to design novel kernels that can yield high discriminative power despite the noise and

irrelevant information that may be present in local feature sets [45, 92, 161]. In Chapter

3, we follow this idea by introducing a kernel based on EMD, which is designed for partial

matching, and therefore performs well in clutter and occlusion. With the addition of this

kernel, our local texture representation becomes capable of achieving and even exceeding

state-of-the-art classification results on multiple object databases.
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Even though we can obtain good object recognition results using a completely orderless

method, our ultimate goal in this disseration is to overcome the limitations of Bayesian parts-

and-shape models without sacrificing spatial relations. We can achieve this by adopting a

non-probabilistic approach to learning and detecting object parts that is based on direct

search for visual correspondence. In recent literature, the low-distortion correspondence

method of Berg et al. [5] is an example of this philosophy. In Chapter 5 we present an

object representation in which composite parts are found using alignment techniques [54].

Our semi-local part approach is capable of a higher degree of geometric invariance than

existing constellation models, and, in combination with a discriminative maximum entropy

framework (Section 4.1), enables the learning of relatively complex object models consisting

of many features in heavily cluttered images.

2.4 Scene and Context Recognition

In the 1990s, several researchers have considered “semantic” scene categorization tasks

such as distinguishing city views from landscapes [44, 155] and indoor from outdoor im-

ages [147]. Subsequent computational approaches to scene description and recognition have

often drawn their inspiration from the literature on human perception. For example, it is

known that people can recognize scenes by considering them in a “holistic” manner, without

having to recognize individual objects [7]. Recently, it has been shown that human subjects

can perform high-level categorization tasks extremely rapidly [148] and in the near absense of

attention [31]. Renninger and Malik [126] propose an orderless bag-of-textons model to repli-

cate human performance on rapid scene categorization tasks. Another perceptually inspired

approach, due to Oliva and Torralba [117], computes a low-dimensional representation of a

scene based on several global properties such as “openness” and “ruggedness.” A few recent

scene recognition approaches [91, 159] try to find effective intermediate representations in

terms of basic natural texture categories, such as water, sky, sand, grass, foliage, etc. A ma-
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jor drawback of these methods is that these categories have to be learned in a fully supervised

fashion, which requires human participants either to hand-segment the training images and

label their constituent categories or to provide numerous sample patches of each category.

Fei-Fei and Perona [30] present an alternative unsupervised approach that represents scenes

as mixtures of a small number of “themes,” or characteristic textures.

Several of the approaches listed above [44, 117, 147] are based on the observation that

coarse spatial localization of image features carries discriminative information for the scene

recognition task. They take advantage of this insight by partitioning the image into multiple

subblocks and computing statistics of features in each subblock. A similar decomposition

strategy is used by the Viper content-based image retrieval system developed by the Uni-

versity of Geneva [145], which subdivides the image into a two-level quadtree. Our spatial

pyramid scene recognition method presented in Chapter 6 also uses a quadtree decomposition,

but gives it a novel interpretation in terms of partial matching of two sets of features [45].

Just like its precursors, our method is global because the spatial image decomposition is not

spatially invariant, and the image representation it induces may change depending on the

absolute positions of the individual features. However, because of the considerable statis-

tical regularities in the spatial layout of natural scenes, this sensitivity to position actually

becomes a source of additional discriminative power.

It is important to note that global image representations are useful not only for scene

classification considered as a goal in itself, but also for context recognition, as a prerequisite

for object identification tasks. The “gist” of an image [111, 150], which is related to the

global low-dimensional representation of Oliva and Torralba [117] may be used to inform the

subsequent search for specific objects (e.g., if the image, based on its global description, is

likely to be a highway, we have a high probability of finding a car, but not a toaster).

So far, we have focused on the problem of assigning a single global category label to the

entire image. However, there exists a considerable body of work on labeling local image re-
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gions according to high-level concepts. Some of the tasks considered in the literature include

labeling of image regions into natural vs. manmade [11, 68], classifying them into one of

several natural texture categories [69], or into one of several geometric classes determined

by their surface orientations (e.g., horizontal, fronto-parallel, slanted, etc.) [53]. The latter

approach extracts 3D information about the scene that can be used as a type of context for

predicting likely positions and scales of objects of interest in the image. In this dissertation,

we also address the labeling problem, albeit somewhat restrictively formulated as classifica-

tion of individual local features in multi-texture images (Section 4.2). One advantage of our

approach is that, unlike all the labeling methods listed above, it works in a weakly supervised

setting, i.e., it can learn multiple texture categories without requiring segmented images or

samples of individual textures.
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CHAPTER 3

A Bag-of-Features Model for Texture and Object

Recognition

This chapter presents an orderless bag-of-features representation for texture and object

classes that works by characterizing the distribution of appearance descriptors of local fea-

tures in the image. The first part of this chapter, Section 3.1, describes a texture recognition

method that relies on local affine-invariant features to achieve robustness to significant ro-

tations, scale changes, perspective distortions, and non-rigid deformations. This method

combines multiple local feature detectors and descriptors in a nearest-neighbor classification

framework that relies on Earth Mover’s Distance (EMD) to compare distributions. Ex-

perimental results presented in Section 4.2.2 show promising performance on two texture

databases. This texture recognition approach has been published in [72, 75].

The second part of this chapter, Section 3.2, presents an in-depth evaluation that ex-

tends our original work in several ways. First, we augment the classification framework

with a Support Vector Machine kernel, which greatly improves performance over the orig-

inal nearest-neighbor method and increases the effectiveness of combining multiple feature

channels. Second, we consider different levels of invariance of local features, and show that

the best level of invariance depends on the given task. Third, we perform a comparative

evaluation with state-of-the-art methods on three texture and three object datasets. This

evaluation was performed in collaboration with Jianguo Zhang and Marcin Marszalek at

INRIA Rhône-Alpes and has appeared in [168].
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3.1 Texture Recognition Using Local Affine Regions

This section presents a texture recognition method that is invariant to geometric trans-

formations that can be locally approximated by an affine model. Since sufficiently small

patches on the surfaces of smooth 3D objects are always approximately planar, local affine

invariants are appropriate for modeling not only global 2D affine transformations of the

image, but also perspective distortions that arise in imaging a planar textured surface, as

well as non-rigid deformations that preserve the locally flat structure of the surface, such

as the bending of paper or cloth. Like other approaches based on textons, or primitive tex-

ture elements [21, 80, 156, 157], our method involves representing distributions of 2D image

features; unlike these, however, it performs shape selection, ensuring that descriptors are

computed over neighborhoods whose shape is adapted to changes in surface orientation and

scale caused by camera movements or scene deformations. In addition, our method performs

spatial selection by computing descriptors at a sparse set of image locations output by local

affine region detectors. This is a significant departure from the traditional feature extrac-

tion framework, which involves processing every pixel location in the image. Apart from

being memory- and computation-intensive, this dense approach produces redundant texton

dictionaries that may include, for instance, many slightly shifted versions of the same basic

element [96]. As Figure 3.1 illustrates, spatial selection is an effective way to reduce this

redundancy.

Our approach consists of the following steps (see also Figure 3.2):

1. Extract a sparse set of affine-invariant regions (or affine regions for short) in the shape

of ellipses from a texture image. The two region detectors used for this purpose are

described in Section 3.1.1.1.

2. Normalize the shape of each elliptical region by transforming it into a circle. This

reduces the affine ambiguity to a rotational one. Full affine invariance is achieved
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(a) (b) (c) (d)

Figure 3.1 The effect of spatial selection on a texton dictionary. (a) Original texture image.
(b) Top 20 textons found by clustering all 13 × 13 patches of the image. (c) A sparse set
of regions found by the Laplacian detector described in Section 3.1.1.1. Each region is
normalized to yield a 13 × 13 patch. (d) Textons obtained by clustering the normalized
patches. For the sake of this illustration, we disregard the orthogonal ambiguity inherent
in the normalization process (see Section 3.1.1.1 for details). Because we are clustering the
normalized patches themselves, instead of rotation-invariant descriptors as in Section 3.1.1.2,
the resulting description of patch appearance in this case is rotation-dependent. This can
be seen from the fact that the second and third clusters of (d) are rotated versions of each
other.

by computing rotation-invariant descriptors over the normalized regions. In Section

3.1.1.2, we introduce two rotation-invariant descriptors: one based on spin images used

for matching range data [58], and one based on Lowe’s SIFT descriptor [90].

3. Perform clustering on the affine-invariant descriptors to obtain a more compact rep-

resentation of the distribution of features in each image (Section 3.1.1.3). Summarize

this distribution in the form of a signature, containing a representative descriptor from

each cluster and a weight indicating the relative size of the cluster.

4. Compare signatures of different images using the Earth Mover’s Distance (EMD) [131,

132], which is a convenient and effective dissimilarity measure applicable to many types

of image information. The output of this stage is an EMD matrix whose entries record

the distances between each pair of signatures in the database. The EMD matrix can

be used for retrieval and classification tasks, as described in Section 3.1.2.1.
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Figure 3.2 The architecture of the feature extraction system proposed in this chapter.

In Section 3.1.2, we will use two datasets to evaluate the capabilities of the proposed tex-

ture representation. The first dataset, introduced in Section 3.1.2.2, consists of photographs

of textured surfaces taken from different viewpoints and featuring large scale changes, per-

spective distortions, and non-rigid transformations. It must be noted that, even though our

method relies on implicit assumptions of local flatness and Lambertian appearance, and is

thus theoretically applicable primarily to “albedo textures” due to spatial albedo variations

on smooth surfaces, the results in Section 3.1.2.2 show that in practice it also tends to per-

form well on “3D textures” arising from local relief variations on a surface. Our second set

of experiments, described in Section 3.1.2.3, is carried out on the Brodatz database [12], a

collection of images that contains many diverse texture classes, but there are no geometric

transformations between members of the same class. Because affine invariance is not re-

quired in this case, we modify the basic feature extraction framework to use neighborhood

shape as a discriminative feature to improve performance.
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Components Previous work [21, 80, 156, 157] This chapter

Spatial selection None: every pixel is considered Laplacian and Harris affine region
detectors [40, 104]

Neighborhood shape selection None: neighborhood size is fixed Affine adaptation process [40]

Descriptor computation Filter banks [21, 80, 156], pixel
values [157]

Distribution-based descriptors:
spin images, SIFT, RIFT

Finding textons Clustering, universal texton dic-
tionaries

Clustering, separate texton rep-
resentation for each image

Representing/comparing tex-
ton distributions

Histograms/χ2 distance Signatures/Earth Mover’s Dis-
tance [132, 131]

Table 3.1 The components of our approach, contrasted with other 2D texton-based methods.

Table 3.1 summarizes the main components of our approach and contrasts it with ex-

isting 2D texton-based methods [21, 80, 156, 157]. Because they do not use geometrically

invariant features, these methods do not perform well when the test set contains geometric

deformations not represented in the training set. In our work, we shift away from this de-

pendence on representative training sets by developing a texture representation with built-in

geometric invariance. Note, however, that our present method does not explicitly account

for changes in lighting direction and associated 3D effects such as self-shadowing; therefore,

to achieve robust recognition in the presence of such effects, we must still rely on multiple

prototypes in the training set.

3.1.1 Components of the Approach

3.1.1.1 Affine Region Detection

In this work, we use two types of detectors: the Harris-affine detector of Mikolajczyk

and Schmid [104] and the Laplacian blob detector of G̊arding and Lindeberg [40]. Refer

back to Figure 1.2 for examples of the two kinds of regions extracted from two texture

images. The Harris detector tends to find corners and points at which significant intensity

changes occur, while the Laplacian detector is (in general) attracted to points that can be

thought of as centers of roughly elliptical regions of uniform intensity. Intuitively, the two
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detectors provide complementary kinds of information about the image: The former responds

to regions of “high information content” [104], while the latter produces a perceptually

plausible decomposition of the image into a set of blob-like primitives.

The technical details of the implementation of Laplacian and Harris regions can be found

in [40, 82, 104] and are summarized in the Appendix for completeness. For the purposes

of this chapter, it is sufficient to note that the affine regions localized by these detectors

are represented as ellipses. We can normalize these regions by mapping the corresponding

ellipses onto a unit circle. Because the circle is invariant under rotations and reflections, it

can be easily shown that the normalization process has an inherent orthogonal ambiguity.

In some existing work on wide-baseline matching, this ambiguity is resolved by estimating

a dominant gradient direction of the patch and aligning this direction with the positive x-

axis [90, 104]. We will use this strategy in Section 3.2, but for the experiments presented in

Section 3.1.2, we omit this step and eliminate the rotational ambiguity by representing each

normalized patch by a rotationally invariant descriptor — a strategy similar to [3, 135].

Note. To achieve invariance to local affine transformations, as in the experiments of Section

3.1.2.2, we discard the information contained in the affine shape of the patches. However, as

a glance at Figure 1.2 suggests, this shape can be a distinctive feature when affine invariance

is not required. This point will be revisited in Section 3.1.2.3.

3.1.1.2 Rotation-Invariant Descriptors

This section introduces two novel rotation-invariant descriptors used in the experiments of

this chapter: intensity-domain spin images, inspired by the method for matching range data

developed by Johnson and Hebert [58]; and RIFT descriptors, based on the Scale-Invariant

Feature Transform (SIFT) developed by Lowe [90].

Intensity-domain spin images. Our first rotation-invariant descriptor is inspired by the

spin images introduced by Johnson and Hebert [58] for matching range data. The intensity-

domain spin image proposed in this chapter is a two-dimensional histogram encoding the
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distribution of image brightness values in the neighborhood of a particular reference (center)

point. The two dimensions of the histogram are d, distance from the center point, and

i, the intensity value. The “slice” of the spin image corresponding to a fixed d is simply

the histogram of the intensity values of pixels located at a distance d from the center.

Since the d and i parameters are invariant under orthogonal transformations of the image

neighborhood, spin images offer an appropriate degree of invariance for representing affine-

normalized patches. In the experiments reported in Section 3.1.2, we used 10 bins for distance

and 10 for intensity value, resulting in 100-dimensional descriptors.

We implement the spin image as a “soft histogram” where each pixel within the support

region contributes to more than one bin. Specifically, the contribution of a pixel located in

x to the bin indexed by (d, i) is given by

exp

(
−(|x − x0| − d)2

2α2
− |I(x) − i|2

2β2

)
,

where x0 is the location of the center pixel, and α and β are the parameters representing the

“soft width” of the two-dimensional histogram bin. Note that the soft histogram can be seen

as a set of samples from the Parzen estimate (with Gaussian windows) of the joint density

of intensity values i and distances d. The use of soft histograms has also been advocated by

Koenderink and Van Doorn [66] because it alleviates aliasing effects. Figure 3.3 illustrates

the principle behind the construction of spin images.

To achieve invariance to affine transformations of the image intensity function (that

is, transformations of the form I �→ aI + b), it is sufficient to normalize the range of the

intensity function within the support region of the spin image [134]. To alleviate the potential

sensitivity of the normalization to noise and resampling artifacts (these are particularly severe

for patches that are only a few pixels wide), we slightly blur the normalized patches with a

Gaussian kernel before computing the spin image.

RIFT descriptors. To obtain a complementary representation of local appearance of

normalized patches, we have developed an additional rotation-invariant descriptor that gen-
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Figure 3.3 Construction of spin images. Three sample points in the normalized patch (left)
map to three different locations in the descriptor (right).

eralizes Lowe’s SIFT [90], which has been noted for its superior performance in retrieval

tasks [106]. Recall from Section 2.1 that SIFT is based on subdividing a square image patch

into a 4×4 pattern of smaller squares and computing eight-dimensional gradient orientation

histograms inside each of these, yielding a 128-dimensional feature vector. To achieve rota-

tion invariance, we must use concentric rings instead of squares, which produces a descriptor

of lower dimensionality. Our descriptor, dubbed Rotation-Invariant Feature Transform, or

RIFT, is constructed by dividing the circular normalized patch into four concentric rings of

equal width and computing orientation histograms within each ring (Figure 3.4). The di-

mensionality of the resulting features is 4×8 = 32. In order to maintain rotation invariance,

we must measure the gradient orientation at each point relative to the direction pointing

outward from the center. Note that the RIFT descriptor as described above is not invariant

to flipping of the normalized patch, which reverses the order of directions in the orientation

histogram. However, we are not concerned with this circumstance in our current work, since

realistic imaging conditions do not involve reversing the orientation of a textured surface.
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Figure 3.4 Construction of RIFT descriptors. Three sample points in the normalized patch
(left) map to three different locations in the descriptor (right).

3.1.1.3 Signatures and the Earth Mover’s Distance

One commonly thinks of a texture image as being “generated” by a few basic primitives,

or textons [60], repeated many times and arranged in some regular or stochastic spatial

pattern. In the field of texture analysis, clustering is the standard technique for discovering

a small set of primitives based on a large initial collection of texture element instances.

Accordingly, we perform clustering on each texture image separately to form its signature

{(m1, u1), (m2, u2), . . . , (mk, uk)}, where k is the number of clusters, mi is the center of the

ith cluster, and ui is the relative weight of the cluster (the size of the cluster divided by

the total number of descriptors extracted from the image). To compare two signatures

S1 = {(m1, u1), (m2, u2), . . . , (mk, uk)} and S2 = {(n1, v1), (n2, v2), . . . , (nl, vl)}, we compute

their Earth Mover’s Distance (EMD) [131, 132], which is a cross-bin dissimilarity measure
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that can handle unequal signature lengths:

EMD(S1, S2) =

∑
i

∑
j fij d(mi, nj)∑

i

∑
j fij

,

where the scalars fij are flow values that are determined by solving a linear programming

problem, and the scalars d(mi, nj) are the ground distances between different cluster centers.

The theoretical justification of this formula and the specifics of the optimization setup are

beyond the scope of this dissertation; we refer the interested reader to [81, 132] for more

details. In our case, mi and nj may be spin images and RIFT descriptors, and the ground

distance is simply the Euclidean distance. Since our descriptors are normalized to have

unit norm, the ground distances lie in the range [0, 2]. We rescale this range to [0, 1], thus

ensuring that all EMD’s are between 0 and 1 as well.

An alternative to our signature/EMD framework is given by the histogram/χ2 distance

framework used in many other texture recognition approaches [21, 80, 156, 157]. In this

framework, a global texton vocabulary (or visual vocabulary) is obtained by clustering de-

scriptors from a special training set, and then each image is represented as a histogram of

texton labels. Given a global texton vocabulary of size k, the ith entry of a histogram is

the proportion of all descriptors in the image having label i. To compare two histograms

H1 = (u1, . . . , uk) and H2 = (v1, . . . , vk), we use the χ2 distance [121] defined as

χ2(H1, H2) =
1

2

k∑
i=1

(ui − vi)
2

ui + vi

.

Empirically, the signature/EMD and the histogram/χ2 setups produce very similar per-

formance in practice, provided that the descriptive power of the global texture vocabulary

is equivalent to that of the local signatures [168]. However, in our implementation, we favor

signatures with EMD, primarily because of the considerable computational expense involved

in computing a global vocabulary (see [168] for a detailed evaluation of running times).

Moreover, the use of signatures with EMD has some important theoretical advantages over

the use of histograms with χ2 distance. In particular, a signature is more descriptive than a
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histogram, and it avoids the quantization and binning problems associated with histograms,

especially in high dimensions [132] (recall that our spin images and RIFT descriptors are 100-

and 32-dimensional, respectively, and the SIFT descriptor used in the experiments of Section

3.2 is 128-dimensional). One advantage of EMD over χ2 distance is its relative insensitivity

to the number of clusters, i.e., when one of the clusters is split during signature computation,

replacing a single center with two, the resulting EMD matrix is not much affected [131]. This

is a very desirable property, since automatic selection of the number of clusters remains an

unsolved problem.

3.1.2 Experimental Evaluation

3.1.2.1 Evaluation Strategy

Channels. Tuytelaars and Van Gool [153] have articulated the goal of building an oppor-

tunistic neighborhood extraction system that would combine the output of several region

detectors tuned to different kinds of image structure. In this spirit, the texture representa-

tion proposed in this chapter is designed to support multiple region detectors and descriptors.

Each detector/descriptor pair is treated as an independent channel that generates its own

signature representation for each image in the database, and its own EMD matrix of pair-

wise inter-image distances. To combine the outputs of several channels, we simply add the

corresponding entries in the EMD matrices. This approach was empirically determined to

be superior to forming linear combinations with varying weights, or taking the minimum or

maximum of the distances.

Since our experimental setup involves the evaluation of two region detectors and two

descriptors, we end up with four channels: Harris regions and spin images (H/SPIN), Harris

regions and RIFT descriptors (H/RIFT), Laplacian regions and spin images (L/SPIN), and

finally, Laplacian regions and RIFT descriptors (L/RIFT). In addition, we will introduce

in Section 3.1.2.3 the Harris and Laplacian ellipse channels, denoted H/ELL and L/ELL,

respectively. To simplify the notation for combined channels, we will use (in a purely formal,
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“syntactic” manner) the distributive law: For example, we will write (H+L)(RIFT) for the

combination of the Harris/RIFT and Laplacian/RIFT channels, and (H+L)(SPIN+RIFT)

for the combination of all four detector/descriptor channels.

Retrieval. We use the standard procedure followed by several Brodatz database evalu-

ations [84, 119, 166]. Given a query image, we select other images from our database in

increasing order of EMD, i.e., from the most similar to the least similar. Each image in the

database is used as a query image once, and the performance is summarized as a plot of

average recall vs. the number of retrievals. Average recall is defined as the number of images

retrieved from the same class as the query image over the total number of images in that

class (minus one to account for the query itself), averaged over all the queries. For example,

perfect performance for a given class would correspond to average recall of 100% after n− 1

retrievals, where n is the number of images in that class.

Classification. In effect, the evaluation framework described above measures how well each

texture class can be modeled by individual samples. It is not surprising that retrieval can

fail in the presence of sources of variability that are not fully accounted for by the invariance

properties of the representation (recall that our representation provides invariance to local

geometric deformations and affine illumination changes, but not to complex viewpoint- and

lighting-dependent appearance changes). To obtain a more balanced assessment of perfor-

mance, a texture representation should be evaluated using classification as well as retrieval.

In the classification framework, a model for a class is created not from a single (possibly

atypical) image, but from a set of multiple training images, thereby compensating for the

effects of intra-class variability.

For the experiments presented in this section, we use nearest-neighbor classification with

EMD. The training set is selected as a fixed-size random subset of the class, and all remaining

images comprise the test set. To eliminate the dependence of the results on the particular

training images used, we report the average of the classification rates obtained for different
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randomly selected training sets. More specifically, a single sequence of 200 random subsets

is generated and used to evaluate all the channel combinations seen in Tables 3.2 and 3.4.

This ensures that all the rates are directly comparable, i.e., small differences in performance

cannot be attributed to random “jitter.”

3.1.2.2 UIUC Texture Database

To test the invariance properties of our proposed representation, we have collected a

texture database consisting of 1000 uncalibrated, unregistered images: 40 samples each of 25

textures. Figure 3.5 shows four sample images from each class (the resolution of the samples

is 640×480 pixels). The database includes surfaces whose texture is due to albedo variations

(e.g., wood and marble), 3D shape (e.g., gravel and fur), as well as a mixture of both (e.g.,

carpet and brick). Significant viewpoint changes and scale differences are present within

each class, and illumination conditions are uncontrolled. During data acquisition, we have

taken care to exercise additional sources of variability wherever possible. These include non-

planarity of the textured surface (bark), significant non-rigid deformations between different

samples of the same class (fur, fabric, and water), inhomogeneities of the texture pattern

(bark, wood, and marble), and viewpoint-dependent appearance variations (glass).

Each image in the database is processed with the Harris and Laplacian detectors. The

median number of Harris (resp. Laplacian) regions extracted per image is 926 (resp. 4591).

The median number of combined regions is 5553, or about 1.8% of the total number of

pixel locations in the image. Thus, we can see that the spatial selection performed by the

detectors results in a drastic compression of the amount of data that needs to be handled

by the subsequent processing stages, especially clustering, which is a notoriously memory-

intensive operation. In our implementation, clustering was performed using the k-means

algorithm with k = 40 centers.
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T01 (bark) T02 (bark) T03 (bark) T04 (wood) T05 (wood)

T06 (wood) T07 (water) T08 (granite) T09 (marble) T10 (stone)

T11 (stone) T12 (gravel) T13 (wall) T14 (brick) T15 (brick)

T16 (glass) T17 (glass) T18 (carpet) T19 (carpet) T20 (fabric)

T21 (paper) T22 (fur) T23 (fabric) T24 (fabric) T25 (fabric)

Figure 3.5 The UIUC texture database: Four samples each of the 25 classes used
in the experiments of Section 3.1.2.2. The entire database may be downloaded from
http://www-cvr.ai.uiuc.edu/ponce grp.
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Figure 3.6 Retrieval curves for the texture database. (a) The Harris channels. (b) The
Laplacian channels. (c) The combined Harris and Laplacian channels.

Figure 3.6 shows retrieval results for the texture database. First, spin images perform

better than RIFT descriptors, and the combination of the two descriptors performs slightly

better than spin images alone. Next, Laplacian regions (part (b) of the figure) perform

better than Harris (a), and the combination of the two (c) is slightly better than Laplacian

alone. The solid curve in part (c) of the figure shows the retrieval performance obtained by

combining all four detector/descriptor channels. The recall after 39 retrievals is 58.92%. This

relatively low number is a reflection of the considerable intra-class variability of the database.

As discussed in Section 3.1.2.1, we cannot expect that all samples of the same class will be

well represented by a single prototype. Accordingly, the combined (H+L)(S+R) classification

rate is only 62.15% for one training sample, but it goes up rapidly to 92.61% for 10 samples

and 96.03% for 20 samples. Table 3.2 shows a comparison of 10-sample classification rates

for different channel combinations. The same trends that were seen in Figure 3.6 are echoed

here: Spin images perform better than RIFT, Laplacian regions perform better than Harris,

and the combination (H+L)(S+R) has the highest performance.

We may wonder whether the superior performance of Laplacian points is due to their

higher density (recall that the Laplacian detector finds almost five times as many regions

as the Harris). To check this conjecture, we have repeated the recognition experiments af-

ter thresholding the output of the Laplacian detector so that equal numbers of Laplacian
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H L H+L

SPIN 83.32 88.29 90.15

RIFT 79.27 83.18 85.47

SPIN+RIFT 88.14 91.96 92.61

Table 3.2 Classification results for 10 training samples per class. First column (top
to bottom): H/SPIN, H/RIFT, H(SPIN+RIFT). Second column: L/SPIN, L/RIFT,
L(SPIN+RIFT). Third column: (H+L)SPIN, (H+L)RIFT, (H+L)(SPIN+RIFT).

and Harris regions are produced for each image. The results of the “truncated” and “full”

Laplacian representations may be compared by looking at columns 3 and 4 of Table 3.3.

Interestingly, while the rates may vary significantly for individual textures, the averages

(bottom row) are almost the same: 91.93% and 91.96% for “truncated” and “full”, respec-

tively. Thus, recognition performance is not a simple function of representation density.

Finally, Table 3.3 allows us to analyze the “difficulty” of individual textures for our

system. To this end, the textures are arranged in order of increasing (H+L)(SPIN+RIFT)

classification rate (last column). Roughly speaking, classification rate is positively correlated

with the homogeneity of the texture: Some of the lowest rates belong to inhomogeneous

coarse-scale textures like bark (T02, T03) and marble (T09), while some of the highest

belong to homogeneous fine-scale textures like glass (T17), water (T07), and fabric (T20,

T24). However, this relationship is not universal. For example, granite (T08), which is

fine-grained and quite uniform, has a relatively low rate of 86.78%, while the large-scale,

inhomogeneous wall (T13) has a relatively high rate of 95.92%. It is also interesting (and

somewhat unexpected) that the performance of different classes does not depend on their

nature as 3D or albedo textures. Ultimately, the intrinsic characteristics of the various

textures do not provide a clear pattern for predicting performance because classification

accuracy is not related directly to intra-class variability, but to the extent of separation

between the classes in feature space.
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Class H(SPIN+RIFT) L(SPIN+RIFT) L(SPIN+RIFT) (H+L)

(trunc.) (full) (SPIN+RIFT)

T03 (bark) 74.55 72.48 75.12 79.53

T19 (carpet) 72.70 85.92 82.07 81.07

T02 (bark) 80.77 81.67 80.18 84.67

T08 (granite) 83.52 88.55 88.08 86.78

T09 (marble) 75.15 83.60 89.50 87.73

T21 (paper) 74.45 93.35 92.30 88.80

T16 (glass) 76.10 97.53 93.67 88.82

T12 (gravel) 79.47 87.03 90.73 90.12

T14 (brick) 83.07 90.48 89.65 90.28

T01 (bark) 89.72 92.95 87.03 90.63

T23 (fabric) 88.98 95.12 90.82 91.98

T15 (brick) 89.87 90.35 90.67 92.38

T11 (stone) 89.20 94.48 94.88 93.72

T05 (wood) 89.83 81.63 92.50 94.42

T10 (stone) 85.00 94.88 96.87 94.92

T22 (fur) 94.53 94.23 92.08 95.08

T25 (fabric) 93.30 95.90 93.43 95.90

T13 (wall) 92.88 95.08 95.90 95.92

T06 (wood) 96.90 95.35 92.90 97.43

T18 (carpet) 96.60 92.82 98.00 97.47

T04 (wood) 98.68 98.62 96.18 98.53

T20 (fabric) 99.08 97.02 99.73 99.48

T07 (water) 99.80 99.40 99.05 99.75

T24 (fabric) 99.37 99.90 97.80 99.80

T17 (glass) 100 100 99.85 100

Mean 88.14 91.93 91.96 92.61

Table 3.3 Detailed breakdown of classification results summarized in Table 3.2. The classes
are sorted in order of increasing classification rate (last column). See text for discussion.
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3.1.2.3 Brodatz Database

Figure 3.7 Examples of three images from the Brodatz database (there are 111 images
total). Each image is divided into 9 non-overlapping sub-images for experiments.

The Brodatz database [12] (Figure 3.7) is perhaps the best known benchmark for tex-

ture recognition algorithms. In recent years, it has been criticized because of the lack of

intra-class variation that it exhibits. However, we feel that it is premature to dismiss the

Brodatz database as a challenging platform for performance analysis. For one, relatively

few publications actually report results on the entire database (the only studies known to us

are [42, 84, 119, 166]). In addition, while near-perfect overall results have been shown for the

CUReT database [157], the best (to our knowledge) retrieval performance on the Brodatz

database is around 84% [166]. The reason for this is the impressive diversity of Brodatz tex-

tures, some of which are quite perceptually similar, while others are so inhomogeneous that

a human observer would arguably be unable to group their samples “correctly”. The variety

of the scales and geometric patterns of the Brodatz textures, combined with an absence of

intra-class transformations, makes them a good platform for testing the discriminative power

of an additional local shape channel in a context where affine invariance is not necessary, as

described below.

The shape channel. The shape of an affinely adapted region is encoded in its local shape

matrix, which can also be thought of as the equation of an ellipse. Let E1 and E2 be two
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ellipses in the image plane. We eliminate the translation between E1 and E2 by aligning

their centers, and then compute the dissimilarity between the regions as

d(E1, E2) = 1 − Area (E1 ∩ E2)

Area (E1 ∪ E2)
.

In the experiments of this section, we use local shape to obtain two additional channels,

HE and LE, corresponding to the ellipses found by the Harris and Laplacian detectors, re-

spectively. Notice that the ellipse ground distance, and consequently all shape-based EMD’s,

must be between 0 and 1. Because the descriptor-based EMD’s lie in the same range, the

shape-based EMD’s can be combined with them through simple addition.

Finally, it is worth noting that the ellipse “distance” as defined above takes into account

the relative orientations of the two ellipses. If it is necessary to achieve rotation invariance,

we can simply align the major and minor axes of the two ellipses before comparing their

areas.

Results. The Brodatz database consists of 111 images. Following the same procedure as

previous evaluations [84, 119, 166], we form classes by partitioning each image into nine non-

overlapping fragments, for a total of 999 images. Fragment resolution is 215 × 215 pixels.

By comparison with the texture database discussed in the previous section, relatively few

regions are extracted from each image: The median values are 132 for the Harris detector,

681 for the Laplacian, 838 combined. Some images contain less than 50 regions total. Given

such small numbers, it is difficult to select a fixed number of clusters suitable for all im-

ages in the database. To cope with this problem, we replace k-means by an agglomerative

clustering algorithm that repeatedly merges clusters until the average intra-cluster distance

exceeds a specified threshold [63]. This process results in variable-sized signatures, which

are successfully handled by the EMD framework. An additional advantage of agglomerative

clustering as opposed to k-means is that it can be used for the shape channel, since it can

take as input the matrix of pairwise distances between the ellipses.
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Figure 3.8 Retrieval curves for the Brodatz database. (a) Harris descriptor channels.
(b) Laplacian descriptor channels. (c) Combined Harris and Laplacian descriptor channels.
(d) Comparison of combined performance with and without the ellipse channels (H/ELL and
L/ELL).

Figure 3.8 shows retrieval results for the Brodatz database. Similarly to the results of the

previous section, the Laplacian channels, shown in part (b) of the figure, have better perfor-

mance than the Harris channels, shown in part (a). Interestingly, though, for the Brodatz

database RIFT descriptors perform better than spin images — the opposite of what we have

found in Section 3.1.2.2. However, this discrepancy is due at least in part to the variability of

signature size (due to the use of agglomerative clustering) in the experimental setup of this

section. On average, the RIFT-based signatures of the Brodatz images have more clusters

than the spin-based signatures, and we conjecture that this raises the discriminative power

of the RIFT channel. Another interesting point is that combining the Harris and Laplacian

channels, as shown in (c), results in a slight drop of performance as compared to the Lapla-

cian channels alone. Finally, (d) shows the effect of adding the shape channels into the mix.

By themselves, these channels are relatively weak, since after 8 retrievals the (H+L)E recall

is only 44.59%. However, adding these channels to (H+L)(SPIN+RIFT) boosts the recall

from 70.94% to 76.26%.

The trends noted above are also apparent in the classification results presented in Table

3.4. By looking at the first two rows, we can easily confirm the relatively strong performance

of the RIFT descriptor (particularly for the Laplacian detector), as well as the marginal drop
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in performance of the L+H channels as compared to L alone. The latter effect is also seen in

the last row of the table, where the (H+L)(SPIN+RIFT+ELL) classification rate is slightly

inferior to the L(SPIN+RIFT+ELL) rate.

H L H+L

SPIN 61.36 75.70 75.31

RIFT 60.00 80.23 76.40

ELL 36.78 49.32 54.13

SPIN+RIFT+ELL 77.61 88.15 87.44

Table 3.4 Brodatz database classification results for 3 training samples.

We can get a more detailed look at the performance of our system by examining Figure

3.9, which shows a histogram of classification rates for all 111 classes using three training

samples per class. The histogram reveals that the majority of textures are highly distin-

guishable, and only a few stragglers are located at the low end of the spectrum. In fact, 36

classes have 100% classification rate, 49 classes have classification rate at least 99%, and 73

classes (almost two thirds of the total number of classes) have rate at least 90%. The mean

rate is 87.44%. Figure 3.10 shows four textures that were classified successfully and four

textures that were classified unsuccessfully. Not surprisingly, the latter examples are highly

non-homogeneous.

The best retrieval performance curve of our system, corresponding to the (H+L)(SPIN+

RIFT+ELL) combination, has 76.26% recall after 8 retrievals. This is a slightly higher than

the results reported in [84, 119], but below Xu et al. [166], who report 84% recall using the

multiresolution simultaneous autoregressive (MRSAR) model. MRSAR models texture as a

stationary random field and uses a dense representation with fixed neighborhood shape and

size. A known shortcoming of MRSAR is its limited ability to measure perceptual similarity

— the method tends to confuse textures that appear very different to human observers [84].

Most significantly, the MRSAR model is difficult to extend with affine invariance. By con-
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Figure 3.9 Histogram of classification rates for 3 training samples.

Successes Failures

D48 D15 D94 D87 D30 D91 D45 D99
97.08 99.92 100 100 22.42 27.00 34.17 34.25

Figure 3.10 Left: successes. Right: failures. The average classification rates are shown
below the corresponding class labels. Note that the representation for D48 has an average
number of only 27 combined Laplacian and Harris regions per sample.

trast, our representation is specifically formulated with geometric invariance in mind and is

non-parametric.

3.2 An Extended Evaluation: From Texture to Object

Recognition

The previous section has demonstrated the promise of our method for visual classification

tasks in the presence of significant geometric changes and appearance variations; however, we

have not yet explored alternative implementation choices (including the level of invariance of

the feature detector, the type of descriptor, or the classifier), made direct comparisons with

other methods in the literature, or examined the full range of imagery to which our method
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may be applicable. In particular, because a bag of features has rather limited descriptive

power, we have originally intended our approach exclusively for the application of texture

recognition. However, the appearance in recent literature of several effective orderless local

methods for object recognition tasks [20, 45, 143, 164] has subsequently motivated us to eval-

uate our approach for this application as well. This section discusses an extended evaluation

of our method conducted in collaboration with Jianguo Zhang and Marcin Marszalek at IN-

RIA Rhône-Alpes, who have contributed the experimental results presented in the following.

Our study, which has been published in [168], addresses three issues:

Classification framework. In Section 3.1, we have used the simplest possible classification

framework to demonstrate the power of the image representation alone. However, we show

in Section 3.2.1 that EMD combined with an SVM kernel greatly improves performance. In

particular, it improves the effectiveness of combining multiple feature channels. In the exper-

iments of the previous section, we have occasionally observed a decrease in performance after

combining several channels with differential discriminative power. However, as demonstrated

by additional experiments of Section 3.2.2, with the addition of a discriminative classifier,

this undesirable effect is greatly reduced.

Level of invariance. In the experiments of Section 3.1.2.2, we have shown that affine-

invariant features produce good results in the presence of significant viewpoint and scale

changes. However, we have not determined what is the minimal level of invariance required

for effective performance on similar tasks. To answer this question, in Section 3.2.2 we

evaluate the performance of features with different levels of invariance, and compare our ap-

proach with other non-invariant dense texture recognition methods. For many texture and

object datasets currently available, we show that features with the highest possible level of

invariance do not always yield the best performance. Thus, in attempting to design the most

effective recognition system for a practical application, one should seek to incorporate mul-
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tiple types of complementary features, but make sure that their local invariance properties

do not exceed the level absolutely required for a given application.

Comparison with existing methods. We conduct a comparative evaluation with several

state-of-the-art methods for texture and object classification on three texture and three ob-

ject databases. For texture classification (Section 3.2.2), our approach outperforms existing

methods on Brodatz and UIUC datasets, and obtains comparable results on the CUReT

dataset [22]. For object category classification (Section 3.2.3), our approach outperforms

previous methods on the Caltech6 [33], Caltech101 [29], and Graz [118] databases. Note

that the power of orderless bag-of-keypoints representations is not particularly surprising

in the case of texture images, which lack clutter and have uniform statistical properties.

However, it is not a priori obvious that such representations are sufficient for object cate-

gory classification, since they ignore spatial relations and fail to separate foreground from

background features.

3.2.1 Kernel-based classification

Recently, Support Vector Machine (SVM) classifiers [141] have shown their promise for

visual classification tasks (see [120] for an early example), and the development of specialized

kernels suitable for use with local features has emerged as a fruitful line of research [15, 25, 45,

92, 116, 161]. To date, most evaluations of methods combining kernels and local features have

been small-scale and limited to one or two datasets. This motivates us to build an effective

image classification method combining a bag-of-keypoints representation with a kernel-based

learning method and to test the limits of its performance on the most challenging databases

available today.

Let us briefly review the basics of SVM classification. For a two-class problem, the SVM

decision function for a test sample x has the following form:

g(x) =
∑

i
αiyiK(xi, x) − b , (3.1)
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where K(xi, x) is the value of a kernel function for the training sample xi and the test sample

x, yi the class label of xi (+1 or −1), αi the learned weight of the training sample xi, and

b is a learned threshold parameter. The training samples with weight αi > 0 are usually

called support vectors. In the following, we use the two-class setting for binary detection, i.e.,

classifying images as containing or not a given object class. To obtain a detector response, we

use the raw output of the SVM, given by Eq. (3.1). By placing different thresholds on this

output, we vary the decision function to obtain Receiver Operating Characteristic (ROC)

curves (plots of true positive rates vs. false positive rates). For multi-class classification,

different methods to extend binary SVMs tend to perform similarly in practice [141]. We use

the one-against-one technique, which trains a classifier for each possible pair of classes. When

classifying a pattern, we evaluate all binary classifiers, and classify according to which of the

classes gets the highest number of votes. A vote for a given class is defined as a classifier

putting the pattern into that class. Experimental comparisons on our dataset confirm that

the one-against-one and one-against-other techniques give almost the same results.

To incorporate EMD into the SVM classification framework, we use an extended Gaussian

kernel [16, 57]:

K(Si, Sj) = exp

(
− 1

A
D(Si, Sj)

)
, (3.2)

where D(Si, Sj) is EMD between two signatures Si and Sj. The parameter A of the EMD

kernel is the mean value of pairwise distances between all training images. To combine differ-

ent channels, we simply sum their distances as in Section 3.1 and then apply the generalized

Gaussian kernel to the combined distance.

We do not know whether the EMD kernel satisfies the Mercer condition, i.e., whether it

corresponds to an inner product in some higher-dimensional space obtained by transforming

the original feature space with some “lifting” function (see [141] for details about this con-

dition and its significance for SVM classifiers). However, in our experiments, this kernel has

always yielded positive definite Gram matrices (i.e., matrices of kernel values for all pairs
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of training feature vectors). In addition, it must be noted that even non-Mercer kernels

often work well in real applications [16]. In contrast with some alternative kernels, such as

the ones based on the Kullback-Leibler divergence [109], the EMD kernel does not require

the estimation of distribution parameters using a time-consuming EM/MCMC algorithm as

in [109]. Finally, we must mention that our approach is related to that of Grauman and

Darrell [45], who have developed a kernel that approximates the optimal partial matching

between two feature sets. By contrast, our kernel is based on EMD, which is the exact partial

matching cost [132].

Table 3.5 compares the performance of the EMD kernel with nearest-neighbor classifica-

tion (the setup of Section 3.1) on UIUC and Brodatz, as well as on one additional texture

database, KTH-TIPS [51], and on one object database, Xerox7 [164].1 All these results are

obtained with scale- and rotation-invariant Laplacian regions and SIFT descriptors, and fixed

signature size of 40 clusters per image. Note that these experimental settings are not the

same as those of Section 3.1, and therefore the nearest-neighbor classification rates for UIUC

and Brodatz shown in this table differ slightly from the ones reported in Sections 3.1.2.2 and

3.1.2.3 (the effects of different descriptors and levels of invariance will be examined in more

detail in Section 3.2.2). We can see that the EMD kernel yields substantially higher results

than nearest neighbor classification, i.e., that a discriminative approach gives a significant

improvement. The difference is especially dramatic for the Xerox7 dataset, which contains

substantial intra-class variation. Additional evidence of the power of the kernel-based classi-

fication approach comes from the comparative evaluation of several methods on the CUReT

database [22] presented in Section 3.2.2: Table 3.11 shows that our original method obtains

72.5% accuracy on this database, whereas the improved kernel-based method of this section

obtains 95.3% accuracy.

1The KTH-TIPS and Xerox7 databases are included in Table 3.5 as two additional data points for the
comparison, but are not further discussed in this dissertation for the sake of conciseness. The interested
reader should refer to our report [168] for additional details.
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Database EMD+NN EMD+Kernel

UIUC 95.0 ± 0.8 97.7 ± 0.6

Brodatz 86.5 ± 1.2 94.1 ± 0.8

KTH-TIPS [51] 88.2 ± 1.6 92.5 ± 1.5

Xerox7 [164] 59.4 ± 4.1 92.4 ± 1.7

Table 3.5 Classification accuracy of EMD with nearest neighbors vs. the EMD kernel for
four different databases. The number of training images per class is 20 for UIUC and 3 for
Brodatz. For details of the experimental settings of the KTH-TIPS and Xerox7 databases,
see [168]. For the three texture databases, we randomly create 100 different training/test
splits and report the average classification rate and its standard deviation over the 100 runs.
For Xerox7, we use tenfold cross-validation as in [164].

3.2.2 Texture Recognition

This section evaluates the performance of the kernel-based method with different levels

of detector invariance and different descriptors, and then reports results of a large-scale

comparison of our method to other state-of-the-art texture recognition methods on three

databases: UIUC, Brodatz, and CUReT [22].

3.2.2.1 Comparing Invariance Levels and Descriptor Types

First, we evaluate features with different levels of invariance: scale (S), scale with rotation

(SR), and affine (A). Scale-invariant versions of the Harris and Laplacian detectors output

circular regions at a certain characteristic scale. To achieve rotation invariance, we rotate

the circular regions in the direction of the dominant gradient orientation [90, 105], which is

computed as the average of all gradient orientations in the region. Finally, affine-invariant

features are the same as the ones used in Section 3.1, except that here we eliminate the

rotational ambiguity of the normalized regions by finding their dominant gradient orientation.

Tables 3.6 and 3.7 show the performance of the three types of features on the UIUC and

Brodatz datasets, respectively. In this test, all regions are described with the SIFT descriptor

and the EMD kernel is used for classification. As in Table 3.5, results are reported as the
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average and standard deviation of the classification rate obtained over 100 runs with different

randomly selected training sets. From Table 3.6, we can see that for UIUC, rotation-invariant

(SR) features work about as well as affine-invariant (A) ones. This is somewhat surprising,

since from a theoretical standpoint, affine adaptation is expected to provide better invariance

to many of the deformations present in this dataset, especially perspective distortions. The

strong performance of scale- and rotation-invariant features on the UIUC database could be

due to their greater robustness, as the affine adaptation process can often be unstable in

the presence of large affine or perspective distortions. As Table 3.7 shows, for the Brodatz

database, pure scale invariance (S) performs best. Because this database has no rotation or

affine deformations, using features that are invariant to these transformations only destroys

discriminative information (recall from Section 3.1.2.3 that we were able to achieve improved

performance on the Brodatz database by adding an “ellipse channel” containing the shape

information that was discarded by the affine-invariant detectors).

H L H+L

S 89.7± 1.5 91.2± 1.5 92.2± 1.4

SR 97.1± 0.6 97.7± 0.6 98.0± 0.5

A 97.5± 0.6 97.5± 0.7 98.0± 0.6

Table 3.6 Evaluation of different levels of invariance on the UIUC database with 20 training
images per class. Affine (A) and rotation-invariant (SR) features have similar levels of
performance, while scale-invariant (S) features are much weaker.

Next, we evaluate the performance of different descriptors on UIUC and Brodatz databases.

Tables 3.8 and 3.9 show the results of combining different descriptor channels using the EMD

kernel. Overall, the rotation-invariant SPIN and RIFT descriptors perform slightly worse

than SIFT, since they average intensity values and gradient orientations over ring-shaped

regions and therefore loses important spatial information. Just as in Section 3.1.2, the
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H L H+L

S 89.2± 1.0 94.9± 0.7 94.4± 0.7

SR 89.2± 1.0 94.1± 0.8 94.0± 0.9

A 84.7± 1.1 90.8± 0.9 91.3± 1.1

Table 3.7 Evaluation of different levels of invariance on the Brodatz database with 3 training
images per class. Scale (S) and rotation-invariant (SR) features perform similarly, while
affine-invariant (A) features are weaker.

SIFT+SPIN and RIFT+SPIN combinations exhibit boosted performance because the two

descriptors capture different kinds of information (gradients vs. intensity values). As ex-

pected, however, the SIFT+SPIN+RIFT combination shows only an insignificant improve-

ment over SIFT+SPIN, as SIFT and RIFT capture the same type of information. It is

interesting to note that in the nearest-neighbor classification framework of Section 3.1.2,

direct combination of different channels could result in a significant decrease of overall per-

formance. For example, referring back to Table 3.4, we can see that combining the L/RIFT

channel with the weaker H/RIFT channel significantly reduced the performance of the for-

mer. However, in the kernel-based classification framework, this problem is avoided: in the

new results of Table 3.9, the performance of the (H+L)RIFT combination is higher than

L/RIFT in isolation. Note, however, that a “negative interference” effect is still possible in

the improved kernel-based framework: For example, in Table 3.9, the performance of the

L/SIFT channel is slightly higher than the performance of L(SIFT+SPIN).

3.2.2.2 Comparative Evaluation: UIUC Database, Brodatz, CUReT

Next, we present a comparative evaluation of our two approaches with three state-of-the-

art texture classification methods in the literature. Our first method, denoted ‘Lazebnik’ in

the following, is the one described in Section 3.1: It uses affine-invariant features with the

(H+L)(SPIN+RIFT) channel combination and nearest neighbors with EMD for classifica-
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H L H+L

SIFT 97.5 ± 0.6 97.5 ± 0.7 98.0 ± 0.6

SPIN 95.5 ± 0.8 96.0 ± 0.9 97.0 ± 0.7

RIFT 94.8 ± 0.8 96.4 ± 0.7 97.0 ± 0.7

SIFT+SPIN 97.9 ± 0.6 98.1 ± 0.6 98.5 ± 0.5

RIFT+SPIN 97.1 ± 0.7 97.8 ± 0.6 98.0 ± 0.6

SIFT+SPIN+RIFT 98.1 ± 0.6 98.5 ± 0.5 98.7 ± 0.4

Table 3.8 Detector and descriptor evaluation on UIUC with affine-invariant features using
20 training images per class.

H L H+L

SIFT 89.2 ± 1.0 94.1 ± 0.9 94.0 ± 0.9

SPIN 86.1 ± 1.1 87.9 ± 1.0 90.2 ± 1.0

RIFT 82.7 ± 1.0 88.5 ± 0.9 89.6 ± 1.0

SIFT+SPIN 92.2 ± 0.9 93.2 ± 0.8 94.3 ± 0.8

RIFT+SPIN 89.8 ± 1.1 91.4 ± 0.9 92.8 ± 0.8

SIFT+SPIN+RIFT 92.8 ± 1.0 94.1 ± 0.9 94.9 ± 0.8

Table 3.9 Detector and descriptor evaluation on Brodatz using scale- and rotation-invariant
(SR) features and 3 training images per class.
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tion. Our second method, denoted ‘Zhang,’ uses S or SR features2 with the (H+L)(SIFT+

SPIN) combination and the EMD kernel for classification. Two other methods are due to

Varma and Zisserman (VZ) [157] and Hayman et al. [51]. We have chosen these two meth-

ods for comparison because they achieve state-of-the-art classification rates to date on the

popular CUReT database. The VZ method uses a dense set of 2D textons; the descriptors

are raw pixel values measured in fixed-size neighborhoods. In our experiments we use 7 × 7

neighborhoods resulting in 49-dimensional feature vectors. Each image is represented by

the histogram of its texton labels, and classification is performed using nearest neighbors

with χ2 distance. Hayman’s method is an extension of VZ that uses a generalized Gaussian

kernel with χ2 distance for classification. Finally, we have implemented a baseline tradi-

tional approach that works by classifying the mean and standard deviation of the responses

of Gabor filters computed over the entire image [98]. We use the same Gabor filters as in

[98] (six orientations and four scales), and perform nearest neighbor classification based on

Mahalanobis distance.

Figure 3.11 shows the classification accuracy of the five methods on the UIUC database.

The results are presented as plots of classification rate vs. the number of training images.

We can observe that our two methods work much better than Hayman and VZ, demonstrat-

ing the advantage of intrinsically invariant features. Moreover, the improvement of Zhang

over Lazebnik and of Hayman over VZ demonstrates one more time the advantage of dis-

criminative learning over nearest-neighbor classification. Finally, the baseline Gabor method

performs the worst, since averaging the Gabor filter outputs over all pixels loses discrimi-

native information. Interestingly, Figure 3.11 reveals the reliance of the three non-invariant

methods (Hayman, VZ, Gabor) on multiple prototypes: their performance improves steadily

as the number of training images is increased, whereas the performance of our two methods is

already relatively high with only one or two training samples, and more or less levels off after

2S features are used for all comparisons except the UIUC database, where SR features make a big difference
in performance.
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Figure 3.11 Comparison of different methods on the UIUC database.

five. The outcome of the comparison validates our intuition that intrinsic representation-level

invariance is necessary to achieve robustness to large viewpoint and scale changes, especially

for very small training sets, where the lack of invariance cannot be fully compensated by

storing multiple prototypes of each texture.

Next, Table 3.10 presents a comparison of the five methods on the Brodatz database

for one and three training samples per class. The two kernel-based methods (Zhang and

Hayman) perform the best, followed by VZ, followed by Lazebnik and Gabor. The results

seem to indicate that our representation, based on sparse local invariant features, and the

traditional representation, based on dense non-invariant features, are equally able to capture

the structures of the Brodatz textures. Furthermore, the large difference between Zhang

and Lazebnik, both of which have very similar features, once again shows the power of

kernel-based learning.
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Methods
training images per class

1 3

Zhang 88.8 ± 1.0 95.4 ± 0.3

Hayman 88.7 ± 1.0 95.0 ± 0.8

VZ 87.1 ± 0.9 92.9 ± 0.8

Lazebnik 80.0 ± 1.3 89.8 ± 1.0

Gabor mean+std 80.4 ± 1.2 87.9 ± 1.0

Table 3.10 Comparison on the Brodatz database.

Our next evaluation is on the Columbia-Utrecht Reflectance and Texture Database

(CUReT) [22]. We use the same subset of this database as [156, 157]. This subset con-

tains 61 texture classes with 92 images for each class. These images are captured under

different illuminations with seven different viewing directions. The changes of viewpoint,

and, to a greater extent, of the illumination direction, significantly affect the texture ap-

pearance, cf. Figure 3.12. However, the CUReT database also has some limitations: its

images have no scale variation (all materials are held at the same distance from the camera,

only the orientation is changed), limited in-plane rotation, and the same physical surface

patch is represented in all samples. As Table 3.11 shows, Hayman and VZ obtain the best

results, which is not surprising, since they were optimized specifically for this database.

By contrast, our feature extraction framework is not ideally suited for CUReT, since most

of its textures are very homogeneous and exhibit high-frequency patterns devoid of salient

structures such as blobs and corners. Moreover, because the training set is fairly large, and

therefore capable of representing all possible appearance variations, the intrinsic invariance

of our representation is not a big advantage. Despite this unfavorable setup, the Zhang

method still achieves results that are very close to VZ, while the Lazebnik method comes in

below the baseline, demonstrating the failure of sparse features for this type of data in the

absence of a discriminative classifier.
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Felt Plaster Styrofoam

Figure 3.12 Image examples of CUReT textures under different illuminations and view-
points.

Overall, our results show that for most datasets, combining geometric invariance at the

representation stage with a discriminative classifier at the learning stage results in a very

effective texture recognition system. Note that even though impressive results are obtained

using raw pixel descriptors on the CUReT dataset, this method does not perform as well

on the other datasets, thus showing its limited applicability. Our results further show that

high-frequency, more homogeneous textures such as CUReT are best handled by methods

using dense fixed-size patches, while more non-homogeneous low-frequency textures are best

handled by a sparse local feature representation. Another important factor affecting the

performance of local feature methods is image resolution, since keypoint extraction tends to

not work well on low-resolution images. For example, CUReT images of size 200× 200 have

an average of 236 Harris-Laplace regions and 908 Laplacian regions, while UIUC images of

size 640×480 have an average of 2152 and 8551 regions, respectively. It is not surprising that

such an order-of-magnitude difference in the number of features extracted makes a difference

in classification performance.

3.2.3 Object Recognition: Caltech6, Caltech101, Graz

When we first introduced our bag-of-features image representation in [72], we have in-

tended it primarily for applications of texture recognition, because it operationalizes the
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Methods Ave. classification rate

Hayman 98.6 ± 0.2

VZ 96.0 ± 0.4

Zhang 95.3 ± 0.4

Gabor mean+std 92.4 ± 0.5

Lazebnik 72.5 ± 0.7

Table 3.11 Comparison on the CUReT texture database using 43 training images per class.

long-standing view of texture as a visual phenomenon formed by the repetition of a certain

number of basic “tonal primitives” [2, 49]. Stated another way, a bag-of-features model

conforms to the accepted practice of modeling textures as stationary Markov random fields.

Informally, stationarity means that the probability distribution for the appearance of an

individual feature does not depend on its location in the image, while the Markov property

means that this distribution depends only on that feature’s immediate neighborhood, not on

the entire image. For most textures, we lose very little discriminative power by defining the

neighorhood as being empty, thus eliminating spatial dependencies altogether and arriving

at an orderless local model. For object classes, on the other hand, the Markov assumptions

are clearly violated, since features lying on the object have different statistical properties

than features lying on the background, and, moreover, object parts are typically differen-

tiated from each other (i.e., each part potentially has a different appearance distribution),

and spatial dependencies between parts may be long-ranging. Nevertheless, over the last few

years, several bag-of-features methods [20, 45, 164] have been proposed for object recognition

and have achieved surprisingly good performance using local features similar to ours. This

motivates us to evaluate our approach on several object category datasets and to compare

our results to the best ones reported in the literature. The specific datasets used in the

evaluation are Caltech6 [33], Caltech101 [28], Graz [118], and PASCAL [26]. In the following
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experiments, just as in Section 3.2.2, we use scale-invariant (H+L)(SIFT+SPIN) features,

and the EMD kernel for classification.

airplanes cars (rear) cars (side) faces motorbikes cats

Figure 3.13 Image examples of the six categories of Caltech6 dataset. The dataset may be
downloaded from http://www.robots.ox.ac.uk/~vgg/data.

The Caltech6 database [33] contains airplanes (side) (1074 images), cars (rear) (1155

images), cars (side) 3 (720 images), faces (front) (450 images), motorbikes (side) (826 images),

spotted cats (200 images), and a background set (900 images). The original category of

spotted cats is from the Corel image library and contains 100 images. Here we flipped the

the original images to have the same set as used in [33]. We use the same training and test set

for two-class classification (object vs. background) as [33]. Some images are presented in Fig.

3.13. Table 3.12 compares the equal error rates on the Caltech6 dataset of our approach

to two of the state-of-the-art methods, the bag-of-features Xerox approach [164] and the

constellation model of Fergus et al. [33]. We can see that our method performs best for all of

the object classes except cars (rear); however, the results obtained by the other methods are

also quite high, indicating the relatively low level of difficulty of the Caltech dataset. Note

that our method is fairly similar to Xerox (both use local invariant features and SVMs),

and our higher performance in the same experimental setting is most likely due to better

3The car (side) images are originally from the UIUC car dataset [1], which may be downloaded from
http://l2r.cs.uiuc.edu/~cogcomp/Data/Car.
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implementation choices. In particular, we improve performance by using a combination of

several detectors and descriptors and a more discriminative SVM kernel (EMD vs. linear,

see [168] for details).

Zhang Xerox [164] Fergus [33]

airplanes 98.8 97.1 90.2

cars (rear) 98.3 98.6 90.3

cars (side) 95.0 87.3 88.5

faces 100 99.3 96.4

motorbikes 98.5 98.0 92.5

spotted cats 97.0 N/A 90.0

Table 3.12 ROC equal error rates on the Caltech6 dataset.

The Caltech101 dataset [29] contains 101 object categories with 31 to 800 images per

category. Some of the images are shown in Fig. 3.14. Caltech-101 is the most diverse object

database available today, though it is not without shortcomings. Namely, most images

feature relatively little clutter, and the objects are centered and occupy most of the image. In

addition, a number of categories, such as pagoda, are affected by “corner” artifacts resulting

from artificial image rotation. Though these artifacts are semantically irrelevant, they can

provide cues resulting in misleadingly high recognition rates. We follow the experimental

setup of Grauman and Darrell [45], i.e., we randomly select 30 training images per class and

test on the remaining images reporting the average accuracy. We repeat the selection 10

times and report the average classification rate and its standard deviation.

Table 3.13 shows the results for multi-class classification on Caltech101 dataset. Our

approach outperforms Grauman and Darrell for the same setup. The best results on this

dataset (48%) published to date are due to Berg et al. [5]. However, their results are not

directly comparable to ours since they use 15 training images per class. Also note that in

Chapter 6 we will introduce a spatial matching method that achieves 64.6%. Fig. 3.14 shows
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accordion (93%) carside (92%) pagoda (89%) scorpion (15%) ibis (8%) anchor (7%)

Figure 3.14 Image examples of the Caltech101 dataset. On the left the three classes with
the best classification rates and on the right those with the lowest rates. The dataset may
be downloaded from http://www.vision.caltech.edu/Image Datasets/Caltech101.

a few categories with the best and worst classification rates for our method. We can observe

that some of the lowest rates are obtained for categories that are characterized by their shape

as opposed to texture, such as anchors.

Zhang Berg [5] Grauman [45]

overall rate 53.9 48 43

Table 3.13 Classification accuracy on the Caltech101 dataset.

The Graz dataset [118] contains persons (460 images), bikes (373 images) and a back-

ground class (270 images). Some of the images are shown in Figure 3.15. We use the same

training and test set for two-class classification as [118], for a total of 350 images. We also

tested our method for two-class classification on the Graz dataset [118] (Table 3.14). Our

method performs significantly better than Opelt et al. [118]. Figure 3.15 shows some im-

ages correctly classified by our method and misclassified ones. Misclassified bikes are either

observed from the front, very small, or only partially visible. Misclassified people are either

observed from the back, occluded, or very small.
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bikes people background bikes people background

Figure 3.15 Image examples of the two categories and a background class of Graz dataset.
The images on the left are correctly classified with our approach, the images on the right were
misclassified. The dataset may be obtained from http://www.emt.tugraz.at/~pinz/data.

To summarize, our method achieves the best results to date on Caltech6, Caltech101, and

Graz datasets. In addition, as reported in [168], it also does better than existing methods on

the Xerox7 database [164] and on test set 2 of the PASCAL challenge [26]. We omit a detailed

discussion of these results from the dissertation for conciseness. Our model outperforms not

only other bag-of-features methods [45, 164], but also constellation models [33] and methods

based on non-rigid geometric correspondence [5]. However, it is important to emphasize

that we do not propose basic bag-of-features methods as a solution to the general object

recognition problem. Instead, we demonstrate that, given the right implementation choices,

simple orderless image representations with suitable kernels can be effective on a wide variety

of imagery. Thus, they can serve as good baselines for measuring the difficulty of newly

acquired datasets and for evaluating more sophisticated recognition approaches, e.g., ones

based on parts-and-relations object models such as those discussed in Chapter 5.

3.3 Discussion

This chapter has described an orderless image representation based on salient local fea-

tures. Section 3.1 has introduced the basic components of this approach for the application
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Zhang Opelt [118]

bikes 92.0 86.5

people 88.0 80.8

Table 3.14 ROC equal error rates on the Graz database.

of texture recognition. Traditional texture representations are dense, i.e., they use features

computed at every pixel. To the best of our knowledge, ours is the first texture recognition

method that uses features computed at a small set of image locations. The experiments of

Section 3.1.2 show that it is possible to successfully recognize many textures based on infor-

mation contained in a very small number of image regions. Next, Section 3.2 has augmented

our basic approach with an improved classification step using an SVM kernel based on Earth

Mover’s Distance. By augmenting our method with a kernel-based classifier, we have made

it more effective not only for texture, but also for object recognition. The results of the

comparative evaluations of Section 3.2 convincingly demonstrate the promise of our method.

The rest of this dissertation will focus on extending the purely local bag-of-features

method with a variety of spatial constraints. Chapter 4 will explore the weakest form of

constraints, namely, loose statistical co-occurrence relations between neighboring local fea-

tures. The resulting representation is a two-level scheme with intensity-based textons at

the first level and histograms of texton distributions over local neighborhoods at the second

level (see, e.g., [96, 137]). Next, Chapter 5 will present stronger semi-local constraints, i.e.,

rigid geometric constraints between multiple neighboring regions that will enable us to dis-

card clutter and to identify groups of object features that form stable spatial configurations.

Finally, Chapter 6 will present a global method that takes into account the absolute image

positions of all features to effectively capture regularities in the spatial structure of pictures

of natural scenes.
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CHAPTER 4

Neighborhood Co-occurrence Relations for Texture

Recognition

This chapter presents two strategies for enriching bag-of-features texture models with

pairwise co-occurrence relations between nearby local features. Section 4.1 presents a texture

model that uses a discriminative maximum entropy classifier to combine individual texton

frequencies with co-occurrence frequencies in a principled manner. This model is suitable

for the same whole-image classification tasks that were considered in the previous chapter.

Section 4.2 addresses a more challenging problem, that of classifying or labeling individual

local features in multi-texture images. For this problem, we adopt a two-stage framework

that first learns an orderless local model for the appearance of individual features, and then

uses relaxation to incorporate context information provided by co-occurrence relations. The

research presented in the first and second parts of this chapter has been published in [74]

and [71], respectively.

4.1 A Maximum Entropy Framework for Combining

Local Features and Their Relations

This section presents a texture classification method that learns a textons-and-relations

model analogous to a bigram model used in language modeling and classifies images with the

help of a discriminative maximum entropy framework, which has been used successfully for

text document classification [6, 114] and image annotation [56]. This framework has several
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characteristics that make it attractive for visual categorization as well: It directly models the

posterior distribution of the class label given the image, leading to convex (and tractable)

parameter estimation; moreover, classification is performed in a true multi-class fashion,

requiring no distinguished background class. Because the maximum entropy framework

makes no independence assumptions, it offers a principled way of combining multiple kinds

of features (e.g., regions produced by different detectors), as well as co-occurrence relations

between pairs of features, into the image representation. While maximum entropy has been

widely used in the computer vision for generative tasks, e.g., modeling of images as Markov

random fields [169], where it runs into issues of intractability for learning and inference, it

can be far more efficient for discriminative tasks. For example, Mahamud et al. [94] have

used maximum entropy to combine multiple nearest-neighbor discriminators, and Keysers

et al. [64] have applied it to digit recognition. In this dissertation, we explore the usefulness

of this framework for combining local features and their relations.

4.1.1 The Maximum Entropy Classifier

In a discriminative maximum entropy framework [6], we seek to estimate the posterior

distribution of class labels given image features that matches the statistics of the features

observed in the training set, and yet remains as uniform as possible. Intuitively, such a

distribution properly reflects our uncertainty about making a decision given ambiguous or

inconclusive image data. (By contrast, some generative methods, e.g., mixtures of Gaussians,

tend to yield peaky or “overconfident” posterior distributions.) Suppose that we have defined

a set of feature functions fk(I, c) that depend both on the image I and the class label c (the

definitions of the specific feature functions used in this work will appear in Section 4.1.2).

To estimate the posterior of the class label given the features, we constrain the expected

values of the features under the estimated distribution P (c|I) to match those observed in
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the training set T . The observed “average” value of feature fk in the training set T is

f̂k =
1

|T |
∑
I∈T

fk(I, c(I)) .

Given a particular posterior distribution P (c|I), the expected value of fk, taken with respect

to the observed empirical distribution P (I) over the training set, is

E[fk] =
1

|T |
∑
I∈T

∑
c

P (c|I)fk(I, c) .

We seek the posterior distribution that has the maximum conditional entropy

H = − 1

|T |
∑
I∈T

∑
c

P (c|I) log P (c|I)

subject to the constraints E[fk] = f̂k. It can be shown that the desired distribution has the

exponential form

P (c|I) =
1

Z
exp

(∑
k

λkfk(I, c)

)
, (4.1)

where

Z =
∑

c

exp

(∑
k

λkfk(I, c)

)

is the normalizing factor,1 and the λk are parameters whose optimal values are found by

maximizing the likelihood of the training data under the exponential model (4.1). This

optimization problem is convex and the global maximum can be found using the improved

iterative scaling (IIS) algorithm [6, 114]. At each iteration of IIS, we compute an update δk

to each λk, such that the likelihood of the training data is increased. To do this, we bound

L(λ+δ)−L(λ) from below by a positive function F (δ), and find the value of δ that maximizes

this function. The derivation of updates is omitted here, but it can be shown [6, 114] that

1Note that Z involves only a sum over the classes, and thus can be computed efficiently. If we were
modeling the distribution of features given a class instead, Z would be a sum over the exponentially many
possible combinations of feature values — a major source of difficulty for a generative approach. By contrast,
the discriminative approach described here is more related to logistic regression. It is easy to show that (4.1)
yields binary logistic discrimination in the two-class case.
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when the features are normalized, i.e., when
∑

k fk(I, c) is a constant S for all I and c,

updates can be found efficiently in closed form:

δk =
1

S

(
log f̂k − log Eλ[fk]

)
. (4.2)

Because of the computational efficiency gained in this case, we use only normalized features

in the present work.

Because of the form of (4.2), zero values of f̂k cause the optimization to fail, and low values

cause excessive growth of the weights. This is a symptom of one of the biggest potential

pitfalls of the maximum entropy framework: overfitting. When the training set is small, the

observed averages may deviate significantly from the “true” expectations, leading to a poor

estimate of the posterior distribution. This problem can be alleviated by adding a zero-mean

Gaussian prior on the weights [114]. However, in our experiments, we have achieved better

results with a basic IIS setup where simple transformations of the feature functions are used

to force expectations away from zero. Specifically, for all our feature functions, we use the

standard Laplace smoothing, i.e., adding one to each feature value and renormalizing. To

simplify the subsequent presentation, we will omit this operation from all feature function

definitions.

We close this section with a note concerning the technique we use to design feature

functions. Instead of directly defining class-dependent features fk(I, c), it is much more

convenient to obtain them from a common pool of class-independent features gk(I) using the

following simple transformation [114]:

fd,k(I, c) =

{
gk(I) if c = d,

0 otherwise.

Then we have

P (c|I) =
1

Z
exp

(∑
d,k

λd,kfd,k(I, c)

)
=

1

Z
exp

(∑
k

λc,kgk(I)

)
.
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Thus, “universal” features gk become associated with class-specific weights λc,k. All our

feature functions will be defined in this way. Note, however, that the exponential framework

also allows completely different features for representing each class.

4.1.2 Texton Vocabulary and Feature Functions

In this section, we describe the application of the maximum entropy framework to texture

recognition. First, we describe our texton-based representation, and in Section 4.1.3 we

discuss experiments on the Brodatz database (Section 3.1.2.3, Figure 3.7) and the UIUC

texture database (Section 3.1.2.2, Figure 3.5). For the Brodatz database, we use scale-

invariant Laplacian features. Recall from Section 3.2.2 that scale-invariance is sufficient for

the Brodatz database, which does not feature any significant geometric deformations between

different samples from the same class. By contrast, the UIUC database contains arbitrary

rotations, perspective distortions and non-rigid deformations. As we have seen in Section

3.2.2, this greater degree of geometric variability requires a greater degree of invariance in

the low-level features. Therefore, we process the UIUC database with the affinely adapted

Laplacian detector, which returns elliptical regions. In both cases, the appearance of the

detected regions is represented using SIFT descriptors.

Instead of clustering descriptors in all training images individually to form signatures,

as in Chapter 3, we now represent images as histograms of texton labels from a universal

vocabulary. A universal vocabulary is necessary to us in this section because the maximum

entropy classifier requires that each image be characterized by a fixed-length, ordered vector

of feature functions. By contrast, the SVM classification framework used in Section 3.2

required only the ability to evaluate a kernel function for any pair of images, which we could

do based on the variable-length signature representation.

To form the universal vocabulary, we run K-means clustering on a randomly selected

subset of all training descriptors. To limit the memory requirements of the K-means al-
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gorithm, we cluster each class separately and concatenate the resulting textons. We find

K = 10 and K = 40 textons per class for the Brodatz and the UIUC database, respectively,

resulting in dictionaries of size 1110 and 1000. Finally, each descriptor from a new image is

assigned the label of the closest cluster center.

The next step is to define the feature functions for the exponential model. For text

classification, Nigam et al. [114] use scaled counts of word occurrences in a document. By

analogy, we define feature functions based on texton frequencies:

gk(I) =
Nk(I)∑
k′ Nk′(I)

,

where Nk(I) is the number of times texton label k occurs in the image I. To enrich the

feature set, we also define functions gk,� that encode the probability of co-occurrence of

pairs of labels at nearby locations. Let k � � denote the event that a region labeled � is

adjacent to a region labeled k. Specifically, we say that k � � if the center of � is contained

in the neighborhood obtained by “growing” the shape (circle or ellipse) of the kth region by

a constant factor (4 in the implementation). Let Nk��(I) denote the number of times the

relation occurs in the image I, and define

gk,�(I) =
Nk��(I)∑

k′,�′ Nk′��′(I)
.

An image model incorporating co-occurrence counts of pairs of adjacent labels is a coun-

terpart of a bigram language model that estimates the probabilities of two-word strings in

natural text. Just as in language modeling, we must deal with sparse probability estimates

due to many relations receiving extremely low counts in the training set. Thus, we are led

to consider smoothing techniques for probability estimates [17]. One of the most basic tech-

niques, interpolation with marginal probabilities, leads to the following modified definition

of the co-occurrence features:

g̃k,�(I) = (1 − α)gk,�(I) + α
(∑

�′
gk,�′(I)

)(∑
k′

gk′,�(I)
)

,
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where α is a constant (0.1 in our implementation). Informally, a co-occurrence relation k � �

should have higher probability if both k and � occur frequently in samples of the class, and

if they each have many neighbors.

While smoothing addresses the problem of unreliable probability estimates, we are still

left with millions of possible co-occurrence relations, and it is necessary to use feature selec-

tion to reduce the model to a manageable size. Possible feature selection techniques include

greedy selection based on increase of likelihood under the exponential model [6], mutual

information [23, 114] and likelihood ratio [23]. However, since more frequently occurring

relations yield more reliable estimates, we have chosen a simpler likelihood-based scheme:

For each class, we find a fixed number of relations that have the highest probability in the

training set, and then combine them into a global “relation dictionary.” In the implemen-

tation, we select 10 K features per class (recall that K is the number of textons per class);

because the relations selected for different classes sometimes coincide, the total number of

gk,� features is slightly less than ten times the total size of the texton dictionary.

4.1.3 Experimental Results: UIUC Database and Brodatz

Table 4.1 shows a comparison of classification rates obtained using various methods on

the two databases. All the rates are averaged over 10 runs with different randomly selected

training subsets; standard deviations of the rates are also reported. The training set consists

of 3 (resp. 10) images per class for the Brodatz (resp. UIUC) database. The first row

shows results for a popular baseline method using nearest-neighbor classification of texton

histograms with the χ2 distance (for an example of such an approach, see, e.g., [157]). The

second row shows results for a Naive Bayes baseline using the multinomial event model [102]:

P (I|c) =
∏

k

P (k|c)Nk(I) ,

where P (k|c) is given by the frequency of texton k in the training images for class c. The

results for the two baseline methods on the Brodatz database are comparable, though Naive
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Brodatz UIUC

χ2 83.09 ± 1.18 94.25 ± 0.59

Naive Bayes 85.84 ± 0.90 94.08 ± 0.67

Exp. gk 87.37 ± 1.04 97.41 ± 0.64

Exp. gk,� 75.20 ± 1.34 92.40 ± 0.93

Exp. gk + gk,� 83.44 ± 1.17 97.19 ± 0.57

Exp. g̃k,� 80.51 ± 1.09 95.85 ± 0.62

Exp. gk + g̃k,� 83.36 ± 1.14 97.09 ± 0.47

Table 4.1 Texture classification results using the maximum entropy classifier. See text for
a comparison with the results presented in the previous chapter.

Bayes has a potential advantage over the χ2 method, since it does not treat the training

samples as independent prototypes, but combines them in order to compute the probabilities

P (k|c). This may help to account for the slightly better performance of Naive Bayes on the

Brodatz database.

The third and fourth rows show results for exponential models based on individual gk

(textons only) features and gk,� (relations only) features, respectively, and the fifth row shows

results for the exponential model with both kinds of features combined. For both databases,

the texton-only exponential model performs much better than the two baseline methods;

the relations-only models are inferior to the baseline. Interestingly, combining textons and

relations does not improve performance. To test whether this is due to overfitting, we

compare performance of the gk,� features with the smoothed g̃k,� features (last two rows).

While the smoothed features do perform better, combining them with textons-only features

once again does not bring any improvement. Thus, texton-only features clearly supercede

the co-occurrence relations.
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Figure 4.1 Histograms of classification rates for the Brodatz database (left) and the UIUC
database (right).

To get a more detailed look at the performance of the exponential model, refer to Figure

4.1, which shows the histograms of classification rates achieved by the parts-only exponential

model for individual classes. With the parts-only exponential model, 100% recognition rate is

achieved by 61 classes from the Brodatz database and by 8 classes from the UIUC database.

This distribution of classification rates, in particular for the Brodatz database, suggests

another reason (besides overfitting) for the lack of improvement afforded by co-occurrence

features. Namely, most classes in the database can be represented quite well without tak-

ing texton co-occurrences into account, while a few are either extremely nonhomogeneous

or extremely perceptually similar to another class. Consequently, adding relations to the

exponential model cannot improve the recognition of either the “easy” or the “difficult”

classes.

Overall, the gk exponential model performs the best for both texture databases. For

Brodatz, our present rate of 87.37% is comparable to the rate of 87.44% achieved with

nearest-neighbor classification in Section 3.1.2.3 (Table 3.4). However, it is well below the

94.1% accuracy achieved in Section 3.2.1 with the kernel-based classifier (Table 3.5). One
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possible reason for the apparent disadvantage of the maximum entropy classifier over the

SVM in this case is the extremely small training set size for the Brodatz database (only three

images), which may be causing the exponential model to overfit. For the UIUC database,

our present result of 97.41% exceeds the nearest-neighbor result of 92.61% (Section 3.1.2.2,

Table 3.2) and is very similar to the 98% achieved with SIFT features and the kernel-based

approach (Section 3.2.2, Table 3.8). Note that though the latter result was achieved with 20

training images per class instead of ten as in this section, Figure 3.11 shows that classification

accuracy of the kernel-based method on the UIUC database changes very little between these

two training set sizes.

4.2 A Two-Stage Approach for Recognizing Local Tex-

ture Regions

In the rest of this chapter, we address the problem of recognizing individual regions in

multi-texture images. Potential practical applications of this problem include texture-based

retrieval in image databases [131, 137], classification of natural scenes [69], and segmentation

of images into regions having different semantic categories, e.g., natural vs. man-made [11,

68].

So far in this dissertation, we have demonstrated several times that it is possible to

robustly classify whole single-texture images by comparing distributions of local features

gathered over a large field. Determining the class of an individual region is a more challenging

task because the local appearance of the region itself is usually an ambiguous cue (this is the

aperture problem that shows up in many areas of computer vision). A common approach to

reducing the ambiguity of local appearance is to augment the local image representation with

a description of the spatial relationship between neighoring regions. The systems developed

by Malik et al. [96] and Schmid [137] are examples of this two-layer architecture, with

intensity-based descriptors (textons) at the first level and histograms of texton distributions
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at the second. This section proposes a conceptually similar two-stage approach to texture

modeling.

The first stage of our approach consists in estimating the distribution of local intensity

descriptors. Just as in Chapter 3, we automatically select the shape of support regions over

which the descriptors are computed by using the affine adaptation process. Though affine

adaptation usually does not produce neighborhoods large enough to serve as representative

texture samples, it does succeed in finding the characteristic scale of primitive elements

such as blobs. The descriptors computed over this scale are already somewhat distinctive

and can be classified with a moderate degree of success, as demonstrated in Section 4.2.2.1.

We represent the distribution of descriptors in each class by a Gaussian mixture model

where each component corresponds to a “sub-class”. This generative model is used to assign

the most likely sub-class label to each region extracted from a training image. At the

second stage of the modeling process, co-occurrence statistics of different sub-class labels are

computed over neighborhoods adaptively defined using the affine shape of local regions. Test

images may contain multiple textures, and they are also processed in two stages. First, the

generative model is used to assign initial estimates of the probability for each sub-class to each

feature vector. These estimates are then refined using a relaxation step that incorporates

co-occurrence statistics.

The most basic form of the modeling process is fully supervised, making use of training

data containing only single-texture images. However, we show in Section 4.2.1.1 that a weaker

form of supervision is possible: the training data may include unsegmented multi-texture

images labeled by the set of texture classes that they contain.

The following outline of the organization of our system may serve as a guide to the rest

of this section:
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1. Feature extraction: Detect a sparse set of affinely adapted regions in an image and

compute an intensity-based descriptor for each region. This stage is the same as in

Chapter 3.

2. Density estimation (Section 4.2.1.1): Use the EM algorithm to estimate class condi-

tional distributions of descriptors as mixtures of Gaussian “sub-classes”.

3. Neighborhood statistics (Section 4.2.1.2): Define the neighborhood of each local region

as a function of its affine shape, and compute co-occurrence statistics of sub-class labels

over this neighborhood.

4. Testing (Section 4.2.1.3): Obtain initial probability estimates using the generative

model and perform relaxation to refine these estimates.

In Section 4.2.2, we evaluate the proposed texture representation on two data sets. The

first set consists of photographs of textured surfaces taken from different viewpoints and

featuring significant scale changes and perspective distortions. The second set consists of

images of three types of animals whose appearance can be adequately modeled by texture-

based methods.

The research described in this chapter has been published in [71].

4.2.1 Modeling Textures

At the feature extraction stage, our implementation uses the Laplacian blob detector

introduced in the previous chapter. The descriptors used are 10 × 10 spin images, treated

as 100-dimensional vectors in the following.

4.2.1.1 Density Estimation

In the supervised framework, the training data consists of single-texture sample images

from texture classes with labels C�, � = 1, . . . , L. Thus, the class-conditional densities p(y|C�)
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can be estimated using all the feature vectors extracted from the images belonging to class

C�. We model the class-conditional density of the feature vectors y given the class labels �

as p(y|C�) =
∑M

m=1 p(y|c�m) p(c�m), where the components c�m, m = 1, . . . ,M , are thought

of as sub-classes. Each p(y|c�m) is assumed to be a Gaussian with mean µ�m and covariance

matrix Σ�m. We use the EM algorithm to estimate the parameters of the mixture model,

namely the means µ�m, covariances Σ�m, and mixing weights p(c�m). This process can be

thought of as “soft” clustering, where each component corresponds to a cluster in the feature

space. Accordingly, EM is initialized with the output of the K-means algorithm. In this

work, we use the same number of mixture components for each class (M = 15 and M = 10,

respectively, for the experiments reported in Sections 4.2.2.1 and 4.2.2.2). To help avoid

numerical problems in dealing with 100-dimensional features, we have scaled all feature

vectors by a value empirically determined to give the best convergence. In addition, we

have limited the number of free parameters in the optimization by using spherical Gaussians

with covariance matrices of the form Σ�m = σ2
�mI. This restriction also helps to prevent

the covariance matrices from becoming singular. Another, more severe, restriction would

be to constrain all components to have equal covariance matrices. We have experimented

with both methods and determined that estimating a separate covariance value for each

component creates more discriminative models. In the future, we plan to experiment with

dimensionality reduction techniques to determine whether they will improve performance.

The EM framework for learning texture models provides a natural way of incorporating

unsegmented multi-texture images into the training set. Our approach is inspired by the

work of Nigam et al. [115], who have proposed several techniques for using unlabeled data

to improve the accuracy of text classification. Suppose we are given a multi-texture im-

age annotated with the set L of class indices that it contains—that is, each feature vector

y extracted from this image has an incomplete label of the form CL = {C�|� ∈ L}. To

accommodate incomplete labels, the density estimation framework needs to be modified:

75



instead of partitioning the training data into subsets belonging to each class and separately

estimating L mixture models with M components each, we now use all the data simul-

taneously to estimate a single mixture model with L × M components. The estimation

process must start by selecting some initial values for the parameters of the model (means,

covariances, mixing weights). During the expectation (E) step, we use the parameters to

compute probabilistic sub-class membership weights given the feature vectors y and the in-

complete labels CL: p(c�m|y, CL) ∝ p(y|c�m) p(c�m|CL), where p(c�m|CL) = 0 for all � /∈ L

and
∑

�∈L
∑M

m=1 p(c�m|CL) = 1. During the maximization (M) step, we use the computed

weights to re-estimate the parameters by maximizing the expected likelihood of the data in

the standard fashion [8].

We have conducted experiments that exercise the EM framework in two different ways.

The data set described in Section 4.2.2.1 contains both single- and multi-texture training

images, which are used respectively to initialize and refine the parameters of the full gen-

erative model. By contrast, the data set of Section 4.2.2.2 does not contain any segmented

images at all.

Overall, the incorporation of incompletely labeled data requires only a slight modifica-

tion of the EM implementation used for estimating the class-conditional densities p(y|C�).

However, this modification is of great utility, since the task of segmenting training examples

by hand becomes an odious chore even for moderately-sized data sets. In situations where

it is difficult to obtain large amounts of fully labeled examples, adding incompletely labeled

or unlabeled data to the training set also helps to improve classification performance [115].

4.2.1.2 Neighborhood Statistics

We describe in this section the second layer of our texture representation, which accumu-

lates information about the distribution of pairs of sub-class labels belonging to neighboring

regions. Following the density estimation step, each region in the training image is assigned

the sub-class label that maximizes the posterior probability p(c�m|y, CL).
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Next, we need to a method for computing the neighborhood of a given elliptical region.

Just as in Section 4.1, we can define the neighborhood as the set of all points obtained by

“growing” the ellipse by a constant factor. However, during the relaxation step this definition

sometimes produces undesirable results since points with small ellipses get too few neighbors,

and points with large ellipses get too many. Therefore, we modify our neighborhood definition

as follows: instead of multiplying the ellipse axes by a constant, we extend them by a

small absolute amount (15 pixels in the implementation), and let the neighborhood consist

of all points that fall inside this enlarged ellipse. In this way, the size and shape of the

neighborhood still depends on the affine shape of the region, but the neighborhood structure

is more balanced.

Once we have defined a neighborhood structure for the affine regions contained in an

image, we can effectively turn this image into a directed graph with arcs emanating from the

center of each region to other centers that fall within its neighborhood. The existence of an

arc from a region with sub-class label c to another region with label c′ is a joint event (c, c′)

(note that the order is important since the neighborhood relation is not symmetric). For

each possible pair of labels, we estimate p(c, c′) from the relative frequency of its occurrence,

and also find the marginal probabilities p̂(c) =
∑

c′ p(c, c′) and p̌(c′) =
∑

c p(c, c′). Finally,

we compute the values

r(c, c′) =
p(c, c′) − p̂(c) p̌(c′)[(

p̂(c) − p̂2(c)
) (

p̌(c′) − p̌2(c′)
)] 1

2

representing the correlations between the events that the labels c and c′, respectively, belong

to the source and destination nodes of the same arc. The values of r(c, c′) must lie between

−1 and 1; negative values indicate that c and c′ rarely co-occur as labels at endpoints of the

same edge, while positive values indicate that they co-occur often.

In our experiments, we have found that the values of r(c, c′) are reliable only in cases

when c and c′ are sub-class labels of the same class C. Part of the difficulty in estimating

correlations across texture classes is the lack of data in the training set. Even if the set
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contains multi-texture images, only a small number of edges actually fall across texture

boundaries. Unless the number of texture classes is very small, it is also quite difficult to

create a training set that would include samples of every possible boundary. Moreover, since

we do not make use of “ground-truth” segmented images, the boundaries found in multi-

texture images are not reliable. For these reasons, whenever c and c′ belong to different

classes, we set r(c, c′) to a constant negative value that serves as a “smoothness constraint”

in the relaxation algorithm described in the next section.

4.2.1.3 Relaxation

We have implemented the probability-based iterative relaxation algorithm described in

the classic paper by Rosenfeld et al. [128]. The initial estimate of the probability that the

ith region has label c, denoted p
(0)
i (c), is obtained from the learned Gaussian mixture model

as the posterior probability p(c|yi). Note that since we run relaxation on unlabeled test

data, these probabilities must be computed for all L × M sub-class labels corresponding to

all possible classes. At each iteration, new probability estimates p
(t+1)
i (c) are obtained by

updating the current values p
(t)
i (c) using the equation

p
(t+1)
i (c) =

p
(t)
i (c)

[
1 + q

(t)
i (c)

]
∑

c p
(t)
i (c)

[
1 + q

(t)
i (c)

] ,

q
(t)
i (c) =

∑
j

wij

[∑
c′

r(c, c′) p
(t)
j (c′)

]
. (4.3)

The scalars wij are weights that indicate how much influence region j exerts on region i.

We treat wij as a binary indicator variable that is nonzero if and only if the jth region

belongs to the ith neighborhood. Note that the weights are required to be normalized so

that
∑

j wij = 1 [128].

The update equation (4.3) can be justified in qualitative terms as follows. First of all, it

can easily be seen that p
(t)
j (c′) has no practical effect on p

(t)
i (c) when the ith and jth regions

are not neighbors, when c and c′ are uncorrelated, or when the probability p
(t)
j (c′) is low.
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However, the effect is significant when the jth region belongs to the ith neighborhood and

the value of p
(t)
j (c′) is high. Intuitively, the correlation r(c, c′) expresses how “compatible”

the labels c and c′ are at nearby locations. Thus, p
(t)
i (c) is increased (resp. decreased) by

the largest amount when r(c, c′) has a large positive (resp. negative) value. Overall, the

probabilities of different sub-class labels at neighboring locations reinforce each other in

an intuitively satisfying fashion. Unfortunately, the iteration of (4.3) has no convergence

guarantees, though the constraints built into the update equation do ensure that the p
(t)
i (c)

stay nonnegative and sum to 1 [128]. Despite the lack of a formal convergence proof, we have

found the relaxation algorithm to behave well on our data. To obtain the results presented

in Sections 4.2.2.1 and 4.2.2.2, we run relaxation for 200 iterations.

4.2.1.4 Classification and Retrieval

Individual regions are classified in the obvious way, by assigning them to the class that

maximizes pi(C�) =
∑M

m=1 pi(c�m). To perform classification and retrieval at the image level,

we need to define a “global” score for each texture class. In the experiments reported in

the next section, the score for class C� is computed by summing the probability of C� over

all N regions found in the image:
∑N

i=1

∑M
m=1 pi(c�m), where the pi(c�m) are the probability

estimates following relaxation. Classification of single-texture images is carried out by as-

signing the image to the class with the highest score, and retrieval for a given texture model

proceeds from highest scores to lowest.

4.2.2 Experimental Results

4.2.2.1 The Indoor Scene

Our first data set contains seven different textures present in the atrium of the Beckman

Institute (Figure 4.2). Figure 4.3 shows two sample images of each texture. To test the range

of invariance in our representation, we have gathered images over a wide range of viewpoints

and scales. The data set is partitioned as follows: 10 single-texture training images of each
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class; 10 single-texture validation images of each class; 13 two-texture training images; and

45 multi-texture test images.

Figure 4.2 The indoor scene that is the source of the textures in Figure 4.3.

Table 4.2 shows classification results for the single-texture validation images following

training on single-texture images only. The columns labeled “image” show the fraction of

images classified correctly using the score described in Section 4.2.1.4. As can be seen from

the numbers in the first column, successful classification at the image level does not require

relaxation: good results are achieved in most cases by using the probabilities output by the

generative model of Section 4.2.1.1. Interestingly, for class T6 (marble), the classification

rate actually drops as an artifact of relaxation. When the right class has relatively low initial

probabilities in the generative model, the self-reinforcing nature of relaxation often serves
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T1 (Brick) T2 (Carpet) T3 (Chair) T4 (Floor 1) T5 (Floor 2) T6 (Marble) T7 (Wood)

Figure 4.3 Samples of the texture classes used in the experiments of Section 4.2.2.1.

to diminish these probabilities even further. The columns labeled “region”, which show the

fraction of all individual regions in the validation images that were correctly classified based

on the probabilities pi(C�), are much more indicative of the impact of relaxation: for all

seven classes, classification rates improve dramatically.

For an even more detailed look at classification performance of individual regions, refer

to the confusion matrices on Figure 4.4. The entry in the ith row and jth column of each

matrix represents the proportion of all regions from class Ti that were classified as Tj. Note

that the values on the diagonal of the respective matrices correspond to the values in columns

2 and 4 of Table 4.2.

Next, we evaluate the performance of the system for retrieval of images containing a

given texture. Figure 4.5 shows the results in the form of ROC curves that plot the positive

detection rate (the number of correct images retrieved over the total number of correct

images) against the false detection rate (the number of false positives over the total number of

negatives in the data set). The top row shows results obtained after fully supervised training

using single-texture images only, as described in Section 4.2.1.1. The bottom row shows the

results obtained after re-estimating the generative model following the incorporation of 13

two-texture images into the training set. Following relaxation, a modest improvement in

performance is achieved for most of the classes. A more significant increase in performance

could probably be achieved by using a larger number of incompletely labeled examples [115].
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Before relaxation After relaxation

Class image region image region

T1 100 61 100 97

T2 100 58 100 99

T3 90 70 90 85

T4 100 61 100 99

T5 100 45 100 95

T6 90 29 80 67

T7 60 41 70 73

Table 4.2 Classification rates for single-texture images.

The final stage of evaluation is purely qualitative: following relaxation, does the system

succeed in providing a perceptually accurate segmentation of the image into regions of dif-

ferent texture? Part (a) of Figure 4.6 shows a typical example of the difference made by

relaxation in the assignment of class labels to individual regions. Part (b) shows more ex-

amples where the relaxation was successful. Note in particular the top example of part (b),

where the perceptually similar classes T4 and T5 are unambiguously separated. Part (c)

of Figure 4.6 shows two examples of segmentation failure. In the bottom example, classes

T2 (carpet) and T3 (chair) are confused, which can be partly explained by the fact that

the scales at which the two textures appear in this image are not well represented in the

training set. Overall, we have found the relaxation process to be sensitive to initialization of

probabilities using the generative model, in the sense that poor initial probability estimates

lead to severe artifacts in the final assignment. In the future, we plan to address this problem

by implementing the relaxation step using a more modern and principled belief propagation

algorithm [38, 67].
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T1 T2 T3 T4 T5 T6 T7

T1

T2

T3
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T1 T2 T3 T4 T5 T6 T7

T1
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T4

T5

T6

T7

Figure 4.4 Confusion matrices: before relaxation (left) and after (right). Lighter colors
correspond to higher values.
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Figure 4.5 ROC curves (positive detection rate vs. false detection rate) for retrieval in the
test set of 45 multi-texture images. The dashed (resp. solid) line represents performance
before (resp. after) relaxation. Top row: single-texture training images only, bottom row:
single-texture and two-texture training images.
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Orig. image T1 (Brick) T2 (Carpet) T3 (Chair) T4 (Floor 1) T5 (Floor 2) T6 (Marble) T7 (Wood)

(a) Initial labeling of regions (top) vs. the final labeling following relaxation (bottom).

Orig. image T1 (Brick) T2 (Carpet) T3 (Chair) T4 (Floor 1) T5 (Floor 2) T6 (Marble) T7 (Wood)

(b) Successful segmentation examples.

Orig. image T1 (Brick) T2 (Carpet) T3 (Chair) T4 (Floor 1) T5 (Floor 2) T6 (Marble) T7 (Wood)

(c) Unsuccessful segmentation examples.

Figure 4.6 Segmentation results.
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4.2.2.2 Animals

Our second data set consists of unsegmented images of three kinds of animals: cheetahs,

giraffes, and zebras. The training set contains 10 images from each class, and the test set

contains 20 images from each class, plus 20 “negative” images not containing instances of the

target animal species. To account for the lack of segmentation, we introduce an additional

“background” class, and each training image is labeled as containing the appropriate animal

and the background. Recall from Section 4.2.1.1 that the EM algorithm is initialized with the

output of K-means. To initialize K-means on this incompletely labeled data, we randomly

assign each feature vector either to the appropriate animal class, or to the background. The

ROC curves for each class are shown in Figure 4.7, and segmentation results are shown in

Figure 4.8. Overall, our system appears to have learned very good models for cheetahs and

zebras, but not for giraffes.
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Cheetah Zebra Giraffe

Figure 4.7 ROC curves for the animal dataset. The dashed (resp. solid) line represents
performance before (resp. after) relaxation.
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Original image Cheetah Zebra Giraffe Background

Figure 4.8 Segmentation on the animal dataset.
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We conjecture that several factors account for the weakness of the giraffe model. Some

of the blame can be placed on the early stage of feature extraction. Namely, the Laplacian-

based affine region detector is not well adapted to the giraffe texture whose blobs have a

relatively complex shape. At the learning stage, the system also appears to be “distracted”

by background features, such as sky and trees, that occur more commonly in training samples

of giraffes than of the other animals. In the bottom image of Figure 4.8, “giraffe-ness” is

associated with some parts of the background, as opposed to the animals themselves. Part

of the problem is that the artificial “background” class is simply too inhomogeneous to be

successfully represented in the mixture framework. A principled solution to this problem

would involve partitioning the background into a set of natural classes (e.g., grass, trees,

water, rocks, etc.) and building larger training sets that would include these classes in

different combinations.

Despite somewhat uneven performance, the results presented in this section are promis-

ing. Unlike many other methods suitable for modeling natural textures, ours does not require

negative examples. The EM framework shows surprising aptitude for automatically separat-

ing positive areas of the image from negative ones, without the need for specially designed

significance scores such as the ones used by Schmid [137].

4.3 Discussion

The first half of this chapter has presented an approach to texture classification that com-

bines textons and co-occurrence relations using a discriminative maximum entropy frame-

work. While the maximum entropy classifier has proven to be effective for a basic bag-of-

features image representation, augmenting this representation with co-occurrence relations

did not produce any improvement. This negative result is echoed in the experiments of

Section 4.2.2.1, where we have observed that, even though relaxation improves the labeling

of individual regions, it is not required for effective classification of single-texture images. A
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similar observation was also made by Lu et al. [91] who found that segmenting scenes into

their semantic components (or basic material categories) was not necessary for recognizing

the scenes as a whole. Interstingly, these findings in the vision literature are consistent with

the conventional wisdom in the document classification community, that simple orderless

“bag-of-words” represententations [9, 102, 114] perform best for document classification.

It is possible that the whole-image classification task is intrinsically “simpler” than the

region labeling task, and does not require detailed statistical modeling of spatial relations. It

is also possible that current image databases are not challenging enough, in that all classes

can be distinguished using purely local features. Maybe co-occurrence statistics do not

work because existing datasets are too small to allow them to be learned reliably, or maybe

stronger spatial relations are needed in order to observe an improvement in performance.

These are all interesting questions that the current vision literature has not even begun to

address. To investigate them further, it is necessary to conduct larger-scale tests on more

difficult texture databases that include a wider variety of classes.

The two-stage texture representation framework presented in the second half of this

chapter, while showing promise for weakly supervised learning, also has several important

shortcomings that should be addressed in subsequent work. Perhaps the most fundamen-

tal one is the separation between the two modeling steps of learning the distribution of

local appearance and finding the co-occurrence statistics. In particular, the co-occurrence

statistics computed during the second step cannot back-propagate to influence the sub-class

probability distributions computed in the first step. At testing time, once the posterior

probabilities of different sub-class labels have been computed from the generative model

of local appearance, the subsequent updates of the probability values no longer depend on

the image data. This feature of the relaxation algorithm described in Section 4.2.1.3 is at

least partially responsible for the segmentation artifacts present in our results. Our current

formulation of co-occurrence relations also has several disadvantages: First, the correlation
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between two neighboring locations depends only on their labels, not on the pixel-level data;

and second, correlations between sub-class labels of different textures cannot be estimated

reliably in a weakly supervised framework, and must therefore be set by hand. At worst,

this can reduce the co-occurrence values to the role of generic smoothness constraints, which

blindly enforce continuity in the final segmentation, regardless of the pixel-level evidence. A

possible solution to many of the above problems is to represent the image as a conditional

random field (CRF) [70, 68]. CRFs provide a principled framework for connecting low-level

features with higher-level labels, and for combining local features and relations within the

same probabilistic model. The major barrier to adopting CRFs to our problem is the lack

(to our knowledge) of efficient learning methods for the weakly supervised setting. This is

an extremely challenging problem, one that we hope to address in future research.
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CHAPTER 5

Semi-Local Parts for Object Recognition

Achieving true 3D object recognition is one of the most important challenges of computer

vision. As a first step towards this goal, it is necessary to develop geometrically invariant

object models that can support the identification of object instances in novel images in the

presence of viewpoint changes, clutter, and occlusion. This chapter describes an approach to

object recognition that represents objects using dictionaries of composite semi-local parts, or

geometric configurations of regions that are stable across a range of views of an object, and

also across multiple instances of the same object category. We can think of each individual

semi-local part as corresponding to an approximated planar and rigid region of the object.

For example, the semi-local parts for representing side views of cars shown in Figure 5.1 (a)

cover different rigid components (front, back, middle, or just a wheel) that any two given

vehicles are likely to share in common. Moreover, because semi-local parts do not have to

cover the whole object and can move freely with respect to one another, collections of them

are in principle suitable for describing even non-rigid 3D objects, such as the owls in Figure

5.1 (b).

The rest of this chapter is organized as follows. Section 5.1 motivates our work, and Sec-

tion 5.2 describes our weakly supervised procedure for creating dictionaries of semi-local parts

for representing multiple object classes. This procedure first performs two-image matching

to create candidate parts (Section 5.2.1) and then validates these parts against additional

images from positive and negative classes (Section 5.2.2). Section 5.3 presents recognition
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(a) Cars

(b) Owls

Figure 5.1 Collections of semi-local parts for representing two object classes. The pairs
of images that were originally matched to obtain the part are shown one above the other
with the matched local features (yellow circles) superimposed. The examples shown here
use the scale-invariant local features described in Section 5.3.2 and a scale-and-translation
alignment model. The aligning transformation between the corresponding groups of features
is indicated by the bounding boxes: the axis-aligned box in the top image is mapped onto
the parallelogram in the bottom image. (As explained in Section 5.2.1, we use an affine
alignment model and then discard any transformation that induces too much distortion.)
Note that the boxes are shown for visualization purposes only; they are not required as
input to the matching algorithm.
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experiments with affine- and scale-invariant parts (Sections 5.3.1 and 5.3.2, respectively). In

our recognition experiments, we use two different discriminative models: in Section 5.3.1,

where relatively little training data is available, we use a simple voting scheme to classify

images according to which class they contain; in Section 5.3.2 we work with larger training

sets that allow us to learn a maximum entropy classifier that was first introduced in Section

4.1. Finally, the chapter closes with a discussion of several conceptual issues relevant to our

approach. The material presented in this chapter has been published in [73, 74].

5.1 Motivation

In recent literature, perhaps the most effective approach to weakly supervised learning

of part-based object models is Bayesian [28, 33, 162, 163]. Despite their promise, current

Bayesian approaches have substantial shortcomings that limit their applicability to general

3D object recognition. In this chapter, we take aim at two of these shortcomings: lack of

geometric invariance and an inefficient strategy for dealing with the correspondence problem.

Geometric invariance. To date, the state of the art for Bayesian approaches is scale

and translation invariance [33], which means that they are mostly applicable to recognizing

fronto-parallel views of upright objects. Unfortunately, while achieving scale invariance

already requires a very intricate generative probabilistic framework, a principled probabilistic

treatment of rotation or affine invariance is orders of magnitude more complex [78]. Even if

one assumes a Gaussian joint distribution on the coordinates of a set of image features, the

distribution in the affine-normalized space obtained by expressing all points in the basis given

by a reference triple becomes non-Gaussian. Moreover, the normalized positions become

correlated even if one starts out with uncorrelated errors in individual feature positions.

On the other hand, if one assumes a more direct geometric approach to invariance (see,
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e.g., [36]), one gains access to robust and simple methods for computing affine-invariant

object representations.

The correspondence problem. When attempting unsupervised learning of part-based

models, one must inevitably confront the intractable combinatorial problem of determin-

ing correspondence, or the assignment of object parts to image regions in the presence of

occlusion and clutter. In the typical generative approach to recognition, the Expectation

Maximization (EM) algorithm is used for estimating the parameters of probabilistic object

models. EM treats correspondence as missing data to be integrated out, which in principle

involves computing expectations over the exponentially large space of all possible correspon-

dences, but in practice is usually handled by a variety of approximation techniques. The

combinatorics of EM-based learning severely limit the total number of parts in an object

model. For example, the system developed by Fergus et al. [33] is, according to its authors,

limited to models consisting of up to 6 or 7 parts learned from images containing 20 to 30

features. In turn, this limits both the expressiveness of the corresponding object models and

the amount of clutter and/or occlusion that can be tolerated during learning. Perhaps as

importantly for us, the “missing data” approach to correspondence is not satisfying from

a philosophical standpoint. For humans, determining correspondence is a crucial step in

forming judgments of similarity, which in turn influence such complex cognitive processes as

memory and problem solving [43]. For computer vision algorithms, the ability to establish

perceptually plausible correspondences is a convincing demonstration of success in the recog-

nition task, one that has yet to be consistently achieved. Therefore, the approach proposed

in this chapter is built on the idea that establishing unique correspondence between model

and image features (as opposed to averaging over all possible correspondences) is central for

successful recognition.
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5.2 Semi-Local Parts

For each object class, we construct a dictionary of composite semi-local parts [73], or

groups of several nearby regions whose appearance and spatial configuration occurs repeat-

ably in the training set. The key idea is that consistent occurrence of (approximately) rigid

groups of simple features in multiple images is very unlikely to be accidental, and must

thus be a strong cue for the presence of the object. Note that, unlike the parts used in

[1, 28, 33, 162, 163] (points or individual regions), our semi-local parts are not atomic, but

are made up of multiple regions, each of which is associated with its own shape (circle or

ellipse) and intensity pattern. Making parts composite improves their expressiveness and

distinctiveness, and provides a layer of abstraction in representing complex 3D objects. We

also propose a direct geometric procedure for learning parts from small collections of input

images. Our strategy is to reduce the intractable problem of simultaneous alignment of mul-

tiple images to pairwise matching: candidate parts are formed by matching pairs of images,

followed by a validation step to discard spurious matches (Figure 5.2). Even though finding

optimal correspondence between features in two images is still intractable [46], effective sub-

optimal solutions can be found using a non-exhaustive constrained search procedure that

relies on a number of strong geometric and appearance-based consistency constraints. As a

result of these constraints, our matching algorithm is able to return hundreds of candidate

parts consisting of a dozen or more features each. Note that the sizes of the parts are not

fixed in advance, but are automatically determined by the matching procedure.

5.2.1 Matching of Pairs of Images

As explained above, the fundamental operation in our approach to learning object parts

is matching pairs of images from the same class. Algorithm 1 describes our procedure for

two-image matching and Figure 5.3 illustrates its major steps. This algorithm is similar to

classical alignment search [27, 41, 47, 54], but it uses strong appearance (descriptor similarity)
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Input: Sets of features in two images.

Output: A list of candidate parts.

for each feature in the first image do

Find a list of potential appearance-based matches in the second image.

end for

Initialize seed groups:

for each feature i in the first image and each pair j, k of its neighbors do

Enumerate all triples i′, j′, k′ in the second image such that i′ (resp. j′, k′)

is a potential match of i (resp. j,k) and j′, k′ are neighbors of i′ (Figure 5.3, top).

end for

Grow seed groups:

for each seed group of matching features do

repeat

Estimate affine transformation that aligns corresponding features in both images

(Figure 5.3, middle).

if transformation is geometrically consistent then

Align two images using the estimated transformation.

Search for additional consistent matches in the neighborhood of existing group.

Add these matches to the group (Figure 5.3, bottom).

end if

until transformation is no longer consistent or no more matches can be found.

if current group is larger than a minimum size then

Add the group to the list of candidate parts.

end if

end for

Algorithm 1: Two-image matching. For specificity, we give here our affine alignment
algorithm, but handling of other transformation models is straightforward (see text).
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Figure 5.2 Our procedure for creating semi-local parts: A candidate part is found by
matching two images from the same class and validated by matching against additional
training images.

constraints to reduce the space of all possible correspondence hypotheses. Initially, for each

feature in one image, we create a short list of potential matches in the other image by

setting a threshold on descriptor similarity. Then we enumerate all possible seed groups of

the smallest size necessary to estimate an aligning transformation between the two images.

The most general model considered in our work is affine, for which seed groups consist of

triples of matches (Figure 5.3, top). Note, however, that it is straightforward to handle more

restricted 2D alignment models, such as scaling or similarity, within the same computational

framework. In our implementation, we use linear least squares to estimate an affine alignment

between the two groups of regions, and then enforce additional geometric constraints by

rejecting any transformation that deviates too much from the desired model. For example,

for the scaling-only model used in Section 5.3.2, we reject transformations that include too

much skew, rotation, and anisotropic scaling. After estimating an alignment for a given seed

group (Figure 5.3, middle), we conduct a greedy search in the same local neighborhood for

additional matches satisfying geometric and appearance consistency constraints (Figure 5.3,

bottom). Geometric consistency is measured by comparing the shapes of the corresponding

features aligned in the same coordinate system. For affine features, we place constraints on

the residual of the linear transformations between the centers of the corresponding ellipses,
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Step 1: An initial seed triple. Arrows represent neighborhood constraints and dotted lines
represent appearance consistency constraints.
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Step 2: Estimate an affine transformation aligning (i′, j′, k′) with (i, j, k). Features from
image 2 mapped onto their corresponding features in image 1 are shown by dashed outlines.
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Step 3: Grow the group by two additional matches that satisfy geometric and appearance
consistency constraints.

Figure 5.3 Illustration of three steps of Algorithm 1.
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as well as on the difference in their orientations and axis lengths. The correspondence search

terminates when the alignment is no longer geometrically consistent, or when no further

consistent matches can be found. Note that the number of features in the group (the size

of the candidate part) is determined automatically as a result. Moreover, since Algorithm 1

generates a large number of seed groups and attempts to grow them all, multiple candidate

parts can be returned as a result of just a single matching operation. In the implementation,

we use a post-processing step to merge candidate parts that ovelap by a significant amount.

The candidate parts returned by the above procedure are (roughly) affinely rigid by

construction, i.e., the mapping between two different instances of the same part can be well

approximated by a 2D affine transformation. Note that we do not make the overly restrictive

assumption that the entire object is planar and/or rigid — it is sufficient for the object to

possess some (approximately) planar and rigid components. Because of this non-global

notion of affine invariance, our method is suitable for modeling rigid 3D objects (Figure

5.4), as well as non-rigid objects such as faces (Figure 5.5). Also refer back to Figure 5.1

for matching examples using scale-invariant features and a scale-and-translation alignment

model.

In existing literature, similar procedures for growing groups of matches based on geomet-

ric and appearance consistency constraints have been successfully applied to the recognition

of the same object instance in multiple views [34]; one of the key insights of our work is that

such procedures are also quite effective for building models of object classes with substantial

intra-class variation. Because of the strong consistency constraints that must be satisfied by

semi-local parts, they are much more discriminative than atomic parts, and much less likely

to give rise to false detections.

Note that our two-image matching procedure can match an image to itself, and is thus

directly applicable to the problem of detecting repeated structures and symmetries within a

single image [79, 86, 151]. The only change necessary in the implementation is the addition of
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(a) Salt can

(b) Shoe

(c) Car

Figure 5.4 Candidate parts for three 3D objects: (a) a salt can, (b) a shoe, and (c) a car.
The two input images to the matching procedure are shown side by side, with the matched
ellipses superimposed. For visualization purposes, we also show bounding boxes around the
matched ellipses: the axis-aligned box in the left image is mapped onto the parallelogram in
the right image by the affine transformation that aligns the matched ellipses.

checks to prevent trivial hypotheses that match (almost) every region to itself. A particularly

attractive feature of our matching procedure for this application is its ability to discover

patterns in substantial amounts of clutter, which is not possible with other, more specialized

approaches, e.g., [86]. Figure 5.6 shows the symmetries and repetitions detected in several

images. The examples of repetitions detected in the images of fishes and badgers suggest

that a single image may be sufficient to construct highly discriminative models for some

object categories. This is certainly true for butterflies, which will be used as test subjects in

Section 5.3.1.
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(a) Alain Delon

(b) Grace Kelly (c) Grace Kelly and Cary Grant

Figure 5.5 Candidate parts for face images. (c) Curiously, the face of Grace Kelly in the
left image fails to match to her face in the right image, but the matched regions do reveal a
structural similarity between her face and Cary Grant’s.

5.2.2 Validation

After candidate parts have been formed, they are validated by matching against additional

training images. The purpose of validation is to reject spurious parts that arise from clutter

and incorrect matching hypotheses. We have experimented with two types of validation:

non-discriminative (Section 5.3.1), where a part is only matched against positive images

(i.e., images that contain the same object class that was used to generate the candidate

part); and discriminative (Section 5.3.2), where a part is matched against both positive and

negative images. The latter procedure has the advantage of rejecting parts that occur just

as often in non-object images as in object images. For example, a wheel may be a part that

occurs in both cars and trucks, and can thus be used in the description of either class, but

if we are trying to discriminate between cars and trucks, then the presence of a wheel is not

a useful cue.
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(a) Window (b) Totem (c) Badgers

(d) Badgers: repetition (e) Fishes: repetition

Figure 5.6 Detecting symmetry (top) and repetition (bottom) in single images. In the top
images, the axis of reflective symmetry is shown as a dashed line. Note that for the palace
window, two different local symmetries are detected.

The procedure for detecting a part in a validation image is very similar to two-image

matching (Algorithm 1), made simpler and more efficient by the part’s relatively small size

and (presumed) lack of clutter. A detected instance of a candidate part in a validation image

may have multiple features missing because of occlusion, failure of the salient region detector,

etc. We define the repeatability of an individual feature within a part as the proportion of

detected part instances in positive images in which that feature was present, and refine

parts by removing from them all features whose repeatability falls below a certain threshold.

Note that in principle, we can use the correspondences between the parts and the positive

validation images to further refine the parts by modifying their appearance and shape. At

present, we have not implemented this extension because we have generally been satisfied

with the quality of parts obtained following validation and removal of spurious features.

For each detected instance of a part in a validation image, we define a response score as

the number of features in that instance normalized by the total number of features in the

part. Next, for each part k and each validation image I, we define a global score ρk(I) as the
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Figure 5.7 An example of a face part (see Figure 5.12) and its response histograms for
discriminative validation. The solid red line (resp. dash-dot blue line) indicates the response
histogram for the positive (resp. negative) class.

highest response score over all detected instances of part k in that image. This implicitly

assumes that an object image can contain at most one instance of each part. In the future,

we plan to improve our feature representation to allow for multiple detected instances of the

same part. This would allow us to perform more accurate localization for classes such as

cars (which have two wheels) or faces (which have two eyes). Finally, note that if part k is

not detected in image I at all, we have ρk(I) = 0.

For non-discriminative validation, we derive an overall “quality” measure of a part from

its average response score over the validation set, and retain a fixed number of top-scoring

parts for each class. For discriminative validation, we compute a quality measure for the

part by taking the χ2 distance between the histograms of part responses over the positive

and negative images (see Figure 5.7 for an example). This validation score can range from

1, when the two histograms have no overlap at all, to 0, when they are identical. Just as for

non-discriminative validation, a fixed number of highest-scoring parts is retained to represent

each class.
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5.2.3 Recognition

The part creation, detection, and validation procedures presented so far in this chapter

is general in the sense that it can be used with a wide variety of learning and classification

schemes. To complete the discussion of our part-based framework, let us briefly sketch

the testing or recognition step of our framework while deferring most of the details to our

presentation of experimental results in Section 5.3. Given a novel test image I, we perform

the detection procedure for each part k from the dictionary, and, just as during the validation

step, record the response score ρk(I) of this part for this image. Next, our goal is to decide

which object instance is present in the image based on the vector of response scores for

all parts. In the experiments, we use several ways of accomplishing this goal. In Section

5.3.1, we simply let each part “vote” for the class it represents with its response score, and

assign the test image to the class with the highest cumulative vote. While this approach is

somewhat ad-hoc, it does not require a separate step of training a discriminative model over

the response scores, and therefore it works well in situations when very few training images

are available. On the other hand, in Section 5.3.2, we work with larger datasets, and we are

able to train two classifiers. The first is a Naive Bayes classifier that works by estimating

P (ρk|c), the probability distributions of response scores for each part k given that the image

contains an object of class c. The second is the maximum entropy classifier first described in

Section 4.1 that uses feature functions based on individual response scores as well as on the

overlap between pairs of parts. Details of these feature functions and our training protocol

will be further discussed in Section 5.3.2.

5.3 Recognition Experiments

This section demonstrates the promise of our approach with recognition experiments

on three datasets. Section 5.3.1 presents results on a dataset consisting of seven classes

of butterflies. The large amount of geometric variability in this dataset requires us to use
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Admiral Swallowtail Machaon Monarch 1 Monarch 2 Peacock Zebra

Figure 5.8 The butterfly dataset. Three samples of each of the seven classes are shown.
Monarch 1 and 2 are the same butterfly species with wings closed and open, respectively.
This database is publicly available at http://www-cvr.ai.uiuc.edu/ponce grp/data.

a full affine alignment model. Section 5.3.2 considers two datasets that have wider intra-

class appearance variability, but a narrower range of geometric variation that can be handled

with a scale-and-translation alignment model. The first is a four-class subset of Caltech6 [33]

consisting of airplanes, cars, faces, and motorbikes; and the second is a dataset consisting of

six species of birds.

5.3.1 Affine-Invariant Parts

In this section, we report results for multi-class recognition as well as binary detection on

a dataset composed of 619 images of butterflies collected from the Internet. Seven butterfly

classes are represented (see Figure 5.8 for sample images of each). The dataset is extremely

diverse, with pictures varying widely in terms of size and quality (motion blur, lack of focus,

resampling and compression artifacts are among the factors affecting quality). From one

viewpoint, butterflies may be considered pretty “toy subjects” for testing the descriptive

power of our local affine models, since the geometry of a butterfly is locally planar for each

wing (though usually not globally planar). In addition, the species identity of a butterfly is
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determined by a basically stable geometric wing pattern, though appearance can be signifi-

cantly affected by individual variations, lighting, and imaging conditions. But from another

viewpoint, recognizing butterflies is a challenging task. For one, a typical butterfly part is

sufficiently complex to require at least a dozen features to be discriminative, which is beyond

the range of most of the current state-of-the-art recognition systems [1, 28, 33, 162, 163].

Moreover, the levels of invariance (translation and scale) possessed by existing algorithms

are clearly insufficient for recognizing insects in natural imagery. In our dataset, butterflies

appear in highly cluttered environments, with most images containing on the order of a

thousand local features.

For the experiments of this section, we perform feature extraction using the affine-adapted

Laplacian detector. We chose this detector over the Harris because it tends to find regions

that are centered away from object boundaries and because blobs are clearly salient for but-

terflies, whose wing patterns feature spots and stripes. As in Section 3.1, we use SPIN and

RIFT descriptors to compare regions. Note that the RIFT descriptor as originally introduced

in that section is not invariant to reflection of the normalized patch. Unlike in our texture

recognition work, we require reflection invariance for finding semi-local parts. Reflection of

the normalized patch reverses the order of directions in the histogram of gradient orienta-

tions within each circular subregion of the RIFT descriptor. Thus, when finding the distance

between two RIFT descriptors, we simply take the minimum over both orders. One other

issue is how to combine SPIN and RIFT descriptors in determining the appearance-based

dissimilarity or matching score between two patches. We set the matching score to be the

minimum of the Euclidean distances between the two spin images or RIFT descriptors (note

that both descriptors are normalized to have zero mean and unit norm, thus Euclidean dis-

tances between them lie in the same range and are comparable). Empirically, this approach

performs better than other ways of combining descriptors, since it provides robustness against

instabilities in region extraction and intensity normalization. The descriptors (particularly
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Class Part size Test images Correct (rate)

Admiral 179 (12/28) 85 74 (0.871)

Swallowtail 252 (18/29) 16 12 (0.750)

Machaon 148 (12/21) 57 55 (0.965)

Monarch 1 289 (14/67) 48 35 (0.729)

Monarch 2 275 (19/36) 58 53 (0.914)

Peacock 102 (8/14) 108 108 (1.000)

Zebra 209 (16/31) 65 58 (0.892)

Total 437 395 (0.904)

Table 5.1 Classification results for the butterflies. The second column shows the total part
size for each class (the sum of sizes of individual parts), and the size of the smallest and the
largest parts are listed in parentheses. For this database, the kernel-based bag-of-features
method of Section 3.2 achieved 87% accuracy, below our rate of 90.4%.

spin images) can be sensitive to transformations of the intensity values (i.e., noise, JPEG

compression, sharpening) and to shifts in the position of the center of the normalized patch,

so a large distance between two spin images or two RIFT descriptors is not always a reliable

indication of perceptual difference. Thus, in determining the matching score between two

patches, it makes sense to trust the descriptor that produces the lower distance.

For modeling, 16 images from each class were chosen at random. Candidate parts were

formed by matching between eight pairs (an alternative approach would have been to match

every possible pair of images in the training set, but this did not prove necessary, as sufficient

numbers of candidate parts were obtained from the eight pairs). Ten positive verification im-

ages were used for each class to remove unstable regions and to rank parts according to their

non-discriminative validation score. Top ten parts were retained and used for recognition.

Multi-class classification is performed as follows. First, the parts for all classes are de-

tected in each training image. Though multiple instances of the same part may be found, we

106



1 2 4 6 8 10
0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

Number of parts

C
la

ss
ifi

ca
tio

n 
ra

te

Figure 5.9 Classification rate vs. number of parts.

retain only the single instance with highest absolute response score, or the number of detected

features. The cumulative score for a given class is given by the relative response of all its

parts, or the total number of features detected in all parts divided by the sum of part sizes.

Each image is assigned to the class having the maximum relative response score. Table 5.1

shows classification results obtained using the above approach. Our overall classification rate

is 90.4%. This is higher than the baseline rate of 87% obtained with the kernel-based bag-of-

features method of Section 3.2 using rotation-invariant (H+L)(SPIN+SIFT) features.1 Note

that our relative response score tends to favor classes with smaller part size, as larger parts

tend to be much “looser” than smaller ones: that is, the fraction (though not the absolute

number) of regions they pick up tends to be smaller. Figure 5.9 shows how the performance

of our system is affected by using different numbers of parts for classification. Though the

classification rate is already respectable with just a single part, using multiple parts is clearly

important for improving performance.

1Several feature combinations and levels of invariance were tested, and the feature combination reported
here is the one that obtained the highest performance.
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(a) Part w/ highest validation score (b) Detection examples (c) ROC curves
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Figure 5.10 Butterfly modeling and detection. (a) The part with the highest validation score
for each class. (b) Example of detecting the part from (a) in a single test image. Detected
regions are shown in yellow and occluded ones are reprojected from the model in blue. The
total number of detected features (absolute response) and the corresponding relative response
are shown below each image. Note that the correspondences for the swallowtail and zebra
are incorrect. (c) ROC curves for detection. Three thresholds for relative response (0.33,
0.5, 0.66) are marked on the curve. The dark square marks the ROC equal error rate, which
is listed in parentheses next to the threshold value at at which it is attained.
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We can get an alternative assessment of performance by considering the binary detection

task, where for each image and each class, we ask whether an instance of the from this class

is present. This decision can be made by setting a threshold on the relative response score.

By considering all possible thresholds, we get an ROC curve, a plot of the true positive rate

(the number of correct positives detected over the total number of positives for the class)

vs. the false positive rate (the number of false positives over the total number of negatives

in the dataset). These curves, given in Figure 5.10, also show the ROC equal error rate for

each class. This is the true positive rate that is equal to one minus the false positive rate.

The equal error rates achieved by our system are high, showing that detection can indeed

be performed successfully.

5.3.2 Scale-Invariant Parts

This section presents recognition results obtained on two multi-class object databases.

The first is a subset of the publicly available CalTech database [33], which we have already

used in Section 3.2. We have taken 300 images each from four classes: airplanes, rear views

of cars, faces, and motorbikes (for examples of Caltech images, refer back to Figure 3.13).

The second database, which we collected from the Web, consists of 100 images each of six

different classes of birds: egrets, mandarin ducks, snowy owls, puffins, toucans, and wood

ducks (Figure 5.11). Because these databases mostly feature objects in canonical poses (i.e.,

upright heads, frontal or side views of birds), they do not require the full affine alignment

model; scale with translation are sufficient.

For our texture recognition experiments of Chapter 3 and butterfly experiments of Sec-

tion 5.3.1, Laplacian region detectors have proven to be successful, since most of the classes

in these experiments could be characterized quite well by salient blob-like features. However,

we have found Laplacian features to be much less repeatable for classes with complex internal

structures, e.g., eyes, wheels, heads, etc. Instead, in this section we extract salient regions
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Egret Mandarin duck Snowy Owl Puffin Toucan Wood duck

Birds database

Figure 5.11 Three examples from each class of the birds database. This database is publicly
available at http://www-cvr.ai.uiuc.edu/ponce grp/data.

using the scale-invariant detector of Jurie and Schmid [61], which finds salient circular con-

figurations of edge points, and is robust to clutter and texture variations inside the regions.

Just as in Section 4.1.2, the appearance of the extracted regions is represented using SIFT

descriptors.

For the Caltech database, 50 randomly chosen images per class are used for creating

candidate parts. Each image is paired up to two others, for a total of 100 initialization pairs.

Of the several hundred candidate parts yielded by this matching process, the 50 largest ones

undergo discriminative validation. Specifically, these candidate parts are matched against

every image from the validation set, which also contains 50 randomly chosen images per class,

and 20 highest-scoring parts per class are retained to form the part dictionary. Finally, the

remaining 200 images per class make up the test set. We follow the same protocol for the

bird dataset, except that 20 images per class are used for finding candidate parts, another

30 for validation, and the remaining 50 for testing.

Figures 5.12 and 5.13 illustrate training and validation (part selection). As can be seen

from the plots of validation scores for all selected parts, the quality of part dictionaries found

for different classes varies widely. Extremely stable, repeatable parts are formed for faces,
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Figure 5.12 Learning part vocabularies for the CalTech database. (a) The highest-scoring
part for each class. (b) Response histograms for the top part. The solid red line (resp.
dashed blue line) indicates the histogram of response scores of the part in all positive (resp.
negative) training images. Recall that the validation score of the part is given by the χ2

distance between the two histograms. (c) Plots of top 20 part scores following validation.
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Figure 5.13 Learning part vocabularies for the birds database. (a) The highest-scoring part
for each class superimposed on the two original training images. (b) Validation response
histograms for the top parts. (c) Validation scores for the top 20 parts from each class.
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motorbikes, and ducks. The classes with the weakest parts are airplanes for the CalTech

database and egrets for the bird database. Both airplanes and egrets lack characteristic

texture, and often appear against busy backgrounds that generate a lot of detector responses

(buildings, people, and airport machinery in case of planes, or grass and branches in case of

egrets). In addition, both egrets and airplanes are “thin” objects, so the local regions that

overlap the object also capture a lot of background. Thus, the SIFT descriptors computed

over these regions end up describing mostly clutter. To alleviate this problem, we plan to

experiment with alternative descriptors that capture the shape of the edges close to the

boundary of the scale-invariant regions [61], as opposed to the internal texture, as the SIFT

descriptor does. Note that our part selection framework is suitable for choosing between

semi-local parts based on different descriptors, since it abstracts from the low-level details

of matching (i.e., how appearance similarity is computed, what aligning transformation is

used, or how the correspondence search is performed), and looks only at the end result of

the matching on the training set (i.e., how repeatable the resulting parts are, and whether

they can be used to distinguish between positive and negative examples for a given class).

The parts obtained for classes other than airplanes and egrets have higher scores and

capture much more salient object features. Interestingly, though, for cars, even the highest-

scoring part includes spurious background detections along the horizontal line at the eye

level of the image. This comes from the relative visual monotony of the car class: all the

rear views of cars were apparently captured through the windshield by a person in the front

seat. Thus, the “horizon” formed by the converging sides of the road is approximately in

the same location in all the images, and the scenery at the roadside (trees, buildings) gives

rise to a lot of features in stable positions that are consistently picked up by the matching

procedure.

In this section, we use the discriminative maximum entropy framework introduced in

Section 4.1.1 to build a principled probabilistic model for object recognition. Recall from
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Section 4.1.1 that the use of the maximum framework requires us to define a set of feature

functions for each class. For each part k and each training image I, we compute a normalized

feature function based on its response score ρk(I) as defined in Section 5.2.2:

gk(I) =
ρk(I)∑
k′ ρk′(I)

.

Feature function values computed on images from the validation set are used as training

data to estimate the parameters of the exponential model.

Just as in the texture recognition experiments of Section 4.1, we also investigate whether,

and to what extent, incorporating relations into the object representation improves classi-

fication performance. To this end, we define overlap relations between pairs of parts that

belong to the same class. Let ωk,�(I) be the overlap between detected instances of parts k

and � in the image I, i.e., the ratio of the intersection of the two parts to their union. This

ratio ranges from 0 (disjoint parts) to 1 (coincident parts). Then we define

gk,�(I) =
ωk,�(I)∑

k′,�′ ωk′,�′(I)
.

The overlap relations are very flexible — in effect, they enforce only spatial coherence. This

flexibility potentially allows us to deal with non-rigid and/or articulated objects. In the

future, we plan to experiment with more elaborate relations that take into account the

distance, relative scale, or relative orientations of the two parts [1]. Finally, it is important

to note that we currently do not use feature selection techniques to reduce the number

of overlap relations within the exponential model. Because of the small size of the part

dictionaries used in the experiments presented in the next section (namely, 20 parts per

class), the resulting number of overlap relations (190 per class) is quite manageable, unlike

in the texture recognition experiments of Section 4.1, where we had to contend with millions

of potential co-occurrence relations.

Tables 5.2 and 5.3 show classification performance of several methods with 20 parts

per class. The first column of the tables shows the performance of a baseline Naive Bayes
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CalTech Naive Exp. Exp. Exp. parts &

database Bayes parts relations relations

Airplanes 98.0 88.0 78.0 87.5

Cars (rear) 95.5 99.5 90.5 99.5

Faces 96.5 98.5 96.5 98.0

Motorbikes 97.5 99.5 83.0 99.5

All classes 96.88 96.38 87.0 96.13

Table 5.2 Classification rates for the CalTech database using 20 parts per class.

approach with likelihood given by

P (I|c) =
∏

k

P (ρk(I)|c) .

The distributions P (ρk|c) are found by histogramming the response scores of part k on all

training images from class c. Note that we take into account the responses of parts on

images from all classes, not only the class which they describe. Roughly speaking, we expect

P (ρk(I)|c) to be high if part k describes class c and ρk(I) is high, or if part k does not

describe class c and ρk(I) is low or zero. Thus, to conclude that an object from class c is

present in the image, we not only have to observe high-response detections of parts from

class c, but also low-response detections of parts from other classes. The exponential model,

which encodes the same information in its feature functions, also uses this reasoning.

The second (resp. third, fourth) columns of Tables 5.2 and 5.3 show the classification

performance obtained with exponential models using the gk features only (resp. the gk,�

only, gk and gk,� combined). For the CalTech database, the Naive Bayes and the exponential

parts-only models achieve very similar results, though under the exponential model, airplanes

have a lower classification rate, which is intuitively more satisfying given the poor part

dictionary for this class. Note that our classification accuracy of over 96% on the four CalTech

classes is comparable to other recently published results [20, 23]. For the bird database, the

115



Birds Naive Exp. Exp. Exp. parts &

database Bayes parts relations relations

Egret 68 90 72 88

Mandarin 66 90 66 90

Snowy owl 66 98 52 96

Puffin 88 94 94 94

Toucan 88 82 82 82

Wood duck 96 100 86 100

All classes 78.67 92.33 75.33 91.67

Table 5.3 Classification rates for the birds database using 20 parts per class. For this
database, the kernel-based bag-of-features method of Section 3.2 achieved 83% accuracy,
below our best result of 92.33%.

exponential model outperforms Naive Bayes. Moreover, our best classification rate of 92.33%

is higher than the best rate of 83% obtained with the kernel-based bag-of-features method of

Section 3.2 using scale-invariant (H+L)(SIFT) features. For both databases, relations-only

features alone perform considerably worse than the parts-only features, and combining parts-

based with relation-based features brings no improvement. Figure 5.14 shows a plot of the

classification rate for the exponential model as a function of part dictionary size. Note that

the curves are not monotonic — adding a part to the dictionary can decrease performance.

This behavior may be an artifact of our scoring function for part selection, which is not

directly related to classification performance. In the future, we plan to experiment with part

selection based on increase of likelihood under the exponential model [6].

Though we did not conduct a quantitative evaluation of localization accuracy, the reader

may get a qualitative idea by examining Figures 5.15 and 5.16, which show examples of

part detection on several test images. A poorer part vocabulary for a class tends to lead

to poorer localization quality, though this is not necessarily reflected in lower classification
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Figure 5.14 Classification rate (exp. parts) as a function of dictionary size: CalTech
database (left), birds database (right). For the CalTech database, because three of the four
classes have extremely strong and redundant parts, performance increases very little as more
parts are added. For the bird database, diminishing returns set in as progressively weaker
parts are added.

rates. Specifically, an object class represented by a relatively poor part vocabulary may still

achieve a high classification rate, provided that parts for other classes do not generate too

many false positives on images from this class. The airplane example in Figure 5.15 (b) is a

good illustration of this phenomenon: only three airplane parts are detected in this image,

yet the airplane is recognized correctly since the image does not contain enough clutter to

generate false detections of parts from other classes.

Somewhat frustratingly, we have found that inter-part relations do not improve recog-

nition performance. This is consistent with the findings of Section 4.1, where texton co-

occurrence relations also did not improve the accuracy of maximum entropy texture clas-

sification. From examining the part detection examples in Figures 5.15 and 5.16, it seems

intuitively clear that the pattern of overlap of different part instances encodes useful infor-

mation: the part detections that lie on the object tend to be clustered close together, while

false detections are frequently scattered all over the image. We currently conjecture that the

117



Successfully classified images Misclassified image

(a) (b) (c)

P
la

ne
s

C
ar

s
Fa

ce
s

B
ik

es

Figure 5.15 CalTech results. (a), (b) Two examples of correctly classified images per
class. Left of each column: original image. Right of each column: transformed bounding
boxes of all detected part instances for the given class superimposed on the image. (c)
Examples of misclassified images. Note that localization is poor for airplanes and very good
for faces (notice the example a changed facial expression). For motorbikes, the front wheel
is particularly salient. Out of the entire test set, only one bike image was misclassified, and
in it the front wheel is not properly visible.

overlap information may be more useful for localization than for recognition. In the future,

we plan to evaluate localization quantitatively.

5.4 Discussion

In this chapter, we have presented a weakly supervised framework for modeling 3D objects

in terms of geometrically invariant semi-local parts. The two-image matching procedure

that forms the core of our method is also applicable to identifying repeated structures and

symmetries within a single image — an interesting application which today is rarely treated
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Figure 5.16 Birds database results. (a), (b) Two examples of successfully classified im-
ages per class. The original test image is on the left, and on the right is the image with
superimposed bounding boxes of all detected part instances for the given class. Notice that
localization is fairly good for mandarin and wood ducks (the head is the most distinctive
feature). Though owl parts are more prone to false positives, they do capture salient char-
acteristics of the class: the head, the eye, and the pattern of the feathers on the breast and
wings. (c) Misclassified examples. The wood duck class has no example because it achieved
100% classification rate.
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in the same context as recognition (see [85] for a model-based recognition approach that

takes advantage of symmetries). For our primary goal of 3D object recognition, the proposed

approach has the advantages of robustness and flexibility. Namely, it is capable of learning

multiple variable-sized parts from images containing a significant amount of noise and clutter.

The promise of our part-based method is also demonstrated by its ability to outperform the

bag-of-features method of Chapter 3 on our butterfly and bird databases. We conclude this

presentation with a discussion of several conceptual issues relevant to our work.

Alignment. The search algorithm described in Section 5.2.1 is reminiscent of the alignment

techniques used in model-based vision [27, 41, 47, 54]. While the process of detecting an

existing part in a test image may indeed be thought of as alignment (albeit using a novel

representation based on constellations of local features), our overall modeling approach is

not. Whereas in classical alignment globally rigid models are built manually and/or from

segmented images, our method is capable of handling unsegmented, heavily cluttered input.

Another key departure from classical alignment is that our algorithm does not seek a global

transformation between two images, nor does it assume that the object being modeled is

either planar and/or globally rigid. Instead, we exploit the fact that smooth surfaces are

planar in the small, and that local affine models are sufficient to handle large viewpoint

variations for approximately coplanar, close-by patches, as well as small non-rigid transfor-

mations of the layout of these patches. Because the part model is local, it is also robust to

large global deformations.

Training set size. Our procedure for learning semi-local parts requires just a pair of images

for candidate part creation, and a relatively small number (up to thirty) for validation.

Recently, it has been observed that very few training images are actually necessary for

learning object models provided the learner is equipped with a good prior on the parameters

of the model [28]. In our case, the “prior” is the strong notion of visual similarity, making

it possible to learn part-based models from extremely small training sets.
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Modeling the background. Many previous approaches to object detection, whether

classifier-based (discriminative) [1] or probabilistic (generative) [28, 33, 162, 163], require

an explicit model of the background. However, we believe that the notion of modeling the

background is problematic, since intuitively, it is much harder to describe the concept of the

“complement” of the class of interest than the class itself. By contrast, our approach com-

pletely avoids the necessity of modeling the background by virtue of its reliance on strong

geometric consistency constraints. In our work, the background is implicitly assumed to

be non-repeatable, an assumption that sometimes fails for extremely small sets of images,

necessitating the use of the validation procedure.

Inter-part relations. The most important negative result of this chapter is the lack of per-

formance improvement from overlap relations in Section 5.3.2. Recall that we have observed

the same behavior for textons-and-relations models in Section 4.1. For object recognition,

the lack of improvement can be ascribed, at least partly, to the weakness of our overlap re-

lations, especially compared to the strong geometric consistency constraints encoded within

semi-local parts. In the future, we plan to investigate geometric relations that capture more

discriminative information, and to test their behavior for classification on additional object

databases.
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CHAPTER 6

Spatial Pyramid Matching for Scene Recognition

In this chapter, we consider the problem of recognizing the semantic category of an image.

For example, we may want to classify a photograph as depicting a scene (forest, street, office,

etc.) or as containing a certain object of interest. As a solution to this problem, we propose a

“global” non-invariant scene representation based on aggregating statistics of local features

over fixed subregions and a kernel-based recognition method that computes a rough geo-

metric correspondence using an efficient approximation technique adapted from the pyramid

matching scheme of Grauman and Darrell [45]. Our method involves repeatedly subdividing

the image and computing histograms of local features at increasingly fine resolutions. As

shown by experiments in Section 6.4, this simple operation suffices to significantly improve

performance over a basic bag-of-features representation, and even over methods based on de-

tailed geometric correspondence. The research presented in this chapter has been published

in [76].

6.1 Motivation

Previous research has shown that statistical properties of the scene considered in a holis-

tic fashion, without any analysis of its constituent objects, yield a rich set of cues to its

semantic category [117]. Our own experiments confirm that global representations can be

surprisingly effective not only for identifying the overall scene, but also for categorizing im-

ages as containing specific objects, even when these objects are embedded in heavy clutter
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and vary significantly in pose and appearance. This said, we do not advocate the direct

use of a global method for object recognition (except for very restricted sorts of imagery).

Instead, we envision a subordinate role for this method. It may be used to capture the

“gist” of an image [150] and to inform the subsequent search for specific objects (e.g., if the

image, based on its global description, is likely to be a highway, we have a high probability

of finding a car, but not a toaster). In addition, the simplicity and efficiency of our proposed

method, in combination with its tendency to yield unexpectedly high recognition rates on

seemingly challenging data, could make it a good baseline for “calibrating” newly acquired

datasets and for evaluating more sophisticated recognition approaches.

In computer vision, histograms have a long history as a method for image description

(see, e.g., [136, 146]). Koenderink and Van Doorn [66] have generalized histograms to locally

orderless images, or histogram-valued scale spaces (i.e., for each Gaussian aperture at a

given location and scale, the locally orderless image returns the histogram of image features

aggregated over that aperture). Our spatial pyramid approach can be thought of as an

alternative formulation of a locally orderless image, where instead of a Gaussian scale space

of apertures, we define a fixed hierarchy of rectangular windows. Koenderink and Van

Doorn have argued persuasively that locally orderless images play an important role in

visual perception. Our retrieval experiments (Figure 6.4) confirm that spatial pyramids can

capture perceptually salient features and suggest that “locally orderless matching” may be

a powerful mechanism for estimating overall perceptual similarity between images.

It is important to contrast our proposed approach with multiresolution histograms [48],

which involve repeatedly subsampling an image and computing a global histogram of pixel

values at each new level. In other words, a multiresolution histogram varies the resolution at

which the features (intensity values) are computed, but the histogram resolution (intensity

scale) stays fixed. We take the opposite approach of fixing the resolution at which the

features are computed, but varying the spatial resolution at which they are aggregated.
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This results in a higher-dimensional representation that preserves more information (e.g., an

image consisting of thin black and white stripes would retain two modes at every level of

a spatial pyramid, whereas it would become indistinguishable from a uniformly gray image

at all but the finest levels of a multiresolution histogram). Finally, unlike a multiresolution

histogram, a spatial pyramid, when equipped with an appropriate kernel, can be used for

approximate geometric matching.

The operation of “subdivide and disorder” — i.e., partition the image into subblocks

and compute histograms (or histogram statistics, such as means) of local features in these

subblocks — has been practiced numerous times in computer vision, both for global image

description [44, 147, 150] and for local description of interest regions [89]. Thus, though the

operation itself seems fundamental, previous methods leave open the question of what is the

right subdivision scheme (although a regular 4× 4 grid seems to be the most popular imple-

mentation choice), and what is the right balance between “subdividing” and “disordering.”

The spatial pyramid framework suggests a possible way to address this issue — namely, the

best results may be achieved when multiple resolutions are combined in a principled way. It

also suggests that the reason for the empirical success of “subdivide and disorder” techniques

is the fact that they actually perform approximate geometric matching.

6.2 Spatial Pyramid Matching

We first describe the original formulation of pyramid matching [45], and then introduce

our application of this framework to create a spatial pyramid image representation.

6.2.1 Pyramid Match Kernels

Let X and Y be two sets of vectors in a d-dimensional feature space. Grauman and

Darrell [45] propose pyramid matching to find an approximate correspondence between these

two sets. Informally, pyramid matching works by placing a sequence of increasingly coarser
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grids over the feature space and taking a weighted sum of the number of matches that occur

at each level of resolution. At any fixed resolution, two points are said to match if they fall

into the same cell of the grid; matches found at finer resolutions are weighted more highly

than matches found at coarser resolutions. More specifically, we construct a sequence of

grids at resolutions 0, . . . , L, such that the grid at level � has 2� cells along each dimension,

for a total of D = 2d� cells. Let H�
X and H�

Y denote the histograms of X and Y at this

resolution, so that H�
X(i) and H�

Y (i) are the numbers of points from X and Y that fall into

the ith cell of the grid. Then the number of matches at level � is given by the histogram

intersection function [146]:

I(H�
X , H�

Y ) =
D∑

i=1

min
(
H�

X(i), H�
Y (i)

)
. (6.1)

In the following, we will abbreviate I(H�
X , H�

Y ) to I�.

Note that the number of matches found at level � also includes all the matches found

at the finer level � + 1. Therefore, the number of new matches found at level � is given by

I� − I�+1 for � = 0, . . . , L − 1 . The weight associated with level � is set to 1
2L−� , which is

inversely proportional to cell width at that level. Intuitively, we want to penalize matches

found in larger cells because they involve increasingly dissimilar features.

Putting all the pieces together, we get the following definition of a pyramid match kernel:

κL(X,Y ) = IL +
L−1∑
�=0

1

2L−�

(
I� − I�+1

)
(6.2)

=
1

2L
I0 +

L∑
�=1

1

2L−�+1
I� . (6.3)

Both the histogram intersection and the pyramid match kernel are Mercer kernels [45].

6.2.2 Spatial Matching Scheme

As introduced in [45], a pyramid match kernel works with an orderless image represen-

tation. It allows for precise matching of two collections of features in a high-dimensional
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appearance space, but discards all spatial information. This chapter advocates an “or-

thogonal” approach: perform pyramid matching in the two-dimensional image space, and

use traditional clustering techniques in feature space.1 Specifically, we quantize all feature

vectors into M discrete types, and make the simplifying assumption that only features of

the same type can be matched to one another. Each channel m gives us two sets of two-

dimensional vectors, Xm and Ym, representing the coordinates of features of type m found

in the respective images. The final kernel is then the sum of the separate channel kernels:

KL(X,Y ) =
M∑

m=1

κL(Xm, Ym) . (6.4)

This approach has the advantage of maintaining continuity with the popular “visual vocab-

ulary” paradigm — in fact, it reduces to a standard bag of features when L = 0.

Because the pyramid match kernel (6.3) is simply a weighted sum of histogram inter-

sections, and because c min(a, b) = min(ca, cb) for positive numbers, we can implement KL

as a single histogram intersection of “long” vectors formed by concatenating the appropri-

ately weighted histograms of all channels at all resolutions (Figure 6.1). For L levels and

M channels, the resulting vector has dimensionality M
∑L

�=0 4� = M 1
3
(4L+1 − 1). Several

experiments reported in Section 6.4 use the settings of M = 400 and L = 3, resulting in

34000-dimensional histogram intersections. However, these operations are efficient because

the histogram vectors are extremely sparse (in fact, just as in [45], the computational com-

plexity of the kernel is linear in the number of features). It must also be noted that we did

not observe any significant increase in performance beyond M = 200 and L = 2, where the

concatenated histograms are only 4200-dimensional.

The final implementation issue is that of normalization. For maximum computational

efficiency, we normalize all histograms by the total weight of all features in the image, in

effect forcing the total number of features in all images to be the same. Because we use a

1In principle, it is possible to integrate geometric information directly into the original pyramid matching
framework by treating image coordinates as two extra dimensions in the feature space.
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Figure 6.1 Toy example of constructing a three-level pyramid. The image has three feature
types, indicated by circles, diamonds, and crosses. At the top, we subdivide the image at
three different levels of resolution. Next, for each level of resolution and each channel, we
count the features that fall in each spatial bin. Finally, we weight each spatial histogram
according to eq. (6.3).

dense feature representation (see Section 6.3), and thus do not need to worry about spurious

feature detections resulting from clutter, this practice is sufficient to deal with the effects of

variable image size.

6.3 Feature Extraction

This section briefly describes the two kinds of features used in the experiments of Section

6.4. First, we have so-called “weak features,” which are oriented edge points, i.e., points

whose gradient magnitude in a given direction exceeds a minimum threshold. We extract

edge points at two scales and eight orientations, for a total of M = 16 channels. We
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designed these features to obtain a representation similar to the “gist” [150] or to a global

SIFT descriptor [89] of the image.

For better discriminative power, we also utilize higher-dimensional “strong features”

based on local image patches. In all the experiments presented in the previous chapters

of this dissertation, we derived our image representations from the output of salient feature

detectors. However, in this chapter, instead of using Harris or Laplacian interest points we

simply sample fixed-size patches on a regular grid. Intuitively, we need features on a dense

grid in order to capture uniform regions such as sky, calm water, or road surface — regions

that do not generate any interest point detections, but are very important for forming com-

plete descriptions of natural scenes. Indeed, Fei-Fei and Perona [30] have shown that regular

grids work better for scene classification then interest points. Also note that our target

application of scene recognition does not require local features to be geometrically invariant,

since imaging conditions for “landscape” and “indoor” photographs are usually fairly stable

(i.e., the camera is assumed to be distant from the objects in the scene, and its orientation is

usually upright), whereas the sources of within-class variability for natural scene categories

are so diverse and complex that they cannot be compensated by invariance to simple local

2D image transformations. In the experiments presented in Section 6.4, our grid spacing is

8 pixels and patch size is 16 × 16. We represent the appearance of the patches using SIFT

descriptors, and perform k-means clustering of a random subset of patches from the training

set to form a visual vocabulary. Typical vocabulary sizes for our experiments are M = 200

and M = 400.

6.4 Experiments

In this section, we report results on three diverse datasets: fifteen scene categories [30],

Caltech101 [29], and Graz [118]. Recall that the last two datasets were used in the evaluation

of Section 3.2; in this section, we will be able to compare the results of our spatial pyramid
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method to the results obtained by the bag-of-features method of Chapter 3. As is the case

for all the experiments presented in this dissertation, we perform all processing in grayscale,

even when color images are available. All experiments are repeated ten times with different

randomly selected training and test images, and the average of per-class recognition rates2

is recorded for each run. The final result is reported as the mean and standard deviation of

the results from the individual runs. Multi-class classification is done with a support vector

machine (SVM) trained using the one-versus-all rule: a classifier is learned to separate each

class from the rest, and a test image is assigned the label of the classifier with the highest

response.

6.4.1 Scene Category Recognition

Our first dataset (Figure 6.2) is composed of fifteen scene categories: thirteen were pro-

vided by Fei-Fei and Perona [30] (eight of these were originally collected by Oliva and Tor-

ralba [117]), and two (industrial and store) were collected by us. Each category has 200 to

400 images, and average image size is 300× 250 pixels. The major sources of the pictures in

the dataset include the COREL collection, personal photographs, and Google image search.

This is probably the most complete scene category dataset used in the literature thus far,

though the low resolution of its images is somewhat of a disadvantage.

Table 6.1 shows detailed results of classification experiments using 100 images per class

for training and the rest for testing (the same setup as [30]). First, let us examine the

performance of strong features for L = 0 and M = 200, corresponding to a standard bag

of features. Our classification rate is 72.2% (74.7% for the 13 classes inherited from Fei-

Fei and Perona), which is much higher than their best results of 65.2%, achieved with an

orderless method and a feature set comparable to ours. We conjecture that Fei-Fei and

Perona’s approach is disadvantaged by its reliance on latent Dirichlet allocation (LDA) [9],

2The alternative performance measure, the percentage of all test images classified correctly, can be biased
if test set sizes for different classes vary significantly. This is especially true of the Caltech101 dataset, where
some of the “easiest” classes are disproportionately large.
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office kitchen living room

bedroom store industrial

tall building∗ inside city∗ street∗

highway∗ coast∗ open country∗

mountain∗ forest∗ suburb

Figure 6.2 Example images from the scene category database. The starred categories
originate from Oliva and Torralba [117], the industrial and store categories were collected
by us, and the remaining ones are from Fei-Fei and Perona [30].

Weak features (M = 16) Strong features (M = 200) Strong features (M = 400)

L Single-level Pyramid Single-level Pyramid Single-level Pyramid

0 (1 × 1) 45.3 ± 0.5 72.2 ± 0.6 74.8 ± 0.3

1 (2 × 2) 53.6 ± 0.3 56.2 ± 0.6 77.9 ± 0.6 79.0 ± 0.5 78.8 ± 0.4 80.1 ± 0.5

2 (4 × 4) 61.7 ± 0.6 64.7 ± 0.7 79.4 ± 0.3 81.1 ± 0.3 79.7 ± 0.5 81.4 ± 0.5

3 (8 × 8) 63.3 ± 0.8 66.8 ± 0.6 77.2 ± 0.4 80.7 ± 0.3 77.2 ± 0.5 81.1 ± 0.6

Table 6.1 Classification results for the scene category database (see text). The highest
results for each kind of feature are shown in bold.
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which is essentially an unsupervised dimensionality reduction technique and as such, is not

necessarily conducive to achieving the highest classification accuracy. To verify this, we

have experimented with probabilistic latent semantic analysis (pLSA) [52], which attempts

to explain the distribution of features in the image as a mixture of a few “scene topics” or

“aspects” and performs very similarly to LDA in practice [143]. Following the scheme of

Quelhas et al. [122], we run pLSA in an unsupervised setting to learn a 60-aspect model of

half the training images. Next, we apply this model to the other half to obtain probabilities

of topics given each image (thus reducing the dimensionality of the feature space from 200

to 60). Finally, we train the SVM on these reduced features and use them to classify the test

set. In this setup, our average classification rate drops to 63.3% from the original 72.2%.

For the 13 classes inherited from Fei-Fei and Perona, it drops to 65.9% from 74.7%, which

is now very similar to their results. Thus, we can see that latent factor analysis techniques

can adversely affect classification performance, which is also consistent with the results of

Quelhas et al. [122].

Next, let us examine the behavior of spatial pyramid matching. For completeness, Table

6.1 lists the performance achieved using just the highest level of the pyramid (the “single-

level” columns), as well as the performance of the complete matching scheme using multiple

levels (the “pyramid” columns). For all three kinds of features, results improve dramatically

as we go from L = 0 to a multi-level setup. Though matching at the highest pyramid

level seems to account for most of the improvement, using all the levels together confers a

statistically significant benefit. For strong features, single-level performance actually drops

as we go from L = 2 to L = 3. This means that the highest level of the L = 3 pyramid is

too finely subdivided, with individual bins yielding too few matches. Despite the diminished

discriminative power of the highest level, the performance of the entire L = 3 pyramid

remains essentially identical to that of the L = 2 pyramid. This, then, is the main advantage
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of the spatial pyramid representation: because it combines multiple resolutions in a principled

fashion, it is robust to failures at individual levels.

It is also interesting to compare performance of different feature sets. As expected,

weak features do not perform as well as strong features, though in combination with the

spatial pyramid, they can also achieve acceptable levels of accuracy (note that because weak

features have a much higher density and much smaller spatial extent than strong features,

their performance continues to improve as we go from L = 2 to L = 3). Increasing the visual

vocabulary size from M = 200 to M = 400 results in a small performance increase at L = 0,

but this difference is all but eliminated at higher pyramid levels. Thus, we can conclude that

the coarse-grained geometric cues provided by the pyramid have more discriminative power

than an enlarged visual vocabulary. Of course, the optimal way to exploit structure both

in the image and in the feature space may be to combine them in a unified multiresolution

framework; this is subject for future research.

Figure 6.3 shows the confusion table between the fifteen scene categories. Not surpris-

ingly, confusion occurs between the indoor classes (kitchen, bedroom, living room), and also

between some natural classes, such as coast and open country. Figure 6.4 shows examples of

image retrieval using the spatial pyramid kernel and strong features with M = 200. These

examples give a qualitative sense of the kind of visual information captured by our approach.

In particular, spatial pyramids seem successful at capturing the organization of major picto-

rial elements or “blobs,” the directionality of dominant edges, and the perspective (amount

of foreshortening, location of vanishing points). Because the spatial pyramid is based on

features computed at the original image resolution, even high-frequency details can be pre-

served. For example, query image (b) shows white kitchen cabinet doors with dark borders.

Three of the retrieved “kitchen” images contain cabinets of a similar design, the “office”

image shows a wall plastered with white documents in dark frames, and the “inside city”

image shows a white building with darker window frames.
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Figure 6.3 Confusion table for the scene category dataset. Average classification rates for
individual classes are listed along the diagonal. The entry in the ith row and jth column is
the percentage of images from class i that were misidentified as class j.
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(a) kitchen living rm living rm living rm office living rm living rm living rm living rm

(b) kitchen office inside city

(c) store mountain forest

(d) industrial suburb suburb suburb inside city open cntry

(e) tall bldg inside city inside city

(f) tall bldg inside city mountain mountain mountain

(g) inside city tall bldg

(h) street

(i) highway store open cntry coast

(j) coast open cntry

Figure 6.4 Retrieval from the scene category database. The query images are on the
far left, and the eight images giving the highest values of the spatial pyramid kernel (for
L = 2,M = 200) are shown in decreasing order of kernel value from left to right. The actual
classes of incorrectly retrieved images are listed below them.
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6.4.2 Caltech101

Our second set of experiments is on the Caltech101 database [29], which was introduced

in Section 3.2.3 (Figure 3.13). As in Section 3.2.3, we follow the experimental setup of

Grauman and Darrell [45], namely, we train on 30 images per class and test on the rest.

For efficiency, we limit the number of test images to 50 per class. Note that, because some

categories are very small, we may end up with just a single test image per class. Table 6.2

gives a breakdown of classification rates for different pyramid levels for weak features and

strong features with M = 200. The results for M = 400 are not shown, because just as

for the scene category database, they do not bring any significant improvement. For L = 0,

strong features give 41.2%, which is slightly below the 43% reported by Grauman and Darrell.

Our best result is 64.6%, achieved with strong features at L = 2. This exceeds the highest

classification rate known to us so far, that of 53.9% achieved by our bag-of-features method

in Section 3.2.3 (Table 3.13)3 Berg et al. [5] report 48% accuracy using 15 training images

per class. Our average recognition rate with this setup is 56.4%. The behavior of weak

features on this database is also noteworthy: for L = 0, they give a classification rate of

15.5%, which is consistent with a naive graylevel correlation baseline [5], but in conjunction

with a four-level spatial pyramid, their performance rises to 54% — on par with the best

results achieved with much more discriminative local features by an orderless method.

Figure 6.5 shows a few of the “easiest” and “hardest” object classes for our method.

The successful classes are either dominated by rotation artifacts (like minaret), have very

little clutter (like windsor chair), or represent coherent natural “scenes” (like joshua tree and

okapi). The least successful classes are either textureless animals (like beaver and cougar),

animals that camouflage well in their environment (like crocodile), or “thin” objects (like

ant). Table 6.3 further illuminates the performance of our method by showing the top five

of its confusions, all of which are between closely related classes.

3This table lists the percentage of all test images classified correctly, which overestimates the per-class
average, as discussed earlier.
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Weak features Strong features (200)

L Single-level Pyramid Single-level Pyramid

0 15.5 ± 0.9 41.2 ± 1.2

1 31.4 ± 1.2 32.8 ± 1.3 55.9 ± 0.9 57.0 ± 0.8

2 47.2 ± 1.1 49.3 ± 1.4 63.6 ± 0.9 64.6 ± 0.8

3 52.2 ± 0.8 54.0 ± 1.1 60.3 ± 0.9 64.6 ± 0.7

Table 6.2 Classification results for the Caltech101 database.

minaret (97.6%) windsor chair (94.6%) joshua tree (87.9%) okapi (87.8%)

cougar body (27.6%) beaver (27.5%) crocodile (25.0%) ant (25.0%)

Figure 6.5 Caltech101 results. Top: some classes on which our method (L = 2,M = 200)
achieved high performance. Bottom: some classes on which our method performed poorly.

class 1 / class 2
class 1 misclassified class 2 misclassified

as class 2 as class 1

ketch / schooner 21.6 14.8

lotus / water lily 15.3 20.0

crocodile / crocodile head 10.5 10.0

crayfish / lobster 11.3 9.1

flamingo / ibis 9.5 10.4

Table 6.3 Top five confusions for our method (L = 2,M = 200) on the Caltech101 database.
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To summarize, our method has outperformed both state-of-the-art orderless methods [45,

168] and methods based on precise geometric correspondence [5]. Significantly, all these

methods rely on sparse features (interest points or sparsely sampled edge points). However,

because of the geometric stability and lack of clutter of Caltech101, dense features combined

with global spatial relations seem to capture more discriminative information about the

objects.

6.4.3 The Graz Dataset

As seen from Sections 6.4.1 and 6.4.2, our proposed approach does very well on global

scene classification tasks, or on object recognition tasks in the absence of clutter with most

of the objects assuming “canonical” poses. However, it was not designed to cope with heavy

clutter and pose changes. It is interesting to see how well our algorithm can do by exploiting

the global scene cues that still remain under these conditions. Accordingly, our final set

of experiments is on the Graz dataset [118], which was introduced in Section 3.2.3 (Figure

3.15). For this dataset, the range of scales and poses at which exemplars are presented is

very diverse, e.g., a “person” image may show a pedestrian in the distance, a side view

of a complete body, or just a closeup of a head. For this database, we perform two-class

detection (object vs. background) using an experimental setup consistent with that of Opelt

et al. [118]. Namely, we train detectors for persons and bikes on 100 positive and 100 negative

images (of which 50 are drawn from the other object class and 50 from the background),

and test on a similarly distributed set. We generate ROC curves by thresholding raw SVM

output, and report the ROC equal error rate averaged over ten runs.

Table 6.4 summarizes our results for strong features with M = 200. Note that the

standard deviation is quite high because the images in the database vary greatly in their

level of difficulty, so the performance for any single run is dependent on the composition of

the training set (in particular, for L = 2, the performance for bikes ranges from 81% to 91%).
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Class L = 0 L = 2 Opelt [118] Zhang

Bikes 82.4 ± 2.0 86.3 ± 2.5 86.5 92.0

People 79.5 ± 2.3 82.3 ± 3.1 80.8 88.0

Table 6.4 Results of our method (M = 200) for the Graz database and comparison with
two bag-of-features methods (refer back to Table 3.14).

For this database, the improvement from L = 0 to L = 2 is relatively small. This makes

intuitive sense: when a class is characterized by high geometric variability, it is difficult to

find useful global features. Despite this disadvantage of our method, we still achieve results

very close to those of Opelt et al. [118]. This is somewhat surprising, considering that their

method uses a sparse, locally invariant feature representation, which is expected (at least in

principle) to make it more robust to clutter and deformations. Note, however, that for this

dataset, we cannot outperform our kernel-based orderless method of Section 3.2.3.

6.5 Discussion

This chapter has presented a “holistic” approach for image categorization based on a

modification of pyramid match kernels [45]. Our method, which works by repeatedly subdi-

viding an image and computing histograms of image features over the resulting subregions,

has shown promising results on three large-scale, diverse datasets. Note that in the experi-

ments of this section, we validate the performance of the pyramid method by using several

baseline tests: one baseline is obtained by omitting subdivision, resulting in a standard bag

of features, and another one by using weak features instead of strong ones. Despite the

simplicity of our method, and despite the fact that it works not by constructing explicit

object models, but by using global cues as indirect evidence about the presence of an ob-

ject, it consistently achieves an improvement over an orderless image representation. This

is not a trivial accomplishment, since we have established in Chapter 3 that a well-designed
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bag-of-features method can outperform more sophisticated approaches based on parts and

geometric relations. Our results also underscore the surprising and ubiquitous power of

global scene statistics: even in highly variable datasets, such as Graz, they can still provide

useful discriminative information. It is important to develop methods that take full advan-

tage of this information — either as stand-alone scene categorizers, as “context” modules

within larger object recognition systems, or as tools for evaluating biases present in newly

collected datasets.
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CHAPTER 7

Conclusion

In the final chapter of this dissertation, we briefly recapitulate the main contributions of

our research and discuss possible directions for future work.

7.1 Summary

In this dissertation, we have considered a variety of image representations for recogniz-

ing textures, objects, and scenes. Our research has progressed from purely local models,

which lack any geometric constraints save the coherence of the intensity pattern within each

individual image patch, to semi-local models, which incorporate strong spatial constraints

between relatively small groups of patches located close to one another, and finally, to global

models, which record the absolute position of each feature within an image. In the follow-

ing, we summarize the image representations considered in our work and highlight the most

important experimental findings.

Bag-of-features models. Chapter 3 has presented an orderless bag-of-features method

for recognizing images of textured surfaces subject to large scale changes, rotations, per-

spective distortions, and non-rigid deformations. The use of local invariant features in this

method has enabled us to handle a wider range of geometric variability than other existing

texture analysis methods. This chapter has also presented extensive experiments on several

texture and object datasets that have convincingly demonstrated the suitability of order-
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less methods for classification of object images, despite substantial noise in local feature

distributions introduced by clutter and uncorrelated backgrounds. Because this method is

conceptually primitive, yet surprisingly effective on real-world data, we view it as a good

baseline against which to evaluate alternative methods that incorporate more sophisticated

spatial constraints.

Neighorhood co-occurrence relations. Chapter 4 has considered methods for extending

the purely local bag-of-features model with statistical co-occurrence relations between pairs

of nearby features. The resulting image representation is a conceptual analogue of a bigram

model for natural language. In the experiments of this chapter, relations did not improve

the accuracy of whole-image classification, but they did prove useful for the more challenging

task of labeling individual features in multi-texture images.

Semi-local parts. Chapter 5 has introduced a structured object representation based on

multiple composite geometrically stable parts. This method has more descriptive power

for modeling objects than orderless bags of features, and it achieves higher classification

rates on our bird and butterfly databases. Moreover, because our approach relies on explicit

geometric alignment search, it is capable of higher degrees of invariance than probabilistic

constellation models, and can find larger object models in substantial clutter.

Spatial pyramid matching. Chapter 6 has presented a global method for recognizing scene

categories that works by establishing approximate geometric correspondence between sets

of local features found in two images. This method is simple and efficient, and shows much

higher performance than the bag-of-features baseline on one scene and two object datasets.

Even though this approach is not geometrically invariant, it makes effective use of multiple

training exemplars to learn intra-class appearance variations.

Overall, each of the models considered in this dissertation has demonstrated its usefulness

on a particular class of recognition problems. At this stage, however, we still have a fairly

incomplete understanding of models that combine local features or parts with co-occurrence
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relations. As shown by our experiments with the discriminative maximum entropy framework

(Section 4.1.3 and Section 5.3.2), co-occurrence relations for textons and overlap relations

for parts did not improve the performance of whole-image classification of textures and ob-

jects, respectively. However, co-occurrence relations did prove useful for labeling individual

regions in multi-texture images (Section 4.2.2), and we conjecture that inter-part relations

will likewise prove useful for object localization. Intuitively, the more demanding the recog-

nition task (i.e., the more detailed the explanation of the image that must be supplied by

the recognition algorithm), the more elaborate the image representation should be. In most

experiments, we have considered exclusively whole-image classification, which is the simplest

task, since it requires a single label for the entire image. In the future, we plan to devote

more attention to more complex image interpretation tasks, which should yield additional

insights into the role of spatial relations in image models.

7.2 Extensions

In the future, we will work towards improving the flexibility, discriminative power, and

expressiveness of our image models to make them applicable to a wider range of challenging

imagery, including objects that lack characteristic texture, and those that are highly non-

rigid and articulated (Figure 7.1).

Figure 7.1 Images that challenge the capabilities of our current representation methods:
Objects that lack texture, such as the plaster head and the glass vase, do not lend themselves
to a patch-based representation. The spots and colors of the cows are not characteristic of
their class, and neither is the clothing that people wear. Human bodies are highly articulated
and their limb structure may not be clearly visible in a photograph.
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Feature representation. The salient region detectors and appearance-based descriptors

used in this dissertation are best at capturing stable, distinctive texture patterns. For this

reason, we currently cannot handle objects whose texture and appearance is not characteristic

of their class (Figure 7.1). To overcome this difficulty, we need to develop detectors and

descriptors that are more suited to the description of shape, as opposed to texture. In the

future, we also plan to develop and evaluate low-level features that are more appropriate

for describing the shape of non-rigid and articulated objects. In addition, we will work

on overcoming our current reliance on ad-hoc combinations of hand-designed appearance

detectors and descriptors by replacing them with discriminative feature extractors that can

be automatically learned for a given recognition task [77]. Finally, we would like to develop

representations that support the sharing of features and/or parts between structurally similar

categories [149].

Dynamical parts-and-shape models. The development of better parts-and-shape object

models, as well as their quantitative evaluation for localization tasks are important future

directions. We plan to develop more sophisticated methods for reasoning about the rela-

tionship between different semi-local parts, which will enable us to handle complex classes

of articulated objects such as human beings [32, 55], animal species [123], and more general

non-rigid shapes. An effective representation of articulated objects would have to involve a

full dynamical model describing how different parts move together. We would like to develop

algorithms for learning dynamical models from video sequences. By taking advantage of the

large volume of training data and the strong temporal continuity cues contained in video,

it is possible to conduct semi-supervised learning of relational models consisting of many

parameters and describing characteristic motion patterns for human or animal classes. The

dynamical models learned in this fashion can then be used for tracking, and also for localiz-

ing object instances in still images. In fact, promising recent work [123, 124] has shown that

tracking can be carried out successfully by (essentially) repeated localization of the object
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in every frame. We plan to exploit this insight to extend to video the techniques developed

for object recognition in still images. Finally, we would like to harness the expressive power

of dynamical representations to build models whose part configuration and appearance can

change dynamically depending on the aspect of the object being observed, thereby provide

a multiview representation capable of capturing true 3D structure.
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APPENDIX A

Harris and Laplacian Region Detectors

This appendix presents the details of the scale- and affine-invariant1 Harris [105] and

Laplacian [40, 82] region detectors used in Chapters 3-5 of this dissertation. First, scale-

invariant regions are obtained by performing automatic spatial and scale selection (Section

A.1). Next, the affine shape of these regions is estimated through an affine adaptation process

(Section A.2).

A.1 Spatial and Scale Selection

This section discusses the procedure for extracting scale-adapted local regions, i.e., interest

points equipped with characteristic scales. The Laplacian detector extracts image regions

whose locations and characteristic scales are given by scale-space maxima of the Laplace

operator. The Harris detector uses the same operator for scale selection, but finds the

locations of interest points as the local maxima of a “cornerness” measure based on the

second moment matrix.

Let us begin by summarizing Lindeberg’s procedure for spatial and scale selection using

the Laplace operator [82]. Let I(x) denote the image intensity as a function of position. To

simplify the presentation, we will treat I(x) as a continuous differentiable function. We can

form a basic linear scale space by considering all possible images that result from convolving

1Recall from Chapter 2 that the technically correct term is not invariant but covariant, but we use the
former term throughout this dissertation to maintain consistency with existing literature.
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I(x) with an isotropic Gaussian of standard deviation σ:

I(x; σ) = G(x; σ) ∗ I(x) =

∫
G(x − x′; σ) I(x′) dx′,

G(x; σ) =
1

2πσ2
exp

(
−|x|2

2σ2

)
.

For any fixed scale σ, we can compute any combination of spatial derivatives of I(x; σ)

(effectively, these derivatives are computed by convolving the image I(x) with the appropriate

combination of derivatives of the Gaussian G(x; σ)). For instance, we may want to custom-

design a differential operator tuned to certain kinds of image structures, such as edges,

ridges, or blobs [82]. A desirable property for a scale-space differential operator is that

it should always produce the same response to an idealized scale-invariant structure like

a step edge. However, if we simply take a “blurred derivative” of a step edge, we will

obtain weaker responses at larger scales. This motivates the definition of scale-normalized

differential operators, whose output remains constant if the image is scaled (resized) by

an arbitrary factor. One particularly useful normalized differential quantity is the scale-

normalized Laplacian 
̂I(x; σ), which is one of the simplest scale selection operators [82]:


̂I(x; σ) = σ2

(
∂2I(x; σ)

∂x2
+

∂2I(x; σ)

∂y2

)
(A.1)

= σ2

(
∂2G(x; σ)

∂x2
+

∂2G(x; σ)

∂y2

)
∗ I(x) = 
̂G(x; σ) ∗ I(x) .

As an illustration of why the scale-normalized Laplacian is appropriate for selecting the

characteristic scale of local image structures, consider the one-dimensional toy example of

Figure A.1. The left-most picture shows a one-dimensional binary image (signal):

I(x) =

{
1, −8 ≤ x ≤ 8

0, otherwise.

The next six pictures show the signal I(x) convolved with one-dimensional scale-normalized

Laplacian kernels 
̂G(x; σ) for different values of σ. The family of convolved signals 
̂G(x; σ)∗

I(x) has a clear global minimum at σ = 8 and x = 0. Thus, the scale-normalized Laplacian

shows the strongest response at the characteristic scale of the signal.
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signal σ = 1 σ = 2 σ = 4 σ = 8 σ = 16 σ = 32

Figure A.1 Scale selection: one-dimensional example (see text). The dotted vertical line is x = 0.

Scale-selection operators like the Laplacian can also be used to find interest points in an

image. We define a Laplacian scale-space interest point as a point where 
̂I(x; σ) simultane-

ously achieves a local maximum with respect to the scale parameter and the spatial variables.

In the example of Figure A.1, (x, σ) = (0, 8) is a scale-space interest point. By computing

such interest points, we treat scale and spatial selection as parts of the same problem.

The Harris detector is obtained by a simple modification of the Laplacian detector, where

for spatial selection instead of the Laplacian we use the “cornerness” measure based on

the second moment matrix, also known as the local shape matrix or the auto-correlation

matrix [40, 105]:

MI(x; γ, σ) = G(x; σ) ∗
(
∇I(x; γ) ∇I(x; γ)T

)
. (A.2)

Note that MI(x; γ, σ) simultaneously lives in two scale spaces with parameters γ and σ. The

inner scale γ is the scale at which smoothed image derivatives are computed, while the outer

scale σ is the scale of integration — it defines the size of the window over which second

moment information is accumulated. Mikolajczyk and Schmid [105] point out that the inner

scale γ is less critical than the outer characteristic scale σ (though they do implement a

procedure for selecting γ automatically). Intuitively, the inner scale describes the intrinsic

resolution of the image measurement process — any information that is lost after blurring

the image with γ is lost forever. In our implementation, we set γ to a constant value of 2.
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Informally, the eigenvectors of the second moment matrix represent the dominant (or-

thogonal) edge orientations of the window, and the eigenvalues represent the amount of

edge energy along these directions. The Harris detector looks for points like corners and

junctions that have significant amounts of energy in two orthogonal directions. The Harris

“cornerness” measure is defined as follows:

det (MI(x; γ, σ)) − α tr2 (MI(x; γ, σ)) ,

where α is a constant (0.05 in the implementation). Local maxima of this measure determine

the locations of Harris interest points, and then the Laplacian scale selection procedure is

applied at these locations to find their characteristic scales.

A.2 Affine Adaptation

Following spatial and scale selection, each interest point is described by a spatial location

x and a characteristic scale σ. However, one could argue that a single characteristic scale

parameter does not adequately describe the local geometry of a texture patch. After all,

many textures are highly anisotropic, having different orientations and varying scales along

different directions. To obtain a more accurate estimate of local shape for some point with

location x and scale σ, we compute the second moment matrix MI(x; γ, σ), as defined by eq.

(A.2). Consider the equation

(x − x0)
T M(x − x0) = 1,

where M = MI(x0; γ, σ). It describes an ellipse centered at x0, with principal axes corre-

sponding to eigenvectors of MI and axis lengths equal to the square roots of the inverse of

the eigenvalues. This ellipse captures the local geometry of the corresponding texture patch,

provided σ matches its characteristic scale. In the implementation, we scale the axes of each

ellipse so that its area is proportional to the area of the circle with radius σ.
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Suppose that we have computed an estimate M of the local shape matrix at some image

location x0. Without loss of generality, let us assume that x0 is the origin. Given M , we can

normalize the image patch centered at x0 by computing a coordinate transformation U that

would send the ellipse corresponding to M to a unit circle:

x̂ = Ux = M1/2x

where M1/2 is any matrix such that M = (M1/2)T (M1/2). Since M is a symmetric positive-

definite matrix, it can be diagonalized as M = QT DQ where Q is orthogonal and D is

diagonal (with positive entries), so we can set M1/2 = D1/2Q.

Second-moment matrices can also be defined in affine Gaussian scale space where local

and integration scales are no longer described by single parameters γ and σ, but by 2 × 2

covariance matrices Γ and Σ [105]:

MI(x; Γ, Σ) = G(x; Σ) ∗
(
∇I(x; Γ) ∇I(x; Γ)T

)
, where

G(x; Σ) =
1

2π
√

det Σ
exp

(
−xT Σ−1x

2

)
,

∇I(x; Γ) = ∇G(x; Γ) ∗ I(x) .

Consider two texture patches I and I ′ centered at locations x0 and x′
0 (we can take x0

and x′
0 as the origins of the respective local coordinate systems). Suppose that these patches

are related by an affine transformation x′ = Ax:

I(x) = I ′(x′) .

Then we can show [40, 105] that their second moment matrices are related as

MI(x0; Γ, Σ) = AT MI′(x
′
0; AΓAT , AΣAT )A or

M = AT M ′A . (A.3)
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We can visualize the above transformation by thinking of the two ellipses xT Mx = 1 and

x′T M ′x′ = 1 related by the coordinate change x′ = Ax. If we have computed M and M ′, we

can normalize the local neighborhoods of I and I ′ as in (A.2):

x̂ = M1/2x, x̂′ = M ′1/2
x′ .

In a realistic situation, A, the coordinate transformation between the image regions I and

I ′, will be unknown. In fact, the two regions may not be related by an affine transformation

at all. For this reason, (A.3) is really an equation where M1/2 and M ′1/2 are known, and A

must be determined. As it turns out, the solution is not unique [40]:

A = M ′−1/2
RM1/2,

where R is an arbitrary orthogonal matrix. We can rewrite the above equation as

M ′1/2
Ax = RM1/2x

x̂′ = Rx̂ .

We have arrived at the following conclusion: if the local coordinate systems of I and I ′ are

related by an affine transformation, then the respective normalized systems are related by

an arbitrary orthogonal transformation (a combination of rotation and reflection). Thus,

we cannot obtain a complete registration between two image patches by using the local

shape matrices alone, even if these can be computed exactly. As explained elsewhere in this

dissertation, we can resolve the remaining ambiguity either by computing rotation-invariant

descriptors of the patches, or by aligning their dominant gradient orientations.

Finally, note that the geometry estimate provided by the local shape matrix can be rea-

sonably accurate only when the neighborhood over which the local shape matrix is computed

matches the true shape of the texture patch. This is a bootstrapping problem that can be

solved by an iterative approach [83, 105]. In our own implementation, the inclusion of an iter-

ative scheme has not resulted in any measurable change in performance, and therefore we use

just a single step of affine adaptation for all the experiments presented in this dissertation.
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