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Abstract. The lack of available identity information in attribute-based
trust management systems complicates the design of the audit and in-
cident response systems, anomaly detection algorithms, collusion detec-
tion/prevention mechanisms, and reputation systems taken for granted
in traditional distributed systems. In this paper, we show that as two
entities in an attribute-based trust management system interact, each
learns one of a limited number of virtual fingerprints describing their
communication partner. We show that these virtual fingerprints can be
disclosed to other entities in the open system without divulging any
attribute or absolute-identity information, thereby forming an opaque
pseudo-identity that can be used as the basis for the above-mentioned
types of services. We explore the use of virtual fingerprints as the basis of
Xiphos, a system that allows reputation establishment without requiring
explicit knowledge of entities’ civil identities. We discuss the trade-off be-
tween privacy and trust, examine the impacts of several attacks on the
Xiphos system, and discuss the performance of Xiphos in a simulated
grid computing system.

1 Introduction

Open systems are distributed computing systems in which resources are shared
across organizational boundaries. Common examples of open systems include
grid computing networks, corporate virtual organizations, disaster response net-
works, joint military task forces, and peer-to-peer systems. Open systems that
make authorization decisions based on the identities of the participants in the
system cannot be truly open, because they suffer from scalability limitations as
the number of authorized users increases. Recent research has addressed this
problem by proposing various attribute-based trust management systems for use
in these environments (e.g., [2, 3, 4, 5, 6, 14, 17, 23, 25]). These types of sys-
tems provide an effective and scalable means for making access control decisions
in truly open systems, but depending on their deployment model, may have
the side effect of virtually eliminating absolute identity information. In systems
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where a user’s attributes are bound to a single identity certificate, this is ob-
viously not the case. However, in more flexible systems where users may have
multiple “identity” certificates or attributes represented by credentials that are
not linked to their other credentials (e.g., each attribute is a separate X.509 key
pair) the traditional notion of identity becomes blurred.

This lack of absolute identity can be a double-edged sword in that it in-
creases system scalability while also increasing user anonymity; this may not
be appropriate in all application domains. In traditional distributed computing,
user identity forms the basis of audit and incident response systems, anomaly de-
tection algorithms, collusion detection/prevention mechanisms, and reputation
systems. As such, this functionality either does not exist or exists only in limited
form in current open system proposals. In this paper, we take a first step towards
addressing this problem by describing a method for the linking and correlation of
multiple identities used by the same entity in attribute-based trust management
systems. We then show how these identities can be turned into virtual finger-
prints which can be exchanged between entities in the system without leaking
sensitive attribute or civil-identity information. Virtual fingerprints act much
like fingerprints in the physical world in that they allow multiple actions initi-
ated by an entity to be linked without knowing the civil-identity of their owner.
Virtual fingerprints can be exchanged between multiple users, thereby forming a
solid foundation upon which the types of functionality previously described can
be constructed.

To illustrate the promise of the use of virtual fingerprinting in open sys-
tems, in this paper, we show how virtual fingerprints can form the basis of the
Xiphos reputation system. Reputation systems will be a necessary part of the
open systems of the future, as current research trends are beginning to embrace
distributed theorem proving approaches to access control [1, 26]. In these types
of systems, proof fragments and access hints are collected from various parties
in the network and used to construct proofs of authorization. Accepting proof
fragments or access hints from malicious entities could have dire consequences,
including potentially unbounded searches for non-existent credentials and the
risk of being denied access to a resource which one is, in fact, authorized to
access. We show how virtual fingerprinting can be used as the foundation of a
reputation system that will allow entities in an open system to gain confidence
in information provided by others (including proof hints) without compromising
each entity’s desire to protect his or her sensitive credentials.

The remainder of this paper is organized as follows. Section 2 overviews
the difficulty of establishing identity in attribute-based trust management sys-
tems, describes how virtual fingerprints can be derived from the information
collected during interactions in these systems, and discusses some target appli-
cation domains for virtual fingerprinting. In Section 3, we describe the design
of a reputation system in which reputations are aggregated by using the virtual
fingerprinting mechanism described in Section 2. We also discuss several deploy-
ment models for this reputation system, each of which allows for a different
balance of privacy and completeness of available information. In Section 4, we



discuss the privacy implications of our reputation system and examine the effects
of several attacks against the Xiphos system. Section 5 presents an evaluation of
our reputation system in a simulated grid computing network to demonstrate its
utility and quantify its costs of deployment. We then overview related work in
Section 6 and present our conclusions and directions for future work in Section 7.

2 Identity in Open Systems

In this section, we discuss the difficulty of establishing absolute user identities in
open systems by examining an attribute-based access control technology known
as trust negotiation. We then describe how the information acquired during trust
negotiation sessions (or interactions in any other attribute-based trust manage-
ment framework) can be used to determine one of a limited number of virtual
fingerprints which can uniquely identify another entity in the system. Lastly, we
address the types of systems in which virtual fingerprints can be used.

2.1 Attribute-Based Access Control

The fact that resources are shared across organizational boundaries makes access
control a difficult task in open systems. Access lists based on identity do not
scale as the size of the network increases. Consider, for example, the case that a
particular research laboratory would like to allow free access to its digital library
to all computer science graduate students at accredited universities. An identity-
based access control list for the digital library would contain tens of thousands
of entries identifying students at a great many institutions. Keeping this list up
to date would be a full-time job, as the maintainer would need to repeatedly
poll each institution to find out whether any students have entered or left their
computer science graduate program. Various proposals for attribute based trust
management systems have been proposed in the literature (e.g., [2, 3, 4, 5, 6, 14,
17, 23, 24, 25]) which alleviate this problem, but do so at the cost of virtually
eliminating identity information.

As an example, consider the technique known as trust negotiation [24] in
which peers exchange policies and credentials in a bilateral and iterative manner
to gradually establish trust in one another. Let us now consider the details of
a trust negotiation which could take place in the previously-described digital
library scenario. When a user Alice wishes to access the digital library, she first
sends a resource access request to the digital library. The library then returns
Alice an access policy which states that she must demonstrate proof of ownership
of (1) a student ID issued by an accredited university and (2) a department
affiliation certificate indicating that she is a member of the computer science
department at that institution. Now, say that Alice has these credentials, but
is only willing to disclose them to members of the Better Business Bureau with
a certified privacy policy in place. Rather than disclose these credentials, Alice
sends the digital library a policy to this effect. The library responds to this with
credentials proving both of these assertions, as it considers them to be public



knowledge. Alice is then satisfied and discloses the needed credentials to the
library, which grants her access.

In this example, it is clear that Alice can gain access to the digital library
without ever disclosing her true identity; the library learns only that Alice is a
computer science graduate student at an accredited university. In the remainder
of this section, we show how the information obtained during a trust negotiation
(or an interaction in any other type of attribute-based trust management system)
can be used to form one of a limited set of pseudo-identities which uniquely
identify the remote party.

2.2 Virtual Fingerprinting in Open Systems

Each entity, A, in an attribute-based trust management system has a finite
set of credentials, CA = {c1, . . . , cn}, which attest to her various attributes.
Although these credentials might never explicitly reference A’s civil identity (for
example, they could be X.509 credentials that assert only that their owner has
a given attribute), we claim that in practice, CA completely describes A. In
trust management systems such as PolicyMaker [5], KeyNote [4], QCM [11],
Cassandra [2], and various trust negotiation proposals (e.g., [3, 14, 17, 25]),
each credential is issued to exactly one owner in order to avoid the group key
revocation problem. Thus, if an entity E can prove ownership of some c ∈ CA,
then necessarily E = A.

Since entities may consider some of their credentials to be private, CA is in
most cases not globally available as a basis of comparison for identity estab-
lishment. However, as entities in these systems interact, they collect valuable
information about one another even if no civil identity information is explicitly
disclosed. Specifically, as entities A and B interact, B learns DB

A ⊆ CA. We will
call sets such as DB

A descriptions.

Definition 1. A description is a subset of the credentials owned by one entity
which is learned by another entity in the system. We will use the notation DB

A

to represent the description of A known by B. It is important to note that for
B to accept DB

A as a description of A, A must demonstrate proof of ownership
of each credential c ∈ DB

A to B.1 The collection of all such descriptions will be
denoted by D.

Over the course of multiple interactions, B can use previously obtained de-
scriptions to recognize when he is communicating with a familiar entity. For
this to be useful, however, the number of useful descriptions which an entity
can use must be small. We assert that this is indeed the case; even though an
entity can have an infinite number of self-issued or other low-value credentials,
only credentials issued by trusted third parties will be useful in gaining access to
the resources shared in an open system. It should not be possible to obtain an
1 The only exception to this rule occurs when c is a delegated credential. In this case,
DB

A should contain both c and the long-term credential from which c was derived.
For obvious reasons, proof of ownership of the long-term credential is not required.



unlimited number of such credentials (e.g., a user should not be able to obtain
two drivers licenses), which implies that the set of useful descriptions that can
be assumed by any entity will necessarily be finite.

Although descriptions are useful for allowing one entity to recognize another
entity with whom she has interacted previously, privacy concerns restrict de-
scriptions from being shared between entities. This follows from the fact that
entities may consider some of their attributes to be sensitive: even though B
learns some credential c which belongs to A, this does not mean that any arbi-
trary entity in the system has the right to learn c. To allow certain information
contained within a description to be shared between entities, we introduce the
notion of virtual fingerprints.

Definition 2. The virtual fingerprint associated with a description DB
A =

{c1, . . . , ck} is defined as FB
A = {h(c1), . . . , h(ck)}, where h(·) is a cryptographic

hash function. The collection of all such virtual fingerprints will be referred to
as F.

The collision-resistance property of hash functions allows virtual fingerprints
to be used as pseudo-identifiers in the same way as descriptions. For instance,
if SHA-1 is used to derive virtual fingerprints, we expect that each person on
earth would need to hold approximately 247 credentials before a collision would
be found, given that the current population is about 6.2 billion < 233 people.
Therefore, if two virtual fingerprints overlap, their corresponding descriptions
overlap, and thus the two virtual fingerprints both describe the same entity. Since
virtual fingerprints mask out the details of a user’s credentials, they are more
likely candidates for allowing inferred pseudo-identity information to be shared
between entities. It must be noted, however, that an entity may have multiple
disjoint virtual fingerprints and thus even if two entities have interacted with this
entity, they may not be able to agree on this fact based on virtual fingerprints
alone. However, the limited number of virtual fingerprints used by an entity, A,
in the system (which follows directly from the limited number of descriptions
of A) implies that over time, factions of entities who known A by each of her
virtual fingerprints will form. Clearly, virtual fingerprints can be used to link and
correlate the actions of users in an open system without revealing their private
attribute data to entities who do not know it already.

It should be noted that virtual fingerprinting cannot be used in conjunction
with all types of trust management systems. For example, virtual fingerprints
cannot be derived in systems that use anonymous credentials (e.g., [8, 9, 7]) or
hidden credentials [12], since the credentials belonging to one entity are never
fully disclosed to other entities in the system. In addition, the systems discussed
in [8, 9, 7] were designed to prevent actions taken at disparate points in an open
system from being linked, and thus prevent any form of distributed auditing.
However, there are many types of systems that could benefit from the scala-
bility of attribute-based trust management systems, but require the ability to
audit transactions in the system so that users can be held accountable for their
actions. Examples of these types of systems include grid computing systems,



critical infrastructure management networks, joint military task forces, and dis-
aster management coordination centers. Virtual fingerprinting can pave the way
for the adoption of attribute-based trust management systems in these types of
high-assurance environments by increasing user accountability and auditability.
In the remainder of this paper, we substantiate this claim by describing how
virtual fingerprints can form the basis of a reputation system for use in systems
such as those described in [2, 3, 4, 5, 6, 14, 17, 23, 25].

3 The Xiphos Reputation System

Recent research indicates that reputation systems will play an important role
in the peer-to-peer and ad-hoc networks of the future (e.g., [10, 13, 18, 22]). In
the context of open systems, reputation systems are of increasing importance
as distributed theorem proving approaches to access control begin to gain trac-
tion [1, 26], since accepting proof fragments or access hints from malicious entities
could have dire consequences. However, the lack of concrete identity information
in attribute-based access control systems makes designing the reputation systems
needed a difficult task.

In this section, we present Xiphos, a reputation system based on the virtual
fingerprints described in Section 2.2. The reputation update equations used by
Xiphos are similar to those used in other proposals and could easily be changed
as better reputation update mechanisms are proposed; in fact, many of the equa-
tions presented in this section are adaptations of those presented by Liu and Is-
sarny in [18] altered to work within our virtual fingerprint collection and analysis
framework. Thus, our primary contribution is not the reputation update equa-
tions themselves, but rather the framework though which entities can record,
index, and exchange virtual fingerprints obtained during their interactions in a
privacy-preserving manner to formulate reputations for entities whose identities
are never fully disclosed.

3.1 Local Information Collection

As entities in an attribute-based trust management system interact, they learn
valuable information regarding one another’s virtual fingerprints. Formally, as
entities interact, they can store tuples of the form T = 〈F ∈ F, r ∈ R, τ ∈ T〉,
where F is a virtual fingerprint, r is a rating, and τ is the timestamp of the
entity’s most recent interaction with the entity described by virtual fingerprint
F . We assume that the set of all possible timestamps is T and that reputation
ratings come from some set R of possible values. To simplify our discussion, in
this paper we use R = [−1, 1]. However, in practice it will often be the case that
ratings are vector quantities (i.e., [−1, 1]n) that allow an entity to rate several
aspects of her interaction with another entity (e.g., both the service quality and
recommendation quality). All operations carried out on reputation ratings in this
paper can be carried out on vectors, so we use n = 1 in our formulas without
loss of generality.



Over time, it is possible that some entity B will learn several non-overlapping
virtual fingerprints describing another entity A. Thus, after a tuple 〈FB

A , r, τ〉 is
inserted into B’s database, B must condense the set of all overlapping tuples.
That is, B will remove the set of all tuples T = {T | T.F ∩ FB

A 6= ∅} from his
database and insert a single tuple T ′ which is defined as follows:

T ′ =

〈 ⋃

T∈T
T.F ,

∑
T∈T T.r ∗ ϕ(T.τ)∑

T∈T ϕ(T.τ)
, τnow

〉
(1)

In the above equation, τnow is the current timestamp and ϕ(·) is a function
which computes a factor in the interval [0, 1] which is used to scale the impact
of older ratings. One possible definition of ϕ(·) fades ratings linearly over some
duration d, though other definitions are certainly possible:

ϕ(t) =
{

1− τnow−t
d when τnow − t > 0,

0 otherwise. (2)

Equations 1 and 2 form the basis of a local reputation system in which any
entity can track her interaction history with any other entity in the absence of
concrete identity information; this history can then be used as a predictor of
future success. In the following subsections, we describe three ways in which
entities can exchange portions of their local histories to form a system-wide
reputation system.

3.2 A Centrally Managed Reputation System

Information Collection The simplest types of reputation systems to reason
about are systems in which a central server is responsible for storing and ag-
gregating reputation values, such as the eBay feedback system. In a centralized
deployment of Xiphos, the server will store tuples of the form T = 〈FA ∈ F, lc ∈
[0, 1],FB ∈ F, r ∈ R, τ ∈ T〉 where FA is a virtual fingerprint of the entity re-
porting the rating, lc is the server’s linkability coefficient for the entity whose
virtual fingerprint is FA, FB is the virtual fingerprint of the entity being rated
(as observed by the rater), r is the rating, and τ is the timestamp at which this
rating was logged. Prior to discussing the calculation of reputation values based
on these tuples, we must first explain (1) how the server learns FA and (2) the
mechanism through which lc is calculated.

For several reasons discussed later in this paper, it is important that the
server records one of the rater’s virtual fingerprints along with each reputation
rating registered in the system. One way for this to occur is for the rater to sim-
ply reveal several credentials to the server while reporting his reputation rating.
Alternatively, the rater could carry out an eager trust negotiation [24] with the
reputation server prior to submitting his reputation ratings. An eager trust ne-
gotiation begins by one party disclosing his public credentials to the other party.
Subsequent rounds of the negotiation involve one party disclosing any credentials
whose release policies were satisfied by the credentials that they received during



previous rounds of negotiation. This process continues until neither entity can
disclose more credentials to the other.

In Xiphos, linkability coefficients are used to weight the reputation rating
submitted by a particular entity based on how much the rater is willing to re-
veal about herself. To this end, the function γ : D → [0, 1] is used to establish
the linkability coefficient associated with a description (as defined in Section 2)
learned about an entity. The exact definition of γ(·) will necessarily be domain-
specific, but several important properties of γ(·) can be easily identified. First,
low-value (e.g., self-signed) credentials should not influence the linkability coef-
ficient associated with a description. This prevents an entity from establishing a
large number of descriptions that can be used with high confidence. Second, γ(·)
should be monotonic; that is, an entity should not be penalized for showing more
credentials, as doing so increases the ease with which her previous interaction
history can be traced. Third, to help prevent ballot-stuffing attacks, the sum of
the linkability coefficients derived from any partitioning of a description should
not be greater than the linkability coefficient derived from the entire descrip-
tion. More formally, given a description D ∈ D, ∀P = {p1 ⊆ D, . . . , pk ⊆ D}
such that ∩p∈P p = ∅, γ(D) ≥ ∑

p∈P γ(p). We discuss and evaluate a particular
γ(·) function which meets these criteria Section 5.4.

The linkability coefficient is a good metric by which to establish a “first im-
pression” of an entity, as a high linkability coefficient implies that an entity’s
previous interactions can be more easily tracked. This becomes especially mean-
ingful if the reputation system itself stores vector quantities and can look up a
“rating confidence” value for a particular user (such as the RRep value stored
in [18]). Entities with higher linkability coefficients are more likely to have many
meaningful rating confidence scores reported by other entities which could be
used to weight their contributions to the system. In this paper, we simply use
the linkability coefficient as an estimate of an entity’s rating confidence.

Given that the server stores tuples in the above mentioned format, we now
discuss how reputation ratings are updated. Assume that after interacting with
some entity, the server determines that the tuple T = 〈F , lc,F ′, r, τ〉 should be
inserted into the database. Prior to inserting this tuple, the database first purges
all prior reputation ratings reported by the entity described by F regarding the
entity described by F ′. That is, the set of tuples Told = {T | (T.FA ∩ F 6= ∅) ∧
(T.FB∩F ′ 6= ∅)} are deleted from the database.2 At this point, T can be inserted.
Note that user updates replace older reputation ratings rather than scaling them
since users locally time-scale their own ratings according to Equation 1.

Query Processing Having discussed how information is stored at the reputa-
tion server, we now describe how queries are processed. If an entity is interested
in obtaining the reputation of some other entity whose virtual fingerprint is F ,
he submits a query of the form FQ ⊆ F to the reputation server. To compute
the reputation for the entity with the virtual fingerprint FQ, the server must

2 Alternatively, these tuples could be saved for historical purposes, but marked as
expired.



first select the set of relevant tuples TQ = {T | T.FB ∩ FQ 6= ∅}. If any subset
T A

Q of the tuples in TQ have overlapping FA components, these tuples will be
removed from TQ and replaced with a summary tuple of the form:

〈 ⋃

T∈T A
Q

T.FA,max ({T.lc | T ∈ T A
Q }),

⋃

T∈T A
Q

T.FB ,

∑
T∈T A

Q
T.r ∗ ϕ(T.τ)

∑
T∈T A

Q
ϕ(T.τ)

, τnow

〉

(3)
This duplicate elimination prevents the server from overcounting the rating

of a single entity A who knows the subject of the query by more than one
disjoint virtual fingerprint, each of which overlaps FQ. Let T ′Q denote the results
of performing this duplicate elimination process on TQ. Given T ′Q, the reputation
associated with the query FQ is defined by the following equation:

rQ =

∑
T∈T ′Q(T.lc ∗ ϕ(T.τ) ∗ T.r)
∑

T∈T ′Q(T.lc ∗ ϕ(T.τ))
(4)

In short, the reputation returned by the server is the weighted average reputa-
tion rating of entities matching the virtual fingerprint FQ, where each reputation
rating is weighted based on both the linkability coefficient of the rater (which
acts as an estimator of her rating confidence value) and the age of the reputation
rating.

The curious reader might wonder why the set intersection operator is used to
define TQ = {Ti | Ti.FB ∩FQ 6= ∅} as the set of matching tuples for a query FQ

rather than the transitive closure of this operator. While in a network with only
honest participants, the transitive closure would give more accurate reputation
ratings, it would cause incorrect results to be calculated if cheaters are present
in the system. As an illustration, consider a system in which some entity E (with
virtual fingerprint FE) is known to have an excellent reputation. A malicious
entity M (with virtual fingerprint FM ) could then inflate his reputation by
having some third party N (with virtual fingerprint FN ) report a rating for the
“entity” whose virtual fingerprint is FE ∪ FM , thereby causing the tuple T =
〈FN , lcN ,FE∪FM , r, τ〉 to be inserted into the central database. If the transitive
closure of the set intersection operation was then used to define TQ, any searches
for M ’s reputation would then also include all ratings for E, thereby inflating
M ’s reputation. For this reason, we use only set intersection for query matching,
as entities can submit queries derived from virtual fingerprints which they have
verified to belong to another entity. This further justifies the use of the linkability
coefficient as a first impression of another entity, since as the linkability coefficient
increases towards 1.0, the information included in TQ approaches completeness.

3.3 A Fully Distributed Reputation System

We now describe a fully distributed deployment of Xiphos. In this model, en-
tities calculate reputation ratings for other entities by querying some subset of



Fig. 1. A simple super-peer network (super nodes shown in black).

the other entities in the system and aggregating the results from their local
databases. As in the centralized model, queries are of the form FQ ∈ F. Each
node queried selects from their local database all tuples which overlap FQ (i.e.,
T = {T | T.F ∩ FQ 6= ∅}) and then creates a summary tuple of the form
T = 〈rQ, τ〉 to return to the querier. If only a single tuple T ′ matches the query,
then its r and τ components are used to form T , otherwise Equation 1 is used
to generate a tuple whose r and τ components are used.

Upon receiving each of these summary tuples, the querier then augments
them by adding the linkability coefficient that she has associated with the entity
which sent the result. This linkability coefficient can either be cached from a
previous interaction, the result of an eager trust negotiation initiated by the
querier, or calculated from a set of credentials sent by the other entity along
with the summary tuple. Given this collection of augmented summary tuples,
TQ, the querier then computes the reputation rating of the entity whose virtual
fingerprint is characterized by FQ as follows:

rQ = ωlocal ∗ rlocal
Q + (1− ωlocal) ∗

∑
T∈TQ

(T.lc ∗ ϕ(T.τ) ∗ T.r)∑
T∈TQ

(T.lc ∗ ϕ(T.τ))
(5)

The term ωlocal ∈ [0, 1] represents a weighting factor which allows the querier
to determine how much of the reputation rating that she calculates should be
based on her previous interactions with the subject of a query (denoted by
rlocal
Q ) versus the reputation ratings reported by other entities in the system.

For instance, using ωlocal = 0 would mean that the reputation ratings provided
by other entities will be used exclusively and any local reputation score will be
ignored. In addition to choosing the weight given to the reputations returned by
others, users must manually balance the time they spend querying other nodes
with the accuracy of the reputation rating that they hope to derive.

3.4 A Reputation System for Super-Peer Network Topologies

The final deployment model which we consider is a reputation system built on
top of a super-peer network. Super-peer networks [27] are peer-to-peer networks



which leverage the heterogeneity of nodes in the network by using nodes with
higher bandwidths and faster processors to act as intelligent routers which form
the backbone of the network. In these networks, a small number of so-called
“super nodes” act as gateways for a large number of standard peers. Figure 1
shows a simple super-peer network topology.

In this model, each super node is assumed to have complete information
regarding the virtual fingerprint to reputation bindings stored by each of its
client peers; that is, each super node acts as a centralized server as described
in Section 3.2. Given a query FQ, a super node then uses Equations 3 and 4
to compute a local reputation rating, rS

Q, based on the ratings provided by its
client peers. However, in addition to calculating this local reputation rating,
the super node can also include the reputations reported by other super nodes.
After reissuing the query to each other super node and obtaining TQ, the set of
resulting summary tuples calculated using Equations 3 and 4, the super node
computes the aggregate reputation in response to the query FQ as follows:

rQ = ωS ∗ rS
Q + (1− ωS) ∗

∑
T∈TQ

(T.lc ∗ ϕ(T.τ) ∗ T.r)∑
T∈TQ

(T.lc ∗ ϕ(T.τ))
(6)

As in the fully distributed model, ωS is a weighting factor which determines
how much the reputation rating calculated from the super node’s local peer
group is weighted in comparison to the reputation ratings returned by all of the
other super nodes.

4 Discussion

In this section, we discuss the privacy concerns associated with each deployment
model of the Xiphos system. We see that Xiphos is in fact a double-edged sword,
and that system architects must make explicit choices regarding balancing pri-
vacy preservation and completeness of available information. We then discuss
several well-known attacks on reputation systems and describe their effects on
Xiphos.

4.1 Privacy Considerations

Though reputation systems will form a necessary part of the open systems of the
future, it is important to note that the information that they provide comes at
a cost. In particular, there is a very clear trade-off between preservation of user
privacy and the completeness of information obtained through the reputation
system. We now identify the threats to user privacy which manifest themselves
in each of the deployment models presented in Section 3.

Possible Privacy Violations We have identified three types potential pri-
vacy violations which may occur as a result of the Xiphos system: leakage of
interaction history, discovery of groups of entities with similar attributes, and



inference of particular attribute information. Interaction history leaks occur in
the centralized and super-peer deployments of the Xiphos system any time that
one entity registers a reputation rating for another. This action allows the super
peer or central server to infer that the rater and the ratee have interacted in
the past. In the fully distributed deployment model, anytime that A answers a
query issued by B, B can infer that A has interacted with the subject of his
query. However, leakage of interaction history occurs in every other reputation
system that we are aware of, thus we do not discuss it further here.

The second type of privacy violation occurs as a central server or super peer
collects large amounts of reputation tuples. Recall that these tuples are of the
form T = 〈FA, lc,FB , r, τ〉. After building a substantial database, a malicious
server can select all tuples whose FB component overlaps a given FQ exactly. We
now claim that the FA components of these matching tuples determine a set of
entities in the server’s view of the open system who have similar attributes. The
justification of this claim comes from the fact that each entity described by some
Ti.FA was able to determine the same virtual fingerprint for the entity matching
FQ. Thus, each of these entities was able to unlock each of the credentials used
to derive FQ, a feat which requires that each of these entities be able to satisfy
the same set of credential release policies. Because these release policies are not
always strict conjunctions, we cannot determine that each matching Ti.FA has
the same set of defining attributes, though we can claim that these entities are
similar in some respects. Note that the similarity of these entities is directly cor-
related with the restrictiveness of the release policies protecting the credentials
used to derive FQ; more restrictive policies lead to more related entities.

The third type of privacy violation allows certain entities in the system to
infer attributes possessed by another entity in the system. In the centralized and
super-peer models, this attack is an extension of the previously discussed attack.
Consider the case where a server S knows the description DS

A of a node A. Let
us also assume that some c ∈ DS

A is protected by a release policy, p, which is
also known to S (e.g., as a result of a previous interaction). S can then form a
query FQ = {h(c)} and process it using the technique described above, thereby
learning the virtual fingerprints of a group of entities who can satisfy p. Since
S knows p, he then knows not only that each entity that matched his query is
related somehow, but also that they satisfy p; that is, S can infer the attributes
which cause the similarities between the nodes which match his query.

A Balancing Act To an extent, these attacks can be mitigated by choosing
an appropriate deployment model for the Xiphos system. The centralized model
makes these attacks easier to carry out, as the server has complete information
regarding the reputation tuples registered with the system. By using a super-peer
deployment, the information flow is restricted greatly. Both the group discovery
and attribute inference attacks are limited to occurring within a single peer
group, since super nodes do not have access to each others’ databases. Thus, if
client nodes restrict their information sharing to super nodes whom they can
trust (e.g., super nodes with Better Business Bureau memberships or TRUSTe-



issued privacy policies), then they can have some assurance that the super node
will not abuse their partial information to carry out these attacks. Limiting the
size of peer groups managed by each super node further restricts these attacks.
It should also be noted that using the super-peer deployment model does not
sacrifice the completeness of information available, as ratings registered by every
peer are still included as the contribution of each super node is folded into the
reputation rating calculated using Equation 6. However, unless each super node
has a roughly equivalent number of members, ratings may be biased towards
the opinions of entities at super nodes with fewer members. Additionally, unless
super nodes coordinate to ensure that there is no overlap between their respective
peer groups, the accuracy of the reputation ratings calculated using this method
may suffer, as malicious peers could register ratings at multiple super nodes.

These attacks can be further limited by using the fully distributed deploy-
ment model, as no entity in the system has any sort of complete information.
Each entity is restricted to querying a limited number of other entities in the sys-
tem, as querying each node in turn becomes inefficient as the size of the network
grows. Additionally, when issuing the query FQ, an entity A cannot be sure if the
responding entities have matched all of FQ or simply some F ′ ⊂ FQ. This im-
plies that A must carry out the group discovery or attribute inference attacks by
issuing queries FQ where |FQ| = 1 to ensure that all matches returned are total
matches. Note also, that A will most likely need to know c where FQ = {h(c)},
as otherwise she is simply guessing that FQ is an “interesting” virtual finger-
print, which may often be a difficult task. This implies that A is very likely to
know p, the release policy for c, as she satisfied p to learn c in the first place. In
this respect, the group discovery attack is eliminated, as A is forced to carry out
the stronger attribute inference attack. The attribute inference attack is itself
no more feasible than trying to determine whether the attribute a attested to by
c is possessed by each node in the network directly (e.g., by means of an eager
negotiation or another resource access request protocol), thus this attack is no
more feasible with Xiphos in place than it would have been without it. This
implies that attacks which cause the aforementioned privacy violations can be
virtually eliminated by using the fully distributed deployment model, though at
the cost of losing the completeness of reputation information.

In addition to leveraging the privacy versus completeness trade-off which ex-
ists in the Xiphos system, another possible avenue for the prevention of privacy-
related attacks involves the use of obligations. Obligations are requirements that
can be attached to personal information in certain types of trust management
systems. For instance, the owner of a digital medical record might attach an obli-
gation to that record requiring that her health care provider send her an email
any time this record is shared (e.g., while filing a referral to another physician).
In these types of systems, it would be possible for entities to attach obligations
to their credentials which limit the ways that other entities can disclose virtual
fingerprints including hashes of these credentials. For example, an entity could
indicate that any virtual fingerprint including a hash of her Department of En-
ergy security clearance credential may only be released to a reputation server



operated by the U.S. government. These types of obligations allow users to reap
the benefits of the Xiphos reputation system while still maintaining some con-
trol over their private information. We expect that most entities will allow at
least some “interesting” subset of their credential hashes to be included in vir-
tual fingerprints because they will likely interact with other entities who require
the ability to obtain their reputation rating prior to interaction. Note that in
most systems obligations are not guaranteed to be enforced, thus a malicious
entity could still leak “unauthorized” virtual fingerprints to reputation services.
However, a malicious entity could also post the actual credentials associated
with these virtual fingerprints in an open forum, so the threat of leaked virtual
fingerprints is minimal, at best.

4.2 Attacks and Defenses

There are several types of well-known attacks that can be launched against
reputation systems in hopes of biasing the reputations reported by the system.
In this section, we address two such attacks and discuss their effects on the
Xiphos system. We also discuss two attacks on the Xiphos system itself.

Whitewashing One common attack against reputation systems is whitewash-
ing, which occurs when a user sheds a bad reputation by establishing a new
identity in the system. In some systems, this is as simple as reconnecting to the
network to obtain a new node identifier, while in others it may involve estab-
lishing a new pseudonym (e.g., email address) by which one is known to the
system. In Xiphos, reputation ratings are associated with virtual fingerprints.
As discussed in Section 2, each user has only a limited number of virtual finger-
prints, which are uniquely determined by the set of credentials that she possesses.
Obtaining new identities thus reduces to establishing new virtual fingerprints,
which requires that a user obtain all new credentials, as any overlap will link
this entity to old ratings in the system. If users are routinely required to uti-
lize multiple credentials, this process is likely to be time consuming and involve
multiple certificate authorities, thereby making whitewashing a very impractical
attack for habitual cheaters.

Ballot-stuffing In reputation systems which either do not track the identity
used to register a rating or allow for easily obtaining multiple identities, it is
possible for an entity to register multiple ratings for a single entity and thus
have their opinion overcounted. In Xiphos, the virtual fingerprinting system can
be used to limit the number of claims that an entity can register with the system.
Entities have only a finite number of disjoint virtual fingerprints which can be
used to register claims and thus can only register a finite number of reputation
ratings for other entities in the system. In addition to capping the number of
ratings that an entity can register, the virtual fingerprint system also limits the
benefits of registering multiple ratings. A properly designed γ(·) function will
assign lower linkability coefficients to ratings associated with a small rater virtual



fingerprint than it will to ratings associated with large rater virtual fingerprints.
This means that given a properly designed γ(·) function, an entity’s influence on
the overall rating of another entity will be less if she registers multiple ratings
using a large number of small virtual fingerprints than it would have been if
she had registered only a single rating using the union of each smaller virtual
fingerprint. Such a γ(·) function is discussed in Section 5.4.

Exploiting ϕ(·) One attack against Xiphos itself involves exploiting the use of
the ϕ(·) function. Recall that ϕ(·) is used to weight the contribution of a single
tuple to the overall reputation calculated for a query. In the centralized and
super-peer deployment models, entities in the system may try to increase their
influence by repeatedly updating their ratings for other entities in the system
to keep them current. In the absence of certified transactions and synchronized
clocks, there is little that can be done to prevent this problem. However, this
attack will likely have little influence on the ratings calculated by the central
server if the majority of the users in the system remain honest. Nonetheless,
investigating mechanisms for providing certified timestamps is an important area
of future work.

Opinion Erasure One last attack on which we comment occurs when a ma-
licious party M is able to steal some set of credentials C′A ⊆ CA from another
entity A. If M then submits a reputation rating for some entity B described
by the virtual fingerprint FB while posing as A (by using the stolen credentials
C′A), this rating will overwrite the rating previously stored by A. Note that for
this attack to be successful, A must have previously rated B. Though this attack
is serious, it is possible in any system in which one entity is able to effectively
steal the identity of another (e.g., by guessing another entity’s password). Due
to the fact that users in attribute-based trust management systems have many
identities (which we have referred to as descriptions in this paper), open systems
researchers must focus on making secure identity management easy for users of
their systems to prevent these types of attacks.

5 Evaluation

In this section, we present the details of a simulation study conducted to evaluate
the performance and utility of the Xiphos reputation system.

5.1 Experimental Setup

Simulating an attribute-based trust management system presents several inter-
esting challenges, including modeling the distribution of credentials throughout
the system and determining the assignment of release policies to the creden-
tials held by entities in the system. To overcome these difficulties, we chose to
simulate a constrained grid computing system rather than a general purpose
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Fig. 2. The credential ontology used in the evaluation scenario.

open system. Figure 2 illustrates the credential ontology used in our simulated
network.

In this network, we assume that there are two types of entities: users and
resources. Users represent humans interested in using the computing grid to
carry out some task, while resources represent things such as computing clusters,
mass storage devices, wave tanks, and visualization facilities. Our experiments
analyzed the interactions which took place in networks of various sizes generated
as follows. For a network consisting of N hosts, we assume that 0.8N of these
hosts are users, while the remaining 0.2N of the hosts are resources. Users and
resources are randomly generated and assigned credentials and credential release
policies in accordance with Table 1; in situations where multiple release policies
are indicated for a single credential type, one is chosen uniformly at random for
each credential generated. Resources are also assigned resource access policies
according to Table 2. The collections of hosts and resources are considered to
be disjoint and each is sorted in decreasing order of popularity. We assume that
there are no ties with respect to the popularity of nodes in the system. We
assume that users randomly interact with both other users and with resources.
Resources only accept incoming interactions (e.g., job submissions) and do not
initiate any interactions.

We then simulated the interactions that would occur in this network over
the course of multiple days. Each day, every user interacts with between 10
and 30 randomly-chosen entities in the network. 80% of these interactions are
with other users in the network, while the remaining 20% are with resources.
These interactions are chosen such that the number of incoming connections is



Credential Type (Abbrev.) Users Resources Release Policy

Professional Organization (po) 0–2 none

Organization (o) 0–1 1 none, pp

Department (d) 1–2 1 none, pp, po

ProjectName (pn) 1–4 0–4 none, fa = F , bbb, pp

FundingAgency (fa) 1–2 0–2 none, bbb, pp

BankAcct (ba) 0–1 0 pp ∨ bbb, pp ∧ bbb

CreditCard (cc) 0–3 0 pp ∨ bbb, pp ∧ bbb

DriversLicense (dl) 0–1 0 none, pp

MailingAddress (ma) 0–2 0 none, pp

StudentID (s), FacultyID (f), or
StaffID (st)

1 0 none

PrivacyPolicy (pp) 0 0–1 none

BBB (bbb) 0 0–1 none
Table 1. Credential distribution used in the evaluation scenario. The variable F rep-
resents a particular funding agency.

Type Description Policy

1 Project specific ((d = ‘CS’) ∨ (d = ‘ECE’)) ∧ p ∈ {P1, . . . , Pn}
2 Funding agency ((d = ‘CS’) ∨ (d = ‘ECE’)) ∧ fa = F

3 Academic ((d = ‘CS’) ∨ (d = ‘ECE’)) ∧ (s ∨ f)

4 Paid academic (s ∨ f) ∧ (ba ∨ cc)
Table 2. Resource access policies. The variables P1–Pn represent specific projects and
F represents a specific funding agency.

distributed over the collections of users and resources according to Zipf distribu-
tions [28]. As nodes interact, they obtain virtual fingerprint information about
one another and the initiating node registers both local and centralized ratings
for their satisfaction with the interaction as described in Section 3.

As mentioned in Section 3, the equations used to determine reputation in
Xiphos are very similar to those used in more traditional reputation systems. As
such, our experiments do not simulate the convergence of these equations as this
process has been simulated elsewhere in the literature. Specifically, our system
uses reputation update equations similar to those whose convergence behavior
was studied in [18]. In the remainder of this section, we focus on measurements
of utility that are specific to the Xiphos system. Namely, we examine the storage
requirements for nodes participating in the Xiphos system, examine query exe-
cution time as a function of database size, and explore a particular γ(·) function
designed for our grid computing scenario.

5.2 Database Growth

Local Database Growth As users in our simulations interact with resources
and other users in the system, they update their local databases as defined
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in Section 3.1. This implies that over time, the size of a host’s local database
will continue to grow in size and could include up to NF entries, where N is
the size of the network and F is the average number of virtual fingerprints by
which the host knows each entity in the network. In our simulations, we assumed
that the participants in the network were honest and thus F ≈ 1. This is not
an unrealistic assumption, as if a host is known by many virtual fingerprints,
the linkability coefficients associated with each virtual fingerprint and thus her
overall reputation rating will be low and thus unlikely to remain in a given host’s
local database for very long.

For each network size simulated, we created 10 random networks and calcu-
lated the average growth of local databases in these networks over the course of
5000 days. Figure 3 shows this average growth assuming that nodes had unlim-
ited storage and did not evict infrequently used tuples. This is an upper bound
on tuple storage, as it effectively sets d ≥ 5, 000 days in Equation 2. For a net-
work of size 10,000 (a large grid computing network by today’s standards), we
see that the average database size is less than 7,000 tuples after 5000 days of
execution. Figure 4 shows the average daily growth of a local database over the
same period of time. These databases grow rapidly at first but then taper off
over time. Due to the long tail of the Zipf distribution, it is unlikely that this
daily growth will reach zero within the lifetime of any deployed system.

If instead of requiring that each host maintain their complete interaction
history, we allow them to discard tuples that are more than one month old
(effectively simulating the effect of using d = 30 days in Equation 2), these
storage requirements drop drastically. Figure 5 shows that storage for networks
of all sizes tends to quickly stabilize at between 325 and 400 tuples, far less than
the 6,000 to 19,000 tuples shown in Figure 3. The average daily change in local
database size stabilizes around zero, as shown in Figure 6.

This decrease in local database size comes at the cost of forgetting about pre-
vious interactions which had unfavorable outcomes. Figure 7 shows the average
growth of local databases when old tuples with favorable results are evicted from
the database after they were 30 days old but unfavorable results were kept indef-
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initely. We assumed that an evenly distributed 20% of the nodes in the network
were bad. This policy allows nodes to learn from history by keeping their bad
memories while reclaiming space by purging obsolete favorable memories. Note
the slower growth rate when compared to Figure 3. Figure 8 shows the average
daily change in local database size in this scenario. For this type of strategy to
be effective, however, the definition of ϕ(·) presented in Equation 2 would need
to be modified. Given these favorable results for very simple eviction policies,
exploring more complicated eviction policies could prove to be a fruitful area of
future work.

Central Database Growth The database stored by a central server or super
node is necessarily larger and more complex than those stored by other nodes
in the system. In fact, a naive implementation of a central server would need



to store NA tuples where N is the number of entities in the system who report
ratings to this central server and A is the average size of each entity’s local
database. Upon examining Figures 3, 5, and 7, we see that this database would
quickly become enormous! In order to keep query execution times reasonable, it
is clear that optimizations must be made at these central points.

We note that the database size itself is not likely to be a problem for central-
ized Xiphos servers, but rather, the time needed to process queries on exceedingly
large databases will be the bottleneck. To address this, we are investigating the
effects of centralized Xiphos servers allowing interested users to become members
of their service. Members first register with Xiphos by exposing some number
of public credentials. At this point, the server creates a member entry in its
database for this entity; member entries are of the form 〈F ∈ F, n ∈ R, d ∈ R〉
where F is the virtual fingerprint derived from the credentials exposed by the
entity. The server then precomputes a partial reputation rating for F by using
Equations 3 and 4 on the entire database (containing O(NA) tuples). To do
this, the numerator of Equation 4 is stored in the n field of the member entry
and the denominator of Equation 4 in the d field of the same tuple. These pre-
computed reputation ratings will be refreshed on a time-available basis by the
Xiphos server and thus will not reflect the exact reputation rating for a given
user, but rather will act as an estimator for that value.

Processing a query FQ would then involve selecting all member entry tuples
which overlap FQ and combining their corresponding partial reputations. More
formally, if TQ is the set of all member entries whose F component overlaps FQ,
then the final reputation estimation is calculated as follows:

r̂Q =

∑
T∈TQ

T.n∑
T∈TQ

T.d
(7)

Note that there are at most NF member tuples where N is the number of
entities recording reputation ratings at this server and F is the average number
of distinct virtual fingerprints used by each entity. As we will see in Section 5.4,
in our grid computing scenario F ¿ A, meaning that the use of member entries
will greatly reduce the number of tuples required to answer queries. However,
this reduction comes at the cost of introducing overcounting in the event that
the same entity reports reputation ratings for multiple member entries, all of
which match a given query. Further investigation is required to fully determine
the utility of this type of tuple-reduction method.

5.3 Query Execution Time

Now that we see how the size of each local database grows over time, we examine
the average time required to process queries as a function of database size. To this
end, we have implemented a prototype of the client portion of the Xiphos system
in the Java programming language. Our implementation searches local databases
in a linear fashion (i.e., stored records are not indexed), making it a lower-bound
on the performance that one would expect in practice. The query execution times
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reported are averages over 1000 queries submitted to 10 randomly populated
local databases. These queries were run on an IBM T40p laptop with a 1.6GHz
Pentium M processor and 1 GB of memory running Windows XP. We consider
this machine as a lower bound of what a scientist would use to submit and track
jobs on a computational grid. Clearly, resources in the system would be much
more powerful than this.

Figure 9 shows the execution time (in milliseconds) for queries submitted
to databases ranging in size from 0 to 50,000 tuples. The linear trend is not
surprising, as we implemented the O(N) algorithm that follows directly from the
description in Section 3.3. Figure 10 shows the number of queries per second that
can be processed for local databases in the 10,000–50,000 tuple size range. For
the database sizes shown in Figure 7, we feel that the query throughput afforded
by even our prototype implementation of Xiphos is acceptable, as illustrated in
Figure 11. An interesting avenue of future work involves optimizing the layout
of local databases and their associated query processing algorithms. We plan to
explore the the use of inverted indexes on virtual fingerprints to improve the
query processing algorithm.

5.4 The Effects of γ(·)

It has long been observed that the concept of trustworthiness used in both
physical and virtual interactions is heavily context-bound [19]. For instance,
most people would be more likely to accept tax advice from an accountant rather
than a hair stylist. We can leverage this notion of context sensitivity to simplify
the task of defining the γ(·) function for a given environment. In some sense, the
ontology presented in Figure 2 quantifies the exact context relevant to assessing
the trustworthiness of entities in our grid computing scenario. While entities in
the system are very likely to have numerous other credentials and attributes,
the relevance of these credentials to establishing the user’s trustworthiness in
the context of grid computing is likely to be minimal. This limited contextual
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scope leads to a simple definition of γ(·) for our grid computing example which
meets the requirements identified in Section 3.2.

According to Table 1, users can have at most 19 credentials described by the
ontology shown in Figure 2; resources can have at most 10 credentials described
by this ontology. Note also that only resources will have BBB or PrivacyPolicy
credentials. From this information, we can derive one possible instantiation of
the γ(·) function:

γ(D) =

{
|D|
10 if D contains a PrivacyPolicy or BBB credential,
|D|
19 otherwise.

(8)

This function assigns a linkability coefficient to a description consisting of
credentials from the ontology shown in Figure 2 by comparing the number of ex-
posed credentials to the maximum number of possible credentials that could have
been included. Note that any credentials outside of this ontology are explicitly
ignored because they are considered to be out of context. This definition of γ(·)
clearly satisfies the criteria described in Section 3.2 and has the added advantage
of encouraging resources to disclose their BBB and PrivacyPolicy credentials, as
this identifies them as a resource and assigns more weight to the credentials
that they do show. Note that in many cases, this definition of γ(·) will assign
relatively low linkability coefficients to entities, as few entities are likely to have
the maximum number of possible credentials. However, Xiphos uses γ(·) only as
a relative weighting function so this definition is satisfactory.

Figure 12 shows the average linkability coefficient assigned to entities in net-
works of 10,000–100,000 users; each data point represents the average over 10
randomly generated networks. We see that the average linkability coefficient
varies slightly around the expected value of 0.5658. This implies that an all-
powerful attacker (i.e., an attacker with the maximum number of credentials
which will be weighted by γ(·)), has no more than 1.77 times the influence of an
average user on the system. This assumes that the attacker cannot convince cer-
tificate authorities to issue him duplicate credentials (e.g., two driver’s licenses).



Therefore, if the attacker wanted to have both a “good” virtual fingerprint and
a “malicious” virtual fingerprint (which must obviously be disjoint), at least one
of these will have a below-average linkability coefficient, and thus less influence
on the reputation scores calculated by Xiphos; average attackers are affected to
an even greater degree. This shows that the linkability coefficient is useful not
only for developing a “first impression” of entities in the system, but also for
preventing certain types of attacks.

As reputation systems begin to be used in systems with wider contexts, it is
important that the reputations calculated account for this context as well [18].
If Xiphos deployments wish to account for this context (the possibility of which
was alluded to in Section 3.1), the γ(·) function used should be implemented
as a family of functions with one relevant member for each context considered.
Other interesting future work in this area involves exploring non-uniform weight-
ing schemes for the credentials considered by γ(·). This will allow credentials of
various relevance to impact the linkability value of a particular description dif-
ferently.

5.5 Concluding Remarks

In this section, we analyzed the performance and utility of Xiphos by simulat-
ing a number of grid-computing systems of various sizes. We found that when
using an extremely conservative tuple eviction policy, the average size of a local
reputation database in a network with 10,000 users was approximately 1,500
tuples after a simulated 5,000 days. In a network of 70,000 users, the average
local database contained 4,000 tuples after 5,000 simulated days. When exe-
cuting a prototype Xiphos implementation on a 1.6GHz laptop, Xiphos could
process queries on databases of these sizes at throughputs of 600 and 200 queries
per second, respectively, without indexing. The use of a more aggressive, though
still reasonable, tuple eviction policy resulted in query throughputs of over 2,200
queries per second on both simulated networks, again without indexing; it is un-
likely that the network characteristics of actual grid computing systems would
even allow queries to arrive at such a high rate. We also verified that a suitable
γ(·) function can limit the damages caused by attackers in the system. These ob-
servations indicate that Xiphos can be used as a reasonable means of reputation
establishment in the open systems of the future, despite the complications arising
from the fact that users can legitimately have multiple virtual fingerprints.

In this paper, we described the use of virtual fingerprinting as the basis for one
particular reputation system. However, the reputation scores bound to virtual
fingerprints can be aggregated according to any reputation calculation method,
provided that the complications arising from the legitimate assumption of mul-
tiple identities (in the form of disjoint virtual fingerprints) are addressed. In
particular, systems need to mitigate the effects of malicious users assuming mul-
tiple identities to over-influence the system. Additionally, the fact that queries
may overlap multiple tuples could lead to problems maintaining precomputed
reputation scores at a naive centralized server. The ontology-based definition of



the γ(·) function discussed in Section 5.4 prevents malicious entities from over-
influencing our simulated grid computing system; similar definitions are likely to
be possible in other domains as well. We also presented a method for maintaining
precomputed reputation estimates which could be used to enhance the perfor-
mance of a centralized deployment of Xiphos. Similar modifications could be
made to other reputation systems (including those not yet developed), thereby
enabling them to use virtual fingerprints as a means of identity and extending
their applicability to attribute-based trust management systems.

6 Related Work

Several research areas overlap the work presented in this paper. Current re-
search in reputation systems is orthogonally related to the problem that we set
out to solve. While this area is too broad to survey in general, papers such
as [10, 13, 18, 22] address the design of reputation systems for peer-to-peer
and ad-hoc networks. These types of systems assume that entities have an es-
tablished identity in the system and many times suffer from whitewashing and
ballot-stuffing attacks. To address false claims being inserted into the reputa-
tion system, the authors of [20] recommend designing reputation systems which
require that non-repudiable evidence of a transaction be shown for their repu-
tation to be considered. While this certainly prevents an entity from registering
multiple claims, it requires that the underlying system (e.g., the grid comput-
ing system in our evaluation) support certified transactions. In this paper, we
presented a means of determining unique user identifiers in open systems where
identity information is not always explicitly present and used these derived iden-
tifiers as a foundation for the Xiphos reputation system. To calculate the actual
reputation values for entities in the system, we used equations similar to those
defined in [18], though virtual fingerprints could be used in conjunction with
any reputation calculation method. The nature of the virtual fingerprints de-
rived using our method limits the damages that can be caused to Xiphos by the
aforementioned attacks and does not require non-repudiable transaction support
from the underlying system.

Other authors have also addressed the privacy versus trust trade-off that was
discussed in Section 4. Anonymous credential schemes such as those presented
in [8, 9, 7] assume that privacy is more important than any trust that can be
established through history-based mechanisms (e.g., reputation systems). These
systems provide a means for a credential issued to a given entity to be used under
different pseudonyms to prevent transactions carried out by a single entity from
ever being linked. In [21], the authors discuss this trade-off in detail and show
how entities can explicitly use multiple identities and allow linkages between
these identities to be revealed to other parties to establish trust when needed.
In this paper, we allow system designers to balance this trade-off by choosing an
appropriate deployment strategy for the Xiphos system. In addition, if Xiphos
is used in systems supporting user-specified obligations, users can further limit



the dissemination of their personal information, making the privacy versus trust
trade-off more tunable.

A final area of related work lies in the use of ontologies in trust management
systems. In [16], the authors discuss how ontologies can be used to ease policy
specification and administration in trust negotiation systems. In addition, they
discuss how ontologies can be used to determine when certain types of informa-
tion are being requested without need-to-know. In [18], the authors use service
ontologies to add a context dimension to reputation ratings registered in their
system. In this paper, we propose the use of credential ontologies while defining
the γ(·) function used in our system. This use of ontologies is orthogonal to those
presented in [16] and [18] and provides another way in which ontologies simplify
the management and strengthen the expressive power of trust management sys-
tems.

7 Conclusion

In this paper, we presented a method for the linking and correlation of multi-
ple identities in attribute-based trust management systems. We discussed how
the descriptions that one entity learns about another can be transformed into
opaque virtual fingerprints which form a privacy-preserving basis for the Xiphos
reputation system. We presented several deployment models of the Xiphos sys-
tem, discussed the privacy versus utility trade-off for each of these deployments,
and examined the impacts of several attacks against the Xiphos system. The
performance of this system and its costs of deployment were then analyzed in
the context of a simple grid computing system. Our evaluation of the Xiphos
system indicates that Xiphos is an acceptable means of reputation establishment
for open systems. In addition, we showed that the more general notion of virtual
fingerprints can be used in conjunction with any reputation calculation mecha-
nism thereby allowing reputation systems which rely on more traditional notions
of identity to be used in attribute-based trust management systems.

The analysis presented in Section 5 assumed that querying a database (local
or centralized) was an unoptimized process involving a linear search of all tuples
stored at that location. We are planning to investigate the use of inverted indexes
to enhance the speed with which overlapping virtual fingerprints can be located.
It is also likely that virtual fingerprinting can be used as the foundation for
other useful security services. To this end, we are investigating secure audit and
incident response systems based on virtual fingerprints. These types of system
could be used to ensure that users are held accountable for their actions and
to aid in discovering certain types of collusion occurring at points distributed
across an open system.
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[10] A. Fernandes, E. Kotsovinos, S. Östring, and B. Dragovic. Pinocchio: Incentives
for honest participation in distributed trust management. In The 2nd Interna-
tional Conference on Trust Management (iTrust 2004), pages 63–77, 2004.

[11] C. A. Gunter and T. Jim. Policy-directed certificate retrieval. Software—Practice
and Experience, 30(15):1609–1640, 2000.

[12] J. Holt, R. Bradshaw, K. E. Seamons, and H. Orman. Hidden credentials. In 2nd
ACM Workshop on Privacy in the Electronic Society, Oct. 2003.

[13] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina. The eigentrust algorithm
for reputation management in P2P networks. In WWW ’03: Proceedings of the
12th International Conference on World Wide Web, pages 640–651, 2003.

[14] H. Koshutanski and F. Massacci. An interactive trust management and negotia-
tion scheme. In 2nd International Workshop on Formal Aspects in Security and
Trust (FAST), pages 139–152, Aug. 2004.

[15] A. J. Lee and M. Winslett. Virtual fingerprinting as a foundation for reputation
in open systems. In 4th International Conference on Trust Management (iTrust
2006), May 2006.



[16] T. Leithead, W. Nejdl, D. Olmedilla, K. E. Seamons, M. Winslett, T. Yu, and
C. C. Zhang. How to exploit ontologies in trust negotiation. In Workshop on Trust,
Security, and Reputation on the Semantic Web, part of the Third International
Semantic Web Conference, Nov. 2004.

[17] N. Li and J. Mitchell. RT: A role-based trust-management framework. In Third
DARPA Information Survivability Conference and Exposition, Apr. 2003.

[18] J. Liu and V. Issarny. Enhanced reputation mechanism for mobile ad hoc net-
works. In The 2nd International Conference on Trust Management (iTrust 2004),
pages 48–62, 2004.

[19] S. Marsh. Formalising Trust as a Computational Concept. PhD thesis, University
of Stirling, 1994.

[20] P. Obreiter. A case for evidence-aware distributed reputation systems. In The
2nd International Conference on Trust Management (iTrust 2004), pages 33–47,
2004.

[21] J.-M. Seigneur and C. D. Jensen. Trading privacy for trust. In The 2nd Interna-
tional Conference on Trust Management (iTrust 2004), pages 93–107, 2004.

[22] A. A. Selcuk, E. Uzun, and M. R. Pariente. A reputation-based trust management
system for P2P networks. In 4th IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGRID 2004), 2004.

[23] L. Wang, D. Wijesekera, and S. Jajodia. A logic-based framework for attribute
based access control. In 2nd ACM Workshop on Formal Methods in Security
Engineering (FMSE 2004), pages 45–55, Oct. 2004.

[24] W. H. Winsborough, K. E. Seamons, and V. E. Jones. Automated trust nego-
tiation. In DARPA Information Survivability Conference and Exposition, Jan.
2000.

[25] M. Winslett, T. Yu, K. E. Seamons, A. Hess, J. Jacobson, R. Jarvis, B. Smith,
and L. Yu. The TrustBuilder architecture for trust negotiation. IEEE Internet
Computing, 6(6):30–37, Nov./Dec. 2002.

[26] M. Winslett, C. Zhang, and P. A. Bonatti. PeerAccess: A logic for distributed
authorization. In Proceedings of the 12th ACM Conference on Computer and
Communications Security (CCS 2005), Nov. 2005.

[27] B. Yang and H. Garcia-Molina. Designing a super-peer network. In 19th Inter-
national Conference on Data Engineering (ICDE’03), pages 49–60, Mar. 2003.

[28] G. K. Zipf. Human Behavior and the Principle of Least Effort. Addison-Wesley,
1949.


