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Abstract. We investigate the problem of model checking Interval-valued
Discrete-time Markov Chains (IDTMC). IDTMCs are discrete-time finite
Markov Chains for which the exact transition probabilities are not kndwn.
stead in IDTMCs, each transition is associated with an interval in which the ac-
tual transition probability must lie. We consider two semantic interpretatians fo
the uncertainty in the transition probabilities of an IDTMC. In the first interpre
tation, we think of an IDTMC as representing a (possibly uncountablei)yfarh
(classical) discrete-time Markov Chains, where each member of thigyfana
Markov Chain whose transition probabilities lie within the interval range given
in the IDTMC. This semantic interpretation we call Uncertain Markov Chains
(UMC). In the second semantics for an IDTMC, which we call Intervalrkbv
Decision Process (IMDP), we view the uncertainty as being resolvedighro
non-determinism. In other words, each time a state is visited, we adiadissar
pick a transition distribution that respects the interval constraints, and take a
probabilistic step according to the chosen distribution. We show that the PCTL
model checking problem for both Uncertain Markov Chain semanticdrated

val Markov Decision Process semantics is decidable in PSPACE. We ralge p
lower bounds for these model checking problems.

1 Introduction

Discrete time stochastic models suchzascrete Time Markov Chain®TMCs) have
been used to analyze the correctness, reliability, andpednce of systems [8, 11, 21,
15]. In a DTMC, the system is assumed to have finitely manestatnd the system’s
future behavior is completely determined by its currentesterom each state of the
system, the probability of transitioning to any other giwtate at the next step is fixed
and is given by the transition probability matrix of the DTMC

The assumption that the system makes transitions accotaiadixed distribution
at each step and that this distribution is precisely knowerwmodeling, is a strong
assumption that may often not hold in practice [14, 17, 28, lf&he system being
modeled is an open system, i.e., interacts with an envirobntteen uncertainty in the
transitions may arise due to imperfect information aboetghvironment. For example,
consider a system that interacts with an imperfect comnatioic medium that may lose
messages. The probability of message loss may either deperttbice of the commu-
nication medium or on a complicated, time-varying dependemm events that are not
precisely understood at the time of modeling the system tigrcsource of impreci-
sion is that the transition probabilities in the system nhage often estimated through
statistical experiments, which only provide bounds on thedition probabilities.
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In order to faithfully capture these system uncertaintiessiochastic models,
the model ofinterval-valued Discrete-time Markov Chains (IDTM8as been intro-
duced [14, 16]. These are DTMC models where the exact priityatfi taking a state
transition is not known, and instead the transition prolitghs assumed to lie within
a range associated with the transition. Two semantic irgéaions have been sug-
gested for such modelkincertain Markov ChaingUMC) [14] is an interpretation of
an IDTMC as a family of (possibly uncountably many) DTMCs eseach member of
the family is a DTMC whose transition probabilities lie wittthe interval range given
in the IDTMC. In the second interpretation, callederval Markov Decision Process
(IMDP), we view the uncertainty as being resolved through-determinism. In other
words, each time a state is visited, we adversarially pidlaasition distribution that
respects the interval constraints, and take a probabikstip according to the chosen
distribution. Thus, IMDPs allow the possibility of modaiia non-deterministic choice
made from a set of (possibly) uncountably many choices. ADBVtan be seen as a
generalization of Markov Decision Processes (MDPs) [1243B,

We investigate the problem of model checking PCTL specitioatfor IDTMC.
The two semantic interpretations of IDTMCs yield very diéfiat model checking re-
sults (whenever the property has at least two probabiligtierators, not necessarily
nested; see example in Figure 1) and require different ilgoic techniques. For the
case of UMCs, we show that PCTL model checking problem cartheced to finding
feasible solutions to inequality constraints, much likéhie case of DTMC and MDP [8,
4,3,21,7]. However, there is one important difference. @tiestraints to be solved in
the case of UMCs are polynomial and not just linear (as for CEMANd MDPSs). Since
theexistential theory of realis decidable in PSPACE [20, 6], the feasibility of the poly-
nomial constraints arising in model checking, can be ddtedhby making a “query”
to the existential theory of reals. Thus, the PCTL model kimerproblem for UMCs
is in PSPACE. In practice, however, this algorithm may notleemost efficient. The
constraints we obtain during model checking all take a gppdarm: the polynomials
arebilinear 1. Therefore, it might be more efficient to instead use albari for solv-
ing bilinear matrix inequalitiegBMIs) [10, 9] or tools developed for this purpose [18].
Checking feasibility of BMIs is known to be NP-hard [26], bk exact complexity,
which is lower than PSPACE, is unknown. On the other handhéncase of IMDPs,
we show that the model checking problem can be reduced tolrobdeking an MDP
of exponential size. We then use known results for MDPs tavathat IMDPs can be
model checked in PSPACE. We also present an iterative mbaekang algorithm for
IMDPs which may prove to be more efficient in practice.

In addition to demonstrating the decidability of the modeécking problem, we
also prove lower bounds on the complexity of the model chreckiroblem. We show
that the model checking problem for UMCs is NP-hard and cekdRl; thus, for UMCs
the problem is unlikely to be in P. A straightforward corojlaf our results is that
solving BMs is also co-NP-hard. For IMDPs, we can only showaPdness; in fact,
even this is a consequence of the P-hardness of (classitMYXmodel checking.

! The highest power of any variable in the polynomial is 1, and any term igribeuct of at
most two variables.



The rest of the paper is organized as follows. We briefly disgalated work next.
In Section 2 we formally define IDTMC and give its semanticd&4C and IMDP.
PCTL and the model checking problem is introduced in Se@idWe then revisit the
model checking algorithm for DTMC (Section 4) and presentadified version of
the classical algorithm. The ideas in the section play a kdy in our UMC model
checking algorithm. Section 5 (UMC) and Section 6 (IMDP) tedm our main results
about the model checking problem, providing both upper anet bounds. Finally we
present our conclusions in Section 7. Motivating exampfddMCs and IMDPs and
observations about BMI optimization problems are defetoefippendix.

Related Work. The model of IDTMCs has been introduced independently bys-Jon
son and Larsen [14] and Kozine and Utkin [16] under the naimtesval specification
systemsandinterval-valued finite Markov chainsespectively. However, they consider
different semantic interpretations. Jonsson and Larsesider the UMC interpreta-
tion and study bisimulation and simulation preorders fahsan interpretation. Kozine
and Utkin, on the other hand, take the IMDP interpretatiod present algorithms to
compute the probability distribution on the states aftsteps. Neither of these papers
investigate the PCTL model checking problem which is theugoof this paper. We
introduce new names to emphasize the subtle semanticatifferin the two interpreta-
tions. A more general model callgéneralized Markov processts describing infinite
families of Markov Chains was introduced in [1]. In that pgpleey showed that model
checking such models with respect to PCTla more general logic than PCTL) is de-
cidable and has elementary complexity. PCTL model chedkinglassical DTMC and
MDP models has been considered in [8, 4, 3,21, 7].

2 Formal Models

Definition 1. A discrete-time Markov chai(DTMC) is a 4-tupleM = (S, s;, P, L),
where

1. S'is afinite set ofstates

2. sy € Sis theinitial state,

3. P: Sx .8 — [0, 1] is atransition probability matrixsuch thad __,_ o P(s,s’) =1,
and

4. L: S — 2P is alabelingfunction that maps states to sets of atomic propositions
from a setAP.

A non-empty sequence = sps18s - - - is called apathof M, if eachs; € S and
P(s;,si+1) > 0 foralli > 0. We denote thé'® state in a pathr by 7[i] = s;. We let
Path(s) be the set of paths starting at staté\ probability measure on paths is induced
by the matrixP as follows.

Letsg, s1,-..,8, € Swith P(s;,s;,41) > 0forall0 <i < k. ThenC(spsq - .- sk)
denotes aylinder setconsisting of all pathsr € Path(sy) such thatr[i] = s; (for
0 < i < k). LetB be the smallest-algebra orPath(sy) which contains all the cylinders
C(sps1 .- . sk). The measurg on cylinder sets can be defined as follows

1 if k=0
MC (051 5)) = {P(so,s1) - P(sk_1,s,) otherwise
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Theprobability measuren 15 is then defined as the unique measure that agrees with
1 (as defined above) on the cylinder sets.

Definition 2. An Interval-valued Discrete-time Markov cha(tDTMC) is a 5-tuple
T=(S,s;,P,P, L), where

1. Sis afinite set ofstates

2. sy € S'is theinitial state,

3. P: S x S — [0,1] is atransition probability matrixwhere eacP (s, s’) gives the
lower boundof the transition probability from the stateto the states’,

4. P: S x S — [0,1] is atransition probability matrixwhere eactP (s, s') gives the
upper bounaf the transition probability from the stateto the states’,

5. L: S — 22F is alabelingfunction that maps states to sets of atomic propositions
from a setAP.

We consider two semantics interpretations of an IDTMC moaeinely Uncertain
Markov Chains (UMC) and Interval Markov Decision Proceg$BtDP).

Uncertain Markov Chains An IDTMC Z may represent an infinite set of DTMCs,
denoted byZ], where for each DTMQS, s;, P, L) € |Z] the following is true,

— P(s,s') < P(s,s') < P(s,s') for all pairs of states ands’ in S

In the Uncertain Markov Chains semantics, or simply, in thé@$, we assume that the
external environment non-deterministically picks a DTM®@nf the sefZ] at the be-
ginning and then all the transitions take place accordinbeahosen DTMC. Note that
in this semantics, the external environment makes only @medeterministic choice.
Henceforth, we will use the term UMC to denote an IDTMC intetpd according to
the Uncertain Markov Chains semantics.

Interval Markov Decision Processesin the Interval Markov Decision Processes se-
mantics, or simply, in the IMDPs, we assume that before etransition the external
environment non-deterministically picks a DTMC from thé g8 and then takes a one-
step transition according to the probability distributmfithe chosen DTMC. Note that
in this semantics, the external environment makes a nagrdetistic choice before ev-
ery transition. Henceforth, we will use the term IMDP to denan IDTMC interpreted
according to the Interval Markov Decision Processes sdngawe now formally de-
fine this semantics.

Let Stepss) be the set of probability density functions ovedefined as follows:

Stepgs) = {u: S = R="| Y pu(s') = 1andP(s,s") < u(s') < P(s,s') forall s’ € 5}
s’eS

In an IMDP, at every state € S, a probability density functiop is chosen non-
deterministically from the setep$s). A successor staté is then chosen according to
the probability distribution: over.S.



A pathr inan IMDPZ = (S, si, PP, L) is a non-empty sequence of the form
so B s B8 ..., wheres; € S, piy1 € Stepss;), and;1(sir1) > 0forall i > 0.
A path can be either finite or infinite. We usg,, to denote a finite path. Léast(rg,)
be the last state in the finite path,. As in DTMC, we denote thé'" state in a path
7 by 7[i] = s;. We letPath(s) andPathy, (s) be the set of all infinite and finite paths,
respectively, starting at state To associate a probability measure with the paths, we

resolve the non-deterministic choices byaatversary which is defined as follows:

Definition 3. AnadversaryA of an IMDPZ is a function mapping every finite path,,
of Z onto an element of the set Stdpst(7s, ) ). Let. Az denote the set of all possible ad-
versaries of the IMDEL. Let Path(s) denote the subset of P4t which corresponds
to A.

The behavior of an IMDH = (S, s, P, P, L) under a given adversary is purely
deterministic. The behavior of a IMDPfrom a states can be described by an infinite-
state DTMCM# = (S4, 54, P4, L4) where

-84 = Pathin (s),

— sf =3, and
. . A(mgin)
— P (i, mhy) = A(mn)(s) if 4, is of the formmay g
0 otherwise

There is a one-to-one correspondence between the paJ.‘Ws“aindPathA(s) of 7.
Therefore, we can define a probability measHvebg1 over the set of path@athA(s)
using the probability measure of the DTMX .

3 Probabilistic Computation Tree Logic (PCTL)

In this paper we consider a sub-logic of PCTL that excludesthady-state probabilis-
tic operators. The formal syntax and semantics of this legés follows.

PCTL Syntax

pu=true|a|=¢| PN | Pup(¥)

Yu=oU¢|Xe
wherea € AP is an atomic propositionss € {<,<,>, >}, p € [0,1], andk € N.
Here¢ represents atateformula andy represents pathformula.

PCTL Semantics for DTMC

The notion that a state (or a pathr) satisfiesa formulag in a DTMC M is denoted
bysEm ¢ (%w =i ¢), and is defined inductively as follows:
S =M true

sEMa iff a € L(s)

s M iff s Ea @

S'ZM b1 N ¢2 iﬁS'ZM b1 ands ':M b2

s Em Poap(y) iff Prob{m € Path(s) | m Eam ¥} <1 p

T X6 it r1] Fa 6

7'('):/\/1 o1 U ¢ iff 3220(71’[1] )IM ¢2ande<i.7T[j] ):M (]51)



s = true

skEa iff a € AP(s)

sE-o  ffsle

8):¢1/\¢2 iﬁs':¢18nd5|:¢2

s = Poap() iff Prob?({m € Path’*(s) | 7 = ¢}) xap
forallAe A

0= P, ,(Xa) V P_g ,(Xb) TEXe iffnll] ¢

U g iff Ji > 0 (xli] = g2 and¥j < i. 7j
Fig. 1. Example IDTMC and PCTL for." 4 ¢2 1131 2 0 (rlil = 62 andvj <. wlj] (= 61)

mula ¢. The UMC interpretation of the Fig. 2. PCTL semantics for IMDP
IDTMC satisfiesp, whereas the IMDP in-
terpretation of the IDTMC violateg

It can shown that for any path formulaand any stata, the set{m € Path(s) |
7 =m0} is measurable [27]. A formul®., () is satisfied by a stateif Prob[path
starting ats satisfiesi)] >t p. The path formulaX¢ holds over a path i holds at the
second state on the path. The formala/ ¢ is true over a path if ¢» holds in some
state alongr, and¢ holds along all prior states along

Given a DTMCM and a PCTL state formulg, M = ¢ iff s = 9.

PCTL Semantics for UMC

Given a UMCZ and a PCTL state formula, we sayZ = ¢ iff, for all M € [Z],
M = ¢. Note thatZ [~ ¢ does not imply thaf = —¢. This because i }~ ¢, there
may existM, M’ € [Z] such thatM = ¢ and M’ = —¢.

PCTL Semantics for IMDP

The interpretation of a state formula and a path formula of Pfor IMDPs is same as
for DTMCs except for the state formulas of the fof,, ().

The notion that a state(or a pathr) satisfiesa formulag in a IMDP Z is denoted
by s | ¢ (or 7 = ¢), and is defined inductively in Figure 2.

The model checking of IDTMC with respect to the two semartans give different
results. For example, consider the IDTMC in Figure 1 and t6&Pformula ¢. The
UMC semantics of this IDTMC satisfies while the IMDP semantics violates

4 Revisiting DTMC Model-Checking

In this section we outline the basic model checking algarifor (classical) DTMCs.
The algorithm that we outline here for DTMCs is not the mofitigit (like the one
presented in [8]); however the main ideas presented helrfowil the crux of our model
checking algorithm for UMCs.

The algorithm for model checking DTMCs will reduce the peghlto checking the
feasibility of simultaneously satisfying a finite set of pobmial inequalities. This fea-
sibility test can be done by checking if a first-order formwith existential quantifiers
about the real numbers is true. More precisely, we need tokctie formula of the
form 3z, ..., 2, P(x1,...,z,) is valid over the reals, wherB is a boolean function



of atomic predicates of the forrfy(z1, ..., 2z,) > 0, wheref; is a multivariate poly-
nomial andxe {=, #, <, >, <,>}. Itis well-known that this problem can be decided
in PSPACE [20, 6}.

The model checking algorithm for DTMC takes a DTM@ = (S, s;, P, L) and a
PCTL formula¢ as input. The output is the set &gt = {s € S | s =m ¢}, i.e., the
set of all states of the model that satigfyWe sayM = ¢ iff s; € Sat(o).

The algorithm works by recursively computing the set &3tfor each sub-formula
¢’ of ¢ as follows.

Sat(true) = S Sat(a)
Sat(—¢) = S\ Sat(¢) Sat(¢1 A ¢2)
Sat(Pocp(¢0)) = {s € S | ps(¢) > p}

{slaecL(9)}
Sat(¢1) n Sat(¢2)

where p,(y)) = Prob{m € Path(s) | # Eam v}. The computation of the set
Sat(Puap (1)) requires the computation of (1) at every state € S.

If ¢ = X¢, thenp, (1) = >, cgan(p) P(5: 8)-

To computeps (1 U ¢2), we first split the set of statesinto three disjoint subsets,
Sno, gves and S” where S™ = Sat(—¢; A —¢2), SY = Sat(ps), and S =
S\ (S U S¥es). Moreover, letS™ be the set{s | ps(¢1 U ¢2) = 0} \ S™° and
S>0 be the set{s | ps(é1 U ¢2) > 0}. Note thatS = S>0 u §7m° U S™°. By [8],
{zs = ps(¢1 U ¢2) | s € S} is a solution of the following linear equation system.

0 if s € 5™
s =141 if s € 5V 1)
SoesP(s, sy if s€§7

Note that the equation system (1) can have infinite numbeolafiens. For exam-
ple, consider the formularue U a, wherea is an atomic proposition and the DTMC
M = ({s},s,P, L), whereP(s,s) = 1 andL(s) = (. Note thats € S™°. The linear
equation system (1) that is instantiated for compugin@rue U a) for M is xs = x;.
The system has infinite number of solutions.

We can ensure thtes = ps(¢1 U ¢2) | s € S} is a unique solution of a system
of equations as follows. Fix & such that) < v < 1. Consider the following linear

equation system.
0 If s E Sno
m; =<1 if s € §gves @
Y es/P(s, 82l if s e S
Lemmal. 2/, > 0iff s € 0.

Proof. (Case<) If s € S>°, thenp,(é1 U ¢2) > 0. This implies that there is a finite
path froms to as’ € S¥* such that all the states on the path aresitf’ and all the
edges in the path have non-zero probability. (e} be the length of the shortest such

2 If one takes the computational model to be Turing machines, then thi hetds when the
coefficients of the polynomials are rationals. One the other hand, if am&d=ys a model of
computation that is appropriate for real number computation, like the mp®ged by Blum,
Shub, and Smale [5], then the algorithm can handle even real coeffficien



path froms. For a states, if i(s) = 0, thens € SY° and hencer/, = 1. Let us assume
that for anys, such thatl(s) = 4, 2/, > 0. Consider as, such that(s) = i + 1.
Then there exists asf such that(s’) = ¢« andP(s,s’) > 0. Therefore, the equation
zl =g VP(s, )2l if s € 5" in (2) implies that, > yP(s, s')z), > 0. This is
because’, > 0 by the induction hypothesis. This proves that S~ impliesz’, > 0.
(Case=-) We prove this by contradiction. Let us assume that there issach
thatz), > 0 ands ¢ S>°. Let X be the set{z/, | s’ ¢ S>%andz/, > 0}. Let
s be such that:, =max(X). If z, = 1, thens must be inS¥*s by the system of
linear equations in (2), which is a contradiction.1lf> 2/ > 0, then consider the
equationz, = >, g vP(s,s' )z}, in (2). Lets’ be such that, =max{z}, | s” €
SandP(s,s"”) > 0}. Thenz, < vz, >, s P(s,s") < yal, < 2,. Becauses ¢
S5>% andP(s,s’) > 0, s’ must not be inS>°. Sincex’, > 2/ ands’ ¢ S>°, s’ isin X.
Therefore . is not maxX X ), which is a contradiction. 0.

Lemma 2. The system of linear equations(2) has a unique solution.

Proof. The proof is by contradiction. Letx, = &, | s € S} and{z, = %, | s € S}

be two different solutions of the system of linear equationg). Let s be such that
& # z/. Then we can find\, and A; in R such that\¢Z}, + (1 — A\g)Z, = 0 and
Mzl + (1 — AT, > 0. Note that both{z!, = X2, + (1 — \)Z. | s € S} and
{2, = M3, + (1 — \)T, | s € S} are also solutions of the system of equations in (2).
The factthat{z, = M2, +(1—Xo)Z, | s € S}isasolution andhz’, +(1—Xg)Z, =0
implies thats ¢ S~ (by Lemma 1). On the other hand, the fact that = A3’ +

(1 —X\)Z, | s € S}is solution and\; 2/, + (1 — A1)z, > 0 implies thats € S>° (by
Lemma 1), which is a contradiction. O

Lemma 3. 2/, = 0 iff s € S U S™o.

Proof. Consider the subset of equations from (2)

/ 0 if s € S™°

Ts = {ZS/ES yP(s,s )zl if s € ST ®
By the definition ofS*"°, sincep, (¢1U $2) = 0, any states’ that is reachable fromby
an edge with non-zero probability is 87" U S™°. Therefore, the set of equations (3)
only involve variables inz’, | s’ € S"° U S"°}. By Lemma 2, this set of equations
has an unique solution. Note th@at’, = 0 | s € S"1° U S"°} is a solution to the system
of equations in (3). Hence, the unique solution of the sysiteguation (2) is such that
z!. = 0forall s € S™° U S§ne. i

Consider the following system of constraints.
xh =0iff zy =0foralls € S 4)
wherez’, are variables of (2) and, are variables of (1).

Lemma 4. The system of linear equations (h) and (2) has a unique solution given
that the constraints if4) hold. Moreover, for this unique solutiaty, = ps(¢1 U @2),
forall s € S.



Proof. The proof is by contradiction. Letr, = @, | s € StU{z, =32, | s S} and
{zs =75 | s € S}u{al, =z, | s € S} be two solutions of (1) and (2) such that (4)
hold. By Lemma 2, for alk € S, 7%, = 7/, Fix as such thati:; # zs. We can pick a\
such that\i, + (1 — A\)Zs = 0. Note that{z, = Ais + (1 — N)@s | s € S} U{z, =
A&+ (1 — M@, | s € S}is also a solution to the set of constraints. This implies tha
A&+ (1 — Nz, = &, = Z, = 0 by the constraints (4). Again by (4, =z, =0
implies thatz:, = z, = 0, which is a contradiction.

Note that{zs; = ps(¢1 U ¢2) | s € S} U{zl, = &, | s € S} is a solution to the
system of linear equations in (1) and (2). Moreover, thistoh satisfies the constraints
in (4). Hence, the solution is an unique solution to the systélinear equations in (1)
and (2) such that the constraints in (4) hold. O

Note that the set of constraints (1), (2), and (4) can beawritbompactly as follows.

0 if s €5 0 if s € 5™
Ts =11 if s € 57 =141 if s € 57 (5)
SoesP(s,s)zy ifse s’ S vesTP(s, sl if s €57

0s >0 Ts = 05T

where for eacls € S, we introduce the variablé,, such that we can impose the
constraint that:; = 0 iff 2, = 0. The satisfiability of the set of constraints (5) can be
easily reduced to checking if a formula with existential mfifeers belongs to the theory
of reals. The constructed formula is linear in the size ofDAMC.

5 Model Checking UMC

In this section, we reduce the problem of model-checking ad.ichecking the feasi-
bility of a bilinear matrix inequality. (More details abdbitinear matrix inequality can
be found in Appendix.) In the non-trivial reduction, we mdiuce a number of auxiliary
variables to achieve the goal. Note that a simpler PSPAC@&tittgn, which avoids the
extra auxiliary variables by guessing their values noreiheinistically, is possible and
is easy to come up from our reduction. However, we believetti@following reduc-
tion is important from the perspective of implementatiorpmactice using algorithms
to solve bilinear matrix inequalities (BMIs).

Given a UMCZ and a PCTL state formulg, our goal is to check whethér =
¢. In other words, for every\t € [Z], M = ¢. Thus, to check whethef = ¢,
we check if there exists som#&t € [Z] such thatM |= —¢. If such anM does
not exist, we conclude th&t = ¢. We will view the problem of discovering whether
aM € [Z] satisfies—¢ as problem of checking the feasibility of a set of bilinear
inequality constraints as follows. Each transition praliglof the DTMC M that we
are searching for, will be a variable taking a value withia founds. We will also have
variables denoting the satisfaction (or non-satisfagtideach subformula at each state,
and variables denoting the probability of a path subforrbeiag satisfied at each state.
Inequality constraints on these variables will ensuretthey all have consistent values.
We now describe this construction formally.

Let us fix an UMCZ = (S,s;,P,P,L) and a PCTL formulap. Let M =
(S, s1, P, L) be an arbitrary Markov chain ifT].



For every pair of states, s’ € S, let the variablep,,, denote the transition proba-
bility from s to s’ in M, i.e., pss denoteP (s, s’). Since M is an arbitrary DTMC in
[Z], by the definition of UMC, the following constraints hold: fFevery states € S,
> o egPss = 1 and for every pair of states s’ € S, P(s,s") < pss < P(s,s)

Given any PCTL formulap, let us define the setubf$¢) (of state sub-formulas)
recursively as follows:

subf§a) = {a} subf§—¢) = {—¢} U subfe)
SUbfSd1 A é) = {1 A d2} USUDIS1) U'SUbISgz)  SUDISPocy () = {Pocy (1)} U SUbfSeh)
subfQ¢py U ¢2) = subfe1 A —¢2) subf$X¢) = subf§e)

Given a state € S and any formulay’ € subf3¢), eithers = ¢’ Or s Faq ¢
For eachs € S and eachy’ € subf$¢), let the variablet?’ be such that? = 1
iff s =m0 ¢ and,tff' = 0iff s £p ¢'. Following the definition of the various
logical operators in PCTL, we can set up a set of constraimsng these variables
such that for anyM € [Z], the values taken by these variables is consistent with thei
intended semantic interpretation. We introduce the fdlhgwadditional variables to
aid in setting up these constraints. For every state S and¢’ € subf3¢), let the
auxiliary variablesf?’, andu¢ be suchthat? =1 «— (¢ =0 < uf =1
andt?’ =0 < f¢ =1 < u? = —1Clearly,t?', f¢', andu?’ are related by
the following set of constraints:

=0 2+ =1 2wl =u +1

For every formulay’ € subf¢) of the formP., (1) and for every state € .S, let
p? be the variable such that’ denotesProb{r € Path(s) | 7 Eaq 1} in M.

For each state € S and for eachy’ € subf$¢) exactly one of the following
constraints hold depending on the formgdf

' =1 if ¢’ =a e L(s) 2 =0 if ¢’ =a ¢ L(s)
t =11t if ¢ = =1 101192 = ¢’ if ¢ = 61 A b2
ul pt > ul'p+8fe i ¢ = Pop() wl'p? > ul'p+ 5t if ¢ = Pop(v)
ul p? + 612 <ul'pif ¢ = P<p(v) ul'p? + 6t <ul'pif ¢ = Pep(vh)

whered is slack variable that is required to be strictly greatentha

Note that the above constraints do not reflect the fact thragdoh¢’ € subf3¢)
of the form P, (¢), p¥ denotesProb{r € Path(s) | 7 = 1}. To set up such
constraints, we introduce the sethbfR ¢) (of path sub-formulas) as follows:

subfRa) = ( subfR—¢) = subfR¢)
subfR¢1 A ¢2) = subfR¢1) U subfR¢p2) SUbTR Poap (¥)) = {9} U subfRy)
SUbfR 1 U ¢2) = SUbfR(é1) U subfR¢2) SubfRX¢) = subfR¢)

Thus for all sub-formula o of the formP., (1), SubfR¢) containsy.
For anyy € subfR¢) of the formX¢; and for eachs € S the following constraint

holds:
pisp = Z pss’tfll

s'eS
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For eachy € subf¢) of the form¢, U ¢2 ands € S the following constraints
hold.
py =t 1Y wl = peup?
s'es

As in simple DTMC, if we consider the above constraints otlilgn we may not have
unique solution for certaip?. Therefore, we fix a such that) < v < 1. Then, as in
simple DTMC model-checking, for eagh e subfR¢) of the form¢, U ¢ ands € S,
we introduce the variablgs? andw.?, such that the following constraints hold.

’ A— ! ’ !
p;/J _ th + tfl ¢2w5¢ w;ﬁ =~ Z psslp;/)
s'esS

We wantp? = 0 if p.¥ = 0. To ensure this, for each € subfR¢) of the form
$1U ¢2 ands € S, we introduce the auxiliary variab®’ and ensure that the following
constraint hold.

sV>0  pl=6lpt

Let V(I7 (b) = {5} U Us,s’eS{pSS’} U UseS,d:’eSUbf&j;){tf 7f§5 7“? } U
Uses.pesubfRe) PVs w!sp w67} denote the set of variables over which the
above constraints are described and’éf, ¢) denote the above set of constraints.

Lemma 5. For every solution: V(Z, ¢) — R of C(Z, ¢), there exists a DTMQU =
(S, s, P, L) € [Z] such that the following holds:

1. I(pss) = P(s,¢') foranys,s’ € S

2. 1%, f¢ € 40,1} andu?’ e {—1,1} foranys € S and¢’ € subf$¢)

3.t =1AfF =0Au? =1iff s =pq ¢/ foranys € Sand¢’ € subf$o)
4.1 =0Nf¥ =1Au? = —1iff s =pq ¢/ foranys € S and¢’ € subf$o)
5. p¥ = Prob{m € Path(s) | = =aq ¢} for anyy € subfR¢)

The proof follows from the observations made while settipghe constraints. An
immediate consequence of the Lemma 5 is the following thmore

Theorem 1. If there exists a solutiod of C(Z, ¢) such that/(t¢ ) = 1, then there
exists anM € [Z] such thatM = ¢.

In order to check ifZ = ¢, the model checking algorithm sets up the constraints
C(Z,—¢) and checks its feasibility. Clearly, checking the feadipibf C(Z,—¢) is
equivalent to checking if a sentence with existential gifiens is valid for the reals;
the size of the sentence is polynomial in the size of the UM@wéler, the constraints
C(Z,—¢) are bilinear constraints, and we need to satisfy the cotipmof all these
constraints (not an arbitrary boolean function). The faiéisi of such constraints can be
more efficiently checked viewing them badinear matrix inequalitiegBMIs) for which
algorithms [10, 9] and tools [18] have been developed. (Mitetails about bilinear
matrix inequality can be found in Appendix.) We also obsehatt to prove that the
model checking problem can be solved in PSPACE, we couldt@varucted a simpler
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set of constraints by first guessing the values of the vasahl, u?’, and f¢' for the
subformulasy’, and then solving the constraints resulting from those spEssince
NPSPACE = PSPACE, we can obtain a deterministic algorittomfthis. However, we
believe that in practice solving this single BMI presentedehwill be more efficient
than solving the exponentially many simpler BMIs that thisraative approach would
yield.

5.1 Complexity of Model-checking UMC
We showed that the model-checking problem for UMC can beaedlto checking the
validity of a formula in the existential theory of the realtierefore, the model-checking
problem of UMC is in PSPACE.

We next demonstrate the intractability of the model chegkiroblem for UMC by
reducing the satisfiability and validity of propositionaldlean formulas to the model
checking problem. Consider a propositional boolean foamubver the propositions

{pla"'vpm}- A
We consider the UMQ = (S, s;, P, P, L) where

- S={s1,81,--,8m, 8L}

L(s;) = L(s1) ={}, L(si) = {p;} foreachl <i<m
(sI,sl)—OandP(sI, ;) =1/mforalll <i<m

(SI7SJ_) ndP(S],SJ_) =1

(siysi) = P(ss,8;) =1forall1 <i<m

(57,51) f’(s,,sj)f()foralll<z<mand1<]<mandz¢]
(SL,SL) P(sl,sl) 1

We consider the PCTL formuld obtained fromy by syntactically replacing every
occurrence op; in ¢ by P>%(Xpi) forl <i<m.

I
o "U< "U< "U< "U<

Lemma 6. ¢ is satisfiable ifff [~ —¢; ¢ is validiffZ = ¢.

Proof. Supposep is satisfiable and let be the satisfying assignment Consider the
DTMC M?, whereP (s, s;) = 5 if a(p;) = false andP (s, s;) = m+1 if a(p;) =
true; P(sy, s ) is thus determined by this assignment. It is easy to seeMtfaE [7]
and M® = ¢. Similarly, if M € [Z] such thatM | ¢, then we can construct a
satisfying assignment fop: a(p;) = false if P(sy,s;) < 5= anda(p;) = true if
P(s7,s;) > 5. These observations also imply thats valid iff Z |= ¢.

Since the satlsflablhty of general propositional booleamrfulas is NP-hard and the
validity of general propositional boolean formulas is cB-Nard [13], the lower bounds
follow immediately from Lemma 6.

Theorem 2. The model checking problem for UMC with respect to PCTL ishdR}
and co-NP-hard.

6 Model-checking IMDP

We consider the problem of model checking IMDPs in this sectiVe will solve the
problem by showing that we can reduce IMDP model checking ¢aleh checking
(classical) a Markov Decision Process (MDP) [4, 23]. Beforesenting this reduction
we recall some basic properties of the feasible solutiors ldiear program and the
definition of an MDP.

12



6.1 Linear Programming

Consider an IMDFL = (S, s;, P, P, L). For a givens € S, letlE(s) be the following
set of inequalities over the variablég,, | s’ € S}:

Z Pssr = 1 P(s,s') < pss < P(s,s') foralls' € §

s'eS
Definition 4. A map6®: S — [0,1] is called abasic feasible solutio(BFS) to the
above set of inequalities (E) iff {pss» = 6°(s") | s’ € S} is a solution of IEs)
and there exists a sef’ C S such that|S’| > |S| — 1 and for all s € S’ either
0%(s') = P(s,s") or 0°(s') = P(s, ).

Let©° be the set of all BFS dE(s). The set of BFS of linear program have the spe-

cial property that every other feasible solution can be esged as a linear combination
of basic feasible solutions. This is the content of the neappsition.

Proposition 1. Let {pss = Pss | 8 € S} be some solution of IE). There there are
0 < ays < 1forall 8¢ € ©%, such that

Dss’ = D _gecos o:0°(s") forall s € S and D oses os =1

Lemma 7. The number of basic feasible solutions ofdEin the worst case can be
O(|S|2181=-1).

6.2 Markov Decision Processes (MDP)

A Markov decision process (MDP) is a Markov chain that has-deterministic tran-
sitions, in addition to the probabilistic ones. In this s@ettwe formally introduce this
model along with some well-known observations about them.

Definition 5. If S is the set of states of a systemnext-state probability distribution
is a functiony : S — [0, 1] such thaty ©__ u(s) = 1. For s € S, p(s) represents the
probability of making a direct transition te from the current state.

Definition 6. A Markov decision Process (MDP) is a 4-tudle= (S, s;, 7, L), where

1. S'is a finite set of states,

2. s; € Sis the initial state,

3. L: S — 24P is a labeling function that maps states to sets of atomic gsijons
from a setAP,

4. 7is afunction which associates to eacke S a finite setr(s) = {uf, ..., u;_} of
next-state probability distributiorfer transitions froms.

A pathz in an MDPD = (S, s7, 7, L) is a non-empty sequence of the forgn 3
s1 53 ..., wheres; € S, it € 7(s;), andpu;1(si41) > O foralli > 0. A path can be
either finite or infinite. We useg,, to denote a finite path. Léast(7q,, ) be the last state
in the finite pathrg,. As in DTMC, we denote thé'" state in a pathr by 7[i] = s;.
We let Path(s) and Paths, (s) be the set of all infinite and finite paths, respectively,
starting at state. To associate a probability measure with the paths, we vegsbke
non-deterministic choices by a randomizatiersary which is defined as follows:
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Definition 7. A randomizedadversaryA of an MDP D is a function mapping every
finite pathrg, of D and an element of the seflast(ry,,)) to [0, 1], such that for a
given finite pathrg, of D, ZueT(last(mm)) A(7n, ) = 1. Let Ap denote the set of

all possible randomized adversaries of the MDPLet Path'(s) denote the subset of
Path(s) which corresponds to an adversasy

The behavior of an MDP under a given randomized adversamnyridyprobabilis-
tic. If an MDP has evolved to the stateafter starting from the state and following
the finite pathrg,, then it chooses the next-state distributigne (s) with probability
A(mgn, p#°). Then it chooses the next statewith probability 1. (s’). Thus the proba-
bility that a direct transition te’ takes place i$ .., ) A(7an, 1*)p* (s"). Thus as for
IMDPs, one can define DTM®“ that captures the probabilistic behavior of MIDP
under adversaryl and also associate a probability measure on execution. f&iven
a MDPD and a PCTL formulag, we can define whe® = ¢ in a way analogous to
the IMDPs (see Figure 2).

6.3 The Reduction

We are now ready to describe the model checking algorithniM@Ps. Consider an
IMDP 7 = (S, s;,P, P, L). Recall from Section 6.1, we can describe the transition
probability distributions from state that satisfy the range constraints as the feasible
solutions of the linear prografi (s). Furthermore, we denote [#y° is the set of all
BFS of IE(s). Define the following MDPD = (S, s}, 7, L") whereS’ = S, s} = sy,
L' =L,andforalls € S, 7(s) = ©°. Observe thaD is exponentially sized iff, since
7(s) is exponential (see Lemma 7).

The main observation behind the reduction is that the MDRcaptures” all the
possible behaviors of the IMDP. This is the formal content of the next proposition.

Proposition 2. For any adversaryA for Z, we can define a randomized adversaty
such thatProb”" = Prob®" for everys, whereProb™ " is measure on paths from
defined by machin& under A. Similarly for every adversaryl for D, we can find an
adversaryA’ for Z that defines the same probability measure on paths.
Proof. Consider an adversaryl for Z. For a pathmg, let A(mpn) = p €
Step$last(ms,)). We know from Proposition 1, that there asg: for 8° € ©° such
that

W(s") =D pscos ps0°(s") forall s’ € S and D oses os =1

We now defined’ (mg,, 0°) = ag-. Itis straightforward to see tha@rob” = Prob”" .
The converse direction also can be proved similarly. ad

An important consequence of the above observation is thenfislg main theorem.

Theorem 3. For any PCTL formulap, Z |= ¢ iff D |= .
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Thus, in order to model check IMDP, we can model check the MDP for which
algorithms are known [4, 23]. The algorithms for MDP run iméi (and space) which is
polynomial in the size of the MDP. Thus, if we directly modeeckD we get an EXP-
TIME model checking algorithm fdf. However, we can improve this to get a PSPACE
algorithm. The reason for this is that it is known that as famedel checking MDPs is
concerned, we can restrict our attentiordeterministic, memorylessversaries, i.e.,
adversaries that always pick the same single non-detesticichoice whenever a state
is visited.

Proposition 3 ([4, 23]).Let A4.; be the set of deterministic, memoryless adversaries
for MDP D, i.e., for all A € Aget, A(s, ) = 1 for exactly oneu € 7(s). Consider a
PCTL formulay = Py, (1) such that the truth or falsity of every subformulayofn
every state oD is already determined. The = o iff DA |= pforall A € Ages.

For every subformula of the for®., (1), our model checking algorithm, will
model check each of the DTMCB“, where A is a deterministic, memoryless ad-
versary. This will give us the desired PSPACE algorithm.

Theorem 4. The model-checking algorithm for IMDP is in PSPACE.

Proof. From Lemma 7, we know that the total number of BFS@{$52/°1-1). Hence
the total number of DTMC® for A € Aqge, is O(|S|!S12!5°~I51). By reusing space
for every subformulaP,,(¢), all of these model checking problems can be solved in
PSPACE. O

6.4 lterative Algorithm

The above PSPACE algorithm is computationally expensivdaige IMDPs. There-
fore, we propose an alternative iterative algorithm madédaby a similar algorithm
in [2].

The iterative model checking algorithm for PCTL over IMDPsrits exactly as
for DTMCs with the exception of handling @%.,,(v). For these, we need to check if
pA) = Prob?({r € Path(s) | = |= ¢}) satisfies the bounsk p for all adver-
sariesA € Az. Let p™#*(¢)) and p™"(z) be theminimumor maximumprobability,

S

respectively, for all adversaries € Az, i.e.,

P () supac 4, 2 (@), PP (@) E infacaz bl (8)):
Then ifxe {<, <},

Sa(Poap () = {s € S| p"™(¥) = p}
and ifeae {>, >},
Sal Py (v)) = {5 € S | p&™"(¢) > p}

We next describe how to compute the valpé*(¢) andp™i (¢)) for ¢» = X¢ and
1 = ¢1U ¢2. Recall thad® is the set of all BFS offE(s). It can be shown following [2]

thatpex = limnﬁoopi“a"(") where:
1 if s € 5v
0 if s € S™°
p:mx(n) _Jo if s € S8”andn =0

_ max(n—1)
max{ps . |s'eS}eo® D sres Dss/ Py

if se S$”andn >0
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andp™it = limy, — cop™ ™™ where:

1 if s € 8§¥*
0 if s € S™°
p;nin(n) — 0 if s e S? andn =0

min(n—1)

mings_,|s'esyeos {ZS’ES Dss’ Dgr }
if s S”andn >0
Note that although the size 6f* can beO(|S|2/°I-1) (by Lemma 7), the compu-
tation of the expressions

_ 1 . _ in(n—1
max(s ., |s’€Sycos {Z pss'-p?ax(n )} Of mingp ,|s'eSyeos {Z pss“P?m(n )}

s'es s'es
(6)
can be done 0 (|S]) time as follows:

We consider the orderingsy,ss,...,s;s of the states ofS such that
prax(n=1) max(n=1) ,p‘;;gﬁ"‘” is in descending order. Then the following result
holds.

Lemma 8.

a) There exists an < i < |S| such that{P(s,s1),...,P(s,5_1),¢ P(s, si41),

.., P(s,;s5)} is a BFS of Iis), whereq = 1 — 37, ., 1) P(s;s;) —
2+ <j<)s P8 55):

b) and for thati
_ max(n—1 max(n—
max{ﬁ“/ |s’eS}teos { Z Dss’-Dgr ( )} = Ps; ( 1)-q
s'eS

+ Y PP s+ Y pE T P(s,sy)
1<5<(i—1) (i+1)<5<|S]

Proof.
a) Let iy be defined as follows: s
io=min{i | Y P(s,s;)+ Y P(s,s;) > 1}
j=1 j=i+1
Observe that suchAan) must exi§t if the IMDP js well-defined. Consider the
solution {P(s,s1),...,P(s,8:,-1),¢, P(s,8i41),...,P(s,5,5)} whereq = 1 —
Yi<i<tio—1) P(8:55) = Yoo +1)<j<|s) P (s, 5;). This solution is a BFS o (s).

b) Let {Pss,,---,Dss;5 } D€ @ny solution (it may be BFS or not) t(s). Then by
simple algebraic simplification it can be shown that

D AL D VI S UIIED SERT
1<5<(i-1) (i+1)<i<|s| s'es

given the fact thap™**(" =1 > pmax(n=1) 5 pmax(n=) anqP (s, s') < pey <

jil S|s| —_

P(s,s) forall s’ € S. O
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Similarly, if we consider the ordering, s, . . ., s/ of the states of5' such that
pmtn =) printn=) (=1 s in ascending order, then the above Lemma
holds with max replaced by min.

The expressions (6) can be computedifiS|) time by finding ani as in Lemma 8.

6.5 Lower Bound for IMDP model-checking

We will show that the model checking problem for DTMCs is Reh&ince DTMCs
are a special case of IMDPs the P-time lower bound will foow

To show this we will reduce 3-CNF value, which known to be PdH4 3], to the
problem of model checking DTMCs. Recall that 3-CNF valuédnis pproblem where we
are given a 3-CNF formule and an assignment to each of the variables, and are
asked whethep evaluates to true or false under the assignment. The redustivery
similar to the one given Section 5.1.

Considery = /\ie[177l](l1i V ly; V l3;) over the proposition$ps, . .., pm }, Where
eachl;; € {p1,~p1,...,Pm, Pm} forl < i < 3andl < j < n. Construct the
DTMC M = (S, s;, P, L) where

— S ={s1,81,-+,8m,S1}

s1,8i) = 5= if a(p;) = false andP(sy, s;) = = if a(p;) = true.
- P(sr,50) =1-3,P(s1,5)

Let g = /\ie[1,n](¢1z‘ V ¢2; V ¢3;), where ifl;; = pi, theng;; = P>ﬁ(ka) and
if {;; = —pi theng;; = PS%(ka). Analogous to Lemma 6, one can see thdt
satisfiesp if and onlyp is true under the assignmentThe formal proof is skipped.

(

— P(si,8;) =P(s1,s;)=1foralll <i<m
(
(

7 Conclusion

We have investigated the PCTL model checking problem fordamantic interpreta-
tions of IDTMCs, namely UMC and IMDP. We proved the upper bawiand the lower
bounds on the complexity of the model checking problem feséhmodels. Our bounds
however are not tight. Finding tight lower and upper bourtatgtiese model-checking
problems is an interesting open problem.
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A Motivation

We provide examples to show that UMC and IMDP arise as natacalels in many
realistic situations.

UMC in practice. Consider an Internet router having a finite buffer of diaghere it
queues up packets received from the Internet. If the busféuli, the router drops any
received packet. The router processes and transmits gaitket the buffer at some
rate which depends on the configuration of the router. Letsgsirae that the time is
discretized into tiny periods (sayisec). At each time period, with probabilitythere
is a new arrival. At each time period, with probabilijya packet is processed (if there
is one in the buffer) and transmitted by the router. Note thaing a time period, we
might have both an arrival and a transmission, or neither.

Given such a router in the Internet, the arrival rate solelgeshds on the traffic in
the Internet and can be determined exactly under givendadfiditions. However, the
rate (i.e.q) at which the packets leave the router depends on the coafigar(e.g.
say security configuration) of the router itself. Suppoke,rhanufacturer of the router
specifies thay always lie in the rang@ymin, ¢gmax|, Whereg is equal to the lower bound
gmin If all the security measures are active, and is equal to thempoundy,, .. if none
of the security measures are active. However, the exact wdlgwhen certain number
of security measures are active cannot be determined gxactl

for UMC for IMDP

b=3p=05 b=309=0.6

05£q£0.7 0.3£p£0.7

r=p(-aq) r=p@l-q)

s=q(1—p) s=q(l—p)
1-r-s 1-r-s

1-r 1-s
Fig. 3. Model of Router with Buffer Size 3

Suppose we want to model check a property such as “the piiapahat the buffer
of a router eventually becomes full is less than 0.01.” Fer rbuter in the Internet,
we exactly know the size of the bufférand the arrival probability. However, the
departure probability is uncertain and is known to lie infé¥@ge{gmin , gmax]- A Natural
way to model such a system is using UMCs. A UMC model of theaowuiith buffer
size 3 is given in Figure 3. The arrival probabiljtyis assumed to be known, sayb;
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the departure probability lies in the rangd0.5, 0.7] as provided by the manufacturer
of the router. The label on a state gives the number of paakéte buffer of the router.

Yet another situation in which UMC models arise is in “bldméx model-
checking” [25]. In black-box model-checking, we assumd tha transition probabili-
ties of a DTMC model is not known; rather, we are allowed tineste the probabilities
using Monte-Carlo simulation. For example, through Mo@telo simulation, if we ob-
serve that out of totat transitions from a given stateto any other state there are only
m transitions froms to s/, then we can estimate the transition probability freto s’ by
m/n. However, this estimation of the transition probabilitgrr s to s’ by m/n is not
statistically sound. Instead, we should consider a rangeatifabilities within which the
actual probability must lie with high probability. Such ange is calleda confidence in-
terval[12]. For example, 89% confidence interval for the transition probability would
be the rangép, , p2], if the probability that our observed transition probails m /n
given that the actual probability of transition lies|in, p»] is 0.99. A confidence inter-
val for a given confidence level and a given observation cacab®ilated by standard
techniques. Thus for black-box models the estimated vdtrethe various transition
probabilities are better represented as UMCs.

IMDP in practice. There may be situations where the system cannot be modeted as
UMC. For example, in the router example above, the arriviadl o packets may vary
from time to time depending on the Internet traffic. Therefare cannot assume that
p is an exact probability; rather, it lies in a range. At eveansition the environment
chooses a from the range non-deterministically and then decides tal sepacket to
the router with the chosen probabilipy

Such situations can be naturally modeled as an IMDP, in whigtry time a
state is visited, a probability distribution respectingtaim range constraints is non-
deterministically (possibly even adversarially) chosang then a transition is taken
according to the chosen distribution. Thus, in IMDPs the-deterministic choice is
made over a set of (possibly) uncountably many choices. M@ethis is different
from MDPs (Markov Decision Processes) [7,4] where the nunabgossible non-
deterministic choices is finite.

For example, Figure 3 gives the IMDP model of a router (witffémsize 3) where,
for simplicity, we assume that the departure probabiity fixed number, sag.6. The
arrival probability, however, lies in the ranffe3, 0.7] depending on the Internet traffic.

B Bilinear Matrix Inequalities (BMI)

Recall that ak x k£ matrix A, over the reals, is said to lpositive semi-definitd A
is symmetric (i.e.A = AT) and for everyz € R¥, 2T Az > 0. We will denoteA is
positive semi-definite byl > 0.

Optimization programs with bilinear matrix inequaliti&\1s) [22] are of the form

.. .. T
malelze/mlmmlzeC x

subject to
Fx,y)=Fo+ Y wiFi+ ) y;Gi+ Y Y wiyjHi; = 0 @
i=0 j=0 i=0 j=0
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where for every andj, F;, G; andH;; are symmetric matrices of the same dimen-
sion (sayk), andC, z € R™,y € R™. Thus, the symmetric matrik'(x, y) is an affine
function of the elements aof andy and is required to be positive semidefinite.

Solving such optimization problems is known to be NP-hag&],[But is decidable.
Efficient algorithms [10, 9] and tools [18] have been develbfor solving optimization
problems with BMI.

All the optimization problems that are solved during the elazhecking of UMC
can be written as a single BMI. This follows from some simdbsarvations. Our first
observation says that a set of bilinear matrix inequalityst@ints can be rewritten as
a single BMI of the form given in Equation (7).

Lemma 9. A set of matnx mequahtles

FO —I—Zx FF +Zijk+ZZmlyjH =0

=0 j=0
fork=1,...¢can be wntten as a single BMI constraint.

Proof. The single BMI WI|| be of the form

F0+Z$ F; +ZyJG +Zszy]Hw =0

1=0 =0
whereFy is a block dlagonal matnx with the matricé® along the diagonal; sim-
ilarly F;, G;, andH;; be will block diagonal matrices with*, G% and H}; along the
diagonal [18]. ad

The model checking problems that we investigate in this papié require us to
optimize a simple linear function subject to certain caamistis. The constraints that
arise in the context of model checking will be of special ferfiihe next two lemmas
show that these special constraints can be viewed as BMtredmts.

Lemma 10. For fo,f“gj,hw € R, the (scalar) inequality

m n

f0+2xzfz+2y]g]+sz1y]h” >0 ®)

. e 3=0 . j=0 ., =0 7=0
can be written as a bilinéar matrix inequality. ’

Proof. Let Fy, F;, G, H;; be matrices of dimensiohx 1 whose entries ar, fi, g;,
andh;;, respec‘uvely ConS|der

Fo+2mlF +Zy]G +szzyj i

It is easy to see thdf(x y) i5 Positive Semi-definite’it and only if the inequality (8)
holds. O

Lemma 11. The (strict) inequalityy > 0 can be expressed as a BMI.

Proof. Observe that > 0 if and only if x6 > 1, andd > 0. Thus the observation
follows from Lemma 9 and Lemma 10. a

Our last observation is that the BMI requirement that theatdes be partitioned
into disjoint setsX andY’, such that the product terms only involve one variable from
X with one fromY” can be easily achieved by adding more variables and comstrai
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Lemma 12. A set of inequalities over the variables V of the form

alg + Z afvi + Z Z bfjvivj >0
i=1

i=1 j=1
fork =1,...¢ can written as a BMI.

Proof. For each variable, € V' consider two variables: an:*copy” v and a -copy”
v!. Replace a constraint of the form

aé—i—Zafvi—l—Zbejvivj >0 with af —&—Zaf’l)f +Zbe]va]” >0
i=1 i=1 j=1 i=1 i=1 j=1
Also, add the constraints? = v/ for eachi. Observe that by Lemma 10, each
constraint can be written as a BMI, where the variableXiare thex-copies of each
variable, and those Y are they-copies of each variable. Thus, by Lemma 9, the

resulting set of inequalities can be written as a BMI.
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