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ABSTRACT
Testing concurrent programs that accept data inputs is no-
toriously hard because, besides the large number of possi-
ble data inputs, nondeterminism results in an exponentially
large number of interleavings of concurrent events. We pro-
pose a novel testing algorithm for concurrent programs in
which our goal is not only to execute all reachable state-
ments of a program, but to detect all possible data races,
and deadlock states. The algorithm uses a combination of
symbolic and concrete execution (called concolic execution)
to explore all distinct causal structures (or partial order re-
lations among events generated during execution) of a con-
current program. The idea of concolic testing is to use the
symbolic execution to generate inputs that direct a program
to alternate paths, and to use the concrete execution to
guide the symbolic execution along a concrete path. Our
algorithm uses the concrete execution to compute the exact
race conditions between the events of an execution at run-
time. Subsequently, we systematically re-order or permute
the events involved in these races by generating new thread
schedules as well as generate new test inputs. This way we
explore at least one representative from each partial order.
We describe jCUTE, a tool implementing the testing algo-
rithm together with the results of applying jCUTE to real-
world multithreaded Java applications and libraries. In one
of our case studies, we discovered several undocumented po-
tential concurrency-related bugs in the widely used Java col-
lection framework distributed with the Sun Microsystems’
JDK 1.4.

1. INTRODUCTION
Testing programs is generally hard because of the large

number of possible inputs to a program. Testing concur-
rent programs is notoriously harder because of the expo-
nentially large number of possible interleavings of concur-
rent events [28]. Many of these interleavings share the same
causal structure (also called the partial order), and thus
are equivalent with respect to finding bugs in a given pro-
gram. Techniques for avoiding such redundant executions
are called partial order reduction [11, 20,31].

A number of approaches [1, 2, 9, 12] to testing concurrent
programs assume that the data inputs are from a finite do-
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main. These approaches rely on exhaustively executing the
program for all possible inputs and perform a partial order
reduction to reduce the search space. The problem with
these approaches is that it is hard to scale them – the input
set is often too large.

A second approach is to execute a program symbolically
in a customized virtual machine which supports partial or-
der reduction [15,32]. This requires checking satisfiability of
complex constraints (corresponding to every branch point in
a program). Unfortunately, checking such satisfiability may
be undecidable or computationally intractable. Moreover,
in concurrent programs, partial order reduction for symbolic
execution requires computing the dependency relations be-
tween memory accesses in a program. Because it involves
alias analysis, such a computation is often conservative re-
sulting in extra dependencies. For these reasons, large num-
bers of unreachable branches may be explored, often causing
many warnings for bugs that could never occur in an actual
execution.

Our approach is to use concolic testing, which combines
concrete and symbolic execution by using one to guide the
other [14, 24, 25]. Specifically, the idea is to use symbolic
execution to generate inputs that direct a program to alter-
nate paths, and to use the concrete execution to guide the
symbolic execution along a concrete path, and replace sym-
bolic values (variables) by concrete values if the symbolic
state is too complex to be handled by a constraint solver.
We briefly explain this further in Section 5.2.

To use concolic testing for multithreaded programs, we do
the following. For a given concrete execution, at runtime, we
determine the partial order relation or the exact race con-
ditions (both data race and lock race) between the various
events in the execution path. Subsequently, we systemati-
cally re-order or permute the events involved in these races
by generating new thread schedules as well as generate new
test inputs. This way we explore one representative from
each partial order. The result is an efficient testing algo-
rithm for concurrent programs which, at the cost of missing
some potential bugs, avoids the problem of false warnings.

We have implemented the algorithm in a publicly avail-
able tool, called jCUTE, for testing Java programs. Apart
from detecting assertion violations and uncaught exceptions,
jCUTE reports all data race conditions and deadlock states
encountered during the process of testing. jCUTE also
supports testing of asynchronous message-passing Java pro-
grams written using a Java Actor library. This work was re-
ported in [24]. Note that the technique in [24], which works
for asynchronous message passing processes or actors, is not
directly applicable to multithreaded programs.

We provide some case studies to illustrate the utility of
our approach. In our first case study, we tested the thread-
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safe Java Collection framework provided with the Sun Mi-
crosystems’ Java 1.4. Surprisingly, we discovered several
data races, deadlocks, uncaught exceptions, and an infinite
loop in this widely used library. All of them are potential
bugs related to multithreaded execution. In our second case
study, we tested several small to medium sized concurrent
Java programs used as case studies for evaluating NASA’s
Java PathFinder and KSU’s Bandera tool. In all those pro-
grams, our tool discovered bugs which had previously been
found by model-checking manually abstracted versions of the
programs–of course, in our case without abstracting the pro-
gram. In the last two case studies, we detected well-known
security attacks in the concurrent implementation of the
Needham-Schroeder and the TMN protocols.

The outline of the rest of the paper is as follows. In Sec-
tion 2, we give an overview of our approach through an
example. In Section 3 and Section 4, we describe the pro-
gramming model and execution model that we assume for
the purpose of describing our algorithms. In Section 5, we
describe a simple näıve testing algorithm. Section 6 de-
scribes an efficient algorithm for testing. In Section 7, we
propose a further optimization. Section 8 gives some imple-
mentation details and four case studies. In Section 9, we
discuss related work.

2. OVERVIEW OF OUR APPROACH
In concolic testing our goal is to generate data inputs and

schedules that would exercise all feasible executions paths
of a program. Our algorithm for concolic testing uses con-
crete values as well as symbolic values for the inputs, and
executes a program both concretely and symbolically. The
symbolic execution is similar to the traditional symbolic ex-
ecution [16], except that jCUTE follows the path that the
concrete execution takes. During the course of the execu-
tion, it collects the constraints over the symbolic values at
each branch point (i.e., the symbolic constraints). At the end
of the execution, the algorithm has computed a sequence of
symbolic constraints corresponding to each branch point.
We call the conjunction of these constraints a path con-
straint. Observe that all input values that satisfy a given
path constraint will explore the same execution path, pro-
vided that we follow the same thread schedule.

Apart from collecting symbolic constraints, the algorithm
also computes the race condition between various events in
the execution of a program, where, informally, an event rep-
resents the execution of a statement in the program by a
thread. We say that two events are in a race if they are
events of different threads, they access (i.e. read, write,
lock, or unlock) the same memory location without holding
a common lock, and the order of the happening of the events
can be permuted by changing the schedule of the threads.
The race conditions are computed by analyzing the concrete
execution of the program with the help of dynamic vector
clocks for multithreaded programs first introduced in [26].

The algorithm first generates a random input and a sched-
ule, which specifies the order of execution of threads. Then
the algorithm does the following in a loop: it executes the
code with the generated input and the schedule. At the
same time the algorithm computes the race conditions be-
tween various events as well as the symbolic constraints. It
backtracks and generates a new schedule or a new input
and executes the program again. It continues until it has
explored all possible distinct execution paths using a depth
first search strategy. The choice of new inputs and schedules
is made in one of the following two ways:

1. The algorithm picks a constraint from the symbolic

x is a shared variable
z = input();

t1 : t2 :
1 : x = 3; 1: x = 2;

2: if (2 ∗ z + 1 == x)
3 : ERROR;

Figure 1: Simple Example

constraints that were collected along the execution
path and negates the constraint to define a new path
constraint. The algorithm then finds, if possible, some
concrete values that satisfy the new path constraint.
These values are used as input for the next execution.

2. The algorithm picks two events which are in a race
and generates a new schedule that at the point where
the first event happened, the execution of the thread
involved in the event is postponed or delayed as much
as possible. This ensures that the events involved in
the race gets flipped or re-ordered when the program
is executed with the new schedule. The new schedule
is used for the next execution.

A complication arises from the fact that for some sym-
bolic constraints, our constraint solver may not be power-
ful enough to compute concrete values that satisfy the con-
straints. To address this difficulty, such symbolic constraints
are simplified by replacing some of the symbolic values with
concrete values. Because of this, our algorithm is complete
only if given an oracle that can solve all constraints in a
program, and the length and the number of paths is finite.
Note that because the algorithm does concrete executions,
it is sound, i.e. all bugs it finds are real (assuming that the
potential data race conditions and deadlocks found are not
unintended).

We illustrate the testing algorithm using the sample pro-
gram P in Figure 1. The program has two threads t1 and
t2, a shared integer variable x, and an integer variable z,
which receives an input from the external environment at
the beginning of the program. Each statement in the pro-
gram is labeled. The program reaches the ERROR statement
in thread t2 if the input to the program is 1 (i.e., z gets the
value 1) and the program executes the statements in the fol-
lowing sequence: (t2, 1)(t1, 1)(t2, 2)(t2, 3), where each event
or tuple (t, l) in the sequence denotes that thread t executes
the statement labeled l.

jCUTE first generates a random input for z and executes
P with a default schedule. Without loss of generality, the
default schedule always picks the thread which is enabled
and which has the lowest index. Thus, the first execution
of P is (t1, 1)(t2, 1)(t2, 2). Let z0 be the symbolic variable
representing the value of z at the beginning of the execution.
jCUTE collects the constraints from the predicates of the
branches executed in this path. For this execution, jCUTE
generates the path constraint 2 ∗ z0 + 1! = 2. jCUTE also
decides that there is a race condition between the first and
the second event because both the events access the same
variable x in different threads without holding a common
lock and one of the accesses is a write of x.

Following the depth first search strategy, jCUTE picks the
only constraint 2 ∗ z0 + 1! = 2, negates it, and tries to solve
the negated constraint 2 ∗ z0 + 1 = 2. This has no solution.
Therefore, jCUTE backtracks and generates a schedule such
that the next execution becomes (t2, 1)(t2, 2)(t1, 1) (here the
thread involved in the first event of the race in the previous



execution is delayed as much as possible). This execution
re-orders the events involved in the race in the previous ex-
ecution.

During the above execution, jCUTE generates the path
constraint 2 ∗ z0 + 1! = 2 and computes a race between the
second and the third event. Since the negated constraint
2 ∗ z0 + 1 = 2 cannot be solved, jCUTE backtracks and
generates a schedule such that the next execution becomes
(t2, 1)(t1, 1)(t2, 2). This execution re-orders the events in-
volved in the race in the previous execution.

In the above execution, jCUTE generates the path con-
straint 2 ∗ z0 + 1! = 3. jCUTE solves the negated constraint
2 ∗ z0 + 1 = 3 to obtain z0 = 1. In the next execution, it
follows the same schedule as the previous execution. How-
ever, jCUTE starts the execution with the input variable
z set to 1, which is the value of z that jCUTE computed
by solving the constraint. The resultant execution becomes
(t2, 1)(t1, 1)(t2, 2)(t2, 3) which hits the ERROR statement of
the program.

3. PROGRAMMING MODEL
In order to simplify the description of our testing ap-

proach, we define a simple concurrent imperative language,
Scil (Figure 3). Scil extends the simple language presented
in [25] with concurrency primitives. A Scil program con-
sists of a sequence of labeled statements. A Scil program
starts its execution with a single thread t0. Subsequently, it
can create new threads. Threads in a program communicate
by acquiring and releasing locks and by accessing (reading
or writing) shared variables.

A Scil program may receive data inputs from its environ-
ment. Observe that the availability of an input earlier than
its use does not affect an execution. Without loss of gener-
ality, we assume that all such inputs are available from the
beginning of an execution; again this assumption simplifies
the description of our algorithm. To further simplify our
exposition, we assume that a Scil program has no point-
ers and functions. However, as in [25], our algorithm can
be extended to programs with pointers, complex data struc-
tures [33], and functions; this is done in the implementation.

We now informally describe the semantics of Scil. Con-
sider a Scil program P consisting of a sequence of state-
ments, each of which is labeled. If l is the label of a state-
ment in some thread, then l + 1 is the label of the next
statement in that thread, unless the statement labeled by l

is a HALT or an ERROR. The execution of a thread terminates
when it executes a HALT or an ERROR statement.

During the execution of a Scil program, a single thread,
namely t0, starts by executing the first statement of the
program. This thread t0 is comparable with the main thread
in Java. The initial thread t0 or any subsequently created
thread in the program can create new threads by calling the
statement fork(l), where l is the label of the statement to
be executed by the newly created thread of the program.

A Scil program gets input using the expression input().
Observe that input() captures the various functions through
which a program in Java may receive data from its external
environment.

A program may have two kinds of variables: variables
local to a thread (denoted by lv) and variables shared among
threads (denoted by v). Each thread maintains a local copy
of the local variables. A program supports mutual exclusion
by using locks: lock(v) denotes the acquisition of the lock v

and unlock(v) denotes the release of the lock v. A thread
suspends its execution if it tries to acquire a lock which is
already acquired by another thread. Normal execution of

scheduler()
Tenabled = {t0}; tcurrent = null;
pct0 = the label of the first statement;
while (Tenabled 6= ∅)

tcurrent =choose next thread(Tenabled);
s =statement at(pctcurrent

);
execute concrete(, s);
Tenabled = set of enabled threads;

if there is an active thread
print “Found deadlock”;

Figure 2: Default Scheduler for Scil

P ::=Stmt∗

Stmt ::= l : S
S ::= v ← lv | lv ← v | lv ← e | if p goto l′

| fork(l) | lock(v) | unlock(v) | HALT | ERROR
e ::= c | lv op lv | input()

where op ∈ {+,−, /, ∗, %, . . .}, v is a shared variable,
lv is a variable local to a thread, c is a constant

p ::= lv = lv | lv 6= lv | lv < lv | lv ≤ lv | lv ≥ lv | lv > lv

Figure 3: Syntax of Scil

the thread resumes when the lock is released by the other
thread. Note that a given statement can have at most one
shared variable access (i.e. read, write, lock, or unlock).

The semantics of a program in the language is given us-
ing a scheduler. The scheduler runs in a loop as described
in Figure 2. We use the term schedule to refer to the se-
quence of choices of threads made by the scheduler during
an execution.

On executing a statement lock(v), a thread waits if the
lock v is already held by another thread. Otherwise, the
thread acquires the lock and continues its execution. A lock
v already held a thread t is released when t executes a state-
ment of the form unlock(v). Note that in Figure 2, the set
Tenabled represents the set of enabled threads. Initially, the
thread t0 is enabled. A thread is said to be active if it has
been created and it has not already executed a HALT or an
ERROR statement. A thread is said to be enabled if it is active
and it is not waiting to acquire a lock.

A variable pct represents the program counter of the
thread t. pct0 is initialized to the label of the first state-
ment of the program. Inside the loop, the scheduler non-
deterministically chooses a thread tcurrent from the set
Tenabled. It executes the next statement of the thread
tcurrent, where the next statement is obtained by calling
statement at(pctcurrent

). During the execution of the state-
ment the program counter pctcurrent

of the thread tcurrent

is incremented by 1 except if the statement is of the form
if p goto l′ and the predicate p in the statement evaluates
to true (in that case pct is set to l′). The execution of a
statement of the form fork(l) creates a new thread, makes
it active, and the program counter pct, where t is the newly
created thread, is initialized to l. The loop of the scheduler
terminates when the set of enabled threads Tenabled is empty.
The termination of the scheduler indicates either the normal
termination of a program execution when the set of active
threads is empty, or a deadlock state when the set of active
threads is non-empty.

4. EXECUTION MODEL
In an execution of P , an event is a tuple of the form

(t, l, m, a) representing the execution of the statement la-
beled l by the thread t. The shared memory location m is
accessed during the execution of the statement; the access
to m is a read access if a = r, a write access if a = w, a lock
access if a = l, and an unlock access if a = u. If the execu-



Figure 4: Time increases from left to right. e1 � e2,
e1 � e4, e4 � e5, e2 � e3, e3 ‖ e4, e2 ‖ e4, e3 l e4, e2 6le5,
e2 6le4, e3 4 e4, e3 4 e5, etc.

tion of the statement accesses no shared memory location,
then both m and a are ⊥. An execution of P can be seen
as a sequence of such events. We call such a sequence an
execution path. Let Ex(P ) be the set of all feasible execution
paths exhibited by the program P on all possible inputs and
all possible choices by the scheduler.

In an execution path τ ∈ Ex(P ), any two events e =
(ti, li, mi, ai) and e′ = (tj , lj , mj , aj) appearing in τ are se-
quentially related (denoted by e � e′) iff:

1. e = e′, or

2. ti = tj and e happens before e′, or

3. ti 6= tj , ti created the thread tj , e happens before tj is
created, or

4. there exists an event e′′ in τ such that e�e′′ and e′′�e′.

Thus � is a partial order relation. We say e ‖ e′ iff e 6 e′

and e′ 6 e.
In an execution path τ ∈ Ex(P ), any two events e =

(ti, li, mi, ai) and e′ = (tj , lj , mj , aj) appearing in τ are race
related (denoted by e l e′) iff:

1. ti 6= tj and e happens before e′,

2. mi = mj ,

3. e ‖ e′,

4. there exists no e1 and e2 such that e � e1, e2 � e′,
e1 l e2, and it is not the case that both e = e1 and
e′ = e2, and

5. one of the following holds:

• ai = w and aj = w,

• ai = r and aj = w,

• ai = w and aj = r,

• ai = u and aj = l.

If two events in an execution path are related by l, then
there exists an immediate race condition (data race or lock
race) between the two events. Therefore, we call l a race
relation.

Let the relation 4, called the causal relation, be the tran-
sitive closure of the relation � ∪ l. The relation 4 is a
partial order. Figure 4 gives an example of the various rela-
tions defined above.

Given two execution paths τ and τ ′ in Ex(P ), we say that
τ and τ ′ are causally equivalent, denoted by τ ≡4 τ ′, iff τ

and τ ′ have the same set of events and they are linearizations
of the same 4 relation. We use [τ ]≡4

to denote the set of
all executions in Ex that are equivalent to τ .

We define a representative set of executions REx ⊆ Ex

as the set that contains exactly one candidate from each
equivalence class [τ ]≡4

for all τ ∈ Ex. Formally, REx is a
set such that following properties hold: REx ⊆ Ex, Ex =
S

τ∈REx[τ ]≡4
, and for all τ, τ ′ ∈ REx, it is the case that

τ 6≡4 τ ′.

The following result shows that a systematic and auto-
matic exploration of each element in REx is sufficient for
testing.

Proposition 1. If a statement is reachable in a program
P for some input and schedule, then there exists a τ ∈ REx

such that the statement is executed in τ .

The proof of this proposition is straight-forward. If a
statement is reachable then there exists an execution τ in
Ex such that the executionτ executes the statement. By the
definition of ≡4 , any execution in [τ ]≡4

executes the state-
ment. Hence, the execution in REx that is equivalent to τ

executes the statement.
A key observation that guides our testing algorithm is that

if two events are sequentially related then their happening
order cannot be permuted by changing the schedule of the
threads. However, if the two events are race related, then
their happening order can be permuted by modifying the
schedule. In our efficient testing algorithm (see Section 6
and Section 7, we systematically permute or flip the race
relation between various events by generating new schedules
one by one.

The causal relation between the events in an execution
can be tracked efficiently at runtime using dynamic vec-
tor clocks (DVC) first introduced in [26]. Dynamic vector
clocks, which respect the fact that two reads can be per-
muted, extends the standard vector clocks [7] found in mes-
sage passing systems. A dynamic vector clock V : T → N,
where T is the set of threads that are present in the exe-
cution. We call such a map a dynamic vector clock (DVC)
because its partiality reflects the intuition that threads are
dynamically created and destroyed. To simplify the exposi-
tion and the implementation, we assume that each DVC V

is a total map, where V (t) = 0 whenever V is not defined
on thread t.

We associate a DVC with every thread t and denote it by
Vt. Moreover, we associate two DVCs V a

m and V w
m with every

shared memory m; we call the former access DVC and the
latter write DVC. For DVCs V and V ′, we say that V ≤ V ′

if and only if V (t) ≤ V ′(t) for all t ∈ T . We say that V 6= V ′

if and only if V 6≤ V ′ and V ′ 6≤ V . max{V, V ′} is the DVC
with max{V, V ′}(t) = max{V (t), V ′(t)} for each t ∈ T .

At the beginning of an execution, all vector clocks associ-
ated with threads and memory locations are empty. When-
ever a thread t with current DVC Vt processes event e, the
following algorithm A is executed:

1. If e involves the read. write, locking, or unlocking of
a shared memory location m, then Vt(t)← Vt(t) + 1.

2. If ek
i is a read of m then
Vt ← max{Vt, V

w
m }

V a
m ← max{V a

m, Vt}

3. If ek
i is a write, locking, or unlocking of m then

V w
m ← V a

m ← Vt ← max{V a
m, Vt}

4. If e is the execution of the statement of the form fork(l)
and if t′ is the newly created thread then

Vt′ ← Vt

Vt(t)← Vt(t) + 1
Vt′(t

′)← Vt′(t
′) + 1

We can associate a DVC with every event e, denoted by Ve

as follows. If e is executed by t and if V Ct is the vector
clock of t just after the event e, then V Ce = V Ct. If e is an



// input: P is the program to test
run jCUTE(P )

completed=false; I = path c = branch hist=[ ];
while not completed

(I,path c,branch hist,completed)
= scheduler(I,path c,branch hist);

Figure 5: Simple Algorithm

event of thread t, then the event in thread t that happened
immediately before e is denoted by prev(e).

In an execution, if we update the DVCs according to A,
then the following theorems [26] hold:

Theorem 2. For any two events e and e′, e 4 e′ iff Ve ≤
Ve′ .

Theorem 3. If Ve 6= Vprev(e′) and Ve ≤ Ve′ , then e l e′,
i.e. e and e′ are in immediate race.

In order to simplify the presentation of the algorithm, we
first present a simple algorithm to systematically explore all
execution paths in Ex(P ). However, in general, the num-
ber of execution paths in Ex(P ) is exponentially larger than
that in REx(P ). In Section 6 and Section 7, we will refine
the algorithm to avoid exploring almost all paths that are
equivalent under the causal equivalence relation we defined
above.

5. SIMPLE ALGORITHM
Our algorithms interpret programs in Scil. This is to

simplify the description. However, note that the implemen-
tation of our algorithm for Java uses bytecode instrumen-
tation and then executes the instrumented bytecode in the
normal way.

Given a program P , our simple algorithm explores all ex-
ecution paths in Ex(P ) (i.e., all feasible execution paths ex-
hibited by P on all possible inputs and all possible choices
by the scheduler). This is done by repeatedly executing
P both symbolically and concretely on different inputs and
schedules, each of which lead the program along a different
execution path. At the end of each execution of P , our algo-
rithm either computes a new schedule or a new input, which
is used in the next execution of P . A new input is gener-
ated by solving constraints. To generate a new schedule, our
algorithm picks a scheduler choice recorded during the ex-
ecution and generates a new schedule where the particular
thread chosen in the scheduler choice is postponed.

Our goal in describing the simple algorithm is to famil-
iarize the readers with the various data structures that we
use consistently in our algorithms. These data structures
keep track of constraints, schedules, events, inputs, etc. in
an execution and between executions. The data structures
that the algorithm maintains between executions to pass the
inputs and schedules computed in one execution of the pro-
gram to the next execution are as follows: a logical input
map I which stores the computed input values (see [25]),
a sequences path c which records the sequence of sched-
uler choices made and symbolic constraints computed dur-
ing an execution, and a sequence branch hist which keep
track of the branches taken in an execution. The sequence
branch hist is only used by the concolic execution. Each el-
ement of the sequence path c represents an execution point
in the current execution. Such an element has the following
fields:

• constraint : stores the constraint generated on the ex-
ecution of a conditional statement at the execution

point represented by the element. At the end of an ex-
ecution, the conjunction of all the constraints stored in
the elements of path c gives the path constraint for the
given execution path. (Note that in [25], each element
of path c was used to store only a constraint since in
that work we were not concerned about concurrency).

• event : stores the event (as defined in Section 3) that
is generated at the execution point represented by the
element.

• postponed : contains a set of threads that cannot be
executed in the next execution of P at the execution
point represented by the element.

• enabled : contains a set of threads that are not enabled
at the execution point represented by the element.

• hasRace: set to true if the event stored in the field
event has an immediate race with some other future
event in the execution path. The simple algorithm
does not use this field; the field will be used in the
efficient algorithm described in Section 6.

For each element of path c, either the field constraint is set
to a proper value or the the element’s event, postponed, and
isRace fields are set to proper values. The fields constraint,
enabled, and isRace are only used at the end of an execution
to generate a new schedule or a new input; the values of
these fields are not used between executions of P . If the
event e is stored in the field event, then we will use the term
postponed set of the event e to refer to the set stored in the
field postponed.

The psuedo-code for our algorithm is in Figure 5. Before
starting the loop which repeatedly executes P , the algo-
rithm initializes I to an empty map (see [25] for details),
and both path c and branch hist to empty sequences. The
simple scheduler, like the default scheduler in Figure 2, first
initializes Tenabled to the set of enabled threads (i.e. {t0})
and the program counter pct0 is initialized to the label of
the first statement of the program. In addition, the simple
scheduler also initializes the global counter variable i to 0.
At any point in an execution, i contains the sum of the num-
ber of statements executed thus far, as well as the number of
conditional statements executed. The input to the program
P is also initialized using the logical input map I (see [25]
for details). In the function choose next thread, the sched-
uler picks the same thread as the previous execution as long
as i is less than the number of elements of path c. This en-
sures that the current execution follows the same schedule
as the previous execution as long as i is less than the length
of path c. The sequence path c is truncated appropriately at
the end of the previous execution to perform a depth first
search of the execution paths in Ex(P ). Otherwise, if i is
greater than or equal to the number of elements in path c,
the scheduler selects the smallest indexed thread that it is
enabled.

The function nextEvent takes a thread t as an argu-
ment and returns the event that will happen if the thread
t executes next. Specifically, if t accesses the shared
memory location m while executing its next statement
(i.e. statement at(pct)) and the access type is a, then
nextEvent(t) = (t, pct, m, a). The scheduler determines the
next statement, say s, to be executed by tcurrent by calling
the function statement at(tcurrent) . Then tcurrent executes
the statement s concolically, that is both concretely and
symbolically in a cooperative way. Concolic execution (see



scheduler(I,path c,branch hist)
Tenabled = {t0}; tcurrent = null; i = 0;
pct0

= the label of the first statement
initialize input variables using I;
while (Tenabled 6= ∅)

tcurrent = choose next thread(Tenabled, i);
path c[i].event = nextEvent(tcurrent);
path c[i].enabled = Tenabled;
i = i + 1;
s =statement at(pctcurrent

);
(i,path c,branch hist)

= execute concolic(tcurrent, s, i,path c,branch hist);
Tenabled = set of enabled threads;

if there is an active thread
print “Found deadlock”;

return compute next input and schedule(i,I,path c,branch hist);

choose next thread(Tenabled, i)
if i < |path c|

// schedule the thread as in the previous execution
(t, l, m, a) = path c[i].event;
return t;

else

return smallest indexed thread from Tenabled;

Figure 6: Simple Testing Scheduler

compute next input and schedule(i,I,path c,branch hist)
for (j = i− 1 ; j ≥ 0 ; j = j − 1)

if path c[j].event has proper value
// compute a new schedule
if |path c[j].enabled | > |path c[j].postponed| + 1

(t, l, m, a) = path c[j].event;
path c[j].postponed = path c[j].postponed ∪{t};
t = smallest indexed thread in

path c[j].enabled \ path c[j].postponed;
path c[j].event = (t, l, m, a) ;
return (I,path c[0 . . . j],branch hist[0 . . . j],false);

else

// compute a new input
if (not branch hist[j].done)

branch hist[j].branch=¬branch hist[j].branch;
if (∃I′ that satisfies neg last(path c[0 . . . j]))

return (I′,path c[0 . . . j],branch hist[0 . . . j],false);
return ([ ],[ ],[ ],true);

Figure 7: Compute Next Schedule or Input

Section 5.2) updates both the concrete and the symbolic
state of the program. It also updates the elements path c[i]
and branch hist [i] and increments i by 1, if the statement s

is a conditional statement. After the concolic execution of
the statement s, the set of enabled threads Tenabled is up-
dated appropriately. If the set of enabled threads is empty
and there is no active thread, the loop terminates indicat-
ing the termination of the program execution. Otherwise, if
the set of enabled threads is empty and there is at least one
active thread, then a warning is given that there is a dead-
lock in the program. After the termination of the program
execution, a schedule and an input for the next execution
in our testing approach is computed using the procedure
compute next input and schedule described in section 5.1.

5.1 Computing Next Schedule and Input
The function compute next input and schedule (see Fig-

ure 7) computes the schedule and the input that will direct
the next program execution along an alternative execution
path. It loops over the elements of path c from the end, until
a new schedule or a new input is generated. If the selected
element inside the loop contains a scheduler choice and if
not all scheduler choices at the execution point denoted by
the element have been exercised, then a new schedule is gen-
erated. Specifically, if the thread t executed at the execution
point denoted by the element path c[j] and if t can be added
to path c[j].postponed without making path c[j].postponed

equal to the set of enabled threads at that point of exe-
cution, then t is added to the set path c[j].postponed. More-
over, the smallest indexed thread which is in the set of en-
abled threads at that point of execution and not in the set
path c[j].postponed is chosen and assigned to the event de-
noted by path c[j].event. This ensures that in the next exe-
cution at the same execution point the scheduler will pick a
thread that is enabled and that is not in path c[j].postponed.
Thus in subsequent executions all the threads that are en-
abled at the execution point will get scheduled one by one.
If the selected element contains a constraint and if it has not
been negated previously, then constraint solving is invoked
to generate a new input (see [25]).

5.2 Concolic Execution
Concolic execution [14,25] will be important for efficiently

testing concurrent programs: the availability of concrete val-
ues for all memory locations in addition to the symbolic
values helps us to accurately determine the race relation
at runtime. The computation of the race relation is done
by maintaining multithreaded vector clocks as described in
Section 4. Note that to compute the race relation in the
symbolic execution, we have to determine whether two sym-
bolic memory locations are aliased. This can be infeasible
in many cases as exact alias and pointer analysis is gen-
erally not possible if the programming language supports
pointer arithmetic or supports arrays. However, the sym-
bolic execution part of the concolic execution helps us per-
form symbolic execution as much as possible. This symbolic
execution combined with constraint solving is essential to
generate data inputs for the next execution.

The details of the procedure execute concolic can be
found in [25]. A brief pseudo-code of the procedure is given
in Figure 8. Concolic execution maintains two states at
the runtime: a concrete state S mapping memory locations
to concrete values and a symbolic state mapping memory
locations to symbolic expressions over symbolic input val-
ues. During concolic execution, every statement is executed
concretely using the function evaluate concrete and symbol-
ically using the function execute symbolic (see [25] for de-
tails). In addition to performing symbolic execution, the
function execute symbolic simplifies any complex (e.g. non-
linear) symbolic expressions in the symbolic state by replac-
ing some symbolic values in the expression by their corre-
sponding concrete values.

Each run (except the first) is executed with the help of
a record of the conditional statements (which is the list
branch hist) executed in the previous run. For each condi-
tional, the algorithm records a branch value, which is either
true (the then branch is taken) or false (the else branch is
taken), as well as a done value, which is false when only one
branch of the conditional has executed in prior runs (with
the same history up to the branch point) and is true oth-
erwise. The information associated with each conditional
statement of the last execution path is stored in the array
branch hist, kept in a file between executions.

6. EFFICIENT ALGORITHM
We now provide an efficient algorithm which explores a

much smaller superset of the execution paths in REx(P ).
The algorithm accomplishes this by computing race condi-
tions between different events in an execution. Based on
these race conditions, we generate other schedules that flip
the race conditions, to provide a depth first search of all
permutations of the race conditions in the execution path.
More specifically, let e1e2 . . . en be an execution path of a



execute concolic(t, s, i,path c,branch hist)
match(s)

case (lv ← e):
m =evaluate concrete(&lv); val =evaluate concrete(e);
execute symbolic(m, e);
S = S[m 7→ val]; pct = pct + 1;

.

.

.
// skipping other cases

.

.

.
case (if p goto l′):

b =evaluate concrete(p);
c =evaluate symbolic predicate(p, b);
if (b)

path c[i].hasConstraint = true;
path c[i].constraint= c; pct = l′;
cmp n set branch hist(true,i,branch hist);

else

path c[i].constraint=neg(c); pct = pct + 1;
cmp n set branch hist(false,i,branch hist);

i = i + 1;
if (s == ERROR) print “Found Error”;
return (i,path c,branch hist);

Figure 8: Concolic Execution.

program and let ei and ej , where i < j, are related by the
immediate race relation (i.e. ei l ej). In our efficient testing
algorithm, we mark the event ei (by setting true the field
isRace of the element in path c corresponding to the event
ei) to indicate that it has race with some future event and
the thread of ei must be postponed at that execution point
in some future execution so that the race relation between
ei and ej gets flipped. While computing the next input and
schedule at the end of the execution, if we choose to back-
track at the event ei, then we generate a schedule for the
next execution where we continue the execution up to the
prefix e1 . . . ei−1; however, after that we postpone the exe-
cution of the thread of ei as much as possible. This ensures
that the race between ei and ej gets flipped or permuted
(i.e. ej l ei) in the next execution and we get an execution
path of the form e1 . . . ei−1ei+1 . . . eje

′

j+1 . . . ei . . . e′n′ . For
example, if t1 : x = 1, t2 : x = 2 is an execution path, then
there is a race condition in the accesses of the shared vari-
able x. We generate a schedule such that the next execution
is t2 : x = 2, t1 : x = 1, i.e., the accesses to x are permuted.

In the efficient algorithm, we modify the simple scheduler
described in Figure 6 by the one in Figure 9. (We label
a statement with M: if the statement is modified or added
to the pseudo-codes given in Section 5.) Specifically, we as-
sume that the scheduler maintains dynamic vector clocks for
each thread and two dynamic vector clocks for each shared
memory location. The dynamic vector clocks are updated
using the procedure described in Section 4. We omit the dy-
namic vector clock update procedure in the pseudo-code of
the efficient algorithm to keep the description simple. The
scheduler calls the function check and set race before ex-
ecuting a statement. The function check and set race de-
termines if the current event has a race with any past event
e. If such a race exists, then the hasRace field of the ele-
ment of path c corresponding to the event e is set to true –
assuming that the race condition wasn’t already flipped in
a previous execution. The procedure choose next thread

is modified so that a postponed thread’s execution gets de-
layed as much as possible. The computation of the next
input and schedule is done using the modified procedure
compute next input and schedule (see Figure 10). In this
procedure, a new schedule, which postpones the thread as-
sociated with an event, is generated if the event has a race

scheduler(I,path c,branch hist)
Tenabled = {t0}; tcurrent = null; i = 0;
pct0

= the label of the first statement
initialize input variables using I;
while (Tenabled 6= ∅)

tcurrent = choose next thread(Tenabled, i);
path c[i].event = nextEvent(tcurrent);
path c[i].enabled = Tenabled;

M: path c = check and set race(i,path c);
i = i + 1;
s =statement at(pctcurrent

);
(i,path c,branch hist)

= execute concolic(tcurrent, s, i,path c,branch hist);
Tenabled = set of enabled threads;

if there is an active thread
print “Found deadlock”;

return compute next input and schedule(i,I,path c,branch hist);

choose next thread(Tenabled, i)
if i < |path c|

// schedule the thread as in the previous execution
(t, l, m, a) = path c[i].event;
return t;

else

M: if tcurrent is enabled
M: return tcurrent;
M: else

return smallest indexed thread from Tenabled;

check and set race(i,path c)
∀j ∈ [0, i) such that path c[j].event l path c[i].event

if t not in path c[j].postponed

if e is a read or write event
print “Warning: data race found”
path c[j].hasRace = true;

else

// path c[j].event is an unlock event
let j′ be such that path c[j′].event is the lock event
matching the unlock event path c[j].event

path c[j′].hasRace = true;
return path c;

Figure 9: Efficient Testing Scheduler

compute next input and schedule(i,I,path c,branch hist)
for (j = i− 1 ; j ≥ 0 ; j = j − 1)

if path c[j].event has proper value
// compute a new schedule
if |path c[j].enabled | > |path c[j].postponed| + 1

M: if path c.isRace

M: path c[j].isRace = false;
(t, l, m, a) = path c[j].event;
path c[j].postponed = path c[j].postponed ∪{t};
t = smallest indexed thread in

path c[j].enabled \ path c[j].postponed;
path c[j].event = (t, l, m, a) ;
return (I,path c[0 . . . j],branch hist[0 . . . j],false);

else

// compute a new input
if (not branch hist[j].done)

branch hist[j].branch=¬branch hist[j].branch;
if (∃I′ that satisfies neg last(path c[0 . . . j]))

return (I′,path c[0 . . . j],branch hist[0 . . . j],false);
return ([ ],[ ],[ ],true);

Figure 10: Compute Next Schedule or Input for Ef-
ficient Testing

with a future event. Note that in the simple scheduler, a
thread is postponed at an execution point even if the corre-
sponding event has no race with any future event.

Soundness of our algorithm is trivial. A bug reported by
our algorithm is an actual bug because our algorithm pro-
vides a concrete input and schedule on which the program
exhibits the bug. Moreover, our algorithm can be complete
in some cases.

Proposition 4. (Completeness) During testing a pro-
gram with our efficient algorithm, if the following conditions
hold:

• The algorithm terminates.



scheduler(I,path c,branch hist)
Tenabled = {t0}; tcurrent = null; i = 0;
pct0

= the label of the first statement
M: sleep = {}; postponed = {};

initialize input variables using I;
while (Tenabled 6= ∅)

M: postponed = postponed ∪ path c[i].postponed;
M: sleep = {nextEvent(t) | t ∈ postponed};
M: tcurrent = smallest indexed thread from Tenabled\ postponed;

path c[i].event = nextEvent(tcurrent);
path c[i].enabled = Tenabled;
path c = check and set race(i,path c);

M: path c[i].postponed =postponed;
M: ∀e ∈ sleep if el path c[i].event

M: let (t, l, m, a) = e in postponed =postponed \t;
i = i + 1;
s =statement at(pctcurrent

);
(i,path c,branch hist)

= execute concolic(tcurrent, s, i,path c,branch hist);
Tenabled = set of enabled threads;

if there is an active thread
print “Found deadlock”;

return compute next input and schedule(i,I,path c,branch hist);

Figure 11: Optimized Testing Scheduler

• The algorithm makes no approximation during concolic
execution and it is able to solve any constraint which
is satisfiable.

then our algorithm has executed all executions in REx and
we have hit all reachable statements of the program.

The proof of this proposition, while fairly intuitive, is be-
yond the scope of this paper.

7. FURTHER OPTIMIZATION
The efficient algorithm improves the simple algorithm by

providing a systematic way to flip race relations between
various pairs of events. However, this may result in re-
peated flipping of the race relation between the same pair
of events, if the pair of events are not next to each other.
As an instance, for the example in the Section 6, if the next
execution path is e1 . . . ei−1ei+1 . . . eje

′

j+1 . . . ei . . . e′n′ , then
our efficient algorithm may detect that there is a race be-
tween ej and ei. As a result our algorithm would try to
flip this race once again. To avoid this, we use a tech-
nique similar to sleep sets [11]. Specifically, in the execu-
tion path e1 . . . ei−1ei+1 . . . eje

′

j+1 . . . ei . . . e′n′ , we add the
thread t, where t is the thread of the event ei, to the set
postponed of every event ei+1, . . . , ej . As a result, even if
we have detected that there is a race between ej and ei,
we would not set to true the field isRace of the element of
path c corresponding to the event ej (see the 2nd line of the
procedure check and set race). This ensures that we do
not repeatedly flip race relation between the same pair of
events. The pseudo-code of the optimized scheduler is given
in Figure 11.

8. CASE STUDIES
We have implemented our optimized testing algorithm for

Java. The tool is called jCUTE. jCUTE supports replay of
execution paths to aid the process of debugging.

We use four sets of case studies to illustrate the effec-
tiveness of jCUTE in finding potential bugs. The tool and
the code for each case study along with directions to re-
produce the bugs reported in this paper can be found at
http://osl.cs.uiuc.edu/~ksen/cute/. The experiments
were run on a 2.0 GHz Pentium M processor laptop with
1 GB RAM running Windows XP.

8.1 Java 1.4 Collection Library
We tested the thread-safe Collection framework imple-

mented as part of the java.util package of the standard

Java library provided by Sun Microsystems. A number
of data structures provided by the package java.util are
claimed as thread-safe in the Java API documentation. This
implies that the library should provide the ability to safely
manipulate multiple objects of these data structures simul-
taneously in multiple threads. No explicit locking of the
objects should be required to safely manipulate the objects.
More specifically, multiple invocation of methods on the ob-
jects of these data structures by multiple threads must be
equivalent to a sequence of serial invocation of the same
methods on the same objects by a single thread.

We chose this library as a case study primarily to evaluate
the effectiveness of our jCUTE tool. As Sun Microsystems’
Java is widely used, we did not expect to find potential bugs.
Much to our surprise, we found several previously undocu-
mented data races, deadlocks, uncaught exceptions, and an
infinite loop in the library. Note that, although the num-
ber of potential bugs is high, these bugs are all caused by
a couple of problematic design patterns used in the imple-
mentation.

Experimental Setup. The java.util provides a set of
classes implementing thread-safe Collection data struc-
tures. A few of them are ArrayList, LinkedList, Vec-
tor, HashSet, LinkedHashSet, TreeSet, HashMap, TreeMap,
etc. The Vector class is synchronized by implemen-
tation. For the other classes, one needs to call the
static functions such as Collections.synchronizedList,
Collections.synchronizedSet, etc., to get a synchronized
or thread-safe object backed by a non-synchronized object
of the class. To setup the testing process we wrote a mul-
tithreaded test driver for each such thread-safe class. The
test driver starts by creating two empty objects of the class.
The test driver also creates and starts a set of threads, where
each thread executes a different method of either of the two
objects concurrently. The invocation of the methods strictly
follows the contract provided in the Java API documenta-
tion. We created two objects because some of the methods,
such as containsAll, takes as an argument an object of the
same type. For such methods, we call the method on one
object and pass the other object as an argument. Note that
more sophisticated test drivers can be written. A simplified
skeleton of the test-driver that we used is given below:

public class MTListTest extends Thread {
List s1,s2;
public MTListTest(List s1, List s2) {

this.s1 = s1; this.s2 = s2; }

public void run() {
int c = Cute.input.Integer();
Object o1 = (Object)Cute.input.Object("java.lang.Object");
switch(c){
case 0: s1.add(o1); break;
case 1: s1.addAll(s2); break;
case 2: s1.clear(); break;
.
.} }

public static void main(String[] args) {
List s1 = Collections.synchronizedList(new LinkedList());
List s2 = Collections.synchronizedList(new LinkedList());
(new MTListTest(s1,s2)).start();
(new MTListTest(s2,s1)).start();
(new MTListTest(s1,s2)).start();
(new MTListTest(s2,s1)).start();}

}

The arguments to the different methods are provided as
input to the program. If a class is thread-safe, then there
should be no error if the test-driver is executed with any
possible interleaving of the threads and any input. How-
ever, jCUTE discovered data races, deadlocks, uncaught ex-



ceptions, and an infinite loop in these classes. Note that in
each case jCUTE found no such error if methods are invoked
in a single thread. As such the bugs detected in the Java
Collection library are concurrency related.

The summary of the results is given in the Table 1. Here
we briefly describe an infinite loop and a data race leading
to an exception that jCUTE discovered in the synchronized
LinkedList class and the synchronized ArrayList class, re-
spectively.

We present a simple scenario under which the infinite
loop happens. The test driver first creates two synchronized
linked lists by calling

List l1 = Collections.synchronizedList(new LinkedList());
List l2 = Collections.synchronizedList(new LinkedList());
l1.add(null);
l2.add(null);

The test driver then concurrently allows a new thread
to invoke l1.clear() and another new thread to invoke
l2.containsAll(l1). jCUTE discovered an interleaving of
the two threads that resulted in an infinite loop. However,
the program never goes into infinite loop if the methods are
invoked in any order by a single thread. jCUTE also pro-
vided a trace of the buggy execution. This helped us to de-
tect the cause of the bug. The cause of the bug is as follows.
The method containsAll holds the lock on l2 throughout
its execution. However, it acquires the lock on l1 whenever
it calls a method of l1. The method clear always holds
the lock on l1. In the trace, we found that the first thread
executes the statements

modCount++;
header.next = header.previous = header;

of the method l1.clear() and then there is a context
switch before the execution of the statement size=0; by the
first thread. The other thread starts executing the method
containsAll by initializing an iterator on l1 without hold-
ing a lock on l1. Since the field size of l1 is not set to 0, the
iterator assumes that l1 still has one element. The iterator
consumes the element and increments the field nextIndex

to 1. Then a context switch occurs and the first thread
sets size of l1 to 0 and completes its execution. Then the
other thread starts looping over the iterator. In each iter-
ation nextIndex is incremented. The iteration continues if
the method hasNext of the iterator returns true. Unfortu-
nately, the method hasNext performs the check nextIndex

!= size; rather than checking nextIndex < size;. Since
size is 0 and nextIndex is greater than 0, hasNext al-
ways returns true and hence the loop never terminates. The
bug can be avoided if containsAll holds lock on both l1

and l2 throughout its execution. It can also be avoided
if containsAll uses the synchronized method toArray as
in the Vector class, rather than using iterators. Moreover,
the statement nextIndex != size; should be changed to
nextIndex < size; in the method hasNext. Note that this
infinite loop should not be confused with the infinite loop in
the following wrongly coded sequential program commonly
found in the literature.

List l = new LinkedList(); l.add(l); System.out.println(l);

We next present a simple scenario under which jCUTE
found a data race leading to an uncaught exception in the
class ArrayList. The test driver first creates two synchro-
nized array lists by calling

List l1 = Collections.synchronizedList(new ArrayList());
List l2 = Collections.synchronizedList(new ArrayList());
l1.add(new Object());
l2.add(new Object());

The test driver then concurrently allows a new thread to
invoke l1.add(new Object()) and another new thread to
invoke l2.containsAll(l1). During testing, jCUTE dis-
covered data races over the fields size and modCount of
the class ArrayList. In a subsequent execution, jCUTE
permuted the events involved in a data race and dis-
covered an uncaught ConcurrentModificationException

exception. However, the program never throws the
ConcurrentModificationException exception if the meth-
ods are invoked in any order by a single thread.
Note that the Java API documentation claims that
there should be no such data race or uncaught
ConcurrentModificationException exception when we use
synchronized form of array list. jCUTE also provided a trace
of the buggy execution. This helped us to detect the cause
of the bug. It is worth mentioning that jCUTE not only
detects actual races, but also flips to see if the data race can
be fatal, i.e., that it can lead to uncaught exceptions.

8.2 NASA’s Java Pathfinder’s Case Studies
In [19], several case studies have been carried out using

Java PathFinder and Bandera. These case studies involve
several small to medium-sized multithreaded Java programs;
thus they provide a good suite to evaluate jCUTE. The pro-
grams include RemoteAgent, a Java version of a component
of an embedded spacecraft-control application, Pipeline, a
framework for implementing multithreaded staged calcula-
tions, RWVSN, Doug Lea’s framework for reader writer syn-
chronization, DEOS, a Java version of the scheduler from a
real-time executive for avionics systems, BoundedBuffer, a
Java implementation of multithreaded bounded buffer, Nest-
edMonitor, a semaphore based implementation of bounded
buffer, and ReplicatedWorkers, a parameterizable job sched-
uler. Details about these programs can be found in [19]. We
also considered a distributed sorting implementation used
in [15]. This implementation involves both concurrency and
complex data inputs.

We used jCUTE to test these programs. Since most of
these programs are designed to run in an infinite loop, we
bounded our search to a finite depth. jCUTE discovered
known concurrency related errors in RemoteAgent, DEOS,
BoundedBuffer, NestedMonitor, and the distributed sorting
implementation and seeded bugs in Pipeline, RWVSN, and
ReplicatedWorkers. The summary of the results is given in
the Table 2. In each case, we stopped at the first error. Note
the although the running time of our experiments is many
times smaller than that in [15,19], we are also using a much
faster machine.

It is worth mentioning that we tested the un-abstracted
version of these programs rather than requiring a program-
mer to manually provide abstract interpretations as in [19].
This is possible with jCUTE because jCUTE tries to explore
distinct paths of a program rather than exploring distinct
states. Obviously, this means that we cannot prove a pro-
gram correct if the program has infinite length paths. Java
PathFinder and Bandera can verify a program in such cases
if the state space of the abstracted program is finite.
8.3 Needham-Schroeder Protocol

The Needham-Schroeder public-key authentication pro-
tocol [21] aims at providing mutual authentication through
message exchanges between two parties: an initiator and
a responder ; details of the protocol can be found else-
where [21]. Lowe reported an attack against the original
protocol and also proposed a fix, called Lowe’s fix [10].

We tested a concurrent implementation of the protocol



Name Run time # of # of % Branch # of Functions # of Bugs Found
in seconds Paths Threads Coverage Tested data races/deadlocks/infinite loops/exceptions

Vector 5519 20000 5 76.38 16 1/9/0/2
ArrayList 6811 20000 5 75 16 3/9/0/3
LinkedList 4401 11523 5 82.05 15 3/3/1/1
LinkedHashSet 7303 20000 5 67.39 20 3/9/0/2
TreeSet 7333 20000 5 54.93 26 4/9/0/2
HashSet 7449 20000 5 69.56 20 19/9/0/2

Table 1: Results for testing synchronized Collection classes of JDK 1.4

Name Run time # of # of % Branch Lines # of Bugs Found
in seconds Paths Threads Coverage of Code data races/deadlocks/assertions/exceptions

BoundedBuffer 11.41 43 9 100.0 127 0/1/0/0
NestedMonitor 0.46 2 3 100.0 214 0/1/0/0
Pipeline 0.70 3 5 64.29 103 1/0/1/0
RemoteAgent 0.45 2 3 87.5 55 1/1/0/0
RWVSN 2.19 8 5 68.18 590 1/0/1/0
ReplicatedWorkers 0.34 1 5 25.93 954 0/0/1/0
DEOS 35.23 111 6 64.75 1443 0/0/1/0

Table 2: Java PathFinder’s Case Studies (un-abstracted)

using jCUTE. jCUTE found the attack in 406 iterations or
about 95 seconds of search.

We compare these results with the ones reported previ-
ously [13, 14] for the same protocol. The explicit-state C
model-checker VeriSoft [13] analyzed a concurrent imple-
mentation of the protocol with finite input domain. Verisoft
was unable to find the attack within 8 hours, evolutionary
testing (with manual tuning) found the attack after 50 min-
utes (on a somewhat slower machine). DART [14] found
the attack on a sequential implementation of the protocol
with a somewhat stronger intruder model1 in 18 minutes. In
comparison, jCUTE found the attack on a concurrent imple-
mentation of the protocol with a proper intruder model in
only 95 seconds, which is an order of magnitude faster than
the fastest previous approach. This performance difference
is due to jCUTE’s efficient algorithm that only explores dis-
tinct causal structures.

8.4 TMN Protocol
The Tatebayashi, Matsuzaki, and Newman (TMN) Pro-

tocol [30] is a protocol for distribution of a fresh symmetric
key. In this protocol when an initiator wants to communi-
cate with a responder, it uses a trusted server to obtain a
secret symmetric session key. The details of the protocol
can be found in [30].

In this protocol, an intruder can establish a parallel ses-
sion through eavesdropping and obtain the secret key [17].
We tested a concurrent implementation of the protocol us-
ing jCUTE. jCUTE found the attack in 522 iterations or
about 127 seconds of search.

9. OTHER RELATED WORK
Improving quality of concurrent programs is a challenging

area of research. A major cause for defects in multithreaded
programs is race condition. A huge body of research fo-
cuses on dynamic or static race detection [3, 5, 8, 18, 22, 23].
Race detection suffers from the problem of false warnings.
Moreover, the dynamic techniques can report all possible
race conditions only if there are good test inputs that can
achieve high code coverage. Our algorithm not only detects
races but also permutes them systematically to search if the
races can lead to some bug. Moreover, jCUTE generates
test inputs so that number of races caught is maximized.

1Note that a stronger intruder model makes it easier for the
intruder to find an attack. This in turn makes the search
space smaller resulting in faster testing time.

Bruening [1] first proposed a technique for dynamic par-
tial order reduction, called ExitBlock-RW algorithm, to sys-
tematically test multithreaded programs. They used two
sets, delayed set and enabled set, similar to the sets post-
poned and Tenabled in our algorithm, to enumerate mean-
ingful schedules by re-ordering dependent atomic blocks.
However, they assume that the program under test fol-
lows a consistent mutual-exclusion discipline using locks.
The dynamic partial order reduction technique proposed by
Carver and Lei [2] guarantees that exactly one interleav-
ing for each partial order is explored. However, the ap-
proach involves storing schedules that have not been yet
explored; this can become a memory bottleneck. More re-
cently, dynamic partial order reduction proposed by Flana-
gan and Godefroid [9] removes the memory bottleneck in [2]
at the cost of possibly exploring more than one interleav-
ing for each partial order. This technique uses dynamically
constructed persistent sets and sleep sets [11] to prune the
search space. However, the implementation in [9] considered
two read accesses to the same memory location by different
threads to be dependent. Thus for the 3-threaded program
t1 : lv1 = x; t2 : lv2 = x; t3 : if x > 0 then ERROR, the algo-
rithm described in [9] would explore six interleavings. We
remove the redundancy associated with this assumption by
using a more general notion of race and its detection using
dynamic vector clock algorithm [26]. As such for the above
example, we will explore only one interleaving. In addition
to exact race detection, we propose a technique to flip these
races by combining techniques drawing from delayed sets [1],
persistent/sleeps sets [9,11]. Note that none of the previous
descriptions of the above dynamic partial order reduction
techniques have handled programs which have inputs.

In a similar independent work [27], Siegel et al. uses a
combination of symbolic execution and static partial order
reduction to check if a parallel numerical program is equiv-
alent to a simpler sequential version of the program. Thus
this work can also be seen as a way of combining symbolic
execution with partial order reduction based model check-
ing techniques for the purpose of testing parallel programs.
However, their main emphasis is in symbolic execution of
numerical programs with floating points, rather than pro-
grams with pointers and data-structures. Therefore, static
partial order reduction proves effective in their approach.

Model checking tools [4,6,29] based on static analysis have
been developed, which can detect bugs in concurrent pro-



grams. These tools employ partial order reduction tech-
niques to reduce search space. The partial order reduction
depends on detection of thread-local memory locations and
patterns of lock acquisition and release.

10. CONCLUSION
We presented an efficient algorithm for testing multi-

threaded programs. An important aspect of our algorithm is
that we treat symbolic constraint solving and race-flipping
uniformly in our algorithm. In a given execution, we ei-
ther do constraint solving or race-flipping. This helps us to
test concurrent programs in a single go. A pure symbolic
execution based testing algorithm for concurrent programs
may end up exploring redundant execution paths having the
same partial order. This is because optimal partial order re-
duction requires accurate knowledge of dependency relation;
such knowledge may not be computable due to inaccuracies
of alias analysis during symbolic execution. On the other
hand, a pure concrete execution based testing algorithm for
concurrent programs requires the exploration of all partial
orders for all possible inputs. This may not scale up if the
domain of inputs is large. Our algorithm addresses the limi-
tations of both these approaches by combining symbolic and
concrete execution. The concrete execution helps to resolve
aliases exactly at runtime. As a result we get the exact de-
pendency or causal relation among the events. The symbolic
execution helps to generate a small set of inputs from a large
domain of inputs through constraint solving. Therefore, we
believe that concolic execution combined with race flipping
is an attractive technique to test concurrent programs.
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