
Propositional Tree Automata?

Joe Hendrix1, Hitoshi Ohsaki2, and Mahesh Viswanathan1

1 Department of Computer Science, University of Illinois at Urbana-Champaign

Thomas M. Siebel Center for Computer Science, Urbana, IL 61801-2302, USA

{jhendrix,vmahesh}@uiuc.edu
2 National Institute of Advanced Industrial Science and Technology

Nakoji 3–11–46, Amagasaki, Hyogo 661-0974, Japan

ohsaki@ni.aist.go.jp

Abstract. In the paper, we introduce a new tree automata framework,
called propositional tree automata, capturing the class of tree languages
that are closed under an equational theory and Boolean operations. This
framework originates in work on developing a sufficient completeness
checker for specifications with rewriting modulo an equational theory.
Propositional tree automata recognize regular equational tree languages.
However, unlike regular equational tree automata, the class of proposi-
tional tree automata is closed under Boolean operations. This extra ex-
pressiveness does not affect the decidability of the membership problem.
This paper also analyzes in detail the emptiness problem for proposi-
tional tree automata with associative theories. Though undecidable in
general, we present a semi-algorithm for checking emptiness based on
machine learning that we have found useful in practice.

1 Introduction

Tree automata techniques have been commonly used in checking consistency of
tree structures. Typical examples include checking sufficient completeness of al-
gebraic specifications [6] and the consistency of semi-structured documents [16].
These applications benefit from the good closure properties and positive de-
cidability results for tree automata. Recently, there are more advanced appli-
cations including protocol verification [2, 11], type inference [8, 10], querying in
databases [26, 27] and theorem proving [18].

One limitation of tree automata in these applications is that the regularity
of languages is not preserved when closed with respect to congruences. In other
words, when some algebraic laws such as associativity and commutativity are
taken into account, the congruence closure of a regular tree language may no
longer be regular. In applications, this lack of closure has required users of tree
automata techniques to use complicated and specialized ways of encoding proto-
cols [5]. Many extensions of tree automata have been suggested to address this
problem, including multitree automata by Lugiez [19], two-way alternating tree
automata by Verma [28], and equational tree automata by Ohsaki [24].
? Research supported by ONR Grant N00014-02-1-0715, NSF CAREER CCF-0448178,

and NSF CCF-0429639

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4820406?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Equational tree automata are a natural mathematical extension of tree au-
tomata that recognize tree languages modulo an equational theory. Equational
tree automata enjoy several nice properties. In particular, they are weakest ex-
tensions to tree automata that are closed under congruences. More precisely,
when the equational theory is induced by only linear equations (i.e equations
whose left- and right-hand sides are linear terms), such automata recognize ex-
actly the congruence closure of regular languages (Lemma 2, [24]).

Checking properties of tree structures, however, often requires that the mod-
eling language be closed under boolean operations and have efficient algorithms
to check emptiness and inclusion. For example, when checking sufficient com-
pleteness, the main task is to check if the language of terms with defined functions
is contained in the language of reducible terms. Thus, a sufficient completeness
checker relies on a modeling language for trees for which checking inclusion is
decidable. Since inclusion tests are most often implemented by complementation,
intersection and a test for emptiness, these properties also are relevant for this
problem. It is known that for regular equational tree automata with only asso-
ciativity equations, the inclusion problem is undecidable. Moreover, this class of
languages is not closed under intersection and complementation [23].

Motivated by this inadequacy in equational tree automata, Hendrix et al.
proposed in [13] a further extension of tree automata, called propositional tree
automata. These automata define a class of languages that is immediately closed
under all the boolean operations via a straightforward, effective procedure for
each operation. More importantly, they are the mathematically minimal exten-
sion in that the class of propositional tree automata accept the Boolean closure
of languages recognizable by equational tree automata. The conservativeness of
our extension leads to another desirable property: if the equational tree automata
membership problem is decidable for a theory E , then the membership problem
for the propositional tree automata with E is decidable as well.

In [13], Hendrix et al. showed that the sufficient completeness problem for
unconditional and left-linear membership rewrite systems modulo an equational
theory can be reduced to the emptiness problem of propositional tree automata.
Hence, one of the problems we investigate here is the emptiness problem modulo
A- and AC-theories. Based on results for equational tree automata, we know that
the problem is undecidable for propositional automata modulo A-theories. In this
paper, we present a machine learning based semi-decision procedure, that is also
a complete decision procedure under certain regularity conditions. We have found
this algorithm effective in practice. Our algorithm has been implemented in a
tree automata software library, called CETA [14], that can check the emptiness of
propositional tree automata modulo associativity, commutativity, and identity.
CETA is currently used for a next-generation sufficient completeness checker for
Maude, and has already found a subtle bug in the built-in Maude specifications
that can not be verified using the current checker.

This paper is organized as follows. In the next section, we define propo-
sitional tree automata. We show how this framework is closed under Boolean
operations, and also investigate the recognition power relative to equational tree

2



automata. In Section 3, we consider the membership decision problem, and ana-
lyze the complexity results with the comparison to equational tree automata. In
Sections 4 and 5, we explain our approach to the emptiness problem in detail. In
Section 6, we show how our approach can be improved using ideas from machine
learning. Finally, in Section 7, we conclude the paper by addressing the current
software development project.

2 Preliminaries

We assume the reader is familiar with equational logic [6] and tree automata
[7]. We use basic notations of rewriting from [4]. An equational theory is a pair
E = (F,E) in which F is a finite set of function symbols, each with an associated
arity, and E is a set of equations over the function symbols in F .

In the paper we are mainly interested in associative and/or commutative
theory (A∪C-theories for short), that is equational theories whose equations in
E are associativity and/or commutativity axioms for some of the binary function
symbols. Given a binary function symbol f ∈ F , f(f(x, y), z) = f(x, f(y, z)) is
an associativity (A) axiom, and f(x, y) = f(y, x) is a commutativity (C) axiom.
We use FA to denote the symbols in F with an associativity axiom in E, and FC

to be the symbols with a commutativity axiom. Since commutativity alone does
not essentially affect the expressive power of the languages (Theorem 3, [24]), we
assume that each commutative symbol is associative, i.e. FC ⊆ FA. Furthermore
we write AC to denote the set E consisting of both A and C axioms from FA∩FC.

A propositional tree automaton (PTA) A is a tuple (E , Q, φ,∆), consisting
of the equational theory E = (F,E), a finite set Q of states disjoint from the
symbols in F (i.e. F ∩ Q = ∅), a propositional formula φ over Q, and a finite
set ∆ of transition rules whose shapes are in one of the following forms:

(Regular) (Monotone)

f(p1, . . . , pn) → q f(p1, . . . , pn) → f(q1, . . . , qn)

for some f ∈ F with arity(f) = n and p1, . . . , pn, q, q1, . . . , qn ∈ Q. If a PTA only
has regular rules, we say the PTA is regular ; otherwise, it is monotone.

A move relation of A = (E , Q, φ,∆) is a rewrite relation over the set T (F ∪Q)
of terms with respect to →∆ modulo =E , i.e. s→A t if there is a transition rule
l→ r ∈ ∆ and a context C ∈ C(F ∪Q) such that s =E C[l] and t =E C[α]. The
reflexive-transitive closure of →A is denoted by →∗

A.
A term t is accepted by A if t ∈ T (F ) and the complete set of states reachable

from t, reachA(t) = {α | ∃α ∈ Q : t →∗
A α }, is a model of φ. Boolean formulas

are evaluated using their standard interpretations:

P |= α if α ∈ P, P |= φ1 ∨ φ2 if P |= φ1 or P |= φ2, P |= ¬ φ if not(S |= φ )

As an example, we consider the PTA A with the propositional formula
φ = α ∧ ¬β and the transition rules

a → α b → β f(α) → α f(β) → β f(α) → γ f(β) → γ.

Then a is accepted by A, because reachA(a) = {α } and {α } |= α∧¬β. Simi-
larly, f(a) is accepted as reachA(f(a)) = {α, γ } and {α, γ } |= α∧¬β. However,

3



b and f(b) are not accepted, because reachA(b) = {β } and {β } 6|= α∧¬β, and
reachA(f(b)) = {β, γ } and {β, γ } 6|= α∧¬β. Intuitively, the formula α∧¬β
means that A accepts any term reachable to the state α but unreachable to β.

Propositional tree automata are closed under Boolean operations: given A =
(E , Q1, φ1,∆1) and B = (E , Q2, φ2,∆2), then by assuming Q1 ∩ Q2 = ∅, the
intersection L(A) ∩ L(B) is accepted by the PTA (E , Q1 ∪ Q2, φ1 ∧ φ2,∆1 ∪
∆2). The complement of L(A) is accepted by A′ = (E , Q1,¬φ1,∆1), where the
formula φ1 of A is replaced by ¬φ1. Therefore we have the following property
for propositional tree automata.

Lemma 1. The class of propositional tree automata is effectively closed under
Boolean operations. ut

In the standard tree automata framework, the intersection of two tree au-
tomata may have the product of states, which is |Q1|× |Q2| state symbols, while
the intersection of PTA A and B needs |Q1|+ |Q2| state symbols. In compliment-
ing the PTA A, the set of states is unchanged, so the number of state symbols
is |Q1|. But constructing the complement of a tree automaton, may require an
exponential number of state symbols relative to the original.

It is also an easy lemma to show that the class of languages accepted by
propositional tree automata under a certain equational theory is the smallest
class of languages containing languages accepted by standard equational tree
automata with the same equational theory and closed with respect to Boolean
operations over the languages.

Lemma 2. The class of tree languages accepted by PTA with an equational the-
ory E corresponds precisely to the Boolean closure of tree languages accepted by
equational tree automata sharing the equational theory E. ut

One can observe that, given a term t ∈ T (F ) and a propositional tree au-
tomatonA, when t→∗

A α is decidable for any state α ofA, reachA(t) is effectively
computable. This leads to the observation:

Lemma 3. The membership problem for equational tree automata under an
equational theory E is decidable if and only if the membership problem for propo-
sitional tree automata with E is decidable. ut

3 Decidability Results

As we showed in the previous section, the decidability of the membership problem
of propositional tree automata depends upon that of equational tree automata
with the usual definition of acceptance in terms of final states. From previous
work [21, 23], we have the complexity results (in the next table) for regular and
monotone cases with AC- or A-theory:

regular
A-TA

regular
AC-TA

monotone
A-TA

monotone
AC-TA

complexity of
membership P-time NP-complete PSPACE-compl. PSPACE-compl.

4



As an obvious observation, the membership problem for propositional regular
AC-tree automata (abbreviated by Mem-prop-reg-ACTA) seems harder than
the problem for regular AC-tree automata. Here a propositional regular AC-tree
automaton is a regular PTA over AC-theory, and a regular AC-tree automaton
(regular AC-TA for short) corresponds to a regular PTA over AC-theory with a
disjunction φ over atomic states as its propositional formula, i.e. φ = α1∨· · ·∨αn

for some α1, . . . , αn ∈ Q.
As the AC-TA membership problem is NP-complete and the AC-TA non-

membership problem can be converted in linear-time to the PTA membership
problem, the PTA membership problem cannot be in NP unless NP equals co-
NP. We can show that Mem-prop-reg-ACTA is in a higher complexity class.

Lemma 4. Mem-prop-reg-ACTA is in ∆P
2 . ut

In the following, we write A 6P
T B if there is an algorithm M running

polynomial-time for a problem A which can ask, during its computation, some
membership questions about B, where each query for B is answered in a unit
time. The relation A 6P

m B is polynomial-time many-to-one reducibility, and
it is defined as follows: A 6P

m B if there exists a polynomial-time function
f : Σ∗ → Γ ∗ such that for each x ∈ Σ∗, x ∈ A if and only if f(x) ∈ B.

Proof of Lemma 4. Let A = (E , Q, φ,∆) with E = (F,AC). We define the
regular AC-tree automaton BA associated to A. By assuming 〈 , 〉 is a fresh
binary symbol, we let BA = (E ′, P, pacc,∆A) where
E ′ = (F ∪Q ∪ { 〈 , 〉 },AC)

P = { pα, qα | α ∈ Q } ∪ { pacc }
∆A = {α→ qα | α ∈ Q }

∪ { 〈pα, qα〉 → pacc | α ∈ Q }
∪ { f(pα, pβ) → pγ | f(α, β) → γ ∈ ∆ }.

By construction, it is clear that for each t ∈ T (F ) and α ∈ Q, t→∗
A q if and only

if 〈t, q〉 →∗
BA pacc. One should note that BA can be constructed in quadratic-time

to the size of A, and the the membership problem for regular AC-tree automata
(abbreviated by Mem-reg-ACTA) is NP-complete.

For the next step, we take the set S = {α ∈ Q | α appears in φ }. The
computation of S can be deterministically done in the size of φ, denoted by |φ|,
which is the number of occurrences of Boolean variables and Boolean connectives
in φ. Then, for every α ∈ S (e.g. in the lexicographic order), we test by using the
oracle L(BA), whether 〈t, α〉 ∈ L(BA). If 〈t, α〉 ∈ L(BA) is true, α is assigned
to 1; otherwise, α is 0. By letting this Boolean assignment to be the mapping
τ : S → {1, 0}, it is easy to see τ(φ) = 1 if and only if reachA(t) |= φ. The output
value of the Boolean circuit is computable in polynomial-time relative to |φ| [9].

The above algorithm runs totally in polynomial-time with respect to the size
of A. Therefore the deterministic algorithm with an oracle set in NP solves the
original membership problem in polynomially bounded time.

As a corollary of the above proof, Mem-prop-reg-ACTA is

5



– 6P
m-hard for NP (i.e. NP-hard),

– 6P
m-hard for coNP (i.e. coNP-hard).

One can observe that the problem determining, given a term t and a regular
AC-tree automaton A, whether A does not accept t is coNP-complete (abbre-
viated by Inaccept-reg-ACTA). Because, if L ∈ coNP then (L)c ∈ NP, and
thus there exists a polynomial-time function f from (L)c to Mem-reg-ACTA
such that x ∈ (L)c if and only if f(x) is accepted by a regular AC-tree automa-
ton (F,Q, α1 ∨ · · · ∨ αn,∆,AC) with α1, . . . , αn ∈ Q. Then the reduction from
L to Mem-prop-reg-ACTA can be done by taking the propositional regular
AC-tree automaton to be (F,Q,¬(α1) ∧ · · · ∧ ¬(αn),∆,AC).

Moreover, Mem-prop-reg-ACTA is 6P
T -equivalent to Mem-reg-ACTA,

because 6P
m is subsumed in 6P

T and 6P
T is transitive. Then, ∀A ∈ ∆P

2 : A 6P
T

Mem-reg-ACTA, and thus, Mem-prop-reg-ACTA 6P
T Mem-reg-ACTA.

In case of monotone PTA over AC-theory, using the same construction as in
the proof of Lemma 4, we can show that: the membership problem for mono-
tone PTA over AC-theory is in PPSPACE ( = PSPACE). Then, using the fact
that the membership problem for monotone PTA over AC-theory is PSPACE-
complete [21], we can obtain even a stronger result: the membership problem for
monotone PTA over AC-theory (indicated by monotone AC-PTA in the table) is
PSPACE-complete.

The previous proof technique can also be applied to A case. Therefore we
obtain the following table of complexity results for sub-classes of propositional
tree automata:

regular
A-PTA

regular
AC-PTA

monotone
A-PTA

monotone
AC-PTA

complexity of
membership P-time ∆P

2 PSPACE-compl. PSPACE-compl.

4 Emptiness Testing

We now turn out attention to the emptiness problem for PTA — given a PTA

A, does L(A) = ∅? This problem is computationally quite hard. Even in the
free case, testing emptiness of a PTA is exptime-complete. The tree automata
universality problem, i.e. given a tree automaton A over a signature F , does
L(A) = T (F )?, is exptime-complete (Theorem 14, [7]). This problem can be
converted in linear time into the PTA emptiness problem of (L(A))c.

In AC case, equational tree automata are known to be closed under Boolean
operations [26], and the emptiness problem is decidable [23]. It follows that the
class of regular PTA over AC-theory have a decidable emptiness problem. In
contrast to the above, in A case (without commutativity axioms), the emptiness
problem is undecidable:

Theorem 1. The problem of checking whether L(A) = ∅ for regular PTA with
a single associativity axiom is undecidable.

6



Proof. Given a regular equational tree automaton B with a single associative
symbol, it was shown in [24] to be undecidable whether L(B) = T (F ). This
problem is equivalent to checking (L(B))c = ∅. By Lemma 2, the language
(L(B))c is recognizable by a PTA with a single associative symbol. ut

Despite the lack of decidability, we nevertheless are interested in develop-
ing semi-decision algorithms that work well in practice. This is motivated by
the study about the sufficient completeness checking of order-sorted equational
specifications, where we have found equational tree automata techniques to be
quite useful [13]. In applications, thus far we have mainly been interested in
regular PTA, so we will restrict our attention to regular PTA for the remainder
of this section.

Our algorithm for checking emptiness computes the set of states reachable
from terms. The idea of this algorithm is similar to the subset construction used
in complementing regular tree automata in [7], but with extensions to handle
associative and commutative symbols. Though having no guarantee to terminate
for all cases, the algorithm finds an accepting term if a language accepted by an
input PTA is non-empty, and it proves the emptiness if the accepting language
is empty and the PTA satisfies certain regularity conditions.

Let ≡A be the equivalence relation over terms where s ≡A t iff. reachA(s) =
reachA(t). For tree automata, the correctness of subset construction typically
relies on the fact that ≡A is a congruence with respect to contexts. i.e. s ≡A t
implies C[s] ≡A C[t] for all contexts C. However, this fact does not hold in the
case when the root of s or t is an A symbol f and the context C has s or t
immediately within a term labeled by f . Due to this complication, our subset
construction algorithm for A and AC symbols maintains additional information.

We first define the information our subset construction algorithm for the A
and AC case will eventually compute.

Definition 1. Given a PTA A = (E , Q, φ,∆) over the theory E = (F,E), let
derive(A) ⊆ P(Q)× F be the set derive(A) = { (reachA(t), root(t)) | t ∈ TF }.

One should remark that derive(A) is finite, however it is not always com-
putable. Observe that L(A) 6= ∅ if and only if there is a pair (P, f) ∈ derive(A)
such that P |= φ. The undecidability of the emptiness problem of L(A) thus
implies the membership question (P, f) ∈ derive(A) is not decidable either.

For the remainder of this section, let A be a PTA with an A∪C-theory. In this
case, we can obtain derive(A) by iterative computation starting from the empty
set dA(0) , ∅. We then expand dA(0) to dA(1), dA(2), . . . in the inference rules
(defined later) until completion. The mapping dA is simplified to d if A is obvious
in the context.

Before describing the inference rules, we must give a few more definitions.
We first extend reachA to allow sets of states Pi ⊆ Q as constants appearing
in terms. Precisely, the reachable states reachA(f(P1, . . . , Pn)) for a term with
sets as constants is the union of the reachable states for each term in T (F ∪Q)
formed by choosing an element in each state, i.e.

reachA(f(P1, . . . , Pn)) = {β ∈ Q | (∃αi ∈Pi : 1≤ i≤n) f(α1, . . . , αn) →∗
A β} .

7



Moreover, for associative symbols f ∈ (FA−FC), we define a context-free gram-
mar Gf,d(i) associated to d, to capture the variadic nature of associative symbols.

Definition 2. Given a PTA A = (E , Q, φ,∆) with f ∈ FA and set d(i), we
define the flattened grammar for f , Gf,d(i)( ) = (Σf,d(i), Q, , R), where

– Σf,d(i) = {P | ∃(P, g) ∈ d(i) : g 6= f },
– R = { γ := αβ | f(α, β) → γ ∈ ∆ } ∪ { γ := P | P ∈ Σf,Di ∧ γ ∈ P }.

In the paper, we write L(G(α)) to denote a language generated from α if
G is (a mapping to) a grammar with a non-terminal symbol α. The Parikh
image of the language L(G(α)) [25] is denoted by S(G(α)). Namely, S(G(α)) =
{#(w) | w ∈ L(G(α)) }, where # : Σ∗ → N|Σ| maps each string in Σ∗ to the
vector counting the number of occurrences of each terminal symbol. For a subset
P (⊆ Q) of non-terminals, let L(G(P )) denotes the strings appearing only in
the language generated from non-terminals α ∈ P . The mapping for the Parikh
image is denoted by S(G(P )):

L(G(P )) =
⋂

α∈P

L(G(α)) −
⋃

β∈(Q−P )

L(G(β))

S(G(P )) =
⋂

α∈P

S(G(α)) −
⋃

β∈(Q−P )

S(G(β)).

As context-free grammars are not closed under intersection and complemen-
tation, it is essential to denote L(G(P )). Besides, checking the emptiness of
L(G(P )) is undecidable. On the other hand, S(G(P )) is a semi-linear set [25],
because semi-linear sets are closed under Boolean operations, and moreover, the
emptiness problem is decidable.

Now let us define the rules for computing a set d(i+1) given d(i) and starting
with d(0) = ∅:

(1) f 6∈ FA ∪ FC :
(P1, f1), . . . , (Pn, fn) ∈ d(i)

d(i+ 1) = d(i) ] { ( reachA(f(P1, . . . , Pn)), f ) }

(2) f ∈ FA − FC :
P ⊆ Q Σ2+

f,d(i) ∩ L(Gf,d(i)(P )) 6= ∅
d(i+ 1) = d(i) ] { (P, f ) }

(3) f ∈ FA ∩ FC :
P ⊆ Q N>1 ∩ S(Gf,d(i)(P )) 6= ∅

d(i+ 1) = d(i) ] { (P, f ) }

In the first rule, we non-deterministically chose elements (P1, f1), . . . , (Pn, fn)
from d(i). These elements need not be distinct. In the second and third rules,
we write Σ2+

f,d(i) for the strings over Σf,d(i) containing at least two letters, and
N>1 for vectors over natural numbers whose elements sum up to at least 2. We
use the disjoint union operator ] to denote that the newly added elements must
be distinct from the other elements in d(i).

It is relatively straightforward to show that by starting with d(0) and apply-
ing the rules for each operator until completion, we eventually have derive(A).

8



Theorem 2. Let A = (E , Q, φ,∆) be a PTA with E = (F,E) containing only as-
sociativity and commutativity axioms (A∪C-theory). Every chain d(0), d(1), . . .
obtained by applying the rules (1)–(3) until completion satisfies the following
properties:
– the length k of the chain is |derive(A)|, and
– d(k) = derive(A).

Proof. Appendix A. ut

The undecidability of PTA with associative symbols in the regular case crops
up in testing the emptiness ofΣ2+

f,d(i)∩L(Gf,d(i)(P )). The focus of the next section
concerns how to solve this emptiness constraint. It is worth observing that this
subset construction based approach can be generalized for the monotone case as
well, but in this case, the grammar Gf,d(i) has to contain the additional rules of
the form αβ := γδ to account for monotone rules of the form f(γ, δ) → f(α, β).

5 Solving Language Equations for Associativity

Since at present the emptiness testing with monotone rules for associative sym-
bols is beyond the goal of our project, we have developed an approach that
is likely to work well in practice for the regular case with associative symbols.
Our approach rests of an interactive semi-algorithm for each associative sym-
bol f ∈ FA which has access to the mapping d(i) as it is being generated and
performs two actions simultaneously: (1) recursively enumerates pairs (P, f) not
in d(i) for which Σ2+

f,d(i) ∩ L(Gf,d(i)(P )) is non-empty; and (2) applies machine
learning techniques to attempt construction of a family {Mα }α∈Q of determin-
istic finite automata for which L(Mα) = L(Gf,derive(A)(α)) for all α ∈ Q. If the
first action succeeds, the semi-algorithm constructs the next d(i+ 1) from d(i).
If the second action succeeds, we can decide for each subset of P states, the
condition Σ2+

f,d(i) ∩ L(Gf,derive(A)(P )) = ∅ in the rule (2). We then can either
obtain d(i+1) or prove that the conditional rule for f can no longer be applied.

A näıve approach to the first action is quite simple. We recursively enu-
merate the strings in Σ2+

f,d(i) in order of increasing length to form the infi-
nite sequence w1, w2, . . . , and parse each string wi to get the complete set
of states Pi = {α ∈ Q | w ∈ L(Gf,d(i)(α)) }. If (Pi, f) 6∈ d(i), then let
d(i+1) = { (Pi, f) }∪d(i). Handling the second action is more complicated. First,
observe that we can enumerate the set of finite automata in order of increasing
length. Because recursively enumerable sets are closed under finite products, we
can even enumerate finite families of automata {Mα }α∈Q. The difficult part
then lies in checking whether L(Mα) = L(Gf,d(i)(α)) for all α ∈ Q. It is well
known that given a single finite automaton M and context-free grammar G, it
is undecidable whether L(M) = L(G) (Theorem 8.12 (3), [15]). However, this
result is just for a single automaton, and does not imply the undecidability of
our problem. In fact, given a context-free grammar G = (Σ,Q,α0, R) in Chom-
sky normal form, and a family of automata {Mα }α∈Q, the question whether
L(Mα) = L(G(α)) for all α ∈ Q is decidable.

9



The decidability of this problem is a direct consequence of Theorem 2.3 in [3].
Before explaining that result, however, it is necessary to shift our perspective of
context-free grammars from viewing them as collections of production rules to
viewing them as systems of language equations.

Definition 3. Let G = (Σ,Q,α0, R) be a context-free grammar. The system
of equations generated by G is the family of equations {α = Pα }α∈Q in which
for each non-terminal α ∈ Q, Pα is the formula Pα = w1 | · · · | wn where
α = w1, . . . , α = wn are the production rules in R whose left-hand side equals α.

Given a system of equations with non-terminals Q and terminals Σ, a substitu-
tion is a mapping θ : Q → P(Σ∗) associating each state α ∈ Q to a language
θ(α) ⊆ Σ∗. A substitution θ can be applied to a language formula P , yielding a
language Pθ ⊆ Σ∗ which is defined using the axioms:

Pθ =


{ a } if P = a for some a ∈ Σ,
θ(α) if P = α for some α ∈ Q,
Sθ ∪ Tθ if P = (S |T ),
{ st | s ∈ Sθ ∧ t ∈ Tθ } if P = (S . T ).

We may assume associativity of | and . in the above definition. Here S . T
denotes the concatenation of S and T . A substitution θ : Q → P(Σ∗) is a
solution to the system of equations {α = Pα }α∈Q if and only if θ(α) = Pαθ
for all α ∈ Q. It is known that each system of equations generated by G has
a least solution, namely θL : α 7→ L(G(α)), and θL(α) ⊆ ψ(α) for all solutions
ψ : Q→ P(Σ∗) and α ∈ Q. For grammars in Chomsky normal form, we can use
the following theorem to help check whether an arbitrary solution is the least
solution. Note that this is an easy consequence of Theorem 2.3 in [3].

Theorem 3. If G is a context-free grammar in Chomsky normal form, there is
a unique solution θ to the system of equations generated by G in which ε 6∈ θ(α)
for any α ∈ Q. ut

In the theorem ε denotes the empty string. The solution θ in the previous theorem
is the least solution, since G does not contain a production rule of the form
α := β, and so ε 6∈ L(G(α)) for any α ∈ Q.

Given a context-free grammar in Chomsky normal form G and a family of
finite automata {Mα }α∈Q, we can use Theorem 3 to check whether L(Mα) =
L(G(α)) for all α ∈ Q.

Theorem 4. Let G be a context-free grammar in Chomsky normal form with
non-terminals Q. If L(G(α)) is regular for all α ∈ Q, there is a constructable
set of finite automata {Mα }α∈Q for which L(Mα) = L(G(α)).

Proof. We recursively enumerate the families of finite automata {Mα }α∈Q and
check if L(Mα) = L(G(α)) for each α ∈ Q. If we let ψ : Q → P(Σ∗) be the
substitution α 7→ L(Mα), then the problem of checking whether L(Mα) =
L(G(α)) for all α ∈ Q reduces to deciding whether ψ is the unique solution
satisfying Theorem 3. For each equation α = Pα, we can construct the automaton

10



MPα with L(MPα) = Pαψ due to the effective closure of regular languages under
union and concatenation. Moreover, one can check whether L(Mα) = L(MPα)
for each α ∈ Q using the standard approaches for testing the equivalence of finite
automata. So clearly we can check whether ψ is a solution. But it is also trivial
to check whether ε 6∈ L(Mα) for each α ∈ Q. Thus it is decidable whether ψ
satisfies the conditions in Theorem 3. If it does then ψ(α) must equal L(G(α))
for each α ∈ Q. ut

The key problem discussed in the section is determining whether the language
L(G(α)) is regular for each non-terminal α ∈ Q. One would expect this problem
to be undecidable. Surprisingly, despite searching several texts, we could not find
a decidability result for this problem. If L(G(α)) is regular for each non-terminal
α, Theorem 4 shows that we can always show that by generating an equivalent
family of finite automata. The other case is not so clear. Undecidability results
for context-free languages such as Greibach’s theorem (Sec. 8.7 in [15]) do not
apply since they concern single context-free languages and this property con-
cerns every non-terminal in a grammar. Theorem 4’s result itself relied heavily
upon the assumption that every non-terminal generates a regular language. The
same approach does not work to construct a finite automata corresponding to
a single non-terminal in G due to the undecidability of the equivalence problem
for context-free grammars and regular languages.

6 Angluin’s Algorithm

Though technically sound, if one were to implement the semi-algorithm using
the näıve approach outlined above, the efficiency would likely be less than de-
sired. Enumerating finite automata in order of increasing size takes exponential
time relative to the size of the automaton. Each family of finite automata would
need to be checked for equivalence, and this also takes exponential time. Unfor-
tunately, we don’t see a way to improve the exponential time required to check
equivalence, but by applying techniques from learning theory, we decrease the
number of equivalence queries we make so that if the algorithm eventually suc-
ceeds, we will have only required a polynomial number of queries relative to the
size of the accepting family of automata eventually found.

A well-known algorithm in machine learning is Angluin’s algorithm [1] for
learning regular languages with oracles. For an arbitrary language L, this al-
gorithm attempts to construct a finite automaton M such that L(M) = L by
asking questions to two oracles: a membership oracle that answers whether a
string u ∈ Σ∗ is in L; an equivalence oracle that answers whether L(M) = L
and if not, provides a counterexample string u ∈ Σ∗ in the symmetric difference
of L and L(M), i.e. u ∈ L⊕L(M) with L⊕L(M) = (L−L(M))∪ (L(M)−L).
Angluin’s algorithm will terminate only if L is regular. However, given the ap-
propriate oracles, one can attempt to apply it with any language, even languages
not known to be regular. Due to space limitation of the paper, we roughly sketch
below how Angluin’s algorithm works. Readers are recommended to consult [17]
for further details.

11



First we recall the definition of Nerode’s right congruence: given a language
L ⊆ Σ∗, the equivalence relation ∼L over Σ∗ is the relation such that for u, v ∈
Σ∗, u ∼L v if and only if for all w ∈ Σ∗, uw ∈ L ⇐⇒ vw ∈ L. It is known that
a language L is regular if and only if the number of equivalence classes |Σ∗/∼L| is
finite. Angluin’s algorithm maintains a data structure that stores two constructs:
(1) a finite set S ⊆ Σ∗ of strings, each belonging to a distinct equivalence class in
Σ∗/∼L, and (2) a finite setD ⊆ Σ∗ of distinguishing strings which in conjunction
with the membership oracle, allows the algorithm to classify an arbitrary string
into one of the known equivalence classes.

Initially, S = { ε } and D = ∅. Using the membership oracle in conjunction
with S and D, the algorithm constructs a deterministic finite automaton M such
that L(M) = L when S = Σ∗/∼L. The algorithm then queries the equivalence
oracle which either succeeds and we are done, or returns a counterexample which
can be analyzed to reveal at least one additional equivalence class representative
in Σ∗/∼L that is not in S. If L is regular, eventually the algorithm will learn all
of the equivalence classes in Σ∗/∼L. If L is not regular, Σ∗/∼L must be infinite
and so the algorithm will not terminate.

Given a finite family of regular languages {Lα }α∈Q, Angluin’s algorithm
can be easily generalized to simultaneously learn a finite family of automata
{Mα }α∈Q such that L(Mα) = Lα for all α ∈ Q. In this version, there must
be a membership oracle for each language Lα, and an equivalence oracle which
given a family {Mα }α∈Q, returns true if Lq = L(Mα) for all α ∈ Q, or a pair
(α, u) where α ∈ Q, and u is a counterexample in Lα⊕L(Mα). The generalized
algorithm will terminate when Lα is regular for each α ∈ Q.

In the context of this paper, we use Angluin’s algorithm in conjunction with
the flattened grammar Gf,d(i) with terminals Σf,d(i) and non-terminals Q. The
algorithm attempts to construct of a family of finite automata M = {Mα }α∈Q

for which L(Mα) = L(Gf,d(i)(α)). If the process succeeds, we can easily deter-
mine whether Σ2+∩L(Gf,d(i)(P )) = ∅ for each pair (P, f) 6∈ d(i) using standard
techniques for finite automata. If we discover that Σ2+ ∩L(Gf,d(i)(P )) 6= ∅, we
set d(i+ 1) = d(i) ] { (P, f) } and repeat the process for d(i+ 1).

To apply Angluin’s algorithm, we need to provide the membership oracles and
equivalence oracle needed given a context-free grammar G with non-terminals
Q and terminals Σ. The membership oracle for each non-terminal α ∈ Q can
be provided by a context-free language parser that parses a string u ∈ Σ∗ and
returns true if u ∈ L(G(α)). Given the family {Mα }α∈Q, our equivalence oracle
forms the mapping θ : α 7→ L(Mα) and checks if it is the solution to the
equations generated by G satisfying Theorem 3. In case that θ is not the solution,
the equivalence oracle must analyze the mapping to return a counterexample.
The algorithm we use is presented in Fig. 1. We can show the correctness of the
equivalence oracle by stating the following theorem:

Theorem 5. Given a family a context-free grammar G in Chomsky normal form
with non-terminals Q and terminals Σ, and a family {Mα }α∈Q of finite au-
tomata over Σ, the algorithm check equiv in Fig. 1
– returns true if L(G(α)) = L(Mα) for all α ∈ Q; and otherwise,

12



Procedure check equiv

Input G( ) = (Σ, Q, , P ) : a context-free grammar

{Mα}α∈Q : a family of finite automata over Σ

Output true or (α, u) for some α ∈ Q and u ∈ Σ∗

let θ be the substitution α 7→ L(Mα);

for each α ∈ Q do

if ε ∈ L(Mα) then return (α, ε) ;

if L(Mα) 6= Pαθ then

choose u ∈ L(Mα)⊕ Pαθ

if u ∈ L(Mα)⊕ L(G(α)) then return (α, u)

else

for each α := βγ ∈ P and u = st do

if s ∈ L(Mβ)⊕ L(G(β)) then return (β, s) ;

if t ∈ L(Mγ)⊕ L(G(γ)) then return (γ, t)

od ;

od ;

return true

Fig. 1. Checking language equivalence

– returns a pair (β,w) such that w ∈ L(G(β))⊕ L(Mβ).

Proof sketch. Termination of this procedure is straightforward, and it is easy
to verify that when a pair is returned at a return statement, it is indeed a
counterexample. The non-trivial part of this theorem is that if the outer loop
terminates without returning a counterexample, check equiv returns true and
L(G(α)) = L(Mα) is guaranteed. We obtain this property by showing that if
L(Mα) 6= L(G(α)) for some α ∈ Q and the outer loop is executed, the body of
the loop is guaranteed to return a pair. See Appendix A.5 for details. ut

When equipped with context-free language parsers as membership oracles
and chec equiv as an equivalence oracle, Angluin’s algorithm accomplishes the
same goal as the simple enumeration-based algorithm used to prove Theorem 4.
However, the approach in this section is much more efficient. In searching for
a solution, the enumeration algorithm used in Theorem 4 checks equivalence of
every family of finite automata in order of increasing size. The total number of
equivalence checks will be exponential relative to the size of the final output.
Since each equivalence check itself takes exponential time, the enumeration al-
gorithm double exponential relative to the size of the final output. In contrast,
Angluin’s algorithm makes a number of oracle queries that is polynomial [1] to
the size of the final output. The equivalence oracle itself takes exponential time,
and so the total time of the new algorithm is a single exponential relative to the
size of the final output.

13



7 Concluding Remarks

The tree automata techniques developed in this paper are not only for theoretical
use. The emptiness checking procedure explained in the previous two sections has
been implemented in the CETA library [14]. This software provides the function
for emptiness checking with not only associativity and commutativity axioms,
but identity axioms as well. The identity axiom for a function symbol f with a
unit symbol c is the equations of the forms f(c, x) = x and f(x, c) = x. In CETA,
identity axioms in a propositional tree automaton are converted into the rewrite
rules f(c, x) → x and f(x, c) → x in conjunction with a specialized Knuth-
Bendix style completion procedure modulo associativity and commutativity that
preserves the set of reachable states for each term.

Though still a prototype, CETA has been integrated to work with the reach-
ability analysis tool ACTAS [22], as well as the next generation sufficient com-
pleteness tool for Maude. In future project we plan to apply the new ACTAS for
the tree automata based verification of infinite state systems including network
protocols. In the Maude sufficient completeness tool, we use CETA by posing the
sufficient completeness problem of an equational specification as a PTA empti-
ness problem. Sufficient completeness is a property of equational specifications
that guarantees that enough equations have been specified so that defined op-
erations are fully specified on all relevant data. We already experienced that
CETA is useful in this context, as it allowed the checker to find a subtle bug
in Maude involving lists formed from an associative operator, and also to ver-
ify the correctness of the bug-fix by proving that the language accepted by the
corresponding tree automaton is empty, where the automaton often contains a
theory with associativity.

References

1. D. Angluin: Learning Regular Sets from Queries and Counterexamples, Information
and Computation 75, pp. 87–106, Elsevier, 1987.

2. A.Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuellar,
P. Hankes Drielsma, P.-C. Heám, O. Kouchnarenko, J. Mantovani, S.Mödersheim,
D. von Oheimb, M. Rusinowitch, J. Santiago, M. Turuani, L. Viganò and
L. Vigneron: The AVISPA Tool for the Automated Validation of Internet
Security Protocols and Applications, Proc. of 17th CAV, Edinburgh (UK), LNCS
3576, pp. 281–285, Springer-Verlag, 2005.

3. J. Autebert, J. Berstel and L. Boasson: Context-Free Languages and Push-Down
Automata, Handbook of Formal Languages 1, pp. 111–174. Springer-Verlag, 1997.

4. F. Baader and T. Nipkow: Term Rewriting and All That, Cambridge University
Press, 1998.

5. Y.Boichut, P.-C. Heám and O. Kouchnarenko: Automatic Verification of Security
Protocols Using Approximations, technical report RR-5727, INRIA, October 2005.

6. A.Bouhoula, J.P. Jouannaud and J. Meseguer: Specification and Proof in Member-
ship Equational Logic, TCS 236, pp. 35–132, Elsevier, 2000.

7. H.Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison and
M. Tommasi: Tree Automata Techniques and Applications, incomplete draft, 2005.
Available at http://www.grappa.univ-lille3.fr/tata

14



8. P.Devienne, J.-M. Talbot and S. Tison: Set-Based Analysis for Logic Programming
and Tree Automata, Proc. of 4th SAS, Paris (France), LNCS 1302, pp. 127–140,
Springer-Verlag, 1997.

9. D.-Z. Du and K. Ko: Theory of Computational Complexity, John Wiley and Sons,
2000.

10. J.P. Gallagher and G. Puebla: Abstract Interpretation over Non-Deterministic Fi-
nite Tree Automata for Set-Based Analysis of Logic Programs, Proc. of 4th PADL,
Portland (USA), LNCS 2257, pp. 243–261, Springer-Verlag, 2002.

11. T. Genet and F. Klay: Rewriting for Cryptographic Protocol Verification, Proc. of
17th CADE, Pittsburgh (USA), LNCS 1831, pp. 271–290, Springer-Verlag, 2000.

12. S. Ginsburg: The Mathematical Theory of Context-Free Languages, McGraw-Hill,
1966.

13. J. Hendrix, H.Ohsaki and J. Meseguer: Sufficient Completeness Checking with
Propositional Tree Automata, technical report UIUCDCS-R-2005-2635, Depart-
ment of Computer Science, University of Illinois at Urbana-Champaign, 2005.
Available at http://texas.cs.uiuc.edu/

14. J. Hendrix: CETA: A Library for Equational Tree Automata, Department of Com-
puter Science, University of Illinois at Urbana-Champaign, 2006. Software available
under GPL license at http://texas.cs.uiuc.edu/ceta/

15. J.E. Hopcroft and J.D. Ullman: Introduction to Automata Theory, Languages, and
Computation, Addison-Wesley Publishing Company, 1979.

16. H. Hosoya, J. Vouillon and B.C. Pierce: Regular Expression Types for XML, Proc.
of 5th ICFP, Montreal (Canada), SIGPLAN Notices 35(9), pp. 11–22, ACM, 2000.

17. M. Kearns and U. Vazirani: An Introduction to Computational Learning Theory,
MIT Press, 1994.

18. N. Klarlund and A. Møller: MONA Version 1.4 User Manual, BRICS Notes Series
NS-01-1, Department of Computer Science, University of Aarhus, 2001.

19. D. Lugiez: Multitree Automata That Count, TCS 333, pp. 225–263, Elsevier, 2005.
20. M. Nederhof: Practical Experiments with Regular Approximation of Context-Free

Languages, Computational Linguistics 26(1), pp. 17–44, 2000.
21. H. Ohsaki, J.-M. Talbot, S. Tison and Y.Roos: Monotone AC-Tree Automata, Proc.

of 12th LPAR, Montego Bay (Jamaica), LNAI 3855, pp. 337–351, Springer-Verlag,
2005.

22. H. Ohsaki and T. Takai: ACTAS : A System Design for Associative and Commuta-
tive Tree Automata Theory, Proc. of 5th RULE, Aachen (Germany), ENTCS 124,
pp. 97–111, Elsevier, 2005.

23. H. Ohsaki and T. Takai: Decidability and Closure Properties of Equational Tree
Languages, Proc. of 13th RTA, Copenhagen (Denmark), LNCS 2378, pp. 114–128,
Springer-Verlag, 2002.

24. H. Ohsaki: Beyond Regularity: Equational Tree Automata for Associative and Com-
mutative Theories, Proc. of 15th CSL, Paris (France), LNCS 2142, pp. 539–553,
Springer-Verlag, 2001.

25. R. Parikh: On Context-Free Languages, JACM 13(4), pp. 570–581, 1966.
26. H. Seidl, T. Schwentick and A. Muscholl: Numerical Document Queries, Proc. of

22nd PODS, San Diego (USA), pp. 155–166, ACM, 2003.
27. I. Yagi, Y. Takata and H. Seki: A Static Analysis Using Tree Automata for XML

Access Control, Proc. of 3rd ATVA, Taipei (Taiwan), LNCS 3707, pp. 234–247,
Springer-Verlag, 2005.

28. K.N. Verma: Two-Way Equational Tree Automata for AC-Like Theories: Decid-
ability and Closure Properties, Proc. of 14th RTA, Valencia (Spain), LNCS 2706,
pp. 180–197, Springer-Verlag, 2003.

15



A Proofs

In this section we suppose A = (E , Q, φ,∆) to be a PTA with E = (F,E) con-
taining only associativity and commutativity axioms. Before proving Theorem 2,
we need to introduce a number of lemmata, related to free, associative, and as-
sociative and commutative symbols.

A.1 Free Symbols

It is straightforward to show by induction on proof strutures, the following lemma
about terms whose root is a free symbol:

Lemma 5. Given terms f(t1, . . . , tn), u ∈ T (F ∪ Q), if f is a free symbol and
f(t1, . . . , tn) =E u then u must have the form f(u1, . . . , un) where ti =E ui for
all i ≤ n. ut

This lemma then leads to the following:

Lemma 6. Given terms f(t1, . . . , tn), u ∈ T (F ∪ Q), if f is a free symbol and
f(t1, . . . , tn) →∗

A u then either: (1) u is a state in Q or (2) it has the form
f(u1, . . . , un) where ti →∗

A ui for all i ≤ n.

Proof. If f(t1, . . . , tn) →A u, then there is a chain with the form

f(t1, . . . , tn) =E C1[l1] →A C1[α1] =E C2[l2] →A · · · · · ·Cn[αn] =E u.

Our proof is by induction on this chain. In the base case, f(t1, . . . , tn) =E u. By
Lemma 5, u must have a form satisfying (2).

In the inductive case, there is a context C and rule f(α1, . . . , αn) → α ∈ ∆
such that f(t1, . . . , tn) =E C[f(α1, . . . , αn)] and C[α] →∗

A u. If the context C is
the empty context 2, then C[α] = α. Since no rule in ∆ or equation in E can
apply to α, it follows that u = α. Otherwise, C is not the empty context. It
follows by Lemma 5 that root(C[l]) = f . It also follows that C[α] must have the
form f(v1, . . . , vn) with ti =E vi or ti →A vi for all i ≤ n. Together this implies
that the conditions of our lemma are satisfied for C[α] so by induction u has one
of the required forms. ut

Lemma 7. Given a term f(t1, . . . , tn) ∈ T (F ) where f ∈ F a free symbol, If
we let Pi = reachA(ti) for all i ≤ n, then

reachA(f(t1, . . . , tn)) = reachA(f(P1, . . . , Pn)).

Proof. If q ∈ reachA(f(t1, . . . , tn)), then f(t1, . . . , tn) →∗
A q. As f(t1, . . . , tn) 6=E

q, there must be a term u ∈ T (F ) where f(t1, . . . , tn) →∗
A u→A q. By Lemma 6,

u must have the form f(u1, . . . , un) where ti →∗
A ui for all i ≤ n. Since u

must also match the left-hand side of a rule at the right position, then there
must be a rule of the form f(p1, . . . , pn) → q where u = f(p1, . . . , pn) and

16



ti →∗
A pi for all i ≤ n. But this implies that q ∈ reachA(f(P1, . . . , Pn)). Thus

q ∈ reachA(f(t1, . . . , tn) implies q ∈ reachA(f(P1, . . . , Pn)), i.e.

reachA(f(t1, . . . , tn)) ⊆ reachA(f(P1, . . . , Pn)).

On the other hand, as Pi = reachA(ti), ti →∗
A pi for each pi ∈ Pi and i ≤ n.

If f(p1, . . . , pn) → q ∈ ∆, then f(t1, . . . , tn) →∗
A q. So

reachA(f(P1, . . . , Pn)) ⊆ reachA(f(t1, . . . , tn)).

ut

A.2 Associative Symbols

We now turn our attention to proving several lemmata dealing with associative
symbols. In the subsection, let d(i) be a subset of P(Q) × F , and let f be an
associative symbol. We first define contexts that are considered maximal relative
to a given set of terms.

Definition 4. Given terms t1, . . . , tn ∈ T (F ), a context C with n-holes is called
a maximal f -context for the term C[t1, . . . , tn] when C ∈ T ({f,21, . . . ,22}) and
root(ti) 6= f for all i ≤ n.

First, the following lemma is an easy consequence of the fact that the only
has axiom in E involving f is a single associativity axiom.

Lemma 8. Given terms C[t1, . . . , tn], u ∈ T (F ) with n ≥ 2 and C a maximal
f-context, if C[t1, . . . , tn] →∗

A u, then either u is a state in Q or u has the
form f(u1, u2) where for some index i < n, there are contexts C1, C2 such that
C1[t1, . . . , ti] →∗

A u1 and C2[ti+1, . . . , tn] →∗
A u2. ut

Lemma 9. Let t1, . . . , tn be terms in T (F ) such that (root(tj), reachA(tj)) ∈
d(i) and root(tj) 6= f for all j ≤ n. For each state α ∈ Q, if C[t1, . . . , tn] →∗

A α
for a maximal f-context C, then α :=Gf,d(i) reachA(t1) . . . reachA(tn).

Proof. We prove this by induction on n. In the base case, n = 1 and so the
context C = 2. Thus C[t1, . . . , tn] = t1. By the definition of Gf,d(i), since
(root(t1), reachA(t1)) ∈ d(i) and root(t1) 6= f , there is a production rule α :=
reachA(t1) in Gf,d(i). Thus α :=Gf,d(i) reachA(t1).

In the inductive case, n ≥ 2 and so C is non empty. So if C[t1, . . . , tn] →∗
A u,

there must be a final rewrite step

C[t1, . . . , tn] →∗
A f(β, γ) →A α

where f(β, γ) → α is a rule in A. By Lemma 8, it follows that for some j < n,
there are contexts C1, C2 such that C1[t1, . . . , tj ] →∗

A β and C2[tj+1, . . . , tn] →∗
A

γ. By induction

β :=Gf,d(i) reachA(t1), . . . , reachA(tj), and

γ :=Gf,d(i) reachA(tj+1), . . . , reachA(tn).

Thus by the definition of Gf,d(i), α :=Gf,d(i) reachA(t1) . . . reachA(tn). ut

17



Lemma 10. Let t1, . . . , tn be terms in T (F ) such that (root(tj), reachA(tj)) ∈
d(i) and root(tj) 6= f for all j ≤ n. For each state α ∈ Q, if α :=Gf,d(i)

reachA(t1), . . . , reachA(tn), then C[t1, . . . , tn] →∗
A α for each maximal f-context

C.

Proof. We prove this by induction on n. In the base case, n = 1, and so
C[t1, . . . , tn] = t1. From the definition of Gf,d(i), α ∈ reachA(t1). Thus by the
definition of reachA, t1 →∗

A α.
In the inductive case, n ≥ 2 and so C is non empty. Since α :=Gf,d(i)

reachA(t1) . . . reachA(tn), there must be a production rule α := βγ in Gf,d(i)

such that for some j < n,

β :=Gf,d(i) reachA(t1), . . . , reachA(tj), and

γ :=Gf,d(i) reachA(tj+1), . . . , reachA(tn).

By induction for contexts C1, C2,

C1[t1, . . . , tj ] →∗
A β and C2[tj+1, . . . , tn] →∗

A γ.

Since α := βγ is in Gf,d(i), there must be a rule f(β, γ) → α in A. Thus,

C[t1, . . . , tn] =E f(C1[t1, . . . , tj ], C2[tj+1, . . . , tn]) →∗
A α.

ut

The following corollary is immediate from the definitions of reachA and
L(Gf,d(i)(P )) using Lemmata 9 and 10.

Corollary 1. Let t1, . . . , tn be terms in T (F ) such that (root(tj), reachA(tj)) ∈
d(i) and root(tj) 6= f for all j ≤ n. For each set P ⊆ Q,

reachA(C[t1, . . . , tn]) = P ⇐⇒ (reachA(t1), . . . , reachA(tn)) ∈ L(Gf,d(i)(P )).

ut

A.3 Associative and Commutative Symbols

We now turn our attention to proving several lemmata dealing with associative
and commutative symbols. In the subsection, let d(i) be a subset of P(Q)× F ,
let f be an associative and commutative symbol, and let C[t1, . . . , tn] ∈ T (F ) be
a term such that n ≥ 1, root(ti) 6= f for all i ≤ n, and C ∈ T ({f,21, . . . ,2n})
is a context only containing the AC symbol f with n holes. We begin with two
definitions related to removing the equations from a tree automaton.

Definition 5. Given a PTA A = (E , Q, φ,∆) with an associative and commu-
tative symbol f ∈ FA ∩FC, let Af,A denote the PTA formed from A by removing
the commutativity axiom f(x, y) = f(y, x) from the equational theory used in A,
i.e., Af,A = (Ef,a, Q, φ,∆) where Ef,a = (F,E − { f(x, y) = f(y, x) }). ut

18



Definition 6. Given a PTA A = (E , Q, φ,∆), let A∅ denote the PTA formed by
removing all equations from E, i.e., A∅ = (E∅, Q, φ,∆) where E∅ = (F,∅). ut

We first note the following observation that is an obvious consequence of
Lemma 2 in [24] since associativity and commutativity equations are linear.

Lemma 11. For each term t ∈ T (F ) and state α ∈ Q, if t→∗
A α, then there is

a term u ∈ T (F ) such that t =E u and u→∗
A∅

α. ut

We next note the following lemma which is an easy consequence of the fact
that f is associative and commutative.

Lemma 12. If C[t1, . . . , tn] =E u, then u must be of the form C ′[u1, . . . , un] with
C ′ a maximal context containing the AC symbol f and n holes and ui =E tπ(i)

for each i where π : [1, n] → [1, n] is a permutation. ut

Now we are able to prove the main technical result of this subsection. This
is the AC counterpart to Lemma 9 and Lemma 10 in the previous subsection.

Lemma 13. For each state α ∈ Q,

C[t1, . . . , tn] →∗
A α ⇐⇒ #(reachA(t1), . . . , reachA(tn)) ∈ S(Gf,d(i)(α)).

Proof. If C[t1, . . . , tn] →∗
A α, then by Lemma 11, there is a term u ∈ T (F ) such

that C[t1, . . . , tn] =E u and u →∗
A∅

α. By Lemma 12, u must have the form
C ′[u1, . . . , un] where ui =E tπ(i) for some permutation π : [1, n] → [1, n]. Since
u→∗

A∅
α, clearly C ′[u1, ,̇un] →∗

Af,A
α. Thus by Lemma 9,

α :=Gf,P(Q)×F
reachAf,A(u1) . . . reachAf,A(un).

As reachAf,A(ui) ⊆ reachA(tπ(i) for all i ≤ n,

α :=Gf,d(i) reachA(tπ(1) . . . reachA(tπ(n)).

It then follows that reachA(t1) . . . reachA(tn) ∈ S(Gf,d(i)(α)).
On the other hand, if #(reachA(t1), . . . , reachA(tn)) ∈ S(Gf,d(i)(α)), then

there must be a permutation π : [1, n] → [1, n] such that

α :=Gf,d(i) reachA(tπ(1), . . . , reachA(tπ(n)).

It then follows by Lemma 10 that C[tπ(1), . . . , tπ(n)] →∗
Af,A

α. As C[t1, . . . tn] =E
C[tπ(1), . . . tπ(n)] and →∗

Af,A
⊆→∗

A, C[t1, . . . , tn] →∗
A α. ut

The following corollary is immediate from the definitions of reachA and
S(Gf,d(i)(P )) using Lemma 13.

Corollary 2. For each set P ⊆ Q,

reachA(C[t1, . . . , tn]) = P ⇐⇒ #(reachA(t1), . . . , reachA(tn)) ∈ S(Gf,d(i)(P )).

ut

19



A.4 Putting It Together

Now that we have proven most of the preliminary results, we are ready to begin
addressing Theorem 2. This theorem is most easily seen as the consequence of a
couple results. First, it helps to make the following fairly obvious observations:

Lemma 14. Let d(i) ⊆ derive(A). For each pair (P, f) ∈ d(i), there is a term t
such that root(t) = f and reachA(t) = P .

Proof. By the assumption that d(i) ⊆ derive(A) and the definition of derive(A).
ut

Lemma 15. Given an symbol f ∈ F , and a set d(i) ⊆ derive(A), if u is a
string in Σ∗

f,d(i) with length n, then there are terms t1, . . . , tn ∈ T (F ) where
u = reachA(t1), . . . , reachA(tn) and root(ti) 6= f for all i ≤ n.

Proof. Let u = P1 . . . Pn. By the definition of Σf,d(j), there must be a function
symbol gj 6= f for each j ≤ n such that (Pj , gj) ∈ d(i). As d(i) ⊆ (A), there
must be terms t1, . . . , tn ∈ T (F ) such that reachA(tj) = Pj and root(tj) = gj

for each j ≤ n. ut

We now are ready to begin proving the key two lemmata required to show
Theorem 2.

Lemma 16. If d(i) ⊆ derive(A), and d(i+1) is obtained by applying one of the
rules (1) – (3) to d(i), then d(i+ 1) ⊆ derive(A).

Proof. We prove this by considering separately each of the possible rules (1) –
(3) that may be used to form d(i+ 1).

First we consider the case where rule (1) is used with a free symbol f ∈ F :

f 6∈ FA ∪ FC :
{ (P1, f1), . . . , (Pn, fn) } ∈ d(i)

d(i+ 1) = d(i) ] { ( reachA(f(P1, . . . , Pn)), f ) }
.

By Lemma 14, for each pair (Pj , fj) ∈ d(i) with j ≤ n, there is a term tj ∈
T (F ) such that reachA(tj) = Pj . By Lemma 7, (reachA(f(P1, . . . , Pn)), f) =
(reachA(f(t1, . . . , tn)), f). It follows that (reachA(f(t1, . . . , tn)), f) ∈ derive(A),
and thus d(i+ 1) ⊆ derive(A).

Now we consider the case where rule (2) is used with an associate symbol
f ∈ F :

f ∈ FA − FC :
P ⊆ Q Σ2+

f,d(i) ∩ L(Gf,d(i)(P )) 6= ∅
d(i+ 1) = d(i) ] { (P, f ) }

.

As Σ2+
f,d(i) ∩ L(Gf,d(i)(P )) 6= ∅, there must be a string u ∈ Σ∗

f,d(i) such that
|u| ≥ 2 and u ∈ L(Gf,d(i)(P )). Let n = |u|. By Lemma 15, there must be terms
t1, . . . , tn ∈ T (F ) such that u = reachA(t1), . . . , reachAA(tn) and root(ti) 6=
f for all i ≤ n. Let C be a context formed from f with n holes. As u ∈
L(Gf,d(i)(P )), by Cor. 1, reachA(C[t1, . . . , tn]) = P . Since n ≥ 2, C 6= 2 and

20



thus root(C[t1, . . . , tn) = f . It then follows that (P, f) ∈ derive(A), and thus
d(i+ 1) ⊆ derive(A).

Finally we consider the case where rule (3) is used with an AC symbol f ∈ F :

f ∈ FA ∩ FC :
P ⊆ Q N>1 ∩ S(Gf,d(i)(P )) 6= ∅

d(i+ 1) = d(i) ] { (P, f ) }
.

As N>1 ∩ S(Gf,d(i)(P )) 6= ∅, there must be a string u ∈ Σf,d(i) with length at
least 2 such that #(u) ∈ S(Gf,d(i)(P )). Let n be the length of u. By Lemma 15,
there must be terms t1, . . . , tn ∈ T (F ) such that u = reachA(t1), . . . , reachAA(tn)
and root(ti) 6= f for all i ≤ n. Let C be a context formed from f with n holes.
As u ∈ S(Gf,d(i)(P )), by Cor. 2, reachA(C[t1, . . . , tn]) = P . Since n ≥ 2, C 6= 2

and thus root(C[t1, . . . , tn) = f . It then follows that (P, f) ∈ derive(A), and thus
d(i+ 1) ⊆ derive(A). ut

Lemma 17. If d(i) ⊆ P(Q)× F and none of the rules (1) – (3) can be applied
to d(i), then for all t ∈ T (F ), (reachA(t), root(t)) ∈ d(i).

Proof. We prove this by noetherian induction on the subterm relation. Specifi-
cally, we try to prove that (reachA(t), root(t)) ∈ d(i) assuming that if s ∈ T (F )
is a subterm of t, then (reachA(s), root(s)) ∈ d(i). By the restrictions placed on
the axioms of E , root(t) must be either a free symbol, an associative symbol,
or an associative-commutative symbol. We consider each of these possibilities
separately.

If root(t) ∈ F is free, we can assume that t is of the form f(t1, . . . , tn). Ob-
serve that if f is a constant, then n = 0. By induction (reachA(tj), root(tj)) ∈
d(i) for all j ≤ n. This would suggest that we could apply rule (1) using
(reachA(tj), root(tj) in place of the pair (Pj , fj) appearing at the top of the
rule if (reachA(f(P1, . . . , Pn)), f) 6∈ d(i). However, by assumption the rule can-
not be applied, and by Lemma 7, reachA(f(P1, . . . , Pn)) = reachA(f(t1, . . . , tn)).
As t = f(t1, . . . , tn), we have that (reachA(t), root(t)) ∈ d(i).

If root(t) is associative and not commutative, then we can assume that t is of
the form C[t1, . . . , tn] where C ∈ T ({f,21, . . . ,2n}) is a maximal f -context only
containing the associative symbol root(t) with n holes, and root(ti) 6= root(t)
for all i ≤ n. Let f = root(t), and let P = reachA(C[t1, . . . , tn]). By our in-
duction hypothesis, (reachA(ti), root(ti)) ∈ d(i) for each i ≤ n, and therefore
reachA(ti) ∈ Σf,d(i) (since root(ti) 6= f). By Cor. 1, reachA(t1), . . . , reachA(tn) ∈
L(Gf,d(i)(P )). Since root(C[t1, . . . , tn]) = f , C 6= 2, and n ≥ 2. Thus,

reachA(t1), . . . , reachA(tn) ∈ Σ2+
f,d(i) ∩ L(Gf,d(i)(P )).

This would imply that rule (2) could be applied to form d(i+1) = d(i)]{ (P, f) }
if (P, f) 6∈ d(i). Since by assumption the rule cannot be applied, (P, f) ∈ d(i).

Finally, if root(t) is associative and commutative, then we can assume that t is
of the form C[t1, . . . , tn] where C ∈ T ({f,21, . . . ,2n}) is a maximal context only
containing the AC symbol root(t) with n holes, and root(ti) 6= root(t) for all i ≤

21



n. Let f = root(t), and let P = reachA(C[t1, . . . , tn]). By our induction hypothe-
sis, (reachA(ti), root(ti)) ∈ d(i) for each i ≤ n, and therefore reachA(ti) ∈ Σf,d(i)

(since root(ti) 6= f). By Cor. 2, #(reachA(t1), . . . , reachA(tn)) ∈ S(Gf,d(i)(P )).
Since root(C[t1, . . . , tn]) = f , C 6= 2, and n ≥ 2. Thus,

#(reachA(t1), . . . , reachA(tn)) ∈ N>1 ∩ S(Gf,d(i)(P )).

This would imply that rule (3) could be applied to form d(i+1) = d(i)]{ (P, f) }
if (P, f) 6∈ d(i). Since by assumption no rule can be applied, (P, f) ∈ d(i).

Finally we can conclude with the proof of Theorem 2:

Theorem 2. Let A = (E , Q, φ,∆) be a PTA with E = (F,E) containing only as-
sociativity and commutativity axioms (A∪C-theory). Every chain d(0), d(1), . . .
obtained by applying the rules (1)–(3) until completion satisfies the following
properties:
– the length k of the chain is |derive(A)|, and
– d(k) = derive(A).

Proof. Since |P(Q)× F | is finite and each application of a rule (1) – (3) to
a set d(i) results in a set d(i + 1) with one additional element, any chain
d(0) d(1) d(2) . . . obtained by applying the rules until completion must be fi-
nite. Let d(0) d(1) . . . d(k) be a chain resulting from applying the rules until
termination. As d(0) = ∅, d(0) ⊆ derive(A). By Lemma 16, d(i) ⊆ derive(A)
implies d(i + 1) ⊆ derive(A). Therefore by induction on i, d(i) ⊆ derive(A) for
all i ≤ k. In particular, d(k) ⊆ derive(A). However as no rule can be applied to
d(k), Lemma 17 implies that derive(A) ⊆ d(k). Thus d(k) = derive(A). More-
over, since d(0) = ∅ and each step in the chain d(i) to d(i+1) adds a single new
element, k = |d(k)| = |derive(A)|. ut

A.5 Proof of Theorem 5

It is easy to verify that the procedure terminates and that the pair returned
by each return statement is indeed a counterexample. The non-trivial part of
this theorem is that if the outer loop terminates without returning a pair,
check equiv should return true. This property is obtained by showing that if
L(Mα) 6= L(G(α)) for some α ∈ Q executed by the outer loop, then the body
of the loop is guaranteed to return a pair.

The string u ∈ Σ∗ chosen in the body is in the symmetric difference of L(Mα)
and Pαθ. If u ∈ L(Mα)⊕ L(G(α) (or vice versa), then the body returns (α, u).
Otherwise, if u ∈ L(Mα) ⇐⇒ u ∈ L(G(α)), then then u ∈ Pαθ ⊕ L(G(α)).

Let ψ be the substitution α 7→ L(G(α)). Since ψ is a solution to the equations
generated by G, L(G(α)) = ψ(α) = Pαθ. So u ∈ Pαθ ⊕ Pαψ. We will show that
the inner for loop must return a value when u ∈ Pαθ − Pαψ — the proof in the
other case when u ∈ Pαψ − Pαθ is similar.

If the rules in G whose left-hand-side is α are α := β1γ1, . . . , α := βnγn, then
Pα is of the form Pα = β1γ1 | · · · | βnγn. So u ∈ Pαθ implies that u ∈ (βiγi)θ for

22



some i. Likewise, as u 6∈ Pαψ and βiγiψ ⊆ Pαψ, it easily follows that u 6∈ (βiγi)ψ.
Since u ∈ (βiγi)θ, we can partition it into strings s, t ∈ Σ∗ such that u = st,
s ∈ θ(βi), and t ∈ θ(γi). In addition, since u = st and u 6∈ (βiγi)ψ, either
s 6∈ ψ(βi) or t 6∈ ψ(γi). Thus by the definition of ψ, there is a rule α := βiγi in
P and strings s, t ∈ Σ∗ such that u := st and either s ∈ L(Mβi)− L(G(βi)) or
t ∈ L(Mγi) − L(G(γi)). A similar argument in this case where u ∈ Pαψ − Pαθ
shows that the inner loop will always return a pair when executed.

23


