
Distributed Enforcement of Unlinkability Policies:
Looking Beyond the Chinese Wall

Apu Kapadia∗

Institute for Security Technology Studies (ISTS)
Dartmouth College

Prasad Naldurg
Microsoft Research

Roy H. Campbell
Department of Computer Science

University of Illinois at Urbana-Champaign

Abstract

This paper presents an access control model that pre-
serves the unlinkability of audit-logs in a distributed
environment. The model restricts entities from ac-
cessing and correlating two or more audit-records be-
longing to different service invocations created by the
same user. While the traditional Chinese Wall (CW)
model is sufficient to enforce this type of unlinkabil-
ity, in distributed environments CW is inefficient be-
cause the simple security condition semantics requires
knowledge of a user’s access history. Our model al-
lows specifications that are simple and efficient to en-
force in a decentralized manner without the need for
an access history. The proposed enforcement architec-
ture allows users to negotiate unlinkability policies with
the system. The system attaches automatically gener-
ated policy constraints to the audit-records. When these
constraints are enforced appropriately, they implement
unlinkability policies that are provably secure and pre-
cise for a fixed protection state. The model extends to
a versioning scheme that adapts to evolving protection
state, trading off precision to maintain the security of
deployed policies.

1 Introduction

Our problem is motivated by privacy concerns
within a distributed environment like an organization

∗Apu Kapadia was funded in part by the U.S. Dept. of En-
ergy’s High-Performance Computer Science Fellowship through
Los Alamos National Laboratory, Lawrence Livermore National
Laboratory, and Sandia National Laboratories. This work was
conducted primarily at the University of Illinois at Urbana-
Champaign as part of Apu Kapadia’s dissertation research.

or corporate network. Local and external administra-
tors from across various departments may monitor a
user’s accesses to various resources through audit-logs.
In the case where “linking” these accesses is not ex-
plicitly sanctioned by a mandatory policy, such link-
ages can compromise the privacy of users. We present
a model that allows users to express and refine discre-
tionary unlinkability concerns and have them enforced
by the system.

A variety of databases with independent access con-
trol mechanisms often store the audit-records of users’
actions and service invocation requests across depart-
mental boundaries. This makes enforcement of unlink-
ability a difficult task. In theory, centralized mech-
anisms based on the Chinese Wall (CW) model can
solve this problem. For example, a CW policy could en-
sure that administrators can access at most one dataset
within a “conflict of interest” class. However, the im-
plementation must maintain a history of administra-
tors’ accesses. In a distributed setting, maintaining
this access history across departments may render this
approach infeasible or impractical. Centralized solu-
tions present a bottleneck for distributed access to re-
sources and act as a single point of failure for access
control. Distributed enforcement of CW policies re-
quires the propagation of history information that must
be kept consistent across different databases, incurring
high communication and computational overheads.

Traditionally, unlinkability is defined as the infea-
sibility of an adversary to correlate two transactions
initiated by the same user who does not reveal his/her
identity. To address this problem, researchers have pro-
posed a number of cryptographic mechanisms to con-
struct anonymous credentials [3, 1, 2, 7] that make it
computationally infeasible for a server to link the use
of these credentials. However, even if a user presents

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4820402?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

an anonymous credential to access a service, the set of
users allowed to possess those credentials in the first
place may be small enough to limit or compromise
anonymity. Furthermore, while many of these schemes
rely on providing user anonymity, there are systems in
which users simply cannot be anonymous. For exam-
ple, an organization may be required to keep detailed
audit-records about who accessed payroll information
by law. In such systems, it becomes important to pro-
vide unlinkability through access control, allowing for
linkability in only certain cases, e.g., legal subpoenas,
or only by certain individuals in the organization. We
note that cryptographic mechanisms are also vulnera-
ble to timing attacks [9], and adequate access control
mechanisms can prevent such attacks. In this paper we
focus on providing unlinkability through confidential-
ity policies, with the observation that denying access to
related audit-records prevents the possibility of linking
the contents of the audit-records. We also assume that
feedback to administrators does not leak information
about the existence of an audit-record. For example,
feedback of the form “record unavailable” can imply
that either the record was not found, or access was de-
nied. This prevents administrators from inferring that
two audit-records are related from the feedback.

In this context, we introduce an access control
model based on RBAC (role based access control) 1 for
policy-based unlinkability that addresses the prob-
lem of restricting accesses by a single administrator to
multiple audit-records belonging to the same user as
defined by a “session.” This model does not require an
implementation to maintain the access history of users
in the system. We provide an efficient enforcement
framework based on this model that can analyze the
system protection state for unlinkability threats, and
change the authorizations based on the user’s require-
ments (except when they are explicitly required by sys-
tem policy) to counter these threats. For example, the
system may inform Alice that network administrators
can access information of her (possibly anonymized)
access to an online medical store. Furthermore, there
may be some network administrators who can also ac-
cess Alice’s local system log and read her cookies, which
contain information about what prescription was filled.
Using our framework, Alice can request that network
administrators who also have access to her local sys-
tem be prevented from correlating the information and
compromising her privacy with regards to the ailment
she is seeking treatment for. In effect, the system al-
lows Alice to negotiate a set of constraints to prevent

1We use RBAC as a means to group access control permis-
sions for administrative convenience and do not use extended
models of RBAC such as role hierarchies.

certain administrative users from linking her transac-
tions, while allowing certain trusted administrators to
do so. These constraints are attached to individual
audit-records and local access control decisions can be
made based on these constraints allowing for the dis-
tributed enforcement of users’ unlinkability policies.

We prove that our architecture is both secure and
precise with respect to enforcing unlinkability prop-
erties. We first prove these results under the strong
tranquility assumption where the protection state of
the system does not change over a session. That is,
the administrators’ access rights remain fixed. Subse-
quently, we show how we can relax these assumptions
and present an approach that uses versioning to handle
changes in the authorizations under a weak tranquil-
ity assumption, sacrificing precision for the ability to
change protection state. Using versioning we can al-
ways identify the set of users for which the policies are
secure and precise. In both cases we show how users
can add new flows to their existing sessions, refining
their unlinkability requirements iteratively.

We briefly summarize our contributions:

1. We introduce a new access control model for scal-
able and decentralized enforcement of unlinkabil-
ity policies without the need for maintaining the
access history of users (Section 2).

2. We provide an efficient framework based on our
access control model and prove that it is secure
and precise for fixed protection state (Section 3).

3. To cope with evolving protection state, we present
an approach based on versioning. We prove that
our approach maintains the security of deployed
unlinkability policies by trading off precision for
evolving protection state (Section 4).

We discuss our approach in Section 5 and end with
related work and conclusions in Sections 6 and 7.

2 Access control model

In this section, we provide some background on the
Chinese Wall (CW) model and present our model in
relation to its simple security condition. We show how
our specification of unlinkability is more restrictive in
terms of the set of allowed behaviors, but nevertheless
captures our intent adequately.

2.1 Chinese Wall Model

Policies in the Chinese Wall (CW) Model group ob-
jects into Conflict of Interest (COI) classes and indi-
vidual users are not allowed to access information from

2

two or more objects in a COI class. In particular, the
semantics of CW policies allow an individual to ac-
cess any one object in a COI class, and prevents fur-
ther accesses to other objects in that class. As a re-
sult, Chinese Wall policies are enforced using central-
ized history-based approaches [11] or require explicit
coordination [8], which is expensive in practice.

To elaborate further, objects belonging to a com-
pany are grouped into a Company Dataset (CD). CDs
can be grouped into COI classes. The overall goal of
this model is that no subject can read objects from
two or more CDs within the same COI class. Once a
subject reads from a particular CD, future accesses to
other CDs within the COI class are denied. Let CD(O)
be the CD of object O (similarly COI (O)) and PR(S)
be the set of objects that S has read. Each object
belongs to exactly one COI class.

The CW access control model specifies the following
conditions:

Definition 1. CW-Simple Security Condition: A
subject S can read an object O if and only if any of the
following holds:

1. There is an object O′ such that S has accessed O′

and CD(O′) = CD(O).

2. For all objects O′, O′ ∈ PR(S) ⇒ COI (O′) 6=
COI (O).

This means that once a subject has accessed an ob-
ject within a COI class, a “Chinese Wall” is created
around CD(O). Access to any object outside this wall
is denied unless the object is in a COI class not ac-
cessed earlier. Once the user accesses an object in an-
other COI class, the “wall” is extended around the CD
of that object.

Definition 2. CW-*-Property: A subject S may
write to an object O if and only if both of the following
conditions hold:

1. The CW-simple security condition permits S to
read O.

2. For all objects O′, S can read O′ ⇒ CD(O′) =
CD(O) .

This property prevents the leaking of information
through writes. A subject can write to a CD only if
all the objects he/she can read belong to the same CD.
This means that a CD’s data stays within the CD.

2.2 Our model

In this subsection, we show how we can modify the
simple security condition in the CW model to capture

the notion of unlinkability in our environmental con-
text. We assume a distributed system for sharing re-
sources that allows us to specify and enforce system-
wide access control policies. Users in the system access
services by presenting credentials resulting in an access
transaction. Users negotiate unlinkability policies with
a policy negotiation server (PNS) that generates policy
constraints to enforce unlinkability using access control
mechanisms.

Information related to an access transaction (e.g.,
audit-logs for location tracking) is stored in one or more
databases. We define an audit-flow for a given trans-
action as the set of databases and their associated au-
thorizations that define the possible dissemination of
audit information for that transaction to other users
in the organization. A collection of audit-flows (corre-
sponding to access transactions) that a user desires to
keep unlinkable is called a session. Sessions are asso-
ciated with individual users and may be open-ended,
i.e., they last for the lifetime of the system and users
are allowed to update the list of transactions in their
session.

It is possible to enforce unlinkability policies us-
ing the Chinese Wall model. The user’s session can
be specified as a COI class, where each audit-flow is
equivalent to a CD. The CW model would prevent
administrators from accessing audit-records of two or
more audit-flows within the specified session. However,
the distributed enforcement of CW policies requires a
mechanism to record and disseminate access history
across the system, which directly impacts its scalabil-
ity. We present an alternative access control model
that does not maintain the access history of users, mak-
ing distributed enforcement of the CW-simple security
condition efficient.

We assume that administrators will not explicitly
change audit-records (e.g., by writing over) and exer-
cise only read accesses to audit-log databases. The
problem we are addressing is end-user privacy, and it
is safe to assume that administrators are not intention-
ally malicious. An under-specification of privacy con-
cerns may make it possible for some administrators to
violate user privacy, and our goal is to refine this with
user input. We do not account for the CW-*-property
any further for this reason.

As mentioned earlier, we assume that users and ac-
cess permissions are organized into roles using RBAC.
Our underlying RBAC system governs read accesses to
audit-logs in the absence of unlinkability policies. We
refer to these permissions as “static read access”:

Definition 3. If the access permissions for a database
record associated with a flow for user u includes the
right to read, then we say that u has static read ac-

3

cess to the audit-flow. These static permissions can be
overridden by policy constraints.

In our proposed model, users identify transactions
and group them together to define their “session.” Our
unlinkability specification will guarantee that subjects
with static read access to two or more audit-records of
different flows are denied access to any object within
the session. Note that the set of behaviors allowed
in this model is more restrictive that CW (that would
allow access to one object), we show that this semantics
allows us to enforce policies in a decentralized setting,
where access decisions can be made local to the object
being accessed.

Let Session(O) = I1, . . . , In be the session (set of
audit-flows) that object O belongs to. Let I(O) be
the audit-flow for object O. Users also supply a set of
roles called the “deny-set” that the unlinkability poli-
cies should apply to. Subjects not in the deny-set are
allowed to link audit-flows within the session. We ex-
plain this in more detail in Section 3. Let DenySet(O)
be the deny-set associated with Session(O).

We define the simple security condition for Unlink-
ability as follows:

Definition 4. Simple Security Condition (SSC1)
for Unlinkability: A subject S is granted read access
to an object O if and only if the following hold:

1. S has static read access to O.

2. if S ∈ DenySet(O) and there is no object O′ such
that Session(O′) = Session(O) and I(O) 6= I(O′),
and S has static read access to O′.

This means that subjects in the deny-set of O with
static read access to two or more audit-flows within a
session are denied access to any objects within the ses-
sion. This semantics does not give subjects the choice
of accessing exactly one flow within a session and is ap-
plied only to subjects identified as unlinkability threats
by the user (as defined by the user’s deny-set for that
session). SSC1 can be enforced easily if all the audit-
record types (audit-flows) in a session are specified in
advance. However, for “open-ended” sessions where all
the audit-flows are not known in advance (a more real-
istic assumption), we modify SSC1 to allow read access
to at most one audit-flow within a session, but access
to the flow of the user’s choosing is not guaranteed. We
call this SSC2:

Definition 5. Simple Security Condition 2 for
Unlinkability (SSC2): A subject S is granted read
access to an object O if the following hold:

1. S has static read access to O.

2. if S ∈ DenySet(O) and there is no object O′ such
that Session(O′) = Session(O) and I(O) 6= I(O′),
and S has static read access to O′.

Furthermore, if a subject S is granted read access to
an object O then the following hold

1. S has static read access to O

2. S will not be granted read access to any object
O′ such that I(O) 6= I(O′) and Session(O′) =
Session(O)

In short, a user with static read access to two or
more audit-flows in a session may be able to access
zero or one audit-flow in the session, but access to a
particular audit-flow cannot be guaranteed.

In the remainder of this paper we show that our
access control model can be enforced efficiently in a
distributed environment by attaching policies to data.
Since evolving protection state can result in a viola-
tion of the simple security condition, we present a sys-
tem that uses versioning to maintain the security of
deployed policies.

3 Enforcement architecture

In this section, we present a high level overview of
our system and describe the various architectural com-
ponents needed to support our framework using an end-
user example scenario as shown in Figure 1.

Throughout this paper we will refer to three types
of policies. Flow policies are explicit representations
of data flows between databases. For example a pol-
icy such as (d1, d2) allows database d1 to propagate
copies or transformations of data to d2. The system can
use these flow policies to construct graphical represen-
tations of audit-flows throughout the system. Access
policies are Permission-Role assignments (d, r), where
role r may access database d. Lastly policy constraints
are described in Section 3.5, and are attached to audit-
records. Access to an audit-record is granted to users
based on the access policy for that database, and the
policy constraints of that audit-flow, which can over-
ride the former.

(1) In the first step, a concerned user Alice sends
her session information to the policy negotiation server
(PNS). This is a set of identifiers (or unique types) cor-
responding to access transactions to unique servers. In
steps (2)-(3), the PNS looks up relevant information
for each service including access policies and flow poli-
cies (replication of data between servers), builds the
audit-flows I1, · · · , In, and analyzes them for unlinka-
bility conflicts. The PNS presents Alice with a set of

4

Policy

Negotiation

Server

Access
Transactions

User

1 2

4

5

6

3

7

Audit log databases

���������
���������
���������
���������

�������
�������
�������
�������

�������
�������
�������
�������

��������������

�
�
�
�
�
�
�
�
�
�
�

Policy
Database

Figure 1. System Architecture

roles whose users can access her audit-log information
from two or more audit-flows, e.g., Security Officer and
Student Administrator

In Step (4) Alice identifies her discretionary unlink-
ability requirements in terms of roles (we call this Al-
ice’s “deny-set”) whose users she wants to prevent from
linking her audit information, e.g., Student Adminis-
trator. The PNS may not be able to enforce some of
Alice’s choices if there are mandatory access require-
ments, e.g., the request to add Security Officer to Al-
ice’s deny-set may be disallowed by mandatory sys-
tem policy. After Alice and the PNS agree on Alice’s
deny-set, (5) the PNS sends Alice a certificate with
policy constraints for her audit-records. This certifi-
cate is digitally signed and can be tagged to Alice’s
audit data and sent to the databases as the informa-
tion is generated. The PNS also stores Alice’s discre-
tionary policies and session information in the policy
database. In Steps (6)-(7), for each access transaction,
Alice presents these certificates, which are attached to
audit-records that make up the audit-flows. Access to
an audit-flow is allowed only if the user role is not pre-
cluded by the policy constraints. We assume that all
interactions are cryptographically secured for authen-
ticity, confidentiality, and integrity.

3.1 Construction

We now propose an approach to enforce unlinkabil-
ity for Alice’s session by analyzing the roles that are
explicitly granted read access to each audit-flow. In
our construction, a PNS examines all the users in this
set of roles and construct a set of overlapping roles,
i.e., the set of roles that these users can activate in
the system. The main idea here is that if two audit-
flows have common overlapping roles, then the flows
are potentially linkable since a common overlapping

role between audit-flows indicates that there may be
users with that role who can access both audit-flows.
If this is the case, then we call the common overlapping
role a conflicting role for that session. For example, if
I1 is accessible by Network Admin and I2 is accessi-
ble by Local Admin there may be users in the Student
role that also belong to both Local Admin and Net-
work Admin. In this case Student is a conflicting for
I1 and I2. The PNS identifies the set of conflicting
roles and presents this to the user, who picks a sub-
set of these conflicting roles as the “deny-set.” Alice
may decide that Student administrators are potential
threats to her privacy and pick Student as her deny
set. Policy constraints are generated that will ensure
that all read accesses to audit-flows satisfy SSC1. We
also assume that for the purposes of accessing audit-
logs, the system has access to all the roles that a user
can activate, not only those that the user has activated
currently. Furthermore, students who are not linkabil-
ity threats (i.e., those who can access only one flow),
will still be allowed to access Alice’s audit-records. A
reference monitor enforcing access to the audit-record
database will check the policy constraints and deny ac-
cess appropriately. We now formalize these concepts,
and show how we can provide users with unlinkability
with respect to audit-flows. The key idea here is that
Alice can specifically deny users of certain roles from
linking her information.

3.2 Audit-Flow Graph

Let the set of roles 2 in the system be Γ, and the
set of databases be ∆. Let U be the set of users in our
system. Let URA and PRA be the user-role assignment
and the permission-role assignment, defined according
to standard RBAC terminology. URA(u) is the set of
all roles that a user u can activate. Similarly, PRA(r),
returns all the permissions or accesses allowed to a role
r.

An audit-flow graph for an access transaction is a
directed graph I = (V,E) with the set of vertices
V ⊆ ∆∪Γ∪Γ′, representing databases, roles, and over-
lapping roles (where Γ′ is a copy of Γ). Overlapping
roles are discussed shortly. A directed edge (u, v) ∈ E
indicates the flow of audit information from u to v. We
identify the first database in the audit-flow Ii of a given
user as the root vertex δi for that flow.

We now describe how to create an audit-flow graph,
given a root vertex that represents Alice’s transaction,

2Our system includes roles, databases, and users. We refer to
these entities both in the context of general access control, and
as vertices in graphs. For simplicity, we use the same notation
for both contexts, instead of having separate “role vertices” for
the corresponding roles, and so on.

5

R2

R1

R4R3

R2 R5 R6
���
���
���
���

���
���
���
���

R7 R4

���
���
���
���

���
���
���
���

R8

2I

���
���
���
���

���
���
���
���

R1

���
���
���
���

���
���
���
���

R3

1

11

2

2 2 2

1 1

1

2 2

2 2

I1
Database 1 Database 2

Database 4Database 3

root node

root node

1,2 1,2

1,2 1,2 2222

1
1

1

1

22
2 2 2

2

{u1}

{u5}{u2}
{u2}

{u1,u2}

{u2,u4}
{u2}2 2 2

{u3}

{u2}

{u3} {u3} {u4}{u4}

{u4}

{u3}

2

Figure 2. Session Graph

and show how to construct the combined session graph
for multiple audit-flows. Figure 2 represents an ex-
ample session graph for two audit-flows, which we will
refer to for clarity. The audit-flow graph Ii for trans-
action i for user u is constructed as follows:

1. Adding databases: The root vertex δi repre-
sents the start of the audit-flow Ii. Starting from this
vertex, iteratively add vertices and edges correspond-
ing to all databases that receive audit-log information
about the access transaction δi initiated by the user.
This operation is repeated until all databases for the
audit-flow have been added to the audit-flow graph.
For databases d1, d2 we have (d1, d2) ∈ E if and only
if the audit-flow information for that transaction flows
from d1 to d2.

In Figure 2, databases are represented as rectan-
gles. The root vertex for I1 is Database 1. As informa-
tion related to audit-flow I1 flows from Database 1 to
Database 2, we have a directed edge from Database 1
to Database 2. Similarly, we have audit-flow I2 flowing
from Database 3 to Database 4.

2. Adding roles: For each database d ∈ V , de-
termine the set of roles R ⊆ Γ with read permission
to database d. These roles are added to the audit-flow
graph vertices V , along with the edges (d, r) for each
r ∈ R. We have (d, r) ∈ E if and only if role r has
permission to read database d.

In Figure 2, roles are represented as circles. The
individual access policies of Database 1 and Database

2 allow read access to users with role R1. Hence we
have directed edges from Database 1 and Database 2
to R1, and so on.

3. Adding overlapping roles: For each role
r ∈ V , we generate the corresponding overlapping
roles, and include directed edges to them. These edges
also contain information about the set of users com-
mon to both roles. Let O ⊆ Γ be the set of overlapping
roles such that for every o ∈ O, some user u can ac-
tivate role o in addition to r. We call r the parent of
overlapping role o. We have (r, o) ∈ E if and only if o
is an overlapping role of r.

Consider the following URA for a system with
five users u1, u2, u3, u4, u5. URA(u1) = {R1, R8},
URA(u2) = {R1, R3, R7}, URA(u3) = {R2, R5, R6},
URA(u4) = {R3, R4} and URA(u5) = {R3, R8} Fig-
ure 2 shows the overlapping roles overlapping roles
(represented as squares). Role R1 has overlap-
ping roles {R1, R3, R7, R8}, R2 has overlapping roles
{R2, R5, R6}, and so on. The user-sets on edges of
overlapping roles show the users common to both roles.

We now examine the complexity of creating an
audit-flow graph for a given transaction. In Step 1, at
most |∆| new vertices can be added to the graph. For
each vertex, at most |∆| − 1 new edges can be added.
Therefore we are bounded by O(|∆|2) operations. In
Step 2, for each database, at most |Γ| role edges can
be added to the graph. Therefore Step 2 is bounded
by O(|∆||Γ|) operations.

3.2.1 Constructing the AURA Graph

Step 3 involves generating overlapping roles. We show
how we can amortize the cost of this step by augment-
ing a standard URA mapping to include overlapping
role assignments. We call this the AURA graph (Aug-
mented User Role Assignment graph) and describe its
construction in Appendix A. The cost of updating the
AURA graph is incurred when there is a change in pro-
tection state (user-role assignments and deletions) and
otherwise lookups incur no additional cost during ses-
sion graph creation.

3.3 Session Graph

Given a set of audit-flows {I1, · · · , In} , correspond-
ing to a set of transactions that user Alice may execute,
we define session graph S by constructing a composite
graph which includes each audit-flow graph that was
constructed as described in Section 3.2. The set of ver-
tices and edges in the composite graph is the union of
the sets of vertices and edges in the original audit-flow
graphs. However, we preserve the information about

6

distinct flows in this composite graph by augmenting
edges with colors as described next.

In order to represent overlapping nodes and edges
between these graphs and identify linkability conflicts,
we introduce the mapping Color : Ii → N, which iden-
tifies a unique natural number with each audit-flow.
For simplicity, we assume that edges ei ∈ Ei from
Ii are assigned color i, i.e., Color(Ii) = i. An edge
es ∈ S may therefore have multiple colors, reflecting
which flow it belongs to for each color. We define the
colors for a vertex vs ∈ VS as Colors(vs) : VS → 2N, as
the set of colors of its incident edges. Figure 2 shows
the session graph with colors for each edge and vertex.

Let C ′ ⊂ VS be the set of all overlapping role vertices
in the composite session graph S with two or more
colors. We call this the set of common overlapping roles
or potentially conflicting roles. These roles may contain
users that have static read access to two or more flows.
To illustrate, R7 and R8 are potentially conflicting roles
in Figure 2, and are indicated with shaded squares.
After these potentially conflicting roles are identified,
they are further examined for linkability conflicts.

Consider the potentially conflicting role c′ ∈ C ′. Re-
call that all the incident edges (r, c′) are augmented
with the set of common users U(r, c′) from the AURA
graph, in addition to their colors. For a given poten-
tially conflicting role, if the intersection of the user sets
for edges of different colors is not empty (that is if there
is a user u in two edge sets of different colors) then we
identify c′ as a conflicting role. Also, if any edge has
two or more colors, and at least one user in its user-set,
then c′ is a conflicting role since these users can access
two or more audit-flows within the session. Let the set
of conflicting roles be C ⊆ C ′.

In Figure 2, R8 is not a conflicting role since there
are no users in R8 that are in parent roles R1 and
R3, that can access flows of different colors, viz., I1

and I2. R7 is a conflicting role because u2 appears on
the edges (R1, R7) and (R3, R7), i.e., user u2 with role
R7, also has roles R1 and R3 and can access two flows
of different colors I1 and I2. The conflicting roles in
Figure 2 are R1, R3 and R7.

Complexity of detecting conflicting roles: Let E be
the set of incident edges on a potentially conflicting role
c′. In the worst case, each edge e ∈ E has a different
color from the other edges. For each color i (or flow),
compute the union Ui of the edge sets U(r, c′) for all
parent roles r of c′ and all edges with color i. Ui is
the set of users in c′ that can access flow Ii. Now we
must check for pairwise intersections between the Ui’s
(O(n2) intersections) to identify real conflicts. Since
there are at most |E| union operations bounded by the
number of roles |Γ|, and each such operation is linear in

|U(e)| bounded by |U| (set union using a hash table),
the worst case complexity for this step is O(n2|U| +
|Γ||U|).

We now show how a user of the system can spec-
ify discretionary policies representing unlinkability re-
quirements and present an automated technique to gen-
erate constraints on the dissemination of audit-flow in-
formation. We also show that if these constraints are
enforced appropriately the simple security condition for
unlinkability is satisfied.

3.4 Specifying discretionary policies

As described in Section 3.3, the PNS returns to Alice
a set of conflicting roles C in S. Alice picks a subset
of these roles CAlice as her discretionary unlinkability
requirements. We call CAlice Alice’s deny-set.

A linkability conflict occurs for users with role c ∈
CAlice that can access databases belonging to two or
more flows. When Alice creates a new audit-record
that flows to a database that can be accessed by a
user in a conflicting role, the underlying access control
system denies the right to access these records to all
users in these roles who pose a linkability threat. The
PNS subsequently generates policy constraints that Al-
ice can attach to her audit-records.

3.5 Generating and enforcing policy con-
straints

The members in Alice’s deny-set should be pre-
vented from linking Alice’s flows. Note that not all
users in the deny-set are linkability threats, and hence
we need to make sure that only the users who can link
Alice’s flows must be denied access. We define the Al-
ice’s policy constraints PS for session S as the tuple
〈CAlice,R1, . . . ,Rn〉, where Ri is the set of roles with
static read permission to information flow Ii, and are
parents of some role in CAlice. This is easily obtained
from the session graph S.

Audit-flow records in session S are tagged with PS .
When a user u attempts to access an audit-record, the
database’s reference monitor first checks to see if u has
static read access for that database. If so, it then checks
the attached PS to see if any of u’s roles are in CAlice.
If so, the reference monitor checks to see if u’s role-set
URA(u) has a non-empty intersection with at least two
different sets in {R1, . . . ,Rn}. If so, the user has static
read access to two or more flows in S, and the user is de-
nied access by the reference monitor. In the worst case,
for users with static read access to the database, the
reference monitor needs to compute n+1 intersections,
where each intersection takes O(|URA(u)|+ |Γ|) oper-

7

ations (using hash-tables), which is O(|Γ|). Hence the
time complexity for evaluating PS is O(n|Γ|) if u is in
Alice’s deny set. If not, the time complexity is O(|Γ|),
the cost of computing the intersection URA(u)∩CAlice.
From Figure 2, assuming that CAlice = {R7}. We have
PS = 〈{R7}, {R1}, {R3}〉.

At this point, a valid question is why not generate
policy constraints with user IDs. There are two reasons
for this. Firstly, if a user u was identified to be a link-
ability threat, then adding u to the policy constraints
will prevent u from accessing two or more flows. How-
ever, if u is removed from a particular role and is no
longer a linkability threat, u will still be denied ac-
cess. Our scheme adds more precision to the system
by allowing users who are no longer linkability threats
to access audit-records. And secondly, in large systems
we expect a role based formalism to be a more compact
representation of linkability conflicts.

We now prove that our system is secure, sound, and
precise under certain assumptions.

Definition 6. Strong Tranquility asserts that the
access permissions associated with the users of the sys-
tem (i.e., the URA and the PRA) do not change by
system operation.

Policy constraints are generated based on the cur-
rent protection state of the system (i.e., the URA and
the PRA). Changes to the protection state can result in
policy constraints that are “out of date.” We first prove
that our constraints are secure, sound, and precise with
respect to SSC1 under the strong tranquility assump-
tion. We relax this assumption in Section 4 and show
how we can trade precision for security when the pro-
tection state and the session information are allowed to
change. The following theorems trivially hold because
of the strong tranquility assumption, which makes the
properties hold by construction of session graph S and
policy constraints PS .

Theorem 1. (SSC1 Security) Assuming strong
tranquility, if a user u with a role in Alice’s deny-set
CAlice, has static read access to two or more audit-flows
in Alice’s session I1, · · · , In, the policy constraints will
prevent u from accessing these flows. Furthermore, Al-
ice was presented with all of u’s roles as conflicting
roles.

Proof. Since u has static read access to two or more
flows in I1, · · · , In and since we assume strong tranquil-
ity, by construction all of u’s roles will appear as con-
flicting roles in the session graph S. By construction
of the constraints, u will be denied access to I1, · · · , In

since one of u’s roles appears in CAlice.

Theorem 2. (Soundness) Assuming strong tranquil-
ity, if a user u is denied access to a flow Ii by the policy
constraints, then the user has static read access to two
or more audit-flows in the session S.

Proof. Since u was denied access by the policy con-
straints, u’s role set includes a conflicting role role
c ∈ CAlice, and intersects with two or more role sets in
R1, . . . ,Rn. Since we assume strong tranquility, this
implies that u has access to two or more flows in S.

The following theorem is simply the contrapositive
of Theorem 2. In the following sections we will only
refer to security and precision, since precision follows
from soundness.

Theorem 3. (Precision) Assuming strong tranquil-
ity, if a user u has static read access to exactly one
audit-flow within a session, then u is not denied access
by the policy constraints.

3.6 Open-ended sessions

Our algorithm in Section 3.5 maintains security and
precision for a predefined session. Consider the case
when user Alice does not know all her transactions a
priori. Alice would like to dynamically generate con-
straints for new audit-flows, without invalidating her
constraints to older audit-flows. We extend our al-
gorithm to allow users to add audit-flows to existing
sessions and generate new constraints appropriately.

Consider the session graph S, and the new flow In+1.
Construct the session graph S′ by combining the audit-
flow graph for I ′ with S as described previously in Sec-
tion 3.3, and generate the new policy constraints for
audit-flow In+1 as described in Section 3.5. We now
show how security and precision holds for session S′

with respect to SSC2. In effect, we show that SSC2
holds for open-ended sessions.

Theorem 4. (SSC2 Security)
Assuming strong tranquility, if a user u with a role

in Alice’s deny-set CAlice, has static read access to
two or more audit-flows in Alice’s session I1, · · · , In+1,
then the policy constraints will prevent u from accessing
two or more of these flows.

Proof. We prove this by induction on the number of
audit-flows. For the base case we consider policy con-
straints generated for one audit-flow. The set of con-
straints is empty. Since there is only one flow, there are
no linkability conflicts. Now consider session S with
audit-flows I1, . . . , In, and assume the security prop-
erty holds for policy constraints for flows in S. If we

8

generate new policy constraints for I ′ as described in
Section 3.6, then any user u that has static read access
to two or more flows in S′ is denied access to audit-flow
I ′. Users with static read access to two or more flows
in S are allowed access to at most one flow in S (in-
ductive hypothesis). Consider a user u that has static
read access to exactly one flow in S, and to I ′. Policy
constraints for S will still allow u to access a single flow
in S, and the new constraints for I ′ will prevent u from
accessing I ′. Hence u can access at most one flow in S′

and security holds.

Theorem 5. (Precision)
Assuming strong tranquility, if a user u has static

read access to exactly one audit-flow within a session,
then u is not denied access by the policy constraints.

Proof. For the base case, again consider one audit-flow.
Since there are no policy constraints, u will not be de-
nied access by the policy constraints. Assume that for a
session S with audit-flows I1, . . . , In, precision holds for
the policy constraints. If we generate new policy con-
straints for I ′ as described in Section 3.6, static read
access to exactly one audit-flow in S′, will still tries to
access a flow in S. If u has static read access to a flow
in S, then precision holds by the inductive hypothesis.
If u has static read access to I ′, then u does not have
static read access to any flow in S (by assumption)and
is allowed access to I ′ by the new constraints.

3.7 Mandatory audit-flows

The PNS may consider access by certain conflicting
roles to be mandatory. In our example mentioned ear-
lier, the PNS may mandate that student administrators
cannot be denied access (in this case, Administrator is
the parent role of the overlapping role Student). Specif-
ically, the PNS can specify edges (r, o) that are manda-
tory, where r is a role vertex, and o is an overlapping
role of r. Hence, any user with role o is exempted from
the policy constraints. If there are exempted users that
can access two or more audit-flows, the user is informed
of this.

Our goal is to make the privacy implications of sen-
sitive information explicit to the user. Users will have
complete information of who can access the user’s in-
formation, and will proceed only if they agree to the
PNS’s mandatory policy.

In the next section, we relax the strong tranquility
assumption and present a discussion of what policies
we can enforce when the permissions are allowed to
change and investigate the trade-off between security
and precision.

4 Security under weak tranquility

Our strong tranquility assumption in Section 3.5 is
restrictive since the users, roles, and permissions, which
define the protection state in any organization will
change over time. Once the protection state changes,
it may not be possible to enforce some of the unlink-
ability requirements. New conflicts may emerge that
may invalidate existing policy constraints.

In this section, we extend our results to model the
effect of changing the protection state. Our proposed
solution uses versioning to localize the impact of these
updates. Since our policy enforcement mechanisms are
decentralized, i.e., records belonging to a particular
flow in a database are tagged with access restrictions,
it is important to guarantee the security of these ac-
cess restrictions under evolving protection state with-
out requiring updates to deployed policies. Similar to
maintaining consistent access histories for CW policies,
updating policies throughout the system is considered
to be infeasible.

We define the notion of weak tranquility which cap-
tures the effect of changing permissions on the satis-
faction of unlinkability properties.

Definition 7. Weak Tranquility for user u with
respect to policy constraint PS states that the ac-
cess permissions (i.e., the URA and the PRA) associ-
ated with a user u of the system do not change in such
a way that it violates the security and precision of the
enforcement of PS for user u.

Our goal is to guarantee that changes to the pro-
tection state can preserve the weak tranquility prop-
erty for as many users as possible during the lifetime
of the system and identify such users for each policy
constraint in the system.

When a policy is agreed upon by the user and the
PNS, the policy constraints certificate is stamped with
what we call the current system version number main-
tained by the PNS. When users are added to the sys-
tem, they are also stamped with the current system
version number. The user’s version number will be up-
dated when certain changes are made to the protection
state. A user u can access an audit-record belonging
to flow I only if Version(u) ≤ Version(I), which im-
plies that weak tranquility holds for u with respect to
the policy constraint for I. We assume that reference
monitors have access to the current version number for
a user (e.g., policy database or a revocation-based cer-
tificate approach). We prove Lemma 1 based on the
following update rules for a user’s version number.

Lemma 1. Consider audit-flows I1, . . . , In in a session
S. After any change to URA or PRA, if for a user u,

9

Version(u) ≤ Version(Ii) for all i = 1, . . . , n, then
weak tranquility holds for user u with respect to the
policy constraints PS.

Proof. We prove this for each possible update to the
protection state, and hence the lemma holds by induc-
tion on the number of updates to the protection state.
For the base case, there are no updates to the pro-
tection state, and the lemma trivially holds by strong
tranquility, which implies weak tranquility.

New User u Created: No change to system version
number. Assign current system version number to user
u. u has not been granted any static read access and
weak tranquility trivially holds for u with respect to
PS . Weak tranquility for other users with respect to
PS is not affected by this change.

New Role r Added: No change to system version
number. No permissions have changed in the system,
and weak tranquility holds for all users with respect to
PS .

User-Role (u, r) Assignment Added: When a
User-Role assignment (u, r) is added, it is possible that
u now has static read access to two or more flows in
session S, but will not be denied access to two or more
flows by the policy constraints. To maintain the se-
curity property of PS with respect to u, the system
version number is incremented, and u is assigned the
new version number. Hence existing policies PS will
deny access to u based on u’s version number. Weak
tranquility for other users with respect to PS is not
affected by this change.

User-Role Assignment (u, r) Deleted: No change
in version number. We only need to examine the case
when u had static read access to two or more flows
in S before the user-role assignment was deleted. If u
continues to have static read access to two or more flows
in S, then u must activate roles other than r, which
must appear in the original policy constraints. Hence
u will be prevented access by the policy constraints if
u has a role in the deny list of the constraints (security
property). If u does not have any roles on the deny list
(see discussion for privilege escalation for the case when
r ∈ CAlice), then u is allowed access. If it is the case
that u no longer has static read access to two or more
audit-flows, then r was necessary for access to two or
more flows. Hence r ∈ URA(u) is a necessary condition
for being denied access by the policy constraints. Since
now r /∈ URA(u), the policy constraints will allow u to
access flows in S (precision). Weak tranquility for other
users with respect to PS is not affected by this change.

User u Deleted: Version number does not change.

Equivalent to iteratively removing all User-Role assign-
ments for u. Delete all the User-Role assignments.

Role r Deleted: Equivalent to iteratively removing
all User-Role assignments for r followed by removing
all PRA(r). Note that after this operation, the system
version number remains unchanged.

Permission-Role (d, r) Assignment Added: This
means that a role r has been granted static read access
to some database d. Since this role may not have been
included in the session graph, it is possible that some
users in r can now access two or more audit-flows, and
will not be denied access by the policy constraints, vi-
olating the security of the policy constraints, and weak
tranquility does not hold for users in r with respect to
existing policy constraints PS . If there are any users
assigned to role r, the system version number is incre-
mented, and all users in r are assigned the new version
number. Weak tranquility for other users with respect
to PS is not affected by this change.

Permission-Role (d, r) Assignment Deleted: This
means that the static read access to database d has
been removed for a role r. It is possible that users in
r are no longer a threat to linkability, but will still be
denied access by policy constraints, violating the preci-
sion of the policy constraints. Hence weak tranquility
does not hold for users in r. If there are any users
assigned role r, the system version number is incre-
mented, and all users in r are assigned the new version
number. Weak tranquility for other users with respect
to PS is not affected by this change. Note that the se-
curity of policy constraints is not affected by adding the
assignment (d, r). However for every policy we would
like to maintain the set of users for which weak tran-
quility holds, which is why we update the version num-
bers for affected users.

Privilege Escalation: Consider the situation when
a user has access to only one flow in a session. After
accessing this information, the user is removed from a
particular role, and then added to a new role, giving
the user access to another flow in the session, violating
the unlinkability requirement. However, the version
number of the user is incremented when a new user-
role assignment is added, which will prevent this kind
of privilege escalation. Similarly, incrementing the ver-
sion number on the addition of a new permission-role
assignment prevents privilege escalation due to chang-
ing permission-role changes. More generally, privilege
escalation is prevented by the fact that a user’s version
number is incremented whenever the user’s static per-
mission set increases. It is important to note that if
a role r is removed from a user’s role-set, it is possi-
ble that r is on the deny list of some policy constraint,

10

and that the user will now be able to link flows in
that session, which was disallowed before this removal.
With cooperation from the security officer, a user can
remove, and subsequently add, r to his/her role-set re-
sulting in one form of privilege escalation. We assume
that the security officer is trusted, and that privilege
escalation from the removal of a conflicting role is se-
mantically correct and secure. An alternative approach
would be to define this type of privilege escalation as
not secure, and increment the version number when a
user-role assignment is removed.

Under versioning, the following theorems follow
from Lemma 1.

Theorem 6. (Secure) If a user u with a role in Al-
ice’s deny-set CAlice, has static read access to two or
more audit-flows in Alice’s session I1, · · · , In+1, then
the policy constraints will prevent u from accessing two
or more of these flows.

Proof. If Version(u) ≤ Version(Ii) for all i =
1, . . . , n then the weak tranquility assumption holds by
Lemma 1 for the policy constraints in I1, which im-
plies security with respect to user u. If Version(u) >
Version(Ii) for some i then the user is trivially denied
access to Ii even if their access did not cause a linka-
bility conflict, implying the security condition.

Theorem 7. (Precise up to Versioning) If a user
u has static read access to exactly one audit-flow within
a session S = {I1, . . . , In}, then u is not denied access
by the policy constraints if Version(u) ≤ Version(Ii)
for all i = 1, . . . , n.

Proof. If Version(u) ≤ Version(Ii) for all i =
1, . . . , n then the weak tranquility assumption holds
by Lemma 1, and hence the constraints are precise up
to versioning. For users with higher version numbers,
precision does not hold, since they will be denied ac-
cess even if they cannot link flows within a session.
Note that if there is an open-ended session for which
some audit-flows have lower version numbers (and some
higher) than u’s version number, the constraints guar-
antee precision for the subset of audit-flows with higher
version numbers.

After the policy constraints have been generated,
previously deployed policy constraints gradually lose
precision by being overly restrictive to users affected
by evolving system permissions. However, this is re-
stricted only to users who gain new permissions, and
users of roles for which database permissions change.

We argue that the latter case is rare and can be per-
formed at predefined system epochs. To cope with de-
grading precision, the PNS can choose to honor the
policy constraints for a certain time-period called un-
linkability window. This window can either be a static
parameter in the system, or can be negotiated with the
user. As mentioned earlier, changes in flow policies are
considered to be non-trivial changes. These changes
can take place in epochs that honor the unlinkability
window. When this is not possible, all data along the
new flow is tagged as sensitive and is only allowed ac-
cess by designated administrators. Users can be in-
formed in general that changes in flow policy are pos-
sible, and that certain designated administrators will
have access to audit-flows in the session.

5 Discussion

Guaranteeing the unlinkability of a user’s accesses
is a hard problem in general because of other channels
of observation outside the scope of anonymizing proto-
cols or an access control system. Motivated adversaries
can physically observe a user accessing a printer, room,
etc. We have made a first attempt at characterizing
the semantics of unlinkability in a distributed setting
as a confidentiality property. We assume that users will
take the necessary physical safeguards for their privacy
and our model provides the user with the specific guar-
antee that two or more records within the user’s session
will not be accessible by certain individuals, preventing
the unlinkability of the contents within the records.

Our enforcement architecture uses versioning to
maintain the security of policies, but these policies lose
their precision as protection state evolves. Our solution
does not claim to achieve optimality. Better enforce-
ment mechanisms (e.g., a more sophisticated version-
ing scheme) may yield better precision under evolving
protection state. Ideally distributed reference monitors
would identify exactly whether a user violates the se-
curity and precision of a policy and deny access accord-
ingly. Our solution takes the conservative approach of
identifying users for which the system cannot guaran-
tee security and precision. Further study is required to
measure the rate of degradation of precision in realistic
systems.

6 Related Work

Research on the privacy of a user’s accesses has fo-
cused on cryptographic mechanisms for anonymous au-
thorization. We first examine different cryptographic
techniques that allow a user to disclose only those at-
tributes that are strictly necessary for a given service

11

access transaction. One of the first proposals in this di-
rection is the work by Brands [1], where he proposes a
certificate system that gives a user control over what is
known about the attributes of his or her certificate (or
authorizations), and can prove their possession using
zero-knowledge protocols. However, with this scheme
a user who presents the same certificate twice can be
linked across his or her sessions with the same server,
even though the attributes are still hidden. To provide
unlinkability, other researchers have explored the con-
struction of credential systems that satisfy the multi-
show property whereby the owner of a certificate can
construct two or more credentials with the same at-
tributes that are unlinkable[14, 10]. The construction
of anonymous credentials presented by Chaum in [3]
relies on interaction with a trusted third party for un-
linkability. Camenisch, Lysyanskaya et al. [2, 7] ex-
tend this unlinkability based on computational zero-
knowledge proofs, and the credential system proposed
in [10] defines what the authors call Chameleon cer-
tificates that provide a user complete control over the
amount of information revealed as well as computa-
tional zero-knowledge proofs for unlinkability of cre-
dentials.

With respect to access control mechanisms other
than CW, the Separation of Duty (SoD) problem is
traditionally viewed as preventing a single user from
performing different actions on the same object in
the course of a workflow to protect the transactional
integrity [12]. In our problem, we want to prevent
an unauthorized user from accessing different audit-
records associated with different information flows ini-
tiated by a single user. In their discussion on differ-
ent types of Separation of Duty (SoD) constraints for
RBAC, Simon and Zurko [12] distinguish between three
types of SoD constraints : static, dynamic, and oper-
ational. Given a set of static SoD constraints, policy
conformance reduces to checking if the roles involved
have disjoint memberships so that no single person has
access to all operations in a workflow. With respect to
enforcing dynamic SoD constraints Sandhu’s work on
Transaction Control Expressions (TCE [11]) shows how
dynamic SoD constraints can be enforced adequately
using history if the information about each transac-
tion is annotated with the object itself. Simon and
Zurko argue that such history is essential to enforce
general SoD constraints, violating our requirement of
not maintaining access history. Gligor et al. [4] for-
malize the relationship between SoD and RBAC and
show how RBAC is not sufficient to enforce all types
of SoD properties, especially dynamic SoD constraints.
More recently, Li et al. [6] show how directly enforc-
ing static SoD policies is intractable, let alone dynamic

SoD policies, and show how statically mutually exclu-
sive roles can be engineered to enforce these constraints
on a best-effort basis. In the context of our unlink-
ability problem, annotating audit-records in different
databases with history information does not provide
us with a mechanism to enforce unlinkability as these
data objects are independent and local history cannot
be used to enforce global constraints. Instead, our pro-
posed solution annotates different audit-records with
policy constraints to enforce unlinkability.

In terms of detecting semantic conflicts that can be
exploited by a user to correlate different types of audit-
records and expose the privacy of a user, a number of
data mining techniques that explicitly represent knowl-
edge can prove to be useful. Researchers have exam-
ined how to use data mining techniques to correlate
logs in the context of intrusion detection, to detect at-
tacks [5, 13]. We believe that some of these techniques
can be extended to look for unlinkability conflicts at
the semantic level. As mentioned in Section 1, our
framework examines the unlinkability problem at the
level of authorizations to access audit-flows. Analysis
of the semantics of whether two audit-flows that can
be linked by a user can be leveraged to improve the
precision of enforcement of unlinkability policies.

7 Conclusions

We explored the problem of unlinkability in the con-
text of administrators accessing a user’s audit-logs in
a distributed environment. We argued that Chinese
Wall policies are difficult to enforce in a distributed
environment and proposed new semantics that allow
for the efficient enforcement of unlinkability policies
without having to maintain any access-history. We
presented an efficient enforcement architecture for our
access control model. We showed how audit-flows for
different access transactions can be composed to gen-
erate a session graph that encodes the linkability con-
flicts compactly. Using this session graph, we showed
how we can transform the unlinkability problem into
a policy engineering problem, and presented an algo-
rithm to generate authorization constraints for unlink-
ability. With appropriate tranquility assumptions on
the underlying authorizations, we proved that our con-
straints can guarantee unlinkability. We formalized the
notion of security and precision with respect to enforc-
ing unlinkability constraints. To maintain the security
of deployed policy constraints under evolving protec-
tion state, we proposed a solution based on versioning
that maintains security by trading precision for evolv-
ing protection state.

12

Acknowledgment

We thank Marianne Winslett for her helpful com-
ments.

References

[1] S. Brands. Rethinking Public Key Infrastructures and
Digital Certificates; Building in Privacy. MIT Press,
2000.

[2] J. Camenisch and A. Lysyanskaya. An efficient
non-transferable anonymous multishow credential sys-
tem with optional anonymity revocation. In EURO-
CRYPT, 2001.

[3] D. Chaum and J.-H. Evertse. A secure privacy pre-
serving protocol for transmitting personal information
between organizations. In CRYPTO, 1986.

[4] V. D. Gligor, S. I. Gavrila, and D. F. Ferraiolo. On
the formal definition of seperation-of-duty policies and
their composition. In In Proceedings of the IEEE Sym-
posium on Research in Security and Privacy. (Oak-
land, CA.), 172–183, 1998.

[5] W. Lee and S. Stolfo. Data mining approaches for
intrusion detection. In Proceedings of the 7th USENIX
Security Symposium, San Antonio, TX, 1998.

[6] N. Li, Z. Bizri, and M. V. Tripunitara. On Mutually-
Exclusive Roles and Separation of Duty. In Proceed-
ings of the ACM Conference on Computer and Com-
munications Security (CCS), October, 2004.

[7] A. Lysyanskaya, R. Rivest, A. Sahai, and S. Wolf.
Pseudonym systems. In Selected Areas of Cryptogra-
phy, Volume 1758 LNCS, 1999.

[8] N. H. Minsky. A Decentralized Treatment of a Highly
Distributed Chinese-Wall Policy. In Proceedings IEEE
5th International Workshop on Policies for Distributed
Systems and Networks (POLICY 2004), pages 181–
184, June 2004.

[9] A. Pashalidis and C. J. Mitchell. Limits to anonymity
when using credentials. In Proceedings of the 12th In-
ternational Workshop on Security Protocols, Springer-
Verlag LNCS, Berlin, Cambridge, UK, Apr. 2004.

[10] P. Persiano and I. Visconti. An Anonymous Creden-
tial System and a Privacy-Aware PKI. In R. Safavi-
Naini and J. Seberry, editors, Information Security
and Privacy, 8th Australasian Conference, ACISP
2003, volume 2727 of Lecture Notes in Computer Sci-
ence. Springer Verlag, 2003.

[11] R. Sandhu. Transaction control expressions for sepa-
ration of duties. In Proceedings of the 4th Aerospace
Computer Security Applications Conference, 1998.

[12] R. T. Simon and M. E. Zurko. Separation of duty in
role-based environments. In IEEE Computer Security
Foundations Workshop, pages 183–194, 1997.

[13] J. L. Undercoffer and A. Joshi. Data Mining, Se-
mantics and Intrusion Detection: What to dig for and
Where to find it. MIT Press, Dec. 2003.

[14] E. R. Verheul. Self-Blindable Credential Certificates
from the Weil Pairing. In Proceedings of the 7th Inter-
national Conference on the Theory and Application of
Cryptology and Information Security, pages 533–551.
Springer-Verlag, 2001.

A Constructing the AURA Graph

A directed edge (u, r) mean that user u is assigned
to role r. An undirected edge (r1, r2) means that r1

and r2 are overlapping roles. Each undirected edge is
associated with the set of overlapping users for roles
r1 and r2, U(r1, r2). In Section 3.3 we will use these
user-sets to identify conflicting roles. A conflicting role
is a role that contains one or more users who can access
two or more audit flows within a session.

We show how we can use the AURA graph to main-
tain overlapping role information, and describe how to
update an AURA graph when the protection state of
the system changes:

Adding a Role: This operation does not create any
extra overhead, since overlapping roles are not affected
until a User-Role assignment changes.

Adding a User-Role assignment: If a User-Role as-
signment (u, r) is added, then for each of u’s roles
r′ ∈ URA(u), the undirected edges (r, r′) are added
unless these edges exist already, and u is added to the
set U(r, r′). There are |URA(u)| operations, which is
bounded by |Γ|. The time complexity for set union
for adding u to U(r, r′) is constant (using hash tables).
For example, consider the AURA graph in Figure 3(a).
We omit self-loops (r, r) with user-sets U(r, r) equal
to the set of all users in r. We add the assignment
(u2, R1) as shown in Figure 3(b). We must now up-
date edges (R1, R1), (R1, R2) and (R1, R3), resulting in
three operations on the AURA graph. Since URA(u)
= {R1, R2, R3}, we have |URA(u)| = 3 as expected.
The resulting AURA graph is shown in Figure 3(c).

Removing a User-Role assignment: If a User-Role
assignment (u, r) is removed, then for each of u’s roles
r′ ∈ URA(u), u is removed from U(r, r′). If U(r, r′) =
∅, the edge (r, r′) is removed. There are |URA(u)|+ 1
operations, which are bounded by |Γ|. Again, remov-
ing u from U(r, r′) can be done in constant-time with
the use of hash tables. In our previous example we
added the assignment (u2, R1), resulting in the AURA
graph shown in Figure 3(b). To remove this assign-
ment, we must update the edges (R1, R1), (R1, R2) and
(R1, R3), as shown in Figure 3(d). Here URA(u) =
{R2, R3} since the assignment (u2, R1) was removed,
and we have |URA(u)| + 1 = 3 as expected. The re-
sulting AURA graph is the same as the original AURA
graph in Figure 3(a).

13

1u

2u

R

R

1

2

3

R

{u1}

{u2}

(a) Current AURA
Graph

1u

2u

R

R

1

2

3

R

{u2}

{u2}

{u1,u2}
{u1}

(b) Adding User-Role assign-
ment (u2, R1)

1u

2u

R

R

1

2

3

R

{u2}

{u1,u2}

{u2}

(c) New AURA Graph

1u

2u

R

R

1

2

3

R

{u2}

{u1}
{u1,u2}

{u2}
{}

(d) Removing User-Role as-
signment (u2, R1)

Figure 3. AURA Graph example

Removing a Role: Each User-Role assignment must
be removed first. Let U be the set of users for the role
being removed. Hence we have |URA(u)| operations
for each user u ∈ U . This is bounded by |U||URA(u)|.

Therefore, this approach requires at most |URA(u)|
operations on the AURA graph for each addi-
tion/deletion of a User-Role assignment. In the worst
case this is O(|Γ|) operations for each addition/deletion
of a User-Role assignment. Deleting a role in the sys-
tem is more expensive and is bounded by O(|U||Γ|).
Overlapping roles for any particular role can be effi-
ciently extracted from the AURA graph by a simple
lookup.

14

