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Abstract. We investigate the problem of model checking Interval-valued
Discrete-time Markov Chains (IDTMC). IDTMCs are discrete-time finite
Markov Chains for which the exact transition probabilities are not known.In-
stead in IDTMCs, each transition is associated with an interval in which the ac-
tual transition probability must lie. We consider two semantic interpretations for
the uncertainty in the transition probabilities of an IDTMC. In the first interpre-
tation, we think of an IDTMC as representing a (possibly uncountable) family of
(classical) discrete-time Markov Chains, where each member of the family is a
Markov Chain whose transition probabilities lie within the interval range given
in the IDTMC. This semantic interpretation we call Uncertain Markov Chains
(UMC). In the second semantics for an IDTMC, which we call Interval Markov
Decision Process (IMDP), we view the uncertainty as being resolved through
non-determinism. In other words, each time a state is visited, we adversarially
pick a transition distribution that respects the interval constraints, and take a
probabilistic step according to the chosen distribution. We show that the PCTL
model checking problem for both Uncertain Markov Chain semantics andInter-
val Markov Decision Process semantics is decidable in PSPACE. We also prove
lower bounds for these model checking problems.

1 Introduction

Discrete time stochastic models such asDiscrete Time Markov Chains(DTMCs) have
been used to analyze the correctness, reliability, and performance of systems [8, 11, 21,
15]. In a DTMC, the system is assumed to have finitely many states, and the system’s
future behavior is completely determined by its current state. From each state of the
system, the probability of transitioning to any other givenstate at the next step is fixed
and is given by the transition probability matrix of the DTMC.

The assumption that the system makes transitions accordingto a fixed distribution
at each step and that this distribution is precisely known when modeling, is a strong
assumption that may often not hold in practice [14, 17, 28, 16]. If the system being
modeled is an open system, i.e., interacts with an environment, then uncertainty in the
transitions may arise due to imperfect information about the environment. For example,
consider a system that interacts with an imperfect communication medium that may lose
messages. The probability of message loss may either dependon choice of the commu-
nication medium or on a complicated, time-varying dependence on events that are not
precisely understood at the time of modeling the system. Another source of impreci-
sion is that the transition probabilities in the system model are often estimated through
statistical experiments, which only provide bounds on the transition probabilities.
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In order to faithfully capture these system uncertainties in stochastic models,
the model ofInterval-valued Discrete-time Markov Chains (IDTMC)has been intro-
duced [14, 16]. These are DTMC models where the exact probability of taking a state
transition is not known, and instead the transition probability is assumed to lie within
a range associated with the transition. Two semantic interpretations have been sug-
gested for such models.Uncertain Markov Chains(UMC) [14] is an interpretation of
an IDTMC as a family of (possibly uncountably many) DTMCs, where each member of
the family is a DTMC whose transition probabilities lie within the interval range given
in the IDTMC. In the second interpretation, calledInterval Markov Decision Process
(IMDP), we view the uncertainty as being resolved through non-determinism. In other
words, each time a state is visited, we adversarially pick a transition distribution that
respects the interval constraints, and take a probabilistic step according to the chosen
distribution. Thus, IMDPs allow the possibility of modeling a non-deterministic choice
made from a set of (possibly) uncountably many choices. An IMDP can be seen as a
generalization of Markov Decision Processes (MDPs) [19, 3,24].

We investigate the problem of model checking PCTL specifications for IDTMC.
The two semantic interpretations of IDTMCs yield very different model checking re-
sults (whenever the property has at least two probabilisticoperators, not necessarily
nested; see example in Figure 1) and require different algorithmic techniques. For the
case of UMCs, we show that PCTL model checking problem can be reduced to finding
feasible solutions to inequality constraints, much like inthe case of DTMC and MDP [8,
4, 3, 21, 7]. However, there is one important difference. Theconstraints to be solved in
the case of UMCs are polynomial and not just linear (as for DTMCs and MDPs). Since
theexistential theory of realsis decidable in PSPACE [20, 6], the feasibility of the poly-
nomial constraints arising in model checking, can be determined by making a “query”
to the existential theory of reals. Thus, the PCTL model checking problem for UMCs
is in PSPACE. In practice, however, this algorithm may not bethe most efficient. The
constraints we obtain during model checking all take a special form: the polynomials
arebilinear 1. Therefore, it might be more efficient to instead use algorithms for solv-
ing bilinear matrix inequalities(BMIs) [10, 9] or tools developed for this purpose [18].
Checking feasibility of BMIs is known to be NP-hard [26], butthe exact complexity,
which is lower than PSPACE, is unknown. On the other hand, in the case of IMDPs,
we show that the model checking problem can be reduced to model checking an MDP
of exponential size. We then use known results for MDPs to show that IMDPs can be
model checked in PSPACE. We also present an iterative model checking algorithm for
IMDPs which may prove to be more efficient in practice.

In addition to demonstrating the decidability of the model checking problem, we
also prove lower bounds on the complexity of the model checking problem. We show
that the model checking problem for UMCs is NP-hard and co-NP-hard; thus, for UMCs
the problem is unlikely to be in P. A straightforward corollary of our results is that
solving BMIs is also co-NP-hard. For IMDPs, we can only show P-hardness; in fact,
even this is a consequence of the P-hardness of (classical) DTMC model checking.

1 The highest power of any variable in the polynomial is 1, and any term is theproduct of at
most two variables.
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The rest of the paper is organized as follows. We briefly discuss related work next.
In Section 2 we formally define IDTMC and give its semantics asUMC and IMDP.
PCTL and the model checking problem is introduced in Section3. We then revisit the
model checking algorithm for DTMC (Section 4) and present a modified version of
the classical algorithm. The ideas in the section play a key role in our UMC model
checking algorithm. Section 5 (UMC) and Section 6 (IMDP) contain our main results
about the model checking problem, providing both upper and lower bounds. Finally we
present our conclusions in Section 7. Motivating examples of UMCs and IMDPs and
observations about BMI optimization problems are deferredto Appendix.

Related Work.The model of IDTMCs has been introduced independently by Jons-
son and Larsen [14] and Kozine and Utkin [16] under the namesinterval specification
systemsandinterval-valued finite Markov chains, respectively. However, they consider
different semantic interpretations. Jonsson and Larsen consider the UMC interpreta-
tion and study bisimulation and simulation preorders for such an interpretation. Kozine
and Utkin, on the other hand, take the IMDP interpretation and present algorithms to
compute the probability distribution on the states aftert steps. Neither of these papers
investigate the PCTL model checking problem which is the focus of this paper. We
introduce new names to emphasize the subtle semantic difference in the two interpreta-
tions. A more general model calledgeneralized Markov processesfor describing infinite
families of Markov Chains was introduced in [1]. In that paper, they showed that model
checking such models with respect to PCTL∗ (a more general logic than PCTL) is de-
cidable and has elementary complexity. PCTL model checkingfor classical DTMC and
MDP models has been considered in [8, 4, 3, 21, 7].

2 Formal Models

Definition 1. A discrete-time Markov chain(DTMC) is a 4-tupleM = (S, sI ,P, L),
where

1. S is a finite set ofstates,
2. sI ∈ S is theinitial state,
3. P : S×S → [0, 1] is a transition probability matrix, such that

∑
s′∈S P(s, s′) = 1,

and
4. L : S → 2AP is a labelingfunction that maps states to sets of atomic propositions

from a setAP.

A non-empty sequenceπ = s0s1s2 · · · is called apathof M, if eachsi ∈ S and
P(si, si+1) > 0 for all i ≥ 0. We denote theith state in a pathπ by π[i] = si. We let
Path(s) be the set of paths starting at states. A probability measure on paths is induced
by the matrixP as follows.

Let s0, s1, . . . , sk ∈ S with P(si, si+1) > 0 for all 0 ≤ i < k. ThenC(s0s1 . . . sk)
denotes acylinder setconsisting of all pathsπ ∈ Path(s0) such thatπ[i] = si (for
0 ≤ i ≤ k). LetB be the smallestσ-algebra onPath(s0) which contains all the cylinders
C(s0s1 . . . sk). The measureµ on cylinder sets can be defined as follows

µ(C(s0s1 . . . sk)) =



1 if k = 0
P(s0, s1) · · ·P(sk−1, sk) otherwise
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Theprobability measureonB is then defined as the unique measure that agrees with
µ (as defined above) on the cylinder sets.

Definition 2. An Interval-valued Discrete-time Markov chain(IDTMC) is a 5-tuple
I = (S, sI , P̌, P̂, L), where

1. S is a finite set ofstates,
2. sI ∈ S is theinitial state,
3. P̌ : S × S → [0, 1] is a transition probability matrix, where eacȟP(s, s′) gives the

lower boundof the transition probability from the states to the states′,
4. P̂ : S × S → [0, 1] is a transition probability matrix, where eacĥP(s, s′) gives the

upper boundof the transition probability from the states to the states′,
5. L : S → 2AP is a labelingfunction that maps states to sets of atomic propositions

from a setAP.

We consider two semantics interpretations of an IDTMC model, namely Uncertain
Markov Chains (UMC) and Interval Markov Decision Processes(IMDP).

Uncertain Markov Chains An IDTMC I may represent an infinite set of DTMCs,
denoted by[I], where for each DTMC(S, sI ,P, L) ∈ [I] the following is true,

– P̌(s, s′) ≤ P(s, s′) ≤ P̂(s, s′) for all pairs of statess ands′ in S

In the Uncertain Markov Chains semantics, or simply, in the UMCs, we assume that the
external environment non-deterministically picks a DTMC from the set[I] at the be-
ginning and then all the transitions take place according tothe chosen DTMC. Note that
in this semantics, the external environment makes only one non-deterministic choice.
Henceforth, we will use the term UMC to denote an IDTMC interpreted according to
the Uncertain Markov Chains semantics.

Interval Markov Decision ProcessesIn the Interval Markov Decision Processes se-
mantics, or simply, in the IMDPs, we assume that before everytransition the external
environment non-deterministically picks a DTMC from the set [I] and then takes a one-
step transition according to the probability distributionof the chosen DTMC. Note that
in this semantics, the external environment makes a non-deterministic choice before ev-
ery transition. Henceforth, we will use the term IMDP to denote an IDTMC interpreted
according to the Interval Markov Decision Processes semantics. We now formally de-
fine this semantics.

Let Steps(s) be the set of probability density functions overS defined as follows:

Steps(s) = {µ : S → R
≥0 |

X

s′∈S

µ(s′) = 1 andP̌(s, s′) ≤ µ(s′) ≤ P̂(s, s′) for all s′ ∈ S}

In an IMDP, at every states ∈ S, a probability density functionµ is chosen non-
deterministically from the setSteps(s). A successor states′ is then chosen according to
the probability distributionµ overS.
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A pathπ in an IMDPI = (S, sI , P̌, P̂, L) is a non-empty sequence of the form
s0

µ1

→ s1
µ2

→ . . ., wheresi ∈ S, µi+1 ∈ Steps(si), andµi+1(si+1) > 0 for all i ≥ 0.
A path can be either finite or infinite. We useπfin to denote a finite path. Letlast(πfin)
be the last state in the finite pathπfin. As in DTMC, we denote theith state in a path
π by π[i] = si. We letPath(s) andPathfin(s) be the set of all infinite and finite paths,
respectively, starting at states. To associate a probability measure with the paths, we
resolve the non-deterministic choices by anadversary, which is defined as follows:

Definition 3. AnadversaryA of an IMDPI is a function mapping every finite pathπfin

ofI onto an element of the set Steps(last(πfin)). LetAI denote the set of all possible ad-
versaries of the IMDPI. Let PathA(s) denote the subset of Path(s) which corresponds
toA.

The behavior of an IMDPI = (S, sI , P̌, P̂, L) under a given adversaryA is purely
deterministic. The behavior of a IMDPI from a states can be described by an infinite-
state DTMCMA = (SA, sAI ,P

A, LA) where

– SA = Pathfin(s),
– sAI = s, and

– P
A(πfin, π

′
fin) =

(

A(πfin)(s′) if π′
fin is of the formπfin

A(πfin)
→ s′

0 otherwise

There is a one-to-one correspondence between the paths ofMA andPathA(s) of I.
Therefore, we can define a probability measureProb

A
s over the set of pathsPathA(s)

using the probability measure of the DTMCMA.

3 Probabilistic Computation Tree Logic (PCTL)

In this paper we consider a sub-logic of PCTL that excludes the steady-state probabilis-
tic operators. The formal syntax and semantics of this logicis as follows.

PCTL Syntax
φ ::= true | a | ¬φ | φ ∧ φ | P./p(ψ)
ψ ::= φ U φ | Xφ

wherea ∈ AP is an atomic propositions,./ ∈ {<,≤, >,≥}, p ∈ [0, 1], andk ∈ N.
Hereφ represents astateformula andψ represents apathformula.

PCTL Semantics for DTMC

The notion that a states (or a pathπ) satisfiesa formulaφ in a DTMCM is denoted
by s |=M φ (or π |=M φ), and is defined inductively as follows:

s |=M true

s |=M a iff a ∈ L(s)
s |=M ¬φ iff s 6|=M φ
s |=M φ1 ∧ φ2 iff s |=M φ1 ands |=M φ2

s |=M P./p(ψ) iff Prob{π ∈ Path(s) | π |=M ψ} ./ p
π |=M Xφ iff π[1] |=M φ
π |=M φ1 U φ2 iff ∃i ≥ 0 (π[i] |=M φ2 and∀j < i. π[j] |=M φ1)
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Fig. 1. Example IDTMC and PCTL for-
mula φ. The UMC interpretation of the
IDTMC satisfiesφ, whereas the IMDP in-
terpretation of the IDTMC violatesφ

s |= true

s |= a iff a ∈ AP(s)
s |= ¬φ iff s 6|= φ
s |= φ1 ∧ φ2 iff s |= φ1 ands |= φ2

s |= P./p(ψ) iff Prob
A
s ({π ∈ PathA(s) | π |= ψ}) ./ p

for all A ∈ A
π |= Xφ iff π[1] |= φ
π |= φ1 U φ2 iff ∃i ≥ 0 (π[i] |= φ2 and∀j < i. π[j] |= φ1)

Fig. 2.PCTL semantics for IMDP

It can shown that for any path formulaψ and any states, the set{π ∈ Path(s) |
π |=M ψ} is measurable [27]. A formulaP./p(ψ) is satisfied by a states if Prob[path
starting ats satisfiesψ] ./ p. The path formulaXφ holds over a path ifφ holds at the
second state on the path. The formulaφ1 U φ2 is true over a pathπ if φ2 holds in some
state alongπ, andφ holds along all prior states alongπ.

Given a DTMCM and a PCTL state formulaφ, M |= φ iff sI |=M φ.

PCTL Semantics for UMC

Given a UMCI and a PCTL state formulaφ, we sayI |= φ iff, for all M ∈ [I],
M |= φ. Note thatI 6|= φ does not imply thatI |= ¬φ. This because ifI 6|= φ, there
may existM,M′ ∈ [I] such thatM |= φ andM′ |= ¬φ.

PCTL Semantics for IMDP

The interpretation of a state formula and a path formula of PCTL for IMDPs is same as
for DTMCs except for the state formulas of the formP./p(ψ).

The notion that a states (or a pathπ) satisfiesa formulaφ in a IMDPI is denoted
by s |= φ (or π |= φ), and is defined inductively in Figure 2.

The model checking of IDTMC with respect to the two semanticscan give different
results. For example, consider the IDTMC in Figure 1 and the PCTL formulaφ. The
UMC semantics of this IDTMC satisfiesφ, while the IMDP semantics violatesφ.

4 Revisiting DTMC Model-Checking

In this section we outline the basic model checking algorithm for (classical) DTMCs.
The algorithm that we outline here for DTMCs is not the most efficient (like the one
presented in [8]); however the main ideas presented here will form the crux of our model
checking algorithm for UMCs.

The algorithm for model checking DTMCs will reduce the problem to checking the
feasibility of simultaneously satisfying a finite set of polynomial inequalities. This fea-
sibility test can be done by checking if a first-order formulawith existential quantifiers
about the real numbers is true. More precisely, we need to check if a formula of the
form ∃x1, . . . , xnP (x1, . . . , xn) is valid over the reals, whereP is a boolean function
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of atomic predicates of the formfi(x1, . . . , xn) ./ 0, wherefi is a multivariate poly-
nomial and./∈ {=, 6=,≤,≥, <,>}. It is well-known that this problem can be decided
in PSPACE [20, 6]2.

The model checking algorithm for DTMC takes a DTMCM = (S, sI ,P, L) and a
PCTL formulaφ as input. The output is the set Sat(φ) = {s ∈ S | s |=M φ}, i.e., the
set of all states of the model that satisfyφ. We sayM |= φ iff sI ∈ Sat(φ).

The algorithm works by recursively computing the set Sat(φ′) for each sub-formula
φ′ of φ as follows.

Sat(true) = S Sat(a) = {s | a ∈ L(S)}
Sat(¬φ) = S \ Sat(φ) Sat(φ1 ∧ φ2) = Sat(φ1) ∩ Sat(φ2)

Sat(P./p(ψ)) = {s ∈ S | ps(ψ) ./ p}

where ps(ψ) = Prob{π ∈ Path(s) | π |=M ψ}. The computation of the set
Sat(P./p(ψ)) requires the computation ofps(ψ) at every states ∈ S.

If ψ = Xφ, thenps(ψ) =
∑
s′∈Sat(φ) P(s, s′).

To computeps(φ1 U φ2), we first split the set of statesS into three disjoint subsets,
Sno, Syes, andS? whereSno = Sat(¬φ1 ∧ ¬φ2), Syes = Sat(φ2), and S? =
S \ (Sno ∪ Syes). Moreover, letS?no be the set{s | ps(φ1 U φ2) = 0} \ Sno and
S>0 be the set{s | ps(φ1 U φ2) > 0}. Note thatS = S>0 ∪ S?no ∪ Sno. By [8],
{xs = ps(φ1 U φ2) | s ∈ S} is a solution of the following linear equation system.

xs =

8

<

:

0 if s ∈ Sno

1 if s ∈ Syes

P

s′∈S P(s, s′)xs′ if s ∈ S?
(1)

Note that the equation system (1) can have infinite number of solutions. For exam-
ple, consider the formulatrue U a, wherea is an atomic proposition and the DTMC
M = ({s}, s,P, L), whereP(s, s) = 1 andL(s) = ∅. Note thats ∈ S?no. The linear
equation system (1) that is instantiated for computingps(true U a) for M is xs = xs.
The system has infinite number of solutions.

We can ensure that{xs = ps(φ1 U φ2) | s ∈ S} is a unique solution of a system
of equations as follows. Fix aγ such that0 < γ < 1. Consider the following linear
equation system.

x′s =

8

<

:

0 if s ∈ Sno

1 if s ∈ Syes

P

s′∈S γP(s, s′)x′s′ if s ∈ S?
(2)

Lemma 1. x′s > 0 iff s ∈ S>0.

Proof. (Case⇐) If s ∈ S>0, thenps(φ1 U φ2) > 0. This implies that there is a finite
path froms to a s′ ∈ Syes such that all the states on the path are inS>0 and all the
edges in the path have non-zero probability. Letl(s) be the length of the shortest such

2 If one takes the computational model to be Turing machines, then this result holds when the
coefficients of the polynomials are rationals. One the other hand, if one considers a model of
computation that is appropriate for real number computation, like the one proposed by Blum,
Shub, and Smale [5], then the algorithm can handle even real coefficients.
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path froms. For a states, if l(s) = 0, thens ∈ Syes and hencex′s = 1. Let us assume
that for anys, such thatl(s) = i, x′s > 0. Consider as, such thatl(s) = i + 1.
Then there exists ans′ such thatl(s′) = i andP(s, s′) > 0. Therefore, the equation
x′s =

∑
s′∈S γP(s, s′)x′s′ if s ∈ S? in (2) implies thatx′s ≥ γP(s, s′)x′s′ > 0. This is

becausex′s′ > 0 by the induction hypothesis. This proves thats ∈ S>0 impliesx′s > 0.
(Case⇒) We prove this by contradiction. Let us assume that there is as such

that x′s > 0 and s 6∈ S>0. Let X be the set{x′s′ | s′ 6∈ S>0 andx′s′ > 0}. Let
s be such thatx′s =max(X). If x′s = 1, thens must be inSyes by the system of
linear equations in (2), which is a contradiction. If1 > x′s > 0, then consider the
equationx′s =

∑
s′∈S γP(s, s′)x′s′ in (2). Let s′ be such thatx′s′ =max{x′s′′ | s′′ ∈

S andP(s, s′′) > 0}. Thenx′s ≤ γx′s′
∑
s′′∈S P(s, s′′) ≤ γx′s′ < x′s′ . Becauses 6∈

S>0 andP(s, s′) > 0, s′ must not be inS>0. Sincex′s′ > x′s ands′ 6∈ S>0, s′ is inX.
Therefore,x′s is not max(X), which is a contradiction. ut.

Lemma 2. The system of linear equations in(2) has a unique solution.

Proof. The proof is by contradiction. Let{x′s = x̂′s | s ∈ S} and{x′s = x̄′s | s ∈ S}
be two different solutions of the system of linear equationsin (2). Let s be such that
x̂′s 6= x̄′s. Then we can findλ0 andλ1 in R such thatλ0x̂

′
s + (1 − λ0)x̄

′
s = 0 and

λ1x̂
′
s + (1 − λ1)x̄

′
s > 0. Note that both{x′s = λ0x̂

′
s + (1 − λ0)x̄

′
s | s ∈ S} and

{x′s = λ1x̂
′
s + (1− λ1)x̄

′
s | s ∈ S} are also solutions of the system of equations in (2).

The fact that{x′s = λ0x̂
′
s+(1−λ0)x̄

′
s | s ∈ S} is a solution andλ0x̂

′
s+(1−λ0)x̄

′
s = 0

implies thats 6∈ S>0 (by Lemma 1). On the other hand, the fact that{x′s = λ1x̂
′
s +

(1 − λ1)x̄
′
s | s ∈ S} is solution andλ1x̂

′
s + (1 − λ1)x̄

′
s > 0 implies thats ∈ S>0 (by

Lemma 1), which is a contradiction. ut

Lemma 3. x′s = 0 iff s ∈ S?no ∪ Sno.

Proof. Consider the subset of equations from (2)

x′s =



0 if s ∈ Sno

P

s′∈S γP(s, s′)x′s′ if s ∈ S?no (3)

By the definition ofS?no, sinceps(φ1Uφ2) = 0, any states′ that is reachable froms by
an edge with non-zero probability is inS?no ∪ Sno. Therefore, the set of equations (3)
only involve variables in{x′s′ | s

′ ∈ S?no ∪ Sno}. By Lemma 2, this set of equations
has an unique solution. Note that{x′s = 0 | s ∈ S?no ∪Sno} is a solution to the system
of equations in (3). Hence, the unique solution of the systemof equation (2) is such that
x′s = 0 for all s ∈ S?no ∪ Sno. ut

Consider the following system of constraints.

x′s = 0 iff xs = 0 for all s ∈ S (4)

wherex′s are variables of (2) andxs are variables of (1).

Lemma 4. The system of linear equations in(1) and (2) has a unique solution given
that the constraints in(4) hold. Moreover, for this unique solutionxs = ps(φ1 U φ2),
for all s ∈ S.
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Proof. The proof is by contradiction. Let{xs = x̂s | s ∈ S} ∪ {x′s = x̂′s | s ∈ S} and
{xs = x̄s | s ∈ S} ∪ {x′s = x̄′s | s ∈ S} be two solutions of (1) and (2) such that (4)
hold. By Lemma 2, for alls ∈ S, x̂′s = x̄′s. Fix as such that̂xs 6= x̄s. We can pick aλ
such thatλx̂s + (1 − λ)x̄s = 0. Note that{xs = λx̂s + (1 − λ)x̂s | s ∈ S} ∪ {x′s =
λx̂′s + (1 − λ)x̂′s | s ∈ S} is also a solution to the set of constraints. This implies that
λx̂′s + (1 − λ)x̂′s = x̂′s = x̄′s = 0 by the constraints (4). Again by (4),̂x′s = x̄′s = 0
implies thatx̂s = x̄s = 0, which is a contradiction.

Note that{xs = ps(φ1 U φ2) | s ∈ S} ∪ {x′s = x̂′s | s ∈ S} is a solution to the
system of linear equations in (1) and (2). Moreover, this solution satisfies the constraints
in (4). Hence, the solution is an unique solution to the system of linear equations in (1)
and (2) such that the constraints in (4) hold. ut

Note that the set of constraints (1), (2), and (4) can be written compactly as follows.

xs =

8

<

:

0 if s ∈ Sno

1 if s ∈ Syes

P

s′∈S P(s, s′)xs′ if s ∈ S?
x′s =

8

<

:

0 if s ∈ Sno

1 if s ∈ Syes

P

s′∈S γP(s, s′)x′s′ if s ∈ S?
(5)

δs > 0 xs = δsx
′
s

where for eachs ∈ S, we introduce the variableδs, such that we can impose the
constraint thatxs = 0 iff x′s = 0. The satisfiability of the set of constraints (5) can be
easily reduced to checking if a formula with existential quantifiers belongs to the theory
of reals. The constructed formula is linear in the size of theDTMC.

5 Model Checking UMC
In this section, we reduce the problem of model-checking a UMC to checking the feasi-
bility of a bilinear matrix inequality. (More details aboutbilinear matrix inequality can
be found in Appendix.) In the non-trivial reduction, we introduce a number of auxiliary
variables to achieve the goal. Note that a simpler PSPACE algorithm, which avoids the
extra auxiliary variables by guessing their values non-deterministically, is possible and
is easy to come up from our reduction. However, we believe that the following reduc-
tion is important from the perspective of implementation inpractice using algorithms
to solve bilinear matrix inequalities (BMIs).

Given a UMCI and a PCTL state formulaφ, our goal is to check whetherI |=
φ. In other words, for everyM ∈ [I], M |= φ. Thus, to check whetherI |= φ,
we check if there exists someM ∈ [I] such thatM |= ¬φ. If such anM does
not exist, we conclude thatI |= φ. We will view the problem of discovering whether
a M ∈ [I] satisfies¬φ as problem of checking the feasibility of a set of bilinear
inequality constraints as follows. Each transition probability of the DTMC M that we
are searching for, will be a variable taking a value within the bounds. We will also have
variables denoting the satisfaction (or non-satisfaction) of each subformula at each state,
and variables denoting the probability of a path subformulabeing satisfied at each state.
Inequality constraints on these variables will ensure thatthey all have consistent values.
We now describe this construction formally.

Let us fix an UMCI = (S, sI , P̌, P̂, L) and a PCTL formulaφ. Let M =
(S, sI ,P, L) be an arbitrary Markov chain in[I].

9



For every pair of statess, s′ ∈ S, let the variablepss′ denote the transition proba-
bility from s to s′ in M, i.e.,pss′ denotesP(s, s′). SinceM is an arbitrary DTMC in
[I], by the definition of UMC, the following constraints hold: For every states ∈ S,
∑
s′∈S pss′ = 1 and for every pair of statess, s′ ∈ S, P̌(s, s′) ≤ pss′ ≤ P̂(s, s′)

Given any PCTL formulaφ, let us define the setsubfS(φ) (of state sub-formulas)
recursively as follows:

subfS(a) = {a} subfS(¬φ) = {¬φ} ∪ subfS(φ)
subfS(φ1 ∧ φ2) = {φ1 ∧ φ2} ∪ subfS(φ1) ∪ subfS(φ2) subfS(P./p(ψ)) = {P./p(ψ)} ∪ subfS(ψ)
subfS(φ1 U φ2) = subfS(φ1 ∧ ¬φ2) subfS(Xφ) = subfS(φ)

Given a states ∈ S and any formulaφ′ ∈ subfS(φ), eithers |=M φ′ or s 6|=M φ′.
For eachs ∈ S and eachφ′ ∈ subfS(φ), let the variabletφ

′

s be such thattφ
′

s = 1
iff s |=M φ′; and, tφ

′

s = 0 iff s 6|=M φ′. Following the definition of the various
logical operators in PCTL, we can set up a set of constraints among these variables
such that for anyM ∈ [I], the values taken by these variables is consistent with their
intended semantic interpretation. We introduce the following additional variables to
aid in setting up these constraints. For every states ∈ S andφ′ ∈ subfS(φ), let the
auxiliary variablesfφ

′

s , anduφ
′

s be such thattφ
′

s = 1 ⇐⇒ fφ
′

s = 0 ⇐⇒ uφ
′

s = 1
andtφ

′

s = 0 ⇐⇒ fφ
′

s = 1 ⇐⇒ uφ
′

s = −1 Clearly,tφ
′

s , fφ
′

s , anduφ
′

s are related by
the following set of constraints:

tφ
′

s f
φ′

s = 0 tφ
′

s + fφ
′

s = 1 2tφ
′

s = uφ
′

s + 1

For every formulaφ′ ∈ subfS(φ) of the formP./p(ψ) and for every states ∈ S, let
pψs be the variable such thatpψs denotesProb{π ∈ Path(s) | π |=M ψ} in M.

For each states ∈ S and for eachφ′ ∈ subfS(φ) exactly one of the following
constraints hold depending on the form ofφ′:

tφ
′

s = 1 if φ′ = a ∈ L(s) tφ
′

s = 0 if φ′ = a 6∈ L(s)

tφ
′

s = 1 − tφ1
s if φ′ = ¬φ1 tφ1

s tφ2
s = tφ

′

s if φ′ = φ1 ∧ φ2

uφ
′

s p
ψ
s ≥ uφ

′

s p+ δfφ
′

s if φ′ = P≥p(ψ) uφ
′

s p
ψ
s ≥ uφ

′

s p+ δtφ
′

s if φ′ = P>p(ψ)

uφ
′

s p
ψ
s + δfφ

′

s ≤ uφ
′

s p if φ′ = P≤p(ψ) uφ
′

s p
ψ
s + δtφ

′

s ≤ uφ
′

s p if φ′ = P<p(ψ)

whereδ is slack variable that is required to be strictly greater than 0.
Note that the above constraints do not reflect the fact that for eachφ′ ∈ subfS(φ)

of the formP./p(ψ), pψs denotesProb{π ∈ Path(s) | π |=M ψ}. To set up such
constraints, we introduce the setsubfP(φ) (of path sub-formulas) as follows:

subfP(a) = ∅ subfP(¬φ) = subfP(φ)
subfP(φ1 ∧ φ2) = subfP(φ1) ∪ subfP(φ2) subfP(P./p(ψ)) = {ψ} ∪ subfP(ψ)
subfP(φ1 U φ2) = subfP(φ1) ∪ subfP(φ2) subfP(Xφ) = subfP(φ)

Thus for all sub-formula ofφ of the formP./p(ψ), subfP(φ) containsψ.
For anyψ ∈ subfP(φ) of the formXφ1 and for eachs ∈ S the following constraint

holds:

pψs =
X

s′∈S

pss′ t
φ1

s′
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For eachψ ∈ subfS(φ) of the formφ1 U φ2 ands ∈ S the following constraints
hold.

pψs = tφ2

s + tφ1∧¬φ2

s wψs wψs =
X

s′∈S

pss′p
ψ
s

As in simple DTMC, if we consider the above constraints only,then we may not have
unique solution for certainpψs . Therefore, we fix aγ such that0 < γ < 1. Then, as in
simple DTMC model-checking, for eachψ ∈ subfP(φ) of the formφ1 U φ2 ands ∈ S,
we introduce the variablesp

′ψ
s andw

′ψ
s , such that the following constraints hold.

p
′ψ
s = tφ2

s + tφ1∧¬φ2

s w
′ψ
s w

′ψ
s = γ

X

s′∈S

pss′p
′ψ
s

We wantpψs = 0 if p
′ψ
s = 0. To ensure this, for eachψ ∈ subfP(φ) of the form

φ1U φ2 ands ∈ S, we introduce the auxiliary variableδψs and ensure that the following
constraint hold.

δψs > 0 pψs = δψs p
′ψ
s

Let V (I, φ) = {δ} ∪
⋃
s,s′∈S{pss′} ∪

⋃
s∈S,φ′∈subfS(φ){t

φ′

s , f
φ′

s , u
φ′

s } ∪
⋃
s∈S,ψ∈subfP(φ){p

ψ
s , w

ψ
s , p

′ψ
s , w

′ψ
s , δ

ψ
s } denote the set of variables over which the

above constraints are described and letC(I, φ) denote the above set of constraints.

Lemma 5. For every solutionI : V (I, φ) → R ofC(I, φ), there exists a DTMCM =
(S, sI ,P, L) ∈ [I] such that the following holds:

1. I(pss′) = P(s, s′) for anys, s′ ∈ S
2. tφ

′

s , f
φ′

s ∈ {0, 1} anduφ
′

s ∈ {−1, 1} for anys ∈ S andφ′ ∈ subfS(φ)
3. tφ

′

s = 1 ∧ fφ
′

s = 0 ∧ uφ
′

s = 1 iff s |=M φ′ for anys ∈ S andφ′ ∈ subfS(φ)
4. tφ

′

s = 0 ∧ fφ
′

s = 1 ∧ uφ
′

s = −1 iff s |=M φ′ for anys ∈ S andφ′ ∈ subfS(φ)
5. pψs = Prob{π ∈ Path(s) | π |=M ψ} for anyψ ∈ subfP(φ)

The proof follows from the observations made while setting up the constraints. An
immediate consequence of the Lemma 5 is the following theorem.

Theorem 1. If there exists a solutionI of C(I, φ) such thatI(tφsI
) = 1, then there

exists anM ∈ [I] such thatM |= φ.

In order to check ifI |= φ, the model checking algorithm sets up the constraints
C(I,¬φ) and checks its feasibility. Clearly, checking the feasibility of C(I,¬φ) is
equivalent to checking if a sentence with existential quantifiers is valid for the reals;
the size of the sentence is polynomial in the size of the UMC. However, the constraints
C(I,¬φ) are bilinear constraints, and we need to satisfy the conjunction of all these
constraints (not an arbitrary boolean function). The feasibility of such constraints can be
more efficiently checked viewing them asbilinear matrix inequalities(BMIs) for which
algorithms [10, 9] and tools [18] have been developed. (Moredetails about bilinear
matrix inequality can be found in Appendix.) We also observethat to prove that the
model checking problem can be solved in PSPACE, we could haveconstructed a simpler
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set of constraints by first guessing the values of the variablestφ
′

s , u
φ′

s , andfφ
′

s for the
subformulasφ′, and then solving the constraints resulting from those guesses; since
NPSPACE = PSPACE, we can obtain a deterministic algorithm from this. However, we
believe that in practice solving this single BMI presented here will be more efficient
than solving the exponentially many simpler BMIs that this alternative approach would
yield.

5.1 Complexity of Model-checking UMC
We showed that the model-checking problem for UMC can be reduced to checking the
validity of a formula in the existential theory of the reals.Therefore, the model-checking
problem of UMC is in PSPACE.

We next demonstrate the intractability of the model checking problem for UMC by
reducing the satisfiability and validity of propositional boolean formulas to the model
checking problem. Consider a propositional boolean formula ϕ over the propositions
{p1, . . . , pm}.

We consider the UMCI = (S, sI , P̌, P̂, L) where

– S = {sI , s1, . . . , sm, s⊥}
– L(sI) = L(s⊥) = {}, L(si) = {pi} for each1 ≤ i ≤ m
– P̌(sI , si) = 0 andP̂(sI , si) = 1/m for all 1 ≤ i ≤ m
– P̌(sI , s⊥) = 0 andP̂(sI , s⊥) = 1
– P̌(si, si) = P̂(si, si) = 1 for all 1 ≤ i ≤ m
– P̌(si, sj) = P̂(si, sj) = 0 for all 1 ≤ i ≤ m and1 ≤ j ≤ m andi 6= j

– P̌(s⊥, s⊥) = P̂(s⊥, s⊥) = 1

We consider the PCTL formulaφ′ obtained fromφ by syntactically replacing every
occurrence ofpi in φ by P> 1

2m
(Xpi) for 1 < i < m.

Lemma 6. ϕ is satisfiable iffI 6|= ¬φ; ϕ is valid iff I |= φ.

Proof. Supposeϕ is satisfiable and leta be the satisfying assignment. Consider the
DTMC Ma, whereP(sI , si) = 1

2m if a(pi) = false andP(sI , si) = 1
m+1 if a(pi) =

true; P(sI , s⊥) is thus determined by this assignment. It is easy to see thatMa ∈ [I]
andMa |= φ. Similarly, if M ∈ [I] such thatM |= φ, then we can construct a
satisfying assignment forϕ: a(pi) = false if P(sI , si) ≤ 1

2m anda(pi) = true if
P(sI , si) >

1
2m . These observations also imply thatϕ is valid iff I |= φ.

Since the satisfiability of general propositional boolean formulas is NP-hard and the
validity of general propositional boolean formulas is co-NP-hard [13], the lower bounds
follow immediately from Lemma 6.

Theorem 2. The model checking problem for UMC with respect to PCTL is NP-hard
and co-NP-hard.

6 Model-checking IMDP
We consider the problem of model checking IMDPs in this section. We will solve the
problem by showing that we can reduce IMDP model checking to model checking
(classical) a Markov Decision Process (MDP) [4, 23]. Beforepresenting this reduction
we recall some basic properties of the feasible solutions ofa linear program and the
definition of an MDP.

12



6.1 Linear Programming

Consider an IMDPI = (S, sI , P̌, P̂, L). For a givens ∈ S, let IE(s) be the following
set of inequalities over the variables{pss′ | s′ ∈ S}:

X

s′∈S

pss′ = 1 P̌(s, s′) ≤ pss′ ≤ P̂(s, s′) for all s′ ∈ S

Definition 4. A mapθs : S → [0, 1] is called abasic feasible solution(BFS) to the
above set of inequalities IE(s) iff {pss′ = θs(s′) | s′ ∈ S} is a solution of IE(s)
and there exists a setS′ ⊆ S such that|S′| ≥ |S| − 1 and for all s′ ∈ S′ either
θs(s′) = P̌(s, s′) or θs(s′) = P̂(s, s′).

LetΘs be the set of all BFS ofIE(s). The set of BFS of linear program have the spe-
cial property that every other feasible solution can be expressed as a linear combination
of basic feasible solutions. This is the content of the next proposition.

Proposition 1. Let {pss′ = p̄ss′ | s
′ ∈ S} be some solution of IE(s). There there are

0 ≤ αθs ≤ 1 for all θs ∈ Θs, such that

p̄ss′ =
∑
θs∈Θs αθsθs(s′) for all s′ ∈ S and

∑
s∈S αθs = 1

Lemma 7. The number of basic feasible solutions of IE(s) in the worst case can be
O(|S|2|S|−1).

6.2 Markov Decision Processes (MDP)

A Markov decision process (MDP) is a Markov chain that has non-deterministic tran-
sitions, in addition to the probabilistic ones. In this section we formally introduce this
model along with some well-known observations about them.

Definition 5. If S is the set of states of a system, anext-state probability distribution
is a functionµ : S → [0, 1] such that

∑
s∈S µ(s) = 1. For s ∈ S, p(s) represents the

probability of making a direct transition tos from the current state.

Definition 6. A Markov decision Process (MDP) is a 4-tupleD = (S, sI , τ, L), where

1. S is a finite set of states,
2. sI ∈ S is the initial state,
3. L : S → 2AP is a labeling function that maps states to sets of atomic propositions

from a setAP,
4. τ is a function which associates to eachs ∈ S a finite setτ(s) = {µs1, . . . , µ

s
ks
} of

next-state probability distributionsfor transitions froms.

A pathπ in an MDPD = (S, sI , τ, L) is a non-empty sequence of the forms0
µ1

→

s1
µ2

→ . . ., wheresi ∈ S, µi+1 ∈ τ(si), andµi+1(si+1) > 0 for all i ≥ 0. A path can be
either finite or infinite. We useπfin to denote a finite path. Letlast(πfin) be the last state
in the finite pathπfin. As in DTMC, we denote theith state in a pathπ by π[i] = si.
We let Path(s) and Pathfin(s) be the set of all infinite and finite paths, respectively,
starting at states. To associate a probability measure with the paths, we resolve the
non-deterministic choices by a randomizedadversary, which is defined as follows:
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Definition 7. A randomizedadversaryA of an MDPD is a function mapping every
finite pathπfin of D and an element of the setτ(last(πfin)) to [0, 1], such that for a
given finite pathπfin of D,

∑
µ∈τ(last(πfin))A(πfin, µ) = 1. LetAD denote the set of

all possible randomized adversaries of the MDPD. Let PathA(s) denote the subset of
Path(s) which corresponds to an adversaryA.

The behavior of an MDP under a given randomized adversary is purely probabilis-
tic. If an MDP has evolved to the states after starting from the statesI and following
the finite pathπfin, then it chooses the next-state distributionµs ∈ τ(s) with probability
A(πfin, µ

s). Then it chooses the next states′ with probabilityµs(s′). Thus the proba-
bility that a direct transition tos′ takes place is

∑
µs∈τ(s)A(πfin, µ

s)µs(s′). Thus as for

IMDPs, one can define DTMCDA that captures the probabilistic behavior of MDPD
under adversaryA and also associate a probability measure on execution paths. Given
a MDPD and a PCTL formulaϕ, we can define whenD |= ϕ in a way analogous to
the IMDPs (see Figure 2).

6.3 The Reduction

We are now ready to describe the model checking algorithm forIMDPs. Consider an
IMDP I = (S, sI , P̌, P̂, L). Recall from Section 6.1, we can describe the transition
probability distributions from states that satisfy the range constraints as the feasible
solutions of the linear programIE(s). Furthermore, we denote byΘs is the set of all
BFS of IE(s). Define the following MDPD = (S′, s′I , τ, L

′) whereS′ = S, s′I = sI ,
L′ = L, and for alls ∈ S, τ(s) = Θs. Observe thatD is exponentially sized inI, since
τ(s) is exponential (see Lemma 7).

The main observation behind the reduction is that the MDPD “captures” all the
possible behaviors of the IMDPI. This is the formal content of the next proposition.

Proposition 2. For any adversaryA for I, we can define a randomized adversaryA′

such thatProb
IA

s = Prob
DA′

s for everys, whereProb
XA

s is measure on paths froms
defined by machineX underA. Similarly for every adversaryA for D, we can find an
adversaryA′ for I that defines the same probability measure on paths.

Proof. Consider an adversaryA for I. For a pathπfin let A(πfin) = µ ∈
Steps(last(πfin)). We know from Proposition 1, that there areαθs for θs ∈ Θs such
that

µ(s′) =
∑
θs∈Θs αθsθs(s′) for all s′ ∈ S and

∑
s∈S αθs = 1

We now defineA′(πfin, θ
s) = αθs . It is straightforward to see thatProb

IA

s = Prob
DA′

s .
The converse direction also can be proved similarly. ut

An important consequence of the above observation is the following main theorem.

Theorem 3. For any PCTL formulaϕ, I |= ϕ iff D |= ϕ.
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Thus, in order to model check IMDPI, we can model check the MDPD for which
algorithms are known [4, 23]. The algorithms for MDP run in time (and space) which is
polynomial in the size of the MDP. Thus, if we directly model checkD we get an EXP-
TIME model checking algorithm forI. However, we can improve this to get a PSPACE
algorithm. The reason for this is that it is known that as far as model checking MDPs is
concerned, we can restrict our attention todeterministic, memorylessadversaries, i.e.,
adversaries that always pick the same single non-deterministic choice whenever a state
is visited.

Proposition 3 ([4, 23]).Let Adet be the set of deterministic, memoryless adversaries
for MDP D, i.e., for allA ∈ Adet, A(s, µ) = 1 for exactly oneµ ∈ τ(s). Consider a
PCTL formulaϕ = P./p(ψ) such that the truth or falsity of every subformula ofψ in
every state ofD is already determined. ThenD |= ϕ iff DA |= ϕ for all A ∈ Adet.

For every subformula of the formP./p(ψ), our model checking algorithm, will
model check each of the DTMCsDA, whereA is a deterministic, memoryless ad-
versary. This will give us the desired PSPACE algorithm.

Theorem 4. The model-checking algorithm for IMDP is in PSPACE.

Proof. From Lemma 7, we know that the total number of BFSs isO(|S|2|S|−1). Hence
the total number of DTMCsDA for A ∈ Adet isO(|S||S|2|S|

2−|S|). By reusing space
for every subformulaP./p(ψ), all of these model checking problems can be solved in
PSPACE. ut

6.4 Iterative Algorithm
The above PSPACE algorithm is computationally expensive for large IMDPs. There-
fore, we propose an alternative iterative algorithm motivated by a similar algorithm
in [2].

The iterative model checking algorithm for PCTL over IMDPs works exactly as
for DTMCs with the exception of handling ofP./p(ψ). For these, we need to check if
pAs (ψ) = Prob

A
s ({π ∈ PathA(s) | π |= ψ}) satisfies the bound./ p for all adver-

sariesA ∈ AI . Let pmax
s (ψ) andpmin

s (ψ) be theminimumor maximumprobability,
respectively, for all adversariesA ∈ AI , i.e.,

pmax
s (ψ)

def
= supA∈AI

[pAs (ψ)], pmin
s (ψ)

def
= infA∈AI [pAs (ψ)].

Then if./∈ {<,≤},
Sat(P./p(ψ)) = {s ∈ S | pmax

s (ψ) ./ p}

and if./∈ {>,≥},
Sat(P./p(ψ)) = {s ∈ S | pmin

s (ψ) ./ p}

We next describe how to compute the valuespmax
s (ψ) andpmin

s (ψ) for ψ = Xφ and
ψ = φ1U φ2. Recall thatΘs is the set of all BFS ofIE(s). It can be shown following [2]
thatpmax

s = limn→∞p
max(n)
s where:

pmax(n)
s =

8

>

>

>

>

>

<

>

>

>

>

>

:

1 if s ∈ Syes

0 if s ∈ Sno

0 if s ∈ S? andn = 0

max{p̄ss′ |s
′∈S}∈Θs

n

P

s′∈S p̄ss′ .p
max(n−1)

s′

o

if s ∈ S? andn > 0
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andpmin
s = limn→∞p

min(n)
s where:

pmin(n)
s =

8

>

>

>

>

>

<

>

>

>

>

>

:

1 if s ∈ Syes

0 if s ∈ Sno

0 if s ∈ S? andn = 0

min{p̄ss′ |s
′∈S}∈Θs

n

P

s′∈S p̄ss′ .p
min(n−1)

s′

o

if s ∈ S? andn > 0

Note that although the size ofΘs can beO(|S|2|S|−1) (by Lemma 7), the compu-
tation of the expressions

max{p̄ss′ |s
′∈S}∈Θs

(

X

s′∈S

p̄ss′ .p
max(n−1)

s′

)

or min{p̄ss′ |s
′∈S}∈Θs

(

X

s′∈S

p̄ss′ .p
min(n−1)

s′

)

(6)

can be done inO(|S|) time as follows:
We consider the orderings1, s2, . . . , s|S| of the states ofS such that

p
max(n−1)
s1 , p

max(n−1)
s2 , . . . , p

max(n−1)
s|S|

is in descending order. Then the following result
holds.

Lemma 8.

a) There exists an1 ≤ i ≤ |S| such that{P̂(s, s1), . . . , P̂(s, si−1), q, P̌(s, si+1),

. . . , P̌(s, s|S|)} is a BFS of IE(s), where q = 1 −
∑

1≤j≤(i−1) P̂(s, sj) −
∑

(i+1)≤j≤|S| P̌(s, sj).
b) and for thati

max{p̄ss′ |s
′∈S}∈Θs

(

X

s′∈S

p̄ss′ .p
max(n−1)

s′

)

= pmax(n−1)
si

.q

+
X

1≤j≤(i−1)

pmax(n−1)
sj

.P̂(s, sj) +
X

(i+1)≤j≤|S|

pmax(n−1)
sj

.P̌(s, sj)

Proof.
a) Let i0 be defined as follows:

i0 = min{i |
i

X

j=1

P̂(s, sj) +

|S|
X

j=i+1

P̌(s, sj) ≥ 1}

Observe that such ani0 must exist if the IMDP is well-defined. Consider the
solution {P̂(s, s1), . . . , P̂(s, si0−1), q, P̌(s, si0+1), . . . , P̌(s, s|S|)} where q = 1 −
∑

1≤j≤(i0−1) P̂(s, sj) −
∑

(i0+1)≤j≤|S| P̌(s, sj). This solution is a BFS ofIE(s).

b) Let {p̄ss1 , . . . , p̄ss|S|
} be any solution (it may be BFS or not) ofIE(s). Then by

simple algebraic simplification it can be shown that

X

1≤j≤(i−1)

pmax(n−1)
sj

.P̂(s, sj)+p
max(n−1)
si

.q+
X

(i+1)≤j≤|S|

pmax(n−1)
sj

.P̌(s, sj) ≥
X

s′∈S

p̄ss′ .p
max(n−1)

s′

given the fact thatpmax(n−1)
s1 ≥ p

max(n−1)
s2 ≥ . . . ≥ p

max(n−1)
s|S|

, andP̌(s, s′) ≤ p̄ss′ ≤

P̂(s, s′) for all s′ ∈ S. ut
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Similarly, if we consider the orderings1, s2, . . . , s|S| of the states ofS such that

p
min(n−1)
s1 , p

min(n−1)
s2 , . . . , p

min(n−1)
s|S|

is in ascending order, then the above Lemma
holds with max replaced by min.

The expressions (6) can be computed inO(|S|) time by finding ani as in Lemma 8.

6.5 Lower Bound for IMDP model-checking

We will show that the model checking problem for DTMCs is P-hard. Since DTMCs
are a special case of IMDPs the P-time lower bound will follows.

To show this we will reduce 3-CNF value, which known to be P-hard [13], to the
problem of model checking DTMCs. Recall that 3-CNF value is the problem where we
are given a 3-CNF formulaϕ and an assignmenta to each of the variables, and are
asked whetherϕ evaluates to true or false under the assignment. The reduction is very
similar to the one given Section 5.1.

Considerϕ =
∧
i∈[1,n](l1i ∨ l2i ∨ l3i) over the propositions{p1, . . . , pm}, where

eachljj ∈ {p1,¬p1, . . . , pm,¬pm} for 1 ≤ i ≤ 3 and1 ≤ j ≤ n. Construct the
DTMC M = (S, sI ,P, L) where

– S = {sI , s1, . . . , sm, s⊥}
– L(sI) = L(s⊥) = {}, L(si) = {pi} for each1 ≤ i ≤ m
– P(si, si) = P(s⊥, s⊥) = 1 for all 1 ≤ i ≤ m
– P(sI , si) = 1

2m if a(pi) = false andP(sI , si) = 1
m

if a(pi) = true.
– P(sI , s⊥) = 1 −

∑
iP(sI , si)

Let φ =
∧
i∈[1,n](φ1i ∨ φ2i ∨ φ3i), where if lji = pk thenφji = P> 1

2m
(Xpk) and

if lji = ¬pk thenφji = P≤ 1

2m
(Xpk). Analogous to Lemma 6, one can see thatM

satisfiesφ if and onlyϕ is true under the assignmenta. The formal proof is skipped.

7 Conclusion
We have investigated the PCTL model checking problem for twosemantic interpreta-
tions of IDTMCs, namely UMC and IMDP. We proved the upper bounds and the lower
bounds on the complexity of the model checking problem for these models. Our bounds
however are not tight. Finding tight lower and upper bounds for these model-checking
problems is an interesting open problem.
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A Motivation

We provide examples to show that UMC and IMDP arise as naturalmodels in many
realistic situations.

UMC in practice. Consider an Internet router having a finite buffer of sizeb where it
queues up packets received from the Internet. If the buffer is full, the router drops any
received packet. The router processes and transmits packets from the buffer at some
rate which depends on the configuration of the router. Let us assume that the time is
discretized into tiny periods (say 1µsec). At each time period, with probabilityp there
is a new arrival. At each time period, with probabilityq a packet is processed (if there
is one in the buffer) and transmitted by the router. Note thatduring a time period, we
might have both an arrival and a transmission, or neither.

Given such a router in the Internet, the arrival rate solely depends on the traffic in
the Internet and can be determined exactly under given traffic conditions. However, the
rate (i.e.q) at which the packets leave the router depends on the configuration (e.g.
say security configuration) of the router itself. Suppose, the manufacturer of the router
specifies thatq always lie in the range[qmin, qmax], whereq is equal to the lower bound
qmin if all the security measures are active, and is equal to the upper boundqmax if none
of the security measures are active. However, the exact value ofq when certain number
of security measures are active cannot be determined exactly.
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Fig. 3.Model of Router with Buffer Size 3

Suppose we want to model check a property such as “the probability that the buffer
of a router eventually becomes full is less than 0.01.” For the router in the Internet,
we exactly know the size of the bufferb and the arrival probabilityp. However, the
departure probability is uncertain and is known to lie in therange[qmin, qmax]. A natural
way to model such a system is using UMCs. A UMC model of the router with buffer
size 3 is given in Figure 3. The arrival probabilityp is assumed to be known, say0.5;

19



the departure probabilityq lies in the range[0.5, 0.7] as provided by the manufacturer
of the router. The label on a state gives the number of packetsin the buffer of the router.

Yet another situation in which UMC models arise is in “black-box model-
checking” [25]. In black-box model-checking, we assume that the transition probabili-
ties of a DTMC model is not known; rather, we are allowed to estimate the probabilities
using Monte-Carlo simulation. For example, through Monte-Carlo simulation, if we ob-
serve that out of totaln transitions from a given states to any other state there are only
m transitions froms to s′, then we can estimate the transition probability froms to s′ by
m/n. However, this estimation of the transition probability from s to s′ bym/n is not
statistically sound. Instead, we should consider a range ofprobabilities within which the
actual probability must lie with high probability. Such a range is calleda confidence in-
terval [12]. For example, a99% confidence interval for the transition probability would
be the range[p1, p2], if the probability that our observed transition probability ism/n
given that the actual probability of transition lies in[p1, p2] is 0.99. A confidence inter-
val for a given confidence level and a given observation can becalculated by standard
techniques. Thus for black-box models the estimated valuesfor the various transition
probabilities are better represented as UMCs.

IMDP in practice. There may be situations where the system cannot be modeled asan
UMC. For example, in the router example above, the arrival rate of packets may vary
from time to time depending on the Internet traffic. Therefore, we cannot assume that
p is an exact probability; rather, it lies in a range. At every transition the environment
chooses ap from the range non-deterministically and then decides to send a packet to
the router with the chosen probabilityp.

Such situations can be naturally modeled as an IMDP, in whichevery time a
state is visited, a probability distribution respecting certain range constraints is non-
deterministically (possibly even adversarially) chosen,and then a transition is taken
according to the chosen distribution. Thus, in IMDPs the non-deterministic choice is
made over a set of (possibly) uncountably many choices. Notethat this is different
from MDPs (Markov Decision Processes) [7, 4] where the number of possible non-
deterministic choices is finite.

For example, Figure 3 gives the IMDP model of a router (with buffer size 3) where,
for simplicity, we assume that the departure probabilityq is fixed number, say0.6. The
arrival probability, however, lies in the range[0.3, 0.7] depending on the Internet traffic.

B Bilinear Matrix Inequalities (BMI)

Recall that ak × k matrix A, over the reals, is said to bepositive semi-definiteif A
is symmetric (i.e.,A = AT ) and for everyz ∈ R

k, zTAz ≥ 0. We will denoteA is
positive semi-definite byA � 0.

Optimization programs with bilinear matrix inequalities (BMIs) [22] are of the form
maximize/minimize CTx

subject to

F (x, y) = F0 +

m
X

i=0

xiFi +

n
X

j=0

yjGj +

m
X

i=0

n
X

j=0

xiyjHij � 0 (7)
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where for everyi andj, Fi,Gj andHij are symmetric matrices of the same dimen-
sion (sayk), andC, x ∈ R

m, y ∈ R
n. Thus, the symmetric matrixF (x, y) is an affine

function of the elements ofx andy and is required to be positive semidefinite.
Solving such optimization problems is known to be NP-hard [26], but is decidable.

Efficient algorithms [10, 9] and tools [18] have been developed for solving optimization
problems with BMI.

All the optimization problems that are solved during the model checking of UMC
can be written as a single BMI. This follows from some simple observations. Our first
observation says that a set of bilinear matrix inequality constraints can be rewritten as
a single BMI of the form given in Equation (7).

Lemma 9. A set of matrix inequalities

F k0 +
m

X

i=0

xiF
k
i +

n
X

j=0

yjG
k
j +

m
X

i=0

n
X

j=0

xiyjH
k
ij � 0

for k = 1, . . . ` can be written as a single BMI constraint.

Proof. The single BMI will be of the form

F0 +
m

X

i=0

xiFi +
n

X

j=0

yjGj +
m

X

i=0

n
X

j=0

xiyjHij � 0

whereF0 is a block diagonal matrix with the matricesF k0 along the diagonal; sim-
ilarly Fi, Gj , andHij be will block diagonal matrices withF ki , Gkj andHk

ij along the
diagonal [18]. ut

The model checking problems that we investigate in this paper, will require us to
optimize a simple linear function subject to certain constraints. The constraints that
arise in the context of model checking will be of special forms. The next two lemmas
show that these special constraints can be viewed as BMI constraints.

Lemma 10. For f0, fi, gj , hij ∈ R, the (scalar) inequality

f0 +

m
X

i=0

xifi +

n
X

j=0

yjgj +

m
X

i=0

n
X

j=0

xiyjhij ≥ 0 (8)

can be written as a bilinear matrix inequality.

Proof. LetF0, Fi, Gj ,Hij be matrices of dimension1× 1 whose entries aref0, fi, gj ,
andhij , respectively. Consider

F (x, y) = F0 +

m
X

i=0

xiFi +

n
X

j=0

yjGj +

m
X

i=0

n
X

j=0

xiyjHij

It is easy to see thatF (x, y) is positive semi-definite if and only if the inequality (8)
holds. ut

Lemma 11. The (strict) inequalityδ > 0 can be expressed as a BMI.

Proof. Observe thatδ > 0 if and only if xδ ≥ 1, andδ ≥ 0. Thus the observation
follows from Lemma 9 and Lemma 10. ut

Our last observation is that the BMI requirement that the variables be partitioned
into disjoint setsX andY , such that the product terms only involve one variable from
X with one fromY can be easily achieved by adding more variables and constraints.
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Lemma 12. A set of inequalities over the variables V of the form
ak0 +

n
X

i=1

aki vi +
n

X

i=1

n
X

j=1

bkijvivj ≥ 0

for k = 1, . . . ` can written as a BMI.

Proof. For each variablevi ∈ V consider two variables: an “x-copy” vxi and a “y-copy”
vyi . Replace a constraint of the form

ak0 +

n
X

i=1

aki vi +

n
X

i=1

n
X

j=1

bkijvivj ≥ 0 with ak0 +

n
X

i=1

aki v
x
i +

n
X

i=1

n
X

j=1

bkijv
x
i v

y
j ≥ 0

Also, add the constraintsvxi = vyi for eachi. Observe that by Lemma 10, each
constraint can be written as a BMI, where the variables inX are thex-copies of each
variable, and those inY are they-copies of each variable. Thus, by Lemma 9, the
resulting set of inequalities can be written as a BMI.
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