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Abstract

Generalized saddle point problems arise in a number of applications, ranging

from optimization and metal deformation to fluid flow and PDE-governed

optimal control. We focus our discussion on the most general case, making

no assumption of symmetry or definiteness in the matrix or its blocks. As

these problems are often large and sparse, preconditioners play a critical role

in speeding the convergence of Krylov methods for these problems. We first

examine two types of preconditioners for these problems, one block-diagonal

and one indefinite, and present analyses of the eigenvalue distributions of

the preconditioned matrices. We also investigate the use of approximations

for the Schur complement matrix in these preconditioners and develop eigen-

value analysis accordingly.

Second, we examine new developments in probing methods, inspired by

graph coloring methods for sparse Jacobians, for building approximations to

Schur complement matrices. We then present an analysis of these techniques

and their accuracy. In addition, we provide a mathematical justification

for their use in approximating Schur complements and suggest the use of

approximate factorization techniques to decrease the computational cost of

applying the inverse of the probed matrix.

Finally, we consider the effect of our preconditioners on four applications.

Two of these applications come from the realm of fluid flow, one using a

finite element discretization and the other using a spectral discretization.

The third application involves the stress relaxation of aluminum strips at

low stress levels. The final application involves mesh parameterization and

flattening.
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For these applications, we present results illustrating the eigenvalue

bounds on our preconditioners and demonstrating the theoretical justifica-

tion of these methods. We also present convergence and timing results, show-

ing the effectiveness of our methods in practice. Specifically the use of prob-

ing methods for approximating the Schur compliment matrices in our pre-

conditioners is empirically justified. We also investigate the h-dependence of

our preconditioners one model fluid problem, and demonstrate empirically

that our methods do not suffer from a deterioration in convergence as the

problem size increases.
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1 Introduction

In the context of constrained optimization, the Karush-Kuhn-Tucker (KKT)

conditions [46, p. 185] state that a constrained minimizer must be a saddle-

point of an augmented problem. Specifically, it must be a minimizer in

the primal variables and a maximizer on the space of Lagrange multipliers.

Linearizing these conditions with a Newton iteration yields linear system of

the form 

A BT

B 0






x

y


 =



f

g


 , (1.1)

where A is symmetric positive definite. These linear systems are referred

to as saddle-point problems. But as Benzi, Golub and Liesen [5] point out,

many other problems have similar structural and eigenvalue characteristics

to saddle-point problems, but do not fit the form (1.1). These problems are

referred to as generalized saddle-point problems, and are are of the form

A



x

y


 ≡



A BT

C D






x

y


 =



f

g


 , (1.2)

where A ∈ IRn×n, D ∈ IRm×m, and n > m. Benzi, Golub and Liesen [5]

describe generalized saddle-point problems as satisfying one or more of the

following criteria:

C1. A is symmetric.

C2. The symmetric part of A, H = 1
2(A+AT ) is positive semidefinite.

C3. C = B.
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C4. D is symmetric and negative semidefinite.

C5. D = 0.

This description is adequate enough to describe many problems of interest.

While saddle-point problems satisfy all of these criteria, generalized saddle-

point problems only satisfy some. For instance, a stabilized finite element

discretization of the Navier-Stokes equations, might only satisfy C2, C3 and

C4. A spectral discretization of the same problem may only satisfy C4 or

C5.

However, some problems which have similar structural and eigenvalue

properties to saddle-point problems may not satisfy any of the above criteria.

In that light, we wish to introduce a sixth criterion, namely:

C6. ‖D‖ is sufficiently small that the system retains the qualities of a

saddle-point problem.

All the systems we consider meet criterion C6 and many will also satisfy

some of C1–C5 as well. Systems that satisfy some or all of these criteria

may arise from:

� Constrained optimization [24, 32],

� Domain decomposition [27, 28],

� Finite element discretizations for fluid dynamics [25, 55, 56, 60],

� Finite element discretizations for magnetostatics [47],

� Mesh parameterization in computer graphics [40, 52],

� Metal deformation [63],

� Mixed formulations of elliptic PDEs[1, 2, 12],

� Optimal control [3, 4],

� Spectral discretizations for fluid dynamics [8].
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Our goal is to develop effective and efficient preconditioners for this broader

class of generalized saddle-point problems. Specifically, we consider prob-

lems that are large and sparse, although our methods are useful for problems

with dense blocks, so long as matrix-vector products with those blocks can

be performed efficiently.

In Chapter 2, we briefly survey major preconditioning strategies in the

literature for generalized saddle-point problems. Here we largely follow the

survey by Benzi, Golub and Liesen [5]. We also go into more detail about

methods closely related to the ones we present.

Chapter 3 focuses on the development of four preconditioners for general-

ized saddle-point problems. The first two preconditioners will involve exact

Schur complements of a matrix related to the saddle-point problem consid-

ered. As these Schur complement matrices can be expensive to form and

solve with, variants of these preconditioners that allow for computationally

inexpensive approximations are desirable. The other two preconditioners

allow for such approximations. A detailed analysis of the eigenvalues of the

preconditioned systems derived from all four preconditioners is included.

This chapter, which represents original research, forms the theoretical core

of this work. It will largely follow a recent paper by Siefert and de Sturler

[53].

As we have developed preconditioners that allow for the use of approxi-

mate Schur complements, Chapter 4 will focus on general methods for gen-

erating approximations to Schur complements. Our discussion will focus on

techniques based on probing, which was originally presented by Chan and

Mathew [14] and other related techniques from the optimization community

[19]. We present a more powerful version of the probing technique, which

utilizes recent advances from the optimization community [31], which we

will refer to as structured probing [54]. We present a theoretical justifica-

tion of the application of these methods to Schur complements with a decay

3



property and present some analysis of the quality of the approximations

generated by this technique. Sections 4.1 and 4.2 largely follow a paper by

Siefert and de Sturler [54] and like the rest of the chapter, represent original

research.

Chapter 5 details several applications to which we apply our precondi-

tioners. These applications range from fluid dynamics, to metal deformation,

to mesh parameterization. Experimental results for these applications will

be discussed in Chapter 6. This includes some results from both the papers

by Siefert and de Sturler [53, 54] as well as new material. Finally, we will

summarize our results in Chapter 7.
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2 Background

We choose Krylov methods as our solution technique for generalized saddle-

point problems. These methods are iterative techniques that solve the prob-

lem Ax = b, by solving an iterative sequence of minimization problems. For

instance, GMRES [50], solves

min
yi∈Ki(A,r0)

‖b−Ayi‖, (2.1)

where

Ki(A, r0) = span
{
r0,Ar0, . . . ,Ai−1r0

}
,

at each step. Here, Ki(A, r0) is called the Krylov space [58, p. 267], and r0 =

b−Ax0 represents the initial residual. The convergence of these methods is

heavily dependent on the location eigenvalues the matrix A. If ri represents

the residual at step i, then

‖ri‖
‖b‖ ≤ κ(V ) inf

pi∈Pi

‖pi‖Λ(A), (2.2)

where Pi represents the set of all polynomials of degree i or less with pi(0) =

1, V represents the eigenvector matrix of A and Λ(A) represents the set of

the eigenvalues of A [58, p. 271], assuming that A is diagonalizible.

Note that in (2.2), the convergence rate of the method is influenced

by the minimization of a polynomial over the set of eigenvalues. The closer

together these eigenvalues are, the smaller this minimum value will be. Thus,

to guarantee rapid convergence of our Krylov methods, we want to modify

our linear system so that the eigenvalues are close together. We do this

5



by either pre- or post-multiplying the system by another matrix chosen to

cluster the eigenvalues. This technique is known as preconditioning. The

preconditioner matrices are almost never applied directly to A, instead they

are applied in the form of matrix-vector products inside the Krylov method.

One other property possessed by some Krylov methods is that of finite

termination. This means that if an n× x matrix has k distinct eigenvalues

with k < n, a Krylov method with a finite termination property will converge

to the exact solution in at most k iterations. We can see this clearly from

(2.2). If a matrix has k distinct eigenvalues, then a polynomial of degree

k can be found that will be zero at each of the eigenvalues. Thus, after k

steps, we have found the exact solution.

With respect to generalized saddle-point problems, preconditioners fall

into several categories. An extensive survey on solution methods for gener-

alized saddle-point problems, including preconditioning techniques is given

by Benzi, Golub and Liesen [5]. We briefly summarize preconditioning tech-

niques here.

All of the below preconditioners have one characteristic in common —

a linear system must be solved using a Schur complement matrix, or some

approximation thereof. While an exact Schur complement is preferable from

a theoretical perspective, sometimes the expense of forming and solving with

the exact Schur complement can make the preconditioner too expensive

to use. In these cases, preconditioners that allow for approximate Schur

complements are an attractive alternative.

The first category of preconditioners consider is that of block-diagonal

preconditioners. The basic block-diagonal preconditioner for (1.2) is

P1 =



A 0

0 S1


 , (2.3)

where S1 is the Schur complement for the matrix in (1.2). This precondi-
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tioner was proposed by several different authors. For the D = 0 case, it was

proposed by Murphy, Golub and Wathen [44]. For the D 6= 0 case, it was

proposed by Ipsen [38]. Discussion of these preconditioners will follow in

Section 2.1. A variant of this preconditioner, which allows for an approxi-

mation to (splitting of) the (1,1) block A, was presented by de Sturler and

Liesen [20], and is detailed in Section 2.2.

Fisher, Ramage, Silvester and Wathen [29] present a variant of (2.3) for

the case where A is symmetric positive definite, C = B and D = 0, namely

P2 =




1
ηA 0

0 ±S2


 , (2.4)

where S2 is an approximation to the Schur complement S1. They provide

an analysis of the eigenvalues of this preconditioned system based on the

singular values of the preconditioned (1,2) block.

Silvester and Wathen [56, 60] discuss block-diagonal preconditioners specif-

ically for stabilized Stokes problems, which have B = C, A positive definite

and D negative semidefinite. They use positive definite approximations for

both A and the Schur complement and show eigenvalue bounds for the pre-

conditioned system.

The second category of preconditioners we consider is that of block-

triangular preconditioners. These preconditioners are of the form

P3 =



F 0

C S1


 , (2.5)

where F ≈ A and S1 is the Schur complement matrix. They were introduced

by Bramble and Pasciak [12]. The systems they consider have B = C, A

positive definite and D negative semidefinite. The Uzawa method [59], can

also be viewed as a reformulated block-triangular preconditioner. Block-

triangular preconditioners for several variants of (1.2) are discussed in more

7



detail in Section 2.1.

The third category of preconditioners we consider is that of constraint or

indefinite preconditioners. These preconditioners have the a similar block-

structure to the original matrix. These constraint preconditioners take the

form

P4 =



F BT

C D


 , (2.6)

where F ≈ A. Applying the inverse of these preconditioners requires the

application of the inverse of the Schur complement. We can see this clearly

from the factorization

P4 =




I 0

CF−1 I






F 0

0 S1






I F−1BT

0 I


 .

Eigenvalue analysis for the preconditioned systems in the case where A =

AT , C = B and D = 0 is provided by Keller, Gould and Wathen [39]. For

the case where A and D are symmetric, and C = B, eigenvalue analysis is

provided by Dollar [23].

In the case where D = 0, de Sturler and Liesen [20] propose and analyze

a variant of a constraint preconditioner that is described in more detail in

Section 2.2. For a particular problem in the A s.p.d., C = B and D 6= 0

case, Perugia and Simoncini [47] also present a constraint preconditioner.

Variants of P4 using approximate Schur complements have also been devel-

oped, notably by Perugia and Simoncini [47]. Their work is discussed in

more detail in Section 2.3.
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2.1 The Preconditioners of Murphy, Golub,

Wathen and of Ipsen

Murphy, Golub and Wathen [44] present two preconditioners for problem

(1.2) in the special case where D = 0. The first such preconditioner, which

was later extended by de Sturler and Liesen [20], is

P5 =



A 0

0 CA−1BT


 , (2.7)

assuming that both A, and the Schur complement CA−1BT are invertible

(otherwise (1.2) is singular). The preconditioned matrix has the form

P−1
5 A =




I A−1BT

(CA−1BT )−1C 0


 , (2.8)

has at most three distinct non-zero eigenvalues, namely 1, 1±
√

5
2 [44, Remark

1]. This also holds for both right and symmetric preconditioning. A natural

consequence of this property of the eigenvalues is that Krylov methods with

a finite termination property will converge in at most three iterations [44,

Remark 3]. However, this is more expensive than a direct solution of the

problem [20].

Murphy, Golub and Wathen also propose a second, symmetric indefinite

preconditioner, namely

P6 =



A BT

0 CA−1BT


 . (2.9)

The preconditioned matrix, P−1
2 A, has exactly two eigenvalues, namely ±1

[44, Remark 4]. It is noted that one can multiply the (2,2) block of (2.9) by

−1 to yield a preconditioned system where the only eigenvalue is one, but

9



such a system is no longer diagonalizable.

Ipsen [38] proposes three preconditioners as extensions of Murphy, Golub

and Wathen’s work [44] to systems of form (1.2) with a non-zero (2,2) block

(D 6= 0). The first, a direct analogue of (2.7), serves as an inspiration for

our work in Chapter 3, along with the work of de Sturler and Liesen [20].

Ipsen suggests the preconditioner

P7 =



A 0

0 −(D − CA−1BT )


 , (2.10)

and notes that the preconditioned system has at most three distinct non-

zero eigenvalues, which, although she does not enumerate them, are clearly

1 and 1±
√

5
2 [38, Remark 1].

Ipsen also suggests an analogue for (2.9), namely,

P8 =



A BT

0 −(D − CA−1BT )


 . (2.11)

Again, the preconditioned system has eigenvalues ±1, and the (2,2) block

can be multiplied by −1 to yield a preconditioned system where the only

eigenvalue is one [38, Propositions 1 and 2].

2.2 The Preconditioners of de Sturler and Liesen

De Sturler and Liesen [20] developed extensions of the preconditioners of

Murphy, Golub and Wathen [44] (but not Ipsen [38]) to allow for the use of

approximations to the inverse of the (1,1) block, A. They propose splitting

the (1,1) block into

A = F −E, (2.12)
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in a fashion such that F is invertible. The resulting block-diagonal precon-

ditioner is

P9 =



F 0

0 CF−1BT


 , (2.13)

with the assumption that CF−1BT is also invertible. Note that CF−1BT is

the Schur complement of the matrix



F BT

C 0


 . (2.14)

Note that this matrix is a constraint preconditioner. The preconditioned

matrix P−1
9 A is then,

P−1
9 A =




I − F−1E F−1BT

(CF−1BT )−1C 0


 . (2.15)

The preconditioned matrix, regardless of whether left, right or symmetric

preconditioning is used, is of the form

B(F ) =



I − S N

M 0


 , (2.16)

where S, N and M are defined based on the type of preconditioning used.

The authors also define the matrix

B(0) =




I N

M 0


 , (2.17)

which plays a crucial role in the eigenvalue perturbation analysis of the

preconditioned matrix, as well as in the derivation of their second precondi-

tioned system. The second preconditioned system offered by de Sturler and
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Liesen [20], requires first the inverse of B(0), namely

B(0)−1 =



I −NM N

M −I


 . (2.18)

When we multiply the block-diagonally preconditioned system (2.16) by

B(0)−1, what is referred to as the related system results, namely



I − (I −NM)S 0

−MS I






x

y


 =



f̂

ĝ


 . (2.19)

This system possesses better eigenvalue clustering and iterative methods

converge faster than those run on systems preconditioned with (2.15) [20,

40].

A key component of the work of de Sturler and Liesen [20] is the analysis

of the eigenvalue perturbation of the preconditioned matrices (2.15) and

(2.19). As the discussion in Chapter 3 expands on this analysis, we repeat

some of their major results. First, they present the eigenvalue decomposition

of the matrix B(0), (2.17), namely,

B(0)Y = Y




I 0 0

0 Λ+ 0

0 0 Λ−



, (2.20)

where Y =



U1 U2 U2

0 Λ+−1
MU2 Λ−−1

MU2


 , (2.21)

U1 ∈ IRn×(n−m) such thatMU1 = 0, U2 ∈ IRn×m forms a basis for range (NM),

and Λ± = 1±
√

5
2 Im [20, Theorem 3.3]. It is important to note that both U1

and U2 are orthogonal matrices.

From here, de Sturler and Liesen employ a well-known result in matrix

perturbation theory [57, Theorem IV.1.12] to yield the eigenvalue perturba-
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tion bound:

|λB − λ| ≤ cS
∥∥[U1, U2]

−1S[U1, U2]
∥∥ , (2.22)

where cS =

√
2 + 1−

√
5

5 , λB is an eigenvalue of B(F ) and λ ∈
{

1, 1±
√

5
2

}
[20,

Theorem 3.5]. This bound is restated in its final form [20, Corollary 3.7] in

terms of ω1, the maximum singular value of the matrix UT
1 U2, namely,

|λB − λ| ≤ cS
(

1+ω1
1−ω1

)1/2
‖S‖. (2.23)

For the related system matrix (2.19), they present the bound,

|1− λR| ≤ (1− ω2
1)

−1/2‖S‖, (2.24)

where λR is an eigenvalue of the matrix (2.19) [20, Theorem 4.4].

Besides eigenvalue results, de Sturler and Liesen present a result on the

satisfaction of the second set of equations (constraints) of (1.2) when D = 0.

This result applies to Krylov methods applied to the related system (2.19).

Specifically, if the starting Krylov iterate, x0, satisfies Cx0 = 0, then every

successive Krylov iterate, xk, also satisfies Cxk = 0 [20, Theorem 4.2]. If

no better guess is available, the preconditioned right-hand side, f̂ , satisfies

Cf̂ = 0, and can be used as a starting guess [20, Theorem 4.1].

2.3 Preconditioners of Perugia and Simoncini

Perugia and Simoncini consider the problem (1.2), with C = BT , A positive

definite, D negative semidefinite and the Schur complement matrix −(D −

BBT ) positive definite [47]. The specific application they consider is a mixed

finite-element formulation of a magnetostatics problem. In this particular

application both A and the Schur complement matrix −(D − BBT ) are

spectrally equivalent to the identity [47, Lemma 1], which influences their
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choice of preconditioners.

Perugia and Simoncini present four preconditioners, two block-diagonal

and two indefinite. All of these are closely related to the preconditioners

described in Sections 2.1 and 2.2 and those which will be described in Chap-

ter 3. Their block-diagonal preconditioner with an exact Schur complement

is

P10 =



I 0

0 −(D −BBT )


 . (2.25)

When the problem is preconditioned symmetrically by P10, then the pre-

conditioned eigenvalues are either −1 or cluster in two intervals which are

functions of the spectral equivalence constants for the (1,1) block A [47,

Proposition 2].

Recognizing that forming the Schur complement matrix S1 = −(D −

BBT ) could be expensive, a second, “quasi-optimal,” block-diagonal pre-

conditioner is also offered. In the notation which will be described in

Chapter 3, let S2 be an approximation to the Schur complement matrix

S1 = −(D − BBT ). Then, their “quasi-optimal” block-diagonal precondi-

tioner is

P11 =



I 0

0 S2


 . (2.26)

The preconditioners (2.25) and (2.26) are a special cases of (3.1) and (3.47)

respectively with a fixed “splitting” of F = I. The eigenvalues of the system

preconditioned by P11 are in two intervals, which are the intervals for the

system preconditioned by P10, rescaled by the spectral equivalence constants

between P10 and P11 [47, Proposition 3].
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The third preconditioner they present is the indefinite preconditioner

P12 =



I BT

B D


 , (2.27)

The eigenvalues of this system are either 1 or in an interval defined by the

spectral equivalence constants for A. This preconditioner can be factored as

P12 =



I 0

B I






I 0

0 (D −BBT )






I BT

B I


 , (2.28)

and this factorization used to derive the “quasi-optimal” version of their

indefinite preconditioner. Again, let S2 be an approximation to the (Schur

complement) matrix S1 = −(D − BBT ). The “quasi-optimal” indefinite

preconditioner is then

P13 =



I BT

B BBT − S2


 , (2.29)

=



I 0

B I






I 0

0 −S2






I BT

0 I


 . (2.30)

Concrete bounds on the location of the eigenvalues of the problem as pre-

conditioned by P13 are not presented, though qualitative statements about

their clustering are made and computed eigenvalues are shown for their tar-

get application.
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3 Preconditioners: Theory and

Analysis

The discussion in this chapters largely follows the recent work by Siefert and

de Sturler [53]. Specifically, we first discuss preconditioners with exact Schur

complements in Sections 3.1 and 3.2. This largely follows the discussions

of Sections 2 and 3 of Siefert and de Sturler [53], respectively. After this,

we discuss similar these preconditioners where we replace the exact Schur

complement matrix with an approximation. This discussion, in Section 3.3

and 3.4, largely follows the discussion of Section 4 of Siefert and de Sturler

[53].

3.1 Block-Diagonal Preconditioner with Exact

Schur Complements

The block-diagonal preconditioner of de Sturler and Liesen [20], (2.15), is

only applicable to problems of the form (1.2) where D = 0. We propose

P(F ) =



F 0

0 −(D − CF−1BT )


 , (3.1)

as a generalization of their preconditioner to the D 6= 0 case [53]. We note

that preconditioning either from the left or the right yields a system of the

form

B(F )



x̃

ỹ


 =



I − S N

M Q






x̃

ỹ


 =



f̃

g̃


 , (3.2)
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where B(F ) is either P−1A or AP−1. More explicitly,

P(F )−1A =




I − F−1E F−1BT

−(D − CF−1BT )−1C −(D − CF−1BT )−1D


 ,

AP(F )−1 =



I − EF−1 −BT (D − CF−1BT )−1

CF−1 −D(D − CF−1BT )−1


 .

Both two-sided (using an LU factorization) preconditioning and symmetric

preconditioning (if F = F T , D = DT and C = B) are also possible.

While this preconditioned system shares many properties with the case

described by de Sturler and Liesen, we note that several key properties

change. In the D = 0 case, MN = I [20]. Here we have

MN = −(D − CF−1BT )−1CF−1BT ,

= −(D − CF−1BT )−1(−D + CF−1BT +D),

= I +Q. (3.3)

This is true for the left-preconditioned, right-preconditioned, two-sided and

symmetric cases. In the D = 0 case NM is a projector [20]. In our case, it

is not, as (NM)2 = NM +NQM [53].

3.1.1 Eigenvalue Analysis of B0

The location of the eigenvalues of the block-diagonally preconditioned sys-

tem play an important role in determining the convergence of Krylov meth-

ods. Consequently, we begin our analysis of this preconditioner by consid-

ering the eigenvalues of the matrix

B0 =




I N

M Q


 , (3.4)
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and bounding the eigenvalues of the preconditioned matrix B(F ) using per-

turbation theory. We make the assumption that I+Q (and therefore BT and

C) have full rank and that Q is diagonalizable. We discuss the rank-deficient

case in Section 3.1.2. Our goal is to find λ, u and v such that

u+Nv = λu (3.5)

Mu+Qv = λv. (3.6)

We begin by considering all eigenpairs such that λ = 1. From (3.3), we have

Q = MN − I. We substitute λ = 1 into (3.5) and Q = MN − I into (3.6)

to yield

Nv = 0 and Mu = 2v. (3.7)

Since BT has full (column) rank (by assumption), Nv = 0 if and only if

v = 0. Thus, B0 has eigenpairs of the form


1,



u

0





 , where u ∈ null (M) . (3.8)

Since we have assumed that C (and thus M) has full (row) rank, then B0

has n−m eigenpairs of this type.

Next, we consider λ 6= 1. We solve (3.5) for u and substitute the result

into (3.6), yielding

λQv = (λ2 − λ− 1)v. (3.9)

Therefore, v must be an eigenvector of Q. Since Q is diagonalizable (by

assumption), we have Qvj = δjvj , for j = 1, . . . ,m. Solving (3.9) for λ
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yields

λ±j =
(1 + δj)±

√
4 + (1 + δj)2

2
. (3.10)

Substituting δjvj for Qvj in (3.6) gives u. Finally, we rescale the eigenvector

by (λ±j − 1) to yield


λ±j ,




Nvj

(λ±j − 1)vj





 . (3.11)

Note that λ−j 6= 1 for any δj and λ+
j = 1 only if δj = −1. By assumption,

I+Q has full rank and this is precluded. Therefore, B0 has 2m independent

eigenvectors corresponding to λ 6= 1 and is diagonalizable.

Let Λ+ = diag(λ+
j ) and Λ− = diag(λ−j ), (where diag(·) denotes a diago-

nal matrix with the arguments given). Let U1 be an orthonormal basis for

null (M), cf. (3.8), and let U2 be the matrix with normalized columns such

that uj = Nvj , where Qvj = δjvj, cf. (3.11). Then an eigenvector matrix of

B0 is

Y ≡



Y11 Y12

Y21 Y22


 =



U1 U2 U2

0 V (Λ+ − I) V (Λ− − I)


 . (3.12)

We can write the block-wise inverse [37, Section 0.7.3] of Y,

Z = Y−1 =



Z11 Z12

Z21 Z22


 . (3.13)

Let Υ+ = diag((λ−j − 1)/(λ−j − λ+
j )) and Υ− = diag((λ+

j − 1)/(λ−j − λ+
j )).
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Then,

Z11 =
(
Y11 − Y12Y

−1
22 Y21

)−1
,

=



In−m 0

0 Υ+


Y −1

11 = ÎnY
−1
11 , (3.14)

Z21 = −Y −1
22 Y21Z11,

= −
[

0 (Λ− − I)−1(Λ+ − I)Υ+

]
Y −1

11 ,

= −
[

0 Υ−
]
Y −1

11 . (3.15)

Using [U1 U2]
−1NV = [0 I]T we also have

Z22 = (Y22 − Y21Y
−1
11 Y12)

−1,

=

(
V (Λ− − I)−

[
0 V (Λ+ − I)

] [
U1 U2

]−1

NV

)−1

,

=


V (Λ− − I)−

[
0 V (Λ+ − I)

]



0

I







−1

,

=
(
V (Λ− − Λ+)

)−1
, (3.16)

Z12 = Y −1
11 Y22Z22 = −

[
U1 U2

]−1

U2Z22,

= −




0

(Λ− − Λ+)−1V −1


 . (3.17)

For the D = 0 case, this reduces to the decomposition given by de Sturler

and Liesen [20]. Lemma 3.1.1, which is unique to this work, simplifies the

proofs which follow.
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Lemma 3.1.1. Let Y be defined as in (3.12). Let

L1 =




I 0 0

0 Υ+ 0

0 0 Υ−



, (3.18)

L2 =




0 0 0

0 −(Λ− − Λ+)−1 0

0 0 (Λ− − Λ+)−1



, (3.19)

R1 =




U1 0 0

0 U2 0

0 0 U2



, (3.20)

R2 =




0 0 0

0 (Λ+ − I) 0

0 0 (Λ− − I)



. (3.21)

Then,

Y−1



R 0

0 0


Y = L1




Y −1
11 R

−[0 I]Y −1
11 R



[
I I I

]
R1, (3.22)

Y−1




0 T

0 0


Y = L1




Y −1
11 TV

−[0 I]Y −1
11 TV



[

0 I I

]
R2, (3.23)

Y−1




0 0

X 0


Y = L2




0

V −1X

V −1X




[
I I I

]
R1, (3.24)

Y−1




0 0

0 W


Y = L2




0

V −1WV

V −1WV




[
0 I I

]
R2. (3.25)

Proof: For the sake of notation, denote the matrices being multiplied by

Y−1 and Y as R̂, T̂ , X̂ and Ŵ , respectively. For the non-zero (1,1) block
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(3.22), we have

Y−1R̂Y =



Z11RY11 Z11RY12

Z21RY11 Z21RY12


 ,

=




ÎnY
−1
11 RU1 ÎnY

−1
11 RU2 ÎnY

−1
11 RU2

−[0 Υ−]Y −1
11 RU1 −[0 Υ−]Y −1

11 RU2 −[0 Υ−]Y −1
11 RU2


 .

For the non-zero (1,2) block (3.23), we have

Y−1T̂Y =



Z11TY21 Z11TY22

Z21TY21 Z21TY22


 ,

=




În[0 Y −1
11 TV (Λ+ − I)] ÎnY

−1
11 TV (Λ− − I)

−[0 Υ−][0 Y −1
11 TV (Λ+ − I)] −[0 Υ−]Y −1

11 TV (Λ− − I)


 .

For the non-zero (2,1) block (3.24), we have

Y−1X̂Y =



Z12XY11 Z12XY12

Z22XY11 Z22XY12


 ,

= L2




0 0 0

V −1XU1 V −1XU2 V −1XU2

V −1XU1 V −1XU2 V −1XU2



.

For the non-zero (2,2) block (3.25), we have

Y−1ŴY =



Z12WY21 Z12WY22

Z22WY21 Z22WY22


 ,

= L2




0 0 0

0 V −1WV (Λ+ − I) V −1WV (Λ− − I)

0 V −1WV (Λ+ − I) V −1WV (Λ− − I)



.

�
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Our next theorem, a modified version of [53, Theorem 2.1], allows us to

bound the eigenvalues of the preconditioned system. This theorem applies

regardless of whether the the block-diagonal preconditioner is applied from

the left, from the right or from both sides.

Theorem 3.1.2. Consider matrices B(F ) of the form (3.2). Let Y be an

eigenvector matrix of B0 given in (3.12). Then, for each eigenvalue λB of

B(F ), there exists an eigenvalue λ of B0, such that

|λB − λ| ≤

∥∥∥∥∥∥∥
Y−1



S 0

0 0


Y

∥∥∥∥∥∥∥
(3.26)

≤ 2max
(
1, ‖Υ+‖, ‖Υ−‖

)
‖Y −1

11 SY11‖. (3.27)

Proof: Since B0 is diagonalizable, (3.26) follows from a classic result in

perturbation theory [57, Theorem IV.1.12]. Using Lemma 3.1.1 with R = S

gives

|λB − λ| ≤

∥∥∥∥∥∥∥
L1




Y −1
11 S

−[0 I]Y −1
11 S



[
I I I

]
R1

∥∥∥∥∥∥∥
,

≤ max(1, ‖Υ+‖, ‖Υ−‖)

∥∥∥∥∥∥∥




Y −1
11 S

−[0 I]Y −1
11 S



[
U1 U2 U2

]
∥∥∥∥∥∥∥
.

Using the consistency of the 2-norm we can simplify this to (see also [20])

|λB − λ| ≤
√

2 max(1, ‖Υ+‖, ‖Υ−‖)

∥∥∥∥∥∥∥




Y −1
11 SY11

−
[

0 I

]
Y −1

11 SY11




∥∥∥∥∥∥∥
,

≤ 2max(1, ‖Υ+‖, ‖Υ−‖)
∥∥Y −1

11 SY11

∥∥ .

�

The Υ± terms can only be large if δj ≈ −1 ± 2i. For the problems
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discussed in Chapter 5, the δj ’s are well-separated from this value. This is

because ‖D‖ is small and the problems and preconditioners are relatively

well-conditioned. Lemma 3.1.3 [53, Lemma 2.2] provides bounds on the

‖Υ±‖. The lemma considers the case where the δj ’s are real (and thus

bounded away from −1 ± 2i) separately. This is condition holds in the

important case that D is symmetric and the Schur complement is definite.

We first define

p(z) = 4 + (1 + z)2, (3.28)

and now restate [53, Lemma 2.2].

Lemma 3.1.3. Let Υ+ and Υ− be defined as above.

1. If δj ∈ IR, for all j, then

max(1, ‖Υ+‖, ‖Υ−‖) ≤ 1 +
√

2

2
.

Moreover, if δj ≥ −1, for all j, then max(1, ‖Υ+‖, ‖Υ−‖) = 1.

2. If δj ∈ C and ∃α : |δj | ≤ α <
√

5, for j = 1, . . . ,m, then

max(1, ‖Υ+‖, ‖Υ−‖) ≤ max


1,

1

2
+

1 + α

2
√

2
(√

5− α
)


 .

Proof: Substituting λ±j from (3.10) in Υ+ = diag(λ−j − 1)/(λ−j − λ+
j ) and

Υ− = diag(λ+
j − 1)/(λ−j − λ+

j ) gives

Υ± = diag

(
1− δj

2
√

4 + (1 + δj)2
± 1

2

)
,

= diag

(
1− δj

2
√
p(δj)

± 1

2

)
. (3.29)

For the real case, consider the diagonal entries of the Υ’s as functions of δj ∈

IR. These functions have a critical point at δj = −3. The maximal absolute

value of the diagonal entries of Υ+, (1+
√

2)/2, is found at this critical point.
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The supremum of the diagonal entries of Υ− occurs when δj is large, and

that value is 1. In the case of δj ≥ −1, the absolute value of Υ+ at δj = −1

is maximal, namely 1. Therefore, in this case max(1, ‖Υ+‖, ‖Υ−‖) = 1.

For the complex case, note that p(δ) = (δ+1+2i)(δ+1− 2i). Since the

distance between −1− 2i and −1+2i is 4, any δ must be at least distance 2

from one of the roots of p(δ). We assume without loss of generality that δ is

near −1+2i. The value δ∗ = (−1+2i)α/
√

5 minimizes |δ+1−2i| subject to

|δ| ≤ α, and we have |δ∗+1−2i| =
√

5−α. So, we have |p(δ)| ≥ 2
(√

5− α
)
.

Using this inequality for |p(δ)| completes the proof. �

In practice, the bound for the complex case is relatively modest. For exam-

ple, if |δj | ≤ 1, for all j, then our bound on max(1, ‖Υ+‖, ‖Υ−‖) is about

1.136. Likewise, if |δj | ≤ 2, for all j, the bound is about 1.470.

Our derivation of a bound on
∥∥Y −1

11 SY11

∥∥ follows the approach of de Sturler

and Liesen [20]. Recall from (3.12) that Y11 = [U1 U2], where UT
1 U1 = I,

and U2 = NV with unit columns. Let U2 = V2Θ, where V T
2 V2 = I. Fur-

thermore, let ω1 = ‖UT
1 V2‖, which is the cosine of the smallest principal

angle between range (U1) = null (NM) and range (U2) = range (NM). This

allows us to restate [53, Lemma 2.3].

Lemma 3.1.4. Define Y11, S, U1, U2, V2, Θ, and ω1 as above, and let κ(.)

denote the 2-norm condition number. Then,

∥∥Y −1
11 SY11

∥∥ ≤ κ(Θ)

(
1 + ω1

1− ω1

)1/2

‖S‖. (3.30)

Proof: We have ‖Y −1
11 SY11‖ ≤ κ(Y11)‖S‖, where

Y11 =

[
U1 V2

]


I 0

0 Θ


 .

As V2 is orthogonal, we have σ(U2) = σ(Θ), where σ(·) represents the set of

singular values its argument. As U2 has normalized columns, ‖U2‖ ≥ 1 and
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‖U−1
2 ‖ ≥ 1. Thus, ‖Θ‖ ≥ 1, and ‖Θ−1‖ ≥ 1. So, our bound simplifies to

‖Y −1
11 SY11‖ ≤ κ(Θ) κ

([
U1 V2

])
‖S‖ ≤ κ(Θ)

(
1 + ω1

1− ω1

)1/2

‖S‖,

where the second inequality follows from the bound on κ([U1 V2]) from

Lemma 3.6 in [20]. �

Finally we can bring the above results together [53, Corollary 2.4].

Corollary 3.1.5. Let Θ and ω1 be defined as above.

1. If δj ∈ IR, for all j, then

|λB − λ| ≤ (1 +
√

2)κ(Θ)

(
1 + ω1

1− ω1

)1/2

‖S‖. (3.31)

2. If δj ∈ C and ∃α : |δj | ≤ α <
√

5, for j = 1, . . . ,m, then

|λB − λ| ≤ 2max


1,

1

2
+

1 + α

2
√

2
(√

5− α
)


κ(Θ)

(
1 + ω1

1− ω1

)1/2

‖S‖.

Proof: Use Lemmas 3.1.3 and 3.1.4 in Theorem 3.1.2. �

We see that the clustering of the eigenvalues depends mainly on ‖S‖ and

the size of the δj , unless ω1 ≈ 1, or κ(Θ) large. This implies that the block-

diagonally preconditioned system can have as many as 2m + 1 eigenvalue

clusters, one for λ = 1 and one for each λ±j . Even in the case where ‖S‖ is

small, the convergence of Krylov methods may still be poor for the block-

diagonally preconditioned system. Examples in Chapter 6 will illustrate

this. However, the block-diagonal preconditioner is a useful step to a better

preconditioner, described in Section 3.2.

3.1.2 Rank Deficiency in I + Q

In Section 3.1, we assumed that I + Q is full rank. Now we relax that

assumption. There are three potential sources of rank-deficiency in I + Q.
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The first two are rank-deficiency in C and BT . The third is when there

exist vectors v such that Nv 6= 0 and Nv ∈ null (M). This implies that

MNv = (I + Q)v = 0, where v is an eigenvector of Q. This occurs when

F−1 (left preconditioning) or −(D−CF−1BT )−1 (for right preconditioning)

maps a non-trivial vector from range
(
BT
)

into null (C).

Assume that I +Q, C and BT are rank deficient by k, lc and lb respec-

tively. Note that k ≥ max(lb, lc), since I+Q = −(D−CF−1BT )−1CF−1BT

and the product of matrices cannot be of higher rank than any of its factors.

Our previous analysis remains valid for the 2(m − k) eigenpairs (3.10)

that correspond to δj 6= −1. It is also valid for the k eigenpairs where

δj = −1, corresponding to λ−j . Since the Schur complement and splitting

are invertible, M must also be rank deficient by lc. Thus, the number of

eigenpairs of the form (3.8) equals dim(null (M)) = n −m+ lc. This gives

us a total of n+m− k + lc eigenpairs, leaving us to find k − lc eigenpairs.

By (3.7), all eigenvectors corresponding to λ = 1 must satisfy Nv = 0

and Mu = 2v. Since dim(null (N)) = lb, there are lb independent vectors v

that satisfy Nv = 0. Unfortunately, there may be as many as lc independent

vectors v where Mu = 2v has no solution. If we do not have k− lc indepen-

dent vectors v such that Mu = 2v has a solution, then B0 is defective. The

analysis of Section 3.1 does not permit any other eigenvectors.

For the “missing” eigenpairs, λ+
j → 1 as δj =→ −1. Therefore, we look

for principal vectors of grade two (see [35]) for λ = 1. These vectors satisfy

the equations

Nv = ũ and Mu = 2v, (3.32)

where ũ 6= 0 and ũ ∈ null (M). We note that there are k independent vectors

v such that (I +Q)v = 0. Since there are precisely lb independent vectors v

such that Nv = 0, there must be k − lb such vectors v that satisfy Nv = ũ

with ũ 6= 0 and Mũ = 0. This gives k independent vectors v that satisfy
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the first equation of either (3.7) or (3.32).

There exists a space of dimension lc, such that Mu = 2v has no solution.

However, since we have k independent v’s to propose, we are guaranteed to

find k − lc independent vectors v’s that satisfy this equation. This gives us

either our remaining eigenvectors or principal vectors of grade two. This

also guarantees us that we have Jordan blocks of size at most two.

In the special case when k = lb = lc, k − lc = 0, we have a full set

of eigenvectors. We can apply the analysis described in the full rank case

with k additional eigenpairs (1, [ũT
n−m+j , 0

T ]T ), for j = 1 . . . k, replacing the

corresponding eigenpairs (λ+
j , [(Nvj)

T , (λ+
j −1)vT

j ]T ) for which δj = −1. Let

U1 be such that UT
1 U1 = In−m+lc and range (U1) = null (M). Let Ṽ be such

that Ṽ T Ṽ = Ilc and range(Ṽ ) = null (I +Q). Further, let the columns of V̂

be the eigenvectors of Q corresponding to the eigenvalues δj 6= −1, scaled

such that U2 = NV̂ has unit columns. Finally, let the diagonal matrices Λ̂+

and Λ̂− contain the eigenvalues λ+
j and λ−j corresponding to the eigenvalues

δj 6= −1 ordered consistently with the columns of V̂ . Then the eigenvector

matrix of B0 is given by

Y =



U

(n−m+lc)
1 U

(m−lc)
2 NṼ (lc) U

(m−lc)
2

0 V̂ (Λ̂+ − I) −2Ṽ V̂ (Λ̂− − I)


 , (3.33)

where superscripts in the top row indicate the number of columns. The

corresponding eigenvalues are those from (3.8) and (3.10). We can then use

the eigenvector matrix of B0 given in (3.33) to derive bounds on the eigen-

values, as for the full rank case. The reduction in the number of columns of

U2 may in fact reduce the factor κ(Θ) in the Corollary 3.1.5 . An important

example of this case is the stabilized Navier-Stokes (Oseen) problem [26],

where C = B and F is positive definite.
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3.2 Related System with Exact Schur

Complements

Following de Sturler and Liesen [20], we outline an alternative solution

method. In the D = 0, this approach leads to so-called constraint precondi-

tioners, cf. [10, 11, 33, 47]. We begin our derivation of a similar system for

the D 6= 0 case by splitting (3.1) as follows,

B(F )



x

y


 =



I − S N

M Q






x

y


 ,

=


B0 −



S 0

0 0









x

y


 =



f̃

g̃


 . (3.34)

Note that

B−1
0 =



I −NM N

M −I


 . (3.35)

Left-multiplying (3.34) by B−1
0 and splitting yields the fixed point iteration,



xk+1

yk+1


 =




(I −NM)S 0

MS 0






xk

yk


+



f̂

ĝ


 . (3.36)

This iteration is essentially the same as the D = 0 case described in [11, 20].

As xk+1 and yk+1 depend only on xk, we need to iterate only on the xk

variables; cf. [9, pp. 214–215] and [20]. The x-component of the fixed point

of (3.36) satisfies the so-called related system for the fixed-point iteration

[35],

(I − (I −NM)S)x = f̂ . (3.37)

The full-size related system (including the y component) and D 6= 0 has

been examined elsewhere for special cases. In [47], A is symmetric positive
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definite and spectrally equivalent to the identity, and so a fixed splitting

F = I is used. In [33], F is symmetric positive definite. In both of these

cases B = C.

3.2.1 Eigenvalue Analysis

Let U1 and U2 be defined as in (3.12), ∆ = diag(δj) and let U2 = V2Θ,

with V T
2 V2 = I. Then, NMU1 = 0, NMU2 = NMNV = NV (I + ∆), and

therefore

(I −NM) =

[
U1 V2

]


I 0

0 −Θ∆Θ−1



[
U1 V2

]−1

. (3.38)

In the rank-deficient case, we can use (3.33). Thus, rank-deficiency has a

potential advantage in terms of the conditioning of Θ. To analyze ‖I−NM‖

we need the following singular value decomposition (SVD),

UT
1 V2 = ΦΩΨT , where 1 > ω1 ≥ ω2 ≥ . . . ≥ ωm. (3.39)

Following [20], we define W by WΣ = V2Ψ − U1ΦΩ, where the diagonal

matrix Σ = diag((1 − ω2
j )

1/2) contains the sines of the principal angles

between range (U1) and range (V2). Then, [U1 W ] is orthogonal, and we can

decompose V2 as follows,

V2 = U1ΦΩΨT +WΣΨT . (3.40)

This allows us to restate [53, Theorem 3.1]

Theorem 3.2.1. Let U1,V2 and ω1 be defined as above. Let λR be an

eigenvalue of the related system matrix in (3.37). Then,

ρ((I −NM)S)

|1− λR|




≤ (1− ω2

1)
−1/2(1 + ‖Θ∆Θ−1‖)‖S‖.
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where ρ(·) designates the spectral radius.

Proof: The proof of this theorem largely follows [20]. Note that the result

for ρ((I − NM)S) immediately implies the result for |1 − λR|. We have

ρ((I −NM)S) ≤ ‖I −NM‖‖S‖. Let Z = −Θ∆Θ−1. Then,

‖I −NM‖ =

∥∥∥∥∥∥∥
[U1 V2]



I 0

0 Z


 [U1 V2]

−1

∥∥∥∥∥∥∥
, (3.41)

≤

∥∥∥∥∥∥∥
[U1 V2]



I 0

0 0


 [U1 V2]

−1

∥∥∥∥∥∥∥

+

∥∥∥∥∥∥∥
[U1 V2]




0 0

0 Z


 [U1 V2]

−1

∥∥∥∥∥∥∥
, (3.42)

≤ (1− ω2
1)

−1/2(1 + ‖Z‖). (3.43)

Note that the first term in (3.42) is the norm of an oblique projection.

Given the SVD in (3.39), this norm equals (1 − ω2
1)

−1/2 [43, Section 5.15].

We establish the bound for the second term as follows

∥∥∥∥∥∥∥
[U1 V2]




0 0

0 Z


 [U1 V2]

−1

∥∥∥∥∥∥∥
= max

U1a+V2b6=0

‖V2Zb‖
‖U1a+ V2b‖

.

Without loss of generality we may assume ‖b‖ = 1, so that ‖V2Zb‖ ≤ ‖Z‖.

From (3.40) we see that ‖U1a+V2b‖ = ‖U1a+U1ΦΩΨT b+WΣΨT b‖, which

for any given b is minimized by a = −ΦΩΨT b. This gives ‖U1a + V2b‖ =

‖WΣΨT b‖, which in turn is minimized for b = ψ1. Hence, we have

∥∥∥∥∥∥∥
[U1 V2]




0 0

0 Z


 [U1 V2]

−1

∥∥∥∥∥∥∥
= max

U1a+V2b6=0

‖V2Zb‖
‖U1a+ V2b‖

,

≤ (1− ω2
1)

−1/2‖Z‖. (3.44)

So, using (3.41)–(3.44) we have ρ((I−NM)S) ≤ (1−ω2
1)

−1/2(1+‖Θ∆Θ‖)‖S‖,
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which concludes our proof. �

The following corollary [53, Corollary 3.2] shows that the influence of κ(Θ)

need not be large if the δj ’s are well-clustered.

Corollary 3.2.2. Let δ̂ = arg min
z∈�

max
j
|z − δj | and δ̃j = δj − δ̂, then

ρ((I −NM)S)

|1− λR|




≤ (1− ω2

1)
−1/2(1 + δ̂ + κ(Θ)max |δ̃j |)‖S‖.

Proof: Note that ∆ = δ̂I+diag(δ̃j), so Θ∆Θ−1 = δ̂I+Θ diag(δ̃j)Θ−1. �

So, the eigenvalues of the related system cluster around 1, and the tight-

ness of the clustering is controlled through ‖S‖. Note that the ω1 term in

Corollary 3.2.2 is no larger than the the corresponding term for the block-

diagonally preconditioned system (Corollary 3.1.5). Likewise, the influence

of the κ(Θ) term is smaller for the related system if the spread of the values

δj is small. This will generally give us a tighter bound for the related system

than for the block-diagonally preconditioned system.

3.2.2 Satisfying ‘Constraints’

In the D = 0 case [20], the second block of equations in (1.2) often represents

a set of constraints. For the D 6= 0 case, this may or may not true. So-called

constraint preconditioners (in the D = 0 case) have the advantage that each

iterate of a Krylov subspace method for the preconditioned system satisfies

the constraints, if the initial guess is chosen appropriately. Fixed point

methods such as (3.36) often satisfy the constraints after a single step. This

is the case for the fixed-point method proposed in [20] for D = 0. We can

show an analogous property for the D 6= 0 case, by restating [53, Lemma

3.3].
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Lemma 3.2.3. For any initial guess [xT
0 , y

T
0 ]T , the iterates, [xT

k , y
T
k ]T , for

k = 1, 2, . . ., of (3.36) satisfy Mxk + Qyk = g̃ in (3.1) and Cxk +Dyk = g

in (1.2).

Proof: From (3.34)–(3.36) and the equality MN = I +Q we have

Mxk+1 +Qyk+1 = M(I −NM)Sxk +M(I −NM)f̃ +MNg̃

+QMSxk +QMf̃ −Qg̃,

= (M +QM −MNM)(Sxk + f̃) + (MN −Q)g̃,

= g̃.

Thus, the fixed-point method satisfies the second block of equations of (3.36)

exactly after one step. Because the block diagonal preconditioner (3.1) is

invertible, the second block of equations of (1.2) are also satisfied after one

step. �

Following trivially from this, we restate [53, Corollary 3.4].

Corollary 3.2.4. After the first iteration of (3.36), all fixed-point updates

are in the null space of [M Q].

We can also show that the iterates of a Krylov subspace method will sat-

isfy the constraints if the initial guess satisfies the constraints (cf. [20]). We

first restate a general result, namely [53, Theorem 3.5], and then specialize

it to our problem. For the remainder of this section, A and C are arbitrary

matrices not the matrices referred to in (1.2).

Theorem 3.2.5. Let A ∈ R
n×n, b ∈ R

n, C ∈ R
m×n, and d ∈ R

m, and

define the iteration xk+1 = Axk + b. Further, let the iterates xk satisfy

Cxk = d for k ≥ 1 and any starting vector x0. Then, the iterates x(m),

m ≥ 0, of a Krylov method applied to the (related) system, (I − A)x = b,

will satisfy Cx(m) = d if Cx(0) = d.
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Proof: We have CAx+Cb = d for any x. Taking x = 0 implies Cb = d, and

hence CAx = d−Cb = 0 for any x. Hence, CA = 0 must hold. Next, let x(0)

be the initial guess for a Krylov method, and Cx(0) = d. Then the initial

residual is given by r(0) = b−(I−A)x(0), and Cr(0) = Cb−Cx(0)+CAx(0) =

0. For m ≥ 1, the iterates of a Krylov method applied to (I−A)x = b satisfy

x(m) = x(0) +
m−1∑

i=0

αi(I −A)ir(0) = x(0) + γ0r
(0) +A

m−1∑

i=1

γiA
i−1r(0). (3.45)

Finally, we multiply (3.45) by C, and note that Cx(0) = d, Cr(0) = 0 and

CA = 0. Therefore,

Cx(m) = Cx(0) + γ0Cr
(0) + CA

m−1∑

i=1

γiA
i−1r(0) = d. (3.46)

�

From here we can restate [53, Corollary 3.6].

Corollary 3.2.6. The iterates, [x(m)T
, y(m)T

]T , of any Krylov method ap-

plied to the full n+m related system for (3.36) satisfy Mx(m) +Qy(m) = g̃

and Cx(m) +Dy(m) = g if the initial guess is the result of at least one step

of fixed point iteration (3.36).

Proof: Use Theorem 3.2.5, with A as fixed-point iteration matrix in (3.36),

b = [f̂T ĝT ]T , C = [M Q] and d = ĝ. �

3.3 Block-Diagonal Preconditioner with

Approximate Schur Complements

As the Schur complement matrix S1 = −D(−CF−1BT ) may be expen-

sive to compute or factor, we would like to be able to use inexpensive

approximations instead. We now consider the effect of such an approxi-

mation on the eigenvalue clustering of the preconditioned matrices. Let
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S2 ≈ S1 denote our approximation to the Schur complement. For the left-

preconditioned case, let S−1
2 S1 = I + E . For the right-preconditioned case,

let S1S
−1
2 = I + E . Two-sided preconditioning can be handled similarly.

Our new block-diagonal preconditioner is then

P(F, S2) =



F 0

0 S2


 .

We refer to the resulting preconditioned matrix as B(F, S2). The left-

preconditioned system of equations is



f̃

g̃


 =



I − S N

M2 Q2






x

y


 ,

=







I N

M Q


−




S 0

−EM −EQ









x

y


 , (3.47)

where M , N and Q are defined as in Section 3.1, M2 = S−1
2 C and Q2 =

S−1
2 D. Note also that M2 = S−1

2 S1S
−1
1 C = (I + E)M and analogously

Q2 = (I + E)Q. The right-preconditioned system is



f̃

g̃


 =



I − S N2

M Q2






x

y


 ,

=







I N

M Q


−



S −EN

0 −EQ









x

y


 , (3.48)

where M , N and Q are defined as in Section 3.1, N2 = BTS−1
2 and Q2 =

DS−1
2 . Note also that N2 = BTS−1

1 S1S
−1
2 = N(I + E) and analogously

Q2 = Q(I + E).

Using (3.47), we can bound the eigenvalues of B(F, S2) by considering

the perturbation of the eigenvalues of B0 analogously to our bounds in Sec-

tion 3.1. We consider first the left-preconditioned version, restating [53,
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Theorem 4.1].

Theorem 3.3.1. Let λS,E be an eigenvalue of the (left-preconditioned) ma-

trix B(F, S2), λ be an eigenvalue of B0 and Qvj = δjvj .

1. If δj ∈ IR, for j = 1, . . . ,m, then

|λS,E − λ| ≤ (1 +
√

2)κ(Θ)

(
1 + ω1

1− ω1

)1/2

‖S‖

+ max
j

{
|1 + δjλ

+
j |, |1 + δjλ

−
j |
}
κ(V )‖E‖.

2. If δj ∈ C and ∃α > 0 s.t. |δj | ≤ α <
√

5, for j = 1, . . . ,m, then

|λS,E − λ| ≤ 2max


1,

1

2
+

1 + α

2
√

2
(√

5− α
)


κ(Θ)

(
1 + ω1

1− ω1

)1/2

‖S‖

+
2 + (1 +

√
5)α+ 2α2

√
2
(√

5− α
) κ(V )‖E‖.

3. If D = 0, then

|λB − λ| ≤ 2

(
1 + ω1

1− ω1

)1/2

‖S‖+
2
√

5

5
‖E‖.

Proof: In Section 3.1.1 we have already derived the eigendecomposition of

B0. From this decomposition we get the following perturbation bound (see

[57, Theorem IV.1.12]),

|λB − λ| ≤

∥∥∥∥∥∥∥
Y−1




S 0

−EM −EQ


Y

∥∥∥∥∥∥∥
,

≤

∥∥∥∥∥∥∥
Y−1



S 0

0 0


Y

∥∥∥∥∥∥∥
+

∥∥∥∥∥∥∥
Y−1




0 0

EM EQ


Y

∥∥∥∥∥∥∥
. (3.49)

Corollary 3.1.5 gives bounds for the first term in (3.49). So, we only need
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bounds for the second term. Define X such that

X = Y−1




0 0

EM EQ


Y.

We have




0 0

EM EQ


Y =




0 0

−E(MY11 +QY21) −E(MY12 +QY22)


 ,

where MU1 = 0 and MU2 = MNV = (I + Q)V = V (I + ∆). This gives

MY12 = MU2 = V (I + ∆), MY11 = [0 V (I + ∆)], QY22 = V∆(Λ− − I) and

QY21 = [0 V∆(Λ+ − I)]. So, the previous equation reduces to




0 0

EM EQ


Y =




0 0 0

0 −EV (I + ∆Λ+) −EV (I + ∆Λ−)


 .(3.50)

We then multiply (3.50) from the left by Y−1, see (3.13)–(3.17), and refactor

to yield

X =




0 0 0

0 (Λ− − Λ+)−1 0

0 0 −(Λ− − Λ+)−1







0 0 0

0 V −1EV V −1EV

0 V −1EV V −1EV




·




0 0 0

0 I + ∆Λ+ 0

0 0 I + ∆Λ−



.

Using the consistency of the 2-norm we have the following bound on ‖X‖.

‖X‖ ≤ 2‖(Λ− − Λ+)−1‖max
j

{
|1 + δjλ

+
j |, |1 + δjλ

−
j |
}
κ(V )‖E‖.

The remainder of the proof concerns the bounds on the right hand side of

(3.51) for each particular case.
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For the first part of the theorem, assume δj ∈ IR, for j = 1, . . . ,m. We

have

λ−j − λ+
j =

1 + δj −
√

4 + (1 + δ)2

2
− 1 + δj +

√
4 + (1 + δ)2

2
,

= −
√

4 + (1 + δj)2 = −
√
p(δ).

Clearly, |1/(λ−j −λ+
j )| obtains its maximum at δj = −1. This yields |1/(λ−j −

λ+
j )| ≤ 1/2. We can use this in (3.51) to complete the proof of the the first

bound.

For the second part of the theorem, we assume ∃α > 0 s.t. |δj | ≤

α <
√

5, for j = 1, . . . ,m. First, we derive a bound for ‖(Λ− − Λ+)−1‖.

Recall the lower bound on p(δ) in the proof of Lemma 3.1.3 and note that

|1/(λ−j −λ+
j )| = 2/

√
|p(δj)|. So, we have ‖(Λ−−Λ+)−1‖ ≤

(
2
(√

5− α
))−1/2

.

Furthermore, we have

|1 + δjλ
±
j | =

∣∣∣∣∣1 + δj
1 + δj ±

√
4 + (1 + δj)2

2

∣∣∣∣∣ ,

≤ 1 +
|δj ||1 + δj |+ |δj |

√
|4 + (1 + δj)2|

2
.

We can bound |δ + 1 − 2i| and |δ + 1 + 2i| from above by
√

5 + α; so,
√
|4 + (1 + δj)2| ≤

√
5 + α. Thus, we have

|1 + δjλ
±
j | ≤ 1 +

α(1 + α) + α
(√

5 + α
)

2
= 1 +

1 +
√

5

2
α+ α2.

Substituting these bounds into (3.51) yields

‖X‖ ≤ 2 + (1 +
√

5)α+ 2α2

√
2
(√

5− α
) κ(V )‖E‖. (3.51)

We can then substitute this result into (3.49) to prove the second part of

the theorem.

For the third part of the theorem, we assume D = 0. We bound the first
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term in (3.49) using Theorem 3.1.2, Lemma 3.1.3 for δ ≥ −1 and Lemma

3.1.4 where κ(Θ) = 1. This follows from the fact that U2 can be chosen to

be orthogonal (see [20]).

For the second term in (3.49), since Q = 0, δj = 0, so λ−j − λ+
j = −

√
5,

and we can choose V = I. We then substitute this into (3.51). �

As a side note, in the complex case the term involving α will generally

be modest in practice. For example, if α = 1, it is about 4.6022, and for

α = 2, it is about 23.9727.

For right preconditioning, introduce two lemmas (not found in [53]),

which bound the norms of two key quantities.

Lemma 3.3.2. Let Λ± be defined as above. Then,

1. If δj ∈ C and ∃α > 0 s.t. |δj | ≤ α <
√

5, for j = 1, . . . ,m, then

‖Λ± − I‖ ≤ 1 + α+
√

4 + (1 + α)2

2
.

2. If D = 0, then

‖Λ± − I‖ =
1 +
√

5

2
.

The proof of this lemma is trivial.

Lemma 3.3.3. Let Λ± and ∆ be defined as above. Then,

1. If δj ∈ IR, for j = 1, . . . ,m, then

‖(Λ− − Λ+)−1∆‖ ≤
√

5

2
.

2. If δj ∈ C and ∃α > 0 s.t. |δj | ≤ α <
√

5, for j = 1, . . . ,m, then

‖(Λ− − Λ+)−1∆‖ ≤ α√
2(
√

5− α)
.
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3. If D = 0, then

‖(Λ− − Λ+)−1∆‖ = 0.

Proof: For the real case, note that the the supremum of |(λ−j − λ+
j )−1δj |

as a function of δj occurs at δj = −5. For the complex case, use the lower

bound on |p(δj)| developed in the proof of Lemma 3.1.3 [53, Lemma 2.2].

The D = 0 case is trivial. �

These lemmas allow us to state bounds for the right-preconditioned sys-

tem which are not included in [53]. Recall that for the right-preconditioned

case, Q2 = Q(I + E) and N2 = N(I + E).

Theorem 3.3.4. Let λS,E be an eigenvalue of the (right-preconditioned)

matrix B(F, S2), λ be an eigenvalue of B0 and Qvj = δjvj .

1. If δj ∈ IR, for j = 1, . . . ,m, then

|λS,E − λ| ≤ (1 +
√

2)κ(Θ)

(
1 + ω1

1− ω1

)1/2

‖S‖

+ (1 +
√

2 +
√

5)max
j

{
|λ±j − 1|

}
κ(V )‖E‖.

2. If δj ∈ C and ∃α > 0 s.t. |δj | ≤ α <
√

5, for j = 1, . . . ,m, then

|λS,E − λ| ≤ 2max


1,

1

2
+

1 + α

2
√

2
(√

5− α
)


κ(Θ)

(
1 + ω1

1− ω1

)1/2

‖S‖

+ max


1 +

α√
2(
√

5− α)
,
1

2
+

1 + 3α

2
√

2(
√

5− α)




·
(
1 + α+

√
4 + (1 + α)2

)
κ(V )‖E‖.

3. If D = 0, then

|λB − λ| ≤ 2

(
1 + ω1

1− ω1

)1/2

‖S‖+
1 +
√

5

2
‖E‖.
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Proof: Using Lemma 3.1.1, we have R = S, T = NE and W = QE . We

handle the (1,1) block using Corollary 3.1.5 [53, Corollary 2.4].

For the (2,1) block (3.24), the ‖L1‖ term is bounded by Lemma 3.1.3

[53, Lemma 2.2] and Lemma 3.3.2 bound the ‖R2‖ term in the complex

and D = 0 cases. For the middle term, we note that N = U2V
−1, so

‖Y −1
11 U2‖ = ‖[U1 U2]

−1U2‖ = 1. So we have

∥∥∥∥∥∥∥




Y −1
11 NE

−[0 I]Y −1
11 NE



[

0 I I

]
∥∥∥∥∥∥∥
≤ 2κ(V )‖E‖.

For the (2,2) block (3.25), we note that QV = V∆, so V −1Q = ∆V −1.

Using this on the middle block, allows us to employ Lemma 3.3.3. We treat

the |‖R2‖ term as before. �

3.4 Related System with Approximate Schur

Complements

Following the approach of Section 3.2 to generate the related system for

this problem, we would generate precisely the related system derived from

(3.36), with S−1
1 instead of S−1

2 [20]. Instead, we use an alternative splitting

of B(F, S2). Though shown for the left-preconditioned system, the splitting

is the same for right-preconditioning.

B(F, S2) =




I N

M2 Q2 + E


−



S 0

0 E


 ,

We then derive the related system for this splitting. Due to the E term in

the splitting, however, we cannot reduce the size of our system. Instead, for
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the left-preconditioned system, we have



I − (I −NM2)S −NE

−M2S I + E






x

y


 =



f̂

ĝ


 . (3.52)

For the right-preconditioned system, we have



I − (I −N2M)S −N2E

−MS I + E






x

y


 =



f̂

ĝ


 . (3.53)

For a problem in magnetostatics, a linear system similar to (3.52) was

derived by Perugia and Simoncini [47]. Their preconditioned system (2.30)

is described in Section 2.3. If we employ the same choices for the split-

ting and approximations, we obtain basically the same system to be solved.

However, Perugia and Simoncini [47] only outline the qualitative behavior

of the eigenvalues in the case that E is sufficiently small.

Now we present a bound on the eigenvalues of the left-preconditioned

system (the bound for the right-preconditioned system is almost identical)

[53, Theorem 4.2].

Theorem 3.4.1. For any eigenvalue, λR, of the related system matrix (3.52),

|1− λR| ≤
√

1 + ‖N‖2
√

1 + ‖M2‖2 max (‖S‖, ‖E‖) .

Proof: Note that the matrix in (3.52) can be split as follows,



I − (I −NM2)S −NE

−M2S I + E


 = I −



I −NM2 N

M2 −I






S 0

0 E


 ,

= I −



I −N

0 I







I 0

M2 −I






S 0

0 E


 .

Expressing our matrix as a perturbation of the identity and using a classic
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perturbation bound (see [57]) yields

|1− λR| ≤

∥∥∥∥∥∥∥



I −N

0 I







I 0

M2 −I






S 0

0 E




∥∥∥∥∥∥∥
.

Noting that

∥∥∥∥∥∥∥



I −N

0 I




∥∥∥∥∥∥∥
≤
√

1 + ‖N‖2, and

∥∥∥∥∥∥∥




I 0

M2 −I




∥∥∥∥∥∥∥
≤
√

1 + ‖M2‖2,

we obtain

|1− λR| ≤
√

1 + ‖N‖2
√

1 + ‖M2‖2 max (‖S‖, ‖E‖) .

�

The terms ‖N‖ and ‖M2‖ in the bound from Theorem 3.4.1 are generally

benign. They are bounded by the norms of the off-diagonal blocks of the un-

preconditioned matrix (1.2) and the norms of the inverses of the splitting

and inexact Schur complement. Note that the latter two are chosen by

the user. Moreover, if we use a good preconditioner for this problem and

therefore both our splitting and inexact Schur complement are reasonably

accurate, the norms of their inverses will not be large relative to the norm

of (1.2), unless (1.2) is itself poorly conditioned.

It is important to note that, as for the block-diagonally preconditioned

system, the eigenvalue perturbation of the related system is dependent on

both ‖S‖ and ‖E‖. Again, there is no advantage to be had by making one

significantly smaller than the other. Thus, we should be equally attentive to

both ‖S‖ and ‖E‖ in order to achieve tight clustering and fast convergence.
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4 Probing Methods for

Approximating Schur

Complements

Replacing the exact Schur complement in the preconditioners discussed in

Chapter 3 with an approximation can significantly improve their efficiency.

Although in some cases a natural approximation is cheaply available (e.g.

the pressure mass matrix for Navier-Stokes), in general this is not the case.

While it is generally inexpensive to multiply with the Schur complement ma-

trix without forming it (i.e. multiplying with each of the component pieces)

forming it can be prohibitively expensive. Thus, we restrict our attention to

matrix approximation techniques that can be performed using only matrix-

vector multiplication. Such techniques have been around since the work of

Curtis, Powell and Reid [19] and they were first applied to Schur complement

problems by Chan and Mathew [14]. However, the extensions to the work

of Curtis, Powell and Reid [19] by the optimization community [15, 16, 41]

have only recently been used for Schur complement approximation. We out-

line this work by Siefert and de Sturler [54] in Sections 4.1 and 4.2. The

remainder of the chapter is original.

4.1 Background and Algorithmic Statement

Curtis, Powell and Reid [19] introduced a technique for the estimation of a

sparse Jacobian matrix by finite differencing. They note that if the sparsity

pattern of the Jacobian matrix is known — specifically, if it is banded with

bandwidth b — then the matrix can be exactly reconstructed using b matrix-

vector products. The idea behind this method is to partition the columns

of the matrix into sets such for any row, there is at most one column in the
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set that has a non-zero entry in that row. For each set, one then multiplies

the matrix with a single vector, which exactly captures the entries in the

columns belonging to that set. For banded matrices, computing this set of

columns can be done with modular arithmetic. This procedure is detailed in

Algorithm 1. It was first applied to the approximation of Schur complement

matrices by Chan and Mathew [14] where it referred to as probing. We

will refer to it as banded probing to differentiate it from more advanced

techniques. As a convention we will assume that vectors are numbered

starting at 1.

Algorithm 1 K̃ = Banded Probing(K ∈ IRn×n, b ∈ ZZn)

1: Generate b vectors, x1, . . . , xb, such that

xi(j) =

{
1 if j mod b == i mod b

0 otherwise

2: Compute wi = Kxi, for i = 1, . . . , p.
3: Build K̃ such that

K̃i,j = wi ((j − 1) mod b+ 1)

Note: If b is the bandwidth of K, then K̃ = K and probing is exact.

Figure 4.1 shows a how steps 1 and 2 of the banded probing algorithm

work for a small tridiagonal matrix. We take b is taken to be the bandwidth

of the matrix, so that all of the entries are exactly captured. One draw-

back of this approach is that it does not necessarily generate symmetric

approximations K̃, even if K is symmetric [14]. To remedy this, Chan and

Mathew propose an alternative algorithm (which is not linear in K), which

is described in Algorithm 2.

Although Curtis, Powell and Reid saw the potential to extend prob-

ing methods to non-banded matrices, they offered no suggestion on how

to accomplish this. Nearly a decade later, McCormick [41] and Coleman

and Moré [15] developed such a technique in the context of their work on

sparse Jacobians and Hessians. These authors independently noted that
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


a1 b2

c1 a2 b3

c2 a3 b4

c3 a4 b5

c4 a5







1 0 0
0 1 0
0 0 1
1 0 0
0 1 0




=




a1 b2 0
c1 a2 b3

b4 c2 a3

a4 b5 c3

c4 a5 0




Figure 4.1. Banded probing on a tridiagonal matrix, using the vectors e1 + e4, e2 + e5 and
e3.

Algorithm 2 K̃ = Symmetric Banded Probing(K ∈ IRn×n, b ∈ ZZ+)

1: M =Banded Probing(K, b).
2: Let

K̃i,j =

{
Mi,j if |Mi,j| < |Mj,i|
Mj,i otherwise

Note: K̃ = K̃T . If b is the bandwidth of K, then K̃ = K and probing is
exact.

the problem of partitioning the columns of a matrix into sets such that for

any row, there is at most one column in the set that has a non-zero entry

in that row, can be viewed as a graph coloring problem. Given a graph

G = (V,E) with vertices V and edges E, a graph coloring assigns colors

to the vertices such that no two neighboring vertices have the same color.

This means that if (vi, vj) ∈ E, vi and vj must have different colors. From

this coloring, a set of vectors can be chosen to perform the probing process.

This general approach, which is referred to by Cullum and Tůma as partial

matrix estimation [18], will be called structured probing and is described on

Algorithm 3.

Like the banded case, we must havea priori knowledge of the sparsity

pattern of the matrix K. Here we use a sparsity matrix H ∈ {0, 1}n×n

to represent that pattern, as opposed to choosing a bandwidth b as in the

banded case. For an exact reconstruction, we would choose H to have the

same sparsity pattern as K. For an approximation, we would choose H

so that the large entries of K are captured. We then use that matrix H

to define a graph G (step 1) on which we will perform the graph coloring
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(step 2). The graph coloring problem is NP-complete [17, Chapter 36], so

a variety of different heuristics are available. The question of which graph

and which coloring heuristic to choose will be dealt with in Section 4.2

Algorithm 3 K̃ = Structured Probing(K ∈ IRn×n,H ∈ {0, 1}n×n)

1: Compute a graph G derived from H.
2: Perform a graph coloring on G to generate a mapping φ : {1, . . . , n} →
{1, . . . , p}n, where p is the number of colors. The color for vertex i is
given by φ(i).

3: Generate the matrix of probing vectors X ∈ {0, 1}n×p such that

Xi,j =

{
1 if φ(i) = j,
0 otherwise.

4: Compute W = KX.
5: Build K̃ using W and the sparsity pattern of H.

Note: If Ki,j 6= 0→ Hi,j 6= 0, then K̃ = K and structured probing is exact.

After choosing H, the graph G and the coloring algorithm to generate

the mapping φ, computing the matrix of probing vectors, X, (step 3) is

straightforward. We then multiply by K (step 4) and then perform the

construction of K̃ (step 5). This final step is not difficult, For each i, j s.t.

Hi,j 6= 0, we set K̃i,j = Wi,φ(j).

Questions with respect to the choice of graph, G, and coloring algorithm

will be discussed in more detail in Section 4.2. We discuss the analytic prop-

erties of structured probing in Section 4.3 and the applicability of structured

probing to Schur complement matrices in Section 4.4. Next, we analyze of

the quality of approximations to Schur complements generated by struc-

tured probing in Section 4.5. Finally, in Section 4.6 we discuss of the use of

inexact factorizations and inverses in the context of structured probing.

4.2 Graph Coloring and Structured Probing

A undirected graph, G = (V,E), is defined by a set of vertices V and a set

of unordered pairs of vertices, E, called edges. Vertices u and v are adjacent

if {u, v} ∈ E. A path of length k is a sequence of vertices v1, . . . , vk+1 such
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that vi is adjacent to vi+1, for i = 1, . . . , k. Two vertices are distance-k

neighbors if the shortest path connecting them has length at most k. Let

Nk(v) represent the set of distance-k neighbors of v. Directed graphs are

defined similarly, except that the edge pairs are ordered, meaning that u

is adjacent to v if and only if (u, v) ∈ E. The existence of (v, u) ∈ E,

is irrelevant to u being adjacent to v. Distance metrics, path lengths and

neighborhoods on a directed graph are defined accordingly.

A distance-k coloring of a graph G = (V,E) is a mapping φ : V →

{1, . . . , p}, such that φ(u) 6= φ(v) if u and v are distance-k neighbors. This

mapping φ assigns a color to each vertex in the graph. The standard, “text-

book” graph coloring (coloring G such that no two distance-1 neighbors

have the same color) is a distance-1 coloring. Distance-2 coloring, then,

requires that distance-1 neighbors, and distance-1 neighbors of distance-1

neighbors, have different colors. Let ∆(G) and δ(G) be the maximum and

minimum vertex degree of G, respectively. Let δ̄2(G) be the average number

of distance-2 neighbors per vertex in G.

Consider a sparse symmetric matrix H ∈ {0, 1}n×n. Define the vertex

set V = {v1, . . . , vn}, that is one vertex corresponding to each column of H.

For the purpose of structured probing, each color and its associated set of

columns corresponds to a single probing vector. Thus we need to choose a

graph and coloring such that

∀i, j, k ∈ {1, . . . , n} s.t. Hi,j,Hi,k 6= 0, φ(vj) 6= φ(vk). (4.1)

This property ensures that the coloring partitions the matrix into sets of

columns with non-overlapping sparsity patterns.

The column intersection graph, G1(H) = (V,E1), is defined such that

(vi, vj) ∈ E1, if ∃k s.t. Hk,i 6= 0 and Hk,j 6= 0.
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This means that two vertices are adjacent if their columns have sparsity pat-

terns that intersect. Performing a distance-1 coloring on this graph satisfies

(4.1). The use of this particular graph was proposed by Coleman and Moré

[15].

McCormick [41] proposed the use of the adjacency graph, G2(H) =

(V,E2), where

(vi, vj) ∈ E2, if ∃Hi,j 6= 0.

For this graph, a distance-1 coloring is not sufficient to satisfy (4.1). Instead,

a distance-2 coloring is required. As Gebremedhin, Manne and Pothen [31]

show experimentally, this approach is significantly more efficient in terms of

space complexity and execution time, although the methods have the same

time complexity. In light of this, we will use distance-2 coloring on G2 for

all of the non-symmetric matrices we consider. Algorithm 4, as presented

by Gebremedhin, et al. [31], shows the simplest greedy distance-2 coloring

algorithm on an arbitrary graph G. This algorithm works by coloring each

vertex with the lowest numbered legal color. It determines this by recording

all of the illegal colors in the array forbiddenColors and choosing the lowest-

numbered remaining color. Running this algorithm takes O(nδ̄2) time [31,

Lemma 3.9].

Algorithm 4 φ = Greedy Distance-2 Coloring(G = (V,E))

1: Initialize forbiddenColors with some a 6∈ V .
2: For i = 1, . . . , n
3: For each colored vertex w ∈ N2(vi)
4: forbiddenColors[φ(w)] = vi.
5: Set φ(vi) = minimum c s.t. forbiddenColors[c] 6= vi.

Cullum and Tůma [18] suggest balanced coloring as an alternative ap-

proach. This approach attempts to maximize the number of vertices colored

by the least commonly used color at each step. Thus, when a number of

colors are legal for a given vertex, we choose the color that has been used
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the least. Algorithm 5 states a heuristic algorithm for balanced coloring.

Algorithm 5 φ = Balanced Distance-2 Coloring(G = (V,E))

1: Set p = 1 + maxdeg(V ), the initial number of colors to consider.
2: Set cj = 0, for j = 1, . . . , p, be the number of times each color has been

used.
3: Initialize forbiddenColors with some a 6∈ V .
4: For i = 1, . . . , n
5: For each colored vertex w ∈ N2(vi)
6: forbiddenColors[φ(w)] = vi.
7: Set colored = false and nuses =∞.
8: For j = 1, . . . , p
9: If forbiddenColors[j] 6= vi and cj < nuses then

10: Set nuses = cj, colored = true and φ(vi) = j.
11: If colored = false then
12: Set φ(vi) = p+ 1.
13: p = p+ 1.
14: Set cφ(vi) = cφ(vi) + 1.

The idea behind this heuristic is that by balancing the number of nodes

colored by each color, the algorithm should use fewer colors. For generat-

ing approximations with structured probing, this heuristic has a potential

advantage in reducing the error K̃. Probing vectors corresponding to heav-

ily used colors will often have more error than vectors corresponding to

less frequently used colors. This error comes from the lumping in of small

entries in K that are not captured by H. Running this algorithm takes

O(n(∆(G)2 + p)) time.

If we approximate a symmetric matrix, we can use symmetry to reduce

the number of colors used. In this case, we do not need to accurately capture

the (i, j) entry if we can reconstruct the (j, i) entry accurately. This modified

technique is known as distance-3
2 coloring. Algorithm 6, developed by Powell

and Toint [48], shows a greedy distance-3
2 coloring algorithm. This particular

statement of the algorithm is taken from Gebremedhin, et. al [31].

For the purpose of comparison with banded probing techniques, we in-

troduce one final coloring method that we call prime divisor coloring. This

algorithm computes a distance-2 coloring that is implicitly performed on
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Algorithm 6 φ = Greedy Distance-3
2 Coloring(G = (V,E))

1: Initialize forbiddenColors with some a 6∈ V .
2: For i = 1, . . . , n
3: For each w ∈ N1(vi)
4: If w is colored then
5: forbiddenColors[φ(w)] = vi.
6: For each colored vertex x ∈ N1(w)
7: If w is not colored then
8: forbiddenColors[φ(x)] = vi.
9: else

10: If phi(x) < φ(w) then
11: forbiddenColors[φ(x)] = vi.
12: Set φ(vi) = minimum c s.t. forbiddenColors[c] 6= vi.

the adjacency graph of the matrix. In this approach, we choose probing

vectors that have regular patterns, as the vectors banded probing do. How-

ever, we choose the number of vectors such that we can exactly reconstruct

the desired sparsity pattern. We do this by choosing the number of vec-

tors to be relatively prime to the differences between column indices of

nonzero coefficients in a row, for all rows. More precisely, choose the num-

ber of colors p, such that p is relatively prime to all elements of the set

{ i − j | for some k, Hk,i = 1 and Hk,j = 1}. This algorithm implicitly

performs a distance-2 coloring on the adjacency graph of H, although we do

not use the graph explicitly. Instead, we operate directly on H. Algorithm

7 presents this approach. If H comes from a fixed stencil on a regular grid,

Algorithm 7 φ = Prime Divisor Distance-2 Coloring(H ∈ {0, 1}n,n)

1: Initialize illegalP with the empty set.
2: For i = 1, . . . , n
3: For j s.t. Hi,j 6= 0
4: For k s.t. Hi,k 6= 0 and k > j
5: illegalP ← (k − j).
6: For i = 2, . . . , n
7: If ∀j ∈ illegalP, jmod i 6= 0 then
8: p = i.
9: break

10: For i = 1, . . . , n
11: Set φ(vi) = imod p.
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we need only consider a single “representative” row of the matrix (i.e., a

row for a point away from the boundaries), and use that row to choose the

number of colors p. For such problems, this algorithm takes O(p + ∆(G)2)

work, where ∆(G) is the highest degree vertex on the mesh. However, this

algorithm takes O(n(p+∆(G)2)) work for an unstructured meshes. It can be

accelerated somewhat by only using prime numbers in Step 5 of Algorithm

7, but that does not improve the asymptotic efficiency.

4.3 Analytic Properties of Probing Methods

In their discussion of probing, Chan and Mathew outline several analytic

properties of approximation generated by banded probing. The algorithm

is linear in K and preserves (strict) diagonal dominance [14]. We will prove

similar properties for structured probing. In the notation of Algorithm 3,

(4.1) guarantees that X, the matrix of probing vectors, has exactly 1 non-

zero entry per-row. Let W = KX, where K is the matrix we are approxi-

mating. Then,

Wi,j =
∑

φ(k)=j

Ki,k, for i = 1, . . . , n and j = 1, . . . , p. (4.2)

We can use this to derive several theoretical results.

Theorem 4.3.1. Let H, K be valid input matrices for Algorithm 3 and K̃

be its output. Then for any i,

n∑

j=1

|K̃i,j| ≤
n∑

j=1

|Ki,j |.

Proof: Let φ be the coloring generated in Algorithm 3. In building the

approximation K̃ in Step 5 of Algorithm 3,

∀Hi,j 6= 0 , K̃i,j = Wi,φ(j). (4.3)
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Thus,

∀i,
∑

j
Hi,j 6=0

|K̃i,j | =
∑

j
Hi,j 6=0

|Wi,φ(j)|.

The property (4.1) guarantees that this sum will never include the same

entry of W twice. Thus, we have

∀i,
∑

j
Hi,j 6=0

|Wi,φ(j)| ≤
p∑

k=1

|Wi,k|,

=

p∑

k=1

n∑

j=1

|Ki,jXj,k|,

=

p∑

j=n

(
|Ki,j |

p∑

k=1

|Xj,k|
)
,

=
n∑

j=1

|Ki,j |.

�

Corollary 4.3.2. Let H, K be valid input matrices for Algorithm 3 and K̃

be its output. Then, ‖K̃‖∞ ≤ ‖K‖∞.

Like banded probing, structured probing also preserves (strict) diagonal

dominance, if a certain assumption is met.

Theorem 4.3.3. Let H and K be valid input matrices for Algorithm 3

where Hi,i = 1 for i = 1, . . . , n and K is (strictly) diagonally dominant.

Then K̃, the output of Algorithm 3, is also (strictly) diagonally dominant.

Proof: Diagonal dominance of K implies that for each row i = 1, . . . , n,

|Ki,i| ≥
∑

j 6=i

|Ki,j|.
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Therefore,

|Ki,i| −
∑

j 6=i
φ(j)=φ(i)

|Ki,j | ≥
∑

φ(j)6=φ(i)

|Ki,j|. (4.4)

But by (4.2) and (4.3),

K̃i,i = Ki,i +
∑

j 6=i
φ(j)=φ(i)

Ki,j,

and by the triangle inequality,

|K̃i,i| ≥ |Ki,i| −
∑

j 6=i
φ(j)=φ(i)

|Ki,j|. (4.5)

By (4.4) and (4.5),

|K̃i,i| ≥
∑

φ(j)6=φ(i)

|Ki,j |. (4.6)

Also note that by (4.2) and (4.3),

∑

j 6=i
Hi,j 6=0

|K̃i,j| =
∑

j 6=i
Hi,j 6=0

∣∣∣∣∣∣

∑

φ(k)=φ(j)

Ki,k

∣∣∣∣∣∣
. (4.7)

Since Hi,i 6= 0, by (4.1) we know that φ(k) 6= φ(i). Likewise, we know that

no |Ki,k| term is included twice. Thus,

∑

j 6=i
Hi,j 6=0

|K̃i,j | ≤
∑

j 6=i
Hi,j 6=0

∑

φ(k)=φ(j)

|Ki,k|,

≤
∑

φ(j)6=φ(i)

|Ki,j|. (4.8)
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Combining (4.6) and (4.8) as follows

|K̃i,i| ≥
∑

φ(j)6=φ(i)

|Ki,j| ≥
∑

j s.t. j 6=i
Hi,j 6=0

|K̃i,j | ≥
∑

j

|K̃i,j |, (4.9)

completes the proof. Note that the above inequalities can be replaced with

strict inequalities if K is strictly diagonally dominant. �

4.4 Structured Probing for Schur Complements

The effectiveness of structured probing to approximate the Schur comple-

ment is based on the assumption that a reasonably accurate sparse ap-

proximation of the Schur complement exists. The sparsity pattern of this

approximation, or some pattern similar to it, serves as the inspiration for

the choice of sparsity pattern, H. Therefore, we consider the issue of the

type of problems for which such an approximation exists.

Demko, Moss and Smith [21] show several results demonstrating bounds

on the decay of the entries of inverses of banded matrices with distance

from the diagonal. While their bounds are generally applicable, they do

not necessarily demonstrate a decay that can be exploited to generate a

sparse approximation to a matrix. For example, the decay constant may

be bounded by a number greater than one, implying that the magnitude

of entries can increase with distance from the diagonal. They show sim-

ilar results for sparse (non-banded) positive definite matrices. In Section

4.4.1, we reformulate their results on sparse matrices in terms of distance

on the adjacency graph of the matrix and extend them to indefinite matri-

ces. We remark on the relevance of these results to Schur complements in

Section 4.5.1.
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4.4.1 Extending the Results of Demko, Moss and Smith

In their paper, Demko, Moss and Smith [21] present bounds on the entries

of the inverses of banded matrices, both finite and infinite. They note first

that for any positive definite operator A and real polynomial p,

∥∥A−1 − p(A)
∥∥ = max

x∈λ(A)

∣∣∣∣
1

x
− p(x)

∣∣∣∣ , (4.10)

where λ(A) represents the spectrum of A. They also recall a result of Meinar-

dus [42, p. 33] on the accuracy of polynomial approximation of 1/x. This

result, repeated in Lemma 4.4.1, plays a key role in their analysis.

Lemma 4.4.1. Let f(x) = 1/x, a, b ∈ IR s.t. 0 < a < b, r = b/a and

q(r) = (
√
r − 1)/(

√
r + 1). Let πn be the set of polynomials of degree at

most n. Then,

inf
p∈πn

‖f − p‖∞ =
(1 +

√
r)2qn+1

2ar
.

This key property leads Demko, et al. to derive bounds on the entries of

the inverse of a banded matrix. Their results for positive definite banded

matrices [21, Proposition 2.1, Theorem 2.4] are presented here in Theorem

4.4.2,

Theorem 4.4.2. Let A ∈ IRn×n be a p.d., banded matrix with bandwidth

m. Let [a, b] be the smallest interval containing λ(A). Then,

|A−1
i,j | ≤ ‖A−1‖max


1,

(
1 +

√
κ(A)

)2

2κ(A)



(√

κ(A)− 1√
κ(A) + 1

) 2|i−j|
m

.

Demko, et. al provide a similar result for indefinite banded matrices [21,

Proposition 2.3, Theorem 2.4], which we repeat in Theorem 4.4.3

Theorem 4.4.3. Let A ∈ IRn×n be a banded matrix with bandwidth m.
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Let [a, b] be the smallest interval containing λ(AA∗). Then,

|A−1
i,j | ≤ (m+ 1)‖A−1‖max

(
1,

(
1 + κ(A)√

2κ(A)

)2
)
λ
|i−j|−m
1 ,

where

λ1 =

(
κ(A) − 1

κ(A) + 1

) 1
m

.

These results show that the inverses of banded matrices have entries that

decay with distance from the diagonal. Such decay is useful for the cre-

ation of sparse approximations if the matrix is well-conditioned. This result

provides an intuitive foundation for the applicability of banded probing to

certain Schur complement problems, like the 2-D non-overlapping domain

decomposition problem studied by Chan and Mathew [14]. If the matrix

F is banded, D is sparse and C and BT are “local” (they do not combine

columns/rows of F−1 that are far apart), then the Schur complement ma-

trix −(D−CF−1BT ) will share the decay characteristics of the inverse of a

banded matrix.

Demko, et. al go on to state a similar result that applies to the inverse

of (non-banded) sparse matrices [21, Proposition 5.l]. They describe this

property in terms of support and decay sets, but we have developed an

alternative formulation in terms of graph distance.

Theorem 4.4.4. Let G = (V,E) be the adjacency graph of a positive defi-

nite sparse matrix A ∈ IRn×n and let dist(·, ·) be the shortest-path distance

metric defined on G. Then,

|A−1
i,j | ≤

(
1 +

√
κ(A)

)2

2‖A‖

(√
κ(A)− 1√
κ(A) + 1

)dist(vi,vj)+1

.
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Proof: Demko, et. al [21, Proposition 5.1] define

Sn(A) =

n⋃

k=0

{
(i, j) s.t. Ak(i, j) 6= 0

}
,

Dn(A) = ({1, . . . , n} × {1, . . . , n}) \ Sn(A),

and prove that

sup
{
|A−1

i,j | : (i, j) ∈ Dn(A)
}
≤

(
1 +

√
κ(A)

)2

2‖A‖

(√
κ(A)− 1√
κ(A) + 1

)n+1

.

(4.11)

Let Gn(V,En) be the adjacency graph of An. Then, En ⊂ {(vi, Nn(vi))},

the set of all paths between distance-n neighbors in G. Therefore,

Dn(A) = {(i, j) 6∈ En} .

Thus,

{(i, j) : dist(vi, vj) > n} ⊂ Dn(A). (4.12)

Combining (4.11) with (4.12) and noting that the bound can be applied

element-wise completes the proof. �

We have also developed an extension of Theorem 4.4.4 to the indefinite

case.

Theorem 4.4.5. Let A ∈ IRn×n be a non-singular matrix with at most b

non-zero entries per column. Let G = (V,E) be the adjacency graph of

matrix AAT . and let dist(·, ·) be the shortest-path distance metric defined

on G. Then,

|A−1
i,j | ≤

b‖A‖1 (1 + κ(A))2

2‖A‖

(
κ(A)− 1

κ(A) + 1

)dist(vi,vj)

.
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Proof: Take i, j ∈ 1, . . . , n. Note that A−1 = AT (AAT )−1. Thus,

|A−1
i,j | =

∣∣∣∣∣∣∣

∑

AT
i,k

6=0

AT
i,k(AA

T )−1
k,j

∣∣∣∣∣∣∣
,

≤
∑

AT
i,k

6=0

|AT
i,k|
∣∣∣(AAT )−1

k,j

∣∣∣ ,

≤ ‖A‖1
∑

AT
i,k

6=0

∣∣∣(AAT )−1
k,j

∣∣∣ . (4.13)

As (AAT ) is s.p.d., we can apply Theorem 4.4.4 to the right hand side of

(4.13), yielding

|A−1
i,j | ≤

‖A‖1 (1 + κ(A))2

2‖A‖
∑

Ak,i 6=0

(
κ(A)− 1

κ(A) + 1

)dist(vi,vk)+1

. (4.14)

Since the summands are all less than one, any vk with the smallest value of

dist(vi, vk) will serve as an upper bound for all the summands. As vk is a

neighbor of vj , dist(vi, vj)−1 ≤ dist(vi, vk). Since A has at most b non-zeros

per column, there are at most b entries in the sum. Thus,

|A−1
i,j | ≤

b‖A‖1 (1 + κ(A))2

2‖A‖

(
κ(A) − 1

κ(A) + 1

)dist(vi,vj)

.

�

4.5 Accuracy of Approximations by Structured

Probing

Algorithm 3 for structured probing generates an approximation K̃, given a

matrix K and a sparsity pattern H. Assume that H is chosen such that

Hi,j = 0 if Ki,j = 0. We split K such that

K = K̄ + K̂, (4.15)
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where Hi,j 6= 0 ⇔ K̄i,j = Ki,j and K̂i,j = 0. This means that H and K̄

share sparsity patterns and that H and K̂ have sparsity patterns that are

disjoint. The matrix K̄ is what the structured probing algorithm would

output if K̂ = 0.

We also assume that H is chosen such that K̂ has no large entries.

Specifically, we assume that there exists some ε1 > 0 such that

|K̂i,j | ≤ ε1. (4.16)

Define the error introduced by structured probing to be

R = K − K̃. (4.17)

Define the error in the approximation of K̄ by K̃ to be

L = K̃ − K̄. (4.18)

As K̃ and K̄ have sparsity patterns that are disjoint with that of K̂, so does

L. Finally, we define

ck =

n∑

i=1

Xi,k, (4.19)

which is the number of nodes colored by color k. This allows us to state a

bound on the entries of R.

Theorem 4.5.1. Let H and K be valid input matrices for Algorithm 3.

Let R be defined as in (4.17), ε1 defined as in (4.16) Then,

|Ri,j| ≤





ε1, if Hi,j = 0,

(cφ(j) − 1)ε1, if Hi,j 6= 0.

Proof: Fix i, j ∈ {1, . . . , n}. Note that by (4.15)–(4.18), R = K̂ − L and

that K̂ and L have disjoint sparsity patterns. Thus, if Hi,j = 0, then
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Ri,j = K̂i,j and |Ri,j | ≤ ε1.

For the Hi,j 6= 0 case, we have by (4.2), (4.3) and (4.15), that

K̃i,j = Ki,j +
∑

k 6=j
φ(k)=φ(j)

K̂i,k. (4.20)

By (4.18), (4.19), and (4.20), we have

Li,j =
∑

k 6=j
φ(k)=φ(j)

K̂i,k,

|Li,j | ≤
∑

k 6=j
φ(k)=φ(j)

|K̂i,k|,

≤ ε1
∑

k 6=j

|Xφ(j),k|,

≤ ε1(cφ(j) − 1).

�

Theorem 4.5.1 then allows us to state bounds on particular norms of R.

Lemma 4.5.2. Let H and K be valid input matrices for Algorithm 3. Let

R be defined as in (4.17), ε1 defined as in (4.16) and bH by the minimum

number of non-zeros per row in H and bK be the maximum number of

non-zeros per row in K. Then,

‖R‖1 ≤ nmax
k

(1, ck − 1)ε1, (4.21)

‖R‖∞ ≤ 2(bK − bH)ε1. (4.22)

Proof: The bound on ‖R‖1 follows directly from Theorem 4.5.1. For the

bound on ‖R‖∞, recall that

|Ri,j| =





|Ki,j |, if Hi,j = 0,

∑
k 6=j

φ(k)=φ(j)

K̂i,k, if Hi,j 6= 0. (4.23)
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Then,

n∑

j=1

|Ri,j| =
∑

j
Hi,j 6=0




∑

k 6=j
φ(k)=φ(j)

|Ki,k|


+

∑

j
Hi,j=0

|Ki,k|.

By (4.1) the first sum will never include the same term more than once. Let

H have bi non-zero entries in row i, then we have

n∑

j=1

|Ri,j| ≤ = 2
∑

j
Hi,j 6=0

|Ki,j|,

≤ 2(bK − bi)ε1

Taking the maximum such row sum completes the lemma. �

Note that this bound can be improved if there exists A, such that K =

A−1, and that Theorem 4.4.4 or Theorem 4.4.5 gives useful decay. While

Lemma 4.5.3 does not require q < 1, the entries of R will only be small if

that is the case.

Lemma 4.5.3. Let H and K be valid input matrices for Algorithm 3. Let

G = (V,E) be the adjacency graph of K and let the adjacency graph of H

be a subgraph of G. Assume that K satisfies |Ki,j | ≤ cqdist(vi,vj), for some

c, q > 0 and where dist(·, ·) is the shortest-path distance metric on G. Let

R be defined as in (4.17). Then,

|Ri,j | ≤





cqdist(vi,vj), if Hi,j = 0,

c
∑

k 6=j
φ(k)=φ(j)

qdist(vi,vk), if Hi,j 6= 0.

Proof: Substitute |Ki,j| ≤ cqdist(vi,vj) into (4.23). �

We can also restate Lemma 4.5.3 in terms of the maximum vertex degree of

G, denoted as ∆(G).

Lemma 4.5.4. Let H and K be valid input matrices for Algorithm 3. Let

G = (V,E) be the adjacency graph of K, with maximal degree ∆(G) and
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diameter diam(G), and let the adjacency graph of H be a subgraph of G.

Assume that K satisfies |Ki,j| ≤ cqdist(vi,vj), for some c, q > 0 and where

dist(·, ·) is the shortest-path distance metric defined on G. Let R be defined

as in (4.17). Then, if ∆(G)q 6= 1,

|Ri,j | ≤





cqdist(vi,vj), if Hi,j = 0,

c (∆(G)q)diam(G)−(∆(G)q)3

∆(G)q−1 , if Hi,j 6= 0.

Proof: Since vi has at most ∆(G) neighbors, Lemma 4.5.3 tells us that

|Ri,j | ≤ c
diam(G)∑

k=3

(∆(G)q)k,

because no distance-1 or distance-2 neighbors of vi will have contributions

to K̂i,j . Summing the geometric series completes the proof. �

If ∆(G)q < 1, then the entries of R corresponding to non-zero entries of H

are also small. This particular bound is not dependent on the particular

graph coloring used and is only applicable to problems with rapid decay.

4.5.1 Analysis for Schur Complements

In order for the Schur complement matrix S1 = −(D−CF−1BT ) to be well-

approximated by structured probing, we must first have a useful decay in

the entries of F−1. This means that entries of F−1 corresponding to points

which are far away from each other on the adjacency graph of F must be

small. Condition 4.5.5 expresses this rigorously.

Condition 4.5.5. Let F ∈ IRn×n. Let G = (V,E) be the adjacency graph

of F and let dist(·, ·) be the shortest path distance metric on G. Assume

that there exists ε > 0 and df ∈ ZZ+ such that

∀k, l ∈ {1, . . . , n}, s.t. dist(vk, vl) ≥ df , |F−1
k,l | ≤ ε.
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If the entries of F−1 decay with distance on the adjacency graph of

F , the exact Schur complement S1 = −(D − CF−1BT ) should also have

a decay property, assuming BT and C are “local” (e.g. they only combine

rows/columns of F−1 corresponding to nearby points on the graph of F )

and D is also sparse. This idea of locality is expressed rigorously in Condi-

tion 4.5.6.

Condition 4.5.6. Let F ∈ IRn×n, and B,C ∈ IRn×m. Let G = (V,E)

be the adjacency graph of F and let dist(·, ·) be the shortest path distance

metric on G. For a given i, j ∈ {1, . . . ,m}, assume that ∃k0, l0 ∈ {1, . . . , n}

such that (BT )l0,j 6= 0 and Ci,k0 6= 0. Assume also that ∃db, dc ∈ ZZ+ such

that

∀l ∈ {1, . . . , n} s.t. (BT )l,j 6= 0, dist(vl, vl0) < db,

∀k ∈ {1, . . . , n} s.t. Ci,k 6= 0, dist(vk0 , vk) < dc.

Matrices that satisfy these two conditions lead to Schur complements

that have useful decay. Theorem 4.5.7 expresses this more rigorously.

Theorem 4.5.7. Let F ∈ IRn×n satisfy Condition 4.5.5 and B,C ∈ IRn×m

satisfy Condition 4.5.6. Find df as per Condition 4.5.5. Given i, j ∈

{1, . . . ,m}, find k0, l0, db, dc as per Condition 4.5.6. If dist(vk0 , vl0) ≥ df +

db + dc, then

|(CF−1BT )i,j| ≤ ε‖(BT )·,j‖1‖Ci,·‖1,

where ‖(BT )·,j‖1 and ‖Ci,·‖1 represent the 1-norm of the jth column and

ith row of BT and C respectively.

Proof: Given i, j ∈ {1, . . . ,m}, assume ∃k0, l0 ∈ {1, . . . , n} and ∃df , db, dc ∈
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ZZ+, such that dist(vk0 , vl0) ≥ df + db + dc. Then,

(CF−1BT )i,j =

n∑

k=1

Ci,k

n∑

l=1

F−1
k,l (BT )l,j ,

=
∑

k
dist(vk0

,vk)<dc

Ci,k

∑

l
dist(vl,vl0

)<db

F−1
k,l (BT )l,j . (4.24)

By the triangle inequality,

dist(vk, vl) ≥ dist(vk0 , vl0)− dist(vk0 , vk)− dist(vl, vl0). (4.25)

But dist(vk0 , vl0) ≥ df + db + dc, dist(vk0 , vk) < dc and dist(vl, vl0) < db, thus

dist(vk, vl) ≥ df . So, for each term in the sum in (4.24), |F−1
k,l | ≤ ε. So,

|(CF−1BT )i,j| ≤ ε
∑

k
dist(vk0

,vk)<dc

|Ci,k|
∑

l
dist(vl,vl0

)<db

|(BT )l,j |,

= ε‖BT
·,j‖1|Ci,·‖1.

�

Several other observations follow immediately from Theorem 4.5.7.

Lemma 4.5.8. Let F ∈ IRn×n satisfy Condition 4.5.5 and B,C ∈ IRn×m

satisfy Condition 4.5.6. Find df as per Condition 4.5.5. Given i, j ∈

{1, . . . ,m}, find k0, l0, db, dc as per Condition 4.5.6. If dist(vk0 , vl0) ≥ df +

db + dc, then

1. | − (D − CF−1BT )i,j| ≤ |Di,j|+ ε‖(BT )·,j‖1|Ci,·‖1,

2. |(CF−1BT )i,j| ≤ ε‖BT ‖1‖C‖∞,

3. | − (D − CF−1BT )i,j| ≤ |Di,j|+ ε‖BT ‖1‖C‖∞.

Proof: All three properties follow immediately from Theorem 4.5.7 and the

definition of the 1 and ∞ norms. �

65



We can also restate these theorems such that they do not explicitly

invoke the locality of BT and C. This result is somewhat less elegant, but

can make the above bounds tighter. To do this we choose an optimal k0 and

l0 in Condition 4.5.6 rather than choosing an arbitrary one.

Theorem 4.5.9. Let F ∈ IRn×n satisfy Condition 4.5.5. Find df as per

Condition 4.5.5. Let B,C ∈ IRn×m. For a fixed i, j ∈ {1, . . . ,m}, choose

k0, l0 ∈ {1, . . . , n} such that BT
l0,j 6= 0 and Ci,k0 6= 0 and that dist(vk0 , vl0) is

minimized. If dist(vk0 , vl0) ≥ df , then

|(CF−1BT )i,j| ≤ ε‖(BT )·,j‖1‖Ci,·‖1,

where ‖(BT )·,j‖1 and ‖Ci,·‖1 represent the 1-norm of the jth column and

ith row of BT and C respectively.

Proof: Given i, j ∈ {1, . . . ,m}, choose ∃k0, l0 ∈ {1, . . . , n} such that dist(vk0 , vl0)

is minimized. If dist(vk0 , vl0) ≥ df ,

(CF−1BT )i,j =
n∑

k=1

Ci,k

n∑

l=1

F−1
k,l (BT )l,j . (4.26)

Since dist(vk0 , vl0) is a minimum for all (k0, l0) such that (BT )l0,j 6= 0 and

Ci,k0 6= 0, we have dist(vk, vl) ≥ dist(vk0 , vl0), for all k and l in the sum in

(4.26). Therefore, |F−1
k,l | ≤ ε for each term in the sum in (4.26). So,

|(CF−1BT )i,j| ≤ ε
n∑

k=1

|Ci,k|
n∑

l=1

|(BT )l,j|,

= ε‖(BT )·,j‖1|Ci,·‖1.

�

We can also show similar results to Lemma 4.5.8.

Lemma 4.5.10. Let F ∈ IRn×n satisfy Condition 4.5.5. Find df as per

Condition 4.5.5. Let B,C ∈ IRn×m and D ∈ IRm×m. For a fixed i, j ∈
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{1, . . . ,m}, choose k0, l0 ∈ {1, . . . , n} such that (BT )l0,j 6= 0 and Ci,k0 6= 0

and that dist(vk0 , vl0) is minimized. If dist(vk0 , vl0) ≥ df , then

1. | − (D − CF−1BT )i,j| ≤ |Di,j|+ ε‖(BT )·,j‖1|Ci,·‖1,

2. |(CF−1BT )i,j| ≤ ε‖BT ‖1‖C‖∞,

3. | − (D − CF−1BT )i,j| ≤ |Di,j|+ ε‖BT ‖1‖C‖∞.

Proof: All three properties follow immediately from Theorem 4.5.9 and the

definition of the 1 and ∞ norms. �

Figures 4.2(a) and 4.2(b) show a graphical interpretation of Theorem 4.5.9

for a problem using a staggered finite difference mesh. To simplify visual-

ization, we assume that D = 0.

The x-variables in (1.2) are represented by blue x’s and the y-variables

are represented by blue circles. We consider the y-variable corresponding

to node j, and a column of CF−1BT , and represent is as a black node in

Figure 4.2. Black arrows point to the x-variables, l, such that (BT )l,j 6= 0.

These are the x-variables “affected” by the y-variable j. Blue arrows show

the effect of the large entries of F−1, pointing to the x-variables k, such that

|(F−1BT )k,j| is large. Here we assume that all entries that are further than

one (Figure 4.2(a)) or two 4.2(b) links away on the adjacency graph of F

are small. Red arrows show the effect of C, pointing the the y-variables, i,

such that |(CF−1BT )i,j | is large. Note that point i1 is “far” from j on the

graph of CFBT , and thus |(CF−1BT )i1,j| is small. Point i2 is “close” to j

and therefore |(CF−1BT )i2,j| may be large. In a situation like this, we can

derive appropriate stencils for the Schur complement over the finite element

or finite difference mesh as the sparsity pattern for H. This is the approach

we take in Section 6.
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Figure 4.2. Entries of the Schur complement affected by node j through BT (black arrows),
F−1BT , assuming that the entries of F−1 decay after one edge (df = 1) or two edges
(df = 2) on the adjacency graph (blue arrows) and CF−1BT (red arrows), on a staggered
finite difference grid. Note that |(CF−1BT )i1,j | will be small and |(CF−1BT )i2,j | may be
large.

4.6 Structured Probing, Approximate

Factorizations and Inverses

When probing is used to approximate narrowly banded matrices, factoring

the resulting approximation is generally inexpensive as little fill is created
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in the factors. Structured probing, on the other hand, allows for much more

complicated sparsity patterns, which may result in a sizable amount of fill-in

during the factorization process. However, since the result of the probing

process is an explicitly stored sparse matrix, many of the standard sparse

linear algebra techniques are available to solve this problem.

One approach is to use an ILU or ILUT factorization [49] as an al-

ternative to an exact factorization of the matrix resulting from structured

probing. Results in Sections 6.1.4 and 6.3 will illustrate the effectiveness of

this approach. Sparse approximate inverse techniques, like AINV [6, 7] or

SPAI [34] are also promising candidates for decreasing the computational

cost of applying the inverse of the matrix resulting from structured probing.
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5 Applications

Generalized saddle-point problems arise from a multitude of different ap-

plications; therefore we consider applications from several sources. This

chapter describes the applications for which experimental data is presented

in Chapter 6. Our first application describes fluid flow in a lid-driven cavity.

This problem, described in Section 5.1, is modeled by the incompressible

Navier-Stokes equations in two dimensions and is discretized with finite ele-

ments. Our second application, described in Section 5.2, also describes 2-D

fluid flow, this time modeled by the incompressible Stokes equations, but

is discretized using a spectral collocation approach. The third application

involves stress relaxation of thin strips of metal. This application, which

uses a modified Hart’s model [30] and is described in Section 5.3, is a three-

dimensional problem discretized using finite elements. Our final application

arises from an optimization problem. Here we consider the flattening of a

three-dimensional surface mesh into a two-dimensional planar mesh. This

application is described in Section 5.4.

5.1 Navier-Stokes: Lid-Driven Cavity

The Navier-Stokes equations for incompressible flow are given by

∂u

∂t
+ u · ∇u− ν∆u +∇p = 0,

∇ · u = 0, (5.1)

on some region Ω. Here u is the velocity field, p is the pressure and ν > 0

is the viscosity constant (the inverse of the Reynolds number in a non-
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dimensional setting).

The description of our particular application, a 2-D leaky lid-driven cav-

ity discretized with finite elements, follows Elman, Silvester and Wathen [26].

The implementation is from the associated MATLAB software. Specifically,

we consider the steady-state Oseen equations, [45, Section 21.13],

w · ∇u− ν∆u +∇p = 0,

∇ · u = 0, (5.2)

on Ω = [0, 1]2, with u, p, and ν defined as above. For the wind function,

w, we choose the so-called “divergence-free vortex,”

w =




2y(1− x2)

−2x(1− y2)


 . (5.3)

We discretize the space using mixed Q1 − P0 finite elements, that is,

a piecewise linear approximation for the velocity and a piecewise constant

approximation for pressure. The linear system resulting from the finite

element discretization of (5.2) is of the form



A BT

B D






u

p


 =



f

0


 , (5.4)

with D = −βD̂, where β > 0 is the stabilization parameter, and D̂ is a pos-

itive semidefinite stabilization matrix. This application satisfies conditions

C3, C4 and C6 from Chapter 1. We set the y-component of the velocity to

zero on all four boundaries and the x-component of the velocity to zero on

all boundaries except where y = 1, where it is set to one. Figure 5.1 shows

the boundary conditions for our experiments. Figure 5.2 shows the finite

element mesh for the case of the 16× 16 grid. Velocity unknowns are shown

in blue, as are connections between the velocity unknowns. Pressure un-
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knowns and pressure-pressure connectivity (due to stabilization) are shown

in red. Velocity-pressure connectivity is shown in green.

u
y
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x

−1

−1 −1

1

1

1

−1
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= 0u
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Figure 5.1. Boundary conditions for the 2-D lid-driven cavity problem, modeled using the
steady-state Navier-Stokes equations (5.1).
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Figure 5.2. Finite element mesh showing velocity-velocity (blue), pressure-pressure (red) and
velocity-pressure (green) connectivity, for the 2-D lid-driven cavity problem, modeled using the
steady-state Navier-Stokes equations (5.1).

Figures 5.3(a) and 5.3(b) show some of the streamlines and the pressure
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field, respectively, of the solution of (5.4) on a 32×32 grid with viscosity pa-

rameter ν = .1 and stabilization parameter β = .25. These choices represent

the typical values of ν and β that we employ in Section 6.1.
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(a) Velocity Streamlines
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Figure 5.3. Solution of the 2-D lid-driven cavity problem, modeled using the steady-state
Navier-Stokes equations, with ν = .1 and β = .25.

5.2 Incompressible Stokes: Spectral Collocation

The incompressible Stokes equations are given by

−ν∆u +∇p = f ,

∇ · u = 0, (5.5)

on some region Ω. We consider the use of the spectral collocation approach

described by Bernardi, Canuto and Maday [8] on Ω = (−1, 1)2. This involves

using the Chebyshev nodes associated with Gauss-Lobatto quadrature as our

collocation sites and assuming homogeneous Dirchlet boundary conditions

in velocity space. This generates linear systems of the form



A BT

C 0






u

p


 =



f

0


 . (5.6)
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In the nomenclature of Chapter 1, this problem satisfies C5 (and thus C4

and C6). Notably, the spectral collocation method creates a structurally

asymmetric system where B 6= C. This can be seen from the weak form of

the system,

a(u,v) + b1(v, p) = < f ,v >, (5.7)

b2(u, q) = 0, (5.8)

where

a(u,v) = ν

∫

Ω
∇u · ∇(vω) dΩ, (5.9)

b1(v, p) = −
∫

Ω
(∇ · (vω)) p dΩ, (5.10)

b2(u, q) = −
∫

Ω
(∇ · u) qω dΩ, (5.11)

and ω is the Chebyshev weight function. The location of this weighting

function in (5.9)–(5.11) produces the asymmetry in A and the asymmetry

between C and BT .

Our particular MATLAB implementation of the 2-D incompressible Stokes

problem follows the algorithm presented by Bernardi, et al. [8, Section 5.1].

Results for this problem are described in Section 6.2.

5.3 Metal Deformation: Stress Relaxation in

Thin Strips

We consider the simulation of in-service stress relaxation of formed sheet

metal components. Stress relaxation is the time-dependent deformation of

a material under constant strain. When this relaxation is “in-service,” this

deformation occurs while the particular formed material is in use. The

motivation for this particular application comes from the stress relaxation
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of formed sheet metal parts, such as beverage can ends. In the case of the

can end, in-service relaxation leads to a decrease in can end buckle pressure.

As buckle strength is a critical property for can ends, accurate modeling

(and simulation) is important.

These simulations complement the numerical work of Zhu, Beaudoin

and MacEwen [64], and the description of this particular application follows

the work of Zhu [62]. Our simulation code, which uses a finite element

formulation, was implemented in FORTRAN 90 by Lihua Zhu, the first

author of the aforementioned paper.

Following Zhu et al. [64], we consider a simple bent beam relaxation

test. This produces deformations similar to that of can end formation.

Specifically, we consider a 88.9 × 12.7 × 0.236 mm beam of AA5812-H19,

an aluminum-magnesium alloy. The simulated test includes three phases:

1. Loading: The strip is bent around a pipe.

2. Holding: The strip is clamped around the pipe.

3. Unloading: The strip is removed from the pipe, undergoing springback.

A modified Hart’s model [30] (derived from Hart’s model [36]), provides the

governing equations for the system. Figure 5.4 shows a pictorial represen-

tation of the constitutive equations of modified Hart’s model in the form

of a rheological diagram. The upper branch of Figure 5.4 represents the

macro-scale effects: elastic and anelastic deformation, which represented by

the spring, as well as plasticity, which represented by the dotted line. In this

regime, we consider anelastic (a) and plastic (εp) strain. The lower branch

of Figure 5.4 represents the micro-scale effects, namely, micro-anelasticity

and micro-plasticity. Micro-anelastic strain (at) is represented by the spring,

and micro-plastic strain (εpt) is represented by the plastic dashpot. These

branches give us both micro (σt) and macro (σa) components of stress and

when combined, yield the total stress (σ) and inelastic strain (σi).
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Figure 5.4. Rheological diagram of the modified Hart’s model[30]

The finite element discretization is described in detail in [62, Chapter 5].

Each element generates element stiffness matrices of the form




(K−1
E +K−1

P )−1 BT

B D






x

y


 =



f

g


 , (5.12)

where the (1,1) block is positive definite and has both plastic (KP ) and

elastic (KE) components, and the (2,2) block results from a slight compress-

ibility. The y-variables correspond to nodes in the center of each element,

allowing us to use probing techniques on the element-element connectiv-

ity graph. In the language of Chapter 1, this problem satisfies conditions

C1 (and thus C2), C3 and C6. Results for this problem are described in

Section 6.3.

5.4 Optimization: Mesh Flattening

Computing optimal planar triangulations of 3-D surface meshes, also known

as mesh flattening, has been a topic of recent interest in the computer graph-

ics and meshing communities. These algorithms are often used for applica-

tions such as surface parameterization and remeshing. Sheffer and de Sturler

[52] formulate this problem in terms of a constrained optimization problem,

with the goal of minimizing the relative angular deformation. Their algo-
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rithm minimizes the relative distortion in the angles on the 2-D mesh from

their 3-D counterparts, after normalization for non-planarity, subject to con-

straints that enforce the validity of the 2-D mesh. The relevant constants

and variables of the problem are defined as follows.

� Let αj
i represent the jth angle in the ith triangle on the 2-D mesh.

� Let βj
i represent the jth angle in the ith triangle on the 3-D mesh.

� Let wi
j represent the weight associated with the jth angle in the ith

triangle.

� Define the function j(k), such that α
j(k)
i and β

j(k)
i represent the angle

at node Nk in the ith triangle in the 2-D and 3-D meshes, respectively.

� Define

φ
j(k)
i =





2πβ
j(k)
i

1�
m β

j(k)
m

, If Nk is an interior node,

β
j(k)
i , If Nk is on the boundary.

(5.13)

Then, the underlying optimization problem can be stated as

min
α

∑

i

3∑

j=1

(αj
i − φ

j
i )

2wj
i , (5.14)

subject to

αj
i ≥ ε2 > 0, for all i and j = 1, 2, 3,

α1
i + α2

i + α3
i − π = 0, for all i,

∑

i

a
j(k)
i = 2π, ∀k s.t. Nk is an interior node,

∏
i sin

(
α

j(k)+1 mod 3+1
i

)

∏
i sin

(
α

j(k)−1 mod 3+1
i

) = 1, ∀k s.t. Nk is an interior node.
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Problem (5.14) is then solved with Newton’s method, which yields linear

systems of the form




A+Ak BT CT
k

B 0 0

Ck 0 0







α

y

z




=




f

g

h



, (5.15)

at each step, where the subscripted matrices change from iteration to it-

eration. Liesen, et al. [40] propose partitioning the matrix in the fashion

indicated in (5.15) and preconditioning it in the fashion of de Sturler and

Liesen [20]. In the nomenclature of Chapter 1, this problem satisfies C1–C6.

A solution of this optimization problem is given in Figures 5.5(a) and

5.5(b). They illustrate the original mesh and the corresponding flattened

mesh from half of the head of a cow, respectively. This particular mesh con-

tains 567 nodes and 1071 triangles. In addition, Zayer, Rössl and Seidel [61]

(a) Mesh in 3-D (b) Flattened mesh

Figure 5.5. Mesh flattening on a mesh representing half of the head of a cow (cow halfh).

propose several variants on the original formulation of Sheffer and de Sturler

[52]. We choose to employ their modified wheel condition [61, Section 6],

which replaces the multiplicative constraint in (5.14) with a summation of
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logarithms, namely,

∑

i

log sin
(
α

j(k)+1 mod 3+1
i

)
−
∑

i

log sin
(
α

j(k)−1 mod 3+1
i

)
= 0,

for all k such that Nk is an interior node. This makes Ak diagonal. Our

original C++ code was written by Alla Sheffer, but we have heavily modified

it to increase efficiency and have included the modified wheel condition of

Zayer, et al. [61].
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6 Experimental Results

We discuss the application of our preconditioners to a variety of problems.

These experiments serve to illustrate the effectiveness of the preconditioners

themselves as well as the bounds described in Chapter 3. We also consider

the application of structured probing techniques for approximate Schur com-

plements and how they perform in the context of our preconditioners. We

will use GMRES [50] as our Krylov method of choice and will run the algo-

rithm without restarting for our example problems.

First, we consider the lid-driven cavity application described in Sec-

tion 5.1. We use this application as a test-bed to illustrate both the precon-

ditioner performance and the predictive power of the bounds described in

Chapter 3. We illustrate how the accuracy of the splitting, F , and approx-

imate Schur complement, S2, affect the convergence of the preconditioned

system. We also explore experimentally how the convergence of the precon-

ditioned system depends on h. Finally, we use structured probing with our

preconditioners and analyze the performance. These results are described

in Section 6.1 and largely follow the presentation of Siefert and de Sturler

[53, 54].

Second, in Section 6.2, we consider the application of our precondition-

ers to the incompressible Stokes problem described in Section 5.2. This

problem allows us to consider the performance of our preconditioners for an

application where B 6= C, in the notation of (1.2). We focus on convergence

behavior and eigenvalue perturbation. We also briefly explore the scalability

of the preconditioner with respect to the maximum polynomial degree used

in the spectral collocation method. These results are an expanded version
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of what is reported by Siefert and de Sturler [53].

Next, in Section 6.3, we consider the effectiveness of our preconditioners

applied to the metal deformation problem described in Section 5.3. Here, we

focus on convergence and timing results for our preconditioned system. We

pay special attention to the effectiveness of structured probing for approx-

imating the Schur complement matrices in our preconditioners. We also

explore how the convergence of the preconditioned system depends on h.

This presentation expands significantly on the results presented by Siefert

and de Sturler [54].

Finally, in Section 6.4, we consider the mesh flattening problem described

in Section 5.4. Here, we focus on the application of approximate Schur

complements, including structured probing. We present both convergence

and timing results for this problem, focusing on the total linear solver cost

for the entire non-linear iteration. These results have not been presented

elsewhere.

6.1 Navier-Stokes: Lid-Driven Cavity

Unless otherwise specified, we perform our experiments on a 16 × 16 grid,

with viscosity parameter ν = .1 and stabilization parameter β = .25. After

removing the constant pressure mode, this system has 705 unknowns. For

splitting the (1,1) block we take two different approaches. The first involves

employing a geometric multigrid technique [13]. Since multigrid cycles are

actually matrix splittings, we use a number of multigrid V-cycles to define

the splitting of the (1,1) block. For each V-cycle we use three SOR-Jacobi

pre- and post-smoothing steps with relaxation parameter ω = .25. As a

purely algebraic alternative, we employ an ILUT factorization of the (1,1)

block and vary the drop tolerance to change the accuracy of our splitting

[49].

We begin by considering preconditioners with exact Schur complements
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in Section 6.1.1. From there we explore preconditioners with approximate

Schur complements in Section 6.1.2. We also consider the issue of h-dependence

in Section 6.1.3 and finally consider the use of probing-based approximations

to Schur complements in Section 6.1.4.

6.1.1 Exact Schur Complement Case

Eigenvalue Clustering and Bounds

Our first objective is to illustrate the clustering of the eigenvalues of our

preconditioned system as well as the values of the bounds described in Chap-

ter 3. We begin with the exact Schur complement case and vary the number

of multigrid V-cycles for the splitting of the (1,1) block between one and

nine. Figure 6.1(a) shows the maximum absolute eigenvalue perturbation

from λ ∈ {1, λ±j } for the block-diagonally preconditioned system (3.2) and

Figure 6.1(b) shows the maximum absolute eigenvalue perturbation from 1

for the related system (3.37).

As we use a better splitting for A (more V-cycles), we see that the

eigenvalue bound decreases with approximately the same rate as the corre-

sponding eigenvalue perturbations, although the bound is pessimistic. This

pessimism is mostly due to the κ(Θ) term, which is introduced in Lemma

3.1.4. Figure 6.1(b) includes an “estimate” of the perturbation for the re-

lated system, which consists of the bound in Corollary 3.2.2 with κ(Θ) re-

placed by one. Both the bound and our “estimate” follow the trend in

the actual eigenvalue perturbation well as the number of V-cycles increases.

This shows that the bounds and the estimate give a good description of the

behavior of the eigenvalue perturbation as the splitting improves.

In comparing the block-diagonally preconditioned system (3.2) with the

related system (3.37) we note that the eigenvalue perturbation bound is

about a factor five to ten smaller for the related system. This is largely

because the bound for the related system has different (and smaller) factors
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(a) Block-Diagonally Preconditioned System (3.2).
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(b) Related System (3.37).

Figure 6.1. Maximum absolute eigenvalue perturbation and perturbation bounds, for both
types of preconditioners, using the exact Schur complement and varying the number of V-cycles
for the splitting for the lid-driven cavity modeled with Navier-Stokes.

involving ω1 and κ(Θ). However, the actual maximum eigenvalue perturba-

tion for both systems is about equal. For the related system, this represents

a single eigenvalue cluster around 1. For the block-diagonally precondi-

tioned system, this represents 2m+ 1 (potentially) distinct clusters around

83



1 and λ±j , for j = 1, . . . ,m. The existence of multiple clusters in this case,

compared with the single cluster for the related system, suggests that their

convergence behavior will differ.

We see similar results for the case using ILU(0) or ILUT splittings. Fig-

ures 6.2(a) and 6.2(b) shows the results for the block-diagonally precondi-

tioned system (3.2) and the related system (3.37), respectively. In this case,

the eigenvalue bound is about two orders of magnitude smaller for the related

system, even though the actual eigenvalue perturbation is about the same

in magnitude. Again, due to the number of clusters in the block-diagonally

preconditioned case, we should see slower convergence.

GMRES Convergence

Figures 6.3(a) and 6.3(b) show the convergence history for preconditioned

GMRES for the block-diagonally preconditioned system (3.2) and the re-

lated system (3.37), respectively. Note that GMRES on the related system

converges in significantly fewer iterations, for any choice of the number of

V-cycles. This demonstrates the relative performance difference between the

block-diagonally preconditioned system and the related system, as suggested

by the aforementioned eigenvalue clustering and bounds. We see similar re-

sults in Figures 6.4(a) and 6.4(b) when we use ILUT for a splitting, instead

of multigrid.

6.1.2 Approximate Schur Complement Case

We use an ILUT decomposition [49] to approximate the Schur complement.

While this may not be a practical choice, it serves our purposes, because

it allows us to progressively increase the accuracy of the approximation to

the inverse of the Schur complement. We use drop tolerances ranging from

1e− 3 to 5e− 8.
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(a) Block-Diagonally Preconditioned System (3.2).
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(b) Related System (3.37).

Figure 6.2. Maximum absolute eigenvalue perturbation and perturbation bounds, for both
types of preconditioners, using the exact Schur complement and varying the ILUT drop toler-
ance for the lid-driven cavity modeled with Navier-Stokes.

Eigenvalue Clustering and Bounds

We begin by varying the drop tolerance for the inexact Schur complement

while using a fixed splitting. For a fixed multigrid splitting, we set the
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(a) Block-Diagonal Preconditioned System (3.2).
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(b) Related System (3.37).

Figure 6.3. Convergence of GMRES for both types of preconditioners, using the exact Schur
complement and varying the number of V-cycles for the splitting on the lid-driven cavity
modeled with Navier-Stokes.

number of V-cycles to seven. For a fixed ILUT splitting, we set the drop

tolerance to 1e−5. After this we present results where we vary the splittings

for the (1,1) block, some using V-cycles and some using ILUT, while fixing

the drop tolerance for the ILUT decomposition of the Schur complement to
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(a) Block-Diagonal Preconditioned System (3.2).
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Figure 6.4. Convergence of GMRES for both types of preconditioners, using the exact Schur
complement and varying the ILUT tolerance for the splitting on the lid-driven cavity modeled
with Navier-Stokes.

1e− 5. These results are shown in Figures 6.5(a), 6.6(a), 6.5(b) and 6.6(b),

respectively.

Note that in both plots, shortly after ‖S‖ is less than ‖E‖, or vice versa,

the eigenvalue perturbation (and bound) cease to decrease. This suggests
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(a) Using seven V-Cycles for the splitting and varying
the inexact Schur complement.
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(b) Using the inexact Schur complement with ILUT(1e−
5) and varying the number of V-cycles for the splitting.

Figure 6.5. The effects of ‖S‖ and ‖E‖ on related system (3.52) using the inexact Schur
complement and a multigrid splitting for the lid-driven cavity modeled with Navier-Stokes.

that the behavior of the eigenvalue bound (Theorem 3.4.1) is indicative of the

actual eigenvalue perturbation, and that using a significantly more accurate

splitting than Schur complement approximation, or vice versa, yields little
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(b) Using the inexact Schur complement with ILUT(1e−
5) and varying the ILUT tolerance for the splitting.

Figure 6.6. The effects of ‖S‖ and ‖E‖ on related system (3.52) using the inexact Schur
complement and an ILUT splitting for the lid-driven cavity modeled with Navier-Stokes.

benefit. Note also that for reasonable choices of splitting and approximation

to the Schur complement, the bounds are less than 1, indicating that the

eigenvalues are clustered away from the origin. This should lead to very

rapid convergence for Krylov methods.
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GMRES Convergence

Figures 6.7(a) and 6.7(b) show the convergence of GMRES for the related

system (3.52) using multigrid as a splitting. Figures 6.8(a) and 6.8(b) show

similar results using ILUT as a splitting. This allows us to see the effects of

improving the splitting (both multigrid and ILUT) and the approximation

to the Schur complement.

The convergence results are quite good, regardless of the choice of split-

ting. However, like the results in Figures 6.3(a) and 6.3(b), the convergence

rates in Figures 6.7(a), 6.7(b), 6.8(a) and 6.8(b) hit a point of diminish-

ing returns, past which improving either the splitting or the inexact Schur

complement while leaving the other unchanged does not improve conver-

gence. As illustrated above, this is due to the eigenvalue clustering of the

preconditioned system.

6.1.3 Examining h-dependence

Varying the number of grid points per dimension, N = 1/h, gives us some

insight into the h-dependence of the related system (3.52). Table 6.1 sum-

marizes these results when we use multigrid to split the (1,1) block. We do

not expect similar results for the using ILUT to split the (1,1) block, since

that preconditioner does not generate h-independent approximations for the

convection-diffusion operator. Thus, it would be unreasonable to expect an

ILUT splitting of the (1,1) block to lead to an h-independent preconditioner

for the overall problem.

With respect to Table 6.1, note that the modulus of δj decreases with

h, regardless of which splitting we use. This means that the terms that are

functions of the δj ’s in the theorems of Sections 3.1, 3.2, 3.3 and 3.4, will

be very small. Also note that the convergence of GMRES for the related

system (3.52) depends only mildly on h. A good splitting and a sufficiently

accurate approximate Schur complement appear to lead to h-independent
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Figure 6.7. Convergence results for the related system (3.52) using an inexact Schur comple-
ment and a multigrid splitting for the lid-driven cavity modeled with Navier-Stokes.

convergence.
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Figure 6.8. Convergence results for the related system (3.52) using an inexact Schur comple-
ment and an ILUT splitting for the lid-driven cavity modeled with Navier-Stokes.

6.1.4 Structured Probing

In addition to demonstrating the effectiveness of our preconditioners with

approximate Schur complements generated by structured probing, we use
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Approximate Schur Complement
N max |δj | ILUT(1e-3) ILUT(1e-4) ILUT(1e-5) ILUT(1e-6)

Splitting: 1 V-Cycle

4 1.85e+00 10 10 10 10
8 5.61e-01 13 13 13 13
16 1.50e-01 15 14 14 14
32 3.84e-02 18 14 13 13

Splitting: 3 V-Cycles

4 1.72e+00 6 6 6 6
8 5.92e-01 6 6 6 6
16 1.60e-01 8 6 6 6
32 4.07e-02 13 7 6 6

Splitting: 5 V-Cycles

4 1.72e+00 5 5 5 5
8 5.92e-01 5 4 4 4
16 1.60e-01 7 5 5 5
32 4.07e-02 13 6 5 5

Splitting: 7 V-Cycles

4 1.72e+00 4 4 4 4
8 5.92e-01 5 4 4 4
16 1.60e-01 7 4 4 4
32 4.07e-02 13 6 4 4

Table 6.1. Effect of varying the number of grid points per dimension (N) on the maximum
modulus δ and the number of GMRES iterations for the related system (3.52) for various
numbers of V-Cycles for the splitting and the ILUT tolerance for the approximate Schur
complement on the lid-driven cavity modeled with Navier-Stokes

the Navier-Stokes problem to illustrate the superiority of structured probing

to banded probing. Specifically, we focus on the role of the sparsity pattern

chosen for the approximate Schur complement.

We use the prime divisor method (Algorithm 7) for graph coloring to

isolate the role of this chosen sparsity pattern. This allows us to use the

same probing vectors for banded probing and for structured probing. Thus,

the only difference between the two methods is the sparsity pattern, H,

used for the construction of the approximation. Hence, we are not trying to

get the most out of structured probing, but rather demonstrate that even

using the same vectors as banded probing, reconstruction based on a better

sparsity pattern leads to much better eigenvalue clustering and convergence
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for our preconditioned system.

Eigenvalue Clustering

Figures 6.9(a) and 6.9(b) show the eigenvalue distributions for the related

system (3.52) with banded probing and structured probing using 13 probing

vectors. For scaling purposes, we exclude two negative eigenvalues at ap-

proximately (−73, 0) and (−113, 0) for the banded probing case. We use a

nine-point stencil on the pressure connectivity graph to define the sparsity

pattern H for structured probing. As the prime divisor coloring (Algorithm

7) requires 13 vectors for this stencil, we also perform banded probing using

the same 13 vectors.

Structured probing yields much better clustering than banded probing,

especially near the origin. The system resulting from structured probing

has only one small eigenvalue (about 0.01); the others are well separated

from zero. The system resulting from banded probing has many eigenvalues

clustering near the origin. This should lead to poor convergence behavior.

We see similar results for the eigenvalues of the block-diagonally pre-

conditioned system (3.47) for banded and structured probing; see Figures

6.10(a) and 6.10(b). Both probing and structured probing yield one small

eigenvalue (about 0.01), but structured probing clusters eigenvalues much

further away from the origin.

Figures 6.11(a) and 6.11(b) show the eigenvalues for the block-diagonally

preconditioned system (3.47) and related system related system for struc-

tured probing with both five-point (seven vector) and nine-point (thirteen

vector) stencils. Note that barring a few outliers, the eigenvalue clustering

is significantly better for the nine-point stencil with both kinds of precon-

ditioners, especially near the origin. Krylov-subspace methods tend to find

and “remove” outlying eigenvalues quickly. Therefore, these eigenvalues do

not affect the convergence rate after some number of initial iterations. Thus,
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(b) Structured Probing (9pt. stencil / 13 vectors)

Figure 6.9. Eigenvalues for the related system (3.52) with one V-cycle as splitting of the (1,1)
block and approximate Schur complements using banded and structured probing with exact
factorizations on the lid-driven cavity modeled with Navier-Stokes.

the significantly better eigenvalue clustering obtained using the nine-point

stencil should lead to a significantly improved convergence rate for GMRES.
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Figure 6.10. Eigenvalues for the block-diagonally preconditioned system (3.47) with one V-
cycle as splitting of the (1,1) block and approximate Schur complements using banded and
structured probing with exact factorizations on the lid-driven cavity modeled with Navier-
Stokes.

GMRES Convergence

Figures 6.12(a) and 6.12(b) show the convergence of GMRES for the precon-

ditioned systems. The difference between banded and structured probing is
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(a) Block-diagonally preconditioned system (3.47)
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(b) Related system (3.52)

Figure 6.11. Eigenvalues for the block-diagonally preconditioned system (3.47) and the related
system (3.52) with one V-cycle as splitting of the (1,1) block and approximate Schur comple-
ments using structured probing with exact factorizations on the lid-driven cavity modeled with
Navier-Stokes.

quite pronounced. For both systems, structured probing with a five-point

stencil using seven vectors has a lower iteration count than banded prob-

ing with thirteen vectors. This is due to tighter eigenvalue clustering. We
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also note that using the related system (3.52) leads to significantly faster

convergence than using the block-diagonally preconditioned system (3.47)

for all probing variants. Finally, we note that the contrast in eigenvalue

clustering between the 5-point and 9-point stencils for structured probing,

shown in Figure 6.11, has significant effects on the convergence of both the

block-diagonally preconditioned and related systems. In both cases, it ap-

proximately halves the number of GMRES iterations required to converge.

Inexact Factorizations

As discussed in Section 4.6, we also examine the use of incomplete fac-

torizations for the approximate Schur complement matrices generated by

structured probing as a means of further reducing the cost of the precondi-

tioners (3.47) and (3.52). In practice, this leads to a negligible deterioration

in convergence while reducing the overhead of applying structured probing

significantly. We use an ILU(0) factorization for this problem. For symmet-

ric problems an IC(0) factorization should be used. Since ILU(0) and IC(0)

have linear cost in the number of unknowns, the overall cost remains O(m).

Figure 6.13 shows the eigenvalue distributions for both preconditioned

systems with structured probing using a nine point stencil (13 vectors) for

both the exact and ILU(0) factorizations of the approximate Schur comple-

ment. Figure 6.14 shows the convergence results for both preconditioned

systems, using structured probing with 9 and with 13 vectors. Using ILU(0)

instead of an exact factorization changes the eigenvalue distribution slightly,

but leaves the clustering essentially unchanged. The impact of such a change

on the convergence behavior is negligible. Given the significant difference

in cost between exact and inexact factorizations, using ILU(0) is more cost-

effective than an exact factorization.
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Figure 6.12. GMRES convergence with one V-cycle as splitting of the (1,1) block and ap-
proximate Schur complements using banded and structured probing with exact factorizations
on the lid-driven cavity modeled with Navier-Stokes.

6.1.5 Examining h-dependence with Structured Probing

As demonstrated in Section 6.1.3, the related system (3.52) yields practically

h-independent convergence when a sufficiently accurate ILUT factorization

99



−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Real

Im
ag

in
ar

y

Structured/Exact
Structured/ILU(0)

(a) Block-diagonally preconditioned system (3.47)
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(b) Related system (3.52)

Figure 6.13. Eigenvalues for the block-diagonally preconditioned system (3.47) the related
system (3.52) with one V-cycle as splitting of the (1,1) block and approximate Schur com-
plements using structured probing (13 vectors) with exact and ILU(0) factorizations on the
lid-driven cavity modeled with Navier-Stokes.

is used to approximate the Schur complement. We also consider the h-

dependence of the related system using banded probing as well as structured

probing with an ILU(0) factorization to approximate the Schur complement.
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(a) Block-diagonally preconditioned system (3.47)
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Figure 6.14. GMRES convergence with one V-cycle as the splitting of the (1,1) block and an
inexact Schur complement computing using structured probing, using both exact and ILU(0)
factorizations on the lid-driven cavity modeled with Navier-Stokes.

We vary the number of V-cycles of multigrid for the splitting, F , between one

and four. Table 6.2 shows the estimated condition number, as computed by

MATLAB’s condest routine, for the related system (3.52) in each case. Since

banded probing sometimes yields very poorly conditioned systems, we have
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Structured Probing H Stencil Banded Probing w/nvecs equal to
N 5-pt 9-pt 13-pt 5-pt 9-pt 13-pt

Splitting: 1 V-Cycle

16 1.37e+01 6.73e+01 2.47e+02 8.06e+04 6.16e+03 8.06e+04

32 1.60e+01 2.44e+02 2.21e+03 1.49e+05 3.58e+04 5.41e+05

64 1.13e+01 5.64e+02 6.90e+03 4.02e+06 1.28e+09 4.02e+06

128 1.54e+01 8.56e+02 3.19e+04 2.41e+14 1.91e+09 2.56e+08

Splitting: 2 V-Cycles

16 1.61e+01 7.07e+01 4.13e+02 7.31e+04 4.58e+03 7.31e+04

32 1.48e+01 2.69e+02 5.86e+03 2.64e+05 2.63e+04 2.14e+06

64 1.14e+01 5.21e+02 1.73e+04 3.37e+10 7.64e+07 3.37e+10

128 1.42e+01 6.95e+02 1.36e+05 7.99e+10 2.34e+09 2.91e+07

Splitting: 3 V-Cycles

16 1.69e+01 6.86e+01 5.35e+02 6.47e+04 4.51e+03 6.47e+04

32 1.47e+01 2.95e+02 6.78e+03 1.78e+05 2.50e+04 3.21e+06

64 1.15e+01 5.22e+02 5.86e+04 6.40e+07 4.29e+07 6.40e+07

128 1.40e+01 7.22e+02 5.70e+04 2.21e+11 5.19e+08 2.71e+08

Splitting: 4 V-Cycles

16 1.71e+01 6.86e+01 5.49e+02 7.52e+04 4.55e+03 7.52e+04

32 1.46e+01 3.06e+02 4.36e+03 1.60e+05 2.50e+04 3.59e+06

64 1.15e+01 5.22e+02 3.96e+03 4.89e+07 4.38e+07 4.89e+07

128 1.40e+01 7.35e+02 1.52e+05 2.81e+11 4.37e+08 9.08e+07

Table 6.2. Estimated condition number of the related system (3.52) using multigrid V-Cycles
as a splitting of the (1,1) block and using structured probing with an ILU(0) factorization or
banded probing to approximate the Schur complement. We use various levels of h-refinement
in lid-driven cavity problem modelled with Navier-Stokes.

chosen to use unpreconditioned residual (rather than the preconditioned

residual) as our convergence criterion, stopping when the residual is below

1e− 10. Table 6.3 shows the corresponding GMRES convergence results.

We see that the related system with structured probing and an ILU(0)

factorization shows relatively mild h-dependence. This scaling is signifi-

cantly better than that of banded probing, which is not surprising, as the

Schur complement matrix in this problem does not resemble a banded ma-

trix.
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Structured Probing H Stencil Banded Probing w/nvecs equal to
N 5-pt 9-pt 13-pt 5-pt 9-pt 13-pt

Splitting: 1 V-Cycle

16 77 37 33 127 74 127

32 102 57 52 161 119 318

64 119 82 74 643 1500(∗) 643

128 132 100 93 1500(∗) 1500(∗) 1500(∗)
Splitting: 2 V-Cycles

16 75 34 27 125 76 125

32 103 52 42 162 122 313

64 119 76 63 1500(∗) 1500(∗) 1500(∗)
128 127 95 81 1500(∗) 1500(∗) 377

Splitting: 3 V-Cycles

16 75 34 27 123 76 123

32 102 51 42 162 122 312

64 119 75 62 638 267 638

128 126 94 81 1500(∗) 1500(∗) 1500(∗)
Splitting: 4 V-Cycles

16 75 34 27 122 76 122

32 102 51 42 162 122 312

64 119 73 63 634 1500(∗) 634

128 126 91 81 1500(∗) 1500(∗) 1500(∗)

Table 6.3. Number of GMRES iterations for the related system (3.52) using multigrid V-Cycles
as a splitting of the (1,1) block and using structured probing with an ILU(0) factorization or
banded probing to approximate the Schur complement. We use various levels of h-refinement in
lid-driven cavity problem modelled with Navier-Stokes. Asterisks (∗) indicate that the method
did not converge in the listed number of iterations.
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6.2 Incompressible Stokes: Spectral Collocation

For this problem, we build approximations with polynomials of degree up to

22. Our largest system will be of size 1241. We employ an odd-even ordering

scheme on our velocity unknowns to exploit the orthogonality properties of

Chebyshev polynomials and block-diagonalize the (1,1) block of our system.

We use ILUT for both the splitting and inexact Schur complements of our

spectral collocation matrix. For the splitting, we choose a drop tolerance

of 1e − 4. For the inexact Schur complement, we vary the drop tolerance

between 1e − 3 and 1e − 5. Figure 6.15(a) shows the eigenvalues of the

related system for the largest problem we considered with polynomials of

degree up to 22. Except for a single small eigenvalue (of order 1e − 2), the

other eigenvalues are nicely clustered around one. As expected, this leads

to rapid convergence.

Second, we note that for the ILUT(1e − 4) splitting, most choices of

inexact Schur complement yield very rapid convergence, as shown in Figure

6.15(b). Moreover, the convergence of GMRES on the related system (except

with the ILUT(1e− 3) inexact Schur complement) depends only weakly on

the maximum polynomial degree N . Thus, even for fully non-symmetric

problems, our preconditioners are effective, and they show the potential of

scaling well to larger problems.

6.3 Metal Deformation: Stress Relaxation in

Thin Strips

For our first experiments, we consider a problem on a 101 × 13 × 2 grid of

points, which yields 5222 x-unknowns and 1200 y-unknowns, once bound-

ary conditions are specified. For this problem, we employ three splitting

strategies for the (1,1) block, A. First we use a diagonal splitting. Second,

we use a banded splitting with a semi-bandwidth of four, or a bandwidth
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(a) Eigenvalues of the related system (3.52) for N = 22
problem using ILUT(1e − 4) inexact Schur complement.
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Figure 6.15. Related system (3.52) using ILUT(1e − 4) splitting and an inexact Schur com-
plement for spectral collocation method on the incompressible Stokes equations.

of nine. Third, we use an ILU(0) splitting. For our approximate Schur

complement, we employ both structured probing and banded probing. For

structured probing, we use a distance-2 balanced coloring on the element-
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element connectivity graph. This coloring allows us to build our approxi-

mation using only nine probing vectors. We also perform banded probing

using nine vectors. For comparison, we also include results using the exact

Schur complement.

6.3.1 Preconditioner Performance

Figure 6.16(a) shows convergence results for the related system (3.52) us-

ing an ILU(0) splitting for the (1,1) block and banded probing, structured

probing (using both exact and ILU(0) factorizations) and the exact Schur

complement for a single non-linear iteration. With respect to the choice

of approximate Schur complement we see that structured probing leads to

faster convergence than banded probing.

It should be noted that this problem models a long, thin, piece of metal.

So, although the problem is three dimensional, it is similar in nature to

a one-dimensional problem (the elements are also ordered appropriately).

Therefore, banded probing for the Schur complement does very well, as this

problem shows the same type of 1-D decay as the 2-D domain decomposition

problems for which banded probing was designed [14]. This is a relatively

easy 3-D problem for banded probing and the improvements due to struc-

tured probing should be viewed in that light.

Figure 6.16(b) shows the corresponding wall clock solution time for a

single linear system in the overall nonlinear iteration. These results are

from a single run on a Sun V880 machine with 8 GB of ram running Solaris

8. Here we see that structured probing leads to a savings in time of 15% to

40% over banded probing, depending on the choice of splitting. In addition,

using an inexact factorization on the probing matrix saves an additional 5%

or so of execution time. These results show not only the efficacy of structured

probing, but also the potential benefit of the use of inexact factorizations

on the probed matrices.
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Figure 6.16. GMRES convergence and wall clock time for various probing-based inexact
Schur complements in the related system (3.52) for three different splittings of the (1,1) block
(ILU(0), banded matrix with semi-bandwidth four, and diagonal) for the metal deformation
problem.

6.3.2 Inexact Factorizations

However, the benefit from using approximate factorizations is not always

as pronounced as it is in Figure 6.16. Figures 6.17(a) and 6.17(b) show
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the cumulative number of GMRES iterations and wall clock time for the

metal deformation problem across all 104 non-linear iterations. These timing

results represent an average over ten runs on a Sun V880 machine with 8

GB of ram running Solaris 8. Four coloring schemes are used for structured

probing — prime divisor, balanced, sequential and sequential with a largest-

first ordering. The resulting matrix from structured probing is then factored

with either an exact or an ILU(0) factorization. Both of the sequential

colorings as well as the balanced coloring use 9 vectors, while the less efficient

prime divisor coloring uses 17. The use of more vectors reduces the error

in the approximate Schur complement somewhat, which explains why the

prime divisor coloring leads to faster GMRES convergence and execution

time. Choosing a larger sparsity pattern, H, for the approximate Schur

complement and performing the coloring with a more efficient algorithm

would be better use of computational effort.

Since all of the methods are similar in performance, it is also informative

to look at the extra cost in GMRES iterations and the time savings offered

by using the ILU(0) factorization. Figures 6.18(a) and 6.18(b) show that for

this problem, the using an ILU(0) with sequential coloring generally takes

more GMRES iterations than using an exact factorization, using balanced

coloring usually takes about the same number using prime divisor coloring

often costs a little less. While all three algorithms save wall clock time

by using an ILU(0) factorization, that gain is minimal for the sequential

coloring.

6.3.3 Examining h-dependence

Varying the number of grid points per dimension, gives us some insight into

the h-dependence of the related system (3.52) on our metal deformation

problem. Here we multiply the number of points per dimension by 2, 3 and

4, yielding systems of size 39,722, 121,466 and 273,258 respectively. For the
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Figure 6.17. Cumulative number of GMRES iterations and wall clock time for the related
system (3.52) using structured probing (prime divisor, greedy sequential with a natural ordering,
greedy sequential with an LFO ordering and balanced coloring), both with an exact an ILU(0)
factorization, using an ILU(0) splitting of the (1,1) block of the metal deformation problem.

splitting of the (1,1) block, we use both ILU(0) and ML [51], a smoothed-

aggregation algebraic multigrid (AMG). For ML, we choose a single step

of SOR-Jacobi a pre- and post-smoother, with weighting parameter ω =
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Figure 6.18. Cumulative cost in GMRES iterations and savings in time for the related system
(3.52) using ILU(0) to factor the matrix resulting from structured probing (prime divisor,
greedy sequential with a natural ordering, greedy sequential with an LFO ordering and balanced
coloring) over the use of an exact factorization, using an ILU(0) splitting for the (1,1) block
of the metal deformation problem.

0.5. We also set the aggregation threshold to 0.1, meaning that entries

are dropped in the coarsening phase if |Ai,j | ≤ 0.1
√
|Ai,iAj,j|. All other

parameters, including the uncoupled coarsening technique are set to the ML
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defaults. We then apply structured probing using either a balanced or a

prime divisor coloring using both exact and ILU(0) factorizations of the

resulting approximate Schur complement.

Table 6.4 shows the number of GMRES iterations necessary to solve the

related system (3.52) to a tolerance of 1e − 10. These results represent a

minimum over five runs on a machine with a 2.6 GHz Intel Xeon CPU and

2 GB of ram running version 2.6.8 of the Linux kernel. Note that while

the system does not demonstrate h-independence, the scaling with h is not

particularly severe. Better scaling, in terms of iterations, could be achieved

using a more accurate splitting or Schur complement, but that additional

effort would take more wall-clock time. Results for the largest system are

not complete, as certain combinations of splittings and approximate Schur

complements require more memory than the machine has. Table 6.5 shows

the wall-clock times corresponding to Table 6.4. While clearly h-dependent,

these times scale relatively well with the increase in the problem size.

6.4 Optimization: Mesh Flattening

Table 6.6 provides information about the different meshes on which we run

the flattening algorithm. The linear systems generated by the flattening

algorithm range from fairly small (cat head with 1,276 unknowns) to mod-

erately large (bethf and beth1 with about 22,000 unknowns).

As exact Schur complement approaches were explored for this problem

by de Sturler and Liesen [20], we consider only the use of approximate Schur

complements generated with structured probing. We use a fixed splitting

that does not change between iterations, namely, the matrix A in (5.15). We

use a greedy distance-2 coloring on the connectivity graph of the internal

nodes of the mesh in order to perform structured probing.

Figure 6.7 shows the number of GMRES iterations needed at each non-

linear iteration in order to converge to a tolerance of 1e − 10. The use of
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Structured Coloring Banded w/nvecs equal to
# Unknowns Prime Div. Balanced Greedy Prime Div. Greedy

Splitting: Exact

6422 18 32 25 31 25

39722 23 38 31 51 50

121466 25 34 35 — —

273258 — — — — —

Splitting: ILU(0)

6422 219 230 225 252 252

39722 432 477 478 533 533

121466 644 700 730 794 794

273258 — — — — —

Splitting: AMG

6422 153 159 159 164 164

39722 215 227 227 260 240

121466 223 241 249 289 314

273258 266 285 307 — —

Table 6.4. Number of GMRES iterations for the related system (3.52) using an ILU(0) or
AMG splitting of the (1,1) block and banded or structured probing to approximate the Schur
complement, for various levels of h-refinement on a single non-linear iteration in the metal
deformation problem. Dashes indicate insufficient memory to run that particular combination.

Structured Coloring Banded w/nvecs equal to
# Unknowns Prime Div. Balanced Greedy Prime Div. Greedy

Splitting: Exact

6422 7.79e-01 1.07e+00 8.91e-01 1.11e+00 8.91e-01

39722 1.32e+01 1.68e+01 1.46e+01 2.26e+01 1.95e+01

121466 9.91e+01 1.03e+02 1.04e+02 — —

273258 — — — — —

Splitting: ILU(0)

6422 4.09e+00 4.31e+00 4.22e+00 4.60e+00 4.67e+00

39722 1.17e+02 1.40e+02 1.38e+02 1.66e+02 1.65e+02

121466 1.44e+03 9.89e+02 1.08e+03 1.19e+03 1.27e+03

273258 — — — — —

Splitting: AMG

6422 8.87e+00 9.10e+00 9.06e+00 9.28e+00 9.28e+00

39722 9.80e+01 1.03e+02 1.03e+02 1.18e+02 1.04e+02

121466 3.80e+02 4.09e+02 4.25e+02 4.55e+02 4.85e+02

273258 8.20e+02 9.12e+02 1.01e+03 — —

Table 6.5. Wall-clock time (seconds) for the related system (3.52) using an ILU(0) or AMG
splitting of the (1,1) block and banded or structured probing to approximate the Schur comple-
ment, for various levels of h-refinement on a single non-linear iteration in the metal deformation
problem. Dashes indicate insufficient memory to run that particular combination.
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Mesh Nodes Elements Angles System Size

cat head 135 257 771 1276
balls 547 1032 3096 5102
isis 458 879 2637 4362
cow halfh 567 1071 3213 5296
fu 1104 2126 6378 10552
bethf 2267 4432 13296 22074
beth1 2258 4429 13287 22062

Table 6.6. Number of nodes, elements, angles, and unknowns for each mesh used in the
flattening problem.

Nonlinear Iteration
Problem Method 1 2 3 4 5 6 7 8 9

isis
Exact SC 1 10 9 9
Structured Prob. 42 40 37 35

cat head
Exact SC 1 9 8 8
Structured Prob. 18 16 15 14

balls
Exact SC 1 8 9 10
Structured Prob. 20 21 20 21

cow halfh
Exact SC 1 13 11 10 11 12
Structured Prob. 27 37 30 28 28 28

fu
Exact SC 1 11 12 14
Structured Prob. 31 30 28 28

beethf
Exact SC 1 19 14 13 12 9 8 8 10
Structured Prob. 42 46 44 41 35 31 29 27 30

beeth1
Exact SC 1 19 14 13 12 9 8 8 10
Structured Prob. 42 46 44 41 35 31 29 27 30

Table 6.7. Number of GMRES iterations needed for each nonlinear iteration in the mesh
flattening problem.

structured probing requires more iterations than the use of the exact Schur

complement, but the iteration count is still modest. If forming the exact

Schur complement is expensive, structured probing still should yield a time

savings.

Figure 6.19 shows the total linear solver time, across all nonlinear iter-

ations, for three solvers — the related system with an exact Schur comple-

ment (3.37), the related system with a structured probing Schur complement

(3.52) and SuperLU, a direct solver [22]. These timing results represent an

average over ten runs on a Sun V880 machine with 8 GB of RAM running
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Solaris 8. Compared with using an exact Schur complement, the structured

probing approximation saves between 60%, on the smallest mesh, to 92% of

the total linear solution time. On the small meshes, SuperLU is faster than

the iterative solver, which is to be expected. However, on the largest two

meshes using the related system with structured probing saves about 11%

over using SuperLU.
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Figure 6.19. Total linear solver time for complete nonlinear solve, using SuperLU [22], related
system with exact Schur complement (3.37) and related system with a structured probing
Schur complement (3.52) on a variety of mesh flattening problems

.
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7 Conclusions

We have discussed preconditioners for non-symmetric generalized saddle-

point problems (1.2), with a focus on the general, non-symmetric case. In

Chapter 3, we generalized the block-diagonal preconditioner and the related

system from de Sturler and Liesen [20] to allow for a non-zero (2,2) block

(problems that do not satisfy condition C5). We presented an analysis of

the location of the eigenvalues both of these preconditioned systems. As

the Schur complement matrices involved in these preconditioners can be

expensive to form and factor, we also extended these preconditioners to

allow for the use of approximations to the Schur complement. The eigenvalue

analysis of Sections 3.1 and 3.2 was extended accordingly.

In Chapter 4, we presented structured probing, a graph coloring tech-

nique intended for generating approximations to Schur complement matri-

ces. In addition to proving some analytic properties about the probing

process, we extended the results of Demko, et al. [21] to show graph-based

decay for sparse matrices and used these results to derive bounds on the

accuracy of matrix approximations generated by structured probing. This

allows us to argue for the applicability of probing techniques to problems

not derived from a system of PDEs. Finally, we specialized these bounds to

approximating Schur complement matrices.

Chapter 5 presented the four applications for which we presented results

in Chapter 6. Our experiments illustrated the predictive power of the eigen-

value analysis of Chapter 3 as well as the performance of our preconditioners

in practice. We also demonstrated empirical h-independent convergence for

the lid-driven cavity problem.
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Our results also demonstrated the effectiveness of structured probing

as Schur complement approximation technique, especially when compared

to classic probing. This reduced the wall-clock solution time significantly

from using an exact Schur complement and led to more rapid solutions

than a direct solver on moderate-sized problems. We also proposed the use

of inexact factorizations of the matrices resulting from structured probing,

and demonstrated the effectiveness of this idea in reducing the total solution

time.
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