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Abstract 

Background: Increased systemic and local inflammation play a vital role in the pathophysiology of acute coronary 
syndrome. This study aimed to assess the usefulness of selected machine learning methods and hematological mark-
ers of inflammation in predicting short-term outcomes of acute coronary syndrome (ACS).

Methods: We analyzed the predictive importance of laboratory and clinical features in 6769 hospitalizations of 
patients with ACS. Two binary classifications were considered: significant coronary lesion (SCL) or lack of SCL, and in-
hospital death or survival. SCL was observed in 73% of patients. In-hospital mortality was observed in 1.4% of patients 
and it was higher in the case of patients with SCL. Ensembles of decision trees and decision rule models were trained 
to predict these classifications.

Results: The best performing model for in-hospital mortality was based on the dominance-based rough set 
approach and the full set of laboratory as well as clinical features. This model achieved 81 ± 2.4% sensitivity and 
81.1 ± 0.5% specificity in the detection of in-hospital mortality. The models trained for SCL performed consider-
ably worse. The best performing model for detecting SCL achieved 56.9 ± 0.2% sensitivity and 66.9 ± 0.2% specific-
ity. Dominance rough set approach classifier operating on the full set of clinical and laboratory features identifies 
presence or absence of diabetes, systolic and diastolic blood pressure and prothrombin time as having the highest 
confirmation measures (best predictive value) in the detection of in-hospital mortality. When we used the limited set 
of variables, neutrophil count, age, systolic and diastolic pressure and heart rate (taken at admission) achieved the 
high feature importance scores (provided by the gradient boosted trees classifier) as well as the positive confirmation 
measures (provided by the dominance-based rough set approach classifier).

Conclusions: Machine learned models can rely on the association between the elevated inflammatory markers and 
the short-term ACS outcomes to provide accurate predictions. Moreover, such models can help assess the usefulness 
of laboratory and clinical features in predicting the in-hospital mortality of ACS patients.

Keywords: Acute coronary syndrome, Machine learning, Risk assessment, Biomarkers, Inflammation, Outcomes 
research

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/
publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Open Access

Journal of 
Translational Medicine

*Correspondence:  konrad.pieszko@gmail.com 
1 Faculty of Medicine and Health Sciences, University of Zielona Gora, 
Zielona Gora, Poland
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-5514-7750
http://orcid.org/0000-0001-5660-1268
http://orcid.org/0000-0003-0353-3470
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12967-018-1702-5&domain=pdf


Page 2 of 12Pieszko et al. J Transl Med          (2018) 16:334 

Background
Many studies have shown that increased systemic and 
local inflammation play a key role in the pathophysiology 
of ACS. Hematological and inflammatory markers may 
have a meaningful predictive value for ACS outcomes [1]. 
Hence, readily available and inexpensive markers such as 
neutrophil count, neutrophil to lymphocyte ratio (NLR), 
red cell distribution width (RDW), platelet to lymphocyte 
ratio (PLR), mean platelet volume (MPV), and platelet 
distribution width (PDW) have recently attracted more 
attention and encouraged further research. Indeed, these 
indices may provide information on ACS pathophysiol-
ogy and may be useful in risk stratification and its opti-
mal management [2, 3]. Also, many studies have pointed 
at their prognostic value in all-cause mortality, major 
cardiovascular events, stent thrombosis, arrhythmias, 
and myocardial perfusion disorders concerning acute 
myocardial infarction and unstable angina [4]. The most 
recent studies have indicated that combining these mark-
ers with the Global Registry of Acute Coronary Events 
(GRACE), SYNTAX, and Thrombolysis in Myocardial 
Infarction (TIMI) scores improves risk stratification and 
ACS patients’ diagnostics [5–9].

With the growing availability of medical data, machine 
learning methods offer a promising extension of clas-
sical statistical analysis [10]. In this study, we have used 
machine learning methods and investigated the useful-
ness of the hematological indices presented above in 
predicting SCL and in-hospital mortality. We also dem-
onstrated that machine learning methods can be a valu-
able supplement to the traditional methods of inferential 
statistics.

Methods
We analyzed the medical records of patients with ACS 
admitted to the local cardiology unit between January 
2012 and June 2017. The analyzed group comprised of 
patients who had their diagnosis reevaluated and con-
firmed by a cardiologist according to ESC guidelines [11]. 
The data concerning the 6769 hospitalizations (5678 indi-
vidual patients) was obtained retrospectively from elec-
tronic medical records.

Two sets of features were considered in this study: a 
full set and a simplified set. Table 1 presents the variables 
used in both sets. The full set included 53 nominal and 
numeric features. All the variables were obtained from 
electronic medical records directly. Some information 
including descriptions of electrocardiograms or elements 
of physical examination was stored in our records as an 
unstructured text. Although some studies on ACS out-
comes also set out to investigate the possibility of using 
the features extracted from unstructured reports [12], we 

decided to include only the features that were saved in 
our records directly to avoid additional bias.

The simplified set consisted of 23 numerical features. 
This set was chosen on the basis of its potential applica-
tion and the potential predictive value for ACS outcomes. 
We favored the features that did not require human inter-
pretation or analysis. In this way, we tried to investigate 
the possibility of creating a classifier that could be built 
into medical records software and automatically identify 
the patients with a high risk of an unfavorable outcome.

The inclusion criteria for the study were as follows:

1. The patient was admitted to the cardiology depart-
ment on an emergency basis.

2. The patient had a discharge diagnosis of ACS includ-
ing STEMI, NSTE-ACS or unstable angina.

3. The patient had coronary angiography within 96 h of 
admission.

4. If the same patient was admitted multiple times in 
the analyzed period, each admission was recorded 
independently but the information about prior PCI, 
CABG or MI was retained.

Patients who were assessed to qualify for revasculariza-
tion based on coronary angiogram and, therefore, under-
went PCI or were referred to CABG were considered to 
have had significant coronary lesion (SCL) (n = 4943, 73% 
of cases), while patients who did not undergo revasculari-
zation were considered to have no sCAD (n = 1826, 27% 
of cases). Patients who did not consent for invasive man-
agement were excluded from the study.

In-hospital death was observed in 1.4% of cases 
(n = 97). Descriptive statistics were performed using the 
STATISTICA software. First, the normality of distribu-
tion was tested using the Shapiro–Wilk Test. The uni-
variate two-tailed Mann–Whitney-U test and frequency 
tables were used to explore the differences between these 
two groups.

As a part of our study, we used machine learning meth-
ods and investigated their performance in predicting 
the presence of SCL and in-hospital mortality. However, 
we were not only interested in their predictive perfor-
mance. The secondary aim of our study was to identify 
the extent to which the selected features affected the pre-
diction accuracy. In particular, we wanted to investigate 
the predictive value of hematological indices and explore 
the possibility of creating a model based on them. That is 
why, the interpretability of the constructed classification 
model and its ability to identify significant features were 
of crucial relevance.

We considered three different classification algorithms: 
logistic regression, gradient boosted trees (XGBoost) 
and the Dominance-based Rough Set Balanced Rule 
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Ensemble (DRSA-BRE). The logistic regression model 
was included in this study as a baseline classifier. Gradi-
ent boosted trees, by contrast, were used as a well-known 
and well-performing off-the-shelf classifier [13]. DRSA-
BRE was explicitly included in the study due to the class 
imbalance in the dataset (i.e. the disproportion between 
the number of cases in classes) observed in both ACS 
problems. More precisely, in the DRSA-BRE undersam-
pling neighborhood balanced bagging method [14] was 
applied to address the class imbalance problem. This type 
of classifier has recently been successfully applied to the 
Diabetic Retinopathy Assessment [15]. Additionally, to 
improve the predictive performance of XGBoost on the 
class-imbalanced problems, we undersampled the major-
ity class in training sets.

When using logistic regression and XGBoost classifi-
ers, the missing values were filled in with the mean values 
from all the observations in the test set. Moreover, both 
logistic regression and XGBoost were trained only on the 
simplified set of features. Both of these classifiers were 
not able to handle nominal values directly and thus we 
decided not to transform them. The DRSA-BRE classifier 

was trained on both the full and simplified sets of fea-
tures. The missing values were handled directly in DRSA-
BRE by the VC-DomLEM [16, 17] algorithm, which was 
used as a component classifier in the constructed bagging 
ensemble.

As explained above, one of the aims of our study was 
to assess the predictive importance of the analyzed sets 
of features on the short-term ACS outcomes. Our study 
showed that the XGBoost classifier provided the feature 
importance scores which reflected how valuable each fea-
ture was during the model construction. For the DRSA-
BRE classifier the attribute relevance was evaluated by a 
confirmation measure (the degree to which the presence 
of an attribute in the hypothesis of a rule indicates accu-
rate prediction). The higher the value of the confirmation 
measure the more important the attribute was [18, 19].

The model selection, optimization and fitting of the 
logistic regression and XGBoost models were performed 
using the scikit-learn [20] and XGboost [13] software 
packages. DRSA-BRE analysis was performed using the 
jRS library and jMAF software package [21] which are 
available for download at http://www.cs.put.pozna n.pl/

Table 1 Features used by XGboost and DRSA-BRE classifiers

XGboost DRSA-BRA (simplified set of features) DRSA-BRE (full set of features)

1. Diastolic blood pressure
2. Systolic blood pressure
3. Troponin elevation ratio
4. Age
5. Heart rate
6. Mean platelet volume
7. Neutrophil to lymphocyte ratio
8. Weight
9. Creatinine level
10. Eosinophil count
11. Red cell distribution width
12. Height
13. Hematocrit
14. Body mass index
15. Platelet count
16. HDL level
17. Fibrinogen level
18. Lymphocyte count
19. Platelet to lymphocyte ratio
20. LDL level

1. All features from simplified set AND
2. Diabetes status
    Impaired glucose tolerance
    Type 1 diabetes
    Type 2 diabetes
3. Smoking status
    Former smoker
    Smoker
    Non-smoker
4. Mean cell volume
5. Triglycerides level
6. Sodium level
7. Potassium level
8. TSH level
9. Total cholesterol level
10. Urea level
11. Monocyte count
12. Hemoglobin level
13. Sodium level
14. Aspartate aminotransferase level
15. Alanine aminotransferase level
16. History of pulmonary disease
17. Hypertension
18. History of previous stroke
19. Basophile count
20. History of renal failure
21. Activated partial thromboplastin time
22. History of heart failure
23. Previous coronary artery bypass grafting
24. Sex
25. History of myocardial infarction
26. History of coronary heart disease
27. Family history of coronary heart disease
28. History of percutaneous coronary interventions
29. History of peripheral artery disease

http://www.cs.put.poznan.pl/jblaszczynski/Site/jRS.html
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jblas zczyn ski/Site/jRS.html. The plots and visualiza-
tions were generated using the matplotlib [22] software 
package.

We focused our analysis on four performance metrics: 
sensitivity, specificity, G-mean and AUC. Sensitivity is 
defined as a ratio of the predicted genuine positive cases 
to all positive cases. Specificity is defined as a ratio of the 
predicted genuine negative cases to all negative cases. 
Receiver operating characteristics (ROC) curve analysis 
is a popular tool to analyze classifier performance. More 
precisely, classifier performance is reflected by the area 
under the ROC curve (so-called the AUC measure) [23].

Interestingly, however, some researchers have shown 
that AUC analysis has limitations. For example, in the 
case of highly skewed class distribution (i.e. class imbal-
anced problems) it may lead to an overoptimistic esti-
mate of classifier performance [24]. That is why, we also 
verified simpler measures which are useful for the clas-
sifiers providing a purely deterministic prediction (see 
discussions on the applicability of ROC analysis in [25]). 
This measure is called G-mean and it is defined as a geo-
metric mean of sensitivity and specificity [26].

Results
The basic descriptive statistics for the continuous 
numeric variables together with the results of the Mann–
Whitney-U test are presented in Table 2. Given that the 
distributions of variables were not normal, median and 
inter-quartile ranges (IQR) were used as measures of 
central tendency. The categorical variables are summa-
rized in Table  3. The inflammatory markers including 
CRP, neutrophil count, monocyte count and RDW were 
linked to both SCL and in-hospital mortality in univari-
ate statistics. However, NLR showed a link for in-hospital 
mortality only. Indeed, these results supported our initial 
idea of applying the above variables to the construction 
of machine-learned models.

The predictive performance of logistic regression, 
XGBoost, and the DRSA-BRE classifiers were assessed in 
a computational experiment. The parameters of all clas-
sifiers were based on the training data only. The classi-
fication performance was verified in a stratified fivefold 
cross-validation which was repeated ten times to improve 
the repeatability of the obtained results. Table 4 provides 
the summary of their predictive performance.

The results presented in Table 4 indicate a remarkably 
better performance of classifiers in detecting in-hospital 
mortality than SCL. DRSA-BRE and XGBoost trained 
with the majority class undersampling performed equally 
well both in the case of in-hospital mortality and SCL. 
Logistic regression was undoubtedly the worst classi-
fier of all. Considering the characteristics of the com-
pared classifiers, we focused our attention on sensitivity 

and specificity measures. G-mean was measured during 
experiments with DRSA-BRE and was calculated after-
wards for logistic regression and XGBoost. AUC, by 
contrast, was measured only for logistic regression and 
XGBoost and was approximated for DRSA-BRE based 
on the measured sensitivity and specificity. DRSA-BRE 
was also able to handle nominal attributes directly [19]. 
Hence, the experiments with the full set of features were 
carried out only with DRSA-BRE.

These experiments, nevertheless, indicated that the 
full set of features did not contribute to a high increase 
of predictive performance with respect to the simplified 
set of features. The best result for in-hospital mortal-
ity was achieved by DRSA-BRE: 81.03 ± 2.4% sensitivity, 
and 81.06 ± 0.5% specificity. The best result for SCL was 
also achieved by DRSA-BRE: 56.91 ± 0.2% sensitivity, and 
66.94 ± 0.2% specificity. These results were obtained with 
the full set of features. When the simplified set of features 
was used, DRSA-BRE and XGBoost achieved a compara-
ble predictive performance. The comparison of predic-
tive performance measured by G-mean and AUC leads 
to similar conclusions. Following the obtained results, we 
focused our further analysis on the detection of in-hospi-
tal mortality since the prediction performance of consid-
ered classifiers for SCL was not satisfactory.

Figure  1a, b presents ROC curves for evaluated clas-
sifiers. The Xgboost algorithm was superior in terms 
of sensitivity while logistic regression achieved higher 
specificity scores, which can also be observed in the ROC 
curves. These differences, however, might not be signifi-
cant, and we concluded that the performance of these 
classifiers was similar in both classification tasks.

Figure  2 presents relative importance scores for the 
detection of in-hospital mortality. The top 5 most inform-
ative features were: neutrophil count, systolic blood pres-
sure, creatinine level, age and hematocrit. Figures 3 and 
4 present confirmation measures provided by the DRSA-
BRE classifier (full and simplified set of features, respec-
tively). The features with positive confirmation measures 
in the simplified set included heart rate, age, diastolic and 
systolic blood pressure, neutrophil count and troponin 
elevation. This set partially overlaps with the features of 
the highest importance provided by the XGboost classi-
fier. The features with positive confirmation measures in 
the full data set included many clinical features such as 
diabetes, smoking addiction, previous coronary interven-
tions, MI and peripheral artery disease, which are known 
to be associated with the outcomes of coronary artery 
disease. Interestingly, the classifier that used that many 
features performed only slightly better over the classi-
fier trained on the simplified set (G-mean 81.0 ± 1 vs 
79.9 ± 1). As was mentioned above, the simplified algo-
rithms used hematological inflammation markers, the 

http://www.cs.put.poznan.pl/jblaszczynski/Site/jRS.html
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anthropometric data and simple measurements (heart 
rate and blood pressure).

The analysis of strong decision rules which were 
induced by DRSA-BRE may allow to investigate the 
relationship between the features and their values. 
That effectively may lead to the detection of in-hospital 

mortality. The selected rules extracted from the DRSA-
BRE classifier are presented below.

• Rule 1: If systolic blood pressure ≤ 80 and neutro-
phil count ≥ 7.14, then in-hospital death occurs;

Table 3 Basic characteristic of nominal features divided by target groups

Feature Values Count 
where significant 
lesion; n = 4943 
(100%)

Count 
where no significant 
lesion; n = 1826 
(100%)

Count, where patient 
died in hospital; 
n = 97 (100%)

Count 
where no in-hospital 
death; n = 6672 (100%)

1 CABG during hospi-
talisation or planned 
after discharge

Not qualified 4174 (84%) 1826 (100%) 89 (91.8%) 5991 (90%)

Qualified 769 (16%) 0 8 (8.2%) 761 (11%)

2 Dysglycemia No 3489 (71%) 1319 (72%) 63 (64.9%) 4745 (71%)

Yes 1454 (29%) 507 (28%) 34 (35.1%) 1927 (29%)

3 Cardiac arrest False 4879 (99%) 1818 (100%) 77 (79.4%) 6620 (99%)

True 64 (1%) 8 (%) 20 (20.6%) 52 (1%)

4 Hypertension True 4584 (93%) 1701 (93%) 82 (84.5%) 6203 (93%)

False 359 (7%) 125 (7%) 15 (15.5%) 469 (7%)

5 PCI during hospitaliza-
tion

True 4247 (86%) 0 76 (78.4%) 4171 (63%)

False 696 (14%) 1826 (100%) 21 (21.6%) 2501 (37%)

6 Smoking Former Smoker 2565 (52%) 1020 (56%) 44 (45.4%) 3541 (53%)

Non-Smoker 1272 (26%) 528 (29%) 33 (34. %) 1767 (26%)

Active Smoker 1106 (22%) 278 (15%) 20 (20.6%) 1364 (20%)

7 History of CABG False 4546 (92%) 1542 (84%) 89 (91.8%) 5999 (90%)

True 397 (8%) 284 (16%) 8 (8.2%) 673 (10%)

8 History of PCI False 3366 (68%) 1065 (58%) 80 (82.5%) 4351 (65%)

True 1577 (32%) 761 (42%) 17 (17.5%) 2321 (35%)

9 History of myocardial 
infarction

False 3886 (79%) 1358 (74%) 79 (81.4%) 5165 (77%)

True 1057 (21%) 468 (26%) 18 (18.6%) 1507 (23%)

10 Sex Male 3342 (68%) 1138 (62%) 56 (57.7%) 4424 (66%)

Female 1488 (30%) 641 (35%) 38 (39.2%) 2091 (31%)

11 Affected artery Not specified 619 (13%) 1793 (98%) 18 (18.6%) 2394 (36%)

RCA 1525 (31%) 8 (< 1%) 23 (23.7%) 1510 (23%)

LAD 1531 (31%) 2 (< 1%) 37 (38.1%) 1496 (22%)

Cx 770 (16%) 0 (< 1%) 11 (11.3%) 759 (11%)

OM 191 (4%) 1 (< 1%) 1 (1%) 191 (3%)

D 109 (2%) 1 (< 1%) 0 110 (2%)

LM 108 (2%) 2 (< 1%) 5 (5.2%) 105 (2%)

Graft 90 (2%) 3 (< 1%) 0 93 (1%)

12 History of heart failure False 4197 (85%) 1511 (83%) 66 (68%) 5642 (85%)

True 746 (15%) 315 (17%) 31 (32%) 1030 (15%)

13 History of renal failure False 4633 (94%) 1679 (92%) 84 (86.6%) 6228 (93%)

True 310 (6%) 147 (8%) 13 (13.4%) 844 (13%)

14 History of peripheral 
atherosclerosis

False 4604 (93%) 1674 (92%) 89 (91.8%) 6189 (93%)

True 339 (7%) 152 (8%) 8 (8.2%) 483 (7%)

15 History of stroke False 4734 (96%) 1727 (95%) 92 (94.8%) 6369 (95%)

True 209 (4%) 99 (5%) 5 (5.2%) 303 (5%)

16 Death during hospitali-
sation

False 4860 (98%) 1812 (99%) 0 6672 (100%)

True 83 (2%) 14 (1%) 97 (100%) 0
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• Rule 2: If systolic blood pressure ≤ 90 and troponin 
elevation ratio ≥ 5.29, then in-hospital death occurs;

• Rule 3: If systolic blood pressure ≤ 80 and RDW 
≥ 12.7, then in-hospital death occurs;

• Rule 4: If systolic blood pressure ≤ 80 and NLR 
≥ 3.06, then in-hospital death occurs.

Discussion and limitations
Decision rules based on the DRSA-BRE algorithm 
reflect some well-known mortality risk factors in ACS. 
It is remarkable that most rules selected by the DRSA-
BRE classifier are also present in the Global Registry 
of Acute Coronary Events (GRACE) risk score. The 

GRACE risk score has been extensively validated in 
multiple studies and its use is currently recommended 
in the guidelines of the European Society of Cardiology 
[11].

As it is known, low systolic blood pressure may often 
be related to a cardiogenic shock. Thus, the low value of 
systolic blood pressure was included in the majority of 
strong decision rules. What is more, troponin elevation 
corresponds to the size and severity of the infarction. 
The neutrophil to lymphocyte ratio and the red cell 
distribution width are also known to correlate with the 
ACS outcomes [1, 2, 27]. Interestingly, it was reported 
that RDW and the mean platelet volume (MPV) com-
bined with the GRACE risk score results improved its 

Table 4 Best predictive performance results in  fivefold cross-validation of  classifiers trained on  the  simplified set 
and the full set of features

a Indicates that value was not directly estimated during experiments

Sensitivity [%] 
(recall)

Specificity [%] Accuracy [%] G-mean [%] AUC 

Logistic regression 78 ± 25 30 ± 31 65 ± 10 48.4a 54 ± 3 Significant lesion

Xgboost 56 ± 18 58 ± 20 57 ± 8 57.0a 57 ± 2

DRSA-BRE (full set of features) 56.9 ± 0.2 66.9 ± 0.2 59.6 ± 0.2 61.7 ± 0.02 61.9a

Logistic regression 47 ± 34 90 ± 11 89 ± 10 65.0a 68 ± 11 In-hospital death

Xgboost 80 ± 9 79 ± 4 80 ± 4 79.5a 78 ± 3

DRSA-BRE 79.3 ± 1.7 80.6 ± 0.5 81.0 ± 0.5 79.9 ± 1 80.8a

DRSA-BRE (full set of features) 81.0 ± 2.4 81.1 ± 0.5 81.0 ± 0.5 81.0 ± 1 81.0a

Fig. 1 Receiver operating curves presenting the performance of XGboost and logistic regression in the detection of significant coronary lesion and 
in-hospital death. The green dot represents the approximate performance of the DRSA-BRE classifier
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predictive value. However, we found no publications on 
attempts to create a model that relies mostly on labora-
tory test results.

Numerous studies exploring the application of ML 
techniques in the diagnostics of ACS focused primarily 
on risk stratification in patients with chest pain who were 
admitted to the emergency room (ER). VanHouten et al. 
[28] applied random forests and elastic net algorithms to 
a data set of over 20,000 patients admitted to the ER with 
chest pain. Their results achieved high accuracy with 
AUC = 0.85, outperforming both the TIMI and GRACE 
scores. Their much wider selection of patients indicated 
that 41.9% of them were considered positive for an ACS 
event. In our study, due to selection bias (patients were 
already classified by doctors as having a high chance of 
SCL), it seemed impossible to make a prediction of SCL 

based on the laboratory test results only, regardless of 
which classifier was used.

We identified possible causes of the unsatisfactory 
performance in detecting SCL. The retrospective data 
analysis made it possible to use a significant amount of 
data collected in electronic records but also implies many 
limitations. Patients were selected for the study based on 
discharge diagnosis which can introduce a selection bias. 
In our dataset, there were relatively many records with 
co-morbidities like the history of heart failure (15.6%) or 
diabetes (29%) as well as with the history of PCI (34%) 
or CABG (10%). It might be caused by the fact that for 
patients who were admitted multiple times during the 
analyzed period, every hospitalization was included in 
the study dataset.

Troponin levels are known to have high sensitivity 
and specificity in detecting myocardial ischemia. How-
ever, in our study, we were analyzing laboratory results 

Fig. 2 Averaged feature importance scores for the prediction of in-hospital death provided by the XGboost classifier
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Fig. 3 Confirmation measures for the detection of in-hospital death provided by the DRSA-BRE classifier (full set of features)

Fig. 4 Confirmation measures for the detection of in-hospital death provided by the DRSA-BRE classifier (simplified set of features)
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retrospectively and during the analyzed period different 
type of troponin assays were used. Moreover, the specific-
ity of troponin elevation in the detection of SCL among 
patients with chronic heart failure is lower. This might 
have also affected the performance in detecting SCL.

Wallert et  al. [29] used a large multi-center register 
combined with the data from the Swedish national death 
registry to predict a 2-year survival vs non-survival. They 
achieved AUC = 0.77 on their data set of over 50,000 
patients. The classification was based on 39 predictors. 
The best performing model was based on linear regres-
sion and age was identified as the most predictive factor.

Fonarow et al. developed a useful and straightforward 
algorithm based on decision trees to predict in-hospital 
mortality in acutely decompensated heart failure [30]. 
It identified low admission systolic blood pressure, high 
admission creatinine and urea nitrogen levels as the best 
predictors for mortality. Low systolic blood pressure and 
elevated creatinine are known predictors of short- and 
long-term mortality in ACS and are used in the GRACE 
risk score. In our study the analysis of confirmation 
measures (provided by the DRSA-BRE algorithm) and 
feature importance scores (provided by XGboost algo-
rithm) confirmed the high predictive value of these fea-
tures for short-term mortality.

When analyzing the data retrospectively, it is common 
to have certain values missing. Some laboratory tests are 
performed under specific conditions only, which in itself 
may comprise a confounding factor. Moreover, many var-
iables that have been analyzed in this study can be influ-
enced by numerous health conditions. For example, a 
patient with a high neutrophil count could have suffered 
from a severe infection which—as a result—may have 
affected his/her chance of survival. These features might 
not be specific enough improve detection of SCL but per-
formed well in predicting in-hospital mortality.

Conclusion
The existing risk scores for the ACS outcomes partially 
rely on the information from clinical examination. Our 
results suggest that it may be possible to achieve good 
outcome predictions on the basis of simple routine 
measurements that can be obtained without the addi-
tional involvement of a physician. This might be of key 
importance in busy departments where similar systems 
integrated with electronic medical records could auto-
matically flag high risk patients.

Both DRSA-BRE and the model of gradient boosted 
trees algorithm for the detection of in-hospital mor-
tality achieved high sensitivity and specificity which 
makes these models potentially applicable. However, 
to make a justified statement about the performance of 
our machine learning models in a clinical setting, they 

need to be tested prospectively on a different group 
of patients. Our attempts to detect SCL brought no 
desired results. This leads to a conclusion that it is not 
possible to predict the presence of SCL in patients with 
ACS using the features discussed in this paper.

Inflammatory processes play a key role in the devel-
opment of atherosclerosis and destabilization of 
plaques. Our study confirms the findings regarding the 
important role of neutrophil count in the prognosis 
of short-term ACS outcomes. However, we could not 
confirm the prognostic value of the platelet to lympho-
cyte ratio. The neutrophil to lymphocyte ratio was only 
associated with in-hospital mortality in univariate tests.
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