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Abstract

Chandrayaan-1 X-ray Spectrometer high energy data were used to mea-

sure the width of the Earth’s magnetotail comparing this measured value

with measurements from a computational magnetohydrodynamic model,

known as the Open Geospace General Circulation Model. The data from

C1XS were taken from the high energy channels of the device, where a

large spike in count rates represents an influx of energetic particles with

energies above a few MeV, which become minimum ionising particles and

deposit energy in the detectors at the 18-19 keV range. The C1XS data

and OpenGGCM data agree on a magnetotail width of between 50RE and

70RE fluctuating with the strength of the solar wind. An analysis of the

distribution of transient lunar phenomena was performed with the intention

of studying two theories relating to the origins of TLP. The first theory is

that TLP are caused by outgassing at the boundary between lunar highland

and mare terrains. Previous studies have been conducted suggesting a cor-

relation between TLP locations and these mare borders, but it was found

in this analysis that this correlation does not appear in the most robust

and reliable data and that this correlation can be created or removed de-

pending upon the decision to classify the Aristarchus Plateau as a highland

terrain. The second theory studied is the creation of TLP from the splitting

of rocks on the lunar surface. It has previously been calculated that rocks

splitting from thermal stresses or meteoric impacts could create a piezoelec-

tric effect exciting gases released from the cracks and creating a flash visible

from Earth. This analysis used a NASA database of lunar impact flashes to

search for any clustering of reports that would be a signature of a localised

environment susceptible to rock fracturing. The analysis found no evidence

of any localised effects and an impact catalogue consistent with a randomly
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distributed dataset, suggesting the proposed TLP explanation is either a

rare occurrence or produces light obscured to an Earth observer.
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1 Literature Review

This thesis is about erosional and depositional processes at the lunar sur-

face. It covers the topics of high energy particles in the Earth’s magne-

tosphere and using them to measure the magnetosphere, transient lunar

phenomena and their correlation with the border between the two main lu-

nar terrains, and a type of TLP known as the ’Zito effect’ and whether their

presence can been seen in a catalogue of similar flashes caused by meteoric

impact. This chapter discusses the existing literature covering these topics

and acts as an extended introduction for the topics to be discussed after.
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1.1 C1XS - Chandrayaan-1 X-ray Spectrometer

The C1XS instrument is the successor to D-CIXS (Demonstration Com-

pact Imaging X-ray Spectrometer) which was flown on-board the SMART-1

mission [1]. The primary aim of D-CIXS was to create global elemental

abundance maps of the Moon, as discussed in ’The D-CIXS X-ray mapping

spectrometer on SMART-1 ’ [2], being the first instrument to use x-ray flu-

orescence for this purpose. This new generation of X-ray spectrometers use

swept charge devices (SCDs) [3] which have been likened to 1 dimensional

X-ray CCDs, with faster read out and with a larger area [4].

C1XS flew onboard Chandrayaan-1, India’s first mission to the Moon,

which launched on the 22nd October in 2008 [5]. The aims of Chandryaan-

1 were to further our understanding of the evolution of the Moon. The

spacecraft carried an array of instruments to do this including a terrain

mapping camera (TMC), a hyper-spectral imager (HySI), a low energy X-

ray spectrometer (C1XS), a high energy X-γ ray spectrometer (HEX) and a

lunar laser ranging instrument (LLRI) [6] and an X-ray Solar Monitor (XSM)

to measure the x-ray flux of the sun, against which lunar fluorescence can

be calibrated [7]. C1XS was built in the Rutherford Appleton Laboratory

(RAL) and supported by ESA [8].

Lunar X-ray fluorescence begins with irradiation by the Sun which pro-

duces a range of X-rays between 0.1 and 20 keV that are absorbed by the

very top layer of the lunar surface, to a depth less than 200 µm. The Moon

then fluoresces in X-rays at wavelengths characteristic of the elements fluo-

rescing.
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Results from the C1XS mission are discussed in ’The Chandrayaan-1 X-

ray Spectrometer: First results’ by Weider [8]. The paper focused on results

from early within the mission’s lifetime based on two A-class solar flare

events in December ’08 and January ’09. The analysis in the paper did

not use data from the XSM mounted to C1XS because the A-class flares

were a magnitude weaker than the flares XSM was designed to characterise,

and so the instrument could not reliably determine the input spectrum.

They therefore used a modelled spectrum from AtomDB [9]. AtomDB is a

database of atomic data and a plasma modeling code with a focus on X-

ray astronomy, which generated a high-resolution modelled solar spectrum.

Uncertainty existed over their ability to infer solar flare temperatures, which

were estimated to be between 2.5 and 3.1 MK, based on the work of Kay et

al [10]. To combat this they modelled C1XS spectra using both the upper

and lower limits and factored it into their error reporting. The paper finds

evidence for localised sodium detection of up to 1.65 ± 0.45 wt% but cannot

say this is any more than tentative evidence as the signal could easily be

mimicked by scattered solar flux if there is a high scattering efficiency.

The first unambiguous measurements of enhanced sodium on the lunar

surface are reported by Athiray in ’C1XS results - First measurement of

enhanced sodium on the lunar surface’ [11]. Previous X-ray spectrometers

on SMART-1 and Kaguya were damaged by radiation on their journey to the

Moon, and so the data provided by them has been limited [12]. C1XS, in part

to its shielding and part to it’s travel occurring at solar minimum, survived

the radiation much better and was able to record data for 9 months. This

good fortune also has a downside, the low solar activity meant that there

was not enough data to create global lunar maps of elemental abundance.
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Athiray [11] uses two criteria in choosing which data to use: 1) identification

of useful observations corresponding to solar flares, and 2) selection of good

observation intervals where the observed data are not contaminated by any

sudden increase in the flux of charged particles. This was done so that only

the highest quality data will be analysed and the chances of detecting the

presence of sodium will be increased; however, it meant that only a small

portion of the lunar surface was analysed.

Athiray chose a B3 class flare as the threshold for good data (shown in

figure 1), flares at lower classifications than this will not produce hard enough

X-rays to reveal the higher energy Ca, Ti and Fe emission lines, resulting

in highly unreliable abundance values post analysis. The algorithm used

by Athiray to derive absolute elemental abundances was newly written by

the author and has not been other-wise verified, however Athiray did run

laboratory based XRF experiments on various metals and lunar analogous

rocks to validate ’rigorously’ as detailed in ’Experimental Validation of XRF

Inversion Code for Chandrayaan-1’ [13]. Athiray’s analysis showed that the

surface layer of the Moon contains much more sodium than had previously

been detected. The results were >1 wt% Na, compared with <1 wt% from

lunar samples, and reaching 5+0
−1 wt%
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Figure 1: Full C1XS mission X-Ray flux. Red indicates C1XS integrated

counts with 16 second bins. The blue lines indicate solar X-ray flux with

time bin of 1 minute. The dashed line indicates the intensity of B3 class

flares. 10



Although designed for detecting X-rays, Shyama Narendranath attempted

to show that C1XS can also be used as a particle detector in her presentation

’Observations of the Geotail While in Lunar Orbit by the Chandrayaan-1

X-ray Spectrometer (C1XS)’ [14]. During the transits by Chandrayaan-1

through the Earth’s magnetotail, C1XS detected energy being deposited by

energetic particles in the SCDs. Narendranath explained that these rep-

resent important measurements of deep tail width and dynamics. Naren-

dranath presented a graph showing the total counts detected in 16s intervals

over the whole duration of the mission in the high energy range 15-20 keV

(figure 2). As the sun was quiet in X-rays during this time the counts are

indicative of particle flux and it is claimed correlate well to ±3 days of the

full Moon, the period where the Moon and Chandrayaan-1 in lunar orbit are

deepest within the Geotail. From the graph this is not immediately appar-

ent as although the peaks in counts do coincide with full Moons, the width

of these peaks appears to be multiple weeks, perhaps even a month in width

depending on how the peaks are measured. The peaks in Narendranaths’

graph are far from uniform in shape as well with two of the Geotail passes

having an apparent double peak.

Narendranath has used the GEANT4 simulation toolkit [15] to study

how charged particles would interact with the SCDs filter and collimators.

Particles from a range of energies were modelled to determine at what energy

the particles would deposit within the 1-20 keV range of detectors. It was

found that particles beyond a few MeV become minimum ionising particles

(MIPs) and deposit energy in the 18-19 keV range, allowing it to be used as

a proxy for charged particle intensity measurements. This is demonstrated

by a sharp increase in count rate at 18-19 keV in the C1XS data. With

C1XS, converting the count rate into particle intensity is hampered by not
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Figure 2: C1XS geotail passes, as presented by Narendranath in Particles In
the Lunar Environment: Observations of the Geotail While in Lunar Orbit
by the Chandrayaan-1 X-ray Spectrometer (C1XS).

having cross calibration data and having to rely on modelling, however a

third generation of the C1XS detector, CLASS (Chandrayaan-2 Large Area

Soft X-ray Spectrometer) [16], launched on-board Chandrayaan-2 [17] in

July 2019 where the calibration problem may be rectified and simultaneous

detections of X-ray and charged particle events will be possible. Naren-

dranath’s presentation to the 40th Lunar and Planetary Science Conference

raised the important point that the Geotail can be studied using C1XS high

energy data, something that was not part of the original science objectives

of the mission.
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1.2 Transient Lunar Phenomena

Transient Lunar Phenomena (TLP) are ephemeral changes in the appear-

ance of the lunar surface. TLP come in 3 main categories as presented by

Chilton: Glows, hazes and flashes [18]. Chilton did not put forward any

theories of his own but took time to explain various other theories of TLP

origin. Chilton regarded outgassing as the most likely source of TLP, re-

leased from gravitational disruptions to the Moon at perigee and apogee,

causing the surface to crack. It was also posited that TLP activity may

be related to solar activity with Chilton asserting that TLP usually occur

just after outbreaks of sunspots, a theory that was proven wrong in 1966

by Burley and Middlehurst [19]. In his publication Chilton called for extra

observers to look for the phenomena, as echoed in perhaps a more public

domain by Clarke in the ‘Astronomy Now’ magazine (2001) [20]. While

studying the phenomena would definitely be aided by more routine observa-

tions of the Moon, there is a danger that asking people to look for specific

phenomena will lead to an increase in spurious reports that could poten-

tially insert large bias into an analysis. This is further exacerbated in the

article as Clarke tells the reader where the best places to look for TLP are,

according to the number of reports, such as Aristarchus where 1/3 of all

TLP reports originate. This could create an observational bias towards the

mentioned features in future reports. Clarke discussed how William Her-

schel, an astronomer of great renown, observed three reddish points of light

on the lunar surface which he incorrectly ascribed to volcanoes, one of which

he claimed was erupting. TLP have been reported for hundreds of years and

are not a modern curiosity.
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Clarke’s Astronomy Now article caters to the notion that TLP occur

around mare edges, an idea that is popular with prominent TLP researcher

Arlin Crotts. in the late ’00s Crotts had three related papers published

[21][22][23] discussing at length transient lunar phenomena. In his 2009 ‘pa-

per 0’, Transient Lunar Phenomena: Regularity and Reality, Crotts sorts

the observation report data into samples by several parameters such as lo-

cation of the observer or historical epoch, arguing that if the determining

factor in reporting a TLP is one of these parameters, the TLP distribu-

tions of each samples will vary. Crotts found that this is not the case and

concluded from this that the data is reliable and counts of spurious reports

are low. The paper does not attempt to suggest a new process for TLP

occurring, but rather discern whether TLP can be attributed to certain lu-

nar features, perhaps narrowing down the list of possible causes. This is an

important aspect of dealing with sporadic and ill-defined reports because,

unlike a volcano on Earth, it is not possible to say that TLP, for example,

occur directly over the central peaks of craters, it is therefore important to

have an unbiased analysis confidently showing (or disproving) connections

between features and phenomena. Crotts found that there are no statistical

differences in observational biases except in an small interval between 1956

and 1968, in which a spike of reports focussed on Alphonsus, Gassendi and

Ross D were spurred by previous reports. The reports analysed in paper

0 show ’a surprising amount of regularity’ consistent with and suggesting

that many reports are real. Crotts unusually concluded the paper 0 with

assertions from his 2008 ‘paper 1’ (Lunar Outgassing, Transient Phenom-

ena, and the Return to the Moon. I. Existing Data), suggesting that TLP

are connected to mare edges.
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In paper 1 [22] Crotts used the data from his paper 0, which he has

discerned as reliable and filters it for the most robust of the reports. Doing

this will help the analysis’ accuracy. As he wanted to see if there was a

correlation with maria edges Crotts compared the distances of TLP report

locations to maria edges with those of a random distribution, however, he

uses a hand drawn boundary for the maria that happens to circle both the

Aristarchus plateau and Plato crater. Being the two most numerous sites of

his robust reports this border will massively skew the analysis result, and

it is no surprise that he found TLP to be 7 times closer to the border than

random points at 99.999% certainty. Paper 1 ends discussing mechanisms

for TLP, devoting a whole chapter to outgassing.

The Moon has been shown to release small amounts of gasses, includ-

ing argon and methane, leaving Crotts to ponder whether the source of gas

release is endogenic or of meteoritic impact origin. Crotts showed a correla-

tion between radon detection and the Aristarchus plateau suggesting radon

release is related to the TLP observed here. He then showed a weaker corre-

lation between weaker TLP sites and polonium enhancement, 210Po being a

daughter product of radon, both being tied to his hand drawn mare bound-

ary. This he claimed is strong support for tying TLP to outgassing. The

problem with this treatment is there is no direct link between the radon

release and TLP being observed.

Toward the end of the paper Crotts revealed that deep moonquakes,

at depths of 500 - 1,500 km, are also strongly correlated with mare edges.

At this depth the deep moonquakes should have no association with mare

basalt plains, as Crotts admits, but their correlation is stronger than that

of the shallow moonquakes. Neither shallow nor deep moonquakes showed

a close correlation in time with TLP report implying that in this scenario,
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of quake induced TLP, large amounts of gas must be being released, as 222R

has a half life of three and a half days.

In the final of the three papers Crotts discussed how outgassing may

develop into observable TLP [23]. The abstract of this paper poses an

important question: ‘TLPs betray some outgassing, but does outgassing

necessarily produce TLPs?’ This is important because the ideas implied in

his previous papers suggest that outgassing and TLP are firmly linked, but

because there is a small amount of gas release at the same sites as some

TLP, this does not infer a relationship between them. The paper concludes

the same. There is not evidence of enough radon production to produce

the explosive outgassing that Crotts models in paper 2 required to create

TLP like events. However, Crotts still enjoys the idea of outgassing and

mentions that radon and polonium are good tracers for outgassing, even

if not enough on their own to produce TLP, and that argon is a probable

source, given that much of the Moon’s tenuous atmosphere is composed of

this [24]. Helium is also a major constituent of the Moon’s atmosphere, but

the source of this gas can easily be confused with that of solar wind origin.

It is presumed that radon and argon both favour KREEP terrain, such as

the western maria regions, suggesting that detections of these gasses and

potentially, if linked TLP, are connected to the maria themselves.
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1.3 Erosional and Depositional Processes

In 1972 Garlick was able to show that fluidisation of dust, occuring when

vibrations cause a loss of intergrain cohesion [25], could account for the

increase in brightness required to witness TLP against the bright lunar

background from Earth. In the 1977 paper ’Lunar Surface Movements -

the Evidence and the Causes’ Garlick discussed lunar seismic activity [26]

presenting 3 types of activity. Deep quakes are unlikely to cause surface

disturbances of dust because the quakes would not carry enough energy 800-

1,000km to the lunar surface from their origin. Thermally induced quakes

would be most prominent after lunar sunrise correlating with an increase in

TLP reported by Cameron around sunrise [27]. The third seismic event is

a shallow moonquake. These shallower moonquakes, although infrequent,

would give larger wave amplitudes at the surface of the regolith, having the

potential to disturb more dust and perhaps loose boulders on crater slopes.

A lunar soil mechanics study, by Houston et al showed that such crater wall

boulders are unlikely to be released unless the gradient of the slope is greater

than 48◦ [29].

Lunar dust can be detrimental to human activities on the Moon due to

its small size and sharp and angular surface. It can cause irritation of

the eyes and throat [30] and it was also argued by Pendleton [31] in ’Dust

Analysis at the Moon’ that the fine particles are a hazard to hardware and

mechanical objects on the Moon. Dust can be levitated electrostatically on

the Moon, due to solar UV ionisation, although this can only account for

dust levitated several metres. To account for observations of dust grains

at up to 100 km altitudes [32], Pendleton referred to Stubbs’ work on ’The

Dynamic fountain Model ’ [33] in which he described narrow sheath regions
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where dust can be accelerated rapidly and then lofted ballistically up to

these heights. This model describes particles of up to 1 µm being lofted to

100km and reaching a maximum velocity on the same timescales (30s - 300s)

as observations of Lunar Horizon Glow variations as described by McCoy.

More recently the Lunar Dust Experiment (LDEX) aboard the LADEE

mission (Lunar Atmosphere and Dust Environment Explorer) has observed

a permanent dust cloud surrounding the Moon generated by surface impacts

of interplanetary dust grains, but concluded that there was no indication

of the dust populations required to produce the Lunar Horizon Glow [34].

Pendleton’s publication also suggested some mission concepts that would

help study the distribution of dust over the lunar surface including robotic

orbiters and landers as well as ’astronaut deployable experiments’. These

missions and new studies will be vital in assessing how to proceed with and

how to minimise both risk and cost of future lunar exploration.
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2 C1XS Magnetotail Measurements

2.1 Introduction

The Chandrayaan-1 X-Ray Spectrometer (C1XS) flew onboard Chandrayaan-

1 lunar mission and captured data for 9 months in 2009. During this time

the spacecraft transited the Earth’s magnetotail whilst orbiting the Moon.

This chapter discusses the usefulness of spectrometers as particle detectors

in recording measurements of the Earth’s magnetotail at lunar distances.
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2.2 C1XS and X-Ray Spectrometry

An X-ray spectrometer can be used to determine the abundancies of spe-

cific elements within a surface, as each element will fluoresce with a charac-

teristic wavelength when excited by solar radiation. To measure this, C1XS

used an array of 24 SCDs behind a gold coated collimator (figure 3) allowing

a spatial resolution of 25km, from Chandryaan-1’s orbit altitude of 100km

[7]. Lunar X-ray fluorescence is dependent upon incident solar soft X-ray

radiation exciting the atoms and so C1XS was accompanied by an X-ray

solar monitor (XSM) for calibration. During the time of Chandrayaan-1’s

mission the Sun was undergoing an extended minumum and the number of

solar X-ray events was limited. For the few solar flares of soft X-ray energies

that C1XS observed however, it was possible to create a partial abundance

map for the Moon and for the first time detect the abundancies of sodium

in the lunar surface [11].

Figure 3: The C1XS instrument as displayed by RAL Space at

www.ralspace.stfc.ac.uk/Pages/Chandrayaan-1.aspx
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2.3 The Magnetotail

Earth’s magnetotail (the Geotail)(figure 4) is a dynamic structure, varying

in size with solar wind pressures and magnetic field orientation. The geotail

forms a wake in the solar wind downstream from Earth where plasma den-

sities are drastically lower than the plasma outside. The plasma within the

geotail is of a different population to that of the inter-planetary medium,

coming mostly from ion populations from Earth rather than solar wind ions

from the Sun. These charged particles, within the Geotail, are more ener-

getic than solar wind particles, having been accelerated along the Earth’s

magnetic field lines and from magnetic reconnection within the tail. When

looking at magnetic field strengths the magnetopause is clearly visible as a

boundary between the Earth’s magnetic field and the interplanetary mag-

netic field (IMF) [35].

Figure 4: The Geotail as displayed by NASA at

www.nasa.gov/topics/moonmars/features/magnetotail 080416.html by

TJ Stubbs
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2.4 Magnetospheric Model

The high energy data from C1XS can be checked against a simulated

model of the Geotail to verify that C1XS is detecting the magnetotail via

high energy particle interactions as described in chapter 1.1. For this pur-

pose the Open Geospace General Circulation Model (OpenGGCM) was cho-

sen. OpenGGCM is a magnetohydrodynamic (MHD) model of Earth’s mag-

netosphere, created by Joachim Raeder at UCLA [36]. The model is run

through The Community Coordinated Modelling Centre’s (CCMC) ’runs

on request’ feature, situated at NASA Goddard Spaceflight Centre (GSFC),

using ACE real time historical data for the solar wind input. OpenGGCM

allows for the simulation of the magnetosphere several hundreds of Earth

radii downstream of the Earth and suitable for the X = 60RE orbit of the

Moon. All CCMC run results are posted on their website for public viewing

and return data and visualisation tools depending on the simulation model

chosen. With OpenGGCM, CCMC provides 2D cross-sections of the mag-

netosphere in user defined planes for a variety of outputs including magnetic

field strengths Bx, By, Bz, particle densities and plasma pressures.

22



2.5 Analysis

C1XS count rates are reported for each 16 second interval of the mis-

sion. Using the high energy channels from C1XS (18-19 keV) as reported by

Narendranath [14] it is clear that the MIP energy deposits rise dramatically

once each month around the Full Moon (Figure 2). At the time of a Full

Moon the Moon, and Chandryaan-1 and C1XS with it, are directly behind

the Earth in the X-Y plane and passing through the geotail at ∼ 60RE .These

spikes in the count rate begin roughly 3 days before and end 3 days after

the maxima, suggesting a 6 day transit time through the geotail.

The simulated output from OpenGGCM is used for viewing different

structures within the magnetotail. Particle density is a very good descriptor

of the bow shock and magnetosheath, where large numbers of solar wind par-

ticles are compressed against the subsonic plasma surrounding the Earth’s

magnetic field. At lunar distances however, the inner boundary of the mag-

netosheath, as seen by particle density, is fairly diffuse making it hard to

determine the edge of the magnetosphere, as shown in figure 5. The bound-

ary of the magnetotail, the magnetopause, is more easily discernible in the

magnetic field outputs Bx and Bz (figures 6 and 7) as the magnetic field

strength across the magnetopause increases rapidly in the X direction and

decreases equally as rapidly from the magnetosheath magnitudes in the Z

direction. These steep gradients in magnetic field strength should make it

possible to predict where in the C1XS data we can expect to see the high

energy particle peaks begin, and end, for each transit.
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Figure 5: Numerical simulation of particle densities around Earth in the x-y

plane. Earth is represented by the white circle at X,Y=0,0 with sunward

side shaded white towards positive X. The Moon is represented by the red

triangle and orbits at an average distance of 60 Earth Radii. The black

disc around Earth is a mask used to prevent saturation of the colour bands.

The magnetopause lies immediately behind the magnetosheath seen here in

yellow and red, but at distances more than 10 Earth radii the gradient of

particle density becomes too low to accurately identify this location.
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Figure 6: Numerical simulation of magnetic field strength along the Sun-

Earth axis in the x-y plane, showing the Bx component of the magnetic

field. Earth is represented by the white circle at X,Y=0,0 with sunward

side shaded white towards positive X. The Moon is represented by the red

triangle and orbits at an average distance of 60 Earth Radii. The black

disc around Earth is a mask used to prevent saturation of the colour bands.

The magnetopause here is visible at the transition from the green colour

of the solar wind magnetic field to the blue and yellow colours of Earth’s

magnetic field, representing a change in direction of the magnetic field at

the magnetopause.
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Figure 7: Numerical simulation of magnetic field strength along the north-

south ecliptic axis in the x-y plane, showing the Bz component of the mag-

netic field. Earth is represented by the white circle at X,Y=0,0 with sunward

side shaded white towards positive X. The Moon is represented by the red

triangle and orbits at an average distance of 60 Earth Radii. The black disc

around Earth is a mask used to prevent saturation of the colour bands. The

magnetopause is visible as a sharp increase in strength of the Bz component

of the magnetic field.
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The Moon does not orbit in the Sun-Earth plane but at an inclination

of 5.14◦. This will lead to variation within the position of the Moon with

respect to the magnetopause each transit. This inclination leads to a maxi-

mum height above or below the ecliptic of Z = ±5RE (figures 6 and 7). It

can be seen from the simulations shown in figures 8 and 9 that this differ-

ence corresponds to little variation in the plasma parameters, and due to

the imprecision in determining the time of C1XS’s transition through the

magnetopause this small variation can be ignored.

Figure 8: Numerical simulation of particle densities around Earth at a height

of 5RE above the ecliptic.Earth is represented by the white circle at X,Y=0,0

with sunward side shaded white towards positive X. The Moon is represented

by the red triangle and orbits at an average distance of 60 Earth Radii. The

black disc around Earth is a mask used to prevent saturation of the colour

bands.
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Figure 9: Numerical simulation of particle densities around Earth at a height

of 5RE below the ecliptic.Earth is represented by the white circle at X,Y=0,0

with sunward side shaded white towards positive X. The Moon is represented

by the red triangle and orbits at an average distance of 60 Earth Radii. The

black disc around Earth is a mask used to prevent saturation of the colour

bands.
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Data from OpenGGCM simulations (figure 10) show that strength of the

Bz component of the mangetic field presents a transition window on the

order of hours, and that particle densities present clear ’inside’ and ’outside’

regions of the magnetotail, but the transition window from this data is on

the order of days.

Figure 10: One dimensional time series comparing particle density and mag-

netic field z component at the Moon over April 2009. Magnetopause transits

can be seen during the evenings of the 6th and 12th April as highlighted in

yellow.

The simulated tail crossing for April 2009’s transit matches the hourly

count rates derived from the C1XS high energy data (figure 11), beginning

on the 7th April and exiting the tail on the 12th April. This confirms the 6

day transit time and a magnetotail stretching Y = 70RE at lunar distances.

This shows a magnetotail at X = 60RE as large as the maximum extent

observed by the ARTEMIS (the Acceleration, Recconection, Turbulence and

Electrodynamics of The Moon’s Interaction with the Sun) mission [37].
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Figure 11: C1XS high energy data showing the hourly count rate for
Chandrayaan-1’s April transit of the Geotail. The detections begin dur-
ing the 7th and last until the 12th. The time of the Full Moon is marked as
a red line, with +/- 3 days of the Full Moon marked with green lines.

Other months, for which the C1XS data are not as as numerous and well

defined as April, do not have such an unambiguous correlation. February

has a very close match, being a direct mapping for the entry into the geo-

tail but the simulation outputs do not give a very solid exit date which is

also backed up by the C1XS data. July’s transit exit simulation is the only

magnetosheath crossing that is very poorly aligned with the real data (fig-

ures 12 and 13) and this may be explained by the turbulent extent of the

magnetosheath, which varied rapidly over this transit period causing incon-

sistent particle detections in C1XS and a simulated plasma density reaching

40 cm−3 before fluctuating between 2 and 10 cm−3. The C1XS data for

March has significant coverage only of C1XS’s entry into the magnetotail

and not its exit, and the simulation and data are in agreement.
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Figure 12: One dimensional time series comparing particle density and mag-

netic field z component at the Moon over July 2009. Chandrayaan-1 exits

the Geotail on the 10th July in this simulation.

Figure 13: C1XS high energy data showing the hourly count rate for

Chandrayaan-1’s July transit of the Geotail. The time of the Full Moon

is marked as a red line, with +/- 3 days of the Full Moon marked with green

lines. C1XS was still detecting particles over the 10th and into the 11th of

July after the simulation suggests it has left the Geotail.
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The data received from C1XS could not provide a high resolution mea-

surement of the magnetotail (about 24 hours) but is similar in resolution to

predicted particle densities of the OpenGGCM model.

2.6 Conclusion

OpenGGCM has been used via CCMC to predict magnetotail transits

through magnetopause crossings for the Moon and by proxy Chandryaan-1

in orbit around the Moon. This has then been compared to high energy (18-

19 keV) detections in C1XS, corresponding to MIPs of electron and proton

interactions in the C1XS detectors, confirming that X-ray detectors such as

those in C1XS can be used as particle detectors to measure the extent of

the magnetotail. Using C1XS data the magnetotail has been found to vary

quite largely in size from Y = 50RE to Y = 70RE in diameter, as measured

from time taken to transit it. The investigation also confirms the accuracy

of the model at ranges up to X = 70RE when using historical solar wind

data.
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3 Transient Lunar Phenomena and the Mare-Highland

Borders

3.1 Introduction

Transient Lunar Phenomena have been reported in many different forms

from red glows to quick flashes of light and with equally varying explanations

from outgassing to electrical discharges. Arlin Crotts put forward a series of

influential papers purporting to show a link between transient phenomena

and the borders between highland terrain and mare terrain [21][22][23]. This

idea lent weight to the theory that outgassing was responsible for a sizeable

portion of TLP as the mare could act as caps on a fractured highland terrain

that would allow the gasses to percolate up to the surface and emerge at

these boundary points. This chapter suggests that this correlation does not

exist and that the link has been exaggerated by Crotts’ definition of the

Aristarchus Plateau as highland terrain.
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3.2 Lunar Observations

The Moon is the closest celestial body to Earth and has been looked upon

by humans for thousands of years. It was not until the invention of the

telescope though, that humans have been able to accurately detail the Moon.

On the 19th April 1787 renowned astronomer William Herschel reported

seeing three red ’volcanoes’ on the Moon [38]. However, it is believed that

no volcanic activity has occurred on the Moon for 50 million years [39] and

thus volcanism is unlikely to be the cause of his glowing red spots. Herschel

is not the only astronomer to have noticed strange transient features on

the Moon since the invention of the telescope, Halley, Olbers, Moore and

Tombaugh are all respected astronomers with catalogued reports of transient

lunar phenomena (TLP) alongside over 1,000 other reports [40].

TLP have been reported with many different visual characteristics, but

can broadly be described as glows, such as Herschel’s volcanoes, flashes,

and clouds such as the lunar horizon glow [41] witnessed by Apollo astro-

nauts and the Russian Lunokhod spacecraft. TLP can also have a colour

attributed to them, with many reports being of a reddish colour.

3.3 Possible Sources

There have been many proposed explanation for TLP. Most of the reports

of TLP come from amateur astronomers and are not verified by multiple

witnesses leading to the possibility of mistakes. These include chromatic

aberration, which can cause the red and blue light to refract separately in

a lens and create the impression of colours on the lunar surface, passing

satellites which can create a bright flash as they rotate and momentarily

reflect the sun’s light at the observer, or effects as described by Holden of
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’favourable illumination of mountain ridges’ [42].

Not all reports can be so easily explained though, having come from

respected and experienced astronomers or having been witnessed by mul-

tiple sources. These include the Lunar Horizon Glow (figure 14), which is

occasionally visible on the lunar horizon before sunrise, but extends beyond

the usual zodiacal light. Stubbs has tried to explain this phenomenon using

calculations of electrostatic dust lofting, raising charged dust grains up to

100km above the lunar surface[43], although more recent data from LDEX

has suggested this model is inaccurate [44].

Figure 14: Lunar horizon glow as observed by Surveyor 7, displayed by
NASA at www.nasa.gov/centers/goddard/news/features/2010/lhg.html.
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Crotts suggested that many TLP occur due to outgassing from below

the lunar surface and correlates TLP locations to the boundary between

mare terrain and highland terrain [22]. This suggestion is flawed, and the

correlation between TLP locations and the mare boundaries arises from the

generation of Crotts’ border, which he deduced by eye with a hand drawn

curve. This chapter shows that Crotts’ result is heavily influenced by his

decision to include small boundaries around the craters Plato and especially

Aristarchus, which alone accounts for more than 30% of all TLP reports.

3.4 Analysis

An unpublished catalogue of TLP reports compiled by Cook with over

2,000 entries is used in this analysis, with permission from the author. Cook

has weighted the reports into 6 weight categories, 0-5, where category 5 are

confirmed and unambiguous sightings with documented evidence, category 4

are reports confirmed by more than one observer, category 3 are observations

from experienced observers, category 2 are reports Cook thinks are good but

from inexperienced observers, category 1 reports are unlikely to be TLP,

and category 0 are observational nulls which are reports of normal lunar

appearance.

TLP sightings are not evenly distributed across the Moon’s surface. The

Aristarchus plateau accounts for approximately 30% of reports and Plato ap-

proximately 8%, features with diameters of 200km and 100km repectively. It

is therefore important to analyse the data both with and without Aristarchus

reports included.

If TLP are caused by an effect from a particular type or types of fea-

ture then it is expected that the reports should be grouped around said
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features. For Crott’s theory of explosive outgassing [23] to be a source of

TLP, a correlation between mare-highland boundaries and TLP sightings

must be drawn. Whereas Crotts hand drew this boundary and included the

Aristarchus plateau, a decision that would heavily influence the result, for

this study a Python code was written to analyse an image of the Moon and

use the brightness difference between the dark mare terrain and the lighter

highland terrain to create a border around the maria (figure 9). This pro-

vides a numerical way to determine how close a feature with a reported TLP

is from the boundary. The resulting border has a more intricate shape than

Crott’s smoothed border but contains all of the same regions within it but

differs from Crott’s border as the Aristarchus Plateau is not marked out as

highland terrain in the computer generated border.

Figure 15: Visualisation of the numerically generated mare borders above

a map of the Moon. The generated border data are shown in red, weight

4 TLP reports are represented by blue circles and weight 5 TLP data by

yellow circles. With this border Aristarchus is clearly within the large mare

of Oceanus Procellarum.
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Measuring the distances of the coordinates of features of reported TLP

events, without data from Aristarchus, to the closest generated mare border

coordinate along great circle lines determines that there is very limited cor-

relation with this border. The weights of data from 4 to 0 all show the most

likely distance a report lies from the border is 50km or less. The strongest

weighted and most reliable reports of TLP actually show that without count-

ing the Aristarchus Plateau as highland terrain the most likely distance from

a mare border for TLP to be is 50-100km (figure 16). When data from the

Aristarchus region is used, still without counting the region as highland ter-

rain, a large spike in all datasets (figure 17) is visible at 350-400km reflecting

the over-abundance of reports at this location.

Figure 16: Histograms of minimum distance to the generated border for

TLPs, except for those at Aristarchus, alongside a set of randomly generated

events.
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Figure 17: Histograms of minimum distance to the generated border for all

TLPs, including data from Aristarchus reports, alongside a set of randomly

generated events. The effect of the large amount of data from Aristarchus

is present here at the 350-400km distance.

3.5 Conclusion

The data from lower weight and reliability TLP reports do suggest a cor-

relation between maria boundaires and TLP events, however when the most

reliable data from the weight 5 category (unambigous events with recorded

evidence) are used the results differ from what is expected as shown by the

randomly generated events. The weight 5 events are most often reported

between 50 and 100 kilometres from any mare-highland terrain boundary.

The idea supported by Crotts, that TLP occur around the borders between

mare and highland terrain, only holds up when a border is drawn around

the Aristarchus Plateau, and with such a high percentage of TLP reports

being reported at Aristarchus an analysis with any border will be saturated

at the point of closest distance between Aristarchus and this border. This
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effect is clearly visible in figure 17 between Aristarchus and a border 350-

400km away. Future discussion should therefore focus on the eligibility of

treatment of the Aristarchus Plateau as highland terrain rather than part

of the maria and whether the same underlying physical processes expected

to occur at mare-highland borders, such as gas travelling around the mare

basalts through cracked highland terrain, can be expected to occur at this

location.
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4 Constraining the Zito Effect

4.1 Introduction

The Zito effect was first proposed by Richard R Zito in 1989 [45] as a possible

explanation for some transient lunar phenomena. Rocks splitting on the

lunar surface due to thermal or seismic stresses or from meteoritic impact

may produce light visible from Earth. This light would appear similar to

meteorite impact flash such as those recorded by the Marshall Space Flight

Center at NASA [46]. It is shown that the expected signals for such a Zito

effect do not exist within the impact flash catalogue which is important to

NASA’s space mission meteor threat evaluations.

4.2 Transient Lunar Phenomena

Observers of the Moon have for centuries described transient phenomena

[19] with descriptions of red volcanoes, hazy clouds, glowing blue lights and

bright flashes. Richard Zito proposed an explanation for some bright flash

TLP in 1989 [45]. He suggested that rock fracturing on the surface of the

Moon, by seismic activity or by thermal stressing, can create a piezoelectric

effect and release electrons that will excite gases contained within the rock

that are also released by the fracture. His calculations showed that for

basaltic rock with a density of 3.0 × 103 kgm−3 and a porosity of 10% a

1m crack penetrating to a depth of 8.5m would produce sufficient energy

(1 W/m2) to create a flash visible from Earth through a small aperture

telescope, at 8% brighter than the average lunar surface.
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4.3 Impact Flashes

Lunar impact flashes are a well known phenomena. NASA’s Marshall

Space Flight Center has kept a catalogue of such flashes since 2006 [47] and

they use this data to estimate danger to satellites because the Moon offers

a much larger collection area for meteorites than can be achieved looking

into the Earth’s sky for meteors. Impact flashes are short in duration, being

measured by NASA in 1/30ths of a second, (similar to the proposed Zito

effect) and possible contamination of catalogue entries with Zito effect TLPs

may over-represent meteorite impacts and thereby overestimate the danger

of space missions. Nasa’s catalogue of impact flashes is controlled to remove

impact flash like effects, such as reflections and glints from satellites and

point meteors ablating in Earth’s atmosphere but effects such as the one

described by Zito, that originate on the lunar surface, may not be screened

out.

Figure 18: Locations of Marshall Space Flight Center catalogued impact
flashes on the lunar surface. Impacts are coloured according to the terrain
they landed on, with blue circles representing impacts landing on dark ter-
rain, typically in the lunar maria, and yellow circles representing the impacts
that landed on bright terrain, typical of the highlands.
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4.4 Impact Flash Catalogue

The distribution of impact flashes across the lunar surface should be

evenly distributed, with the western hemisphere having about 30% more

impacts than the eastern hemisphere due to the leading edge effect, and the

equatorial regions having about 10% more impacts than the poles due to

meteoroids in the plane of the solar system. The actual distribution how-

ever, possibly due to observational effects [48] (shown in figure 18), has no

impacts observed outside ±60 degrees, a marked drop in observations at the

central longitudes and a much decreased number of observations in the east-

ern hemisphere. This is due to optimal observation scenarios, as observers

will want to view the largest possible area of Moon unlit by the sun and so

will avoid the poles as the crescent shape of the Moon’s illumination ensures

proximity to sunlight in those regions and the eastern hemisphere is best

viewed at early hours of the morning when fewer observers are inclined to

be active.

4.5 Analysis

For this analysis a random distribution of coordinates were generated to

simulate an impact flash catalogue without any localised TLP intrusions.

To ensure this closely matched the Marshall catalogue the same constraints

as were predicted for the real data were applied: The data were generated

with a sinusoidal longitude and latitude distribution to ensure lower reports

at the limbs and at central longitudes and with a higher probability over

dark backgrounds to reflect that it is easier to observe a flash with a larger

brightness compared with its background.
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The Marshall Space Flight Center impact flash catalogue matches well

with the random distribution of coordinates as shown in figures 19 and

20. One pair of catalogued impacts were within 3km of each other, but

the probability distribution of both randomised data and catalogued impact

flashes suggest this is not too improbable at 0.2% probability for any pair

of points in the distributions containing 330 reports.
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Figure 19: Probability estimates for the distance between any two observed

impact flashes in the Marshall Space Flight Center catalogue. Mean sepa-

ration is shown as the red vertical line and the standard deviation is shown

as the blue vertical lines. Probabilities calculated using both the Scott and

Silverman smoothing estimations are shown [49].
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Figure 20: Probability estimates for the distance between any two randomly

generated coordinates. Mean separation is shown as the red vertical line

and the standard deviation is shown as the blue vertical lines. Probabilities

calculated using both the Scott and Silverman smoothing estimations are

shown.
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No clusters containing more than 3 data points were found with sepa-

rations of less than 60km (figure 15). This is important as the more data

within a cluster and the smaller the separation of points in that cluster the

stronger the evidence of grouping within the data is. The lack of any degree

of clustering on the scale of geological features (such as Aristarchus crater

at 40km diameter) suggests that there are no localised effects influencing

the impacts catalogue.

Figure 21: Number of clusters detected in the Marshall Space Flight Center

catalogue dataset that contain more than 3 data. There are no clusters

smaller than 60km.
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Figure 22: Number of clusters detected in the randomly generated dataset

that contain more than 3 data. There are no clusters smaller than 60km.
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4.6 Discussion

This analysis expected the signal of the Zito effect in the catalogued data

to be an increase in probability of a close separation of impacts, resulting

from local geographical variations such as a heavily bouldered areas and

exposed rock faces in crater walls that may be struck by micrometeorites

not large enough to produce their own impact flash or fracture under thermal

stresses. This signal is completely missing from the data. The Zito effect

is therefore a rare phenomenon or the light produced by the effect, which

Zito demonstrated should be bright enough to be visible from Earth, is

obscured. This obscuring of light would be especially prevalent further from

the equator where light emanating from a fracture would not be directed

at Earth or in boulders where the fracture may also be hidden from line

of sight. The NASA database of impact flashes is unaffected by the effects

proposed by Zito and also from any other localised flash producing effects

that may be present on the lunar surface and can safely assumed to be an

accurate catalogue of meteoric impacts.
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5 Conclusions

The first study in this thesis aimed to use the X-ray spectrometer, C1XS,

as a particle detector as previously outlined by Narendranath[14], to mea-

sure the width of the Geotail. The analysis compared data from C1XS with

data generated by the OpenGGCM magnetohydrodynamic model running

with historical solar wind data. Both datasets agreed on the position of

the magnetopause to within a few hours of Chandrayaan-1’s orbit during

the April transit of the Geotail, when C1XS’s data was clearest and most

apparent, and whenever C1XS had significant data recorded it was in agree-

ment with the MHD model to within 24 hours. This result is in agreement

with the ARTEMIS satellite’s measurements and suggests that future X-ray

spectrometers using SCDs could be used to monitor magnetospheres as they

transit through them.

The second study in this thesis examined Crotts’ theory of lunar out-

gassing being responsible for the production of transient lunar phenomena.

His papers suggest a correlation between the borders of lunar maria and

TLP reports, where he expects the most outgassing to occur[22][23]. The

analysis in this thesis created a digital representation of the mare borders

using the Python programming language comprising of thousands of coor-

dinates, and then recorded the closest point on the borders to each reported

TLP in a catalogue compiled by Cook, for TLP reports of 5 weights sorted

by robustness and reliability of the report, with observational nulls, and

with randomly generated artificial reports. No correlation was found when

only taking the most reliable reports into account, and further including

the Aristarchus Plateau as highland terrain causes a large correlation due

to the sheer number of TLP reported at Aristarchus crater, suggesting the
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correlation is not with the borders but rather with specific features.

The final study in this thesis aimed to identify or constrain the effect

proposed by Zito[45] as a possible explanation of TLP. Zito had calculated

that light given off by gases excited by a piezoelectric effect from fractur-

ing or cracking rocks on the lunar surface could be viewed from Earth.

These flashes would have a similar duration and intensity to meteoric im-

pact flashes and so the Marshall Space Flight Center impact flash catalogue

was analysed to search for clustering of the data. Such a localised effect

would not be expected in sporadic impact flashes, but could be explained

by environmental features such as exposed crater walls or bouldered areas.

The data produced no evidence of any localised effects, suggesting that the

Zito effect is either a rarely seen phenomenon or that the light produced

during the effect is obscured from view of an Earth observer. Future studies

of the Zito effect should therefore focus on fainter flashes that may represent

smaller or partially obscured flashes, and their distribution among partic-

ular features where other TLP effects are not expected, such as in heavily

bouldered regions of the Moon.
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