
c© Copyright by Chien-Wei Li, 2006

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4820412?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1




ON EXTRACTING COARSE-GRAINED FUNCTION PARALLELISM
FROM C PROGRAMS

BY

CHIEN-WEI LI

B.S., National Taiwan University, 1990
M.S., National Taiwan University, 1992

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2006

Urbana, Illinois





To my family, my teachers, my friends, and people who helped me.

iii



ACKNOWLEDGMENTS

I would like to thank my advisor Professor Wen-mei Hwu for giving me this opportu-

nity to learn how to solve important problems. He teaches me to see the big picture, as

well as to pay attention to the details. I appreciate his patience in correcting my errors in

speaking, writing, and thinking. I feel grateful for his generosity in financial support. He

has done everything a good teacher could do, however, I am not capable enough to fully

carry out his vision. Efficiently mapping complex applications onto parallel machines is

a fascinating problem to me. Hope that I can work on this for the rest of my life, based

on what I’ve learned from him.

I would like to thank Professors David Padua, Vikram Adve and Mark Hesagawa-

Johnson for their courtesy of being my thesis committee members. Their experiences,

comments, and critics broaden my knowledge and make me understand the problem more

deeply. I would like to thank Professors Nick Carter, Matt Frank, and Steve Lumetta

for their feedback on my work.

Although they may not know me, I would still like to thank the professors who taught

those interesting and helpful courses that I took at UIUC. Especially, I would like to thank

Professor Benjamin Wah, visiting Professor Yao-Jen Chang, and late Professor Michael

Faiman for their personal instruction and assistance when I first came to America. I

would like to thank my M.S. thesis advisor Professor Jie-Yong Juang and my other

teachers in Taiwan, from K to 18, who really make my life at UIUC much easier.

iv



I would like to thank my officemates Hong-Seok Kim and Dan Burke. I learned a

lot from Hong-Seok about pointer analysis and program analysis. Many ideas in my

research are inspired during our discussion. I also obtained a lot of hardware knowledge

from Dan. I would like to thank my colleagues, Ben-chung Cheng, Hong-Seok Kim,

and Erik Nystrom for their pointer analysis work; Robert Kidd, Hong-Seok Kim, Tahir

Mobashir, Erik Nystrom, James Player, Shane Ryoo, John Sias, and Ian Steiner for

their Pcode enhancement work. Especially, Bob and John made a lot of effort in system

administration and in perfecting the IMPACT compiler. I also appreciate the help of

other IMPACT colleagues, Ron Barnes, Kevin Cernekee, Marie Conte, Hillery Hunter,

Geoff Kent, Matt Merten, Chris Rodriguez, Andy Schuh, Chris Shannon, Sain Ueng, and

Le-chun Wu. Especially, Le-chun and Ben-chung have been helping me since we met in

Taiwan.

I would like to thank the staffs of the IMPACT group, Sabrina Hwu, Marie-Pierre

Lassiva-Moulin and Xiaolin Liu, and the staffs of Coordinated Science Laboratory and

Computer Science department. Especially, Marie-Pierre helps me a lot for the deposit of

this dissertation. I really appreciate it.

I would like to thank the friends I made at Rockwell, Conexant and Mindspeed,

especially my mentor Dr. Kumar Ganapathy, for their help and sharing experience.

This research is funded by the Semiconductor Research Corporation and by the Gi-

gascale Systems Research Center.

Not to have an Acknowledgement longer than the other chapters, I’ll just stop here.

Finally, I would like to thank my other friends and my family for taking care of me.

v



TABLE OF CONTENTS

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Technology Trend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Hardware Trend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Application Trend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Exploiting Parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Improving Design Productivity . . . . . . . . . . . . . . . . . . . . . . . 8

2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 Optimizing Compilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Vectorizing Compilers . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Parallelizing Compilers . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 Superscalar/VLIW/EPIC Compilers . . . . . . . . . . . . . . . . 14

2.2 High-level Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Concurrent Programming Languages . . . . . . . . . . . . . . . . . . . . 17

3 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Fine-grained Analogy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Coarse-grained Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.1 Defining Coarse-Grained Function . . . . . . . . . . . . . . . . . . 29
3.3.2 Identifying Producer and Consumer Relation . . . . . . . . . . . . 31
3.3.3 Summarizing Coarse-grained Memory Accesses . . . . . . . . . . . 32

3.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Symbolic Scalar Variable Evaluation . . . . . . . . . . . . . . . . . . . . . . . 42
4.1 SSA-based Symbolic Evaluation . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Induction Variable Detection . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 SSA Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Program Region Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.1 Program Region Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3 Handling Library Functions . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

vi



6 Exposed Memory Access Summarization . . . . . . . . . . . . . . . . . . . . . 59
6.1 Memory Access Descriptor . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.2 Bottom-up Summarization Process . . . . . . . . . . . . . . . . . . . . . 64

6.2.1 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.2.2 Finding Exposed Reads . . . . . . . . . . . . . . . . . . . . . . . 71
6.2.3 Finding Exposed Writes . . . . . . . . . . . . . . . . . . . . . . . 76
6.2.4 Memory Access Descriptor Operations . . . . . . . . . . . . . . . 81

6.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7 Producer-Consumer Relation Analysis . . . . . . . . . . . . . . . . . . . . . . 105
7.1 Bottom-up Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.2 Top-down Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8 Prototyping and Experiment Result . . . . . . . . . . . . . . . . . . . . . . . . 111
8.1 Modification of Benchmark Programs . . . . . . . . . . . . . . . . . . . . 111
8.2 Verification and Visualization . . . . . . . . . . . . . . . . . . . . . . . . 112
8.3 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
8.4 Effectiveness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

9 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
9.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

9.2.1 Inter-procedural Memory Data-flow Analysis . . . . . . . . . . . . 133
9.2.2 Improving Versatility and Effectiveness . . . . . . . . . . . . . . . 139
9.2.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

AUTHOR’S BIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

vii



LIST OF TABLES

8.1 Breakdown of the execution time of the prototype memory data-flow analysis
system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.2 Breakdown of the type of MADs for exposed reads . . . . . . . . . . . . . . 123
8.3 Breakdown of the type of MADs for exposed writes . . . . . . . . . . . . . . 123
8.4 Breakdown of the percentages of the causes of May-type MAD . . . . . . . . 124
8.5 Breakdown of the percentages of the causes of Doomed-type MAD . . . . . . 126

viii



LIST OF FIGURES

1.1 The block diagram and data-flow of the post-filter of G.724 decoder . . . . . 6
1.2 The challenge of the design methodology community. . . . . . . . . . . . . . 10

2.1 A unified view of exploiting parallelism and boosting productivity . . . . . . 20

3.1 The position of this work with in mapping applications onto multi-core archi-
tectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Illustration of the problem statement using the post-filter of G.724 decoder . 25
3.3 Example illustrating extracting fine-grained data-flow . . . . . . . . . . . . . 28
3.4 Example coarse-grained functions of subroutine calls . . . . . . . . . . . . . 29
3.5 Example coarse-grained functions of loops . . . . . . . . . . . . . . . . . . . 30
3.6 Illustration of the producer-consumer relations between coarse-grained functions 33
3.7 Producer and consumer program regions with the same memory access patterns 34
3.8 Example illustrating summarization of exposed accesses. . . . . . . . . . . . 37
3.9 Example illustrating symbolic scalar variable evaluation. . . . . . . . . . . . 39
3.10 Components of the proposed memory data-flow analysis system . . . . . . . 41

4.1 Example SSA form nd value flow graph . . . . . . . . . . . . . . . . . . . . . 43
4.2 Example illustrating non-affine expressions . . . . . . . . . . . . . . . . . . . 46
4.3 Example gated SSA form and pruned control flow graph . . . . . . . . . . . 47

5.1 Example program region hierarchy . . . . . . . . . . . . . . . . . . . . . . . 51
5.2 Work-around of improper loop . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.3 Work-around of indirect function call . . . . . . . . . . . . . . . . . . . . . . 55
5.4 Work-around of recursive function call . . . . . . . . . . . . . . . . . . . . . 56
5.5 A template describing the memory access behavior of fread . . . . . . . . . 56

6.1 Example illustrating the displace field of the MAD data structure . . . . . . 60
6.2 Examples for illustrating different MAD structures . . . . . . . . . . . . . . 61
6.3 The pseudo-code of Summarize . . . . . . . . . . . . . . . . . . . . . . . . 65
6.4 Example recursive calls of Summarize . . . . . . . . . . . . . . . . . . . . . 67
6.5 Illustration of the bottom-up summarization process . . . . . . . . . . . . . 67
6.6 The pseudo-code of FindExposedReads . . . . . . . . . . . . . . . . . . . 72
6.7 Example illustrating FindExposedReads . . . . . . . . . . . . . . . . . . . 74
6.8 The pseudo-code of FindExposedWrites . . . . . . . . . . . . . . . . . . . 77
6.9 Example illustrating FindExposedWrites . . . . . . . . . . . . . . . . . . 78
6.10 The pseudo-code of Concatenate (⊕) . . . . . . . . . . . . . . . . . . . . . 82
6.11 The pseudo-code of ConcatenateMAD . . . . . . . . . . . . . . . . . . . . 83
6.12 The pseudo-code of ConcatenatePattern . . . . . . . . . . . . . . . . . . 84

ix



6.13 Examples of concatenating two memory access patterns . . . . . . . . . . . . 85
6.14 The pseudo-code of CombineComponents . . . . . . . . . . . . . . . . . . 85
6.15 The pseudo-code of Merge (t) . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.16 The pseudo-code of MergeMAD . . . . . . . . . . . . . . . . . . . . . . . . 88
6.17 The pseudo-code of MergePattern . . . . . . . . . . . . . . . . . . . . . . 89
6.18 Examples of merging two memory access patterns . . . . . . . . . . . . . . . 90
6.19 The pseudo-code of Subtract (	) . . . . . . . . . . . . . . . . . . . . . . . 90
6.20 The pseudo-code of SubtractMAD . . . . . . . . . . . . . . . . . . . . . . 91
6.21 The pseudo-code of Pattern subtract . . . . . . . . . . . . . . . . . . . . . 92
6.22 Examples of subtracting two memory access patterns . . . . . . . . . . . . . 92
6.23 The pseudo-code of IntersectPattern . . . . . . . . . . . . . . . . . . . . . 93
6.24 The pseudo-code of PatternCovered . . . . . . . . . . . . . . . . . . . . . 93
6.25 The pseudo-code of Summation . . . . . . . . . . . . . . . . . . . . . . . . 95
6.26 The pseudo-code of SummationMAD . . . . . . . . . . . . . . . . . . . . 96
6.27 The pseudo-code of SummationMAD . . . . . . . . . . . . . . . . . . . . 97
6.28 Example illustrating Summation (

∑
) . . . . . . . . . . . . . . . . . . . . . 98

7.1 Illustration of the bottom-up phase . . . . . . . . . . . . . . . . . . . . . . . 106
7.2 Illustration of the top-down phase . . . . . . . . . . . . . . . . . . . . . . . . 108
7.3 The pseudo-code of PruneExposedWrites . . . . . . . . . . . . . . . . . . 109

8.1 Demonstration of the memory data-flow visualization system . . . . . . . . . 113
8.2 Example for illustrating spurious data producers . . . . . . . . . . . . . . . . 116
8.3 Eliminated spurious data producers (false dependences) in g721dec . . . . . 117
8.4 Eliminated spurious data producers (false dependences) in g721enc . . . . . 118
8.5 Eliminated spurious data producers (false dependences) in g724dec . . . . . 119
8.6 Eliminated spurious data producers (false dependences) in gsmdec . . . . . . 120
8.7 Eliminated spurious data producers (false dependences) in gsmenc . . . . . . 121

9.1 Example of function with the same summary at two call-sites . . . . . . . . 133
9.2 Illustration of function calls with isomorphic memory data-flow analysis results134
9.3 Example of function with different summaries at two call-sites . . . . . . . . 135
9.4 Illustration of function calls without isomorphic memory data-flow analysis

results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
9.5 Illustration of inefficient queries to value flow graph . . . . . . . . . . . . . . 137

x



CHAPTER 1

Introduction

The progress of IT (Information Technology) industry is driven by the simultaneous

advance of semiconductor manufacturing technology, hardware, application, and design

methodology. More advanced manufacturing technology enables more powerful hardware,

which in turn enables more advanced application. On the other hand, more advanced

application motivates more powerful hardware, which in turn motivates more advanced

manufacturing technology. Although less visible, design methodology plays a crucial role

in meshing technology to hardware, and hardware to application, so that the whole IT

industry is not out of gear.

To put the rest of this dissertation in perspective, this chapter will examine the

trends on manufacturing technology, hardware, and application, and point out, among

the many challenges faced by the current design methodology, which problem domain

this dissertation is trying to make some small step contributions. Chapter 2 will review

previous works to understand how the problems are approached by other researchers in

different ways, and to identify the specific problem that this work will focus on. Chapter 3

will present the problem statement to set the goal of this work, and outline the steps

to achieve the goal by decomposing the problem into sub-problems. Later chapters of

this dissertation will discuss each of these sub-problems and the proposed solutions in
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detail. Finally, this dissertation will conclude with the results and insights obtained from

prototyping the proposed solutions, and propose some future works.

1.1 Technology Trend

The rapid growth of the semiconductor industry is fundamentally driven by a trend

observed by Gordon Moore in 1965, that is transistor density doubles every 18 months [1].

In this rate, a single chip will have a billion transistors on it in the near future, enough

for the integration of a whole system [2]. However, to utilize this enormous amount of

transistors, we need to solve many problems. Below is an incomplete list of the problems.

• The NRE (Non-Recurrent Engineering) cost is soaring. For example, the cost of

mask set has risen from several hundred thousand dollars for 0.18-micron process

to over 1 million dollars for 90-nm process, and 3 million dollars for 65-nm pro-

cess [3] [4] [5]. Moreover, mask cost is only a fraction of the total NRE cost. The

design and verification costs are also sky-rocketing as chip design is becoming more

and more complex.

• Because of the shrinking of feature size, transistors can switch very fast, and are

thus no longer the performance bottleneck. However, the RC delay of long wire does

not scale down proportionally [6]. Signals can no longer propagate along long wires

in one clock cycle [7]. One implication of this wire delay problem is that, because

of clock skew, it is getting harder and harder to synchronize the whole chip at high

clock frequency [8]. Even if technically possible, increasing clock frequency will no
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longer be a feasible approach to achieve high performance, because of prohibitive

power dissipation.

• Power dissipation has been a recurring problem since the early days of semicon-

ductor industry. Integrating more transistors on a single chip will increase the

power density, because more transistors switching simultaneously will cause more

dynamic power dissipation. Moreover, in the deep sub-micron era, leakage power

is no longer a second order effect. In the future, leakage power will even contribute

more to total chip power dissipation than dynamic power [9] [10].

• Related to the power dissipation problem, energy efficiency is becoming a top de-

sign consideration for extending the operating period of small portable information

appliances operating on batteries, and for reducing the utility cost of large data

warehouses consisting of thousands of servers [9].

• Yet another everlasting problem is the memory bottleneck. While the density of

DRAM quadruples in three years, even faster than the increase of logic density,

the speed of memory cannot catch up the speed of logic. Putting more memory

on chip does not necessarily solve the memory bottleneck problem, due to the wire

problem and the limitation on the number of memory access ports.

The semiconductor industry will not stall building more powerful hardware because

of these problems. Instead, people are developing innovative hardware architectures to

more efficiently use the coming billion transistors [11].
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1.2 Hardware Trend

The state-of-the-art hardware systems are composed of ASICs (Application Specific

Integrated Circuits) and/or programmable devices like digital signal processors and mi-

croprocessors. The goal of hardware design is to achieve a balance among performance,

cost, and flexibility for the target applications. Technology trend profoundly affects how

people build hardware systems to maintain this balance.

For example, traditional standard cell based ASIC design is being challenged as a cost-

effective approach to achieve low power and high performance, because of soaring NRE

cost, high design risk and constantly changing industry standards. For applications which

microprocessors and digital signal processors still cannot meet the performance, power,

and area requirements, people are seeking alternatives like structured ASIC, FPGAs

(Field Programmable Gate Arrays), and reconfigurable architectures, to replace standard

cell based ASICs. These alternatives promise lower cost and/or more flexibility, without

sacrificing too much performance [12] [13].

The technology trend is also challenging the conventional wisdom in microprocessor

design. Because the centralized organization of current high-performance microproces-

sors does not scale well with the advance of semiconductor manufacturing technology,

researchers are proposing alternative architectures like the M.I.T. RAW processor [14],

the Stanford Stream processor [15] and Merrimac machine [16], and the U.T. Austin

TRIPS processor [17], to address the issues faced by future billion transistor micropro-

cessors [18].
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For commercial microprocessors, the design objective now is not performance, but

performance per Watt. Instead of increasing clock frequency, which will incur too much

power dissipation, both Intel and AMD are shipping dual-core microprocessors and will

resort to multi-core architectures to achieve high performance in the future [19] [20] [21].

The Cell processor developed by Sony, Toshiba and IBM also adopts multi-core architec-

ture, consisting of one PowerPC Processing Unit and 8 Synergetic Processing Units for

SIMD processing [22] [23].

Although microprocessors have been making significant progress in performance and

will be more power efficient in the future, I believe general-purposed architecture alone is

not the most efficient hardware platform. Future system on chip will consist of multiple

general-purposed cores and application specific accelerators in order to power efficiently

and cost effectively meet the requirements of emerging applications.

1.3 Application Trend

In the past, the growth of semiconductor industry is driven by PCs (Personal Com-

puters) and desktop applications. As the analog world is gradually digitized, and more

and more richer and richer digital contents are delivered through the Internet, (portable)

telecommunication, multimedia, and gaming applications are replacing PC desk-top ap-

plications as the new driving applications.

These applications present much higher design challenges than traditional PC desk-

top applications because 1) they require much higher computing power for complicated
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Figure 1.1 The block diagram and data-flow of the post-filter of G.724 decoder

algorithms to, for example, analyze and synthesize audio and video streams; 2) they

impose much tighter design constraints on form factor, cost, power dissipation and energy

efficiency.

These applications usually consist of DSP (Digital Signal Processing) kernels, with

inputs and outputs of sequences of frames. Usually an input frame is further divided

into sub-frames or blocks, which are then individually processed by the DSP kernels. So

potentially there is abundant parallelism in processing these sub-frames or blocks.

As a simple but concrete illustrating example, Figure 1.1 shows the components and

data-flow of the post-filter used in the G.724 decoder [24]. The 160-bit input speech

frame syn[0..159] is divided into four 40-bit sub-frames to be individually processed

by the post-filter.

Parallelism also exists in each computation kernel. The Weight block is basically a

vector multiplication, scaling its input signals by different weights. The Residu block

is a FIR (Finite Impulse Response) filter and the Syn filt and Preemphasis blocks

are IIR (Infinite Impulse Response) filters. The Correlation block computes two auto-

correlations. The agc block for automatic gain control is a little more complicated, but

the basic computations are still vector multiplication and accumulation.
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To meet the, often conflicting, design requirements, it is necessary to exploit all the

possible inherent parallelism in these applications.

1.4 Exploiting Parallelism

For the post-filter shown in Figure 1.1, potentially we can at least exploit the following

parallelism.

• Frame level data parallelism. If there is no data dependence between the processing

of consecutive frames, we could potentially duplicate the hardware to post-filter

different frames in parallel.

• Sub-frame level data parallelism. If there is no data dependence between the pro-

cessing of consecutive sub-frames, we could potentially duplicate the hardware to

process each sub-frames in parallel.

• Sub-frame level function parallelism. Instead of duplicating hardware, we could

pass the sub-frames through the DSP kernels in a pipelining or data-flow fashion

to exploit the coarse-grained function parallelism among these kernels.

• Signal level data parallelism. For digital signal processing kernels, we could use

techniques like Intel MMX/SSE [25] [26] to exploit fine-grained data parallelism.

• Instruction/operation level parallelism. We could implement these kernels us-

ing state-of-the-art high-performance digital signal processors or microprocessors,

which exploit instruction level parallelism to speed up the execution. We could also
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design ASIC to directly map the operations of these kernels to parallel arithmetic

units.

In spite of its abundant parallelism, the post-filter contributes only about 50% of the

total G.724 decoder execution time. According to Amdahl’s law [27], the performance of

the G.724 decoder cannot be significantly improved without speeding up the other 50%

of its computation, which may exhibit different characteristics from the post-filter and

thus require different approaches to improving performance.

It is no surprise that people build today’s telecommunication and media applications

using an array of hardware components, from ASIC and DSP (Digital Signal Processor)

to micro-controller and microprocessor, exploiting coarse-grained and fine-grained, data

and function parallelism to balance performance and cost.

Partitioning complex software into concurrent tasks, exploiting different forms of

parallelism, mapping these tasks onto complex hardware and searching for a balance

point between performance and cost is a daunting task. However, the current design

practice mainly relies on designer’s experience and instinct. With shorter time-to-market

and product lifetime, the development of future applications needs more efficient and

systematic design methodology.

1.5 Improving Design Productivity

The exponential increase of transistor density is followed by the exponential increase

of hardware and software complexities. However, we cannot exponentially improve our
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productivity using the same design methodology. To boost productivity, we shift to

higher level design abstraction to hide complexity. In the past, software design moved

from assembly language programming to high-level language programming; hardware

design moved from gate-level design to RTL (Register Transfer Level) design. However,

abstraction alone cannot achieve paradigm shift. We need the tools that can translate

designs from higher level representation to lower level representation without sacrificing

too much design quality. The success of the first high-level programming language Fortran

is because of the accompanying good Fortran complier; the success of Verilog/VHDL is

because of good RTL synthesis tools.

In summary, Figure 1.2 depicts the big picture of the problem domain that this

dissertation is trying to make some small contributions. The problem is two-fold.

• What is the programming model for capturing complex emerging applications in a

compact representation? To improve design productivity, the programming model

must be simple. To cover wide range of applications, the programming model must

be versatile.

• What are the compiler techniques to extract parallelism out of the compact rep-

resentation, and to map concurrent tasks onto complex multi-core hardware? The

complex hardware will consist of multiple general-purposed microprocessors, ASICs

and even FPGAs.
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Figure 1.2 The challenge of the design methodology community.

I realize that this is not a new research topic. Many researchers have made great

contributions before. The next chapter will scan the previous works, trying to find an

empty slot in the book shelf for this dissertation.
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CHAPTER 2

Previous Work

Exploiting parallelism and boosting productivity are the recurring challenges of the IT

industry, especially when the advance of technology accumulates enough momentum to

make a hardware architecture leap, or to surpass the existing design methodology. This

chapter will review the previous works on optimizing compilers, high-level synthesis,

and concurrent languages. Although they take different approaches, or target different

hardware platforms, all these three areas concern how to exploit parallelism and boost

productivity.

2.1 Optimizing Compilers

Compiler optimization is an active and exciting research area. Researchers have been

innovating new techniques to efficiently implement new programming language constructs

and to effectively utilize new architecture features. We can roughly divide optimizing

compilers into two categories, vectorizing/parallelizing compilers targeting supercomput-

ers [28] [29] and optimizing compilers targeting super-scalar, VLIW (Very Long Instruc-

tion Word) or EPIC (Explicitly Parallel Instruction Computing) architectures [30] [31].

Great progresses have been made in these two areas.
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2.1.1 Vectorizing Compilers

Early vectorizing compiler researches [32] [33] [34] [35] [36], most notably the Parafrase

project at the University of Illinois [37] and the Parallel Fortran Converter project at Rice

University [36], not only formalized fundamental notions like data dependence, depen-

dence distance, dependence direction, and dependence level, but also pioneered depen-

dence test techniques for automatically identifying the inherent parallelism in sequential

programs. Furthermore, to enable more vectorization and to better utilize the underly-

ing hardware features, these ground-breaking works also invented program restructuring

techniques [38] [39] [40] [28], for example, loop interchanging [41] [42], loop skewing [43],

scalar renaming [44], array renaming [36], strip-mining, and vector register allocation [45].

Although these early vectorizing compiler works focused on exploiting fine-grained

data parallelism to speed up scientific computations on vector or SIMD (Single Instruction

Multiple Data) machines, they also laid the foundation for the parallelizing compilers

targeting MIMD (Multiple Instruction Multiple Data) machines, and more recently for

the vectorizing compilers targeting instruction sets like the Intel MMX and SSE [26] for

speeding up multimedia applications on microprocessors.

2.1.2 Parallelizing Compilers

Because MIMD machines usually have high inter-processor communication cost, par-

allelizing compilers targeting MIMD machines must look beyond the inner-most loop to

seek more coarse-grained parallelism in the outer loops [46] [47] [48] [49] [50] [51] [52].
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To maximize parallelism and to increase locality, researchers have developed many pro-

gram analysis and transformation techniques, for example, loop distribution [28], loop

fusion [46] [53], loop tiling [54], unimodular transformation [55], array data-flow analy-

sis [56] [57] [58] [59], and array privatization [60] [61] [60] [62] [63].

Because parallelizing compilers need to examine larger program regions for paral-

lelism, many analyses need to cross the procedure boundaries to get more accurate anal-

ysis results. Because full program in-lining is too costly, researchers have developed many

inter-procedural analysis techniques [64] [65] [66] [67] [68] [69] [70] [71].

Most of the parallelizing compiler works are based on the SPMD (Single Program

Multiple Data) model to exploit coarse-grained data parallelism. This is suitable for

scientific applications with data set much larger than the number of processors. However,

researchers found that SPMD alone may not be the best way to parallelizing applications

like many digital signal processing applications which have many kernels with small

working set. For this kind of applications, it is better to exploit function (or task)

parallelism in addition to data parallelism [72] [73].

In data parallelism, different processors (or functional units) execute the same pro-

gram (or function) on different data at the same time. In function parallelism, different

processors (or functional units) execute different programs (or functions) on different

data at the same time. Researchers have developed techniques for task scheduling and

resource allocation given the dependence or data-flow among the tasks [74] [75] [76].

Unlike parallelizing compilers targeting MIMD machines, which must exploit coarse-

grained data and/or function parallelism in order to avoid excessive costly inter-processor
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communication, optimizing compilers targeting high performance microprocessors exploit

instruction level parallelism, which can be classified as fine-grained function parallelism.

2.1.3 Superscalar/VLIW/EPIC Compilers

High performance microprocessors are capable of executing multiple instructions at

the same time. People have made micro-architecture and compiler innovations to increase

the number of instructions available for parallel execution.

For example, Tomasulo’s algorithm [77], which is widely used in superscalar micropro-

cessors, eliminates false dependencies among instructions by register renaming [78] [79];

branch prediction [80] [81] [82] [83], trace cache [84] [85], predication [86] [87] [88], spec-

ulation [89] [90] [91], and memory disambiguation [92] enable more parallel instruction

execution by eliminating the synchronization barriers caused by spurious control depen-

dencies and memory dependencies.

Often, the micro-architecture features for exploiting ILP (Instruction Level Paral-

lelism) rely on compiler supports to achieve better utilization. For example, to expose and

schedule more instructions for parallel execution, people have developed trace schedul-

ing [93], superblock formation [94], software pipelining, modulo variable expansion and

modulo scheduling [95] [96] [97]; to enable more effective predication, people have de-

veloped hyperblock formation and predication analysis [98] [99]; to support speculation,

people have developed sentinel scheduling [100]; to obtain more accurate compile-time

memory disambiguation, people have been improving the accuracy and efficiency of de-

pendence tests [101] and pointer analysis [102] [103].
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It is due to the micro-architecture and compiler innovations combined, and always

being manufactured using the cutting-edge process technology, that microprocessors can

make such impressive progress in performance and cost. However, general-purposed ar-

chitecture still cannot meet the performance and cost requirements of many applications.

Many products still rely on special hardware to achieve the required performance under

strict cost and power constraints.

2.2 High-level Synthesis

Hardware designers have long been exploiting parallelism to improve the performance

and efficiency of their products. However, designing hardware at circuit level or gate

level is tedious and difficult. Designers must determine circuit topology, size transistors,

optimize logic, synchronize signals with respect to clocks and perform circuit or logic

simulations for functional verification and for timing analysis. As circuits become larger

and larger, it is very time consuming to capture and verify the whole design at such low

level.

To improve design productivity, people developed hardware description languages like

Verilog and VHDL as well as RTL synthesis tools. The hardware description languages

essentially abstract hardware as a hierarchy of concurrent processes following an event-

driven execution model. Instead of drawing schematics, designers can now capture their

designs using hardware description languages just like writing software programs, or

more precisely concurrent programs. The RTL synthesis tool will then take the high-
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level descriptions along with user specified design constraints, perform all the low level

design activities, and finally generate a netlist ready for the place-and-route tool [104].

This enables designers to focus on RTL and architecture level design exploration and

verification.

However, RTL designers still need to take care of details like circuit reset, clock

synchronization and dividing critical timing path into several pipeline stages, as well

as explicitly expressing fine-grained and/or coarse-grained, function and/or data, par-

allelism as a hierarchy of concurrent processes with bit-level or word-level interprocess

communication signals. In other words, the designers still need to describe the design

structurally, not behaviorally. As ASICs are getting more complex, RTL design is also

becoming too time-consuming. We are again facing the productivity crisis.

Researchers are advocating moving to even higher design abstraction and high-level

synthesis [105] [106] [107]. Starting from an abstraction like data flow graph [108], which

describes the dependences between fine-grained or coarse-grained tasks, people have done

extensive researches on how to optimize the mapping of concurrent tasks onto hardware

building blocks.

There are already commercial tools that can take C programs and generate the cor-

responding RTL implementation [109] [110] [111] [112]. Although the users of these tools

can describe their design behaviorally, in order to obtain better synthesis results, they

still need to explicitly express parallelism, especially coarse-grained function parallelism,

as well as the inter-process communication mechanism using compiler directives or con-

current language constructs.
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2.3 Concurrent Programming Languages

In addition to the techniques that extract parallelism from sequential programs, vec-

torizing and parallelizing compiler researchers also developed compiler directives and

language constructs to let programmers explicitly express parallelism. For example,

Fortran-D [113] and High Performance Fortran (HPF) [114] extend the Fortran language

with vector operations and data partitioning directives for explicit data parallelism on

top of a shared memory model; the MPI standard [115] is proposed as a portable library

for explicit inter-process communication under the message-passing paradigm. While it

is natural to target shared-memory programs on shared-memory multiprocessors, and

message-passing programs on distributed memory multicomputers, the memory model of

a concurrent programming language is not tightly coupled to the memory organization

of the underlying machines. It is up to the compiler and the run-time system to bridge

the semantic gap.

In addition to vector, SIMD, shared-memory MIMD, and distributed-memory MIMD

machines, researchers also experimented data-flow supercomputers [116] [117] [118] to

exploit massive parallelism. In parallel with the development of data-flow machines,

researchers also designed data-flow languages [119] [120] for explicitly expressing fine-

grained function parallelism. Different from a program written in imperative languages,

a program written in data-flow language is side-effect free and each of its variables has

only single assignment.
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Interestingly, researchers also developed compiler analyses and transformations that

can translate an imperative program to a form with some data-flow properties. For

example, there exists efficient algorithms to translate an imperative program into the SSA

(Single Static Assignment) form [121], gated SSA form [122], or dependence web [123].

Researchers [124] even argued that it is not necessary to design data-flow languages for

data-flow machines, because imperative programs can obtain the same performance on

data-flow machines using advanced compiler techniques, and the compilers for both types

of languages have similar complexities. Also, the von Neumann programming model of

imperative languages could be more intuitive and result in more compact programs than

the data-flow programming model for some applications, especially for applications with

a lot of partial state changes in complex data structures.

Because of these and other reasons, in spite of their many creative concepts, data-

flow languages did not become mainstream 1. The dominating programming languages

today are still imperative languages. Instead of for expressing massive parallelism in gen-

eral applications, recent data-flow language researches are more for software engineering

purpose [120] and for specific application domains.

For example, to model DSP applications, researchers have developed formal represen-

tations like synchronous data flow [125] and data-flow process networks [126]. In these

models, a task or a process, which could be an imperative program, represents a DSP

kernel which is repeatedly applied to its input signals. Also explicitly expressed in these

1Neither did general purposed data-flow machines. Instead, it is the restricted data-flow model [78]
that prevails in commercially successful high-performance microprocessors.
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models are the signal flow among these tasks and the signal generating and consuming

rates of each kernel. The motivation for these formalisms is to enable automatic synthesis

and optimization of real systems from the models [127] [128] [129] [130] [131].

With similar motivation, and language semantics, researchers also developed stream-

ing languages like StreamIt [132] and Brook [133] to ease the programming for machines

like the MIT RAW machine [14], the Stanford Merrimac [16] or even graphics proces-

sors [134]. The fundamental concepts of these streaming languages are stream consist-

ing of possibly infinite number of independent data, and kernel (or filter) operating on

streams. Thus, a streaming program explicitly expresses the function parallelism among

the execution of kernels, as well as the data parallelism among the processing of stream

elements.

The previous works on exploiting parallelism and on boosting productivity are really

tightly correlated, and we can unify them in a single picture, as shown in Figure 2.1.

Figure 2.1 can be divided into two halves. The top half is extracting parallelism from

the applications by compilers, or expressing parallelism in the applications by software

programmers or hardware designers. The bottom half is mapping concurrent tasks onto

hardwares exploiting various types of parallelism. Each edge in Figure 2.1 corresponds

to the enormous amount of knowledge and techniques obtained in decades of compiler,

high-level synthesis and programming language researches. The next chapter will discuss

where my work will make a dent in this big picture, considering both the learned lessons

and the projected trends.
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Figure 2.1 A unified view of exploiting parallelism and boosting productivity
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CHAPTER 3

Thesis Overview

This chapter will serve two purposes. First, it will establish the problem statement

of my PhD research based on the reflection on the technology, hardware and application

trends discussed in Chapter 1 and the previous works on exploiting parallelism discussed

in Chapter 2. Second, it will discuss what sub-problems we need to solve and give an

overview of the remaining chapters of this dissertation.

3.1 Problem Statement

Figure 3.1 relates the previous works with the perceived multi-core architectures.

Many of the works people have done for partitioning and distributing computations onto

MIMD machines can be readily used for exploiting coarse-grained data and function par-

allelism for the multi-core architecture. For efficiently utilizing superscalar/VLIW/EPIC

cores and SIMD/vector execution units, researchers have already developed a lot of tech-

niques, and are keeping pushing the envelope. Very likely, the coming multi-core archi-

tecture will also include ASICs or coprocessors to efficiently accelerate applications [135].

The CAD community have been innovating more powerful tools to facilitate the devel-

opment of these accelerators.
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Figure 3.1 The position of this work with in mapping applications onto multi-core
architectures

The works of mapping concurrent tasks onto multi-core architectures are all based

on an abstraction, the dependence graph, which describes the partial order between

the execution of computational tasks. Researchers have been pushing the accuracy of

dependence test. There already exists exact data dependence test, the Omega test [101],

which is very efficient for common cases. Because of the way they are constructed,
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dependence graphs may contain many false dependences. While false dependences may

not affect the effective accuracy of the dependence graph for compiler applications like

vectorization, the removal of false dependences can improve the effectiveness of many

other compiler optimizations [136].

Dependence graph without false dependences can be called data-flow graph, because it

contains only the true data dependences, or data-flows, between computational tasks. A

data-flow graph can be fine-grained, with each node corresponding to basic operations like

addition, or it can be coarse-grained, with each node corresponding to more complicated

computations like filters. Because they expose the maximum available parallelism, data-

flow graphs are instrumental in high-level synthesis and in mapping tasks onto array of

processors, and also the ”programs” for the data-flow computation model.

It is indisputable that the data-flow model is ideal for building hardware, because of its

localized memory access, neighboring communication, and maximum parallelism. Indeed

it has been the model for designing high performance ASICs like DSP circuits [137]. For

the perceived multi-core architecture, the data-flow model will also play an important

role not only in building the accelerators, but also in core-to-core, core-to-accelerator, and

accelerator-to-accelerator communications through the on-chip interconnection network.

However, as discussed in Chapter 2, there are two schools of thoughts about how to

construct the data-flow graph. The first school of thought is to let the programmers

write programs using data-flow or streaming languages. The second school of thought

is to let the programmers write programs using conventional imperative languages, and
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the compilers translate the imperative programs into data-flow graphs. This thesis work

follows the second school of thought for the following reasons.

• There have already existed a huge code base written in imperative languages. As

time goes by, more and more important imperative programs will be developed.

These imperative programs will still need to run efficiently on future multi-core

processors.

• The von Neumann programming model of the imperative languages is widely appli-

cable. Many complicated applications have been written in imperative languages

based on the von Neumann programming model. On the other hand, the data-flow

or streaming languages are still in the stage of proving concepts. If we could develop

a program analysis system to extract data-flow from imperative programs, the need

for developing new data-flow or streaming languages, as well as the associated tool

chains, will be questionable.

Because there are already efficient algorithms to convert imperative programs to fine-

grained data-flow graphs [138] [123] [121] [139], and because exploiting coarse-grained

parallelism will become more and more important for future multi-core processors, this

thesis work will focus on extracting coarse-grained data-flows from imperative programs

to facilitate the exploitation of coarse-grained function parallelism in multi-core proces-

sors, as indicated in Figure 3.1. More specifically, this thesis work will target programs

written in the C language, partly because of the popularity of C and partly because of the
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Figure 3.2 Illustration of the problem statement using the post-filter of G.724 decoder

compiler infrastructure used for prototyping and experiments. However, the techniques

developed in this work could also be applied to other imperative languages.

To specifically illustrate the problem that this work is to solve, Figure 3.2(a) shows the

original C code and the corresponding memory accesses of the G.724 post-filter example

presented in Figure 1.1. Note that the original program accesses both memory objects

statically allocated in the global memory and memory objects dynamically allocated in

the stack and the heap memory. These memory objects are often shared by different

functions. The challenge is to sort out the memory data-flow as shown in Figure 3.2(b)

from the complicated memory accesses as shown in Figure 3.2(a).

In summary, the problem statement of this research is as follows.
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Problem statement: Building a program analysis system to extract coarse-grained

data-flow from C programs for exploiting coarse-grained function parallelism.

This concludes the philosophy part, and start the engineering part, of this PhD disser-

tation.

3.2 Fine-grained Analogy

To obtain some insights on how to extract coarse-grained data-flow from imperative

programs, this section will use Figure 3.3 to review how fine-grained data-flow is extracted

from imperative programs to exploit fine-grained function parallelism.

By pairwise comparison of variable reads and variable writes in the code segment

of Figure 3.3(a), we can construct the dependence graph shown in Figure 3.3(b). Each

dependence is annotated with the corresponding dependence distance. Note that the

dependence distance is an interval, not necessarily a single integer number [101]. For

clarity, only the lower bound of the dependence distance is shown in Figure 3.3(b).

These dependences prevent the parallel execution of instructions in the same iteration

and/or in different iterations. However, many of the dependences in Figure 3.3(b) are

false dependences caused by writing to the same variable a. If each dynamic instruction

writes to a different memory location, we can eliminate all the false dependences and

obtain the maximum parallelism which is only constrained by the true dependences and

hardware resources, as shown in Figure 3.3(c) 1.

1Here we assume there are 1 adder, 1 multiplier, and 1 divider.
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Superscalar processors achieve this by performing the architecture register to phys-

ical register renaming on the fly [79]. Renaming can also be done using compile-time

techniques like SSA [121], which can easily convert the loop body in Figure 3.3(a) to

the data-flow graph in Figure 3.3(d). To obtain better instruction scheduling results,

software pipelining [95] or modulo scheduling [96] also perform register renaming using

techniques like modulo variable expansion [95] to allocate different registers to instruc-

tions in different iterations.

The key to exploiting fine-grained function parallelism is really to extract the data-

flow between instructions by eliminating false dependences through renaming. Essentially

there are three issues in extracting data-flow for function parallelism.

• Defining function. For fine-grained function parallelism, a function is an instruction

or an operation.

• Identifying the memory storages accessed by each function. For instructions operat-

ing on registers, the accessed memory storages can be identified using the specified

register numbers for the source and the destination operands.

• Identifying the producer and consumer relation between functions. Superscalar

processors use hardware structures like RAT (Register Alias Table) to establish

the producer and consumer relation between instructions at run-time. Compilers

identify the producer and consumer relation by performing data-flow analysis or by

SSA construction.
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Figure 3.3 Example illustrating extracting fine-grained data-flow

The next section will address these three issues in the context of extracting coarse-

grained data-flow to exploit coarse-grained function parallelism.
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1: int A[40];
2:
3: foo0 (...)
4: {
5: for (i0 = 0 ; i0 <= 3 ; i0++) {
6: foo1 (A, ...);
7: foo2 (... A, ...);
8: foo3 (... A);
9: }

10: }
11: foo1 (short y[], ...)
12: {
13: for (i1 = 0 ; i1 <= 39 ; i1++)
14: y[i1] = ...
15: }
16: foo2 (..., short s[], ...)
17: {
18: for (i2 = 0 ; i2 >= 0 ; i2--)
19: s[i2] = s[i2] ...
20: }
21: foo3 (... short x[])
22: {
23: for (i3 = 0 ; i3 <= 39 ; i3++)
24: ... = x[i3] ...
25: }

Figure 3.4 Example coarse-grained functions of subroutine calls

3.3 Coarse-grained Issues

This section will examine the issues in extracting coarse-grained data-flow from im-

perative programs to exploit coarse-grained function parallelism. The discussion will

follow the three issues summarized in the previous section. As explained in the follow-

ing sections, extracting coarse-grained data-flow is much more difficult than extracting

fine-grained data-flow.

3.3.1 Defining Coarse-Grained Function

To exploit coarse-grained function parallelism, we must first define what is coarse-

grained function, then we can discuss how to execute coarse-grained functions in parallel.
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1: int A[40];
2:
3: foo0a (...)
4: {
5: /*
6: * loop0a:
7: */
8: for (i0 = 0 ; i0 <= 3 ; i0++) {
9: /*

10: * loop1a: write A[0..39]
11: */
12: for (i1 = 0 ; i1 <= 39 ; i1++)
13: A[i1] = ...
14: /*
15: * loop2a: read A[39..0], write A[39..0]
16: */
17: for (i2 = 39 ; i2 >= 0 ; i2--)
18: A[i2] = A[i2] ...
19: /*
20: * loop3a: read A[0..39]
21: */
22: for (i3 = 0 ; i3 <= 39 ; i3++)
23: ... = A[i3] ...
24: }

Figure 3.5 Example coarse-grained functions of loops

For the program segment in Figure 3.4, it is natural to consider the subroutine calls to

foo1, foo2 and foo3 as coarse-grained functions. For the program segment in Figure 3.5,

we may consider each inner loop as a coarse-grained function. Coarse-grained function is

really not as well defined as fine-grained function. While subroutine calls and loops are

natural candidates for program regions, there could be other ways to divide a program

into regions, or coarse-grained functions.

Ideally we would like each program region, or coarse-grained function, is side-effect

free and accesses most of its data in local memories. We would also like to partition a

program in such a way that communication between program regions is localized in the

memories only accessed by the two communicating program regions. Ideally we would

like to partition a program into program regions in so that we could generalize the fine-
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grained data-flow execution model to a coarse-grained data-flow execution model, and

maximize the available coarse-grained function parallelism.

But this rarely happens in imperative programs which often use global variables for

the communication between many program regions. To convert imperative programs into

coarse-grained data-flow programs, a more practical approach is to sort out the producer

and consumer relation between program regions and then convert global memory accesses

to local memory accesses, as discussed in the next section.

3.3.2 Identifying Producer and Consumer Relation

Consider the example in Figure 3.5, which has three inner loops as coarse-grained

functions, all accessing the same array A. As shown in Figure 3.6(a), we can speed up the

execution of foo0a using three hardware accelerators for loop1a, loop2a, and loop3a,

with a memory block for the communication between these three accelerators, just as

the software implementation in the original program. This may speed up the execution

of individual innder loop, but there is not too much overlap between the execution of

accelerators as illustrated in Figure 3.6(a). Note that loop1a at outer loop iteration i

can not start writing to A[0] until loop3a at outer loop iteration i − 1 finishes reading

the value of A[0] generated by loop2a at outer loop iteration i − 1.

Similar to the example in Figure 3.3, the problem here is that both loop1a and

loop2a write to the same array A. If we can use different buffers for loop1a and loop2a

at different outer loop iterations, like renaming variables in Figure 3.3(c), we can increase
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the overlapping between the execution of loop1a, loop2a, and loop3a at different outer

loop iterations, as illustrated in Figure 3.6(b).

Basically, we can uncover more inherent coarse-grained function parallelism by sep-

arating the memory data-flow between loop1a and loop2a from the memory data-flow

between loop2a and loop3a. However, this is possible only if we can prove the following.

• All the array A elements consumed by loop2a are produced by loop1a at the same

outer loop iteration.

• All the array A elements consumed by loop3a are produced by loop2a at the same

outer loop iteration.

The proof for this simple example is trivial. Note that the loop1a produces the set of

array A elements {A[i]|0 ≤ i ≤ 39}, which is also the set of array A elements consumed

by loop2a. Similarly, the same set of array A elements are produced and consumed

by loop2a and loop3a respectively. However, in general it is not easy to identify the

producer and consumer relation between coarse-grained functions, because determining

the exact memory locations accessed in a coarse-grained program region is not as easy

as in the fine-grained case.

3.3.3 Summarizing Coarse-grained Memory Accesses

Summarizing the accessed memory locations by a coarse-grained function is more

difficult than summarizing the accessed memory locations by a fine-grained function.

For the fine-grained case, the memory consists of registers (or scalar variables). The
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loop2b loop2b
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(c)

loop0b (i = 0)
loop0b (i = 1)

Figure 3.6 Illustration of the producer-consumer relations between coarse-grained func-
tions
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1: int A[40];
2:
3: foo0b (...)
4: {
5: /*
6: * loop0b:
7: */
8: for (i0 = 0 ; i0 <= 3 ; i0++) {
9: /*

10: * loop 1b: write A[0..39]
11: */
12: for (i1 = 0 ; i1 <= 39 ; i1++)
13: A[i1] = ...
14: /*
15: * loop 2b: read A[0..39], write A[0..39]
16: */
17: for (i2 = 0 ; i2 <= 39 ; i2--)
18: A[i2] = A[i2] ...
19: /*
20: * loop 3b: read A[0..39]
21: */
22: for (i3 = 0 ; i3 <= 39 ; i3++)
23: s = A[i3] ...
24: }

Figure 3.7 Producer and consumer program regions with the same memory access
patterns

source and destination operands of an instruction unambiguously specify which registers

are accessed. The set of accessed registers can be easily represented using a bit vector,

with each bit corresponding to a register.

When performing data-flow analysis to identify the producer and consumer relation

between instructions, we need to check whether two instructions may access the same

registers. This checking can be easily done by applying bit-level operations on bit vectors.

On the other hand, a coarse-grained program region can access not only scalar vari-

ables, but also arrays and aggregates like structures or unions in the C programs. Using

pointer to access dynamically allocated memories only makes the situation worse. In

general, we cannot use bit vectors to represent the set of memory locations accessed by

a coarse-grained function. Instead, we need to use complicated data structures to repre-
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sent the accessed array elements, aggregates and dynamically allocated memories. If the

array accesses are irregular, or we cannot figure out exactly which dynamically allocated

memories are accessed, at best we can only have an inaccurate but conservatively correct

representation.

This inevitably complicates the identification of producer and consumer relation be-

tween coarse-grained functions. When performing data-flow analysis, instead of applying

bit-level operations on bit vectors, we need to apply complicated procedures on compli-

cated data structures to check whether two coarse-grained functions may access some

common memory locations.

There is another difference between accessing an array and accessing a scalar. The

access order of array elements could be very useful information, as discussed in next

section.

3.3.3.1 Memory Access Order

Consider the program segment in Figure 3.7, which is essentially the same as the

example in Figure 3.5 except that loop2a in Figure 3.5 accesses array A from element 39

to element 0, while loop2b in Figure 3.7 accesses array A from element 0 to element 39.

Because of this reversal of the array accessing order, loop1b and loop2b in Figure 3.7 not

only have a producer and consumer relationship but also have the same access pattern

of array A. Similarly, loop2b and loop3b also have the same access pattern of array A.

Because of this, the array elements produced by loop1b can be immediately consumed

by loop2b, and the array elements produced by loop2b can be immediately consumed
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by loop3b, without the need to buffer the whole array A. This data streaming not only

eliminates the buffering overhead but also increases the overlap between the execution of

producer and consumer, as illustrated in Figure 3.6(c).

Note that, in Figure 3.4 and Figure 3.5, we use more memory for the communica-

tion between producer and consumer pairs to increase the available function parallelism.

However, if the communication between producer and consumer can be in streaming

fashion, like the one shown in Figure 3.6(c), we can increase the available coarse-grained

function parallelism without using additional memory 2.

Strictly speaking, the data path in Figure 3.6(c) may not be correct, because the

output of loop2b may be consumed by program regions outside loop0b. On the other

hand, we are certain that the output of loop1b is only consumed by loop2b, because

the writes of loop1b are ”killed” by the writes of loop2b, and thus will not get exposed

outside loop0b. Therefore, when we summarize the memory accesses of a program region,

we only need to record the exposed memory accesses. The next section will elaborate on

this.

3.3.3.2 Summarizing Exposed Accesses

Consider the program segment in Figure 3.8, which is different from Figure 3.7 in

that loop2c reads and writes both array A and array B. However, knowing that loop2c

reads array B from element 0 to element 39 will not help find more producers for loop2c,

because all the array B elements are produced from within the loop body of loop2c.

2In this case, we even use less memory.
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1: int A[40];
2: int B[40];
3:
4: foo0c (...)
5: {
6: /*
7: * loop0c:
8: */
9: for (i0 = 0 ; i0 <= 3 ; i0++) {

10: /*
11: * loop 1c: write A[0..39]
12: */
13: for (i1 = 0 ; i1 <= 39 ; i1++)
14: A[i1] = ...
15: /*
16: * loop 2c: read A[0..39], write A[0..39], write B[0..39]
17: * read B[0..39] (not exposed)
18: */
19: for (i2 = 0 ; i2 <= 39 ; i2--) {
20: B[i2] = A[i2] ...
21: A[i2] = ... B[i2] ...
22: }
23: /*
24: * loop 3c: read A[0..39]
25: */
26: for (i3 = 0 ; i3 <= 39 ; i3++)
27: s = A[i3] ...
28: }

Figure 3.8 Example illustrating summarization of exposed accesses.

In general, to find the producers and consumers of a program region, we only need

to know its exposed memory accesses. The exposed memory reads of a program region

are the memory reads that are not ”covered” by any memory write executed earlier

within the same program region. The exposed memory writes of a program region are

the memory writes that are not ”killed” by any memory write executed later within the

program region.

An exposed read should have some producer outside its program region, unless it

is an access of some implicitly initialized memory like look-up table. Otherwise the

programmer may forget to initialize some memory. On the other hand, an exposed write

may or may not have consumers outside its program region.
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In general, to exactly summarize the truly exposed memory accesses of a coarse-

grained function is difficult, partly because of the reason discussed at the beginning of

Section 3.3.3, and partly because of the difficulty in calculating the addresses of accessed

memories.

3.3.3.3 Symbolic Scalar Variable Evaluation

The target language of this research work is the C language. C programs use pointers

to reference memory extensively, which causes difficulty in summarizing the exposed

memory accesses of program regions.

Take the program segment of foo2d in Figure 3.9 as example, which is simplified from

the original source code of the pre-emphasis filter of G.724 decoder [24]. To determine

the exposed memory reads of loop2d, we need to know the memory locations accessed

by the pointer dereferences *p and *q in the loop body. Inter-procedural pointer analy-

sis [140] [141] [142] [103] could tell us that both pointers p and q point to the memory

object array A. However this information is not accurate enough for us to deduce that

the reads by *p and *q at line 20 get their data from outside loop2d, not from the write

*p at line 20. To figure out this, we must know that the assignment statement at line 20

is equivalent to the assignment statement in the comment at line 21. Then we can use

dependence test to confirm that there is no true data dependence between the write of

*p and the reads of *p and *q at line 20.
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1: short A[40];
2:
3: foo0d ()
4: {
5: ...
6: foo2d (A, tmp2, 40);
7: ...
8: }
9:

10: foo2d (short *s, short n, int L)
11: {
12: short *p, *q, temp, i;
13:
14: p = s + L - 1;
15: /* p = A + 39 */
16: q = p - 1;
17: /* q = A + 38 */
18: temp = *p; /* A[39] */
19: loop2d: for (i = 0 ; i <= L - 2 ; i++) {
20: *p = *p - *q-- * n;
21: /* A[39-i] = A[39-i] - A[38-i] * n; */
22: p--;
23: }
24: /* p = A + 0 */
25: *p = *p - n * mem_pre;
26: /* A[0] = A[0] - n * mem_pre; */
27: mem_pre = temp;
28: }

Figure 3.9 Example illustrating symbolic scalar variable evaluation.

We have discussed the sub-problems we need to solve to extract coarse-grained data-

flow from C programs. The next section will outline the proposed program analysis

system to solve these problems and the organization of the rest of this dissertation.

3.4 Thesis Organization

The proposed memory data-flow analysis system to extract coarse-grained data-flow

from C programs for the exploitation of function parallelism is sketched in Figure 3.10,

which shows the components of this program analysis system, as well as the information

flow between them. The current implementation first does function in-lining to embed

39



all C source code into the main function. Flow-insensitive pointer analysis [103] is then

performed to obtain the set of objects that each pointer may points to. Next, control

flow graph is constructed to facilitate the symbolic evaluation of scalar variables, as well

as to obtain more accurate pointer information by taking control flow into consideration.

The shaded components in Figure 3.10 constitute the main work of this research. The

rest of this dissertation will present more detailed discussion on symbolic scalar variable

evaluation (Chapter 4), program region construction (Chapter 5), exposed memory ac-

cesses summarization (Chapter 6), and producer-consumer relation analysis (Chapter 7).

Chapter 8 will discuss the prototyping of the memory data-flow analysis system and the

experiment results. Chapter 9 will conclude this dissertation with the obtained insights

and some possible future research directions.
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producer−consumer relation analysis (top−down phase)

producer−consumer relation analysis (bottom−up phase)

summarization of exposed memory of program regions

program region construction

symbolic scalar variable evaluation

control flow graph construction

flow−insensitive pointer analysis

function inlining

C function with scalar variables annotated with (symbolic) values

a graph for the program region hierarchy

exposed memory accesses for program regions

C function annotated with points−to information

C function annotated with inlined function boundary

C source files

more accurate producer−consumer relation among program regions

control flow graph representation of the program

conservative producer−consumer relation among program regions

Figure 3.10 Components of the proposed memory data-flow analysis system
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CHAPTER 4

Symbolic Scalar Variable Evaluation

This chapter will explain how the proposed memory data-flow program analysis sys-

tem evaluates the symbolic value of each scalar variable, based on SSA form [121] and

induction variable detection [143]. The limitation of these algorithms is that they can

not go beyond the procedure boundary. To work around this limitation, procedures are

in-lined first, as indicated in Figure 3.10.

4.1 SSA-based Symbolic Evaluation

Use the program segment in Figure 3.9 as example. After in-lining, we can covert

the function foo0d into the SSA form shown in Figure 4.1(a). Note that the variables in

Figure 4.1(a) are annotated with different subscripts so that the value of each variable is

generated by a single assignment statement. For straight-line code, the single assignment

property can be easily obtained by renaming variables. However, in an arbitrary control

flow graph, different values of the same variable can reach the same program point via

different paths in the control flow graph. To preserve the single assignment property, φ-

functions are inserted at adequate confluence points in the control flow graph to represent

all the possible reaching values using one dummy variable. For example, in Figure 4.1(a),
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-

1

p2

φp3

*p3 = *p3 - n0 * mem_pre0;

p3 = φ(p0, p2);
*p3 = *p3 - n0 * mem_pre0;
mem_pre1 = temp0;

bb2:

L0 = 40;
n0 = tmp2;
s0 = A;
p0 = s0 + L0 - 1;
q0 = p0 - 1;
temp0 = *p0;
i0 = 0;
i0 <= L0 - 2

bb0:

p1 = φ(p0, p2);
q1 = φ(q0, q2);
i1 = φ(i0, i2);
*p1 = *p1 - *q1 * n0;
q2 = q1 - 1;
p2 = p1 - 1;
i2 = i1 + 1;
i2 <= L0 - 2

bb1:

TF

(a)

=

=

=

=

=

=

Figure 4.1 Example SSA form nd value flow graph

both values of the variable p, p
0

and p
2
, can reach the beginning of basic block bb1.

Therefore, a φ-function is inserted at the beginning of basic block bb1 to represent the

two possible reaching values p
0

and p
2

using the dummy variable p
1
.

Basically, SSA form is a sparse representation of the value flow between variables.

By back-tracking the SSA link, we can do backward substitution to find the symbolic

value of a variable. For example, in Figure 4.1(b), we can find the symbolic value of p
0
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as follows.

p
0

= (s0 + L0) − 1

= (s0 + 40) − 1 , given L0 = 40

= (A + 40) − 1 , given s0 = A

= A + 39

The problem with back-tracking the value flow through SSA links is that there may

be cycles in the value flow graph, as the one highlighted in Figure 4.1(b) by red edges.

Cycles in value flow graph are caused by reading and writing the same variables within

loops. These variables are called induction variables. Induction variables must be handled

carefully, otherwise, back-tracking the value flow graph may get trapped in infinite loop.

4.2 Induction Variable Detection

For the detection of induction variables, we use the method invented in [144]. First,

we identifies the SCCs (Strongly Connected Components) [145] in the value flow graph.

Each SCC is corresponding to an induction variable. The nodes in SCC could be scalar

variables, arithmetic operators, and φ-functions. If the combination of the operators and

φ-functions in a SCC matches some predefined patterns, we can determine the symbolic

value of each node in the SCC.

Take the SCC, marked with red edges, in Figure 4.1(b) as example. It has two

operators: 1) a φ-function at the loop header with an operand p
0

from outside the loop

and another operand p
2

from within the loop; 2) a ”−” operator with the second operand
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being a constant 1. For this type of SCC, each node in the SCC will be an induction

expression with symbolic value of the form d + (−1)h. Here h is called fundamental

induction variable [144], which takes the values 0, 1, 2, 3, · · · . The coefficient of the

fundamental induction variable is −1, which means the value of each induction expression

in this SCC will decrement by 1 every iteration. Each induction expression in this SCC

will have a different offset d, depending on its position in the SCC. Below are the symbolic

values of the induction expressions p
1

and p
2
.

p
1

= p
0
+ (−1)h , where h = 0, 1, 2, 3, · · ·

p
2

= p
1
− 1

= p
0
+ (−1)h− 1

We can further substitute the value of p
0

into the symbolic values of p
1

and p
2

as follows.

p
1

= A + 39 + (−1)h , given p
0

= A + 39

p
2

= A + 38 + (−1)h

The technique presented in [144] can identify higher-order induction variables which

can be represented as polynomials of the fundamental induction variable. For the current

implementation, we only represent symbolic values as affine expressions of the form d+c·h,

where h is the fundamental induction variable, c is an integer constant, and d can be

either an integer constant or a scalar variable. Back-tracking will proceed in the value

flow graph until any non-affine term is encountered. For example, in Figure 4.2, back-
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Figure 4.2 Example illustrating non-affine expressions

tracking will stop before L0 = x * x. The symbolic value of p
0

will be represented as

A + L0 − 1, without further expanding L0 into x * x.

4.3 SSA Extension

Symbolic evaluation only based on SSA form has its limitation. For example, in

Figure 4.1, the SSA form only tell us that the value of p
3

can be either p
0

or p
2
. Note

that the value of p
3

could be p
0

only if the branch at the end of the basic block bb0 is not

taken. However, the branch at the end of the basic block bb0 is always taken, because

its branch condition i0 <= L0 − 2 is always true. (The value of i0 is 0, and the value of

L0 is 40.) Therefore, the value of p
3

is actually equal to p
2
.

Furthermore, p
2

is an induction variable, and thus can take more than one values.

p
3

should take the last value of p
2

when the loop terminates, because p
3

is outside the

loop, while p
2

is inside the loop. However, we can not figure out this using the SSA

representation. The fundamental problem of SSA form is that it retains only data flow
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p4 = φ(p0, p3);
*p4 = *p4 - n0 * mem_pre0;
mem_pre1 = temp0;

bb2:

L0 = 40;
n0 = tmp2;
s0 = A;
p0 = s0 + L0 - 1;
q0 = p0 - 1;
temp0 = *p0;
i0 = 0;
i0 <= L0 - 2

bb0:

p1 = µ(p0, p2);
q1 = µ(q0, q2);
i1 = µ(i0, i2);
*p1 = *p1 - *q1 * n0;
q2 = q1 - 1;
p2 = p1 - 1;
i2 = i1 + 1;
i2 <= L0 - 2

bb1:

TF

(a)

p3 = η(p2);bb3:

*p3 = *p3 - n0 * mem_pre0;
mem_pre1 = temp0;

bb2:

L0 = 40;
n0 = tmp2;
s0 = A;
p0 = s0 + L0 - 1;
q0 = p0 - 1;
temp0 = *p0;
i0 = 0;
i0 <= L0 - 2

bb0:

p1 = µ(p0, p2);
q1 = µ(q0, q2);
i1 = µ(i0, i2);
*p1 = *p1 - *q1 * n0;
q2 = q1 - 1;
p2 = p1 - 1;
i2 = i1 + 1;
i2 <= L0 - 2

bb1:

(b)

p3 = η(p2);bb3:

Figure 4.3 Example gated SSA form and pruned control flow graph

information but no control flow information. The φ-function contains no information to

determine which of the reaching values it should take. To remedy this problem, people

has extended SSA form to gated SSA form [123].

In gated SSA form, φ-function is augmented with predicate for the selection of possible

reaching values. Special φ-functions called µ-functions and η-functions are placed at loop

entry and loop exits. A µ-function has two operands. The output of a µ-function will

take the value of the first operand for the first loop iteration, and the value of the second

operand for the remaining loop iterations. The value of a η function is the value of the
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corresponding variable when control reaches the corresponding loop exit. Figure 4.3(a)

shows the corresponding gated SSA form of Figure 4.1(a). For clarity, it does not show

the predicates in φ-functions, µ-functions and η-functions. Note that a dummy basic

block is inserted at the loop exit to facilitate the insertion of η-functions.

The implementation and interpretation of gated SSA form is complicated. For the

symbolic evaluation of scalar variables in the prototype memory data-flow analysis sys-

tem, we implemented a simplified version of gated SSA form. To ease the job of identifying

induction variables and calculating their loop-exit values, we extended the SSA form with

µ-functions and η-functions, but without having predicates in φ-functions, µ-functions

and η-functions. Without resorting to predicate evaluation, we can still prune the control

flow graph by checking whether some branch conditions are always true or always false.

For the control flow graph in Figure 4.3(a), the false-branch at the end of basic

block bb0 is never taken, so we can prune this edge and obtain the simplified control flow

graph in Figure 4.3(b). After pruning the false-branch edge at the exit of basic block

bb0, we can also prune the the φ-function at the beginning of basic block bb2, because

now the control can reach basic block bb2 only through bacic block bb3. This can be

accomplished by re-constructing the SSA form using the pruned control flow graph 1.

Prunning control flow graph and SSA enables us to have more accurate symbolic

scalar variable evaluation. For example, we can easily conclude that, in Figure 4.3(b),

1It will be interesting to implement an algorithm to incrementally modify the SSA form from an
incremetally modified control flow graph, but this is beyond the scope of this work.
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variable p at the basic block bb2 has the symbolic value of p
3
. We cannot easily reach

this conclusion in Figure 4.3(a) without full-blown implementation of gated SSA.

Given Figure 4.3(b), the value of p
3

can be derived as follows.

p
3

= η(p
2
)

= η(p
1
− 1)

= η((A + 39 − h) − 1)

= η(A + 38 − h)

= η(A) + η(38) − η(h)

= A + 38 − 38

= A

Note that h is the fundamental induction variable, which starts from 0. Its last value

η(h) is the loop trip count minus 1, that is 38. The loop trip count in this example can

be calculated by checking the loop exit condition, i2 > L0 - 2. Note that the value of

i2 is 1 + h and the value of L0 is 40, and thus the value of the loop exit condition is h

> 37. So, when the loop terminates, the value of h would be 38. In general, it is not

so straightforward to calculate the trip counts for arbitrary loops, which is beyond the

scope of this work.
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CHAPTER 5

Program Region Hierarchy

This chapter will discuss how the proposed memory data-flow analysis system parti-

tions a program into program regions as coarse-grained functions. It will also discuss the

limitation of this program partitioning and how to handle library functions which have

no source code available.

5.1 Program Region Hierarchy

For the current implementation, we define a coarse-grained function to be one of the

following 4 program regions.

• in-lined function;

• loop with single loop entry, the so called natural loop [146];

• loop body;

• memory read;

• memory write.

By partitioning a program segment into these regions, we can impose a program region

hierarchy upon the program segment. For example, Figure 5.1 is the program region
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region 0
}

{

Inlined Function

region 1

Loop

for i0 = 0, 3, 1

region 2

region 3

region 4

{

}
region 5

Loop

for i2 = 0, 39, 1

region 7

Loop

for i1 = 0, 39, 1

region 6

Loop

for i3 = 0, 39, 1

region 8
Loop Body

}

{

Loop Body

}

{

Loop Body

region 9
{

}
A[i1] = ..

Mem. Wr

.. = A[i2]

Mem. Rd

B[i2] = ..

Mem. Wr

.. = B[i2]

Mem. Rd

A[i2] = ..

Mem. Wr

.. = A[i3]

Mem. Rd

foo0c ( )

Loop Body
region 10

region 11

region 12

region 13

region 14control flow

Figure 5.1 Example program region hierarchy

hierarchy of the in-lined function foo0c in Figure 3.8. Memory reads and memory writes

are the fundamental regions which are always at the bottom of program region hierarchy,

like the regions 9 to 14 in Figure 5.1. Although it is hard to call a single memory read or

memory write coarse-grained, treating memory read and memory write as fundamental

program regions will simplify the implementation of the the memory data-flow analysis

and the discussion of later chapters.

Except the fundamental regions, all other program regions consist of sub-regions. A

loop region, like the regions 1, 3, 4, and 5 in Figure 5.1, has only one sub-region, its loop

body. A loop body region, like the regions 2, 6, 7 and 8 in Figure 5.1, or an in-lined

function region, like the region 0 in Figure 5.1, may have more than one sub-regions. The

sub-regions of a program region are represented as a directed graph called the sub-region
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graph. The nodes in a sub-region graph are corresponding to the sub-regions. The edges

in a sub-region graph are corresponding to the control flow between the sub-regions.

Accordingly, we use two major recursive data structures to implement the program

region hierarchy, region and subregion graph. Each region has a reference to a

subregion graph. Each node in a subregion graph has a reference to the region

data structure of the corresponding sub-region. We basically build the region and

subregion graph data structures from bottom up. To build the region data structure

for a program region, we first build the region data structures for its sub-regions, then

build a subregion graph with its nodes pointing to the region data structures of the

sub-regions.

Program regions are identified in the control flow graph. A loop region and the

corresponding loop body region can be found using the algorithm for finding natural

loops [146]. The entry basic block and exit basic block of an in-lined function are marked

for the identification of the in-lined function. The marking of in-lined function entry

block and exit block is done during the construction of control flow graph, with the help

of in-liner generated compiler pragmas.

By our definition and implementation of program regions, the sub-region graph of a

program region is actually a directed acyclic graph, since a loop region has only one sub-

region and a loop body region contains no back-edges. This simplifies the implementation

of the memory data-flow analysis, which will be discussed in the following chapters.

However, our definition and implementation of program regions do have some limitations

as discussed in the next section.
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switch (m) {

}

case 3: *p++ = 0;
case 2: do {

*p++ = 0;

} while (−−i);

case 1:   *p++ = 0;
case 0:   *p++ = *x++;

i = 13;

switch (m) {
case 3: *p++ = 0;
case 2: *p++ = 0;
case 1: *p++ = 0;
case 0: *p++ = *x++;

}
do {

*p++ = 0;
*p++ = 0;
*p++ = *x++;

} while (−−i);

i = 12;

(c)

(a)

i = 13;
switch (m)

bb0:

case 3: *p++ = 0;

bb1:

case 2: *p++ = 0;

bb2:

case 1: *p++ = 0;

bb3:

case 0: *p++ = *x++;
−−i == 0

bb4:

(b)

Figure 5.2 Work-around of improper loop

5.2 Limitations

The definition and implementation of program regions in this work have the following

limitations.

• It cannot handle improper loops, which have more than one loop entry. Fig-

ure 5.2(a) shows a program segment from one of the MediaBench programs. Note

that the do-while loop has multiple entry points. We can not identify an improper

loop using the algorithm for finding natural loops, which is based on the detection of

back-edges. A back-edge is an edge in the control flow graph so that the destination

basic block of the edge dominates the source basic block of the edge.
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As shown in Figure 5.2(b), the ”loop-back” edge from basic block bb4 to basic

block bb2 in the control flow graph is not a back-edge, because basic block bb2

does not dominate basic block bb4. Therefore we will not group basic blocks bb2,

bb3 and bb4 as a loop body region. Instead, we will group all the basic blocks

in Figure 5.2(b) as one program region, which will have a sub-region graph with

the same structure as the control flow graph shown in Figure 5.2(b). Note that

the control flow graph in Figure 5.2 is not an acyclic graph. This violates our

assumption of sub-region graph and breaks the memory data-flow analysis.

The current remedy to this problem is to hand modify an improper loop to a

natural loop by peeling out the first iteration, as shown in Figure 5.2(c). We

expect improper loops will occur very rarely in common programs, as we only find

one case in all the benchmark programs we tried.

• It cannot handle indirect function calls. This is really the limitation of our in-

lining based approach. In the current implementation, in-lining takes place before

the pointer analysis, as shown in Figure 3.10. So, the in-liner does not know the

possible values of function pointers, and thus does not in-line functions at the

call-site of indirect function calls.

The current remedy to this problem is to hand replace the call-site of indirect

function call with several call-sites of direct function calls based on the pointer

analysis results. This is illustrated in Figure 5.3.
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foo()
{

   sort_data(bubble_sort);
}
sort_data(void (*sort)())
{

   sort_data(quick_sort);

   (*sort)();
}

foo()
{

   sort_data(bubble_sort);
}
sort_data(void (*sort)())
{

   sort_data(quick_sort);

   if (sort == quick_sort)

       bubble_sort();

       quick_sort();
   else if (sort == bubble_sort)

}

(b)

(a)

Figure 5.3 Work-around of indirect function call

• It cannot handle recursive functions. This is the limitation of any in-lining based

program analysis. We may convert tail-recursions to loops, but, to handle recursions

in general, we must resort to inter-procedural memory data-flow analysis, which is

left as future work. For the telecommunication and media benchmark programs

used in this work, we only find one recursion case for implementing the intrinsic

functions of left shift and right shift. We hand modified the program to break

this recursion, as illustrated in Figure 5.4.

• It cannot handle functions with variable number of arguments, for example, printf.

For the current in-lining based implementation, we manually replace the printf

at different call-sites with different variants of the printf function according to

the number and the data types of the actual parameters. For each new version of

printf, a template function is created to model its memory access patterns.

Not just for printf, we also use template to model the memory access behaviors of

other library functions.
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shift_left(int shiftcnt)
{
    if (shiftcnt < 0) 
       shift_right(−shiftcnt);
    /* do shift left */
}
shift_right(int shiftcnt)
{
    if (shiftcnt < 0)
       shift_left (−shiftcnt);
    /* do shift left */
}
foo ()
{
    shift_left(shiftcnt);
    shift_right(shiftcnt);
}

(a)

if (shiftcnt > 0)
    shift_left(shiftcnt);
else
    shift_right(−shiftcnt);

if (shiftcnt > 0)
    shift_right(shiftcnt);
else
    shift_left(−shiftcnt);

}

foo ()
{

shift_left(int shiftcnt)
{

}
    /* do shift left */

shift_right(int shiftcnt)
{
    /* do shift left */
}

(b)

Figure 5.4 Work-around of recursive function call

1: size t fread (void *ptr, size t size, size t nitems, FILE *file)
2: {
3: int i, j;
4:
5: *file = *file;
6: for (i = 0 ; i < nitems ; i++) {
7: for (j = 0 ; j < size ; j++)
8: ((char *) ptr) [i * size + j] = 0;
9: if (i)

10: break;
11: }
12: return i;
13: }

Figure 5.5 A template describing the memory access behavior of fread

5.3 Handling Library Functions

The proposed program analysis system is trying to do whole program memory data-

flow analysis. No matter it is in-lining based or inter-procedural, whole program analysis

cannot proceed if the source code of some function is not available. However, it is very

common in a program to call library functions which have no source code available. This
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work uses template function to model the memory access behavior of library functions,

similar to the approach used in [141] for whole program pointer analysis. For example,

Figure 5.5 shows the template function for the library function fread. The outer loop

of the template in Figure 5.5, lines 6-11, models writing the items to the buffer pointed

by the formal parameter ptr. The trip count of the outer loop, the maximum number of

items to read, is given by the formal parameter nitems. Lines 9-10, Figure 5.5, models

that the outer loop can exit early and read fewer data items. The inner loop (lines 7-8,

Figure 5.5) models writing each byte of the read item to the buffer. The formal parameter

size gives the size of each item in bytes.

In addition to modeling the memory access behavior of software library functions,

hardware IP (Intellectual Property) providers can also provide the templates that model

the memory access behavior of their IPs 1. Template is really a way to enable whole sys-

tem memory data-flow analysis in order to optimize the communication between software

and/or hardware components.

5.4 Related Work

This work has the same program regions as those used in [62] and [147]. The goal

of [62] and [147] is to exploit coarse-grained data parallelism in outer loops, while the

goal of this work is to exploit coarse-grained function parallelism among the program

regions. It is not clear how [62] and [147] handled improper loops, indirect function

1A hehavioral C model also works, but from the memory data-flow analysis point of view, a template
only modeling the memory access behavior is accurate enough and requires less analysis time.
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calls, recursion and library functions. Some of these issues may not matter in their case,

because their target language is Fortran.

The templates used in [141] only model the accessed memory objects. This is enough

for the purpose of whole program pointer analysis. For whole program memory data-flow

analysis, we may obtain more accurate analysis results by using templates which have

more detailed modeling of the memory access patterns.
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CHAPTER 6

Exposed Memory Access Summarization

For each program region, exposed memory access analysis tries to find its exposed

memory reads that consume the data generated by other program regions, and the ex-

posed memory writes that produce the data for other program regions. For each exposed

read and exposed write, we use a data structure called Memory Access Descriptor (MAD),

as explained below, to describe its memory access pattern. The exposed reads, and the

exposed writes, of a program region is a set of MADs which have mutually exclusive

memory accesses.

6.1 Memory Access Descriptor

For our current implementation, the MAD data structure for describing memory

access pattern can be represented as a 6-tuple, 〈size, alias, base, offset , displace, type〉.

• size: This is the size of each access in terms of bytes.

• alias: This is the alias set given by the flow-insensitive pointer analysis [102] [103],

which gives us the most conservative information about the memory objects which

may be accessed.

59



A[0][0] A[0][1] A[1][0] A[1][1] A[2][0] A[2][1]

A[0][0] A[0][1] A[1][0] A[1][1] A[2][0] A[2][1]

4 bytes

4 bytes

... A[i][j] ...

for (j=0 ; j<2 ; j++)
for (i=0 ; i<3 ; i++)

int A[3][2];

(stride, trip−count)
= ( 4, 2 ) (stride, trip−count) = ( 8, 3 )

... A[i][j] ...

for (i=0 ; i<3 ; i++)
for (j=0 ; j<2 ; j++)

int A[3][2];

(stride, trip−count) = ( 4, 6 )

(a)

(b)

Figure 6.1 Example illustrating the displace field of the MAD data structure

• base: This is the base address of the accessed memory locations. A base can be

static or dynamic. A static base is like the array A in the memory reference A[i].

A dynamic base is like the pointer p in the memory reference *p.

• offset : This is byte offset from the base address. For example, for the memory

accessed by *(p+7), the base is p, and the offset is 28, assuming p is a pointer to

4-byte integers.

• displace: This is a list of (stride in bytes, trip-count) pairs. For example, accessing

all the elements of a 3-by-2 integer array A in row major order will have base A, offset

0, and displace [(4, 6)], as shown in Figure 6.1(a). On the other hand, accessing all

the elements of A in column major order will have displace [(8, 3)(4, 2)], as shown

in Figure 6.1(b).
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   for (i = 0 ; i <= 9 ; i++)
      ... A[i] ...

      ... A[i] ...

   /* access A[0] to a[9] */
if (...) {

} else { 

}

   /* access a[1] to a[10] */
   for (i = 1 ; i <= 10 ; i++)

(b)

   for (i = 0 ; i <= 9 ; i++)
      ... A[i] ...

   /* access a[9] down to a[0] */

      ... A[i] ...

   /* access A[0] to a[9] */
if (...) {

} else { 

}
(a)

   for (i = 9 ; i >= 0 ; i−−)

if (...) {
   p = A;
} else {

}
while (...) {
   ... p[x] ...
}

   p = B;

int B[20];
int A[10];

(c)

if (...) {
   p = A;
} else {

}

   ... p[x] ...
}

   p = B;

int B[20];
int A[10];

for (i = 0 ; i < 10 ; i++) {

(d)

struct {
  int a;
  int b;
} A[10];
for (i = 0 ; i < 10 ; i++) {
   ... A[i].b ...
}

(f)

struct {
   int A[10];
   int B[20];
} s;
for (i = 0 ; i < 20 ; i++) {
   ... s.B[i]...
}

(e)

Figure 6.2 Examples for illustrating different MAD structures

• type: Different type values represent different accuracy levels of the memory access

description. Below are the 4 possible values of type, from the most accurate to the

least accurate.

– Seq : This type of MAD is the most accurate memory access description. A

Seq-type MAD describes not only the accessed memory locations but also the

access order. For example, we can figure out the exact accessed memory loca-

tions and the access order for the for-loops in Figure 6.1. Using the 6-tuple

notation, 〈size, alias, base, offset , displace, type〉, the MADs describing the ac-
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cesses of array A by the for-loops in Figure 6.1 are 〈4, {A}, A, 0, [(4, 6)], Seq〉

and 〈4, {A}, A, 0, [(8, 3)(4, 2)], Seq〉 respectively.

– Must : A Must-type MAD describes only the accessed memory locations, but

not the access order. For example, in Figure 6.2(a), one of the for -loops

accesses array A from element A[0] to element A[9], and the other from A[9]

down to A[0]. We are certain that the code segment in Figure 6.2(a) accesses

the set of array elements {A[i]|0 ≤ i ≤ 9}, but we cannot determine the access

order at compile time. Therefore, we describe these memory accesses using a

Must-type MAD, 〈4, {A}, A, , [(4, 10)],Must〉.

– May : While a Must-type MAD describes the exact set of accessed memory

locations, a May-type MAD describes only an upper bound of the possibly

accessed memory locations. Some memory locations in the set described by

a May-type MAD may not be accessed. For example, the code segment in

Figure 6.2(b) will access the set of array elements {A[i]|0 ≤ i ≤ 9} if the

branch condition is true, or {A[i]|1 ≤ i ≤ 10} if the branch condition is false.

Therefore, the May-type MAD for Figure 6.2(b) is 〈4, {A}, A, , [(4, 11)],May〉.

Note that, at run time, it will access either A[0] or A[10], but not both.

– Doomed : If we cannot even determine an upper bound of the accessed memory

locations, we can only conservatively use a Doomed -type MAD to describe the

possibly accessed memory objects given by the pointer analysis. For example,

we cannot determine the memory locations accessed by the code segment
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in Figure 6.2(c). We only know it may access the memory objects, array

A or array B, but we are not certain which array elements of which array

the while-loop will access. The corresponding Doomed -type MAD is thus

〈4, {A,B},⊥,⊥,⊥,Doomed〉.

Figures 6.2(d) to (f) illustrate the MAD structures for other memory access cases.

Like Figure 6.2(c), we cannot determine, at compile time, whether the for-loop in Fig-

ure 6.2(d) will access array A or array B. However, instead of giving up too early and

using a Doomed -type MAD, we can still describe the memory accesses of the for-loop in

Figure 6.2(d) using a Seq-type MAD, 〈4, {A,B}, p, , [(4, 10)], Seq〉. Note that the alias set

of the MAD is {A, B}, and the base address of the MAD is p.

For the loop in Figure 6.2(e), which accesses the array B in the structure s, we can

use 〈4, {s.B}, s, 40, [(4, 10)], Seq〉 to describe its memory accesses, which has the starting

address of the structure s as the base, and the offset of array B from the starting address

of structure s, 40, as the offset.

For the loop in Figure 6.2(f), which accesses an array of structures, we can use

〈4, {A.b}, A, 4, [(8, 10)], Seq〉 to describe its memory accesses, which has the starting ad-

dress of array A as the base, the byte offset of the b field in the structure, 4, as the offset,

and the byte size of the structure array element, 8, as the stride.

There are many memory descriptors proposed in the past, each with different trade-

offs between accuracy and complexity [148] [56] [149] [58] [147] [150] [151]. We choose

MAD mainly for the following reasons.
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• C programs use pointer and pointer arithmetics extensively.

• We want MAD to be able to describe not only the accessed memory locations but

also the access order.

• We want MAD to be simple enough so that we can get a quick prototype to do

experiments on real programs.

• We expect MAD to be accurate enough for telecommunication and media applica-

tions.

It is always possible to have more sophisticated MAD design at the expense of more

engineering effort and more analysis time. Indeed, one of the goal of the prototyping

effort is to shed light on how to improve the MAD structure. The design of MAD

structure is basically orthogonal to the bottom-up summarization process and the top-

down pruning process, which will be explained in the following sections and the next

chapter.

6.2 Bottom-up Summarization Process

Figure 6.2 shows the top-level function Summarize for summarizing the exposed

reads and the exposed writes of the given region R. If R is a Memory Read region, Sum-

marize will call new MAD to create a MAD structure representing the corresponding

memory read, which will be the only element of the set exposed reads of R, and the set

exposed write of R is empty (lines 2-4, Figure 6.2). On the other hand, if R is a Memory
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1: function Summarize (R: a region) begin

2: if R is a Memory Read region then

3: R.exposed reads := { new MAD(R) };
4: R.exposed writes := { };
5: else if R is a Memory Write region then

6: R.exposed reads := { };
7: R.exposed writes := { new MAD(R) };
8: else

9: // R.subregions is a directed acyclic graph (V, E), with
10: // V is the set of nodes representing sub-regions of R

11: // E is the set of edges representing control flow among V

12: for v ∈ R.subregions do

13: let r be the corresponding sub-region of v

14: Summarize (r);
15: end for

16: if R is not a Loop region then

17: R.exposed reads := FindExposedReads (R.subregions);
18: R.exposed writes := FindExposedWrites (R.subregions);
19: else

20: let b be the only Loop Body sub-region of R;
21: InterIterationDependenceTest(b);
22: R.exposed reads :=

∑

b.loop (b.exposed reads);
23: R.exposed writes :=

∑

b.loop (b.exposed writes);
24: end if

25: end if

26: for x ∈ (R.exposed reads ∪ R.exposed write do

27: if x is not invariant with respect to R then

28: x.type := Doomed ;
29: end if

30: end for

31: end function

Figure 6.3 The pseudo-code of Summarize

Write region, a new MAD will be created for the corresponding memory write, and the

exposed reads will be empty (lines 5-7, Figure 6.2).

If R is not a fundamental region, Summarize first recursively calls itself to find the

exposed reads and writes of its sub-regions (lines 12-15, Figure 6.2), before finding its
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own exposed reads and exposed writes (lines 16-21, Figure 6.2). This is the reason why

the summarization of exposed memory accesses is a bottom-up process.

If R is a Loop Body or a In-lined Function region, Summarize will call FindEx-

posedReads and FindExposedWrites to find the exposed reads and exposed writes

(lines 16-18, Figure 6.2). The pseudo-codes of FindExposedReads and FindExposed-

Writes are shown in Figure 6.6 and Figure 6.8, which will be explained later.

If R is a Loop region, it has only one Loop Body sub-region, say b. First, Summarize

will find the inter-iteration producer-consumer relationship between the sub-regions of b

(line 21, Figure 6.2). Next, Summarize will call Summation (
∑

) to find the exposed

reads and the exposed writes of R by expanding the exposed reads and writes of b for all

the iterations of R (lines 22-23, Figure 6.2).

Finally, Summarize will check each exposed memory access x to see whether x is

invariant with respect to region R (lines 26-30, Figure 6.2). If not, the type of x is

changed to Doomed. Here, x is invariant with respect to R if its MAD fields like base,

offset and displace are all represented by affine expressions in terms of variables defined

outside the region R, and thus not changing during the execution of the program region

R. Note that the fundamental induction variable associated with a loop is invariant with

respect to the corresponding loop body region. During each execution of the loop body,

which is corresponding to one loop iteration, the value of the fundamental induction

variable remains constant, because it only increments from iteration to iteration.
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Summarize (region5)

Summarize (region8)

Summarize (region14)

Summarize (region3)

Summarize (region6)

Summarize (region9)

Summarize (region7)

Summarize (region4)

Summarize (region0)

Summarize (region1)

Summarize (region2)

Summarize (region13)Summarize (region10)

Summarize (region11) Summarize (region12)

Figure 6.4 Example recursive calls of Summarize

region 0

for i1 = 0,39,1

region 6

{<Seq, A[0..39]>}

Loop 1c

for i3 = 0.39,1

region 8

{<Seq, A[0..39]>}

Loop 3c

}

{
region 1

region 3

region 4

{

}
region 5

region 2

hi : fundamental induction variables for loop i

Inlined Function
foo0c

Loop Body

Loop Body

Loop Body

Loop Body

for i0 = 0,3,1

.. = A[i3]

A[i2] = ..

.. = B[i2]

B[i2] = ..

.. = A[i2]

A[i1] = ..
region 9

{

}

}

{
region 10

region 11

region 12

region 13

region 7

}

{
region 14

exposed memory access/data flow

{<Seq, A[h1]>}

{<Seq, A[h2]>}

{<Seq, B[h2]>}

{<Seq, B[h2]>}

{<Seq, A[h2]>}

{<Seq, A[h3]>}

{<Seq, A[h1]>}

{<Seq, A[h2]>}

{<Seq, A[h2]>
  <Seq, B[h2]>}

{<Seq, A[h3]>}

{<Seq, A[0..39]>
  <Seq, B[0..39]>}

{<Seq, A[0..39]>
  <Seq, B[0..39]>}

{<Must, A[0..39]>
  <Must, B[0..39]>}

{<Must, A[0..39]>
  <Must, B[0..39]>}

Loop 0c
Loop 2c
for i2 = 0,39,1

{<Seq, A[0..39]>}

Figure 6.5 Illustration of the bottom-up summarization process

6.2.1 An Example

Taking the foo0c in Figure 3.8 as an example, whose program region hierarchy is

shown in Figure 5.1. Suppose Summarize(region0) is called to summarize the exposed
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memory access of foo0c. According to lines 12-15, Figure 6.2, Summarize(region0)

will call Summarize(region1) first; which will in turn call Summarize(region2) first,

and so on. The complete recursive call sequence of Summarize in this case is shown in

Figure 6.4, and the result of the whole bottom-up process is shown in Figure 6.5.

When Summarize(region9) is called, there will be no further recursive call of Sum-

marize, because region9 is a Memory Write region, which has no sub-region. A new

MAD structure will be created to represent the exposed write A[i1]. Using the 6-tuple

notation 〈size, alias, base, offset , displace, type〉 for MAD, the exposed writes of region9

is {〈4, {ObjIDA}, A, h1, [(0, 1)], Seq〉}, a set with only one MAD 1.

Here we assume the elements of array A are 4-byte integers. {ObjIDA} is the may-

alias set given by the pointer analysis. The offset is the symbolic value of the array

index i1, which is h1, the fundamental induction variable of the enclosing loop loop1c

in Figure 3.8. The displace [(0, 1)] indicates that the stride is 0, and the trip-count is 1,

because there is only one accessed memory location, A + h1.

Note that the type of the exposed memory access of a fundamental region is always Seq.

This is because we define a single must-accessed memory location as a Seq access. Also,

the symbolic values of the offset and displace must be defined outside a fundamental

region. This means the exposed memory access of a fundamental region R is always

invariant with respect to R. Therefore, its type will never be down graded to Doomed at

line 28, Figure 6.2.

1For simplicity, in Figure 6.5, the exposed writes of region9 is denoted as {〈Seq, A[h1]〉}
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After summarizing the exposed writes of the Memory Write region region9, we next

summarize the Loop Body region region6. Because region9 is the only sub-region of

region6, region6 has the same set of exposed writes as region9, and has no exposed reads.

One subtlety here is that h1, the fundamental induction variable of the enclosing loop,

is an invariant with respect to the Loop Body region, so Summarize(region6) will not

down grade 〈Seq, A[h1]〉 to Doomed.

After calling Summarize(region6), Summarize(region3) will deduce the exposed

memory access of the Loop region region3 from the exposed memory access of the Loop

Body region region3 (line 22-23, Figure 6.2). Basically, given {〈Seq, A[h1]〉}, and the

loop trip count of loop1c, which is 40, Summation (
∑

) would return {〈Seq, A[0..39]〉}

because h1 = 0, 1, 2, · · · , 39. Recall that {〈Seq, A[0..39]〉} is an abbreviation of the 6-

tuple 〈4, {ObjIDA}, A, 0, {[(1, 40)]}, Seq〉, with 4 being the size, {ObjIDA} being the may-

alias set, A being the base, 0 being the offset, (1, 40) being the (stride, trip-count) pair

describing the displace, and Seq being the type.

Similarly, we will summarize the fundamental regions, region10, region11, region12,

and region13, and then the Loop Body region region7, the Loop region region4, and so on.

Eventually we will get the summary for the In-lined Function region region0, as shown

in Figure 6.5.

Note that in Figure 6.5, the exposed reads of region12, 〈Seq, B[h2]〉, is not exposed out-

side region7. This is because {〈Seq, B[h2]〉} is covered by the exposed writes of region11,

which is also {〈Seq, B[h2]〉}. This producer-consumer relationship between region11 and

region12 is identified during the execution of FindExposedReads (line 17, Figure 6.2).
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Figure 6.5 indicates the producer and consumer relation by an arrow from region11 to

region12.

Also note that region7 is the corresponding Loop Body region of loop2c. A producer-

consumer relationship may exist between different iterations of loop2c, because both

the exposed reads and the exposed writes of region7 contain 〈Seq, A[h2]〉. Inter-iteration

producer-consumer relationship is identified during the execution of InterIterationDe-

pendenceTest (line 21, Figure 6.2). In this example, there is no inter-iteration true

dependence between iterations of loop2c. Therefore, there is no arrow from region7 to

itself, nor from region13 back to region10, in Figure 6.5.

If a consumer region has only intra-iteration dependences, which have dependence

distance 0, the consumer region and its producers are all executed in the same loop

iteration. In other words, the consumer region and its producers regions are all sub-

regions of the same parent loop body region. Therefore, there is no region outside the

loop body region and the corresponding loop region to produce the data needed by the

consumer region.

On the other hand, if a consumer region has some inter -iteration dependences, be-

cause the dependence distances must be larger than 0, its data are generated by some

producer regions which are executed in previous iterations. For the first iteration of the

loop, there is no previous iteration, therefore, the data of the consumer region must be

generated by some producer regions outside the loop body region and the corresponding

loop region. In other words, the consumer region has producer regions which are in its

parent loop body region, and also producer regions outside its parent loop body region.
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Memory writes can cover memory reads as well as memory writes. For example,

both region3 and region4 have the same expose write 〈Seq, A[0..39]〉. Because region4 is

executed later than region3, as indicated by the control flow in Figure 5.1, so the same

exposed write of region3 is killed by the exposed write of region4. Writes are killed during

the execution of FindExposedWrites, line 18, Figure 6.2.

One final point about Figure 6.5, before diving into more detailed explanation of

FindExposedReads and FindExposedWrites, is that the type of the exposed writes

of region2 is Must, instead of Seq. This is because for array A and B, the memory access

pattern of loop0c is (0, 1, 2, · · · , 39, 0, 1, 2, · · · , 39, 0, 1, 2, · · · , 39, 0, 1, 2, · · ·39). Strictly

speaking, this is not a sequential pattern, because, for a sequential memory access pattern,

each memory location can be accessed only once.

6.2.2 Finding Exposed Reads

Figure 6.6 outlines the function FindExposedReads. Given the sub-region graph

G of region R, it will return the exposed reads of R. Let G = (V, E), where V is the set

of nodes representing the sub-regions, and E is the set of edges representing the control

flow between sub-regions. Note that G is a direct acyclic graph due to our definition and

implementation of program regions.

FindExposedReads visits the nodes in V in reverse topological order (lines 5-6,

Figure 6.6). A node is visited only after all its successor nodes have been visited. This

order can be enforced by performing a topological sort on V [145]. The exposed reads of

sub-regions are backward propagated along the control flow until they are covered by the
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1: function FindExposedReads (G: subregions) begin

2: // G = (V, E) is a directed acyclic graph for the sub-regions of region R

3: // V , the set of nodes, represent the sub-regions
4: // E, the set of edges, represent the control flow between sub-regions
5: Topological sort V

6: for v ∈ V in reverse topological order do

7: if ∃ s0 ∈ v.successors then

8: Rin := s0.Rout;
9: for s ∈ (v.successors \ {s0}) do

10: Rin := Rin t s.Rout;
11: end for

12: else

13: Rin := {};
14: end if

15: // Let r be the corresponding region of v;
16: Rgen := r.exposed reads;
17: Wgen := r.exposed writes;
18: v.Rout := Rgen ⊕ (Rin 	 Wgen);
19: end for

20: // Let ventry be the entry node of V

21: return ventry.Rout;
22: end function

Figure 6.6 The pseudo-code of FindExposedReads

exposed writes of other sub-regions. Otherwise, they will pass through the entry node

ventry and become the exposed reads of region R.

For each node v ∈ V , let r be the corresponding region of v; Wgen be the set of

exposed writes of r; Rgen be the set of exposed reads of r; v.Rout be the set of reads that

propagate through v. The v.Rout can be calculated as follows (lines 7-18, Figure 6.6).

First, the sets of reads that propagate through the successors of v are merged together

to form Rin, the set of reads entering v (lines 7-14, Figure 6.6). The Merge (t) operation

basically takes two sets of MADs, merges the MADs that may access the same memory
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objects, and produces a set of MADs with disjoint memory accesses. Section 6.2.4.2 will

explain Merge in more details.

Next, FindExposedReads checks whether any reads in Rin are (partially) covered

by any writes in Wgen, (Rin 	 Wgen, line 18, Figure 6.6). In addition to finding the

”difference” between two sets of MADs, the Subtract (	) operation also helps identify

producer and consumer relation. Section 6.2.4.3 will have more detailed explanation of

Subtract.

Then, v.Rout can be obtained by concatenating Rgen with (Rin 	 Wgen). The Con-

catenate (⊕) operation basically takes two sets of MADs, concatenates the MADs that

may access the same memory objects, and produces a set of MADs with mutually exclu-

sive memory accesses. Concatenate (⊕) differs from Merge (t) in that the result of

Concatenate (⊕) depends on the order of its operands, but the result of Merge (t) is

independent of the order of its operands. Section 6.2.4.1 will explain Concatenate in

more details.

Finally, FindExposedReads returns ventry.Rout as the exposed reads of region R,

(line 21, Figure 6.6).

6.2.2.1 An Example

This section will use the example in Figure 6.7 to illustrate FindExposedReads. In

reverse topological order, FindExposedReads may visit the 4 regions 2 in Figure 6.7

in the order of region3 first, then region2, then region1, and finally region0 as follows3.

2For brevity, we do not distinguish between a graph node and its corresponding region.
3The order of visiting region2 and region1 is arbitrary.
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A[i1] = ...
for(i1=0;i1<40;i1++)

A[i2] = ... A[i2];
for(i2=0;i2<40;i2++)

... = A[i4];
for(i4=0;i4<40;i4++)

/* region 0 */

if (condition)
/* region 1 */

else
/* region 2 */

/* region 3 */

for(i3=0;i3<40;i3++)
B[i3] = ... B[i3];

(a)

R gen

W gen
region 2

= {<Seq, B[0..39]>}
= {<Seq, B[0..39]>}

R out = {<Seq, A[0..39]>, <Seq, B[0..39]>}

R in = {<Seq, A[0..39]>}

control flow

R gen = {<Seq, A[0..39]>}
W gen = {<Seq, A[0..39]>}

region 1

R in = {<Seq, A[0..39]>}

R out = {<Seq, A[0..39]>}

R gen

W gen
region 0

= {<Seq, A[0..39]>}
= { }

R in = {<Seq, A[0..39]>, <May, B[0..39]>}

R out= {<May, B[0..39]>}

R gen

W gen
region 3

= { }
= {<Seq, A[0..39]>}

R in = { }

R out= {<Seq, A[0..39]>}

(b)

Figure 6.7 Example illustrating FindExposedReads

1. v = region3: The Rin of region3 is {}, because region3 has no successor. The

exposed reads of region3 is {〈Seq, A[0..39]〉} and the exposed writes is {}. Therefore,

the Rout of region3 can be calculated as follows.

region3.Rout = region3.Rgen ⊕ (region3.Rin 	 region3.Wgen)

= {〈Seq, A[0..39]〉} ⊕ ({} 	 {})

= {〈Seq, A[0..39]〉}

2. v = region2: Because region3 is the only successor of region2, the Rin of region2

is the Rout of region3. Both the exposed reads and exposed writes of region2 is

{〈Seq, B[0..39]〉}, thus the Rout of region2 can be calculated as follows.

region2.Rout = region2.Rgen ⊕ (region2.Rin 	 region2.Wgen)

= {〈Seq, B[0..39]〉} ⊕ ({〈Seq, A[0..39]〉} 	 {〈Seq, B[0..39]〉})

= {〈Seq, B[0..39]〉} ⊕ ({〈Seq, A[0..39]〉})

= {〈Seq, A[0..39]〉, 〈Seq, B[0..39]〉}
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3. v = region1: This is similar to the case of region2, except that both the exposed

reads and the exposed writes of region1 are {〈Seq, A[0..39]〉}. The Rout of region1

can be calculated as follows.

region1.Rout = region1.Rgen ⊕ (region1.Rin 	 region1.Wgen)

= {〈Seq, A[0..39]〉} ⊕ ({〈Seq, A[0..39]〉} 	 {〈Seq, A[0..39]〉})

= {〈Seq, A[0..39]〉} ⊕ ({})

= {〈Seq, A[0..39]〉}

Note that although both the Rout of region1 and the Rout of region2 have the same

〈Seq, A[0..39]〉, they are generated by different regions. The 〈Seq, A[0..39]〉 in the

Rout of region2 is the exposed reads of region3. While the 〈Seq, A[0..39]〉 in the Rout

of region1 is the exposed reads of region1, not region3, because the exposed reads

of region3 is covered by the exposed writes of region1. The MAD structure can

track the originating regions of its memory accesses. More details on this will be

discussed later.

4. v = region0: region0 has two successors, region1 and region2, thus the Rout of

region1 and the Rout of region2 will be merged together to form the Rin of region0.

region0.Rin = region1.Rout t region2.Rout

= {〈Seq, A[0..39]〉} t {〈Seq, A[0..39]〉, 〈Seq, B[0..39]〉}

= {〈Seq, A[0..39]〉, 〈May, B[0..39]〉}
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Note that both the Rout of region1 and the Rout of region2 have 〈Seq, A[0..39]〉, so

the Rin of region0 includes 〈Seq, A[0..39]〉. On the other hand, only the Rout of

region2 has 〈Seq, B[0..39]〉. Therefore, Merge (t) will generate a new May-type

MAD, 〈May , B[0..39]〉, to be included in the Rin of region0. Here, the type May

means the memory access B[0..39] may happen, if the control flow actually reaches

region2. Because region0 has only exposed writes {〈Seq, A[0..39]〉}, but no exposed

reads, the Rout of region0 can be obtained as follows.

region0.Rout = region0.Rgen ⊕ (region0.Rin 	 region0.Wgen)

= {} ⊕ ({〈Seq, A[0..39]〉, 〈May, B[0..39]〉} 	 {〈Seq, A[0..39]〉})

= {} ⊕ ({〈May , B[0..39]〉})

= {〈May , B[0..39]〉}

Since region0 is the entry subregion in Figure 6.7(b), the Rout of region0 becomes

the exposed reads of the program segment in Figure 6.7(a), that is {〈May , B[0..39]〉}. So

FindExposedReads has deduced that the program segment in Figure 6.7(a) may need

B[0..39] from the outside.

6.2.3 Finding Exposed Writes

The algorithm of FindExposedWrite is outlined in Figure 6.8. It is like a ”reversed”

version of FindExposedReads. FindExposedWrites visits the nodes of V in topo-

logical order (lines 5-6, Figure 6.8). A node in V is visited only after all its predecessors
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1: function FindExposedWrites (G: subregions) begin

2: // G ≡ (V, E) is a directed acyclic graph
3: // V , the set of nodes, represent the regions
4: // E, the set of edges, represent the control flow between regions
5: Topological sort V

6: for v ∈ V in topological order do

7: if ∃ p0 ∈ v.predecessors then

8: Win := p0.Wout;
9: for p ∈ (v.predecessors \ {p0}) do

10: Win := Win t p.Wout;
11: end for

12: else

13: Win := {};
14: end if

15: // let r be the corresponding region of v;
16: Wgen := r.exposed writes;
17: v.Wout := (Win 	 Wgen) ⊕ Wgen;
18: end for

19: // let vexit be the exit node of V

20: return vexit.Wout;
21: end function

Figure 6.8 The pseudo-code of FindExposedWrites

have been visited. The exposed writes of sub-regions are forward propagated along the

control flow until they are killed by the exposed writes of other sub-regions. Otherwise,

they will pass through the exit node vexit and become the exposed writes of region R.

For each node v ∈ V , let r be the corresponding region of v; Wgen be the set of

exposed writes of r; Rgen be the set of exposed reads of r; v.Wout be the set of writes that

propagate through v. The v.Wout can be calculated as follows (lines 7-17, Figure 6.8).

First, the sets of writes propagated through the predecessors of v are merged to-

gether to form Win, the set of writes entering v (lines 7-14, Figure 6.8). Next, FindEx-

posedWrites checks whether any writes in Win are (partially) killed by the writes in

Wgen (Win 	 Wgen, line 17, Figure 6.8). Then, v.Wout can be obtained by concatenating
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Wout
= {<Seq, A[0..39]>, <May, B[0..39]>}

control flow

Win= {<Seq, A[0..39]>, <May, B[0..39]>}

Wout = {<Seq, A[0..39]>}

Win= {<Seq, A[0..39]>}

Wout = {<Seq, A[0..39]>}

Win= { }

Win= {<Seq, A[0..39]>}

Wout = {<Seq, A[0..39]>, <Seq, B[0..39]>}

= {<Seq, A[0..39]>}W gen

= {<Seq, A[0..39]>}W gen

= {<Seq, B[0..39]>}W gen

= { }W gen

A[i1] = ...
for(i1=0;i1<40;i1++)

A[i2] = ... A[i2];
for(i2=0;i2<40;i2++)

... = A[i4];
for(i4=0;i4<40;i4++)

/* region 0 */

if (condition)
/* region 1 */

else
/* region 2 */

/* region 3 */

for(i3=0;i3<40;i3++)
B[i3] = ... B[i3];

(a)
(b)

region 0

region 1

region 3

region 2

Figure 6.9 Example illustrating FindExposedWrites

(Win	Wgen) with Wgen. Finally, FindExposedWrites returns vexit.Rout as the exposed

writes of region R (line 20, Figure 6.8).

FindExposedWrites and FindExposedReads apply the same Merge (t) and

Concatenate (⊕) operations. The Subtract (	) operation is essentially the same,

except that when invoked by FindExposedWrites, it will not identify any producer-

consumer relationship.

6.2.3.1 An Example

Figure 6.9 uses the same example in Figure 6.7(a) to illustrate FindExposedWrites.

Here the regions in Figure 6.9 will be visited in topological order with region0 first, then

region2, then region1, and finally region34.

1. v = region0: Because region0 is the entry node in Figure 6.9, the Win of region0 is

{}. Given the exposed writes of region3, {〈Seq, A[0..39]〉}, the Wout of region0 can

4Again, the order of region2 and region1 is arbitrary.
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be calculated as follows.

region0.Wout = (region0.Win 	 region3.Wgen) ⊕ region0.Wgen

= ({} 	 {〈Seq, A[0..39]〉}) ⊕ {〈Seq, A[0..39]〉}

= {} ⊕ {〈Seq, A[0..39]〉}

= {〈Seq, A[0..39]〉}

2. v = region2: Because region0 is the only predecessor of region2, the Win of region2

is the Wout of region0. Given the exposed writes of region2, {〈Seq, B[0..39]〉}, the

Wout of region2 can be calculated as follows.

region2.Wout = (region2.Win 	 region2.Wgen) ⊕ region2.Wgen

= ({〈Seq, A[0..39]〉} 	 {〈Seq, B[0..39]〉}) ⊕ {〈Seq, B[0..39]〉}

= ({〈Seq, A[0..39]〉}) ⊕ {〈Seq, B[0..39]〉}

= {〈Seq, A[0..39]〉, 〈Seq, B[0..39]〉}

3. v = region1: The Win of region1 is the same as the Win of region2. Given the

exposed writes of region1, {〈Seq, A[0..39]〉}, the Wout of region1 can be calculated

as follows.

region1.Wout = (region1.Win 	 region1.Wgen) ⊕ region1.Wgen

= ({〈Seq, A[0..39]〉} 	 {〈Seq, A[0..39]〉}) ⊕ {〈Seq, A[0..39]〉}

= ({}) ⊕ {〈Seq, A[0..39]〉}

= {〈Seq, A[0..39]〉}
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Note that, although 〈Seq, A[0..39]〉 is in both the Wout of region1 and the Wout of

region2, the one in the Wout of region1 and the one in the Wout of region2 are

generated by different regions. The one in the Wout of region2 is the exposed writes

of region0. However,the one in the Wout of region1 is its own exposed writes, because

the exposed writes of region0 are killed by the exposed writes of region1.

4. v = region3: The Win of region0 is obtained by merging the Wout’s of its predeces-

sors, region1 and region2.

region0.Win = region1.Wout t region2.Wout

= {〈Seq, A[0..39]〉} t {〈Seq, A[0..39]〉, 〈Seq, B[0..39]〉}

= {〈Seq, A[0..39]〉, 〈May, B[0..39]〉}

Note that the type of memory access B[0..39] in the Win of region3 is May because

it propagates to region3 only from region2, but not from region1. The Wout of

region3 can be calculated as follows, given that region3 has no exposed writes.

region3.Wout = (region3.Win 	 region3.Wgen) ⊕ region0.Wgen

= ({〈Seq, A[0..39]〉, 〈May, B[0..39]〉} 	 {}) ⊕ {})

= ({〈Seq, A[0..39]〉, 〈May, B[0..39]〉}) ⊕ {})

= {〈Seq, A[0..39]〉, 〈May, B[0..39]〉}

The Wout of region3 becomes the exposed writes of the program segment in Fig-

ure 6.9(a), because region3 is the exit sub-region. Finally, FindExposedWrites re-
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turns {〈Seq, A[0..39]〉, 〈May, B[0..39]〉}, which means the program segment in Figure 6.7(a)

writes sequentially to array A from element 0 to element 39, meanwhile, it may write to

array B from element 0 to element 39.

6.2.4 Memory Access Descriptor Operations

This section will explain the Concatenate (⊕), Merge (∪), Subtract (	), and

Summation (
∑

) operations used by Summarize, FindExposedReads, and Find-

ExposedWrites.

6.2.4.1 Concatenate (⊕)

Figure 6.10 shows the top-level algorithm for the Concatenate operation. The input

operands of Concatenate are two sets of MAD structures, Sin,1 and Sin,2. The elements

in Sin,1 are disjoint memory accesses in the sense that, for different u and v in Sin,1,

u.alias and v.alias are disjoint sets of memory objects. So are the elements in Sin,2.

Also, the set of MADs returned by Concatenate, Sout, will also have this property.

Concatenate basically does pair-wise comparison between the elements of Sin,1 and

the elements of Sin,2 (lines 4-22, Figure 6.10). For m1 ∈ Sin,1 and m2 ∈ Sin,2 which may

access the same memory objects (line 8, Figure 6.10), ConcatenateMAD is invoked to

”concatenate” the memory access patterns of m1 and m2 (line 10, Figure 6.10). Some

examples of concatenating two memory access patterns are shown in Figure 6.13 5.

5Here we overload ⊕ for both the operation on two MADs and the operation on two sets of MADs
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1: function Concatenate (Sin,1, Sin,2) // Sin,1 ⊕ Sin,2 begin

2: // Sin,1, Sin,2 : set of memory access descriptors (MAD)
3: Sout := {};
4: for m1 ∈ Sin,1 do

5: m1 m2 concatenated := False;
6: Stmp := {};
7: for m2 ∈ Sin,2 do

8: if m1.alias ∩ m2.alias 6= {} then

9: // m1 and m2 may access the same objects
10: m1 := ConcatenateMAD(m1, m2);
11: m1 m2 concatenated := True;
12: else

13: Stmp := Stmp ∪ {m2};
14: end if

15: end for

16: if m1 m2 concatenated = True then

17: Stmp := Stmp ∪ {m1};
18: else

19: Sout := Sout ∪ {m1};
20: end if

21: Sin,2 := Stmp;
22: end for

23: Sout := Sout ∪ Sin,2;
24: return Sout;
25: end function

Figure 6.10 The pseudo-code of Concatenate (⊕)

Figure 6.11 shows how ConcatenateMAD generates a new MAD structure m with

the ”concatenated” memory access pattern from the input MAD operands, m1 and m2.

The may-alias set of m is the union of the may-alias sets of m1 and m2 (line 4, Fig-

ure 6.11). The components field of m is generated by CombineComponents to keep

track of the originating program regions of its constituent MADs. This will be explained

in more details.

If the type of m1, or m2, is Doomed, or if m1 and m2 have different bases, Concate-

nateMAD will just give up, and create a new Doomed -type MAD (lines 6-9, Figure 6.11).
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1: function ConcatenateMAD (m1, m2) begin

2: // m1, m2: memory access descriptor MAD
3: m := new MAD;
4: m.alias := m1.alias ∪ m2.alias;
5: m.components := CombineComponents (m1, m2);
6: if m1.type = Doomed or m2.type = Doomed then

7: (m.type, m.base, m.offset, m.displace) := (Doomed, ⊥, ⊥, ⊥);
8: else if m1.base 6= m2.base then

9: (m.type, m.base, m.offset, m.displace) := (Doomed, ⊥, ⊥, ⊥);
10: else

11: // m1.base = m2.base
12: m.base = m1.base;
13: if m1.type 6= m2.type then

14: down grade m1 or m2 so that they have the same type;
15: end if

16: (m.type, m.offset, m.displace) := ConcatenatePattern (m1, m2);
17: end if

18: return m;
19: end function

Figure 6.11 The pseudo-code of ConcatenateMAD

Otherwise, ConcatenateMAD will first adjust m1 and m2 so that they have the same

type, ”down grading” one of them if necessary. Then, the adjusted access patterns of m1

and m2 will be concatenated as accurately as possible (lines 12-16, Figure 6.11).

ConcatenatePattern, shown in Figure 6.12, essentially compares the type, offset,

and displace fields of m1 and m2 to determine the type, offset and displace field of the

new MAD. First, it will try to generate a new pattern of the same type as m1 and m2.

If this is not possible, it will try a pattern of less accuracy. For example, the current

implementation cannot concatenate the two Seq-type patterns in Figure 6.13(b) to an-

other Seq-type pattern, ConcatenatePattern will then concatenate these two patterns

into a Must-type pattern. If m1 and m2 are May-type MADs, concatenating them is

83



1: function ConcatenatePattern (m1, m2) begin

2: // m1, m2: memory access descriptors MAD
3: // Assume m1.type = m2.type
4: if m1.type = Seq then

5: Try to generate a new Seq-type pattern (offset, displace) by concatenating (m1.offset,
m1.displace) and (m2.offset, m2.displace);

6: if Succeeded then

7: return (Seq, offset, displace);
8: else

9: down grade m1 and m2 to Must-type MADs;
10: end if

11: end if

12: if m1.type = Must then

13: Try to generate a new Must-type pattern (offset, displace) by concatenating
(m1.offset, m1.displace) and (m2.offset, m2.displace);

14: if Succeeded then

15: return (Must, offset, displace);
16: else

17: down grade m1 and m2 to May-type MADs;
18: end if

19: end if

20: // m1 and m2 are May-type MADs
21: return MergePattern (m1, m2);
22: end function

Figure 6.12 The pseudo-code of ConcatenatePattern

the same as merging them (line 21, Figure 6.12). Merging two MADs are explained in

Section 6.2.4.2.

Before explaining Merge, here we explain the CombineComponents function

shown in Figure 6.14, which is invoked by both Concatenate and Merge. Com-

bineComponents basically combines the components fields of the MAD operands of

concatenation or merge operations. The components field of the original MAD struc-

tures for the exposed reads and the exposed writes of sub-regions is initially set to empty.

During the process of backward or forward propagation, MAD structures will be concate-
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+ (Seq, 4, [(1,4)])
(Seq, 1, [(1,3)])

(Seq, 1, [(1,7)])

(a)

+
(Must, 1, [(1,7)])

(Seq, 1, [(1,3)])
(Seq, 7, [(−1,4)])

(b)
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(c)

(Must, 5, [(1,4)])
(Must, 1, [(1,3)])

(May, 1, [(1,8)])

(type, offset, [(stride, trip−count)])

Figure 6.13 Examples of concatenating two memory access patterns

1: function CombineComponents (m1, m2) begin

2: // m1, m2: memory access descriptor MAD
3: if m1.components = {} and m2.components = {} then

4: return {m1, m2};
5: else if m1.components = {} and m2.components 6= {} then

6: return {m1} ∪ m2.components;
7: else if m1.components 6= {} and m2.components = {} then

8: return m1.components ∪ {m2};
9: else

10: // m1.components 6= {} and m2.components 6= {}

11: return m1.components ∪ m2.components;
12: end if

13: end function

Figure 6.14 The pseudo-code of CombineComponents

nated or merged with each other to form new MAD structures. The components field of

these new MAD structures due to concatenation or merge operations will then keep track

of the concatenated or merged MAD structures and their generating sub-regions 6. The

6In addition to the fields describing memory access patterns, the MAD structure also has book-keeping
fields, including the generating subg-region.
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components field of MAD will be used by Subtract when identifying producer-consumer

relationship between sub-regions. This will be explained in more details when discussing

Subtract.

6.2.4.2 Merge (t)

Merge and the auxiliary functions, MergeMAD and MergePattern, are shown

in Figures 6.15, 6.16, and 6.17, which have very similar algorithmic structures as the

Concatenate, ConcatenateMAD, and ConcatenatePattern shown in Figures 6.10

to 6.12.

The may-alias set and the components of the merged MAD are obtained in the same

way as a concatenated MAD (lines 4-5, Figure 6.16). However, there are still some

differences between Merge and Concatenate, because Concatenate is applied when

propagating MAD along straight line of code, while Merge is applied at the confluence

point of control flow. Figure 6.18 shows some examples of merging two memory access

patterns.

The major difference between Merge and Concatenate is that if a Seq-type or

Must-type MAD is not merged with other MADs, it will be down graded to a May-type

MAD (lines 22-23, 27-31, Figure 6.15). An example of this is shown in Figure 6.7. When

calculating the Rin of region0, the 〈Seq, B[0..39]〉 in the Rout of region2 is not merged

with any MAD in the Rout of region1, and thus it is down graded to 〈May , B[0..39]〉.

Like ConcatenatePattern (Figure 6.12), MergePattern (Figure 6.17) will try to

produce, as accurate as possible, a memory access pattern by comparing the type, offset,
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1: function Merge (Sin,1, Sin,2) // Sin,1 t Sin,2 begin

2: // Sin,1, Sin,2 : set of memory access descriptors (MAD)
3: Sout := {};
4: for m2 ∈S in,1 do

5: m2.merged := False;
6: end for

7: for m1 ∈ Sin,1 do

8: m1.merged := False;
9: Stmp := {};

10: for m2 ∈ Sin,2 do

11: if m1.alias ∩ m2.alias 6= {} then

12: // m1 and m2 may access the same objects
13: m1 := MergeMAD(m1, m2);
14: m1.merged := True;
15: else

16: Stmp := Stmp ∪ {m2};
17: end if

18: end for

19: if m1.merged = True then

20: Stmp := Stmp ∪ {m1};
21: else

22: down grade m1 to May-type MAD;
23: Sout := Sout ∪ {m1};
24: end if

25: Sin,2 := Stmp;
26: end for

27: for m2 ∈ Sin,2 do

28: if m2.merged = False then

29: down grade m2 to May-type MAD;
30: end if

31: end for

32: Sout := Sout ∪ Sin,2;
33: return Sout;
34: end function

Figure 6.15 The pseudo-code of Merge (t)

and displace fields of its input MADs. For the current implementation, two Seq-type

(Must-type) memory access patterns will be merged into a Seq-type (Must-type) pattern

only if they are the same (line 4 and line 11, Figure 6.17), as the example shown in
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1: function MergeMAD (m1, m2) begin

2: // m1, m2: memory access descriptor MAD
3: m := new MAD;
4: m.alias := m1.alias ∪ m2.alias;
5: m.components := CombineComponents (m1, m2);
6: if m1.type = Doomed or m2.type = Doomed then

7: (m.type, m.base, m.offset, m.displace) := (Doomed, ⊥, ⊥, ⊥);
8: else if m1.base 6= m2.base then

9: (m.type, m.base, m.offset, m.displace) := (Doomed, ⊥, ⊥, ⊥);
10: else

11: // m1.base = m2.base
12: m.base = m1.base;
13: if m1.type 6= m2.type then

14: down grade m1 or m2 so that they are of the same type;
15: end if

16: (m.type, m.offset, m.displace) := MergePattern (m1, m2);
17: end if

18: return m;
19: end function

Figure 6.16 The pseudo-code of MergeMAD

Figure 6.18 (b); otherwise, MergePattern will generate a pattern of less accurate type.

The worst scenario is that MergePattern totally gives up, and returns a Doomed -type

memory access pattern (line 21, Figure 6.17).

Note that Merge (t) is commutative, but Concatenate (⊕) and Subtract (	) are

not.

6.2.4.3 Subtract (	)

The Subtract operation, shown in Figure 6.19, basically calculates the ”difference”

between two sets of MADs, Sin,1 and Sin,2. Unlike the the input sets of Concatenate

and Merge, which are either both memory read accesses or both memory write accesses,

the second input operand Sin,2 of Subtract is always a set of memory write accesses.
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1: function MergePattern (m1, m2) begin

2: // Assume m1.type = m2.type
3: if m1.type = Seq then

4: if (m1.offset, m1.displace) = (m2.offset, m2.displace) then

5: return (Seq, m1.offset, m1.displace);
6: else

7: down grade m1 and m2 to Must-type MADs;
8: end if

9: end if

10: if m1.type = Must then

11: if (m1.offset, m1.displace) = (m2.offset, m2.displace) then

12: return (Must, m1.offset, m1.displace);
13: else

14: down grade m1 and m2 to May-type MADs;
15: end if

16: end if

17: Try to generate a new May-type pattern (offset, displace) by merging (m1.offset,
m1.displace) and (m2.offset, m2.displace);

18: if Succeeded then

19: return (May, offset, displace);
20: else

21: return (Doomed, ⊥, ⊥);
22: end if

23: end function

Figure 6.17 The pseudo-code of MergePattern

Like Concatenate and Merge, Subtract also does pair-wise comparison between

the elements of Sin,1 and Sin,2 (lines 4-5, Figure 6.19). Each m1 in Sin,1 is ”subtracted”

by any m2 in Sin,2 which may access the same memory objects (lines 6-8, Figure 6.19). If

m1 is not totally covered by m2, (m1 6= ⊥, line 13, Figure 6.19), a new MAD describing

the remaining memory accesses of m1 will be included in the returned Sout (lines 13-14,

Figure 6.19).

SubtractMAD, shown in Figure 6.20, is the function responsible for generating a

MAD to describe the memory accesses that are in m1, but not in m2. At the beginning,
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(a)

(b)

(Seq, 4, [(1,4)])
(Seq, 1, [(1,3)])

(May, 1, [(1,7)])

(Seq, 1, [(1,7)])
(Seq, 1, [(1,7)])

(Seq, 1, [(1,7)])

(c)

(Must, 5, [(1,4)])
(Must, 1, [(1,3)])

(May, 1, [(1,8)])

(type, offset, [(stride, trip−count)])

Figure 6.18 Examples of merging two memory access patterns

1: function Subtract (Sin,1, Sin,2) /* Sin,1 	 Sin,2 */ begin

2: // Sin,1, Sin,2 : set of memory access descriptors (MAD)
3: Sout := {};
4: for m1 ∈ Sin,1 do

5: for m2 ∈ Sin,2 do

6: if m1.alias ∩ m2.alias 6= {} then

7: m1 := SubtractMAD(m1, m2);
8: end if

9: if m1 = ⊥ then

10: break;
11: end if

12: end for

13: if m1 6= ⊥ then

14: Sout := Sout ∪ {m1};
15: end if

16: end for

17: return Sout;
18: end function

Figure 6.19 The pseudo-code of Subtract (	)
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1: function SubtractMAD (m1, m2) begin

2: // m1: a MAD for memory read or write

3: // m2: a MAD for memory write

4: comps := {x : ∃c ∈ m1.components , x = SubtractMAD(c, m2) ∧ x 6= ⊥};
5: if m1.components 6= {} and comps = {} then

6: m := ⊥;
7: else

8: if m1.type = Doomed then

9: m := m1; m.components := comps;
10: else if m2.type = Doomed or m1.base 6= m2.base then

11: m := m1 down graded to May-type; m.components := comps;
12: else // m1.base = m2.base

13: if IntersectPattern (m1, m2) = False then

14: m := m1;
15: else

16: if m2.type = May then

17: m := m1 down graded to May-type; m.components := comps;
18: else // m2.type = Seq or Must

19: if PatternCovered (m1, m2) = True then

20: m := ⊥;
21: else

22: m := new MAD;
23: (m.components, m.alias, m.base) := (comps, m1.alias, m1.base);
24: (m.type, m.offset, m.displace) := Pattern subtract (m1, m2);
25: end if

26: end if

27: end if

28: end if

29: if m 6= m1 and m1 is memory read and m1.components = {} then

30: // identified a producer-consumer relationship
31: m1.producer := m1.producer ∪ {m2};
32: m2.consumer := m2.consumer ∪ {m1};
33: m2.Consumed := True;
34: end if

35: end if

36: return m;
37: end function

Figure 6.20 The pseudo-code of SubtractMAD

SubtractMAD recursively calls itself to subtract the components of m1 by m2 (line

4, Figure 6.20). This is because SubtractMAD is also responsible for identifying the
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1: function Pattern subtract (m1, m2) begin

2: // m1: a May-,Must- or Seq-type MAD for memory read or write

3: // m2: a Must- or Seq-type MAD for memory write

4: Try to describe the memory locations which are in m1 but not in m2, using a
memory access pattern (m1.type, offset, displace);

5: if Succeeded then

6: return (m1.type, offset, displace);
7: else

8: return (May, m1.offset, m1.displace);
9: end if

10: end function

Figure 6.21 The pseudo-code of Pattern subtract

(Seq, 5, [(1, 4)])
(May, 1, [(1, 4)])
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(c)

(type, offset, [(stride, trip−count)])

Figure 6.22 Examples of subtracting two memory access patterns

producer-consumer relationship between program regions, and the components of a MAD

may be generated by different program regions. If m1 is a composite MAD, and it has

no component MADs left after the subtraction, SubtractMAD will return ⊥, meaning

that m1 is totally covered or killed by m2.
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1: function IntersectPattern (m1, m2) begin

2: // m1: a MAD for memory read or write

3: // m2: a MAD for memory write

4: Let m1.displace = [(s1,1, T1,1) . . . (s1,D1
, T1,D1

)].
5: Let m2.displace = [(s2,1, T2,1) . . . (s2,Di

, T2,D2
)].

6: // where s: stride, T : trip count.
7: return True, if the following proposition holds; otherwise, False.

∃i1,j , 0 ≤ i1,j < T1,j , j = 1 . . . D1

∃i2,k, 0 ≤ i2,k < T1,k, k = 1 . . .D2

m1.offset +
∑D1

j=1
i1,j · s1,j = m2.offset +

∑D2

k=1
i2,k · s2,k

8: end function

Figure 6.23 The pseudo-code of IntersectPattern

1: function PatternCovered (m1, m2) begin

2: // m1: a MAD for memory read or write

3: // m2: a MAD for memory write

4: Let m1.displace = [(s1,1, T1,1) . . . (s1,D1
, T1,D1

)].
5: Let m2.displace = [(s2,1, T2,1) . . . (s2,Di

, T2,D2
)].

6: // where s: stride, T : trip count.
7: return True, if the following proposition holds; otherwise, False.

∀i1,j , 0 ≤ i1,j < T1,j , j = 1 . . .D1

∃i2,k, 0 ≤ i2,k < T1,k, k = 1 . . .D2

m1.offset +
∑D1

j=1
i1,j · s1,j = m2.offset +

∑D2

k=1
i2,k · s2,k

8: end function

Figure 6.24 The pseudo-code of PatternCovered

If m1 is a Doomed-type MAD, the result of subtraction will still be still a Doom-type

MAD (lines 8-9, Figure 6.20). SubtractMAD has a chance to figure out exactly which

part of m1 is subtracted, only if m2 is not a Doomed-type MAD and m1 and m2 have the

same bases (lines 12-28, Figure 6.20). Otherwise, at best it can return a down graded

version of m1 (lines 10-11, Figure 6.20).
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If the memory accesses of m1 and m2 have no overlap, as determined by Intersect-

Pattern, which is shown in Figure 6.23 and will be explained later, the same m1 can

be returned intact (lines 13-14, Figure 6.20). If the memory accesses of m1 and m2 do

intersect, but m2 is a May-type MAD, SubtractMAD can at best figure out which

part of m1 may be subtracted, and thus a May-type m1 is the best possible MAD that

SubtractMAD can generate (lines 16-17, Figure 6.20).

If m2 is Must- or Seq-type MAD, SubtractMAD first invokes PatternCovered,

which is shown in Figure 6.24 and will be explained later, to check whether m1 is totally

covered by m2. If so, SubtractMAD will return ⊥ (lines 19-20, Figure 6.20). If m1 is

only partially subtracted by m2, SubtractMAD will call Pattern subtract to deter-

mine the type, offset, and displace of the remaining memory accesses of m1 subtracted

by m2. Figure 6.22 shows some examples of the special cases which can be handled by

Pattern subtract in the current implementation.

Figure 6.23 outlines the problem formulation for determining whether memory access

m1 intersects with memory access m2. Basically it is an integer programming problem.

If the system of inequalities in Figure 6.23 has solution, m1 and m2 will have intersec-

tion. This thesis work relies on the Omega test package [101] for solving the integer

programming problem.

Figure 6.24 formulates the problem of whether memory access m1 is a subset of

memory access m2. It requires the evaluation of Presburger formula, which consists

of affine equality and inequality constraints on integer variables, combined with logical

operators ∧, ∨, ¬ and existential quantifiers ∀, ∃. In general, it is a much more difficult

94



1: function Summation (Sin, L) //
∑

L (Sin) begin

2: // Sin : set of memory access descriptor (MAD)
3: // L: loop
4: Sout := {};
5: for m ∈ Sin do

6: Sout := Sout ∪ SummationMAD(m, L);
7: end for

8: return Sout;
9: end function

Figure 6.25 The pseudo-code of Summation

problem than the integer programming problem shown in Figure 6.23. For special cases

like the one in Figure 6.24, a solver based on the Omega test can solve the problem

quickly [136] [152] [153].

Finally, if m1 and m2 have intersection, or equivalently m ≡ (m1−m2) 6= m1, line 29,

Figure 6.20, a producer-consumer relationship between the generating program region

of m2 and the generating program region of m1 is found. SubtractMAD will record

this relation by including the generating program region of m2 in the producer set of

m1, and the generating program region of m1 in the consumer set of m2, and marking

m2.Consumed as True (lines 31-33, Figure 6.20).

6.2.4.4 Summation (
∑

)

The function Summation (
∑

), shown in Figure 6.25, is for finding the set of exposed

memory accesses of a Loop region, given the exposed memory accesses of the enclosed

Loop Body region Sin, and the corresponding loop L. As suggested by the name, the

functionality of Summation can be implemented as concatenating the exposed memory

accesses of all the iterations, as illustrated in Figure 6.28.
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1: function SummationMAD (mi, L) begin

2: // mi : memory access descriptor (MAD)
3: // L: loop
4: m := new MAD;
5: if mi.type = Doomed then

6: (m.type, m.base, m.offset, m.displace) := (Doomed, ⊥, ⊥, ⊥);
7: else if mi.offset is an unknown induction expression then

8: (m.type, m.base, m.offset, m.displace) := (Doomed, ⊥, ⊥, ⊥);
9: else

10: Find T , the trip count of L;
11: if T is unknown then

12: (m.type, m.base, m.offset, m.displace) := (Doomed, ⊥, ⊥, ⊥);
13: else

14: if T is an upper bound then

15: down grade m to a May-typed MAD;
16: end if

17: m.base := mi.base;
18: (m.type, m.offset, m.displace) := SummationMAD (mi, T );
19: end if

20: end if

21: return m;
22: end function

Figure 6.26 The pseudo-code of SummationMAD

For example, in Figure 6.28(a), the loop body has a Seq-type exposed memory access

with offset = (1 + h), and displace ≡ [(stride, trip-count)] = [(0, 1)], where h is the

fundamental induction variable of some loop that iterates 8 times. As indicated by

stride = 0 and trip-count = 1, for a particular iteration h, the loop body accesses only

one memory location. The relative address of accessed location, with respect to the base,

is given by the offset, h + 1. From iteration 1 to iteration 8, for h = 0, 1, 2, . . .7, the

whole loop will access the memory locations from 1 to 8 7. Therefore, the memory access

7Precisely, we should say ”memory location of relative address 1 with respect to the base.”
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1: function SummationMAD (mi, T ) begin

2: // mi : a MAD descriptor
3: // T : trip count of loop L

4: Let m1.offset = c + sL · hL,
5: // where hL is the fundamental induction variable of loop L.
6: if mi is a read with inter-iteration data dependence then

7: down grade mi to May-type;
8: end if

9: if mi.type = Seq then

10: Try to generate a Seq-type pattern (offset, displace), comparing the relationship
between c, sL, mi.displace, and T .

11: if Succeeded then

12: return (Seq, offset, displace);
13: else

14: down grade mi to Must-type

15: end if

16: end if

17: if mi.type = Must then

18: Try to generate a Must-type pattern (offset, displace), comparing the relationship
between c, sL, mi.displace, and T .

19: if Succeeded then

20: return (Must, offset, displace);
21: else

22: down grade mi to May-type

23: end if

24: end if

25: if mi.type = May then

26: Try to generate a May-type pattern (offset, displace), comparing the relationship
between c, sL, mi.displace, and T .

27: if Succeeded then

28: return (May, offset, displace);
29: else

30: return (Doomed, ⊥, ⊥);
31: end if

32: end if

33: end function

Figure 6.27 The pseudo-code of SummationMAD

pattern of the whole loop is (Seq, 1, [(1, 8)]), using the (type, offset , [(stride, trip-count)])

notation.
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(Seq, 1+h, [(0,1)])
0<=h<8

(Seq, 1, [(1, 8)])

sL = 3, T = 3

sL = 1, T = 8

(Seq, 1+3*h, [(1,2)])
0<=h<3

(Seq, 1, [(1, 2)(3, 3)])

sL

1 2 3 4 5 6 7 8

(b)

(a)

(Must, 1, [(1, 8)])

(Seq, 4+2*h, [(−1, 4)])
0<=h<3

(c)

= 2, T = 3

h=2

h=0
h=1

h=0 h=1 h=2

h=0 h=1 h=2 h=3 h=4 h=5 h=6 h=7

Figure 6.28 Example illustrating Summation (
∑

)

For nested loops, we may need more than one pairs of (stride, trip-count) to describe

the memory access pattern of the whole loop. For example, in Figure 6.28 (b), the memory

access pattern of the inner loop has offset = (1+3h), where h is the fundamental induction

variable of the outer loop. This means, when the outer loop iterates, the starting memory

access location of the inner loop will shift to the right by 3, the coefficient of h in the offset.

Since the loop trip-count of the outer loop is 3, as indicated by 0 ≤ h < 3, the displace

of the memory access for the whole loop will be [(1, 2)(3, 3)], where (1, 2) describing the

stride and the trip-count of the memory accesses of inner loop, and (3, 3) describing the
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stride of the starting point of the inner loop memory access and the trip-count of the

outer loop.

For the examples in Figure 6.28(a) and (b), the type of the memory access of the

loop body is preserved by summation. It is not always possible to describe the memory

accesses of a Loop region as accurate as describe the memory accesses of the corresponding

Loop Body region. For example, the Loop Body region in Figure 6.28(c) has a Seq-type

MAD, but the memory accesses of the Loop region can be only described using Must-type

MAD in the current implementation.

Implementing Summation by concatenating the memory accesses of the loop body

for all iterations is not efficient. SummationMAD, Figure 6.26, outlines how to do

summation, given a MAD mi and the corresponding loop L. As illustrated in Figure 6.28,

the key is to figure out the trip count of L, and the coefficient of the fundamental induction

variable of L in the offset of mi.

If mi is a Doomed -type MAD, or if the offset of mi is an induction expression which

can not be represented as an affine expression in terms of fundamental induction variables,

or if the trip count of loop L is unknown, SummationMAD just returns a Doomed -type

MAD (lines 5-12, Figure 6.26). If we know the loop trip count T , but T is just an upper

bound, mi is conservatively down graded to May-type (lines 14-16, Figure 6.28), because

L may iterate less than T times. If T is the exact loop trip count of L, SummationMAD

in Figure 6.27 will try to find the type, offset, and displace of MAD as accurate as possible.

SummationMAD first separates the offset of mi to two terms, sL · hL and c, where

hL is the fundamental induction variable of loop L (line 4, Figure 6.27). Then, Sum-
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mationMAD will try to generate a pattern with the same type as mi by checking the

relationship between c, sL, mi, displace, and T . If this is not possible, SummationMAD

will try less accurate descriptors until it gives up, and returns a Doomed type pattern

(lines 9-32, Figure 6.27).

There is one subtlety in SummationMAD. If mi is a memory read access and has

some inter-iteration dependence, some of its data will come from previous iterations,

instead of from outside the loop. Thus, the summation of the exposed reads of loop body

for all the iterations should be calculated as follows. Note that the exposed reads R

and the exposed writes W of the loop body are functions of the fundamental induction

variable h of loop L.

R(0)
︸︷︷︸

1st iteration

⊕

T∑

hr

L
=1

(R(hr
L) 	

hr

L
−1

∑

hw

L
=0

(W (hw
L))

︸ ︷︷ ︸

the rest iterations

The calculation of this formula is complicated. A conservative but quick approximation

is to down grade mi to May-type if it has any inter-iteration true dependence (lines 6-8,

Figure 6.27).

6.3 Related Work

People have developed techniques to summarize the side effects of procedures in order

to perform dependence tests across procedure boundary [64] [154] [155] [149]. A summary
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of side effects describes the sets of memory locations that the procedure reads and writes,

called the use-set and the modify-set in literature.

The summaries are propagated in the program call graph from bottom up. The sum-

mary of a procedure is generated by combining the memory access information of its own

loops with the summary information propagated from its callees. For conservatively iden-

tifying possible dependencies between procedures, this approach is efficient and effective

enough.

However, the information provided by pair-wise dependence tests between program

regions is too conservative for more advanced parallelization techniques, which require

more accurate information about the data-flow between program regions [156] [56]. The

array data-flow problem is first addressed by Feautrier [57], who developed a technique

called parametric integer programming [157] to derive, for each memory read, the corre-

sponding memory write which generates the data. Array data-flow analysis based on the

parametric integer programming method has two major problem. First, the complexity

of parametric integer programming could be high8. Second, it can handle only control

structures like the Fortran DO-loop, but not arbitrary control flow. To address the first

problem, researchers developed a more efficient, but less general, method that can handle

most of the common cases [60], which, however, still can not handle arbitrary control

flow.

8While the original paper claimed parametric integer programming method is practical [57], other
authors claimed it is not practical [60].
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In general, it is very difficult, if not impossible, to exactly describe the producer-

consumer relation for programs with arbitrary control flow. For some parallelization

purposes, for example, array privatization, exact producer-consumer relation is not nec-

essary. Array privatization could enable more loop parallelization by eliminating false

dependences between loop iterations. It replicates the arrays so that each iteration gets

its own private copy. Array privatization can be applied to a loop as long as we can prove

that every read in the loop gets its data from a write in the same loop iteration. This is

a weaker condition than knowing the producer of each read.

Based on this observation, researchers have developed array data-flow analysis tech-

niques which are capable of handling arbitrary control flow, and also efficient and effective

enough for array privatization [61] [62] [58] [71] [63] [147] [59] [158]. Essentially all these

works follow the same approach of partitioning the program into regions, summarizing

the memory accesses for each region, propagating and combining the summary informa-

tion in the control flow graph and the program call graph. They differ from each other

mainly in the data structures that represent the memory accesses of each region, and the

complexities of the operations that manipulate these data structures.

The concepts and techniques developed in these works laid the foundation for this

work. Because of different target languages and different type of parallelisms exploited,

this work differs from the previous works in the following aspects.

• Previous works on parallelizing compilers mainly target scientific applications writ-

ten in Fortran. On the other hand, this work targets the programs written in

C. While scientific Fortran programs use arrays as their main data structures, C
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programs can have more complicated data structures referenced through pointers.

The data structure MAD used in this work for describing the memory accesses in C

programs must incorporate pointer informations, and the operations on the MAD

data structure must manipulate the included may-alias set. This is not necessary

in the previous works.

• In the previous works, the summary of each program region can only tell the set of

accessed memory locations, but not the order of accessing these memory locations.

This is sufficient for array data-flow analysis to identify candidate loops for array

privatization. However, for the potential optimizations shown in Figure 3.6, we

need to know not only the accessed memory locations, but also the memory access

order. The MAD data structure used in this work is designed for a memory data

flow analysis whose lattice values also contain the memory access order information.

The operations on MAD will try to preserve the memory access order information

before moving up the data flow value lattice.

• For the array data flow analysis designed for array privatization, the goal is to

exploit coarse-grained data parallelism in the outer loop, so it is not a concern for

them to identify the producer-consumer relations between program regions. On

the other hand, the goal of this thesis work is to uncover coarse-grained function

parallelism, so the bottom-up process not only summarizes the memory accesses for

each program region, but also identifies the possible producer-consumer relations

between program regions. Because of this, the MAD data structure used in this
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work not only records the memory access pattern, but also tracks the generting

progrom regions of memory accesses.

The main focus of this work is identifying the producer-consumer relations between

program regions, which is also the fundamental cause of the differences between this work

and the previous works. Next chapter will discuss how the producer-consumer relations

identified by the bottom up process can be refined by a top-down process.

104



CHAPTER 7

Producer-Consumer Relation Analysis

The producer-consumer relations among program regions are identified in two phases.

During the bottom-up summarization process discussed in Chapter 6, we constructs a

conservative producer-consumer relation. This producer-consumer relation is then refined

by an ensuing top-down pruning process. These two phases are explained in the following

sections.

7.1 Bottom-up Phase

During the bottom-up summarization process, to summarize the exposed reads of

region R, we forward propagates the exposed reads of its sub-regions along the edges

in the sub-region graph of R. When propagating the exposed reads of sub-region Rr

through sub-region Rw, we subtract the exposed writes of Rw from the exposed reads of

Rr. If the SubtractMAD operation deduces that an exposed write of Rw and an exposed

read of Rr access some common memory locations, it will record this new identified

producer-consumer relation between Rw and Rr, and mark the exposed write of Rw as

Consumed (line 33, Figure 6.20).
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Loop 0c
Loop 2c
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{<Must, A[0..39]>
  <Must, B[0..39]>}

{<Must, A[0..39]>
  <Must, B[0..39]>}

Figure 7.1 Illustration of the bottom-up phase

For example, when summarizing the exposed reads of region7, in Figure 7.1, we will

propagate the exposed reads of region12 through region11. Because both region11 and

region12 access the same memory, B[h2], there exists a producer-consumer relationship

between region11 and region12, and the exposed write 〈Seq, B[h2]〉 of region11 will be

marked as Consumed. Similarly, when summarizing the exposed reads of region2, we

will identify the producer-consumer relationship between region4 and region5, and the

exposed write 〈Seq, A[0..39]〉 of region4 is marked as Consumed.

Although the bottom-up phase can identify the producer-consumer relationship be-

tween the sub-regions of region R, the exposed writes of the sub-regions may or may not
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be consumed outside the region R. For example, in Figure 7.1, both region11 and re-

gion13 are sub-regions of region7. The exposed write 〈Seq, A[h2]〉 of region13 is consumed

by region5, a region outside region7, but the exposed write 〈Seq, B[h2]〉 of region11 has

no consumer outside region7.

Being confined within the scope of region7, the bottom-up phase does not know

whether any region outside region7 will consume the exposed writes of region11 or not,

so it must conservatively included both 〈Seq, A[h2]〉 and 〈Seq, B[h2]〉 in the exposed writes

of region7. To prune the spurious exposed writes like 〈Seq, B[h2]〉, we need a top-down

phase after the bottom-up phase.

7.2 Top-down Phase

Figure 7.2 illustrates the top-down pruning process using the same example in Fig-

ure 7.1. The top-down pruning process starts from the top-level region, region0 in this

case. Since region0 is the top-level region, no other region will consume the exposed

writes of region0. So we can prune all the exposed writes of region0, as indicated by

crossing the exposed writes with red lines in Figure 7.2. Next, we prune the exposed

writes of the sub-regions of region0.

If an exposed write w of region0 is pruned, which means it has no consumer outside

region0, none of the components of w will be consumed outside region0. Note that the

components of w of region0 are the exposed writes of some sub-regions of region0. So, if a

component c of w is an exposed write of sub-region R, and c is not marked as Consumed

107



region 0

for i1 = 0,39,1

region 6

{<Seq, A[0..39]>}

Loop 1c

for i3 = 0.39,1

region 8

{<Seq, A[0..39]>}

Loop 3c

exposed memory access/data flow

exposed writes pruned
exposed writes marked Consumed during bottom−up phase

}

{
region 1

region 3

region 4

{

}
region 5

region 2

Inlined Function
foo0c

Loop Body

Loop Body

Loop Body

Loop Body

for i0 = 0,3,1

.. = A[i3]

A[i2] = ..

.. = B[i2]

B[i2] = ..

.. = A[i2]

A[i1] = ..
region 9

{

}

}

{
region 10

region 11

region 12

region 13

region 7

}

{
region 14

{<Seq, A[0..39]>
  <Seq, B[0..39]>}

{<Seq, A[0..39]>
  <Seq, B[0..39]>}

{<Seq, A[h1]>}

{<Seq, A[h2]>}

  <Seq, B[h2]>}
{<Seq, A[h2]>

{<Seq, A[h3]>}

{<Seq, A[h1]>}

{<Seq, A[h2]>}

{<Seq, B[h2]>}

{<Seq, B[h2]>}

{<Seq, A[h2]>}

{<Seq, A[h3]>}

Loop 0c
Loop 2c
for i2 = 0,39,1

{<Seq, A[0..39]>}

{<Must, A[0..39]>
  <Must, B[0..39]>}

{<Must, A[0..39]>
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exposed memory writes/data flow not needed

Figure 7.2 Illustration of the top-down phase

when summarizing the exposed memory accesses of region0, that mean c is not consumed

by any sub-region of region0, either. Therefore, we can prune c from the exposed writes

of R. So, we can prune the exposed writes of region1, the only sub-region of region0,

then we can similarly prune the exposed writes of region2, the only sub-region of region1.

Note that, in Figure 7.2, only 〈Seq, B[0..39]〉 is pruned from the exposed writes of

region4, but not 〈Seq, A[0..39]〉. This is because 〈Seq, A[0..39]〉 is consumed by region5,

and thus marked as Consumed during the bottom-up phase.

The components of the exposed writes of region4 are the exposed writes of its sub-

region region7. For similar reason, we prune 〈Seq, B[h2]〉, but not 〈Seq, A[h2]〉 marked as

108



1: function PruneExposedWrites (R: a region) begin

2: for w ∈ R.exposed writes do

3: if w.Consumed = True then

4: for c ∈ x.components do

5: c.Consumed := True;
6: end for

7: end if

8: end for

9: for r ∈ R.subregions do

10: PruneExposedWrites(r);
11: end for

12: end function

Figure 7.3 The pseudo-code of PruneExposedWrites

Consumed. While the pruning of the exposed write 〈Seq, B[h2]〉 of region7 is correct, the

preservation of 〈Seq, A[h2]〉 is still a conservative approximation. This is because only a

subset of A[0..39] can be consumed, but by marking 〈Seq, A[h2]〉 as Consumed, we are still

making a conservative assumption that every elements of A[0..39] are consumed. This

should be the common case in practice.

The function PruneExposedWrites in Figure 7.3 outlines the top-down pruning

process. Instead of explicitly pruning exposed writes, PruneExposedWrites marks

those exposed writes which should not be pruned as Consumed. For any exposed write

which is marked Consumed, PruneExposedWrites marks its components as Consumed

(Lines 2-8, Figure 7.3). Then, the pruning process will continue for the sub-regions of R

(Lines 9-11, Figure 7.3).
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7.3 Related Work

The top-down pruning phase basically refines the live range of variables. Accurate

live range information also benefits parallelization techniques like array privatization.

A privatized array must be written back to the global memory, only if is read after

the privatized loop. Researchers have proposed another phase of analysis backward

propagating the memory access summary of loops in the control flow graph to extend

scalar liveness analysis for array liveness analysis [62] [159].

This work is different from the previous works in the following aspects.

• For the purpose of array privatization, live range information is only needed for

privatized arrays in privatized loops. For our purpose, we need to do liveness

analysis for the exposed writes of every program region, not just for the exposed

writes of loop which can be privatized.

• Instead of having another compiler pass for liveness analysis as suggested by pre-

vious works, the liveness analysis in this work is partly done during the bottom-up

phase by marking the exposed writes of program regions as Consumed. This greatly

simplifies the top-down phase which essentially refines the live ranges of exposed

writes.

The next chapter will discuss the experiment results of prototyping the memory data-

flow analysis system, consisting the bottom-up process discussed in the previous chapter

and the top-down process discussed in this chapter.
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CHAPTER 8

Prototyping and Experiment Result

We implemented the memory data-flow analysis algorithms presented in the previ-

ous chapters on top of the IMPACT compiler infrastructure [160], which supports the

needed software modules for the in-lining of whole program, the construction of control

flow graph from abstract syntax tree, a flow-insensitive and context sensitive pointer

analysis [102] [103], and the interface to the Omega library [101]. We tried the prototype

program analysis system on extracting coarse-grained data-flow from several benchmark

programs in the MediaBench suite [161] and the open-source programs of G.724 coder

and decoder. This chapter will present the experiment results on the efficiency and

effectiveness of the prototype memory data-flow analysis system.

8.1 Modification of Benchmark Programs

We made the following modifications on the benchmark programs to work around the

limitations of the current prototype memory data-flow analysis system.

• The intrinsic functions left shift and right shift used in the G.724 coder and

decoder are modified to remove recursion.
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• The intrinsic functions used in G.724 coder and decoder are also simplified to

eliminate the unnecessary details. These intrinsic functions are written for bit-

accurate function simulation. However, the detailed modeling of bit-level operations

only significantly increases the analysis time, with no improving on the analysis

accuracy. In practice, the templates modeling the memory access behaviors of

library functions are accurate enough for the purpose of memory data-flow analysis.

• The multi-entry loops in the MediaBench gsmdec and gsmenc programs are con-

verted to single-entry loops.

• The call-sites of functions with variable number of arguments are renamed to func-

tions with fixed number of arguments.

• Indirect function calls are converted to multiple direct function calls to enable whole

program in-lining.

Section 5.2 has more detailed discussion on these modifications.

8.2 Verification and Visualization

For verification purpose, a graphical user interface is built to visualize the memory

data-flow between program regions. For each program region, the visualization system

could display its exposed reads, exposed writes, and sub-region graph.

Figure 8.1 demonstrates a sample output of the visualization system. By clicking on

a grey box on the top, the visualization system will display the memory access pattern
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Figure 8.1 Demonstration of the memory data-flow visualization system

of the corresponding exposed reads. The grey boxes on the bottom are corresponding to

the exposed writes. The yellow boxes in the middle are corresponding to the sub-regions.

In addition to the control flow (black edges) between the sub-regions, the visualization

system also displays the memory data-flow (red and blue edges) among the sub-regions.

By clicking on a memory data-flow edge, the user can inspect the memory access pattern

of the producer, which is the source node of the memory data-flow edge, and the memory

access pattern of the consumer, which is the destination node of the memory data-flow

edge. By clicking on a sub-region node in the sub-region graph, the user can navigate

down the program region hierarchy1.

1There is also a way for the user to navigate up the program region hierarchy.
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Table 8.1 Breakdown of the execution time of the prototype memory data-flow analysis
system

adpcm D adpcm E g721 D g721 E g724 D g724 E gsm D gsm E

I 0.121 0.119 2.160 2.000 9.408 31.377 34.484 19.967

II 0.104 0.117 1.201 1.092 3.348 11.424 15.549 19.180

III 0.035 0.049 2.289 7.881 9.629 161.12 92.057 119.510

Using this visualization tool, we manually check the memory data-flow analysis result

of g724dec. We found the prototype system works as expected and generates satisfactory

memory data-flow analysis result.

The visualization system is built on top of uDraw(Graph) [162] and Tcl/Tk [163].

During the bottom-up and top-down processes of the memory data-flow analysis, we

retains all the necessary data structures and the analysis results which may be used

by the visualization system. When the analysis is done, the visualization system will

interact with uDraw(Graph) and Tcl/Tk to accept user requests. It will then retrieve

the requested analysis results from the retained data structures, and send the reformatted

data back to uDraw(Graph) and Tcl/Tk for display.

Although the visualization system is originally created for verification purpose, po-

tentially we can enhance it to a full-fledged program visualization system serving other

software engineering purposes.
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8.3 Efficiency

The execution times of the prototype memory data-flow analysis system on the tested

benchmark programs are listed in Table 8.1, which break down the execution time to three

major components: (I) the in-lining time, (II) the pointer analysis time, and (III) the

memory data-flow analysis time. For the benchmark programs used in this study, the

memory data-flow analysis takes less than 3 minutes. However, these benchmarks are

not very large programs. For large programs like JPEG or MPEG, the current in-lining

based implementation may not be efficient, as suggested by comparing in-lining based

pointer analysis with inter-procedural pointer analysis [103]. The major problem with

the in-lining approach is that it may cause code bloat and increase the problem size

exponentially. This may significantly increase the memory footprint and the execution

time of the memory data-flow analysis.

It is very common that a function is invoked at different call-sites, and thus the same

function is in-lined several times. However, these in-lined versions of the same function

often have isomorphic memory data-flow analysis results. Therefore, for each function, we

could potentially analyze its memory data-flow just once, then derive the memory data-

flow analysis result at each call-site based on the calling context, without re-analyzing

the same function. A potential implementation of an inter-procedural memory data-flow

analysis will be discussed in the Chapter 9.
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A[i]/*region1*/ = ...
...

...

... = ... A[i]/*region3*/ ...

A[i]/*region2*/ = ...
...

...

... = ... A[i]/*region3*/ ...

A[i]/*region2*/ = ...

A[i]/*region1*/ = ...

(a) (b)

Figure 8.2 Example for illustrating spurious data producers

8.4 Effectiveness

The goal of memory data-flow analysis is to figure out an accurate producer-consumer

relationship among program regions by eliminating false dependences. Therefore, we

would like to understand whether there exist false dependences in real programs and

whether our prototype memory data-flow analysis system can eliminate them. If there

exists false dependences among program regions, which means some program regions

have spurious data producers, our memory data-flow analysis system should filter out

these spurious data producers.

When summarizing the exposed reads of a program region, the memory data-flow

analysis will backward propagate the exposed reads of its sub-regions along the edges in

the sub-region graph. During the backward propagation, the exposed reads of the sub-

regions will be subtracted by the exposed writes of the sub-regions which could be their

data producers. If an exposed read r of a program region Rr is totally covered by the

exposed write of another program region Rw, the exposed read r will not be propagated,

and Rw will be the last found data producer of Rr, if the basic block of Rw dominates

the basic block of Rw. On the other hand, if we do not subtract r with w, and keep
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Figure 8.3 Eliminated spurious data producers (false dependences) in g721dec

propagating r beyond Rw, we could find spurious data producers for Rr, if there is other

regions before Rw which write to the same memory locations as Rw, even though the

basic block of Rw dominates the basic block of Rr.
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Figure 8.4 Eliminated spurious data producers (false dependences) in g721enc

For example, in Figure 8.2(a), when the exposed read of region3, A[i], is propa-

gated to region2, it is totally covered by the exposed write of region2, which is also

A[i]. Therefore, A[i] will not be propagated further, and region2 is the only data
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Figure 8.5 Eliminated spurious data producers (false dependences) in g724dec

producer of region3, even though region1 also writes to A[i]. On the other hand, if

we do not subtract the exposed read of region3 by the exposed write of region2, and
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Figure 8.6 Eliminated spurious data producers (false dependences) in gsmdec

keep propagating it to region1, region3 will have another data producer, region1, as

illustrated in Figure 8.2(b).
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memory dataflow analysis on gsmenc
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Figure 8.7 Eliminated spurious data producers (false dependences) in gsmenc

So, without subtracting the exposed reads of the sub-regions by the exposed writes of

other sub-regions during the bottom-up summarization phase, we can identify the false

dependences or spurious data producers eliminated by the prototype memory data-flow
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analysis system. Figures 8.3 to 8.7 show the spurious data producers eliminated by the

prototype memory data-flow analysis system for some of the benchmark programs. The

X-axis corresponds to all the program regions. The Y-axis is the number of data produc-

ers for each program region. For each program region, the blue dots are corresponding

to the number of data producers identified by the memory data-flow analysis system

with exposed reads subtracted by exposed writes. The red dots are corresponding to

the number of its data producers identified without having exposed reads subtracted by

exposed writes. If a red dot is above the blue dot of the same program region, it means

the memory data-flow analysis eliminates some spurious data producers, or false data

dependences. Note that, for the same program region, the blue dot is never above the

red dot.

As demonstrated in Figures 8.3 to 8.7, there are indeed false dependences existing in

real programs, due to writing to the same variables, which are eliminated by the prototype

memory data-flow analysis systems. However, it is hard to tell whether the prototype

memory data-flow analysis system eliminates all the false memory dependences. It is

even harder to tell what benefit the client of the memory data-flow analysis will get by

eliminating the false dependences. The ultimate test of the effectiveness of the memory

data-flow analysis system is how the extracted coarse-grained data flow can enable better

mapping of applications onto multi-core architectures. However, an end-to-end mapping

from C programs to multi-core architectures is not available in our compiler infrastructure

at this moment.

122



Table 8.2 Breakdown of the type of MADs for exposed reads

adpcm D adpcm E g721 D g721 E g724 D g724 E gsm D gsm E

Seq 10 12 111 90 625 1644 517 653

Must 0 0 6 6 33 61 24 42

May 5 5 172 112 141 233 305 698

Doomed 33 31 86 95 336 948 1544 1582

Table 8.3 Breakdown of the type of MADs for exposed writes

adpcm D adpcm E g721 D g721 E g724 D g724 E gsm D gsm E

Seq 3 1 16 20 420 807 206 390

Must 0 0 0 0 19 45 0 12

May 6 6 0 2 141 307 434 192

Doomed 7 9 10 17 167 447 39 100

In addition to counting the number of eliminated false dependences, we can also

assess the effectiveness of the prototype memory data-flow analysis system by counting

the types of the MADs for exposed reads and exposed writes. If most of the exposed

reads and exposed writes are Doom-typed or May-typed, the prototype memory data-

flow analysis system may not be effective in summarizing the memory access patterns

of program regions for the tested programs. On the other hand, if many of the exposed

reads and exposed writes are Seq-typed or Must-typed, the prototype memory data-flow

analysis system can be considered effective in capturing accurate memory access patterns

for test programs.

Tables 8.2 and 8.3 show the breakdown of the types of the exposed reads and the

exposed writes of all program regions. Not to exaggerate the effectiveness of the prototype

memory data-flow analysis system, Table 8.2 and Table 8.3 exclude the exposed scalar
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Table 8.4 Breakdown of the percentages of the causes of May-type MAD

Cause adpcm D adpcm E g721 D g721 E g724 D g724 E gsm D gsm E

I 92.86 90.32 80.77 80.17 78.18 80.65 96.7 92.01

II 0 3.23 0 1.24 7.5 5.31 0.06 0.27

III 0 0 0 0 2.95 2.63 0.06 1.56

IV 3.57 3.23 13.64 11.16 0.94 0.68 0.92 0.89

V 0 0 4.2 4.96 2.14 5.48 1.43 4.2

VI 0 0 1.05 1.24 1.07 1.2 0.12 0.16

VII 3.57 3.23 0.35 1.24 6.16 3.08 0.71 0.86

VIII 0 0 0 0 1.07 0.97 0 0.05

variable reads and writes, and the exposed reads and exposed writes of fundamental

memory access regions, which are always Seq-typed.

As shown in Tables 8.2 and 8.3, the prototype memory data-flow analysis system

can capture the sequential memory access patterns of many exposed reads and exposed

writes using the simple MAD structure. An more important implication of this is there

are indeed many sequential memory accesses in the tested programs. If our memory

access descriptor can only describe the set of accessed memory locations, but not the

access order, we may miss many opportunities for the optimization shown in Figure 3.6.

An interesting observation is that Table 8.3 has higher percentage of Seq-type memory

accesses than Table 8.2. This means memory writes have more regular access patterns

than memory reads.

However, Table 8.2 and Table 8.3 also show that there are many May-type and

Doomed -type exposed reads and exposed writes. These May-type and Doomed -type

MADs will result in less accurate producer and consumer relation. Therefore, the first

step in improving the accuracy of the prototype memory analysis system is to find out
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why May-type and Doomed -type MADs are generated in the first place. We insert probes

in the prototype memory data-flow analysis system to profile the causes of May-type and

Doomed -type MADs.

Table 8.4 shows the breakdown of percentages of the 8 causes of May-type MAD,

where Cause I is that the corresponding memory access of the MAD is in a conditional

statement, and thus may or may not occur; Cause II is that a MAD is subtracted by a

Doom-type MAD; Cause III is that when subtracting a MAD by another MAD, we can

not determine the relation between the base of these two MADs; Cause IV is that when

summarizing the exposed memory accesses of a loop, we can only know an upper bound

of the loop trip count, because of early exit of the loop; Cause V is the inaccuracies of the

Concatenate operation; Cause VI is the inaccuracies of the Merge operation; Cause

VII is the inaccuracies of the Subtract operation, other than cause II and cause III;

Cause VIII is the inaccuracies of the Summation operation, other than cause IV.

Apparently, cause I is the most common reason why a May-type MAD is generated.

This is due to the characteristics of the applications, and we can not replace May-type

MADs of this cause with more accurate MADs to improve the accuracy of the prototype

memory data-flow analysis system.

Cause IV is the second common cause, which is also due to application characteristics.

Therefore, we cannot replace May-type MADs of this cause with more accurate MADs.

What is surprised is that only a small fraction of May-type MADs are due to the

inaccuracies of MAD operations (causes V, VI, VII, and VIII), except for g724dec and

g724enc. For these two benchmarks, some fraction of the May-type MADs are also due
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Table 8.5 Breakdown of the percentages of the causes of Doomed-type MAD

Cause adpcm D adpcm E g721 D g721 E g724 D g724 E gsm D gsm E

I 33.33 33.33 50 45.45 3.23 0.94 2.11 1.99

II 0 0 0 0 33.87 22.54 2.11 1.99

III 0 0 0 0 1.61 0 0 0.66

IV 33.33 33.33 45 40.91 27.42 27.7 93.66 88.74

V 0 0 0 0 0 3.29 0 0

VI 33.33 33.33 5 4.55 9.68 16.9 0 1.32

VII 0 0 0 0 11.29 11.74 2.11 4.64

VIII 0 0 0 0 0 0.47 0 0.66

IX 0 0 0 0 0 0 0 0

X 0 0 0 9.09 12.9 16.43 0 0

to cause II. This means we can potentially replace some May-type MADs with more

accurate MADs if we can replace some Doomed-type MADs.

Table 8.5 shows the breakdown of the percentages of the 10 causes of Doomed -type

MAD, where Cause I is that, when performing some operation on two MADs, we found

they have different access sizes in bytes; Cause II is that we cannot resolve the relation

between two scalar variables, using the current implementation of symbolic scalar variable

evaluation, when performing operations, other than Subtract, on two MADs; Cause III is

that, when summarizing an exposed memory access for some loop, we found an induction

variable of the loop cannot be represented in close form, using the current implementation

of symbolic scalar variable evaluation; Cause IV is that, when summarizing an exposed

memory access for some loop, we do not know the loop trip count, not even an upper

bound; Cause V is that, when summarizing an exposed memory access for some loop,

we found an induction variable of the loop has variable stride; Cause VI is that, when

summarizing an exposed memory access for some region, we found the description of
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the exposed memory access is not invariant with respect to that region; Cause VII is

other inaccuracies of the Concatenate operation; Cause VIII is other inaccuracies of

the Merge operation; Cause IX is other inaccuracies of the Subtract operation; Cause

X is other inaccuracies of the Summation operation.

Unlike May-type MAD, there is no single dominating cause of Doom-type MAD.

Across all programs, a high percentage of Doomed -type MADs are due to cause IV. For

the current implementation of the symbolic evaluation, if the exit condition of a loop

cannot be represented as an affine induction expression, the loop will have unknown trip

count, not even an upper bound. So, we can potentially replace some of the Doom-type

MADs of this cause with more accurate MADs by improving the symbolic scalar variable

evaluation. However, it is a difficult problem to deduce the trip count for arbitrary loops.

To some extent, this should also be considered as due to application characteristics.

For g724dec and g724enc, a high percentage of Doomed -type MADs are due to cause

II. This means there is definitely room in improving the symbolic scalar variable evalua-

tion.

For adpcmdec and adpcmenc, a significant percentage of Doomed-type MADs are due

to cause V. Usually this means the program region is doing some table lookup using

some dynamically generated index, which cannot be figured out at compile time. To

some extent, this should also be considered as due to the application.

For adpcmdec/adpcmenc and g721dec/g721enc, a significant fraction of Doomed -type

MADs are due to cause I. This is a known limitation of the current implementation, and
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Doomed -type MADs of this type will be replaced by more accurate MADs after we

improve the MAD operations.

Table 8.5 shows that the other inaccuracies of Concatenate and Summation cause

a fair amount of Doomed -type MADs for g724dec and g724enc. Therefore, we can poten-

tially improve the effectiveness of the memory data-flow analysis system by enhancing

these two operations.

From the experiment results, we have identified some inefficiencies in the prototype

memory data-flow analysis system. However, some inaccuracies of the analysis results are

due to application characteristics. The next chapter will conclude this dissertation with

the insights obtained from the experiment of prototyping the memory data-flow analysis

system.
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CHAPTER 9

Conclusion and Future Work

In the last chapter of this dissertation, I would like to reflect on my work on memory

data-flow analysis, and discuss my thoughts on some future works.

9.1 Conclusion

To efficiently utilize the emerging heterogeneous multi-core architecture, it is essen-

tial to exploit the inherent coarse-grained parallelism in applications. In addition to

data parallelism, applications like telecommunication, multimedia, and gaming can also

benefit from the exploitation of coarse-grained function parallelism. To exploit coarse-

grained function parallelism, the common wisdom is to rely on programmers to explicitly

express the coarse-grained data-flow between coarse-grained functions using data-flow or

streaming languages.

This work is set to explore another approach to exploiting coarse-grained function

parallelism, that is to rely on compilers to extract coarse-grained data-flow from impera-

tive programs. I believe imperative languages and the von Neumann programming model

will still be the dominating programming model in the future. For this exploration, this

research accomplishes the following.
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• It developed a memory data-flow analysis framework to extract coarse-grained data-

flow from C programs, or imperative programs in general. First, the memory data-

flow analysis system partitions a C program into a hierarchy of program regions.

It then traverses the program region hierarchy from bottom up, summarizing the

exposed memory accesses for each program region. During this bottom-up sum-

marization process, it also constructs a conservative producer-consumer relation

between the program regions. After the bottom-up process, a top-down traversal

of the program region hierarchy refines the producer-consumer relation by elimi-

nating exposed memory writes which have no consumers.

• It built a prototype of the memory data-flow analysis system. The efficiency and

effectiveness of the prototype are studied using real C programs from the the Medi-

aBench suite and open-source G.724 coder and decoder. It also built a visualization

system to displace the memory data-flow analysis results. In addition to the original

purpose of verification, the memory data-flow visualization system can potentially

be enhanced for other software engineering purposes.

• Experiment results show that the prototype memory data-flow system performs

reasonably well for the tested C programs. However, the in-lining based proto-

type memory data-flow analysis system may not be efficient for larger programs.

Also, we can still improve the prototype to obtain more accurate memory data-flow

analysis results. Root cause analysis of the memory data-flow analysis inaccura-

cies shows that the memory data-flow analysis can potentially be more accurate by
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improving the symbolic scalar variable evaluation, the memory access descriptor

and the associated operations used by the memory data-flow analysis. However,

some of the inaccuracies are due to the application characteristics, and cannot be

eliminated by improving the memory data-flow analysis.

This study shows that it is possible to build a program analysis system to extract

coarse-grained data-flow from C programs. However, we found it is difficult to extract

accurate coarse-grained data-flow from ”spaghetti” code or programs with complicated

control flow and extensive accesses of dynamically allocated memory objects. Program-

mers can improve the effectiveness of the memory data-flow analysis by writing more

structured code, grouping related code into functions, and using statically allocated vari-

ables as much as possible.

In my opinion, reasoning about complicated control flow and dynamically allocated

memory objects will remain the two main challenges of memory data-flow analysis. On

the other hand, it is also not clear how successful the programming model of data-flow

or streaming languages will be in handling complicated control flow and dynamically

allocated memory objects. Unfortunately, as the applications become more and more

complicated, it is very unlikely that we can avoid complicated control flow and dynami-

cally allocated memory objects will be .

I believe, most likely, we can partition any application into a data-flow part and a von

Neumann part which is either impossible or inefficient to fit into the data-flow model.

The data-flow part will be implemented in ASICs, accelerators, or other unconventional

architectures, while the von Neumann part will still be executed in von Neumann archi-
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tectures. Hopefully, the ”80-20” rule will put most of the computation in the data-flow

part for efficient execution. Indeed, this is how people design their systems today, but in

an ad hoc way. The question is ”Can we do this partition systematically and automati-

cally ?”.

We can re-phrase this question as ”Is it necessary to extend imperative languages

with data-flow or streaming language constructs?”. Of course, to reply ”no”, we need a

compiler to demonstrate the following.

• For any imperative program that the compiler cannot sort out its data-flow, it is

also difficult, if not impossible, to re-write the program in data-flow or streaming

language constructs.

• For any imperative program that can be re-written in data-flow or streaming lan-

guage constructs, the compiler can also extract its data-flow.

For extracting scalar data-flow from imperative programs, researchers have already de-

veloped the needed compiler techniques. For extracting coarse-grained data-flow from

imperative programs, this work has made an attempt. Although I cannot say I have

solved this problem in this work, I think it is an interesting problem for intellectual chal-

lenge, and an important problem for practical purposes, worthy of further investigation.

Next, I will sketch some future works.
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int A[10];
foo()
{
   p1 = A ;
   q1 = A + 1;
   bar(p1, q1); /* callsite 1 */
   p2 = A + 2;
   q2 = A + 4;
   bar(p2, q2); /* callsite 2 */
}

bar (int *x, int *y)
{

   ... = ... *y ...;
}

   *x = ...;

Figure 9.1 Example of function with the same summary at two call-sites

9.2 Future Work

There is always more works to be done than has been done. This section will outline

some future works on improving the efficiency and effectiveness, and on the evaluation,

of our memory data-flow analysis system.

9.2.1 Inter-procedural Memory Data-flow Analysis

For large applications, we need to develop an inter-procedural memory data-flow anal-

ysis. By avoiding re-analyzing the same function at different call-sites, inter-procedural

memory data-flow analysis can be more efficient than in-lining based approach. The

question is how to determine whether we should re-analyze a function or not.

Figure 9.1 shows the example code segment, where the function bar is called twice by

the function foo. To summarize the exposed memory accesses of bar, we need to know

the relation between its pointers x and y. If x has the same value as y, the memory read

*y will be covered by the memory write *x, and thus bar will have no exposed read. If

the value of x is different from the value of y, then bar will have exposed read *y.
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A

p1

q1

+

1

p2

+

2

q2

+

4

value flow graph of foo

• at callsite 1
- analyze bar

. ask foo “x=y?”

. foo reply “no”

. memorize 
< x=y?, no > 

. get summary of bar
( {*y}read, {*x}write )

. associate the summary
with < x=y?, no >

- translate the summary to
( {A[1]}read, {A[0]}write ) 

• at callsite 2
- ask foo “x=y?”
- get answer “no”
- search < x=y?, no > 
in the memo; found

- retrieve the summary
associated with 
< x=y?, no >

- translate the summary to
( {A[4]}read, {A[2]}write )

bottom-up process

p1=q1?

no

<x=y?, no>

<x=y?, no> ?

p2=q2?

no

({*y}read, {*x}write)

({*y}read, {*x}write)

( < x=y?, no > )
� ( {*y}read, {*x}write )

memo of bar

/* added at callsite 1 */

Figure 9.2 Illustration of function calls with isomorphic memory data-flow analysis
results

The relation of x and y may be different at different call-sites of bar. If bar has

the same relation between x and y at two call-sites, bar will have the same summary

of exposed reads and exposed writes at these two call-sites. The The exposed reads

(exposed writes) of these In other words, if we can know a function will have the same

summary of exposed reads and exposed writes at two call-sites, we only need to analyze

the function once. The exposed reads (and writes)

Figure 9.2 illustrates memoization based approach to determine whether a function

will have the same summary of exposed reads and exposed writes at different call-sites.

When the memory data-flow analysis reaches call-site 1, because this is the first call-site

of bar, we go analyze the exposed reads and exposed writes of bar. During the analysis
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bar (int *x, int *y)
{

   ... = ... *y ...;
}

   *x = ...;

int A[10];
foo2()
{
   p1 = A ;
   q1 = A + 1;
   bar(p1, q1); /* callsite 1 */
   p2 = A + 2;
   q2 = A + 2;
   bar(p2, q2); /* callsite 2 */
}

Figure 9.3 Example of function with different summaries at two call-sites

of bar, we need to know whether x has the same value as y. This depends on the calling

context and cannot be resolved by only looking at the code bar. So, we query the value

flow graph of foo, the caller of bar, ”x = y ?”. After translating the formal parameters,

x and y, to the corresponding actual arguments, p1 and q1, we can infer from the value

flow graph of foo that p1 6= q1, and the answer to the query is ”no”. The tuple of query

and answer, 〈x = y ?, no〉, is then recorded in a memo for bar.

After resolving the relation between x and y, we continue the analysis of the exposed

reads and exposed writes of bar, and eventually obtain the summary of exposed reads

and exposed writes of bar at call-site 1, (*y, *x). In the memo for bar, we then associate

this summary of expose reads and exposed writes with the corresponding list of query-

answer tuples, shown as (*y, *y) → (〈x = y ?, no〉) in Figure 9.2. After substituting p1

with A, and q1 with A+1, the exposed memory reads and memory writes of the function

call to bar at call-site 1 are A[0] and A[1] respectively.

When the memory data-flow analysis reaches call-site 2, if we re-analyze bar again,

we will again ask the same question ”x = y ?”. Instead of blindly re-analyzing bar, we

first evaluate the query ”x = y ?” at call-site 2. After translating x and y to p2 and q2,
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A

p1

q1

+

1

p2

+

2

q2

+

2

value flow graph of foo2

• at callsite 1
- analyze bar

. ask foo “x=y?”

. foo reply “no”

. memorize < x=y?, no> 

. get summary of bar
( {*y}read, {*x}write )

. associate the summary
with < x=y?, no >

- translate the summary to
( {A[1]}read, {A[0]}write ) 

• at callsite 2
- ask foo “x=y?”
- get answer “yes”
- search < x=y?, yes > 

in the memo; not found
- memorize < x=y?, yes >
- analyze bar

. get summary of bar
( { }read, {*x}write )

. associate the summary
with < x=y?, yes >

- translate the summary to
( { }read, {A[2]}write )

bottom-up process

p1=q1?

no

< x=y?, no >

< x=y?, yes > ?

p2=q2?

yes

({*y}read, {*x}write)

not found

( < x=y?, no > )
� ( {*y}read, {*x}write )

memo of bar

( < x=y?, yes > )
� ( { }read, {*x}write )

({ }read, {*x}write)

/* added at callsite 1 */

/* added at callsite 2 */

Figure 9.4 Illustration of function calls without isomorphic memory data-flow analysis
results

we can infer from the value flow graph of foo that p2 6= q2, and the answer to query

is ”no”. Then, in the memo for bar, we search the query-answer tuple 〈x = y ?, no〉

generated at call-site 2, and will find that it has already been associated with a summary

of exposed reads and exposed writes. This means that we have analyzed bar at other

call-sites, call-site 1 in this case, and bar will have the same summary of exposed reads

and exposed writes at call-site 1 and call-site 2. Therefore, without re-analyzing bar, we

can obtain the pair of exposed reads and exposed writes of bar at call-site 2 by retrieving

the associated (*y, *y) from the memo for bar.
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p1

q1

+

1

p2

+

2

q2

+

4

value flow graph of foo

• at callsite 1
- analyze bar

. ask foo “y-x=?”

. foo reply “1”

. memorize < y-x=?, 1 > 

. get summary of bar
( {*y}read, {*x}write )

. associate the summary
with < y-x=?, 1>

- translate the summary to
( {A[1]}read, {A[0]}write ) 

• at callsite 2
- ask foo “y-x=?”
- get answer “2”
- search < y-x=?, 2 > 
in the memo; not found

- memorize < y-x=?, 2 >
- analyze bar

. get summary of bar
( {*y}read, {*x}write )

. associate the summary
with < y-x=?, 2 >

- translate the summary to
( {A[4]}read, {A[2]}write )

bottom-up process

q1-p1=?

1

< y-x=?, 1 >

< y-x=?, 2 > ?

q2-p2=?

2

({*y}read, {*x}write)

not found

( < y-x=?, 1 > )
� ( {*y}read, {*x}write )

memo of bar

( < y-x=?, 2 > )
� ( {*y}read, {*x}write )

({*y}read, {*x}write)

/* added at callsite 1 */

/* added at callsite 2 */

Figure 9.5 Illustration of inefficient queries to value flow graph

After substituting x with p2 (= A + 2), and y with q2 (= A + 4), we can obtained

the exposed reads and exposed writes of the function call to bar at call-site 2, A[2] and

A[4].

Figure 9.3 shows an example that a function has different summaries of exposed reads

and exposed writes at two call-sites. Figure 9.3 is different from Figure 9.1 only in the

value of q2. In Figure 9.3 q2 is equal to A + 2, while in Figure 9.3 q2 is equal to A + 4.

When we reach the call-site 2 in Figure 9.3, we will ask the query ”x = y ?”. After

translating x to p2, and y to q2, we can infer from the value flow graph in Figure 9.3

that p2 = q2 = A+ 2. Therefore, the answer to the query ”x = y ?” is ”yes” at call-site

2 in Figure 9.3.
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In Figure 9.3, we cannot find the query-answer tuple 〈x = y ?, yes〉 in the memo

for bar. This means that the summary of exposed reads and exposed writes of bar at

call-site 2 may1 be different from the summaries at previous call-sites. Therefore, we

must re-analyze bar at call-site 2, and eventually find the summary of exposed reads and

exposed writes to be ({}, *x)2, which is indeed different from (*y, *x), the summary of

exposed reads and exposed writes of foo at call-site 1.

The efficiency of this memoization based inter-procedural memory data-flow analysis

will be affected by the queries we ask. If we do not design the queries carefully, we

may have the situation that a function has different list of query-answer tuples at two

call-sites, even though the function has the same summary of exposed reads and exposed

writes at these two call-sites. For example, if the queries we ask in Figure 9.2 were ”y

- x = ?”, instead of ”x = y ?”, we will have the situation shown in Figure 9.5. Note

that bar still has the same summary of exposed reads and exposed writes at call-site 1

and call-site 2 in Figure 9.5. However, the answer to the query ”y - x = ?” at call-site

1 is ”1”, while the answer to the same query at call-site 2 is ”2”. This will mislead us

to assume bar has different summary of exposed reads and exposed writes at call-site 1

and call-site2, and result in re-analyzing bar at call-site 2.

Like the in-lining based approach, the effectiveness of this inter-procedural memory

data-flow analysis is also affected by the accuracy of the symbolic evaluation of queries.

If the queries generated when analyzing a function can always be resolved at the value

1Next paragraph will explain why it is ”may”, instead of ”must”. It depends on the query.
2Note that, if x and y in bar are equal, *y will be covered by *x. Therefore, the exposed reads of

bar will be empty.
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flow graphs of its ancestor functions, inter-procedural symbolic query evaluation is not

difficult. Inter-procedural symbolic query evaluation will become difficult if the resolution

of the queries generated for analyzing a function cannot be done at its ancestors, but

also need information from its child, sibling, or any other functions.

For this kind of queries, a quick and dirty solution is just to say ”I don’t know”,

and have a conservative summary for the querying function. Although this may affect

the effectiveness of the memory data-flow analysis, it could work very efficiently, and

reasonably well if this kind of queries are rare. Just like other program analysis problems,

we often need to make a trade-off between efficiency and effectiveness.

9.2.2 Improving Versatility and Effectiveness

We can improve the versatility and effectiveness of the memory data-flow analysis in

the following fronts.

• The memory data-flow analysis would be more versatile, if we can eliminate the

limitations discussed in Section 5.2. Among these limitations, indirect function

calls, recursive functions, and functions with variable number of arguments are

common in ordinary programs, and should be considered along with the design of

inter-procedural memory data-flow analysis.

• For the current prototype, we partition a C program into functions and other prede-

fined program regions. We could try more sophisticated approaches to partitioning

a C program. For example, we can try some iterative partitioning method, which
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starts from some fixed partition, and then iteratively refines the partitioning to

minimize the communication between program regions.

• We can potentially improve the accuracy of the memory data-flow analysis by

improving the symbolic evaluation of scalar variables, as shown in Section 8.4, For

example, we can implement full-fledged gated SSA for more accurate evaluation

of scalar variables by taking predicates into consideration. Another direction is to

perform symbolic evaluation beyond scalar variables. Programmers also use array

elements or structure fields to index another array. Without knowing the relation

between the values stored in arbitrary memory locations, we cannot have accurate

memory data-flow analysis results for general applications.

• We can also potentially improve the operations used in memory data-flow analysis.

For example, in Section 6.2.4.4, the current implementation will down grade an

exposed read of a loop to a less accurate memory access descriptor, if the exposed

read has inter-iteration dependence. Potentially, for some special cases, we can

use the dependence distance information to refine the exposed read of the loop, by

excluding those memory accesses which are generated inside the loop.

9.2.3 Evaluation

To evaluate the effectiveness, and to show the real benefit, of memory data-flow

analysis, we need to connect the memory data-flow analysis to the back-end of the tool
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chain in order to form a complete compilation path from C program to hardware, as

illustrated in Figure 3.1.

One possibility is to connect the memory data-flow analysis to a high-level synthesis

tool. Given the memory data-flow analysis result, we can select a set of program regions

for synthesis, based on some cost mode. We can then do source-to-source translation

of these program regions using the native language of the high-level synthesis tool. For

example, we can translate the selected program regions into concurrent tasks, and specify

the communication between these tasks based on the producer-consumer relation between

the corresponding program regions.

For each program region, we also need to specify an inter-process communication

interface for each of its exposed memory accesses. For a Seq-type exposed memory

access, we can specify a FIFO interface for streaming data access. For a Must-type or

May-type exposed memory access, we can allocate a memory buffer, or even use double

buffering, to store the accessed data. For a Doomed -type memory access, we need to

allocate enough memory to hold all the possibly accessed memory objects. This may be

inefficient, which should be reflected in the cost model. If a task accesses the system

memory, we can specify an address generator, or instantiate a DMA, which uses the

base and offset of the corresponding memory access descriptor to determine the starting

address, and the displace to determine the access stride and access count.

This ends the documentation of my works and my thoughts on extracting coarse-

grained data-flow from C programs for the exploitation of coarse-grained function paral-

lelism. Looking back, it is really fascinating to me that researchers have made so much
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effort and so many innovations to map applications onto parallel architectures. We have

come a long way. Looking forward, I believe there is still a long way to go, but, no matter

which road we will take, I believe the journey will be interesting and we will eventually

reach our destination.
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Opẽrationnelle, vol. 22, pp. 243–268, Sept. 1988.

[158] S. Moon, M. W. Hall, and B. R. Murphy, “Predicated array data-flow analysis for
run-time parallelization,” in Proceedings of International Conference on Supercom-
puting, 1998.

[159] P. Tu, “Automatic array privatization and demand-driven symbolic analysis,”
Ph.D. dissertation, University of Illinois, 1995.

[160] “Impact web page.” http://www.crhc.uiuc.edu/impact.

[161] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “MediaBench: A tool for eval-
uating and synthesizing multimedia and communications systems,” in Proceedings
of International Symposium on Microarchitecture, 1997.

[162] “uDraw(graph) web page.” http://www.informatik.uni-
bremen.de/uDrawGraph/en/home.html.

[163] J. K. Ousterhout, Tcl and the Tk Toolkit. Addison-Wesley, 1994.

154



AUTHOR’S BIOGRAPHY

Chien-Wei Li was born in Kaohsiung, Taiwan, on April 24, 1968, to a military family.

His grandparents and parents migrated from Shandong, China to Taiwan in 1949. He

grew up in Taipei, and attended the National Taiwan University, where he obtained the

B.S. degree in 1990, and the M.S. degree in 1992, both in computer science. His M.S.

thesis work is the design and implementation of a distributed file system which essentially

implemented a disk array using commodity personal computer hard disks and token ring

networks. After serving in the Navy from 1992 to 1994, he was enrolled in the computer

science PhD program at the University of Illinois at Urbana-Champaign, and worked as a

research assistant at the Coordinated Science Laboratory, doing researches on the design

of processor array and coprocessor for computing recurrence.

In 1996, he worked as a summer intern at Rockwell Semiconductor Inc., Newport

Beach, California. For the functional verification of the instruction pipeline control of

a digital signal processor, he designed and implemented a test vector generator, which

surprised the designers by catching several obscure bugs. During his second summer

intern, in 1997, he synthesized the instruction pipeline control to investigate the feasibility

of a synthesis based approach for Rockwell’s next generation digital signal processor.

From 1998 to 2001, he worked as a full-time design engineer at Conexant Inc., formerly

Rockwell Semiconductor Inc., doing performance evaluation, micro-architecture design,

functional verification, and RTL design and synthesis of the instruction pipeline control

155



of Conexant’s next generation digital signal processor. In November, 2001, he returned

to school to resume his PhD research.

After defending his PhD thesis, he joined the platform ingredient architecture group

of Intel, at Hillsboro, Oregon, in August, 2005. His general interests are general-purposed

or special-purposed processor design and implementation, compilers, operating systems,

and digital signal processing, digital communication and computer graphics applications.

156


