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Abstract

In the real world there are a large number of optimization problems, especially in scientific
research and engineering practice, which often have constraints and sometimes more than
one objective. Due to the different characteristics of the problems themselves, traditional
methods in operations research are no longer able to solve them independently. Evolutionary
algorithms (EAs), as a global optimization method based on group search, are well suited
for solving constrained optimization problems and multi-objective optimization problems.
Therefore, evolutionary optimization has received increasing attention from researchers. The
aim of this thesis is to design efficient multi-objective evolutionary algorithms (MOEAs) and
strategies for constrained single-objective optimization problems (CSOPs) through in-depth
exploration, and to conduct corresponding theoretical and experimental analysis. Specifically,
the main research work of this thesis includes the following aspects.

Firstly, we consider a many-objective method for solving CSOPs. The method keeps the
standard objectives: the original objective function and the sum of the degrees of constraint
violation. Besides them, more objectives are added into the method. One objective is based
on the feasible rule. The others come from the penalty function method. Then a multi-
objective differential evolution algorithm is applied to solving multi-objective optimization
problems with two, three and four objectives. An experimental study on thirteen benchmark
functions from IEEE CEC2006 Competition is conducted. Experimental results confirm our
expectation that adding more objectives could be useful and the solution quality is improved.

Secondly, we construct a new multi-objective evolutionary framework for solving CSOPs,
which works by converting a CSOP into a problem with helper and equivalent objectives
(HECO). An equivalent objective means that its optimal solution set is the same as that to the
constrained problem but a helper objective does not. Then this multi-objective optimization
problem is decomposed into a group of sub-problems using the weighted sum approach.
Weights are dynamically adjusted so that each subproblem eventually tends to a problem
with an equivalent objective. We theoretically analyze the computation time of the helper
and equivalent objective method on a hard problem called “wide gap”. In a “wide gap”
problem, an algorithm needs exponential time to cross between two fitness levels (a wide
gap). We prove that using helper and equivalent objectives can shorten the time of crossing
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the “wide gap”. A series of derivative algorithms are then designed based on HECO, such
as HECO-DE, HECO-DEtch and HECO-DEm. Extensive experimental studies show these
algorithms perform much better in solving benchmark problems in IEEE CEC2017/2018
Competition, and IEEE CEC2006 Competition than other state-of-the-art EAs.

Finally, apart from constraint handling techniques, we also contribute to new search
operators which lead to further improvement our EAs for solving CSOPs. Two methods of
studying valleys on a fitness landscape. Afterwards, the principle component analysis (PCA)
could be used to characterize fitness landscapes. Based on this finding, a new search operator,
called PCA-projection, is proposed. In order to verify the effectiveness of PCA-projection,
we design two algorithms enhanced with PCA-projection for solving CSOPs. Experiment
results indicate that the new search operator based on PCA-projection works very well.
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Chapter 1

Introduction

1.1 Background

Optimization problem refers to finding the optimal solution or parameter value among
many solutions or parameter values to make one or more functional indicators optimal,
or to maximize or minimize some performance indicators of the system under certain
conditions. Optimization problems exist widely in many fields such as signal processing,
image processing, production scheduling, task allocation, pattern recognition, automatic
control and mechanical design [106, 4, 78, 69]. Optimization methods are a mathematical-
based application technique for solving various optimization problems. Various optimization
methods have been widely used in the above-mentioned fields, and have produced great
economic and social benefits. It has been proved that optimization methods can improve
system efficiency, reduce energy consumption, and use resources rationally, and this effect
becomes more obvious as the scale of the processing object increases.

Many complex optimization problems are constantly emerging in many disciplines such as
electronics, communications, computers, automation, robotics, economics, and management.
In the face of these large optimization problems, traditional optimization methods (e.g.,
Newton’s method [93], simplex method [100], etc.) require traversing the entire search space,
which cannot be completed in a short time and is prone to "combinatorial explosion" of
the search. For example, many engineering optimization problems often require searching
for optimal or quasi-optimal solutions in a complex and large search space. In view of
the complexity, nonlinearity, constraint and difficulty of modeling, the search for efficient
optimization algorithms has become one of the main research contents of related disciplines.

Inspired by human intelligence, the social nature of biological groups or the laws of
natural phenomena, many intelligent optimization algorithms [53, 35, 68] have been invented
to solve the above-mentioned complex optimization problems, mainly including: genetic
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algorithms that mimic the evolutionary mechanism of organisms in nature; differential
evolutionary algorithms that optimize search through cooperation and competition among
individuals in a group; the particle swarm algorithm that simulates the group behavior of
birds and fish; the simulated annealing algorithm that originates from the annealing process
of solid matter; and so on. These algorithms have one thing in common, that is, they are
developed by simulating or revealing certain phenomena and processes in nature or intelligent
behaviors of biological groups; they are called intelligent optimization algorithms in the field
of optimization, and they are characterized by simplicity, generality, and ease of parallel
processing.

1.2 Motivation of Thesis

In real-world optimization problems, such as engineering design, operation scheduling,
intelligent control, traffic optimization, financial investment, network communication, etc.,
there are often many constraints that pose great challenges for problem solving [90, 22].
Such optimization problems are called constrained optimization problems (COPs). COP
is an important problem in the field of optimization, and the constraints in COP usually
include upper and lower bound constraints on decision variables, equation/inequality con-
straints. According to the mathematical properties of the constraints, they can be classified
as linear/nonlinear constraints. The existence of constraints leads to infeasibility domains
in the search space of decision variables (the search space consists of two parts: feasible
and infeasible domains). From unconstrained optimization to constrained optimization, the
original single optimization objective must consider both the optimization objective and the
constraint, but the effective unconstrained optimization method is at a loss when dealing with
the constrained optimization problem. Therefore, it is of great theoretical significance and
practical value to study the constrained optimization problem.

Constrained single-Objective optimization problem (CSOP) is the single-objective case
of COP. It is of general interest to study CSOP. Traditional optimization algorithms solve
such problems based on gradient information, which is only applicable to the case where
the objective function and constraints are differentiable, and the solutions are mostly locally
optimal. EA is a global optimization method that simulates a natural process, in which
individuals are used to represent the solution of the problem to be solved, and a certain number
of different individuals are formed into a population. Starting from the initial population,
the population is guided to evolve by mutation, crossover, selection and other operations to
mimic the evolutionary process in nature, so that the individuals in the population gradually
approach the optimal solution of the problem. Compared with traditional optimization
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algorithms, EAs are population-based search techniques, which have the characteristics
of robustness, high search efficiency, and not easy to fall into the local optimum, so it is
more suitable for solving CSOPs. However, EA is an unconstrained optimization technique,
which must be combined with certain constraint handling mechanism to form a constrained
optimization evolutionary algorithm.

Over the last two decades, there is an extensive study of using evolutionary multi-objective
optimization (EMO) methods solving CSOPs, and this process is referred to as MOCO.
Although those studies claimed that escaping from local optima with MOCO could be easier
than with SOCO (evolutionary single-objective optimization method for solving CSOPs), and
better results were obtained by MOCO when compared with SOCO [125]. Unfortunately, no
EA in the most recent competitions (e.g. IEEE CEC2017/2018 on CSOPs [161]) is MOCO,
but all EAs in the competition are SOCO conversely. In addition, MOCO is born with a
defect that the optimum solution of a MOCO could be an infinite set while the optima of the
original CSOP is just a single point. Thus, it is hard to explain why MOCO is efficient.

Based on the above observations, several issues are expected to be addressed in this
thesis.

• Is MOCO more efficient?

• If not, can we construct one instead.

Essentially, both MOCO or SOCO devote themselves to handling constraints. However,
besides constraint handling techniques, search operators as engines of optimization also have
a vital role for solving CSOPs. Current search operators such as Mutation and Crossover in
Differential Evolution [108] do not explicitly utilize features of fitness landscapes, which
could be a very useful reference information for EAs search in high dimensional continuous
space. As a consequence, we can also make contributions from this point of view, and
enhance the performance of EAs for solving CSOPs afterwards.

1.3 Contributions

Based on the motivations, this thesis investigates solving CSOPs by MOEAs. The main
contribution can be summarized as follows.

• The first contribution [167] of the thesis is a novel multi-objective method is proposed
for solving CSOPs. The idea of the new problem formulation (Chapter4) is adding
helper objectives besides the original objective and the degree of constraint violations.
The new helper objectives are weighted sums of the normalized original objective
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function and normalized degrees of constraint violation. Our experimental studies
show EAs with three or four fitness functions obtain feasible solutions more quickly
than that with the standard two fitness functions, which stands for our expectation that
adding more helper functions could be useful.

• The second one [166] (Chapter 5) is an completely novel problem formulation com-
pared to traditional MOCO. It reconstructs the objectives of the original problem into
helper and equivalent objectives (HECO) with definitions in the thesis. Moreover, we
have theoretically proven that for the “wide gap” problem, using helper and equiva-
lent objectives may shorten hitting time of crossing the “wide gap”. To the best of
our knowledge, this might be the first theoretical work to explain the strengths of
multi-objective EAs in performing CSOPs.

• Evolutionary algorithms, such as HECO-DE [166], HECO-DEtch, HECO-DEm [164]
(Chapter 6) are constructed based on HECO. Extensive experiments show that HECO
and its derived algorithms perform very well. It is worth mentioning that HECO-
DE is ranked 1st in 2019 in IEEE CEC Competition on Constrained Real Parameter
Optimization when compared with other eight state-of-art EAs [132].

• We also contribute to new search operators of EAs by exploiting the information of
fitness landscape in search space. Firstly, we present two methods of studying valleys
on a fitness landscape. The first method is based on the topological homeomorphism. It
establishes a rigorous definition of a valley. A valley is regarded as a one-dimensional
manifold. The second method takes a different view-point from statistics. It provides
an algorithm of identifying the valley direction and location using principle component
analysis. Based on the latter method, a new search operator, called PCA-projection, is
proposed, in which PCA is used to project points along the maximal variance direction.
Afterwards, we design two algorithms enhanced with PCA-projection for solving
constrained optimization problems, called PMODE and HECO-PDE, respectively.
From an experimental observation, we find that given a valley landscape, the maximal
variance direction in a population can be regarded as the valley direction.

1.4 The Structure of the Thesis

The rest of this thesis is organized as follows.
Chapter 2 focuses on reviewing traditional SOCO methods, the most recent work on

MOCO.
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Chapter 3 introduces the benchmark functions from IEEE CEC2006 and IEEE CEC2017
competition on single-objective constrained real-parameter optimization tested in the thesis
and their evaluation criteria.

Chapter 4 presents a novel MOCO method with experimental studies.
Chapter 5 presents a novel problem formulation, helper and equivalent objectives for

solving CSOPs (HECO). HECO is also analyzed in theory.
Chapter 6 proposes several algorithms designed based on HECO, such as HECO-DE,

HECO-DEtch and HECO-DEm. Extensive experimental studies are also presented in this
chapter.

Chapter 7 presents two methods of studying valleys on a fitness landscape. In addition,
principle component analysis (PCA) is used to characterize fitness landscapes. Based on
this finding, a new search operator, called PCA-projection, is proposed in this chapter. In
order to verify the effectiveness of PCA-projection, we design two algorithms enhanced
with PCA-projection for solving CSOPs, called PMODE and HECO-PDE with experimental
studies, respectively.

Chapter 8 gives the conclusion of the thesis and future work.





Chapter 2

Related Work

2.1 Traditional Approaches to Constrained Single Opti-
mization

As unconstrained optimization problems, constrained optimization problems (COPs) are
also a class of mathematical optimization problems. Then, most methods for dealing with
unconstrained optimization problems can also be used to solve COPs with considering
handling constraints simultaneously. The constrained single objective optimization problems
(CSOPs) is the single objective case of COPs.

A constrained single-objective optimization problem (CSOP) is formulated in a mathe-
matical form:

min f (⃗x), x⃗ = (x1, · · · ,xD) ∈Ω,

subject to

{
gI

i (⃗x)≤ 0, i = 1, · · · ,q,
gE

i (⃗x) = 0, i = 1, · · · ,r,
(2.1)

where Ω = {⃗x | L j ≤ x j ≤U j, j = 1, · · · ,D} is a bounded domain in RD. D is the dimension.
L j and U j denote lower and upper boundaries respectively. gI

i (⃗x) ≤ 0 is an inequality
constraint and gE

i (⃗x) = 0 is an equality constraint. A feasible solution satisfies all constraints,
but an infeasible solution violating at least one. Ω∗, ΩI, ΩF denote the set of optimal feasible
solution(s), infeasible solutions and feasible solutions respectively.

Classical constrained optimization methods include penalty function method, Lagrangian
method [38] and Sequential Quadratic Programming [11]. They are all local search methods
to find a local optimal solution. In many real-world CSOPs, on one hand, as the formulation
of objective function is usually highly complicated, not only high dimensionality but also
exist many local optima located on fitness landscape. On the other hand, the objective
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functions in real-world problems are usually non-linear or non-differentiable, even without
analytical expression.

Evolutionary algorithms (EAs), as global optimization algorithms, have requirements
on the computability rather than analytic properties (e.g. continuity, differentiability, etc.)
of the objective function itself. The key to solving CSOPs with EAs lies in how to handle
constraints, that is, how to effectively balance the search between feasible and infeasible
areas. Summarized in [87], the existing high impact constraint-handling techniques can be
divided into the following categories:

• Penalty functions

• Feasibility rules

• Multi-objective method

2.1.1 Penalty Function Methods

General formula of a CSOP in equation 2.1 transformed by penalty function methods is the
following:

ϕ (⃗x) = f (⃗x)+ p(⃗x) (2.2)

where ϕ (⃗x) is the transformed objective function including a penalty term p(⃗x) which can be
calculated as follows:

p(⃗x) =
q

∑
i=1

cI
i ·max(0,gI

i (⃗x))+
r

∑
i=1

cE
i ·max(0, |gE

i (⃗x)|) (2.3)

where cI
i and cE

i are positive constants called “penalty factors".
It can be known from the formula of penalty function methods, the aim is to create

selection preference for feasible solutions. In equation (2.2), a positive penalty value is added
to the fitness of a infeasible solution as low values are preferred in minimization problem.

The simplest penalty function is “death-penalty”. In this case, infeasible solutions are
simply eliminated from search process with worst fitness values [5, 123].

As the “death-penalty” always ignore the valuable information from infeasible solutions,
penalty function is defined with penalty terms. Under this scheme, infeasible solutions are
considered in the optimizing process. There are different methods for setting penalty factors.
The first method is to keep penalty terms fixed during the search [92, 54, 52, 72]. The
main drawback of this method is fixed penalty terms values are problem independent. The
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second method is to get time (usually the generation counter) involved in construct penalty
function [64, 67, 23, 89]. The main drawback of this method is that new parameters are also
required to be tuned in penalty function. The last method improved the generalization, that
is adaptive penalty functions [10, 110, 44, 45, 8, 18, 160]. However, this method still has
drawbacks, i.e., the information for adaption is not necessarily useful, in another words, there
is no certain trend for a algorithm in optimization process.

2.1.2 Feasibility Rules

The superiority of feasibility rule originally proposed by Deb [28] is one of the most popular
constraint-handling techniques described as follows.

1. A feasible solution with a smaller objective function value is better than one with a
larger objective function value;

2. A feasible solution is better than an infeasible solution;

3. An infeasible solution with smaller constraint violation degree is better than one with
larger constraint violation degree.

This simple constraint-handling scheme is popular due to its ability to be coupled to
a variety of algorithms, without introducing new parameters. Mezura-Montes and Coello
Coello [84] emphasized that it is important to combine feasibility rules with other mecha-
nisms, such as archiving infeasible solutions which are near the feasible region. However,
this approach needs an additional dynamic decreasing mechanism for the tolerance value (ε)
for equality constraints.

Zielinski and Laur [176] combined DE with the feasibility rules with a greedy selection
scheme between target and trial vectors. Instead of using penalty functions for constraint
handling what is the most common approach, a method based on a modified selection
procedure is adopted that favors feasible over infeasible individuals. No additional parameters
are required for this constraint handling technique.

Self-adaptive mechanisms DE-based approaches also employ feasibility rules to choose
among their variants, e.g., SaDE [12]. In their method, sequential quadratic programming
(SQP) is used within some iterations to a subset of solutions in the population. Although the
results of their algorithm are very competitive, SQP plays a major role there, and it lead to
poor applicability.

PSO-based approaches also utilizes feasibility rules as constraint-handling technique.
Zielinski and Laur [176] proposed premature convergence in test problems with a high
number of equality constraints since there is no diversity maintenance mechanism.
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In summary, the feasibility rules have been very popular in constrained optimization
due to simplicity and flexibility, which makes them easily to be combined with selection
mechanisms. However, they have drawbacks. For instance, feasibility rules inevitably cause
premature convergence. It is on account of the fact that the rules still strongly favor feasible
solutions. Then, this constraint handling technique will significantly increase the selection
pressure if without further mechanisms adopted to preserve diversity [84]. Some approaches
adopt special operators [9], which however can be considered as a secondary role since the
main bias is provided by feasibility rules during the search. Feasibility rules are combined
with self-adaptive variation operator selection mechanisms in DE [176, 12], PSO [176].

2.2 Multi-objective Methods for Constrained Optimization

In the real world, there exist many problems having two or more objectives to be optimized
at the same time. We call them multi-objective optimization problems (MOPs). How to deal
with MOPs has attracted the attention of researchers for many years. Due to the conflict
among the objectives, solving an MOP produces a set of solutions representing the best
possible trade-offs among the objectives. Hence, such solutions constitute the Pareto optimal
set and the image of this set form the so-called Pareto front.

2.2.1 Basic Concepts

multi-objective optimization problem (MOP) is formulated as follows:

min f⃗ (⃗x) = ( f1(⃗x), f2(⃗x), . . . , fm(⃗x),)T ,

subject to x⃗ = (x1, · · · ,xD) ∈Ω,
(2.4)

where Ω = {⃗x | L j ≤ x j ≤U j, j = 1, · · · ,D} is a bounded domain in RD. D is the dimension.
L j and U j denote lower and upper boundaries respectively.

A few additional definitions are required to introduce the notion of optimality used in
multi-objective optimization.

Definition 1. Given two vectors x⃗, y⃗ ∈ Rm, we say that x⃗≤ y⃗ if xi ≤ yi for i = 1, . . . ,m, and
that x⃗ dominates y⃗ (denoted by x⃗≺ y⃗) if x⃗≤ y⃗ and x⃗ ̸= y⃗

Definition 2. We say that a vector of decision variables x⃗ ∈X ⊂ RD is non-dominated with
respect to X , if there does not exist another x⃗′ ∈X such that f⃗ (⃗x′)≺ f⃗ (⃗x)

Definition 3. We say that a vector of decision variables x⃗∗ ∈ F ⊂ RD(F is the feasible
region) is Pareto-optimal if it is non-dominated with respect to F .
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Definition 4. The Pareto optimal set P∗ is defined by: P∗ = {⃗x ∈F | x⃗ is Pareto-optimal }

Definition 5. The Pareto front PF ∗ is defined by: PF ∗ =
{

f⃗ (⃗x) ∈ Rm | x⃗ ∈P∗
}

2.2.2 Three Schemes

A multi-objective method works by transforming the above CSOP into a multi-objective
optimization problem without inequality and equality constraints and then, solving it by a
multi-objective EA. Multi-objective EAs have been applied to CSOPs since the 1990s [135,
14]. Segura et al. [125] made a literature survey of the work up to 2016. Thus, most recent
work will also be taken into account in this chapter. Following the taxonomy in [86, 125], a
classification of these EAs is built upon the type of objectives.

1. Scheme with two objectives, which are the original objective f and a degree of violating
constraints v.

2. Scheme with many objectives, which are the original objective f and degrees of
violating each constraint vi.

3. Scheme with other objective(s), for example, the penalty function [30], besides the
original objective or the degree of constraint violation.

Bi-objective Methods

A popular implementation is to the bi-objective optimization: to minimize the original
objective function f and the degree of constraint violation v simultaneously. This scheme is
the most widely used one so far.

min f⃗ (⃗x) = ( f (⃗x),v(⃗x)), x⃗ ∈Ω. (2.5)

The constraint violation degree is often measured by the sum of constraint violation degrees:

v(⃗x) =
∑

q
i=1 vI

i (⃗x)+∑
r
i=1 vE

i (⃗x)
q+ r

, (2.6)

vI
i (⃗x) is the degree of violating the ith inequality constraint:

vI
i (⃗x) = max{0,gI

i (⃗x)}, i = 1, · · · ,q. (2.7)
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Equality constraints are transformed into the form:

|gE
i (⃗x)|− ε ≤ 0, i = 1, · · · ,r, (2.8)

where ε is a small number.
vE

i (⃗x) is the degree of violating the ith equality constraint:

vE
i (⃗x) = max{0, |gE

i (⃗x)|− ε}, i = 1, · · · ,r, (2.9)

where ε is a user-defined tolerance allowed for the equality constraint.
The above two objectives are widely used in the existing multi-objective methods for

constrained optimization [124].
Surry et al. [136, 135] proposed one of the most popular bi-objective methods COMOGA.

This method sets each constraint as a separate criterion, after that, a form of pareto ranking is
utilized to sort out solutions regarding their constraint violation. In the end, a self-adaptive
form of Schaffer’s VEGA scheme [121] is employed while the cost is used as one criterion
and overall ranked performance against constraints is used as another. The COMOGA method
utilizes the memory implicit in the population for achieving combinations of constraints and
objectives. The population is then expected to construct not only a set of good solutions by
evolutionary process, but also a context of the relative weighting of constraint satisfaction
and cost minimisation.

Zhou et al. [175] presented an approach by using knowledge of Pareto-dominance.
Then, a novel real-coded genetic algorithm is built upon Pareto strength and Minimal
Generation Gap (MGG). Mezura-Montes [84] introduced an approach utilizing a simple
diversity mechanism which reserves infeasible solutions to maintain the diversity, without a
penalty function. The approach could guide the search towards global optimum in spite of
relatively slowly reaching feasible region in the search space. However, a simple feasibility-
based comparison mechanism is employed for pushing search toward feasible region. In
addition, evolutionary strategy searches locally with small steps in the beginning. Also,
a combined (discrete/intermediate) panmictic recombination technique is to promote the
capabilities of exploitation.

Cai and Wang et al. [13] firstly proposed a method called CW. This method updates
population by doing replacement between dominated parent solutions and non-dominated
offspring solutions. Additionally, three models of a population-based algorithm-generator and
an infeasible solution archiving and replacement mechanism are also the main contributions.
The search operator is just a very simple crossover. Then, Wang and Cai [151] introduced an
improved version of CW, named CMODE. CMODE has two differences: 1) DE, instead of a



2.2 Multi-objective Methods for Constrained Optimization 13

simplex crossover, is adopted as search engine. 2) A novel infeasible solution replacement
mechanism is built upon multi-objective techniques.

Wang et al. [152] proposed a novel algorithm which effectively combines multi-objective
optimization with global and local search models. Regarding to the global search, a niching
genetic algorithm based on tournament selection was proposed. In addition, a parallel local
search operator that implements a clustering partition of the population and multi-parent
crossover to generate the offspring population. As a result, dominated individuals in the
parent population were replaced by non-dominated offspring. Simultaneously, the best
infeasible individual replacement scheme provide the bias towards the feasible region in
the search space. The global search model benefits the population diversity while the local
search model contributes to the convergence.

However, the proposed method is highly sensitive to the problem-dependent expanding
factor in the simplex crossover which could affect implementation of the algorithm in the
real-world applications. In order to overcome aforementioned shortcomings, in Wang et
al. [150] the global search and local search are executed dynamically according to the
feasibility proportion of the current population. Venter and Haftka’s [147] approach is also
population-based which utilizes specialized multi-objective particle swarm optimization
algorithm.

Wang et al. [154] proposed another algorithm which utilized orthogonal design to pairs
of parent solutions to produce a set of representative offspring solutions. In each generation,
only a few individuals are selected from the population as the parents. Then, paired parents
are mated randomly and orthogonal crossover is implemented to reproduce a set of offspring.
offspring is then also combined while non-dominated individuals are chosen as the potential
offspring and utilized to complete the replacement by proposed mechanisms. Moreover, an
improved BGA mutation operator is adopted to contribute the population diversity.

A method that also divides the search into several phases is introduced in [146]. In the
first phase of the algorithm, only one objective constraint violation degree is considered
while disregarding the original objective function. Then, it becomes a constraint satisfaction
problem. The genetic search is forced to be guided to feasible region. Individuals are
assigned with fitness value by a linear rank-based approach. In addition, the solution with
smallest constraint violation degree value is archived. In the second phase, the original
objective is evolved again. The problem then becomes a bi-objective optimization problem.
Non-dominated ranking scheme helps exploration while elitist scheme helps exploitation.

Deb et al. also put effort on finding on the boundary of the feasible region [31]. The
problem is firstly transformed into a standard bi-objective problem. A version of NSGA-II
then includes the definition of a reference point from [33]. The reference point is dynamically
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changed and used to find the nearby solutions. In each generation, the best found solution
is considered as the reference point. ε-dominance [71] is used for the sake of maintaining
diversity during the search process.

Ray et al. [113] presented an algorithm that explicitly keep a small amount of infeasible
solutions near the constraint boundaries in the evolution process. Apart from approaching
feasible boundaries from the feasible side by evolution of feasible solutions, these marginally
infeasible solutions could approach the boundaries of feasible region from the infeasible
side in the search space. “good” infeasible solutions are believed to contain more useful
information of approaching a feasible optimum than some feasible solution. Thus, the ranks
of solutions are adjusted not only by feasibility. The method has been further developed by
involving local search [127], and also applied to a practical optimization problem [126].

Masuda and Kurihara [82] modified the standard Multi-objective Particle Swarm Opti-
mizer (MOPSO) as: 1) limited number of Pareto optimal solutions as candidates survived
into next generation comparing to unlimited number of candidates in MOPSO; 2) the global
best solution is employed for updating Pareto optimal candidate set; 3) For the sake of
maintaining diversity of population, particles are randomly moved to candidate set if it is not
full yet.

Ji et al. [59] converted a berth allocation problem with constraints into problem (2.5) and
solved it by a modified NSGA-II. An archive was designed as an efficient complementary
mechanism to push the search toward the feasible solution. Superiority of feasibility rule [32]
was employed to obtain this archive. Ji et al. [60] transformed a CSOP into problem (2.1)
and solved it by a differential evolution (DE) algorithm. Different mutation operators were
combined to improve the search ability and control the convergence. Then, multi-objective
optimization techniques can be utilized in constrained optimization problem to balance
population diversity and convergence. They combined multi-objective optimization with an
ε-constrained method.

Li and Zhang [74] proposed a mechanism of adding bias to standard dominance relation-
ship. They claim that this control strategy based on biased threshold value could overcome
the shortcomings brought by Pareto dominance which is lack of preference on constraints.

Runarsson and Yao [120] explained in depth to indicate the significance of search bias
in constrained optimization based their previous research [119]. They studied why and
when multi-objective approaches for CSOPs work or fail. Dong et al. [34] proposed a novel
unbiased bi-objective optimization model which the original objective function and constraint
violation degree are treated equally. In addition, the relationship between proposed unbiased
model and existing biased model are analyzed in detail.
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Another method related to biased mechanism is from Garza-Fabre et al. [42, 41]. A
novel constraint-handling technique for hydrophobic-polar (HP) model was proposed. A
basic genetic algorithm is performed on a large set of test instances for the bi-objective HP
model (based on the square lattice). A search bias was incorporated with the feasibility of
the individuals as a supplementary discrimination criterion.

Gao et al. [39] proposed a dual-population differential evolution (DPDE) model with
coevolution. The CSOP is firstly transformed into a standard bi-objective. Then in each
population, the evolution task is different: one is to optimise the original objective function,
the other one is to optimise the constrained violation degree. Additionally, DPDE utilizes a
information sharing mechanism to achieve the communication between two sub-populations.

Recently, decomposition-based multi-objective EAs have applied to solving problem (2.5).
Xu et al. [167] decomposed problem (2.5) into a tri-objective problem using the weighted
sum method with static weights. They solved the multi-objective optimization problem by a
Pareto-ranking based DE algorithm. Wang et al. [148] decomposed problem (2.5) using the
weighted sum method into a number of subproblems with dynamical weights. They solved
the subproblems by DE. Peng et al. [105] decomposed problem (2.5) using the Chebycheff
method. Weights are biased and adjusted dynamically for maintaining a balance between
convergence and population diversity.

N-objective Methods

The second scheme converts a CSOP into a many-objective optimization problem but is less
used. One of the most famous methods [104] was proposed by Parmee and Purchase based
on the knowledge of Vector Evaluated Genetic Algorithm (VEGA) [121] by Schaffer. This
approach combines multi-objective techniques with a greedy decoder. At the beginning,
VEGA guides the search toward the feasible region. Then, a tailor-made operator instead of
VEGA is employed to archive feasibility of solutions once a feasible solution is found.

Horn et al. [55] proposed a method called Niched–Pareto Genetic Algorithm (NPGA).
A modified GA is served as the search operator while the Pareto dominance is employed
as selection operator. In addition, a niching pressure is used to push the solutions along
the Pareto Front. Based on the previous research, Coello et al. [19, 20] proposed a new
version. There are two main differences in the new version comparing to NPGA. First, a
simple random selection with low probability instead of niches is utilized. Second, only
infeasible solutions are selected by dominance relationship, and feasible solutions are always
ranked before infeasible solutions. It is worth to mention that by using random selection, the
population diversity can be maintained, no need for an extra mechanism.
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Jiménez [63] proposed a method which is constructed upon the use of goals and priorities.
The objectives obtained from constraints are considered with higher priority comparing to
the original objective function. In this case, feasible solutions are ranked before infeasible
solutions. Moreover, no original function value is considered when comparing two infeasible
solutions. A pre-selection scheme is also implemented to promote the offspring close to their
parents.

Kukkonen and Lampinen [70] considered every single constraint as an objective solved
by differential evolution. The DE/rand/1/bin [108] is used and feasible solutions are always
considered before infeasible solutions. If both solutions are feasible, then compare their
objective function value. If both solutions are infeasible, then compare them by the concept
of weak dominance. Gong et al. [43] extended this scheme utilize the orthogonal design
method to generate the initial population. A orthogonal based crossover operator is adopted
to improve the local search capability. For constraint-handling, a relaxed form of Pareto
dominance, named ε-dominance [71] is employed to update the archive which store the
non-dominated solutions. However, most of the mentioned N-objective methods above
could suffer from disconnected feasible regions in search space. Despite of this situation,
several methods based on Schaffer’s VEGA [121] could overcome these shortcomings. Cello
proposed an application of VEGA considering many sub-populations. The first part of
sub-populations are related to the violation degree of each constraint, while the second part of
sub-populations are related to the original objective function value. Then, a feasible solution
with high original objective function value would occur when combining solutions from
two parts of sub-populations. However, this approach could suffer from the large number of
sub-populations. Liang and Suganthan [77] presented a new mechanism which dynamically
assigns objectives to sub-populations by the difficulty of each constraint.

Ray et al. [111] proposed a method ranks solution based on Pareto dominance by con-
sidering three aspects: the original objective function, the constraints, and the combination
of aspects of objective function and constraints. Then, a solution is selected or updated
depending on its rank value of three aspects. Additionally, the method also involves mating
restrictions and niche mechanism according to Euclidean distance. Ray et al. [112] then
improve the scheme for maintaining diversity of population. It is an optimization algorithm
based on a society and civilization model. Clustering algorithms are employed to identify
individuals of a certain society.

Hernández-Aguirre et al. [1] presented the Inverted Shrinkable Pareto Archived Evolution
Strategy (IS-PAES) which is an extended version PAES. The main idea is utilizing shrinking
mechanism to reduce the search space. At the beginning of the search, the whole search
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space is taken into account. As the number of generation increase, the search space gradually
shrinks to feasible region.

Angantyr et al. [2] gave a new way to balance objectives by promoting the oscillation
between the search in feasible and infeasible regions. This method also considers two
different ranks, one is objective function, the other is constraints. Adaptive weighting is also
added to control the search bias especially increase the volume of constraints when there is
only a few feasible solution in the population.

Churchill et al. [17] proposed an algorithm which focuses on promoting the search along
the boundary regions. In this method, NSGA-II with modified crowding distance assignment
mechanism is employed as multi-objective optimizer. However, the search time of directly
using NSGA-II is too long. Thus, reference points are used and also guided elitism scheme
is implemented.

Li et al. [73] solved the many-objective optimization problem by dynamical constraint
handling. The idea is to change the constraint boundary over the states for the constraint
problem. Then, the dynamic constraint handling can provide always feasible population
for effective global search. The many-objective optimization is realized by the reference-
point-based non-dominated sorting approach, which can keep the balance of objectives and
constraints.

Other Methods

Some schemes cannot be classified as bi-objective neither N-objective. Therefore, they are
classified into the third scheme. The third scheme has an advantage of designing a new
objective.

Schoenauer and Xanthaki [122] handle constraints in a certain order. At the beginning,
only one constraint is considered to be optimised. After a percentage of population is feasible
for the constraint, another constraint is then taken into account. Despite of no multi-objective
scheme involved, objectives are still simultaneously taken into account by this approach. In
the end, death penalty comes in, and infeasible solution are disregarded.

Coello [21] gave a scheme that every single solution is compared with other solutions
in the population. When comparing, feasible solutions are always better than infeasible
solutions. In the case of comparing two infeasible solutions, the constraints are the first
character to compare. For feasible solutions, the normalized original objective function value
is the standard.

Watanabe and Sakakibara [156] proposed a non-feasible-compliant method by relaxing
one of constraints. The method firstly converts the original problem into a bi-objective
problem but not standard model. In this method, one objective is the original objective
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function while the other is not constraint violation degree but equivalent to the original
objective with relaxed constraints. Then, the first objective is optimised by penalty function.
Moreover, NSGA-II is implemented. Murugan et al. [99] also modified NSGA-II for solving
Transmission Constrained Generation Expansion Planning Problem. The first objective is the
cost function while the second objective is normalised soft constraints. The hard constraints
are just considered as constraints.

Deb and Datta [29, 30] proposed a hybrid approach combining bi-objective method with
a penalty function method. The penalty factor is estimated by evolutionary process while the
penalty function method provides an extra convergence direction to feasible region. Uniform
adaptive scaling of equality and inequality constraints and local search is also added in [26].

Zeng et al. [170] designed a niche-count objective besides the original objective and a
constraint-violation objective. The niche-count objective helps maintain population diversity.
They applied three different multi-objective EAs (ranking-based, decomposition-based, and
hyper-volume) to the tri-objective optimization problem. Jiao et al. [62] converted a CSOP
into a dynamical bi-objective optimization problem consisting of the original objective and a
niche-count objective.

Discussions

As shown in previous subsections, there exists a huge number of proposals that consider
multi-objective concepts. However, apart from introduced schemes above, there are several
proposals that are just minor variants of the three schemes. Thus, they are included in the
literature review. Unfortunately, among such a large number of proposals, no one has been
found to be significantly superior to the others. This phenomenon can be possibly explained
by No-Free-Lunch theorem by Wolpert and Macready [158]. Nonetheless, some studies
claim that multi-objective is not always effective for some single-objective problems [87]. For
instance, results of the only method using multi-objective concepts presented at the CEC2010
competition on constrained optimization [118] is much worse than those inspired by other
schemes. In contrast, multi-objective schemes also perform very well to CSOPs [21, 153].

The existing implementation of Multi-objective EAs to CSOPs (MOCO) is balancing
objective functions and constraints. It is also worth noticing that the whole set of solutions
is usually not of interest to the user, because they are not exactly the solutions of original
problems. In fact, MOCO is aiming at solving both the constrained and unconstrained
problems simultaneously. Thus, searching in the infeasible region might cost too much time
might. Especially, using Pareto Ranking might lead to a bias-free search where searching in
the infeasible region costs most of the time. Additionally, the fitness landscape most likely
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determines the destiny of the search, which can explain why some multi-objective schemes
that require certain amount of bias in the process of the search.

Different rankings employed in certain searching periods shows its effectiveness [153].
As a consequence, the direct use of Pareto dominance concepts benefits the search in some
stages of the optimization, while it increases the convergence time when it is used over
the entire searching process. In the end, it is also worth mentioning that many of the EAs
introduced above have only been tested on a few real-world applications or on a reduced
number of benchmark problems. Therefore, their behaviors are unpredictable when solving
different problems. Mezura Montes and Coello [85] did a comparative study, and disregarded
several methods, which certainly show that the problem is more complex.





Chapter 3

Methodology

In this chapter, we introduce the benchmark functions on which our proposed algorithms
are tested in the later experimental studies. The overall methodology to compare algorithms
includes the evaluation criteria of performance of a single algorithm, and also includes the
ranking schemes for comparing different algorithms.

3.1 Test Suites

In the thesis, different algorithms are tested on the same benchmark functions taken from
IEEE CEC2006 and IEEE CEC2017/18 competitions on constrained single objective opti-
mization problems.

The most widely used test suite are 24 benchmark functions collected in [76] and
adopted by IEEE CEC2006 Competition. There exists an extensive studies adopting these
24 benchmark functions since 2006. These benchmark functions are different types, such
as linear, non-linear, polynomial and quadric with different number of linear and non-linear
constraints. These 24 test problems have 2-24 dimensions and are not easily scalable. In fact,
the CEC 2006 benchmark has been successfully solved. Thus, it is increasingly harder for
newly designed algorithms to demonstrate their superiority.

18 scalable benchmark functions were then presented in IEEE CEC2010. However, these
benchmark functions are not adopted in the thesis since they have been solved satisfactorily
as well. Thus, more recent scalable, higher dimensional CEC2017/18 benchmark [161]
was constructed. CEC 2017/18 benchmark is an upgrade version of CEC 2010 benchmark.
The former consists of 4×28 with dimension 10, 30, 50 and 100, the latter contains 2×18
with only dimension 10 and 30. In the context of Big Data, most optimization problems
being considered contain few hundreds of variables, but neither CEC2006 nor CEC2010
benchmark contains problems with over 30 dimensions. However, CEC 2006 benchmark
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has an advantage that many problems have many more constraints than CEC2010 and
CEC2017/18 benchmark. CEC2006 and CEC2017/18 benchmark are hence employed as the
test suite in the thesis.

3.2 Evaluation Criteria

Since there exists many differences of the performance evaluation criteria between CEC
2006 and CEC 2017/18 benchmark, the criteria are then introduced separately in this section.

3.2.1 Performance Evaluation Criteria of CEC 2006 Benchmark

The report [76] suggests that for each problem, one algorithm should run 25 times indepen-
dently with 500,000 maximum number of fitness evaluations (FESMAX ). Population size is
free to set as long as the algorithm does not exceed the FESMAX . ε in Equation (2.8) is set to
0.0001.

There are experimental data required to be recorded as follows.

• The best, median, worst result, mean value and standard deviation of function error
value are required to be recorded. The function error value ( f (⃗x)− f (⃗x∗)) is achieved
best solution x⃗ after 5×105 fitness evaluations (FES).

• The number of violated constraints (including the number of violations by more than
1, 0.01 and 0.0001), and the mean violation v(⃗x) in Equation (2.6), and v(⃗x) at the
median solution.

• The FES when finding a solution satisfying the condition f (⃗x)− f (⃗x∗)≤ 0.0001 and x⃗
is feasible.

• Feasible Rate, Success Rate and Success Performance for each problem are also
required to be recorded. They can be formulated as follows:

Feasible Rate =
Feasible Runs

Total Runs

Success Rate =
Success Runs

Total Runs

Success Rate =
Success Runs

Total Runs

(3.1)

where Feasible Run represents a run during which at least one feasible solution is
found under FESMAX , Success Run represents a run during which the algorithm finds
solution x⃗ satisfying the condition f (⃗x)− f (⃗x∗)≤ 0.0001.
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• Convergence graph of each problem. The convergence speed is measured by the
average convergence rate Rt defined as follows [47]:

Rt = 1−
∣∣∣∣ f (xt)− f (⃗x∗)

f (x0)− f (⃗x∗)

∣∣∣∣1/t

(3.2)

where Rt denotes the normalized convergence speed, t the number of current generation,
f (xt) the objective value at t generation, and f (⃗x∗) the objective value of the known
optimal solution. In addition, Rt may take a negative value since the event | f (xt)−
f (⃗x∗) |>| f (x0)− f (⃗x∗) | could happen. This means, x0 is an infeasible solution but
its objective value is less than xt which is a feasible solution. Using the average
convergence rate Rt , we can easily evaluate and compare the convergence speed of
different algorithms. It is better than the logarithmic rate log10( f (xt)− f (⃗x∗)) used
in many references [76] because the logarithmic rate itself does not provide any
information about the convergence rate but only its slope does. However, the average
convergence rate Rt provides a quantitative value of the convergence speed.

The sorting method for final results presented in [76] is shown as follows:

1) Sort feasible solutions in front of infeasible solutions;

2) Sort feasible solutions according to their function errors f (⃗x)− f (⃗x∗);

3) Sort infeasible solutions according to their mean value of the violations of all con-
straints.

Experimental results are required to be compared with those in CEC 2006 Competition.
Tenen EAs participated in the competition. Their characteristics were summarized by Barbosa
et al. [7] as below.

• j-DE2 [56]: a DE algorithm with self-adaptive control parameters and the feasible rule:
a feasible solution is better than an infeasible one and the latter are ranked according
to the sum over all the constraint violations.

• DE [176]: the standard DE algorithm, with the same feasible rule constraint-handling
method as jDE-2.

• SaDE [109]: an extension of the original SaDE. The constraint-handling method is
similar to the feasible rule used by jDE-2 but the constraint violations are weighted.
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• GDE [70]: this algorithm extends DE for constrained multiobjective optimization. The
constraint-handling method is similar to the feasible rule constraint-handling method
as jDE-2.

• DMS-PSO [77]: a dynamic and multiple PSO algorithm. The constraint-handling
method is similar to SaDE.

• MDE [88]: a DE-based approach modified to solve constrained optimization problems.
Its constraint-handling method is similar to the feasible rule constraint-handling method
as jDE-2.

• PESO+ [97]: a PSO-based approach with topological organization and constraint
handling similar to the feasible rule constraint-handling method as jDE-2.

• PCX [128]: it is derived from the population based algorithm-generator and uses the
parent-centric recombination (PCX) operator and a stochastic remainder selection over
three different constraint handling principles.

• ε_DE [137]: it uses the ε constraint-handling method and employs a gradient-based
mutation/repair operator.

• MPDE [139]: a multi-populated DE algorithm with an adaptive penalty method to
handle the constraint violations.

Evaluation criteria used in the competition are that for each algorithm. The test problem
g20 is not considered in the comparison experiment because no feasible solution can be
found.

3.2.2 Performance Evaluation Criteria of CEC 2017/18 Benchmark

The report [161] suggests for each of total 28 test problems, one algorithm should also
run 25 times independently as same as testing CEC 2006 Benchmark, but up to 20000×D
function evaluations (FESMAX ), where D is the dimensionality of optimization problems. ε

in Equation (2.8) is also set to 0.0001.
Statistics have to be presented as follows:

• Feasibility Rate, which is calculated in the same way as in Equation (3.1) in CEC 2006
Benchmark.

• The best, median, worst result, mean value and standard deviation of function value
are required to be recorded after 20000×D fitness evaluations (FES).
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• The number of violated constraints (including the number of violations by more than
1, 0.01 and 0.0001), and the mean violation v(⃗x) in Equation (2.6), and v(⃗x) at the
median solution of 25 runs.

The solution sorting method in CEC 2017/18 is similar to the one in CEC 2006.

1) Sort feasible solutions in front of infeasible solutions;

2) Sort feasible solutions according to their function value f (⃗x);

3) Sort infeasible solutions according to their mean value of the violations of all con-
straints.

A set of rules was provided for ranking all algorithms [161]. Our comparison follows the
same rules, which are listed as below.

1. The procedure for ranking algorithms based on mean values:

(a) Rank the algorithms based on feasibility rate;

(b) Then rank the algorithms according to the mean violation amounts;

(c) At last, rank the algorithms in terms of mean objective function value.

2. The procedure for ranking the algorithms based on the median solutions:

(a) A feasible solution is better than an infeasible solution;

(b) Rank feasible solutions based on their objective function values;

(c) Rank infeasible solutions according to their constraint violation amounts.

3. Ranking all algorithms on multiple problems: for each problem, algorithms’ ranks are
determined in terms of the mean values and median solutions at maximum allowed
number of evaluations, respectively. The total rank value of an algorithm is calculated
as below:

Rank value =
28

∑
i=1

ranki(using mean value)+
28

∑
i=1

ranki(using median solution) (3.3)

Experimental results are compared with eight EAs. The first seven EAs come from the
CEC2017/18 constrained optimization competitions [132]. The last one, DeCODE [148],
was a decomposition-based multi-objective EAs for constrained optimization published in
2018.
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1. CAL-SHADE [169]: Success-History based Adaptive Differential Evolution Algo-
rithm including liner population size reduction, enhanced with adaptive constraint
violation handling, i.e. adaptive ε-constraint handling.

2. LSHADE+IDE [145]: A simple framework for cooperation of two advanced adaptive
DE variants. The search process is divided into two stages: (i) search feasible solutions
via minimizing the mean violation and stop if a number of feasible solutions are found.
(ii) minimize the function value until the stop condition is reached.

3. LSHADE44 [107]: Success-History based Adaptive Differential Evolution Algorithm
including linear population size reduction, uses three different additional strategies
compete, with the superiority of feasibility rule.

4. UDE [141]: Uses three trial vector generation strategies and two parameter settings.
At each generation, UDE divides the current population into two sub-populations. In
the first population, UDE employs all the three trial vector generation strategies on
each target vector. For another one, UDE employs strategy adaption from learning
experience from evolution in first population.

5. MA-ES [51]: Combines the Matrix Adaptation Evolution Strategy for unconstrained
optimization with well-known constraint handling techniques. It handles box-constraints
by reflecting exceeding components into the predefined box. Additional in-/equality
constraints are dealt with by application of two constraint handling techniques: ε-level
ordering and a repair step that is based on gradient approximation.

6. IUDE [140]: An improved version of UDE. Different from UDE, local search and
duplication operators have been removed, it employs a combination of ε-constraint
handling technique and the superiority of feasibility rule.

7. LSHADE-IEpsilon [36]: An improved ε-constrained handling method (IEpsilon) for
solving constrained single-objective optimization problems. The IEpsilon method
adaptively adjusts the value of ε according to the proportion of feasible solutions in the
current population. Furthermore, a new mutation operator DE/randr1*/1 is proposed.

8. DeCODE [148]: A recent decomposition-based EA made use of the weighted sum
approach to decompose the transformed bi-objective problem into a number of scalar
optimisation subproblems and then applied differential evolution to solve them. They
designed a strategy of adjusting weights and a restart strategy to tackle COPs with
complicated constraints.
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3.2.3 Discussions

CEC competition ranking rules are instituted based on Friedman ranks from Friedman
test. Friedman test is an important method of comparing multiple EAs on different bench-
marks [40]. However, ranking in constrained optimization is complex. CEC rules have
modified original Friedman ranks for fitting constrained optimization.

Both t-test and Wilcoxons test were directly applied to compare the objective function
values of EAs in constrained optimization in [170, 148]. These tests work only if the found
solutions are feasible. However, it is hard to compare results including infeasible solutions.
For example,

• EA 1: infeasible solutions with better objective function values; EA 2: feasible
solutions with worse objective function value;

• EA 1: solutions with worse objective function values but higher feasibility rate; EA 2:
better objective function values but lower feasibility rate.

In other words, feasibility rate and constraint violation degree must be considered besides
a statistical test as current CEC competition rules. But designing such new rules with an
existing statistical test is not the goal of this thesis.

From the above argument, the CEC competition rules probably are the most appropriate
methods for comparing multiple EAs on a set of benchmarks because they are specifically
designed for constrained optimization.





Chapter 4

A New Multi-objective Problem
Formulation for Constrained
Single-objective Optimization

This chapter introduces our very beginning work on solving CSOPs. We consider a many-
objective problem formulation for solving constrained optimization problems. The problem
formulation keeps the standard objectives: the original objective function and the sum
of the degrees of constraint violation. Besides them, more objectives are added into the
problem formulation. One obejctive is based on the feasible rule. The others come from the
penalty function method. Then a multi-objective differential evolution algorithm is applied to
solving multi-objective optimization problems with two, three and four objectives. A multi-
objective differential evolution algorithm, called CMODE [151], is applied to solving for
multi-objective optimization problems. We also conduct an experimental study on thirteen
benchmark functions from IEEE CEC2006 benchmark functions. Experimental results
confirm our expectation that adding more objectives could be useful and the solution quality
is improved.

4.1 A Many-objective Problem Formulation for Constrained
Optimization

4.1.1 A Many-Objective Problem Formulation

Besides the above two objectives functions, we may construct many other objectives or
helper functions [163]. According to penalty function methods, more helper functions with
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different penalty coefficients can be constructed in the form

fi(⃗x) = f (⃗x)+ civ(⃗x), i = 3, · · · ,K, (4.1)

where ci ∈ (0,+∞] (where i = 1, · · · ,K) are penalty coefficients. If let ci =+∞, then fi(⃗x)
represents the death penalty to infeasible solutions.

According to the feasible rule [28], we construct another objective. The feasible rule
means that: during pairwise-comparing individuals,

1. when two feasible solutions are compared, the one with a better objective function
profit is chosen;

2. when one feasible solution and one infeasible solution are compared, the feasible
solution is chosen;

3. when two infeasible solutions are compared, the one with smaller constraint violation
is chosen.

According to the feasible rule, the third objective is constructed as follows: for an
individual x in a population P,

min fK+1(⃗x) =

{
f (⃗x), if x⃗ is feasible;
f ♯+ v(⃗x), otherwise.

(4.2)

In the above, f ♯ is the “worst” fitness of feasible individuals in population P, given by

f ♯ =

{
max{ f (⃗x); x⃗ ∈ P and x⃗ is feasible };
0, otherwise.

(4.3)

Since the reference point f ♯ depends on population P, thus for the same x, the values of
fk+1(⃗x) in different populations P might be different. However the optimal feasible solution
to minimizing fK+1(⃗x) always is the best in any population. Thus the optimal feasible
solution to minimizing fK+1(⃗x) is exactly the same as that to the constrained optimization
problem. Based on this reason, fk+1(⃗x) is called an equivalent fitness function.

In summary, the original constrained optimization problem is transferred into a many-
objective optimization problem:

min( fi(⃗x), i = 1, · · · ,K +1). (4.4)

The problem formulation potentially may include many objectives inside.
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4.2 Multi-objective Differential Evolution for Constrained
Optimization

4.2.1 MOEAs

Many MOEAs have been proposed for solving multi-objective optimization problem. They
can be classified into two categories: one aims to evolve the non-domination set and eventually
to reach Pareto optimal set, such as the non-dominate sorting genetic algorithm [32] and
strength Pareto evolutionary algorithm [177]. Another category focuses on solving a series
of scalar optimization problems, such as the vector evaluated genetic algorithm [121] and
MOEAs based on decomposition [172]. The algorithm below gives a general description for
the MOEAs based on the dominance relation.

1: initialize a set of solutions;
2: evaluate the values of fi, i = 1, · · · ,K +1 for each solution;
3: select non-dominated solutions and construct an initial population P0;
4: for t = 0,1,2 · · · , · · · do
5: generate a children population Ct from the parent population Pt ;
6: evaluate the values of fi, i = 1, · · · ,K +1 for each solution;
7: select non-dominated solutions in Pt ∪Ct and obtain the next generation population

Pt+1.
8: end for

4.2.2 Constrained Multi-objective Differential Evolution

A MOEA based on differential evolution (DE), called CMODE [151], is chosen to solve
the above multi-objective optimization problem (4.4). Different from normal MOEAs,
CMODE is specially designed for solving constrained optimization problems. Hence it is
expected that CMODE is efficient in solving the multi-objective optimization problem (4.4).
CMODE [151] originally is applied to solving a bi-objective optimization problem which
consists of only two objectives: f1 and f2. However, it is easy to extend the existing CMODE
to multi-objective optimization problems. The algorithm is described as follows.

Input: µ: population size;
1: λ : the number of individuals involved in DE operations
2: FESmax: the maximum number of fitness evaluations
3: randomly generate an initial population P0 with population size µ;
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4: evaluate the values of f and v for each individual in the initial population, and then
calculate the value of fi where i = 1, · · · ,m;

5: set FES = µ; // FES denotes the number of fitness evaluations;
6: set A = /0; //A an archive to store the infeasible individual with the lowest degree of

constraint violation;
7: for t = 1, · · · ,FESmax do
8: choose λ individuals (denoted by Q) from population Pt ;
9: let P′ = Pt \Q;

10: for each individual in set Q, an offspring is generated by using DE mutation and
crossover operations as explained in Section 4.2.3. Then λ children (denoted by C) are
generated from Q;

11: evaluate the values of f and v for each individual in C and then obtain the value of fi

where i = 1, · · · ,m;
12: set FES = FES+λ ;
13: identify all nondominated individuals in C (denoted by R);
14: for each individual x⃗ in R do
15: find all individual(s) in Q dominated by x⃗;
16: randomly replace one of these dominated individuals by x⃗;
17: end for
18: let Pt+1 = P′∪Q;
19: if no feasible solution exists in R then
20: identify the infeasible solution x⃗ in R with the lowest degree of constraint violation

and add x⃗ to A;
21: end if
22: if mod (t,k) = 0 then
23: execute the infeasible solution replacement mechanism and set A = /0;
24: end if
25: end forreturn the best found solution

The algorithm is explained step-by-step in the following. At the beginning, an initial
population P0 is chosen at random, where all initial vectors are chosen randomly from
[Li,Ui]

n.
At each generation, parent population Pt is split into two groups: one group with λ parent

individuals that are used for DE operations (set Q) and the other group (set P′) with µ−λ

individuals that are not involved in DE operations. DE operations are applied to λ selected
children (set Q) and then generate λ children (set C).
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Selection is based on the dominance relation. First nondominated individuals (set R) are
identified from children population C. Then these individual(s) will replace the dominated
individuals in Q (if exists). As a result, population set Q is updated. Merge population set Q
with those parent individuals that are involved in DE operation (set P′) together and form the
next parent population Pt+1. The procedure repeats until reaching the maximum number of
evaluations. The output is the best found solution by DE.

The infeasible solution replacement mechanism is that, provided that a children popula-
tion is composed of only infeasible individuals, the “best” child, who has the lowest degree
of constraint violation, is stored into an archive. After a fixed interval of generations, some
randomly selected infeasible individuals in the archive will replace the same number of
randomly selected individuals in the parent population.

4.2.3 Differential Evolution

optimizes a problem by iteratively trying to improve a candidate solution with regard to a
given measure of quality. Such methods are commonly known as metaheuristics as they
make few or no assumptions about the problem being optimized and can search very large
spaces of candidate solutions. However, metaheuristics such as DE do not guarantee an
optimal solution is ever found.

DE is used for multidimensional real-valued functions but does not use the gradient of
the problem being optimized, which means DE does not require the optimization problem to
be differentiable, as is required by classic optimization methods such as gradient descent and
quasi-newton methods. DE can therefore also be used on optimization problems that are not
even continuous, are noisy, change over time, etc.[1]

DE optimizes a problem by maintaining a population of candidate solutions and creating
new candidate solutions by combining existing ones according to its simple formulae, and
then keeping whichever candidate solution has the best score or fitness on the optimization
problem at hand. In this way the optimization problem is treated as a black box that merely
provides a measure of quality given a candidate solution and the gradient is therefore not
needed.

DE is originally due to Storn and Price.[2][3] Books have been published on theoretical
and practical aspects of using DE in parallel computing, multiobjective optimization, con-
strained optimization, and the books also contain surveys of application areas.[4][5][6][7]
Surveys on the multi-faceted research aspects of DE can be found in journal articles .[8][9]

DE is arguably one of the most powerful stochastic real-parameter optimization algo-
rithms in current use [25]. There exist several variants of DE. The original DE algorithm [131]



34A New Multi-objective Problem Formulation for Constrained Single-objective Optimization

is utilized in this chapter. A population Pt is represented by µ n-dimensional vectors:

Pt = {⃗x1,t , · · · , x⃗µ,t}, (4.5)

x⃗i,t = (xi,1,t ,xi,2,t , · · · ,xi,n,t), i = 1,2, · · · ,µ, (4.6)

where t represents the generation counter. Population size µ does not change during the
minimisation process. The initial vectors are chosen randomly from [Li,Ui]

n. The formula
below shows how to generate an initial individual x⃗ = (x1, · · · ,xn) at random:

xi = Li +(Ui−Li)× rand, i = 1, · · · ,n, (4.7)

where rand is the random number [0,1].
Three operations are used in the DE [131]: mutation, crossover and selection, which are

described as follows.

• Mutation: for each target x⃗i,t where i = 1, · · · ,n, a mutant vector

v⃗i,t = (vi,1,t ,vi,2,t , · · · ,vi,n,t)

is generated by
v⃗i,t = x⃗r1,t +F · (⃗xr2,t− x⃗r3,t) (4.8)

where random indexes r1,r2,r3 ∈ {1, · · · ,µ} are mutually different integers. They are
also chosen to be different from the running index i. F is a real and constant factor
from [0,2] which controls the amplification of the differential variation (⃗xr2,t− x⃗r3,t).
In case v⃗i,t is out of the interval [Li,Ui], the mutation operation is repeated until v⃗i,t

falls in [Li,Ui].

• Crossover: For the sake of increasing diversity of the population, the target vector
x⃗i,t is mixed with mutant vector v⃗i, j, then generate the trial vector u⃗i,t . The crossover
methods can be classified into two categories: exponential and binomial [108], which
are listed as follows:

1. Exponential crossover:

u⃗i, j,t =

v⃗i, j,t , for j = ⟨l⟩D,⟨l +1⟩D, . . . ,⟨l +L−1⟩D,

x⃗i, j,t , otherwise.
(4.9)
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where ⟨⟩D denotes a modulo function with modulus D, l denotes the starting
integer number randomly chosen from [0,D−1]. The integer L is drawn from
[0,D−1] with probability Pr(L >= v) =CRv−1

i ,(v >= 0).

2. Binomial crossover:

u⃗i, j,t =

v⃗i, j,t , if rand j(0,1)<=CRior j = jrand,

x⃗i, j,t , otherwise.
(4.10)

where jrand is integer randomly chosen from [1,D], and rand j(0,1) is random
number falling in [0,1]

• Selection: a greedy criterion is used to decide which offspring generated by mutation
and crossover should be selected to population Pt+1. Trial vector u⃗i,t is compared to
target vector x⃗i,t , then the better one will be reserved to the next generation.

4.3 Experiments and Results

4.3.1 Experimental Settings

CMODE is used to solve the following four multi-objective optimization problems in which
the numbers of objectives are two, three, three and four respectively.

min

{
f1(⃗x) = f (⃗x),
f2(⃗x) = v(⃗x),

(4.11)

min


f1(⃗x) = f (⃗x),
f2(⃗x) = v(⃗x),

f3(⃗x) =

{
f (⃗x), if x⃗ is feasible,
+∞, otherwise.

(4.12)

min


f1(⃗x) = f (⃗x),
f2(⃗x) = v(⃗x),
f4(⃗x) = f (⃗x)+1000v(⃗x).

(4.13)
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min



f1(⃗x) = f (⃗x),
f2(⃗x) = v(⃗x),

f3(⃗x) =

{
f (⃗x), if x⃗ is feasible,
+∞, otherwise.

f4(⃗x) = f (⃗x)+1000v(⃗x),

(4.14)

For any of the above four multi-objective optimization problems, our ultimate aim is to find
an optimal feasible solution through finding the Pareto front. It is obvious that the optimal
feasible solution to the original CSOP (2.1) is on the Pareto front.

In order to compare the performance of CMODE on the four multi-objective optimiza-
tion problems, thirteen benchmark functions were employed as the instances to perform
experiments. These benchmarks and evaluation criteria is introduced in Chapter 3.

CMODE contains several parameters which are the population size µ , the scaling factor
F in mutation, the crossover control parameter Cr. Usually, F is set within [0,1] and mostly
from 0.5 to 0.9; Cr is also chosen from [0,1] and higher values can produce better results in
most cases. In our experiments, set F as 0.6, Cr as 0.95. The population size µ = 180. The
tolerance value δ for the equality constraints was set to 0.0001. The maximum number of
fitness evaluations FESmax is set to two values: 5 ·103 and FESmax = 5 ·104.

4.3.2 Experimental Results

Table 4.1 shows the result of function error values achieved by CMODE on two helper
functions f1, f2 on thirteen benchmark functions. In the table, NA means that no feasible
solution was found. Within 5 · 103 fitness evaluations, CMODE can not find a feasible
solution on six benchmark functions g01, g03, g05, g10, g11 and g13.

Table 4.2 is the result of function error values achieved by CMODE using three helper
functions f1, f2, f3 on thirteen benchmark functions. Within 5 · 103 fitness evaluations,
CMODE may not find a feasible solution on four benchmark functions g03, g05, g11 and
g13, and not always on g10. This is better than that using only two fitness functions f1 and f2.
Within 5 ·104 fitness evaluations, the result achieved by CMODE with three helper functions
is similar to that with two helper functions. Therefore using three helper fitness functions
may find a feasible solution more quickly.

Table 4.3 shows the result of function error values achieved by CMODE with three helper
functions f1, f2, f4 on thirteen benchmark functions. The result is very similar to that with
with three helper functions f1, f2, f3. Within 5 ·103 fitness evaluations, CMODE may not
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Table 4.1 Function Error Values Achieved by CMODE with two fitness functions f1 and f2
When FES = 5×103, FES = 5×104 for Test Functions g01-g13

FES 5×103 5×104

Best Median Worst Mean Std Best Median Worst Mean Std
g01 6.2996E+00 NA NA NA NA 3.5476E-07 1.9686E-03 1.9686E-03 1.4583E-03 8.7898E-04
g02 2.4311E-01 2.4311E-01 3.1059E-01 2.6387E-01 3.1146E-02 2.2807E-02 1.4556E-01 1.4556E-01 1.2195E-01 4.9337E-02
g03 NA NA NA NA NA 5.4382E-04 5.4382E-04 6.5021E-02 1.5423E-02 2.7703E-02
g04 1.1760E+01 3.4800E+01 3.4800E+01 2.7427E+01 1.0747E+01 2.6993E-08 1.1079E-05 1.1079E-05 9.3109E-06 4.1353E-06
g05 NA NA NA NA NA 1.3954E-03 1.3954E-03 1.3954E-03 1.3054E-03 4.6893E-12
g06 4.9363E+00 8.6183E+00 8.6183E+00 7.3900E+00 1.7349E+00 3.6702E-08 3.6702E-08 1.3304E-07 4.4410E-08 2.6676E-08
g07 5.5401E+00 6.6050E+00 6.6050E+00 6.4821E+00 3.4018E-01 6.8830E-03 1.2144E-01 1.2144E-01 9.3948E-02 4.9945E-02
g08 3.0724E-06 1.0893E-04 1.0893E-04 9.2652E-05 3.8953E-05 5.5511E-17 5.5511E-17 5.5511E-17 5.5511E-17 0
g09 6.0244E+00 7.8532E+00 7.8532E+00 7.4312E+00 7.8579E-01 1.8475E-06 1.8475E-06 8.2849E-05 2.9886E-05 3.9299E-05
g10 NA NA NA NA NA 2.6119E+00 1.1829E+01 1.1829E+01 9.7027E+00 3.9606E+00
g11 NA NA NA NA NA 9.9990E-05 9.9990E-05 9.9990E-05 9.9990E-05 2.8445E-14
g12 6.8496E-12 2.4866E-10 2.4866E-10 1.5910E-10 1.1899E-10 0 0 0 0 0
g13 NA NA NA NA NA 8.3328E-06 8.3328E-06 8.3328E-06 8.3328E-06 0

Table 4.2 Function Error Values Achieved by CMODE with three fitness functions f1, f2 and
f3 When FES = 5×103, FES = 5×104 for Test Functions g01-g13

FES 5×103 5×104

Best Median Worst Mean Std Best Median Worst Mean Std
g01 7.1822E+00 7.7277E+00 7.7277E+00 7.6622E+00 1.8090E-01 1.4820E-07 1.4820E-07 1.0231E-04 2.4669E-05 4.4535E-05
g02 2.4311E-01 2.4311E-01 3.1059E+01 2.4850E-01 1.8651E-02 2.2807E-02 1.4556E-01 1.4556E-01 1.1119E-01 5.6253E-02
g03 NA NA NA NA NA 2.7793E-03 1.0114E-02 1.0114E-02 5.1265E-03 3.4921E-03
g04 1.1760E+01 3.4800E+01 3.4800E+01 3.2036E+01 7.6416E+00 2.6993E-08 1.1079E-05 1.1079E-05 1.0229E-05 3.0034E-06
g05 NA NA NA NA NA 1.3954E-03 1.3954E-03 1.3954E-03 1.3954E-03 5.6231E-11
g06 7.9681E+00 3.3066E+01 3.3066E+01 2.8239E+01 1.0087E+01 2.3017E-07 2.3017E-07 2.7603E-05 7.0734E-06 1.3686E-05
g07 5.4591E+00 5.6860E+00 5.6860E+00 5.5952E+00 1.1342E-01 5.8314E-03 5.8314E-03 8.2143E-02 5.8314E-03 3.4519E-02
g08 2.3534E-09 9.5024E-09 2.3534E-09 3.7282E-09 2.8733E-09 2.7755E-17 4.1633E-17 4.1633E-17 3.8857E-17 5.6655E-18
g09 1.8694E+00 8.5045E+00 8.4045E+00 6.8964E+00 2.8079E+00 8.2568E-06 8.2568E-06 1.8555E-04 5.7900E-05 9.1248E-05
g10 1.6339E+03 1.6339E+03 NA NA NA 2.7483E+00 1.8283E+01 1.8283E+01 1.5893E+01 5.7160E+00
g11 NA NA NA NA NA 9.9990E-05 9.9990E-05 9.9990E-05 9.9990E-05 2.3519E-14
g12 4.1179E-10 4.2982E-09 4.2982E-09 3.1023E-09 1.8292E-09 0 0 0 0 0
g13 NA NA NA NA NA 8.3328E-06 8.3328E-06 8.3328E-06 8.3328E-06 0

find a feasible solution only on four benchmark functions g03, g05, g11 and g13. This is
better than that with only two fitness functions f1 and f2. Within 5 ·104 fitness evaluations,
the result achieved by CMODE with three helper functions is similar to that with two helper
functions. Therefore it also confirms that using three helper fitness functions may find a
feasible solution more quickly.

Table 4.4 is the result of function error values achieved by CMODE with four helper
functions f1, f2, f3, f4 on thirteen benchmark functions. Within 5 ·103 fitness evaluations, the
result is similar to that with three helper function f1, f2, f3. CMODE may not find a feasible
solution on four benchmark functions g03, g05, g11 and g13, and not always on g10. This is
better than that with only two fitness functions f1 and f2. But it is not as good as that with
the three helper functions f1, f2, f4. Within 5 ·104 fitness evaluations, the result achieved by
CMODE with four helper functions is the same or better than that with two helper functions.
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Table 4.3 Function Error Values Achieved with three fitness functions f1, f2 and f4 When
FES = 5×103, FES = 5×104 for Test Functions g01-g13

FES 5×103 5×104

Best Median Worst Mean Std Best Median Worst Mean Std
g01 7.1822E+00 7.7277E+00 7.7277E+00 7.6840E+00 1.5100E-01 1.4820E-07 1.4820E-07 1.0231E-04 1.3331-05 3.4817E-05
g02 2.4311E-01 2.4311E-01 3.1059E-01 2.6200E-01 3.0924E-02 2.2807E-02 1.4556E-01 1.4556E-01 1.2439E-01 4.7190E-02
g03 NA NA NA NA NA 2.7793E-03 2.7793E-03 1.0114E-02 4.1377E-03 2.9035E-03
g04 1.2710E+01 1.2710E+01 4.2288E+01 2.2909E+01 1.4307E+01 3.6379E-12 7.2759E-12 7.2759E-12 4.5474E-12 1.8189E-11
g05 NA NA NA NA NA 1.3954E-03 1.3954E-03 1.3954E-03 1.3954E-03 6.1932E-11
g06 1.0451E+01 1.6199E+01 1.6199E+01 1.1601E+01 2.3467E+00 1.6370E-11 4.9386E-05 4.9386E-05 3.9509E-05 2.0161E-05
g07 5.4591E+00 5.6960E+00 5.6860E+00 5.6315E+00 9.8877E-02 5.8314E-03 5.8314E-03 8.2143E-02 1.1938E-02 2.1129E-02
g08 2.3534E-09 9.5024E-09 2.3534E-09 3.2113E-09 2.3710E-09 2.7755E-17 4.1633E-17 4.1633E-17 3.5761E-17 6.9920E-18
g09 1.8694E+00 8.4045E+00 8.4045E+00 7.0975E+00 2.6679E+00 8.2568E-06 8.2568E-06 1.8555E-04 6.4992E-05 8.4410E-5
g10 1.6339E+03 1.6339E+03 1.6339E+03 1.6339E+03 0 2.7483E+00 1.8283E+01 1.8283E+01 1.4399E+01 6.8714E+00
g11 NA NA NA NA NA 9.9990E-05 9.9990E-05 9.9990E-05 9.9990E-05 1.4939E-14
g12 4.0929E-10 4.2981E-09 4.2981E-09 3.4007E-09 1.6709E-09 0 0 0 0 0
g13 NA NA NA NA NA 8.3328E-06 8.3328E-06 8.3328E-06 8.3328E-06 7.0710E-13

Table 4.4 Function Error Values Achieved with four fitness functions f1, f2, f3 and f4 When
FES = 5×103, FES = 5×104 for Test Functions g01-g13

FES 5×103 5×104

Best Median Worst Mean Std Best Median Worst Mean Std
g01 7.1822E+00 7.7277E+00 7.7277E+00 7.5531E+00 2.5968E-01 1.4820E-07 1.4820E-07 1.0231E-04 3.6929E-05 5.0053E-05
g02 2.4311E-01 2.4311E-01 3.1059E-01 2.5660E-01 2.7549E-02 2.2807E-02 1.4556E-01 1.4556E-01 1.1251E-01 5.5527E-02
g03 NA NA NA NA NA 2.7793E-03 2.7793E-03 1.0114E-02 3.9529E-02 2.7446E-03
g04 1.2710E+01 1.2710E+01 4.2288E+01 1.9048E+01 1.2359E+01 3.6379E-12 7.2759E-12 7.2759E-12 5.1204E-12 1.4424E-11
g05 NA NA NA NA NA 1.3954E-03 1.3954E-03 1.3954E-03 1.3954E-03 5.1610E-11
g06 1.0451E+01 1.0451E+01 1.6199E+01 1.1477E+01 2.2419E+00 1.6370E-11 4.9386E-05 4.9386E-05 3.5558E-05 2.2631E-05
g07 5.4591E+00 5.6960E+00 5.6860E+00 5.6043E+00 1.1112E-01 5.8314E-03 5.8314E-03 8.2143E-02 2.4146E-02 3.3263E-02
g08 2.3534E-09 9.5024E-09 2.3534E-09 4.3551E-09 3.2760E-09 2.7755E-17 4.1633E-17 4.1633E-17 3.6082E-17 6.9388E-18
g09 1.8694E+00 8.4045E+00 8.4045E+00 6.8361E+00 2.8486E+00 8.2568E-06 8.2568E-06 1.8555E-04 2.9532E-05 5.8803E- 05
g10 1.6339E+03 1.6339E+03 NA NA NA 2.7483E+00 1.8283E+01 1.8283E+01 1.4100E+01 7.0271E+00
g11 NA NA NA NA NA 9.9990E-05 9.9990E-05 9.9990E-05 9.9990E-05 1.7579E-14
g12 4.0929E-10 4.2981E-09 4.2981E-09 3.9990E-09 1.0568E-09 0 0 0 0
g13 NA NA NA NA NA 8.3328E-06 8.3328E-06 8.3328E-06 8.3328E-06 0

In summary, our experimental results confirm that the performance of CMODE with
more helper functions is better than that of that with only two helper functions in some cases
and almost the same in other cases.

4.4 Summary

This chapter proposes a new multi-objective problem formulation for solving constrained
optimization problems. Besides the standard problem formulation with two objectives: to
minimise the original objective function and the sum of degrees of constraint violation,
other helper fitness functions are constructed from weighted sums of the normalised original
objective and the normalised degree of constraint violation.

The new problem formulation is compared with the standard problem formulation using
the same CMODE for solving MOPs. Experimental results show that CMODE with three
fitness functions obtains remarkable better performance than that with the standard two fitness
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functions [151] on most benchmark functions (12/13) from CEC2006 benchmark functions.
This confirms our expectation that adding more helper functions may significantly improve the
performance of MOEAs for CSOPs. The new problem formulation is extremely encouraging
since our method is able to compete with other leading methods [13, 152, 80, 151].

However, according to the experiment study on IEEE CEC2017/2018 benchmark func-
tions [161] in Chapter 7, this problem formulation cannot compete with other EAs participate
in the competition [132, 133]. Therefor, we decide to develop another problem formulation
in the next chapter.





Chapter 5

Helper and Equivalent Objectives: An
Efficient Approach to Constrained
Optimization

Multi-objective EAs for constrained optimization have been proposed over past two decades.
Many empirical studies have demonstrated the efficiency of the multi-objective method [125].
Intuitively, the more objectives a problem has, the more complicated it is. Thus, this raises a
question why the multi-objective method could be superior to the single objective method.
So far few theoretical analyses have been reported for answering this question.

In fact, none of EAs in the latest IEEE CEC2017/18 constrained optimization competi-
tions adopted multi-objective optimization [132]. The competition benchmark suite includes
50 and 100 dimensional functions. For a multi-objective optimization problem, the higher
dimension, the more complex Pareto optimal set. This raises another question whether
multi-objective EAs are able to compete with the state-of-art single-objective EAs in the
competition.

The above questions motivate us to further study the multi-objective method for CSOPs.
The notation of ‘helper objectives’ was firstly introduced in [58]. ‘helper objective’ is an
additional objective besides the original objective to be optimized. It can help diverse the
population and form good building blocks. A helper objective is called an auxiliary objective
in some references [3].

Most studies of ‘helper objectives’ are based on the observation of experimental tests.
There are only a few theoretical analyses of EAs using ‘helper objectives’. As early as in
2005, Neumann and Wegener [102] investigated the problem of minimum spanning trees by
multi-objective EAs and prove that a single-objective problem might be solved more easily
via a multi-objective model.
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Friedrich et al. [37] proves that for the vertex cover problem, EAs using a multi-objective
model can generate optimal solutions more quickly than EAs using the single-objective one;
for the more general SETCOVER problem, EAs using a multi-objective model can generate
some good approximation solution, while EAs using the single-objective approach cannot
generate solutions with a guaranteed approximation ratio. He et al. [48] also proves that by
using helper objectives, an evolutionary algorithm may produce 1/2-approximation solutions
to the 0-1 knapsack problem.

Recently, Antipov and Buzdalova use EA+RL method dynamically chooses two ‘auxiliary
objectives’ (same meaning as ‘helper objective’) for optimization of the non-monotonic
JUMP function. EA+RL method is analyzed whether it is effective to relearn which objective
is helpful when helpfulness of ‘auxiliary objectives’ changes during optimization. Neumann
and Sutton [101] analyzed the running time of a variant of global simple evolutionary multi-
objective optimizer on the Knapsack problem. However, none of these theoretical analysis is
based on multi-objective evolutionary algorithms for constrained optimization.

In this chapter, we propose a new multi-objective method for constrained optimization,
which is to convert a constrained optimization problem into a problem with helper and
equivalent objectives [166]. An equivalent objective means that its optimal solution set is the
same as that to the constrained problem but a helper objective not. Then this multi-objective
optimization problem is decomposed into a group of sub-problems using the weighted sum
approach. Weights are dynamically adjusted so that each subproblem eventually tends to a
problem with an equivalent objective. We theoretically analyze the computation time of the
helper and equivalent objective method on a hard problem called “wide gap”. The “wide gap”
problem means that an algorithm needs exponential time to cross between two fitness levels.
We prove that using helper and equivalent objectives may shorten the time of crossing the
“wide gap”.

Our research hypothesis is that the helper and equivalent objective method can outperform
the single objective method on certain hard problems. We make both theoretical and empirical
comparisons of these two methods.

1. In theory, the “wide gap” problem [49, 15] is regarded as a hard problem to EAs. We
aim at proving using helper and equivalent objectives can shorten the hitting time of
crossing such a “wide gap”.

2. A case study is conducted for validating our theory. We aim at designing an EA with
helper and equivalent objectives and demonstrating that it can outperform EAs in
CEC2017/18 competitions.
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This chapter is a significant extension of our two-page poster in GECCO2019 [165]. The
algorithm described in the current chapter is a slightly revised version of HECO-DE in [165].
HECO-DE was ranked 1st in 2019 in IEEE CEC Competition on Constrained Real Parameter
Optimization when compared with other eight state-of-art EAs [132].

5.1 The Helper and Equivalent Objective Method

5.1.1 Helper and Equivalent Objectives

We start from a problem existing in the classical bi-objective method for solving problem (2.5).
The Pareto optimal set to (2.5) is often significantly larger than Ω∗.

Example 1. Consider the following CSOP. Its optimal solution is a single point Ω∗ = {0}.{
min f (x) = x, x ∈ [−1000,1000],

subject to g(x) = sin( xπ

1200)≥ 0.

The degree of constrain violation is

v(x) = max{0,−sin(xπ/1200)}. (5.1)

The Pareto optimal set to the bi-objective problem min( f ,v) is {−1000}∪ [−200,0], signifi-
cantly larger than Ω∗. The Pareto front is shown in Fig. 7.1.

-200-1000

0.5

1
v

f0

Pareto front

Fig. 5.1 Pareto front.

This example shows that using two objectives makes the problem more complicated.
Thus, it is difficult to explain why the multi-objective method is more efficient.

In order to develop a theory of understanding the multi-objective method for CSOPs,
we introduce two concepts, equivalent and helper objectives. The term “helper objective”
originates from [58].
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Definition 6. A scalar function g(⃗x) defined on Ω is called an equivalent objective function
with respect to the CSOP (2.1) if it satisfies the condition:

argmin{ f (⃗x); x⃗ ∈Ω}= Ω
∗. (5.2)

A scalar function g(⃗x) is called a helper objective function if it does not satisfy the above
condition.

Equivalent functions can be obtained from single objective methods for constrained
optimization. For example, a simple equivalent function is the death penalty function. Let
ΩF denote feasible solutions and ΩI infeasible ones.

mine(⃗x) =

{
f (⃗x), if x⃗ ∈ΩF ,

+∞, if x⃗ ∈ΩI.
(5.3)

But the objective function f is not an equivalent function unless all optimal solution(s)
to min f are feasible. The constraint violation degree v is not an equivalent function unless
all feasible solutions are optimal. Hence, except particular CSOPs, min( f ,v) is a two helper
objective problem.

In practice, it is more convenient to construct an equivalent function e(⃗x) which is defined
on population P, rather than Ω. In this case, the definition of helper and equivalent functions
is modified as follows.

Definition 7. Given a population P such that Ω∗∩P ̸= /0, a scalar function g(⃗x) defined on
P is called an equivalent objective function with respect to the CSOP (2.1) if it satisfies the
following condition:

argmin{ f (⃗x); x⃗ ∈Ω∩P}= Ω
∗∩P. (5.4)

A scalar function g(⃗x) defined on P is called a helper objective function if it does not satisfy
the above condition. For a population P such that Ω∗∩P = /0, we can not distinguish between
equivalent and helper functions defined on the population.

An example is the superiority of feasibility rule [28] which is described as follows. Given
a population P,

1. A feasible solution with a smaller f value is better than one with a larger f value;

2. A feasible solution is better than an infeasible solution;

3. An infeasible solution with smaller constraint violation is better than one with larger
constraint violation.
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The above rule leads to an equivalent function on P as

e(⃗x) =

{
f (⃗x), if x⃗ ∈ΩF ∩P,
v(⃗x)+ fF(P), if x⃗ ∈ΩI ∩P,

(5.5)

where fF(P) = max{ f (⃗x), x⃗ ∈ΩF ∩P} if ΩF ∩P ̸= /0 or fF(P) = 0 otherwise.

5.1.2 The Helper and Equivalent Objective Method

Once an equivalent objective function is obtained, the CSOP (2.1) can be converted to a
single-objective optimization problem without any constraint.

mine(⃗x), x⃗ ∈ P. (5.6)

In practice, an EA generates a population sequence {Pt ; t = 0,1, · · ·} and e(⃗x) relies on
population Pt .

A single-objective EA (SOCO) for problem (5.6) is described as follows.

1: population P0← initialise a population of solutions;
2: for t = 0, · · · ,Tmax do
3: population Ct ← generate a population of solutions from Pt subject to a conditional

probability Pr(Ct | Pt);
4: Pt+1← select optimal solution(s) to mine(⃗x), x⃗ ∈ Pt ∪Ct ; remove repeated solutions.
5: end for

Tmax is the maximum number of generations. Pr(Ct | Pt) is a conditional probability
determined by search operator(s). The population size |Pt | is changeable so that Pt is able to
contain all found best solutions.

Besides the equivalent function e(⃗x), we add several helper functions hi(⃗x), i = 1, · · · ,k,
and then obtain a helper and equivalent objective optimization problem on population P.

min f⃗ (⃗x) = (e(⃗x),h1(⃗x), · · · ,hk(⃗x)), x⃗ ∈ P. (5.7)

Furthermore, we decompose problem (5.7) into several single objective problem. Decomposition-
based multi-objective EAs have been proven to be efficient in solving multiobjective opti-
mization problems [172, 142]. The decomposition method in the present work adopts the
weighted sum approach, adding the helper objective onto the equivalent objective such that

minw0e(⃗x)+∑
k
j=1 w jh j (⃗x), x⃗ ∈ P, (5.8)
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where w j ≥ 0 are weights.
Problem (5.7) is transformed into λ single-objective optimization subproblems by assign-

ing λ tuples of weights w⃗i = (w0i,w1i, · · · ,wki).

min fi = w0ie+∑
k
j=1 w jih j, i = 1, · · · ,λ . (5.9)

At least one fi is chosen to an equivalent objective function. We minimise all fi simultane-
ously.

Since the ranges of e and h might be significantly different, one of them may play
a dominant role in the weighted sum. It is therefore, helpful to normalise the values of
each function to [0,1] so that none of them dominates others in the sum. The min-max
normalisation method is adopted within a population P. Given a function g(⃗x), it is normalised
to [0,1].

g(⃗x)←
g(⃗x)−max⃗y∈P g(⃗y)

max⃗y∈P g(⃗y)−min⃗y g(⃗y)
. (5.10)

A helper and equivalent objective EA (HECO) for problem (5.9) is described as follows.

1: population P0← initialise a population of solutions;
2: for t = 0, · · · ,Tmax do
3: adjust weights;
4: population Ct ← generate a population of solutions from Pt subject to a conditional

probability Pr(Ct | Pt);
5: Pt+1← select optimal solution(s) to min fi(⃗x), x⃗ ∈ Pt ∪Ct for i = 1, · · · ,λ where fi is

calculated by formula (5.9); remove repeated solutions.
6: end for

HECO selects optimal solution(s) to min fi(⃗x), x⃗ ∈ Pt ∪Ct with respect to each function
fi (called elitist selection), but it does not select all non-dominated solutions with respect to
(e,h1, · · · ,hk) (no Pareto-based ranking).

Since our goal is to find the optimal solution(s) to mine(⃗x) but not to minhi(⃗x), it is not
necessary to generate solutions evenly spreading on the Pareto front. Thus, the decomposition
mechanism proposed herein differs from that employed in traditional decomposition-based
multi-objective EAs [172]. The weights are chosen dynamically over generations t so that
each fi eventually converges to an equivalent objective function. Thus, the adjustment of
weights follows the principle:

lim
t→+∞

w0i,t > 0 and lim
t→+∞

w ji,t = 0 for j > 0. (5.11)
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HECO has two characteristics:

1. SOCO is one-dimension search along the direction e in the objective space. HECO
is multi-dimensional search along several directions (e,h1, · · · ,hk). e is the main
search direction for SOCO, while h1, · · · ,hk are auxiliary directions added by HECO.
Intuitively, if SOCO encounters a “wide gap” along the direction e, HECO might
bypass it through other auxiliary directions. This initiative discussion will be rigorously
analysed later.

2. The dynamically weighting ensures that at the beginning, HECO explores different
directions e,h1, · · · ,hk, while at the end, HECO exploits the direction e for obtaining
an optimal feasible solution.

HECO is a general framework which covers many variant algorithm instances. Equivalent
and helper functions can be constructed in a different way, such as (5.3) and (5.5). Search
operators can be chosen from evolutionary strategies, differential evolution, particle swarm
optimization and so on.

5.1.3 Implicit Equivalent Objective

Without the aid of an equivalent objective, a decomposition-based multi-objective EA for
CSOPs faces a problem. The solution set found by the algorithm is often larger than Ω∗. This
claim is shown through Example 1. We assign λ pairs of weights in objective decomposition:
(1,0),(wi,1−wi),(0,1) where i = 2, · · · ,λ −1 and wi > 0 and obtain λ subproblems with a
bounded constraint x ∈ [−1000,1000].

min f1(x) = f ,
min fi(x) = wi f +(1−wi)v, i = 2, · · · ,λ −1,
min fλ (x) = v.

The optimal solution to min f is x=−1000. The optimal solution to min fi, i= 2, · · · ,λ−
1 is infeasible. The optimal solution to minv is [0,500]. The solution set to the λ subproblems
consists of infinite solutions, much larger than Ω∗ = {0}. Using dynamical adjustment of
weights does not help here.

However, in practice, it is common to utilise the superiority of feasibility rule to select
solutions. Using the rule, an infeasible solution such as x =−1000 is not selected. Among
feasible solutions x ∈ [0,500], only the minimal point x = 0 is selected. But the superiority
of feasibility rule is an equivalent objective (5.5), thus, many multi-objective EAs for CSOPs
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implicitly utilise an equivalent objective. Based on this argument, multi-objective EAs for
CSOPs are classified into three types.

1. Type I is to optimise helper objectives only;

2. Type II is to optimise helper objectives but select solutions by the superiority of
feasibility rule (an implicit equivalent objective);

3. Type III is to explicitly optimise both helper and equivalent objectives.

In this chapter, the notation HECO refers to type III. It has some advantages: an explicit
equivalent objective is utilised and it can be designed more flexibly beyond the superiority of
feasibility rule.

5.2 A Theoretical Analysis

5.2.1 Preliminary Definitions and Lemma

Intuitively, an equivalent objective ensures a primary search direction towards Ω∗ and avoid
an enlarged Pareto optimal set. Helper objectives provide auxiliary search directions. If there
exists an obstacle like a “wide gap” on the primary direction, auxiliary directions can help
bypass it. In theory, we aim at mathematically proving the conjecture: using helper and
equivalent objectives can shorten the time of crossing the “wide gap”. First we introduce
several preliminary definitions and a lemma.

For the sake of analysis, the search space Ω is regarded as a finite set. This simplification
is made due to two reasons. First, any computer can only represent a finite set of real numbers
with a limited precision. Secondly, population Pt consists of finite individuals (points). But
the probability of Pt at finite points always equals to 0 in a continuous space. To handle this
issue, we assume that possible values of Pt are finite.

Let f⃗ (⃗x) = ( f1(⃗x), · · · , fk(⃗x)) be a scalar function (k = 1) or a vector-valued function
(k > 1). Consider a minimisation problem with bounded constraints:

min f⃗ (⃗x), x⃗ ∈Ω. (5.12)

If k = 1, it degenerates into a single-objective problem.

Definition 8. Given the optimization problem (5.12), f⃗ (⃗x) is said to dominate f⃗ (⃗y) (written
as f⃗ (⃗x)≻ f⃗ (⃗y) ) if

1. ∀i ∈ {1, · · · ,k} : fi(⃗x)≤ fi(⃗y);
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2. ∃i ∈ {1, · · · ,k} : fi(⃗x)< fi(⃗y).

If k = 1, the two conditions degenerate into one inequality f (⃗x)< f (⃗y).

Based on the domination relationship, the non-dominated set and Pareto optimal set are
defined as follows.

Definition 9. A set S ⊂ S′ is called a non-dominated set in the set S′ if and only if ∀⃗x ∈ S,
∀⃗y ∈ S′, x⃗ is not dominated by y⃗. A set S is called a Pareto optimal set if and only if it is a
non-dominated set in Ω.

Given a target set, the hitting time is the number of generations for an EA to reach the
set [50]. The hitting time of an EA from one set to another is defined as follows.

Definition 10. Let {Pt ; t = 0,1, · · ·} be a population sequence of an EA. Given two sets S1

and S2, the expected hitting time of the EA from S1 to S2 is defined by

T (S2 | S1) : = ∑
+∞

t=0 Pr(P0 ⊂ S2, · · · ,Pt ⊂ S2),

where the notation S denotes the complement set of S.

From the definition, it is straightforward to derive a lemma for comparing the hitting time
of two EAs.

Lemma 1. Let {Pt ; t = 0,1, · · ·} and {P′t ; t = 0,1, · · ·} be two population sequences and S1

and S2 two sets such that S1∩S2 = /0. Let P0 = P′0 = S1. If for any t,

Pr(P0=S1⊂S2,··· ,Pt⊂S2)≥Pr(P′0=S1⊂S2,··· ,P′t⊂S2), (5.13)

then T (S2 | S1)≥ T ′(S2 | S1). Furthermore, if the inequality (5.13) holds strictly for some t,
then T (S2 | S1)> T ′(S2 | S1).

This lemma provides a criterion to determine whether an EA has a shorter hitting time
than another EA. The comparison is qualitative because no estimation of the hitting time is
involved. For a quantitative comparison, it is necessary to utilise more advanced tools such
as average drift analysis [50]. This will not be discussed in the current chapter.

5.2.2 Fundamental Theorem

Now we compare SOCO for the single-objective problem (5.6) and HECO for the helper and
equivalent objective problem (5.9). In order to make a fair comparison, a natural premise is
that both EAs use identical search operator(s).
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The main purpose of using HECO is to tackle hard problems facing SOCO. Yet, what
kind of problems are hard to SOCO? According to [49, 15], hard problems to EAs can be
classified into two types: the “wide gap” problem and the “long path” problem. The concept
of “wide gap” is established on fitness levels. In the helper and equivalent objective method,
the equivalent function e(⃗x) plays the role of “fitness”. In constrained optimization, function
f (⃗x) is not suitable as “fitness” because the minimum value of f might be obtained by an
infeasible solution.

The values of e(⃗x) are split into fitness levels: FL0 < FL1 < · · ·< FLm and the search
space Ω is split into disjoint level sets: Ω = ∪m

i=0Li where L = {⃗x;e(⃗x) = FL}. Given
a fitness level FL and its corresponding point set L, let Lb denote points at better levels
Lb := {⃗x;e(⃗x)< FL}. A “wide gap” between L and Lb is defined as follows.

Definition 11. Given an EA, we say a wide gap existing between L and Lb if for a subset
A⊂ L, the expected hitting time T (Lb | A⊂ L) is an exponential function of the dimension D.

Several conditions are needed for mathematically comparing SOCO and HECO. Let
{Pt ; t = 0,1, · · ·} represent the population sequence from SOCO and {P′t ; t = 0,1, · · ·} from
HECO. Assume P0 = P′0 are chosen from the fitness level FL. For SOCO, thanks to elitist
selection, its offspring are either at the level FL or better fitness levels. For HECO, because
of selection on both equivalent and helper function directions, offspring may include points
from worse fitness levels too. This observation is summarised as a condition.

Condition 1: Assume that P0 = P′0 ⊂ L. For SOCO, Pt ⊂ L∪Lb for ever. Provided that
Pt = X = (⃗x1, · · · , x⃗m)⊂ L, there is a one-to-many mapping from Pt to P′t where P′t is in the
set

Map(X)={X ′=(⃗x1,··· ,⃗xm,∗)|∗= /0 or ∗⊂L∪Lb}.

The event of Pt = (⃗x1, · · · , x⃗m)⊂ L requires x⃗1 ∈ L, · · · , x⃗m ∈ L. The probability of this
event happening is larger than that of the event P′t = (⃗x1, · · · , x⃗m,∗) where ∗= /0 or ∗⊂ L∪Lb}
because the latter event requires x⃗1 ∈ L, · · · , x⃗m ∈ L and also ∗ ⊂ L∪Lb. This leads to the
following conditions.

Condition 2: Let P0 = P′0 = A⊂ L. For any t, it holds

Pr(P0=A⊂L,··· ,Pt=Z⊂L)

≥∑∗⊂Lb ···∑∗⊂Lb Pr(P′0=A′⊂Lb,··· ,P′t =Z′⊂Lb).

Condition 3: For some t, the above inequality is strict.
Thanks to elitist selection and equivalent objective(s), Conditions 1 and 2 are always true.

Condition 3 could be true, for example, if the transition probability from ∗ to Lb is greater
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than 0. Using the above conditions, we prove a fundamental theorem of comparing HECO
and SOCO.

Theorem 1. Consider SOCO for the single objective problem (5.6) and HECO for the helper
and equivalent objective problem (5.9) using elitist selection and identical search operator(s).
Assume that SOCO faces a wide gap, that is, T (Lb | A⊂ L) is an exponential function of D
for a subset A. Let initial population P0 = P′0 = A. Under Conditions 1 and 2, the expected
hitting time T (Lb | A)≥ T ′(Lb | A). Furthermore, under Condition 3, T (Lb | A)> T ′(Lb | A).

Proof. From Conditions 1 and 2, it follows for any t,

Pr(P0⊂Lb,··· ,Pt⊂Lb)=∑A⊂L···∑Z⊂L Pr(P0=A,··· ,Pt=Z)

≥Pr(P′0⊂Lb,··· ,P′t⊂Lb)

=∑A⊂L···∑Z⊂L ∑∗⊂Lb ···∑∗⊂Lb Pr(P0=A,··· ,Pt=Z′). (5.14)

From Lemma 1, it is known T (Lb | A)≥ T ′(Lb | A). The second conclusion is drawn from
Condition 3.

Theorem 1 proves that the hitting time of HECO crossing a wide gap is not more than
SOCO under Conditions 1 and 2 (always true) and shorter than SOCO under Condition 3
(sometimes true). In Conditions 2 and 3, the part ∗· · ·∗ is a path of searching along helper
directions and intuitively is regarded as a bypass over the wide gap. Theorem 1 reveals if such
a bypass exists, HECO may shorten the hitting time of crossing the wide gap. Nevertheless,
Theorem 1 is inapplicable to the multi-helper objective method, because the one-to-many
mapping in Condition 1 cannot be established.

The example presented below is a simple problem in constrained optimization. The
purpose is to help understand our fundamental theorem.

In the theory of EAs, it is common to discuss extremely simple examples such as OneMax
or Jump functions, like Antipov and Buzdalova [3] made their analysis on the Jump function.
We follow a similar way to present the example.

However, our fundamental theorem is more general. It can be taken as the foundation of
HECO algorithms for constrained optimization because the wide gap may exists in many
problems.

Example 2. Consider the CSOP below,{
min f (x) = x, x ∈ [−500,3000]

subject to g(x) = sin( xπ

1000)≥ 0.
(5.15)
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Its optimal solution is x = 0. The feasible region is ΩF = [0,1000]∪ [2000,3000]. The
objective function f (⃗x) is not an equivalent function because its minimal point is x =−500,
an infeasible solution.

First, we analyse a SOCO algorithm using elitist selection and the equivalent objective
from the superiority of feasibility rule.

mine(x) =

{
f (x), if x ∈ΩF ,

v(x)+3000, if x ∈ΩI.
(5.16)

where v(x) = max{0,−sin( xπ

1000)}.
Mutation is y = x+U(−1,1), where x is the parent and y its child. U(−1,1) is a uniform

random number in (−1,1).
Assume that SOCO starts at L = {2000}. Then Lb = [0,1000]. Because of elitist

selection, the EA cannot accept a worse solution. Then it cannot cross the infeasible region
(1000,2000), a wide gap to SOCO. Thus, Pt ∈ L for ever.

Secondly, we analyse a HECO algorithm employing elitist selection, identical mutation
but two objectives.

min f⃗ (x) = (e(x), f (x)), x ∈ [−500,3000]. (5.17)

Its Pareto front is displayed in Fig. 7.2.

3000-500

3000
3001

e

f0

Pareto front

Fig. 5.2 Pareto front to the two-objective optimization problem (22)

We assign two pairs of weights: w⃗1 = (1,0) and w⃗2 = (0,1) on (e, f ). Assume that
SOCO starts at L = {2000}. For any x ∈ Pt ∩ [1000,2000], after mutation, some point y such
that y < x− 1

2 is generated with a positive probability. Since f (y)< f (x), y is selected to P′t .
Thus, P′t makes a downhill-search along the direction f . Repeating this procedure for 2000
generations, Pt can reach the set Lb = [0,1000] with a positive probability. This implies for
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t ≥ 2000,

Pr(P′0 ⊂ Lb, · · · ,P′t ⊂ Lb)< 1.

According to Theorem 1, T ′(Lb | L) < T (Lb | L). Fig. 7.3 visualises the bypass in the
objective space.
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Fig. 5.3 A bypass in objective space: A(2000,2000)→ B(2000−ε1,3000+ε2)→C(1000−
ε3,3000+ ε4)→ D(1000,1000) where εi ∈ (0,1) over the wide gap between fitness levels
e(x) = 2000 and e(x) = 1000.

5.3 Summary

This chapter proposes the helper and equivalent objective method for constrained optimization.
Its idea is to convert a CSOP into an equivalent and helper objective optimization problem,
then to decompose it into several single objective subproblems using the weighted sum
approach.

It has been theoretically proven that for the “wide gap” problem, using helper and
equivalent objectives may shorten hitting time of crossing the “wide gap”. To the best of our
knowledge, this might be the first theoretical work to explain the strengths of multi-objective
EAs in performing CSOPs.

Our fundamental theorem is general because it can be applicable to any HECO algorithm
if it satisfies three conditions. There are no specific requirements of mutation, crossover, and
selection, or helper and equivalent objectives. Among the three conditions, Conditions 1 and
2 are always true. Condition 3 is mild.

This theory has guided the design of HECO-DE, as an instance of HECO algorithm.
Without this theory, it is impossible for us to design an equivalent objective.





Chapter 6

HECO-DE: A Case Study

In this chapter, we conduct a case study for validating our proposed HECO model. An
algorithm with helper and equivalent objectives is implemented. Experimental results show
that its overall performance is ranked first when compared with other eight state-of-art
evolutionary algorithms. The case study proves the efficiency of the helper and equivalent
objective method for constrained optimization.

6.1 A Case Study

6.1.1 Search Operators from LSHADE44

In order to validate our theory, we follow Occam’s razor, that is to construct a HECO al-
gorithm from a SOCO algorithm such that their search operators are identical but their
objectives are different. No extra operation is added to HECO. For comparative pur-
pose, LSHADE44 [107] is chosen as the SOCO algorithm because it is ranked only 4th
in the CEC2017/18 competition [132]. If the constructed HECO algorithm outperforms
LSHADE44 and winer EAs in the competition, then we have a good reason to claim the
helper and equivalent objective method works.

For the sake of a self-contained presentation, search operators in LSHADE44 are sum-
marised as follows.

LSHADE44 employs two mutation operators. The first one is current-to-pbest/1 mutation
(see (6) in [171]). Mutant point u⃗i is generated from target point x⃗i by

u⃗i = x⃗i +F (⃗xpbest− x⃗i)+F (⃗xr1− x⃗r2), (6.1)
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where x⃗pbest is chosen at random from the top 100p% of population P where p ∈ (0,1). x⃗r1

is chosen at random from population P, while x⃗r2 at random from P∪A where A represents
an archive. Mutation factor F ∈ (0,1).

The second mutation is randrl/1 mutation (see (3) in [66]).

u⃗i = x⃗r1 +F (⃗xr2− x⃗r3), (6.2)

u⃗i = x⃗r∗1 +F (⃗xr∗2 − x⃗r∗3). (6.3)

In (6.2), mutually distinct x⃗r1 , x⃗r2 and x⃗r3 are randomly chosen from population P. They are
also different from x⃗i. In (6.3), x⃗r1 , x⃗r2 and x⃗r3 are chosen as that in (6.2) but then are ranked.
x⃗r∗1 denotes the best, while x⃗r∗2 and x⃗r∗3 denote the other two.

LSHADE44 employs two crossover operators. The first one is binomial crossover (see
(4) in [57]). Trial point y⃗i is generated from target point x⃗i and mutant u⃗i by

yi, j =

{
ui, j, if rand j(0,1)≤CR or j = jrand,

xi, j, otherwise,
(6.4)

where integer jrand is chosen at random from [1,D]. rand j(0,1) is chosen at random from
(0,1). Crossover rate CR ∈ (0,1). The second crossover is the exponential crossover (see (3)
in [168]).

The combination of a mutation operator and a crossover operator forms a search strategy.
Thus, four search strategies (combinations) can be produced. LSHADE44 employs a mecha-
nism of competition of strategies [143, 144] to create trial points. The kth strategy is chosen
subject to a probability qk. All qk are initially set to the same value, i.e., qk = 1/4. The kth
strategy is considered successful if a generated trial point y is better than the original point x.
The probability qk is adapted according to its success counts:

qk =
nk +n0

∑
4
i=1(ni +n0)

, (6.5)

where nk is the count of the kth strategy’s successes, and n0 > 0 is a constant.
LSHADE44 adapts parameters F and CR in each strategy based on previous successful

values of F and CR [107]. Each strategy has its own pair of memories MF and MC for saving
F and CR values. The size of a historical memory is H.

LSHADE44 uses an archive A for the current-to-pbest/1 mutation [107]. The maximal
size of archive A is set to |A|max. At the beginning of search, the archive is empty. During
a generation, each point which is rewritten by its successful trial point is stored into the



6.1 A Case Study 57

archive. If the archive size exceeds the maximum size |A|max, then |A|− |A|max individuals
are randomly removed from A.

LSHADE44 takes a mechanism to linearly decrease the population size [107, 138]. For
population Pt , its size must equal to a required size Nt . Otherwise its size is reduced. The
required initial size is set to N0 and the finial size to NTmax . The required size at the tth
generation is set by the formula:

Nt = round
(

N0− t
Tmax

(N0−NTmax)
)
. (6.6)

If |Pt |> Nt , then |Pt |−Nt worst individuals are deleted from the population.

6.1.2 A New Equivalent Objective Function

Two equivalent functions (5.3) and (5.5) have been constructed from the death penalty method
and the superiority of feasibility rule respectively. However, measured by these functions, a
feasible solution always dominates any infeasible one. To reduce the effect of such heavily
imposed preference of feasible solutions, we construct a new equivalent function.

Let x⃗∗P be the best individual in population P,

x⃗∗P =

{
argmin{v(⃗x); x⃗ ∈ P}, if P∩ΩF = /0,
argmin{ f (⃗x); x⃗ ∈ P∩ΩF}, if P∩ΩF ̸= /0.

For each x⃗ ∈ P, ẽ(⃗x) denotes the fitness difference between f (⃗x) and f (x∗P).

ẽ(⃗x) = | f (⃗x)− f (⃗x∗P)| (6.7)

ẽ itself is not an equivalent function because in some problems, the fitness of an infeasible
solution is equal to f (⃗x∗P) too. An equivalent function on population P is defined as

e(⃗x) = w1ẽ(⃗x)+w2v(⃗x), (6.8)

where w1,w2 > 0 are weights, which are used to control the contribution of ẽ and v to
the equivalent function e. The number of such equivalent functions is infinite because
w1 ∈ (0,+∞),w2 ∈ (0,+∞).

Theorem 2. Function e(⃗x) given by (6.8) is an equivalent objective function for any weights
w1 > 0,w2 > 0.
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Proof. Given any P satisfying Ω∗∩P ̸= /0, we have min{e(⃗x); x⃗ ∈ P}= 0. On one hand, for
any x⃗ ∈Ω∗∩P, ê(⃗x) = 0 and v(⃗x) = 0, then e(⃗x) = 0. On the other hand, for x⃗ ∈ P such that
e(⃗x) = 0, it holds v(⃗x) = 0, then x⃗ ∈Ω∗.

If two solutions x⃗1 (infeasible) and x⃗2 (feasible) in population P satisfy

w1| f (⃗x1)− f (⃗x∗P)|+w2v(⃗x1)< w1| f (⃗x2)− f (⃗x∗P)|, (6.9)

then under the equivalent objective function e, infeasible x⃗1 is better than feasible x⃗2. This
feature may help search the infeasible region. For example, in Fig. 7.4, assume that f (⃗x1)−
f (⃗x∗P) = 0 and f (⃗x2)− f (⃗x∗P) = 1, v(⃗x)1 = 0.5 and w1 = w2. Then we have e(⃗x1) = 0.5e(⃗x2).
Starting from x⃗1, it is much easier to reach the left feasible region in which the optimal
feasible solution x⃗∗P locates.

𝑥∗

feasible region

𝑥1

𝑥2

𝑥𝑃
∗

feasible solution

best solution in population P

search space

optimal feasible solution

infeasible solution

Fig. 6.1 There exist two feasible regions. An infeasible x⃗1 satisfying (6.9) is better than x⃗2
under the equivalent objective function e. This may help population P = (⃗x1, x⃗2, x⃗∗P) move
from the right feasible region to the left feasible region in which the optimal feasible solution
x⃗∗ locates.

We choose f as a helper function and then obtain a problem with helper and equivalent
objectives.

min f⃗ (⃗x) = (e(⃗x), f (⃗x)), x⃗ ∈ P, (6.10)

The problem is decomposed into λ single objective subproblems through the weighted sum
method: for i = 1, · · · ,λ ,

min fi(⃗x) = w1iẽ(⃗x)+w2iv(⃗x)+w3i f (⃗x). (6.11)

An extra term ẽ is added besides the original objective function f and constraint violation
degree v.
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6.1.3 A New multi-objective EA for Constrained Optimisation

A HECO algorithm is designed which reuses search operators from LSHADE44 [107].
We call it HECO-DE because it is built upon HECO and DE. Different from the single-
objective method LSHADE44, HECO-DE has three new multi-objective features: helper and
equivalent objectives, objective decomposition and dynamical adjustment of weights. The
procedure of HECO-DE is described in detail as below.

1: Initialise algorithm parameters, including the required initial population sizes N0 and
final size NTmax , the maximum number of fitness evaluations FESmax, circle memories
for parameters F and CR, the size of historical memories H; initial probabilities qk of
four strategies, and external archive A;

2: Set the counter of fitness evaluations FES to 0, and the counter of generations t to 0;
3: Randomly generate N0 solutions and form an initial population P0;
4: Evaluate the value of f (⃗x) and v(⃗x) for each x⃗ ∈ P0;
5: Increase counter FES by N0;
6: while FES≤ FESmax (or t ≤ Tmax) do
7: Adjust weights in objective decomposition.
8: Assign sets SF and SCR to /0 for each strategy. The sets are used to preserve successful

values of F and CR for each search strategy respectively. The set C (used for saving
children population) is also set to /0.

9: Randomly select λ individuals (denoted by Q) from P and then denote the rest
individuals P\Q by P′;

10: for xi in Q, i = 1, . . . ,λ do
11: Select one strategy (say k) with probability qk and generate mutation factor F

and crossover rate CR from respective circle memories;
12: Generate a trial point y⃗i by applying the selected strategy;
13: Evaluate the value of f (⃗yi) and v(⃗yi);
14: Add y⃗i to subpopulation Q, resulting in an enlarged subpopulation Q′;
15: Normalise ẽ(⃗x), f (⃗x) and v(⃗x) for each individual x⃗ in Q′.
16: Calculate fi value for x⃗i and y⃗i according to formula (6.11).
17: if fi(⃗yi)< fi(⃗xi) then
18: Add y⃗i into children C and x⃗i into archive A;
19: Save values of F and CR into respective sets SF and SCR and increase respec-

tive success count;
20: end if
21: end for
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22: Update circle memories MF and MCR using respective sets SF and SCR for each
strategy (see its detail in LSHADE44 [107]);

23: Merge subpopulation P′ (not involved in mutation and crossover) and children C and
form new population P;

24: Calculate the required population size Nt ;
25: if Nt < |P| then
26: Randomly delete |P|−Nt individuals from P;
27: end if
28: Calculate the required archive size |A|max = 4Nt ;
29: if |A|> |A|max then
30: Randomly delete |A|− |A|max individuals from archive A;
31: end if
32: Increase counter FES by λ and counter t by 1;
33: end while

There are several major differences between HECO-DE and LSHADE44 which are listed
as below.

Lines 12: in HECO-DE, mutation is applied to subpopulation Q, rather than the whole
population P. Thus, current-to-pbest/1 mutation and randr1/1 mutation must be modified
because the ranking of individuals is restricted to subpopulation Q. Given target xi and
subpopulation Q, xQbest is chosen to be the individual in Q with the lowest value of fi(⃗x).
Hence, current-to-pbest/1 mutation (6.1) is modified as

u⃗i = x⃗i +Fk(⃗xQbest− x⃗i)+Fk(⃗xr1− x⃗r2), (6.12)

This new mutation is called current-to-Qbest/1 mutation. For randr1/1 mutation (6.3), x⃗r1 , x⃗r2

and x⃗r3 are not compared but just randomly selected from subpopulation Q. Thus it returns
to the original rand/1 mutation (6.2).

Lines 12 and 16: ranking individuals is used in both mutation (6.1) and calculation of the
equivalent function (6.8). Because ranking is restricted within subpopulation Q and its size
λ is a small constant, the time complexity of ranking is a constant. This is different from
LSHADE44 in which individuals in the whole population P are ranked. Its time complexity
if a function of dimension D.

Lines 17-20: if fi(⃗yi)< fi(⃗xi), then y⃗i is accepted and added into children population C.
HECO-DE minimises λ functions fi simultaneously. In Line 7, the weights on each fi are
dynamically adjusted (details in Subsection 6.1.4). This is the most important difference
from LSHADE44.
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Since λ is a small constant, the number of operations in HECO-DE is only changed by a
constant when compared with LSHADE44. Thus, the time complexity of HECO-DE in each
generation is the same as LSHADE44 [107].

6.1.4 A New Mechanism of Dynamical Adjustment of Weights

We propose a special mechanism for dynamically adjusting weights. Function fi in subprob-
lem (6.11) is a weighted sum of helper and equivalent functions:

fi(⃗x) = w1iẽ(⃗x)+w2iv(⃗x)+w3i f (⃗x), (6.13)

where w1i,w2i,w3i are the weights on functions ẽ,v and f respectively. Weights are adjusted
according to the following principle: each fi converges to an equivalent function. Thus,

lim
t→+∞

w1i,t > 0, lim
t→+∞

w2i,t > 0, lim
t→+∞

w3i,t = 0.

In HECO-DE, weights are designed to linearly increase (for w1,w2) or decrease (for
w3) over t and also linearly increase (for w1,w2) or decrease (for w3) over i. In more detail,
weights are given by

w1i,t =
t

Tmax
· i

λ
, (6.14)

w2i,t =
t

Tmax
· i

λ
+ γ, (6.15)

w3i,t =

(
1− t

Tmax

)
·
(

1− i
λ

)
, (6.16)

where λ is the number of subproblems. Tmax is the maximal number of generations. γ ∈ (0,1)
is a bias constant which is linked to the number of constraints. The more constraints, the
larger γ and w2.

Figures 6.2 and 6.3 depict the change of normalised weights over t/Tmax. For λ th
individual, weights w1λ > 0,w2λ > 0 but w3λ = 0. This individual minimises an equivalent
function fλ . For 1st individual, weight w31 initially is set to a large value. Thus, at the
beginning of search, this individual focuses on minimising a helper function f1. Subsequently
w31 decreases to 0. It turns to minimise an equivalent function f1 at the end of search.

6.2 Comparative Experiments and Results
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Fig. 6.2 The change of weights for 1st and λ th individuals on CEC2006 benchmark functions.
γ = 0.7.
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Fig. 6.3 The change of weights for 1st and λ th individuals on CEC2017/2018 benchmarks.
γ = 0.1.

6.2.1 Experimental Setting

HECO-DE was tested on two well-known benchmark sets from IEEE CEC2017/2018 and
the IEEE CEC2006 introduced in Chapter 3.

Tables 6.1 and 6.2 list the parameter setting used in HECO-DE. In Table 6.1, parameters
inherited from LSHADE44 are set to values similar to LSHADE44 [107].

Table 6.1 Parameters inherited from LSHADE44

historical memory size H = 5
number of strategies K = 4

constant in strategy adaption n0 = 2
threshold in strategy adaption δ = 1/20

the maximum size of archive A |A|max = 4Nt
tolerance for equivalent constraints σ = 0.0001

In Table 6.2, population size N0, the number of subproblems λ and constraint violation
bias γ are set to different values on CEC2006 and CEC2017 benchmarks. Since CEC2006
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benchmarks include more constraints, both the values of λ and γ are set higher on CEC2006
benchmarks than that on CEC2017. The initial population size N0 is set to a constant on
CEC2006 benchmarks, while it is set to 12D on CEC2017 benchmarks because the dimension
D ranges from 10 to 100. As required by the competitions, twenty five independent runs
were taken on each benchmark.

Table 6.2 Different parameter setting in CEC2006 and CEC2017

CEC2006
FESmax from CEC2006 benchmarks FESmax = 500,000

required population sizes N0 = 450, NTmax = λ

population size of Q λ = 45
constraint violation bias γ = 0.7

CEC2017
FESmax from CEC2017 benchmarks FESmax = 20000D

required population sizes N0 = 12D, NTmax = λ

population size of Q λ = 20
constraint violation bias γ = 0.1

6.2.2 Experimental results on IEEE CEC2017 benchmarks

HECO-DE was compared with eight EAs introduced in Section 3.2. HECO-DE was also
compared with its two variants. The first variant is to remove the equivalent function from
HECO-DE. In the weighted sum (6.13), ẽ(⃗x) is replaced by f (⃗x). We call it HCO-DE. The
second variant is to choose the superiority of feasibility rule as the equivalent function. In
the weighted sum (6.13), ẽ(⃗x) is replaced by e(⃗x) given by (5.5). We call it HECO-DE(FR).
The three algorithms adopt same parameter setting.

Table 6.3 summarizes the ranks of EAs on four dimensions and total ranks. HECO-DE
is the top-ranked among all compared. This result clearly demonstrates that HECO-DE
consistently outperforms other EAs on all dimensions. Without the equivalent function,
HCO-DE is worse than HECO-DE and HECO-DE(FR). HECO-DE(FR) which uses the
superiority of feasibility rule as the equivalent objective is slightly worse than HECO-DE.
Tables 6.4 and 6.5 provide a sensitivity analysis of parameters λ and γ . HECO-DE with all
five λ and γ values had obtained lower total ranks than other EAs.

6.2.3 Experimental results on IEEE CEC2006 benchmarks

HECO-DE was compared with five EAs, which are CMODE [151], NSES [61], FROFI [149],
DW [105] and DeCODE [148], on IEEE CEC2006 benchmarks.
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Table 6.3 Total ranks of HECO-DE and other EAs on IEEE CEC2017 benchmarks

Algorithm/Dimension 10D 30D 50D 100D Total
CAL_LSAHDE(2017) 421 420 469 478 1788
LSHADE44+IDE(2017) 310 394 422 392 1518
LSAHDE44(2017) 332 344 342 342 1360
UDE(2017) 341 372 377 438 1528
MA_ES(2018) 271 261 273 282 1087
IUDE(2018) 198 261 269 327 1055
LSAHDE_IEpsilon(2018) 222 278 324 372 1196
DeCODE(2018) 239 297 302 328 1166
HCO-DE 282 253 255 219 1009
HECO-DE(FR) 158 194 186 202 740
HECO-DE 154 139 156 205 654

Table 6.6 summarises experiment results, where “Mean” and “Std Dev” denote the mean
and standard deviation of objective function values, respectively. As suggested in [76],
a successful run is a run during which an algorithm finds a feasible solution x⃗ satisfying
f (⃗xbest)− f (⃗x∗) ≤ 0.0001, where f (⃗xbest) is the best solution found by the algorithm and
f (⃗x∗) is the optimum. In Table 6.6, “*” denotes that the algorithm satisfies this successful
rule in 25 runs for a test problem.

As shown in Table 6.6, the performance of HECO-DE is similar to NSES, FROFI,
DeCODE, which can always find optimum of all test problems. HECO-DE performs better
than CMODE and DW. CMODE cannot find the optimum of problem g21 and DW cannot
find the optimum of g17 with 100% success rate.

HECO-DE was also compared with HCO-DE and HECO-DE(FR) on four functions
g02, g10, g21, and g23. Table 6.7 shows that HECO-DE always find the optimum on all
test functions. But without an equivalent objective, HCO-DE has a lower success rate or
feasible rate. HECO-DE(FR) faces performance degradation on g10, g21, and g23, probably
because the superiority of feasibility rule has a higher selection pressure than the equivalent
function (6.8).
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Table 6.4 Total ranks of HECO-DE with varying λ and other EAs on IEEE CEC2017
benchmarks

Algorithm/Dimension 10D 30D 50D 100D Total
CAL_LSAHDE(2017) 507 508 569 582 2166
LSHADE44+IDE(2017) 381 486 524 483 1874
LSAHDE44(2017) 409 431 431 422 1693
UDE(2017) 431 479 480 537 1927
MA_ES(2018) 326 321 341 347 1335
IUDE(2018) 250 343 345 424 1362
LSAHDE_IEpsilon(2018) 277 354 420 472 1523
DeCODE(2018) 301 381 390 410 1482
HECO-DE(λ = 15) 172 199 218 261 850
HECO-DE(λ = 20) 194 149 181 242 766
HECO-DE(λ = 25) 177 174 197 241 789
HECO-DE(λ = 30) 195 192 204 210 801
HECO-DE(λ = 35) 189 208 200 222 819

6.2.4 Convergence Speed of HECO-DE on IEEE CEC2006 Benchmark
Suit

Fig. 6.4 plots the convergence speed at the median run of HECO-DE. The convergence speed
is measured by the average convergence rate Rt defined as follows [47]:

Rt = 1−
∣∣∣∣ ft− f ∗

f0− f ∗

∣∣∣∣1/t

(6.17)

where Rt denotes the normalised convergence speed, t is the counter of the current generation,
ft is the objective value at t generation, and f ∗ the objective value of the known optimal
solution.

Ten typical test function chosen from CEC2006 Benchmark are classified into five groups:
quadratic, polynomial, linear, nonlinear and cubic. In each type of problems, we choose one
function with relatively large feasible region and one function with very tiny feasible region.

As shown in Fig. 6.4, the convergence speed on all test functions is within the range
around [0.002,0.01] after 50,000 generations. The case of g12 is special. At the beginning,
the convergence speed is negative. This implies an infeasible solution with | ft − f ∗| >
| f0− f ∗| is generated and accepted.

Fig. 6.4 shows that HECO-DE need more FES on test functions with tiny feasible region
(g18, g03, g21 and g05) than test functions with large feasible region (g04, g09, g24 and
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Table 6.5 Total ranks of HECO-DE with varying γ values and other EAs on IEEE CEC2017
benchmarks

Algorithm/Dimension 10D 30D 50D 100D Total
CAL_LSAHDE(2017) 508 511 572 583 2174
LSHADE44+IDE(2017) 373 485 518 482 1858
LSAHDE44(2017) 405 428 427 422 1682
UDE(2017) 423 471 465 532 1891
MA_ES(2018) 329 320 334 349 1332
IUDE(2018) 249 317 315 419 1300
LSAHDE_IEpsilon(2018) 276 341 415 475 1507
DeCODE(2018) 296 362 370 398 1426
HECO-DE(γ = 0.0) 254 207 243 287 991
HECO-DE(γ = 0.1) 186 177 186 234 783
HECO-DE(γ = 0.2) 182 186 197 223 788
HECO-DE(γ = 0.3) 190 220 229 210 849
HECO-DE(γ = 0.4) 209 262 283 261 1015

g06) for satisfying the success criteria. However, this observation does not hold on nonlinear
functions (g13 and g02).

6.2.5 Fine-tuning parameters on CEC2006 benchmark

CEC2006 benchmarks have more constraints than CEC2017 benchmarks. Thus the size
of subpopulation λ and constraint violation bias in CEC2006 are set to different values
from CEC2017. Fine-tuning of parameters λ and γ was conducted on IEEE CEC2006
benchmark functions. For brevity, only performance on g02, g10, g17, g21, and g23 are
shown in Tables 6.8 and 6.9 while other functions share the same performance with different
value of parameter λ and γ . As shown in Tables 6.8, the value λ = 45 is the best because
HECO-DE can always solve all tested benchmark functions 100% successfully. As shown
in Tables 6.9, γ = 0.7 gives the best performance. The λ and γ values are larger than those
used in CEC2017 (λ = 20 and γ = 0.1). This is due to CEC2006 benchmarks are strongly
constrained.

6.2.6 Detailed experimental results and ranking of HECO-DE on CEC2017
benchmarks

In terms of IEEE CEC2017 benchmark functions, the best, median, worst, mean, standard
deviation and feasibility rate of the function values tested by HECO-DE on 10D, 30D, 50D
and 100D are recorded in Table A.1-A.4.
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Table 6.6 Comparative experiment results on IEEE CEC2006 benchmarks. * denotes the
number of satisfying successful rule

CMODE
Mean±Std Dev

NSES
Mean±Std Dev

DW
Mean±Std Dev

FROFI
Mean±Std Dev

DeCODE
Mean±Std Dev

HECO-DE
Mean±Std Dev

g01 -1.5000E+01±0.00E+00* -1.5000E+01±4.21E-30* -1.5000E+01±5.02E-14* -1.5000E+01±0.00E+00* -1.5000E+01±0.00E+00* -1.5000E+01±0.00E+00*
g02 -8.0362E-01±2.42E-08* -8.0362E-01±2.41E-32* -8.0362E-01±9.99E-08* -8.0362E-01±1.78E-07* -8.0362E-01±3.12E-09* -8.0362E-01±1.21E-06*
g03 -1.0005E+00±5.29E-10* -1.0005E+00±5.44E-19* -1.0005E+00±4.27E-12* -1.0005E+00±4.49E-16* -1.0005E+00±4.00E-16* -1.0005E+00±3.54E-09*
g04 -3.0666E+04±2.64E-26* -3.0666E+04±2.22E-24* -3.0666E+04±0.00E+00* -3.0666E+04±3.71E-12* -3.0666E+04±3.71E-12* -3.0666E+04±0.00E+00*
g05 5.1265E+03±1.24E-27* 5.1265E+03±0.00E+00* 5.1265E+03±4.22E-10* 5.1265E+03±2.78E-12* 5.1265E+03±2.78E-12* 5.1265E+03±0.00E+00*
g06 -6.9618E+03±1.32E-26* -6.9618E+03±0.00E+00* -6.9618E+03±0.00E+00* -6.9618E+03±0.00E+00* -6.9618E+03±0.00E+00* -6.9618E+03±0.00E+00*
g07 2.4306E+01±7.65E-15* 2.4306E+01±.37E-09* 2.4306E+01±5.28E-10* 2.4306E+01±6.32E-15* 2.4306E+01±8.52E-12* 2.4306E+01±1.77E-14*
g08 -9.5825E+02±6.36E-18* -9.5825E+02±2.01E-34* -9.5825E+02±2.78E-18* -9.5825E+02±1.42E-17* -9.5825E+02±1.42E-17* -9.5825E+02±0.00E+00*
g09 6.8063E+02±4.96E-14* 6.8063E+02±1.10E-25* 6.8063E+02±2.23E-11* 6.8063E+02±2.23E-11* 6.8063E+02±2.54E-13* 6.8063E+02±5.57E-14*
g10 7.0492E+03±2.52E-13* 7.0492E+03±2.07E-24* 7.0492E+03±4.43E-08* 7.0492E+03±3.26E-12* 7.0492E+03±6.34E-10* 7.0492E+03±1.35E-06*
g11 7.499E-01±0.00E+00* 7.499E-01±0.00E+00* 7.499E-01±1.06E-16* 7.499E-01±1.13E-16* 7.499E-01±1.13E-16* 7.499E-01±0.00E+00*
g12 -1.00E+00±0.00E+00* -1.00E+00±0.00E+00* -1.00E+00±0.00E+00* -1.00E+00±0.00E+00* -1.00E+00±0.00E+00* -1.00E+00±0.00E+00*
g13 5.3942E-02±1.04E-17* 5.3942E-02±1.98E-34* 5.3942E-02±6.03E-14* 5.3942E-02±2.41E-17* 5.3942E-02±2.13E-17* 5.3942E-02±1.30E-17*
g14 -4.7765E+01±3.62E-15* -4.7765E+01±0.00E+00* -4.7765E+01±3.47E-10* -4.7765E+01±2.34E-14* -4.7765E+01±2.93E-14* -4.7765E+01±2.60E-15*
g15 9.6172E+02±0.00E+00* 9.6172E+02±0.00E+00* 9.6172E+02±4.47E-13* 9.6172E+02±5.80E-13* 9.6172E+02±5.80E-13* 9.6172E+02±0.00E+00*
g16 -1.9052E+00±2.64E-26* -1.9052E+00±2.62E-30* -1.9052E+00±0.00E+00* -1.9052E+00±4.53E-16* -1.9052E+00±4.53E-16* -1.9052E+00±0.00E+00*
g17 8.8535E+03±1.24E-27* 8.8535E+03±2.51E-23* 8.8802E+03±3.63E+01 8.8535E+03±0.00E+00* 8.8535E+03±3.23E-08* 8.8535E+03±2.98E-08*
g18 -8.6603E-01±6.51E-17* -8.6603E-01±4.62E-33* -8.6603E-01±3.30E-07* -8.6603E-01±6.94E-16* -8.6603E-01±2.47E-16* -8.6603E-01±0.00E+00*
g19 3.2656E+01±1.07E-10* 3.2656E+01±1.52E-05* 3.2656E+01±3.37E-07* 3.2656E+01±2.18E-14* 3.2656E+01±2.25E-14* 3.2656E+01±4.17E-10*
g21 2.6195E+01±5.34E+01 1.9372E+02±1.62E-22* 1.9372E+02±3.66E-09* 1.9372E+02±2.95E-11* 1.9372E+02±4.82E-10* 1.9372E+02±5.17E-11*
g23 -4.0006E+02±7.33E-11* -4.0006E+02±9.08E-26* -4.0006E+02±6.49E-06* -4.0006E+02±1.71E-13* -4.0006E+02±1.66E-05* -4.0006E+02±4.37E-09*
g24 -5.5080E+00±.24E-28* -5.5080E+00±0.00E+00* -5.5080E+00±0.00E+00* -5.5080E+00±9.06E-16* -5.5080E+00±9.06E-16* -5.5080E+00±0.00E+00*
* 21 22 21 22 22 22

Table 6.7 Comparison of HECO-DE with HCO-DE and HECO-DE(FR) on functions g02,
g10, g21, and g23

CEC2006
Mean (Success Rate%)[Feasible Rate%]

HCO-DE HECO-DE(FR) HECO-DE
g02 -0.8032(96)[100] -0.8036(100)[100] -0.8036(100)[100]
g10 6815.3984(76)[80] 7013.3762(80)[84] 7049.2480(100)[100]
g21 23.2469(12)[12] 7.4898(4)[4] 193.7245(100)[100]
g23 -376.0544(96)[100] -376.0436(92)[100] -400.0551(100)[100]

As shown in Table A.1-A.4, HECO-DE got high accuracy results with high feasibility
rate on most test problems. However, no feasible solution was found in functions C17, C19,
C26 and C28 on any dimensions. This is a common issue faced by all EAs when solving
these problems. For functions C08, C11, C18, c22 and C27, a feasible solution sometimes
was not found.

6.2.7 Detailed ranking results of EAs on 2017 benchmarks

For the 28 test problems in 10D, 30D, 50D and 100D, the ranks of each algorithm in terms
of mean values and median solution are listed in Table 6.10-6.17 respectively.

Regarding the test functions with 10D, rank values based on mean values and median
solution on the 28 test functions are reported in Table 6.10 and 6.11, respectively. In terms
of mean of solutions, HECO-DE had the lowest rank values on 8 of 28 problems (functions
C01-C03, C05-C09). However, HECO-DE got relatively poor performance on C11, C13,
C16 and C25. HECO-DE got the second lowest total rank value 83 which was slighter worse
than the rank values obtained by HECO-DE(FR). In terms of median solution, HECO-DE
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Table 6.8 Mean objective function value, success rate, feasible rate on IEEE CEC2006
benchmark functions g02, g10, g17, g21, and g23 with varied λ .

Prob.
Mean (Success Rate%)[Feasible Rate%]

35 40 45 50 55
g02 -0.8032(92)[100] -0.8036(100)[100] -0.8036(100)[100] -0.8036(100)[100] -0.8032(96)[100]
g03 -1.0005(100)[100] -1.0005(100)[100] -1.0005(100)[100] -1.0005(100)[100] -1.00047(96)[100]
g10 7049.2480(100)[100] 7049.2480(100)[100] 7049.2480(100)[100] 7049.2480(100)[100] 7049.2481(96)[100]
g13 0.0539(100)[100] 0.0539(100)[100] 0.0539(100)[100] 0.0539(100)[100] 0.0539(96)[100]
g17 8856.5008(96)[100] 8853.5339(100)[100] 8853.5339(100)[100] 8853.5339(100)[100] 8853.7232(96)[100]
g21 193.7245(100)[100] 193.7245(100)[100] 193.7245(100)[100] 193.7245(100)[100] 193.7245(100)[100]
g23 -388.0548(96)[100] -376.0544(92)[100] -400.0551(100)[100] -376.0544(92)[100] -400.0551(100)[100]

Table 6.9 Mean objective function value, success rate, feasible rate on IEEE CEC2006
benchmark functions g02, g10, g17, g21, and g23 with varied γ .

Prob.
Mean (Success Rate%)[Feasible Rate%]

0.5 0.6 0.7 0.8 0.9
g02 -0.8036(100)[100] -0.8034(96)[100] -0.8036(100)[100] -0.8036(100)[100] -0.8036(96)[100]
g03 -1.0005(100)[100] -1.0005(100)[100] -1.0005(100)[100] -1.0005(100)[100] -1.0005(100)[100]
g10 10384.6108(8)[92] 7049.2986(80)[100] 7049.2480(100)[100] 7049.2480(100)[100] 7049.2480(100)[100]
g13 0.0539(100)[100] 0.0539(100)[100] 0.0539(100)[100] 0.0539(100)[100] 0.0615(92)[100]
g17 8854.9176(52)[100] 8853.9032(80)[100] 8853.5339(100)[100] 8853.5339(100)[100] 8856.5699(92)[100]
g21 23.2469(12)[12] 131.7327(68)[68] 193.7245(100)[100] 193.7245(100)[100] 193.7245(100)[100]
g23 -387.5537(80[100]) -387.4869(88)[100] -400.0551(100)[100] -376.0544(92)[100] -376.0544(92)[100]

got the lowest rank value on 13 of 28 problems (functions C01-C09, C13, C16, C21, and
C24). But its performance is not good on functions C11, C12 and C14. HECO-DE was
ranked first with a total rank value 71. The overall performance of HECO-DE is also the best
among all nine EAs on 10D by summing up the two rank values in terms of mean values and
median solution together.

Regarding the test functions with 30D, rank values based on mean values and median
solution on the 28 test functions are listed in Table 6.12 and 6.13, respectively. HECO-DE
had the lowest rank values on 11 of 28 problems (functions C01-C03, C06, C09, C10, C13,
C15, 20, C21 and C24). However, HECO-DE got relatively poor performance on functions
C05 and C11. In terms of median solution, HECO-DE got the lowest rank value on 9 of 28
problems (functions C01-C03, C05, C06, C13, C15, C20 and C21). But its performance
was not good on functions C11. Total rank values of HECO-DE were the lowest ones, 70 in
terms of mean of solutions and 69 in terms of median solution, respectively.

Regarding the test functions with 50D, rank values based on mean values and median
solution on the 28 test functions are reported in Table 6.14 and 6.15, respectively. HECO-DE
had the lowest rank values on 5 of 28 problems (functions C01-C05, C12, C15-C17, C21,
C24 and C25). However, HECO-DE got relatively poor performance on functions C05 and
C11. In terms of median solution, HECO-DE got the lowest rank value on 9 of 28 problems
(functions C01-C03, C05, C10, C12, C13, C20 and C23). But its performance was not good
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Table 6.10 Ranks of HECO-DE and Other EAs based on mean solution on the 28 functions
of 10D on IEEE CEC2017 benchmarks

Problem 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Total
CAL_LSAHDE(2017) 1 1 11 11 11 7 10 10 10 10 6 1 11 8 8 11 10 11 1 9 11 11 10 10 11 11 9 1 232
LSHADE44+IDE(2017) 1 1 9 8 1 11 9 1 1 2 1 3 1 10 4 9 7 9 4 4 2 4 9 7 9 6 10 9 152
LSAHDE44(2017) 1 1 10 6 1 10 8 1 9 2 2 10 1 9 9 10 8 8 2 1 7 8 8 6 10 7 8 10 173
UDE(2017) 1 1 8 9 10 8 7 1 7 2 10 1 10 7 5 8 9 7 8 11 9 10 7 3 8 10 7 7 191
MA_ES(2018) 1 1 1 10 1 6 5 1 1 2 4 11 7 11 10 1 11 3 10 10 10 7 11 5 1 9 2 8 160
IUDE(2018) 1 1 6 3 1 1 11 1 1 2 5 9 1 3 3 1 5 5 4 8 4 9 1 3 1 2 6 6 104
LSAHDE_IEpsilon(2018) 1 1 7 5 1 9 6 1 1 2 3 6 1 2 6 1 3 4 3 7 8 1 4 9 1 5 1 11 110
DeCODE(2018) 1 1 1 7 1 1 4 9 7 1 9 5 9 1 1 7 2 10 9 6 1 1 6 1 7 1 11 4 124
HCO-DE 1 1 1 1 1 1 3 11 11 11 11 7 1 3 11 1 6 6 11 3 6 6 5 11 1 8 5 5 149
HECO-DE(FR) 1 1 1 1 1 1 2 1 1 2 7 8 1 3 7 1 1 1 4 5 5 1 3 8 5 3 3 2 80
HECO-DE 1 1 1 4 1 1 1 1 1 2 8 4 7 3 2 6 4 2 4 2 3 4 2 2 6 4 4 2 83

Table 6.11 Ranks of HECO-DE and Other EAs based on median solution on the 28 functions
of 10D on IEEE CEC2017 benchmarks

Problem 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Total
CAL_LSAHDE(2017) 1 1 11 11 1 9 8 10 11 1 4 3 1 9 8 11 11 10 1 9 4 1 10 10 11 11 10 1 189
LSHADE44+IDE(2017) 1 1 10 6 1 11 9 1 1 2 2 4 1 11 7 10 7 9 4 4 5 1 11 9 10 9 9 2 158
LSAHDE44(2017) 1 1 9 8 1 10 10 1 1 2 4 11 1 10 9 9 8 7 2 1 1 1 9 8 9 7 8 10 159
UDE(2017) 1 1 7 9 1 8 7 1 9 2 10 1 1 1 5 8 10 8 10 11 1 1 1 5 8 10 7 6 150
MA_ES(2018) 1 1 1 10 1 1 5 1 1 2 2 5 1 3 10 1 9 2 8 10 6 1 3 7 1 8 1 9 111
IUDE(2018) 1 1 1 1 1 1 11 1 1 2 1 10 1 3 5 1 1 6 4 8 9 1 4 5 1 1 6 6 94
LSAHDE_IEpsilon(2018) 1 1 8 5 1 1 6 1 1 2 6 8 1 3 3 1 6 3 3 7 11 1 8 4 1 6 2 11 112
DeCODE(2018) 1 1 1 7 1 1 4 1 9 2 9 1 1 1 1 7 5 11 11 6 1 1 1 1 7 4 11 8 115
HCO-DE 1 1 1 1 1 1 3 11 1 11 11 9 1 6 11 1 2 5 9 3 10 1 7 11 1 5 3 5 133
HECO-DE(FR) 1 1 1 1 1 1 2 1 1 2 8 7 1 6 4 1 2 1 4 5 8 1 6 2 1 2 5 2 78
HECO-DE 1 1 1 1 1 1 1 1 1 2 7 6 1 6 2 1 2 4 4 2 7 1 5 2 1 3 4 2 71

on functions C11. Total rank values of HECO-DE were the lowest ones, 88 in terms of mean
values and 68 in terms of median solution, respectively.

Table 6.16 and 6.17 record rank values based on mean values and median solution on
the 28 test functions on 100D. HECO-DE had the lowest rank values on 4 of 28 problems
(functions C01, C02, C15 and C20). But HECO-DE got relatively poor performance on
functions C05, C08, C11, C13 and C21. HECO-DE got the lowest total rank value 108
here. In terms of median solution, HECO-DE got the lowest rank value on 5 of 28 problems
(functions C01, C02, C15 and C20). But it had a poor performance on functions C11-C13
and C21. HECO-DE got the second lowest total rank value 97 which was only worse than
the rank values obtained by HECO-DE(FR).

According to the competition rules, HECO-DE got the lowest or at least comparable total
rank values on each dimension. This means that HECO-DE had an overall better performance
than other eights algorithms on the IEEE CEC2017 benchmark suit. However, the ranking
tables also show that no algorithm could perform better than other algorithms on all problems.
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Table 6.12 Ranks of HECO-DE and Other EAs based on mean solution on the 28 functions
of 30D on IEEE CEC2017 benchmarks

Problem 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Total
CAL_LSAHDE(2017) 1 1 11 10 11 5 11 1 11 10 4 11 11 11 9 11 11 10 1 6 11 11 11 10 11 11 9 1 232
LSHADE44+IDE(2017) 1 1 10 6 1 11 7 10 1 9 3 8 8 10 7 8 8 9 4 8 9 8 10 9 8 8 10 9 201
LSAHDE44(2017) 1 1 9 4 1 10 8 2 1 1 2 6 7 9 8 9 7 7 2 3 8 9 8 8 9 7 8 10 165
UDE(2017) 1 1 6 9 6 3 5 9 7 8 7 9 9 7 6 7 9 8 10 10 5 7 5 6 6 9 7 7 189
MA_ES(2018) 1 1 1 8 1 2 4 2 1 1 1 10 1 8 10 1 10 2 11 11 10 1 7 7 1 10 1 5 129
IUDE(2018) 1 1 7 5 1 8 10 2 7 1 5 5 6 1 5 4 4 6 8 9 7 6 3 3 5 5 6 8 139
LSAHDE_IEpsilon(2018) 1 1 8 2 1 9 6 2 1 1 9 7 10 6 3 6 6 1 3 4 4 10 1 5 7 6 2 11 133
DeCODE(2018) 1 1 1 7 10 4 9 8 9 1 11 1 1 2 4 5 5 11 9 7 6 3 9 4 4 3 11 6 153
HCO-DE 1 1 1 1 7 7 1 11 10 11 10 3 1 3 11 1 1 5 7 2 2 4 6 11 2 2 5 4 131
HECO-DE(FR) 1 1 5 11 7 6 2 2 1 1 6 4 1 3 2 10 3 4 4 5 3 5 2 2 10 1 4 2 108
HECO-DE 1 1 1 3 7 1 3 2 1 1 8 2 1 3 1 3 2 3 4 1 1 2 4 1 3 4 3 3 70

Table 6.13 Ranks of HECO-DE and Other EAs based on median solution on the 28 functions
of 30D on IEEE CEC2017 benchmarks

Problem 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Total
CAL_LSAHDE(2017) 1 1 11 11 1 7 11 1 1 1 4 9 11 8 9 11 11 9 1 6 4 11 7 10 11 11 8 1 188
LSHADE44+IDE(2017) 1 1 10 3 1 11 9 10 2 10 3 2 1 11 7 9 9 10 4 8 10 8 10 9 9 6 10 9 193
LSAHDE44(2017) 1 1 9 5 1 10 8 2 2 2 2 8 9 10 8 10 8 6 2 3 9 9 9 7 10 9 9 10 179
UDE(2017) 1 1 6 10 1 5 5 9 8 9 6 10 8 7 6 6 10 8 8 10 4 7 1 6 7 10 7 7 183
MA_ES(2018) 1 1 1 9 1 4 4 2 2 2 1 11 1 9 10 1 7 1 11 11 11 1 8 8 1 7 1 5 132
IUDE(2018) 1 1 7 6 1 9 7 2 8 2 5 6 1 1 3 5 3 7 8 9 4 1 1 1 6 3 6 8 122
LSAHDE_IEpsilon(2018) 1 1 8 2 1 8 6 2 2 2 9 7 10 3 5 8 6 2 3 4 8 10 6 5 8 5 2 11 145
DeCODE(2018) 1 1 1 6 1 6 10 2 8 2 11 1 1 1 3 6 5 11 10 7 4 1 11 4 5 8 11 6 144
HCO-DE 1 1 1 1 1 1 1 11 11 11 10 4 1 4 11 1 1 5 7 2 2 4 5 11 1 4 5 4 122
HECO-DE(FR) 1 1 1 8 1 1 2 2 2 2 8 5 1 4 2 3 4 4 4 5 3 6 4 2 3 1 4 2 86
HECO-DE 1 1 1 3 1 1 3 2 2 2 7 3 1 4 1 3 2 3 4 1 1 5 3 2 4 2 3 3 69

Table 6.14 Ranks of HECO-DE and Other EAs based on mean solution on the 28 functions
of 50D on IEEE CEC2017 benchmarks

Problem 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Total
CAL_LSAHDE(2017) 11 11 11 10 10 6 11 11 10 8 4 8 11 11 10 11 11 9 1 11 7 10 11 10 11 11 8 1 255
LSHADE44+IDE(2017) 10 1 10 4 1 10 8 10 7 10 1 5 8 10 7 8 9 8 4 7 10 7 9 9 8 9 9 10 209
LSAHDE44(2017) 1 1 9 1 1 9 7 1 3 1 2 10 7 9 8 9 8 7 3 3 11 8 7 8 7 8 7 9 165
UDE(2017) 1 1 6 9 11 5 5 9 1 9 5 7 10 7 6 6 10 10 10 8 4 9 3 6 5 10 10 6 189
MA_ES(2018) 1 1 1 8 1 2 4 2 8 1 3 11 9 8 9 1 7 1 11 10 9 6 8 7 1 6 1 5 142
IUDE(2018) 1 1 7 7 1 11 10 7 1 1 8 4 6 4 3 5 4 6 9 9 5 5 2 3 3 3 6 8 140
LSAHDE_IEpsilon(2018) 1 1 8 2 7 8 6 8 6 7 9 9 5 6 5 7 6 2 7 5 6 11 1 5 6 7 2 11 164
DeCODE(2018) 1 1 1 5 1 4 9 6 9 6 11 6 1 5 4 4 5 11 2 6 8 1 10 4 2 5 11 7 146
HCO-DE 1 1 1 11 1 7 1 3 11 11 10 1 4 1 11 1 1 5 8 2 1 2 6 11 10 4 5 4 135
HECO-DE(FR) 1 1 5 6 7 1 2 5 3 5 6 3 2 1 2 10 2 3 4 4 3 4 5 1 9 1 4 2 102
HECO-DE 1 1 4 3 9 3 3 4 3 4 7 2 3 3 1 3 3 4 4 1 2 3 4 1 4 2 3 3 88

Table 6.15 Ranks of HECO-DE and Other EAs based on median solution on the 28 functions
of 50D on IEEE CEC2017 benchmarks

Problem 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Total
CAL_LSAHDE(2017) 1 1 11 11 1 7 11 11 7 8 4 8 11 7 11 11 11 10 1 6 8 10 6 10 11 11 8 1 214
LSHADE44+IDE(2017) 1 1 10 3 1 10 8 10 9 10 3 4 9 11 7 10 9 9 5 8 10 8 10 9 9 9 10 10 213
LSAHDE44(2017) 1 1 9 5 1 9 7 1 3 1 1 11 8 10 9 9 8 7 4 3 11 9 9 8 8 8 7 9 177
UDE(2017) 1 1 6 10 11 6 5 9 1 9 5 6 10 8 6 7 10 8 11 9 1 7 3 7 6 10 9 6 188
MA_ES(2018) 1 1 1 9 1 3 4 2 8 1 2 10 1 9 8 1 6 1 10 11 9 6 8 6 1 5 1 5 131
IUDE(2018) 1 1 7 8 1 11 10 5 1 1 7 5 1 5 1 6 4 6 2 10 5 5 3 1 4 4 6 8 129
LSAHDE_IEpsilon(2018) 1 1 8 2 1 8 6 8 3 7 9 9 7 1 5 8 7 2 8 5 6 11 5 5 7 7 2 11 160
DeCODE(2018) 1 1 1 6 1 5 9 7 10 6 11 6 1 5 4 5 5 11 3 7 7 1 11 4 4 6 11 7 156
HCO-DE 1 1 1 1 1 1 1 2 11 11 10 3 1 2 10 1 1 5 9 2 3 2 7 11 10 3 5 4 120
HECO-DE(FR) 1 1 5 7 1 2 2 6 3 5 6 2 1 2 2 3 2 3 5 4 4 4 2 2 2 1 4 2 84
HECO-DE 1 1 1 3 1 4 3 2 3 1 8 1 1 2 2 3 3 4 5 1 2 3 1 2 2 2 3 3 68
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Table 6.16 Ranks of HECO-DE and Other EAs based on mean solution on the 28 functions
of 100D on IEEE CEC2017 benchmarks

Problem 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Total
CAL_LSAHDE(2017) 10 10 11 11 6 5 11 11 7 9 5 8 10 11 10 11 11 10 1 11 11 8 11 11 11 11 8 1 251
LSHADE44+IDE(2017) 11 11 9 2 2 10 7 6 2 7 1 2 5 10 5 8 9 8 3 7 8 7 7 8 8 9 9 8 189
LSAHDE44(2017) 1 1 8 1 1 9 8 1 1 1 4 11 6 9 8 9 7 7 2 6 10 6 9 7 7 7 7 10 164
UDE(2017) 9 9 6 10 11 6 5 10 10 8 6 3 11 6 7 5 10 9 10 9 5 11 1 9 4 10 10 6 216
MA_ES(2018) 1 1 1 8 10 2 3 2 9 4 2 10 2 8 9 1 6 1 11 10 9 4 8 5 1 6 2 5 141
IUDE(2018) 1 1 10 9 5 11 10 3 5 5 3 4 7 4 4 6 4 6 8 8 3 9 5 6 5 4 6 9 161
LSAHDE_IEpsilon(2018) 8 8 7 3 9 8 6 7 6 6 9 7 4 5 6 7 8 2 6 5 4 10 4 10 6 8 4 11 184
DeCODE(2018) 1 1 1 7 7 4 9 9 3 10 11 9 1 7 3 4 5 11 7 4 2 2 10 2 3 5 11 7 156
HCO-DE 1 1 1 4 4 7 1 4 8 11 10 1 3 1 11 1 1 5 9 2 1 1 6 1 9 2 5 4 115
HECO-DE(FR) 1 1 5 6 3 1 2 5 11 2 7 5 9 1 2 10 2 3 3 3 6 3 3 4 10 1 1 2 112
HECO-DE 1 1 4 5 8 3 4 8 3 3 8 6 8 3 1 3 3 4 3 1 7 5 2 3 2 3 3 3 108

Table 6.17 Ranks of HECO-DE and Other EAs based on median solution on the 28 functions
of 100D on IEEE CEC2017 benchmarks

Problem 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Total
CAL_LSAHDE(2017) 10 10 11 11 8 6 11 11 7 9 5 7 10 3 10 11 11 10 1 3 4 8 6 11 11 11 10 1 227
LSHADE44+IDE(2017) 11 11 10 1 4 9 8 7 2 8 4 3 5 11 6 9 8 7 3 8 10 7 8 9 10 8 7 9 203
LSAHDE44(2017) 1 1 9 2 5 8 9 1 1 1 2 11 6 10 9 10 6 8 2 7 11 6 10 10 9 5 8 10 178
UDE(2017) 9 9 6 10 11 5 5 10 9 10 6 2 11 7 8 6 10 9 10 10 8 11 3 7 6 9 9 6 222
MA_ES(2018) 1 1 1 8 10 3 3 2 11 5 1 9 3 9 4 1 5 1 11 11 9 5 9 5 1 6 1 5 141
IUDE(2018) 1 1 8 9 6 10 7 3 10 4 3 4 7 5 7 7 4 6 7 9 3 9 5 6 7 4 6 8 166
LSAHDE_IEpsilon(2018) 8 8 7 3 9 7 6 8 8 6 9 8 4 6 4 8 7 2 6 6 5 10 4 8 8 7 5 11 188
DeCODE(2018) 1 1 1 7 7 4 10 9 4 7 11 10 2 8 3 5 9 11 8 5 1 2 11 2 5 10 11 7 172
HCO-DE 1 1 1 5 1 11 1 4 4 11 10 1 1 1 11 1 1 5 9 1 2 1 7 1 2 2 4 4 104
HECO-DE(FR) 1 1 5 6 1 1 2 6 3 2 7 5 9 1 1 3 2 3 3 4 6 3 2 3 4 1 3 2 90
HECO-DE 1 1 4 4 1 2 4 5 4 3 8 6 8 4 1 3 3 4 3 2 7 4 1 3 3 3 2 3 97

6.3 Two Attempts to improve HECO-DE

In this section, we tried two measures to improve the performance of HECO-DE. One is
using Tchebycheff decomposition approach instead of weighted sum approach. The other
one is using three-population model.

6.3.1 Tchebycheff Decomposition Approach

In decomposition mechanism, apart from weighted sum approach in (6.13), Tchebycheff
approach [91] was also tested in HECO-DE. Tchebycheff decomposition approach with
HECO-DE is denoted as HECO-DE/tch.

Similar to MOEA/D [172], Tchebycheff approach is used to the optimise the three-
objective optimization problem. The three-objective optimization problem is then decom-
posed into λ subproblems and the objective function of ith subproblem is

min[ fi(x|wi,z∗) = max{w1,i|ẽ(⃗x)− z∗1|,w2,i|v(⃗x)− z∗2|,w3,i| f (⃗x)− z∗3|}] (6.18)

where z∗1, z∗2 and z∗3 are the minimum value of ẽ(⃗x), v(⃗x) and f (⃗x) respectively in each
sub-population Q.
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6.3.2 Comparative Experiments

For fair comparison, HECO-DEtch was tested under the same experiment setting.
Table 6.18 summarises the ranks of EAs on four dimensions and total ranks. HECO-

DEtch is the top-ranked amongst all compared. This result clearly demonstrates that HECO-
DEtch consistently outperforms other EAs on all dimensions. Without the equivalent function,
HCO-DEtch is worse than HECO-DEtch and HECO-DEtch(FR). HECO-DEtch(FR) which
uses the superiority of feasibility rule as the equivalent objective is slightly worse than
HECO-DEtch. Tables 6.19 and 6.20 provide a sensitivity analysis of parameters λ and γ .
HECO-DEtch with all five λ and γ values had obtained lower total ranks than other EAs.

Table 6.18 Total Ranks of HECO-DEtch and Other EAs on IEEE CEC2017 Benchmarks

Algorithm/Dimension 10D 30D 50D 100D Total
CAL_LSAHDE(2017) 420 421 467 475 1783
LSHADE44+IDE(2017) 310 395 422 391 1518
LSAHDE44(2017) 330 344 343 344 1361
UDE(2017) 340 370 376 436 1522
MA_ES(2018) 269 260 272 282 1083
IUDE(2018) 197 260 261 330 1048
LSAHDE_IEpsilon(2018) 217 279 320 363 1179
DeCODE(2018) 233 296 294 325 1148
HCO-DEtch 277 254 252 222 1005
HECO-DEtch(FR) 163 195 197 195 750
HECO-DEtch 157 151 173 221 702

6.3.3 Detailed ranking results of EAs on 2017 benchmarks

For the 28 test problems in 10D, 30D, 50D and 100D, the ranks of each algorithm in terms
of mean values and median solution are listed in Table 6.21-6.28 respectively.

Regarding the test functions with 10D, rank values based on mean values and median
solution on the 28 test functions are reported in Table 6.21 and 6.22, respectively. In terms of
mean of solutions, HECO-DEtch had the lowest rank values on 11 of 28 problems (functions
C01-C06, C08, C09, C16 and C22). However, HECO-DEtch got relatively poor performance
on C07, C11 and C12. HECO-DEtch got the second lowest total rank value 82 which was
slighter worse than the rank values obtained by HECO-DEtch(FR). In terms of median
solution, HECO-DEtch got the lowest rank value on 12 of 28 problems (functions C01-C06,
C08, C09, C13, C16, C22, and C25). However, its performance is poor on functions C11
and C21. HECO-DEtch was ranked first with a total rank value 75. The overall performance
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Table 6.19 Total Ranks of HECO-DEtch with varying λ and Other EAs on IEEE CEC2017
Benchmarks

Algorithm/Dimension 10D 30D 50D 100D Total
CAL_LSAHDE(2017) 506 507 569 568 2150
LSHADE44+IDE(2017) 379 484 517 470 1850
LSAHDE44(2017) 406 431 430 417 1684
UDE(2017) 427 477 469 527 1900
MA_ES(2018) 323 321 339 349 1332
IUDE(2018) 249 339 328 415 1331
LSAHDE_IEpsilon(2018) 278 352 412 444 1486
DeCODE(2018) 283 380 378 394 1435
HECO-DEtch(λ = 15) 180 202 253 273 908
HECO-DEtch(λ = 20) 178 184 222 255 839
HECO-DEtch(λ = 25) 181 198 214 269 862
HECO-DEtch(λ = 30) 196 175 187 238 796
HECO-DEtch(λ = 35) 209 183 226 240 858

of HECO-DEtch is also the best among all nine EAs on 10D by summing up the two rank
values in terms of mean values and median solution together.

Regarding the test functions with 30D, rank values based on mean values and median
solution on the 28 test functions are listed in Table 6.23 and 6.24, respectively. HECO-DEtch
had the lowest rank values on 9 of 28 problems (functions C01, C02, C06, C09, C10, C13,
C15, 20, C21 and C24). However, HECO-DEtch got relatively poor performance on functions
C05 and C11. In terms of median solution, HECO-DEtch got the lowest rank value on 10 of
28 problems (functions C01-C03, C05, C06, C13, C15, C20, C21 and C27). However, its
performance is poor on functions C11. Total rank values of HECO-DEtch were the lowest
ones, 79 in terms of mean of solutions and 72 in terms of median solution, respectively.

Regarding the test functions with 50D, rank values based on mean values and median
solution on the 28 test functions are reported in Table 6.25 and 6.26, respectively. HECO-
DEtch had the lowest rank values on 6 of 28 problems (functions C01, C02, C10, C14,
C15 and C20). However, HECO-DEtch got relatively poor performance on functions C05
and C11. In terms of median solution, HECO-DEtch got the lowest rank value on 8 of 28
problems (functions C01, C02, C05, C10, C12, C13, C20 and C27). But its performance is
poor on functions C11. Total rank values of HECO-DEtch were the lowest ones, 95 in terms
of mean values and 78 in terms of median solution, respectively.

Table 6.27 and 6.28 record rank values based on mean values and median solution on the
28 test functions on 100D. HECO-DEtch had the lowest rank values on 4 of 28 problems
(functions C01, C02, C05 and C20). But HECO-DEtch got relatively poor performance on
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Table 6.20 Total Ranks of HECO-DEtch with Varying γ Values and Other EAs on IEEE
CEC2017 Benchmarks

Algorithm/Dimension 10D 30D 50D 100D Total
CAL_LSAHDE(2017) 500 507 567 568 2142
LSHADE44+IDE(2017) 374 480 517 474 1845
LSAHDE44(2017) 402 421 425 419 1667
UDE(2017) 419 468 465 521 1873
MA_ES(2018) 327 320 336 339 1322
IUDE(2018) 240 314 310 408 1272
LSAHDE_IEpsilon(2018) 269 346 410 451 1476
DeCODE(2018) 283 365 368 389 1405
HECO-DEtch(γ = 0.0) 274 288 273 353 1188
HECO-DEtch(γ = 0.1) 202 186 199 260 847
HECO-DEtch(γ = 0.2) 184 167 210 242 803
HECO-DEtch(γ = 0.3) 200 206 223 224 853
HECO-DEtch(γ = 0.4) 197 249 243 233 922

Table 6.21 Ranks of HECO-DEtch and It’s Two Variants and Other EAs based on mean
solution on the 28 functions of 10D on IEEE CEC2017 benchmarks

Problem 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Total
CAL_LSAHDE(2017) 1 1 11 11 11 7 9 10 10 10 6 1 11 8 8 11 10 11 1 9 11 11 10 10 11 11 9 1 231
LSHADE44+IDE(2017) 1 1 9 8 1 11 8 1 1 2 1 3 1 10 4 9 7 9 4 4 2 5 9 7 9 6 10 9 152
LSAHDE44(2017) 1 1 10 6 1 10 7 1 9 2 2 10 1 9 9 10 8 8 2 1 6 8 8 6 10 7 8 10 171
UDE(2017) 1 1 8 9 10 8 6 1 7 2 10 1 10 7 5 8 9 7 8 11 9 10 7 3 8 10 7 7 190
MA_ES(2018) 1 1 1 10 1 6 4 1 1 2 4 11 8 11 10 1 11 1 10 10 10 7 11 5 1 9 4 8 160
IUDE(2018) 1 1 6 4 1 1 11 1 1 2 5 9 1 3 3 1 4 5 4 8 3 9 1 3 1 3 6 6 104
LSAHDE_IEpsilon(2018) 1 1 7 5 1 9 5 1 1 2 3 5 1 2 6 1 3 2 3 7 8 1 4 8 1 5 3 11 107
DeCODE(2018) 1 1 1 7 1 1 3 9 7 1 9 4 9 1 1 7 2 10 9 6 1 1 6 1 7 1 11 4 122
HCO-DEtch 1 1 1 1 1 1 2 11 11 11 11 6 1 3 11 1 6 6 11 3 4 6 5 11 1 8 5 5 145
HECO-DEtch(FR) 1 1 1 1 1 1 1 1 1 2 7 8 1 3 7 1 1 3 4 5 7 1 3 9 1 4 1 2 79
HECO-DEtch 1 1 1 1 1 1 10 1 1 2 8 7 1 6 2 1 5 4 4 2 5 1 2 2 6 2 2 2 82

functions C08, C11, C12, C13 and C21. HECO-DEtch got the second lowest total rank value
111 here, worse than HECO-DEtch(FR) with rank value 102. In terms of median solution,
HECO-DEtch got the lowest rank value on 7 of 28 problems (functions C01, C02, C05, C14,
C15, C20, C23 and C27). But it had a poor performance on functions C08, C11-C13 and
C21. HECO-DEtch got the second lowest total rank value 110 which was only worse than
the rank values obtained by HECO-DEtch(FR) with rank value 93.

According to the competition rules, HECO-DEtch got the lowest total rank values on
dimension 10, 30 and 50, and second lowest total rank values on dimension 100. This means
that HECO-DEtch had an overall better performance than other eights algorithms on the
IEEE CEC2017 benchmark suit. However, the ranking tables also show that no algorithm
could perform better than other algorithms on all problems.
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Table 6.22 Ranks of HECO-DEtch and It’s Two Variants and Other EAs based on median
solution on the 28 functions of 10D on IEEE CEC2017 benchmarks

Problem 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Total
CAL_LSAHDE(2017) 1 1 11 11 1 9 8 10 11 1 4 3 1 9 8 11 11 10 1 9 4 1 10 10 11 11 10 1 189
LSHADE44+IDE(2017) 1 1 10 6 1 11 9 1 1 2 2 4 1 11 7 10 7 9 4 4 5 1 11 9 10 9 9 2 158
LSAHDE44(2017) 1 1 9 8 1 10 10 1 1 2 4 11 1 10 9 9 8 7 2 1 1 1 9 8 9 7 8 10 159
UDE(2017) 1 1 7 9 1 8 7 1 9 2 10 1 1 1 5 8 10 8 10 11 1 1 1 5 8 10 7 6 150
MA_ES(2018) 1 1 1 10 1 1 4 1 1 2 2 5 1 3 10 1 9 1 8 10 6 1 3 7 1 8 1 9 109
IUDE(2018) 1 1 1 1 1 1 11 1 1 2 1 10 1 3 5 1 1 6 4 8 8 1 4 5 1 1 6 6 93
LSAHDE_IEpsilon(2018) 1 1 8 5 1 1 6 1 1 2 6 7 1 3 4 1 6 2 3 7 11 1 8 2 1 6 3 11 110
DeCODE(2018) 1 1 1 7 1 1 3 1 9 2 7 1 1 1 1 7 5 11 11 6 1 1 1 1 7 3 11 8 111
HCO-DEtch 1 1 1 1 1 1 2 11 1 11 11 8 1 6 11 1 2 5 9 3 9 1 7 11 1 5 5 5 132
HECO-DEtch(FR) 1 1 1 1 1 1 1 1 1 2 8 9 1 6 2 1 2 3 4 5 10 1 6 4 1 4 4 2 84
HECO-DEtch 1 1 1 1 1 1 5 1 1 2 9 6 1 6 2 1 2 4 4 2 7 1 5 3 1 2 2 2 75

Table 6.23 Ranks of HECO-DEtch and It’s Two Variants and Other EAs based on mean
solution on the 28 functions of 30D on IEEE CEC2017 benchmarks

Problem 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Total
CAL_LSAHDE(2017) 1 1 11 11 11 5 11 1 11 10 4 11 11 11 9 11 11 10 1 6 11 11 11 10 11 11 9 1 233
LSHADE44+IDE(2017) 1 1 10 7 1 11 7 10 1 9 3 8 8 10 7 8 8 9 4 8 9 8 10 8 8 8 10 9 201
LSAHDE44(2017) 1 1 9 4 1 10 8 2 1 1 2 6 7 9 8 9 7 7 2 3 8 9 8 7 9 7 8 10 164
UDE(2017) 1 1 6 10 6 3 4 9 7 8 6 9 9 7 6 7 9 8 10 10 5 7 5 5 6 9 7 7 187
MA_ES(2018) 1 1 1 9 1 2 2 2 1 1 1 10 1 8 10 1 10 2 11 11 10 1 7 6 1 10 1 5 127
IUDE(2018) 1 1 7 5 1 8 10 2 7 1 5 5 6 1 5 4 4 6 8 9 7 6 3 2 5 5 6 8 138
LSAHDE_IEpsilon(2018) 1 1 8 3 1 9 5 2 1 1 9 7 10 6 3 6 6 1 3 4 4 10 1 4 7 6 2 11 132
DeCODE(2018) 1 1 1 8 10 4 9 7 9 1 11 1 1 2 4 5 5 11 9 7 6 3 9 3 4 2 11 6 151
HCO-DEtch 1 1 1 1 7 7 1 11 10 11 10 3 1 3 11 1 1 5 7 2 2 4 6 11 2 1 5 4 130
HECO-DEtch(FR) 1 1 4 2 7 6 6 8 1 1 7 4 1 3 2 10 3 3 4 5 3 2 4 9 10 3 3 3 116
HECO-DEtch 1 1 5 6 7 1 3 2 1 1 8 2 1 3 1 3 2 4 4 1 1 5 2 1 3 4 4 2 79

Table 6.24 Ranks of HECO-DEtch and It’s Two Variants and Other EAs based on median
solution on the 28 functions of 30D on IEEE CEC2017 benchmarks

Problem 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Total
CAL_LSAHDE(2017) 1 1 11 11 1 7 11 1 1 1 4 9 11 8 9 11 11 9 1 6 4 11 7 10 11 11 8 1 188
LSHADE44+IDE(2017) 1 1 10 4 1 11 9 10 2 10 3 2 1 11 7 9 9 10 4 8 10 8 10 9 9 6 10 9 194
LSAHDE44(2017) 1 1 9 6 1 10 8 2 2 2 2 8 9 10 8 10 8 6 2 3 9 9 9 7 10 9 9 10 180
UDE(2017) 1 1 6 10 1 5 5 9 8 9 6 10 8 7 6 6 10 8 8 10 4 7 1 6 7 10 7 7 183
MA_ES(2018) 1 1 1 9 1 4 3 2 2 2 1 11 1 9 10 1 7 1 11 11 11 1 8 8 1 7 3 5 133
IUDE(2018) 1 1 7 7 1 9 7 2 8 2 5 6 1 1 3 5 4 7 8 9 4 1 1 1 6 1 6 8 122
LSAHDE_IEpsilon(2018) 1 1 8 3 1 8 6 2 2 2 8 7 10 3 5 8 6 2 3 4 8 10 6 5 8 5 4 11 147
DeCODE(2018) 1 1 1 7 1 6 10 2 8 2 11 1 1 1 3 6 5 11 10 7 4 1 11 4 5 8 11 6 145
HCO-DEtch 1 1 1 1 1 1 1 11 11 11 10 4 1 4 11 1 1 5 7 2 2 6 5 11 1 4 5 4 124
HECO-DEtch(FR) 1 1 1 1 1 1 2 8 2 2 7 5 1 4 1 3 3 3 4 5 3 5 3 2 3 3 2 2 79
HECO-DEtch 1 1 1 4 1 1 4 2 2 2 9 3 1 4 1 3 2 4 4 1 1 4 4 2 4 2 1 3 72

Table 6.25 Ranks of HECO-DEtch and It’s Two Variants and Other EAs based on mean
solution on the 28 functions of 50D on IEEE CEC2017 benchmarks

Problem 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Total
CAL_LSAHDE(2017) 11 11 11 10 10 5 11 11 10 8 4 8 11 11 10 11 11 9 1 11 7 10 11 10 11 11 8 1 254
LSHADE44+IDE(2017) 10 1 10 3 1 10 8 10 7 10 1 5 8 10 7 8 9 8 4 7 10 7 9 9 9 9 9 10 209
LSAHDE44(2017) 1 1 9 1 1 9 7 1 3 1 2 10 7 9 8 9 8 7 3 3 11 8 7 8 8 8 7 9 166
UDE(2017) 1 1 6 9 11 4 5 9 1 9 5 7 10 7 6 6 10 10 10 8 4 9 3 6 6 10 10 6 189
MA_ES(2018) 1 1 1 8 1 1 3 2 8 1 3 11 9 8 9 1 7 1 11 10 9 6 8 7 1 6 1 5 140
IUDE(2018) 1 1 7 7 1 11 10 5 1 1 6 4 6 4 3 5 3 6 9 9 5 5 2 3 5 3 6 8 137
LSAHDE_IEpsilon(2018) 1 1 8 2 7 8 6 6 6 6 9 9 5 6 5 7 6 2 7 4 6 11 1 5 7 7 2 11 161
DeCODE(2018) 1 1 1 5 1 3 9 4 9 5 11 6 1 5 4 4 5 11 2 6 8 1 10 4 3 5 11 7 143
HCO-DEtch 1 1 1 11 1 7 1 3 11 11 10 1 2 1 11 1 1 5 8 2 1 2 6 11 10 4 5 4 133
HECO-DEtch(FR) 1 1 4 6 7 6 2 7 3 7 7 3 3 1 2 10 2 3 4 5 2 4 4 1 2 1 4 2 104
HECO-DEtch 1 1 5 4 9 2 4 8 3 1 8 2 4 1 1 3 4 4 4 1 3 3 5 2 4 2 3 3 95
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Table 6.26 Ranks of HECO-DEtch and It’s Two Variants and Other EAs based on median
solution on the 28 functions of 50D on IEEE CEC2017 benchmarks

Problem 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Total
CAL_LSAHDE(2017) 1 1 11 11 1 7 11 11 7 8 4 8 11 7 11 11 11 10 1 5 8 10 6 10 11 11 8 1 213
LSHADE44+IDE(2017) 1 1 10 3 1 10 8 10 9 10 3 4 9 11 7 10 9 9 5 8 10 8 10 9 9 9 10 10 213
LSAHDE44(2017) 1 1 9 5 1 9 7 1 3 1 1 11 8 10 9 9 8 7 4 3 11 9 9 8 8 8 7 9 177
UDE(2017) 1 1 6 10 11 6 5 9 1 9 5 6 10 8 6 7 10 8 11 9 1 7 2 7 6 10 9 6 187
MA_ES(2018) 1 1 1 9 1 3 3 2 8 1 2 10 1 9 8 1 6 1 10 11 9 6 8 6 1 5 3 5 132
IUDE(2018) 1 1 7 8 1 11 10 4 1 1 6 5 1 5 1 6 2 6 2 10 5 5 2 1 4 4 6 8 124
LSAHDE_IEpsilon(2018) 1 1 8 2 1 8 6 7 3 6 9 9 7 1 5 8 7 2 8 4 6 11 5 5 7 7 4 11 159
DeCODE(2018) 1 1 1 6 1 5 9 6 10 5 11 6 1 5 2 5 5 11 3 6 7 1 11 4 4 6 11 7 151
HCO-DEtch 1 1 1 1 1 1 1 2 11 11 10 3 1 2 10 1 1 5 9 2 3 3 7 11 10 1 5 4 119
HECO-DEtch(FR) 1 1 5 7 1 2 2 8 3 7 7 2 1 2 3 3 4 3 5 7 4 4 1 2 2 2 2 2 93
HECO-DEtch 1 1 4 3 1 4 4 5 3 1 8 1 1 2 3 4 3 4 5 1 2 2 4 2 2 3 1 3 78

Table 6.27 Ranks of HECO-DEtch and It’s Two Variants and Other EAs based on mean
solution on the 28 functions of 100D on IEEE CEC2017 benchmarks

Problem 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Total
CAL_LSAHDE(2017) 10 10 11 11 7 5 11 10 7 9 5 7 10 11 10 11 11 10 1 11 11 8 11 11 11 11 8 1 250
LSHADE44+IDE(2017) 11 11 9 2 3 10 7 5 2 7 1 2 5 10 5 9 9 8 3 7 8 7 7 8 9 9 9 8 191
LSAHDE44(2017) 1 1 8 1 2 9 8 1 1 1 4 11 6 9 8 10 7 7 2 6 10 6 9 7 8 7 7 10 167
UDE(2017) 9 9 6 10 11 6 5 9 10 8 6 3 11 6 7 6 10 9 10 9 5 11 1 9 5 10 10 6 217
MA_ES(2018) 1 1 1 8 10 2 4 2 9 4 2 10 2 8 9 1 6 1 11 10 9 5 8 5 1 6 1 5 142
IUDE(2018) 1 1 10 9 6 11 10 3 5 5 3 4 7 4 4 7 4 6 8 8 3 9 5 6 6 4 6 9 164
LSAHDE_IEpsilon(2018) 8 8 7 3 9 8 6 7 6 6 7 5 4 5 6 8 8 2 6 5 4 10 2 10 7 8 4 11 180
DeCODE(2018) 1 1 1 6 8 4 9 8 3 10 11 8 1 7 3 5 5 11 7 3 2 2 10 3 4 5 11 7 156
HCO-DEtch 1 1 1 4 4 7 1 4 8 11 10 1 3 1 11 1 1 5 9 2 1 1 6 1 10 3 5 4 117
HECO-DEtch(FR) 1 1 4 7 4 1 2 6 11 3 8 6 8 2 1 3 2 3 3 4 6 3 3 2 2 1 2 3 102
HECO-DEtch 1 1 5 5 1 3 3 11 4 2 9 9 9 2 2 4 3 4 3 1 7 4 4 4 3 2 3 2 111

Table 6.28 Ranks of HECO-DEtch and It’s Two Variants and Other EAs based on median
solution on the 28 functions of 100D on IEEE CEC2017 benchmarks

Problem 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Total
CAL_LSAHDE(2017) 10 10 11 11 8 6 11 10 7 9 5 5 10 4 10 11 11 10 1 3 4 8 6 11 11 11 10 1 225
LSHADE44+IDE(2017) 11 11 10 1 4 9 8 5 2 8 4 3 5 11 6 9 8 7 3 8 9 7 8 9 10 8 7 9 200
LSAHDE44(2017) 1 1 9 2 5 8 9 1 1 1 2 11 6 10 9 10 6 8 2 7 10 6 10 10 9 5 8 10 177
UDE(2017) 9 9 6 10 11 5 5 9 9 10 6 2 11 7 8 6 10 9 10 10 6 11 3 7 6 9 9 6 219
MA_ES(2018) 1 1 1 8 10 2 3 2 11 5 1 8 3 9 4 1 5 1 11 11 8 5 9 5 1 6 3 5 140
IUDE(2018) 1 1 8 9 6 10 7 3 10 4 3 4 7 5 7 7 4 6 7 9 3 9 5 6 7 4 6 8 166
LSAHDE_IEpsilon(2018) 8 8 7 3 9 7 6 7 8 6 7 6 4 6 4 8 7 2 6 6 5 10 4 8 8 7 5 11 183
DeCODE(2018) 1 1 1 6 7 4 10 8 4 7 11 9 2 8 3 5 9 11 8 5 1 2 11 2 5 10 11 7 169
HCO-DEtch 1 1 1 4 1 11 1 4 4 11 10 1 1 1 11 1 1 5 9 2 2 1 7 1 2 3 4 4 105
HECO-DEtch(FR) 1 1 4 7 1 1 2 6 3 3 8 7 8 1 1 3 2 3 3 4 7 3 2 3 3 1 2 3 93
HECO-DEtch 1 1 5 4 1 3 4 11 4 2 9 10 9 1 1 4 3 4 3 1 11 4 1 4 4 2 1 2 110
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6.3.4 Three-population Model

However, it is observed that computational time of HECO-DE increases quickly as the
dimension D. In fact, this phenomenon happens in all algorithms. A solution to this short-
coming is parallel computation. This chapter considers a multi-population implementation
of HECO-DE called HECO-DEm which has great potential in parallel processing. Its idea is
to divide a population into several subpopulations and evolve them separately. A new feature
of HECO-DEm is its potential in parallel processing because each subpopulation may run on
a CPU core. Another new feature of HECO-DEm is different search directions in different
subpopulations.

Based on the HECO framework (Chapter 5), we designed a multi-objective EA called
HECO-DE for CSOPs. This section presents its multi-population implementation (named
HECO-DEm) for potentially parallel computation. It is expected that using multi-population
can maintain population diversity and increase search directions, then it may improve the
capacity of HECO-DE to handle complex fitness landscapes especially in a high dimensional
search space.

HECO-DE aims at solving λ subproblems (6.11) simultaneously. As shown in Fig.6.6,
it utilises only one population P. At each generation, λ individuals are sampled from P for
minimising fi (i = 1, · · · ,λ ) respectively. This implies λ different directions. Each individual
in P has the same chance for searching one of directions fi. The adaption of setting such as
parameter values, weights and strategies is on the whole population P. This idea probably is
not good. If individuals in P distribute over a wide area in several different local landscapes,
a better idea is to search one local landscape by a group of individuals. Furthermore one
population is not suitable for parallel computation.

A potential improvement is to split P into several subpopulations and maintain a certain
level of search independence in each population. In this chapter, a new three-population
model (Fig. 6.5) is proposed which split P into three subpopulations Pn,n = 1,2,3. We do not
split the population to many due to the limitation of computational resource. Each population
is used to solve a specific set of subproblems with different weights. Adaption happens
within a subpopulation, rather than in the whole population.

min f P1
i (⃗x) = wP1

1i ẽ(⃗x)+wP1
2i v(⃗x)+wP1

3i f (⃗x), i = 1, · · · ,λ/3.
min f P2

i (⃗x) = wP2
1i ẽ(⃗x)+wP2

2i v(⃗x)+wP1
3i f (⃗x), i = λ/3+1, · · · ,2λ/3.

min f P3
i (⃗x) = wP3

1i ẽ(⃗x)+wP3
2i v(⃗x)+wP3

3i f (⃗x), i = 2λ/3+1, · · · ,λ .
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The splitting is based on the superiority of feasibility rule [28]. Individuals in P1 are
better than those in P2, while individuals in P2 are better than those in P3. Intuitively, each
subpopulation searches different fitness levels on the landscape.

Another benefit of the multi-population model is its potential in parallel processing.
Current experiments show that computation time on CEC 2017 competition benchmarks
is about 10-20 hours. Thus running EAs on multi-core CPU may significantly shorten
computation time.

6.3.5 Comparative Experiments and Results

The CEC 2017 constrained optimization competition benchmark suit [132] was used in the
experiment. The suit consists of 4×28 functions with dimension D = 10,30,50,100. The
parameter setting in HECO-DEm are listed in Table 6.29.

Table 6.29 Parameter setting

number of fitness evaluations FESmax = 20000D
required population sizes N0 = 12×D, NTmax = λ

population size of Q λ = 10
historical memory size H = 5
number of strategies K = 4

constant in strategy adaption n0 = 2
threshold in strategy adaption δ = 1/20

According to the evaluation criteria in the CEC 2018 competition [133], for each problem
and each dimension, an EA must run 25 independent times.

6.3.6 Comparative Experiment Results

In order to evaluate the performance of HECO-DEm, it was compared with seven state-of-art
single-objective EAs and one multi-objective EA. Seven single-objective EAs comes from
CEC 2017 and 2018 constrained optimization competitions, which are CAL-SHADE [169],
LSHADE44+IDE [145], LSHADE44 [107], UDE [141], MA-ES [51], IUDE [140], LSHADE-
IEpsilon [36]. One multi-objective EA is DeCODE [148] which was published in 2018.
HECO-DEm was also compared with HECO-DE. Hence, ten EAs participated in ranking.
The detail of these algorithms is described in the supplement.

The ranking result of ten EAs on each dimension and the total ranks is presented in
Table 6.30. HECO-DE and HECO-DEm are the top two algorithms. Both clearly outperform
seven single-objective EAs in the CEC 2017 and 2018 competition and one most recent
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MOEA. The performance of HECP-DEm and HECO-DE is similar. HECO-DEm performs
slightly better than HECO-DE on high dimensions such as 50D and 100D but slightly worse
than on low dimensions such as 10D and 30D. This result validates our initial conjecture,
that is, using multi-population may improve the ability of HECO to handle complex fitness
landscapes in a high dimensional search space. It is not surprised that HECO-DE performs
better on low dimensions 10D and 30D because one population is sufficient.

Table 6.30 Ranking result of HECO-DE, DeCODE and EAs in CEC 2018 constrained
optimization competition

Algorithm/Dimension 10D 30D 50D 100D Total
CAL_LSAHDE(2017) 386 381 424 431 1622
LSHADE44+IDE(2017) 285 358 380 351 1374
LSAHDE44(2017) 298 306 307 310 1221
UDE(2017) 305 338 338 390 1371
MA_ES(2018) 247 236 244 250 977
IUDE(2018) 178 226 223 293 920
LSAHDE_IEpsilon(2018) 192 239 288 330 1049
DeCODE 213 266 264 288 1031
HECO-DE 158 160 171 181 670
HECO-DEm 182 166 167 165 680

6.3.7 Detailed Experimental Results of HECO-DEm

The best, median, worst, mean, standard deviation and feasibility rate of the function values
tested by HECO-DEm on 10D, 30D, 50D and 100D are recorded in Table A.17-A.20 in
Appendix A.

6.3.8 Detailed Ranking Results of Nine EAs

For the 28 test problems in 10D, 30D, 50D and 100D, the ranks of each algorithm in terms
of mean values and median solution are listed in Table 6.31,6.32,6.33,6.34,6.35,6.36,6.37
and 6.38 respectively.

6.4 Summary

In this chapter, a case study is conducted for validating this theory. A new algorithm, called
HECO-DE, is designed which employs helper and equivalent objectives and reuses search
operators from LSHADE44 [107]. Experimental results show that with the aid of helper and
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Table 6.31 Ranks of HECO-DEm and Other EAs based on mean values on the 28 functions
of 10 dimensions

Problem 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Total
CAL_LSAHDE(2017) 1 1 10 10 10 6 7 10 10 10 6 1 10 7 8 10 9 10 1 8 10 10 9 10 10 10 8 1 213
LSHADE44+IDE(2017) 1 1 8 7 1 10 6 1 1 2 1 3 1 9 5 8 6 8 4 4 2 5 8 8 8 6 9 8 141
LSAHDE44(2017) 1 1 9 5 1 9 5 1 9 2 2 9 1 8 9 9 7 7 2 1 4 7 7 7 9 7 7 9 155
UDE(2017) 1 1 7 8 9 7 4 1 7 2 9 1 9 6 6 7 8 6 8 10 8 9 6 4 7 9 6 6 172
MA_ES(2018) 1 1 1 9 1 5 2 1 1 2 4 10 7 10 10 1 10 1 10 9 9 6 10 6 1 8 2 7 145
IUDE(2018) 1 1 5 3 1 1 8 1 1 2 5 6 1 3 4 1 5 5 4 7 3 8 1 4 1 4 5 5 96
LSAHDE_IEpsilon(2018) 1 1 6 4 1 8 3 1 1 2 3 5 1 2 7 1 4 2 3 6 6 1 2 9 1 5 1 10 97
DeCODE 1 1 1 6 1 1 1 9 7 1 8 4 8 1 1 6 3 9 9 5 1 1 5 1 6 2 10 4 113
HECO-DE 1 1 1 1 1 1 10 1 1 2 7 8 1 4 2 1 1 3 4 3 7 1 4 2 1 1 3 2 75
HECO-DEm 1 1 1 1 1 1 9 1 6 2 10 7 1 5 3 1 1 4 7 2 5 1 3 3 1 3 4 3 88

Table 6.32 Ranks of HECO-DEm and Other EAs based on median solution on the 28
functions of 10 dimensions

Problem 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Total
CAL_LSAHDE(2017) 1 1 10 10 1 8 5 10 10 1 4 3 1 8 8 10 10 9 1 8 4 1 9 10 10 10 9 1 173
LSHADE44+IDE(2017) 1 1 9 5 1 10 6 1 1 2 2 4 1 10 7 9 6 8 4 4 5 1 10 9 9 8 8 2 144
LSAHDE44(2017) 1 1 8 7 1 9 7 1 1 2 4 10 1 9 9 8 7 6 2 1 1 1 8 8 8 6 7 9 143
UDE(2017) 1 1 6 8 1 7 4 1 8 2 9 1 1 1 5 7 9 7 9 10 1 1 1 5 7 9 6 5 133
MA_ES(2018) 1 1 1 9 1 1 2 1 1 2 2 5 1 3 10 1 8 1 8 9 6 1 3 7 1 7 1 8 102
IUDE(2018) 1 1 1 1 1 1 8 1 1 2 1 7 1 3 5 1 1 5 4 7 7 1 4 5 1 1 5 5 82
LSAHDE_IEpsilon(2018) 1 1 7 4 1 1 3 1 1 2 6 6 1 3 4 1 5 2 3 6 10 1 5 2 1 5 2 10 95
DeCODE 1 1 1 6 1 1 1 1 8 2 8 1 1 1 1 6 4 10 10 5 1 1 1 1 6 3 10 7 100
HECO-DE 1 1 1 1 1 1 9 1 1 2 7 9 1 6 2 1 2 3 4 3 8 1 6 3 1 2 3 2 83
HECO-DEm 1 1 1 1 1 1 10 1 1 2 10 8 1 6 2 1 2 4 4 2 9 1 7 4 1 4 4 4 94

equivalent objectives, HECO-DE has outperformed LSHADE44, and a latest decomposition-
based MOEA, DeCODE [148]. This case study proves the efficiency of the helper and
equivalent objective method for constrained optimization.

A simplified dynamic weight adjustment mechanism and Tchebycheff decomposition
approach are employed to improve the performance of HECO-DE. The experiment results
show that that using the new dynamic weight adjustment mechanism not only simplifies
the formulation but also improve HECO-DE’s performance comprehensively. However,
Tchebycheff decomposition approach might not be as effective as weighted sum approach
in HECO-DE according to the experiment study. a multi-population version of HECO-
DE, called HECO-DEm. It divides a population into three subpopulations. Different from
HECO-DE, different weights are assigned to objective decomposition in each subproblems.
This makes search directions in one subpopulation are different from another subpopulation.
Unlike HECO-DE, HECO-DEm is suitable for parallel computation. It is expected that using
multi-population can maintain population diversity and increase search directions, then it
may improve the capacity of HECO-DE to handle complex fitness landscapes especially in
a high dimensional search space. Experiment results show that its overall performance is
the same as HECO-DE and much better than other eight algorithms under comparison. The
multi-population version performs slightly better than HECO-DE in 50 and 100 dimensional
functions.
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Table 6.33 Ranks of HECO-DEm and Other EAs based on mean values on the 28 functions
of 30 dimensions

Problem 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Total
CAL_LSAHDE(2017) 1 1 10 10 10 6 8 1 10 10 4 10 10 10 9 10 10 9 1 4 10 10 10 10 10 10 8 1 213
LSHADE44+IDE(2017) 1 1 9 6 1 10 4 10 1 9 3 7 7 9 7 8 7 8 4 6 8 7 9 9 8 7 9 8 183
LSAHDE44(2017) 1 1 8 4 1 9 5 2 1 1 2 5 6 8 8 9 6 6 2 1 7 8 7 8 9 6 7 9 147
UDE(2017) 1 1 5 9 7 4 2 8 7 8 7 8 8 6 6 7 8 7 9 9 4 6 5 6 6 8 6 6 174
MA_ES(2018) 1 1 1 8 1 3 1 2 1 1 1 9 1 7 10 1 9 2 10 10 9 1 6 7 1 9 1 4 118
IUDE(2018) 1 1 6 5 1 7 7 2 7 1 5 2 5 1 5 4 3 5 7 8 6 5 4 3 5 3 5 7 121
LSAHDE_IEpsilon(2018) 1 1 7 2 1 8 3 2 1 1 8 6 9 4 3 6 5 1 3 2 3 9 1 5 7 5 2 10 116
DeCODE 1 1 1 7 9 5 6 7 9 1 10 1 1 2 4 5 4 10 8 5 5 4 8 4 4 2 10 5 139
HECO-DE 1 1 1 3 8 1 9 2 1 1 6 4 1 3 1 1 2 3 4 7 2 3 3 1 1 4 3 2 79
HECO-DEm 1 1 1 1 1 1 10 9 1 7 9 3 1 5 1 1 1 4 6 3 1 2 2 2 1 1 4 3 83

Table 6.34 Ranks of HECO-DEm and Other EAs based on median solution on the 28
functions of 30 dimensions

Problem 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Total
CAL_LSAHDE(2017) 1 1 10 10 1 6 8 1 1 1 4 8 10 7 9 10 10 8 1 4 3 10 6 10 10 10 7 1 168
LSHADE44+IDE(2017) 1 1 9 3 1 10 6 10 2 10 3 2 1 10 7 8 8 9 4 6 9 7 9 9 8 5 9 8 175
LSAHDE44(2017) 1 1 8 5 1 9 5 2 2 2 2 7 8 9 8 9 7 5 2 1 8 8 8 7 9 8 8 9 159
UDE(2017) 1 1 5 9 1 4 2 9 8 9 7 9 7 6 6 5 9 7 7 9 3 6 1 6 6 9 6 6 164
MA_ES(2018) 1 1 1 8 1 3 1 2 2 2 1 10 1 8 10 1 6 1 10 10 10 1 7 8 1 6 1 4 118
IUDE(2018) 1 1 6 6 1 8 4 2 8 2 5 3 1 1 3 4 3 6 7 8 3 1 1 1 5 2 5 7 105
LSAHDE_IEpsilon(2018) 1 1 7 2 1 7 3 2 2 2 8 5 9 3 5 7 5 2 3 2 7 9 3 5 7 3 2 10 123
DeCODE 1 1 1 6 1 5 7 2 8 2 10 1 1 1 3 5 4 10 9 5 3 1 10 4 4 7 10 5 127
HECO-DE 1 1 1 3 1 1 9 2 2 2 6 6 1 4 1 1 2 3 4 7 2 5 4 2 1 4 3 2 81
HECO-DEm 1 1 1 1 1 1 10 8 2 2 9 4 1 5 1 1 1 4 4 3 1 4 5 3 1 1 4 3 83

Table 6.35 Ranks of HECO-DEm and Other EAs based on mean values on the 28 functions
of 50 dimensions

Problem 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Total
CAL_LSAHDE(2017) 10 10 10 10 9 5 8 9 10 8 4 7 10 10 10 10 10 8 1 10 6 9 10 10 10 10 7 1 232
LSHADE44+IDE(2017) 9 1 9 5 1 9 5 8 7 10 1 4 7 9 7 8 8 7 4 4 9 5 8 9 9 8 8 9 188
LSAHDE44(2017) 1 1 8 3 1 8 4 1 3 1 2 9 6 8 8 9 7 6 3 1 10 6 6 8 8 7 6 8 149
UDE(2017) 1 1 5 9 10 4 2 7 1 9 5 6 9 6 6 6 9 9 9 7 3 8 5 6 6 9 9 5 172
MA_ES(2018) 1 1 1 8 1 2 1 2 8 1 3 10 8 7 9 1 6 1 10 9 8 4 7 7 1 5 1 4 127
IUDE(2018) 1 1 6 7 1 10 7 4 1 1 6 3 5 1 3 5 3 5 8 8 4 3 4 3 5 2 5 7 119
LSAHDE_IEpsilon(2018) 1 1 7 4 8 7 3 6 6 7 7 8 4 4 5 7 5 2 7 2 5 10 2 5 7 6 2 10 148
DeCODE 1 1 1 6 1 3 6 3 9 5 10 5 1 2 4 4 4 10 2 3 7 2 9 4 4 4 10 6 127
HECO-DE 1 1 1 2 1 6 9 5 3 4 8 1 3 5 1 1 2 3 4 6 1 7 3 1 1 3 3 2 88
HECO-DEm 1 1 1 1 1 1 10 10 3 6 9 2 1 3 1 1 1 4 6 5 2 1 1 2 1 1 4 3 83

Table 6.36 Ranks of HECO-DEm and Other EAs based on median solution on the 28
functions of 50 dimensions

Problem 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Total
CAL_LSAHDE(2017) 1 1 10 10 1 6 8 10 7 8 4 7 10 6 10 10 10 9 1 3 7 9 6 10 10 10 7 1 192
LSHADE44+IDE(2017) 1 1 9 3 1 9 5 9 9 10 3 3 8 10 7 9 8 8 5 5 9 7 9 9 9 8 9 9 192
LSAHDE44(2017) 1 1 8 5 1 8 4 1 3 1 1 10 7 9 9 8 7 6 4 1 10 8 8 8 8 7 6 8 158
UDE(2017) 1 1 5 9 10 5 2 8 1 9 5 5 9 7 6 6 9 7 10 8 1 6 1 7 6 9 8 5 166
MA_ES(2018) 1 1 1 8 1 3 1 2 8 1 2 9 1 8 8 1 5 1 9 10 8 5 7 6 1 4 1 4 117
IUDE(2018) 1 1 6 7 1 10 7 3 1 1 6 4 1 3 1 5 2 5 2 9 4 4 1 1 4 2 5 7 104
LSAHDE_IEpsilon(2018) 1 1 7 2 1 7 3 6 3 7 7 8 6 1 5 7 6 2 8 2 5 10 5 5 7 6 2 10 140
DeCODE 1 1 1 6 1 4 6 5 10 6 10 5 1 3 4 4 4 10 3 4 6 3 10 4 4 5 10 6 137
HECO-DE 1 1 1 3 1 2 9 4 3 4 8 1 1 5 2 1 3 3 5 7 2 2 3 2 1 3 3 2 83
HECO-DEm 1 1 1 1 1 1 10 7 3 5 9 2 1 2 2 1 1 4 5 6 3 1 4 3 1 1 4 3 84
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Table 6.37 Ranks of HECO-DEm and Other EAs based on mean values on the 28 functions
of 100 dimensions

Problem 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Total
CAL_LSAHDE(2017) 9 9 10 10 6 4 9 10 8 9 5 6 9 10 10 10 10 9 1 10 10 7 10 10 10 10 7 1 229
LSHADE44+IDE(2017) 10 10 8 4 4 9 4 5 2 7 1 1 6 9 5 8 8 7 3 4 6 6 6 7 9 8 8 7 172
LSAHDE44(2017) 1 1 7 3 3 8 5 1 1 1 4 10 7 8 8 9 6 6 2 3 9 5 8 6 8 6 6 9 151
UDE(2017) 8 8 5 9 10 5 2 8 10 8 6 3 10 5 7 5 9 8 9 8 5 10 2 8 5 9 9 5 196
MA_ES(2018) 1 1 1 7 9 2 1 2 9 4 2 9 4 7 9 1 5 1 10 9 8 2 7 4 1 5 2 4 127
IUDE(2018) 1 1 9 8 5 10 7 3 6 5 3 4 8 1 4 6 3 5 8 7 2 8 5 5 6 3 5 8 146
LSAHDE_IEpsilon(2018) 7 7 6 5 8 7 3 6 7 6 7 5 5 4 6 7 7 2 6 2 3 9 4 9 7 7 4 10 166
DeCODE 1 1 1 6 7 3 6 7 3 10 10 7 3 6 3 4 4 10 7 1 1 1 9 3 4 4 10 6 138
HECO-DE 1 1 1 2 1 6 8 4 3 2 8 8 2 3 1 1 2 3 3 6 7 4 3 1 3 2 1 2 89
HECO-DEm 1 1 1 1 1 1 10 9 5 3 9 2 1 2 1 1 1 4 5 5 4 3 1 2 2 1 3 3 83

Table 6.38 Ranks of HECO-DEm and Other EAs based on median solution on the 28
functions of 100 dimensions

Problem 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Total
CAL_LSAHDE(2017) 9 9 10 10 7 5 9 10 6 9 5 5 9 1 10 10 10 9 1 1 4 7 6 10 10 10 9 1 202
LSHADE44+IDE(2017) 10 10 9 1 3 9 5 5 2 8 4 3 6 10 6 8 7 6 3 5 8 6 7 8 9 7 6 8 179
LSAHDE44(2017) 1 1 8 4 4 8 6 1 1 1 2 10 7 9 9 9 5 7 2 4 9 5 9 9 8 4 7 9 159
UDE(2017) 8 8 5 9 10 4 2 8 8 10 6 2 10 6 8 5 9 8 9 9 6 10 2 6 5 8 8 5 194
MA_ES(2018) 1 1 1 7 9 2 1 2 10 5 1 7 4 8 4 1 4 1 10 10 7 4 8 4 1 5 1 4 123
IUDE(2018) 1 1 7 8 5 10 4 3 9 4 3 4 8 2 7 6 3 5 7 8 3 8 5 5 6 3 5 7 147
LSAHDE_IEpsilon(2018) 7 7 6 5 8 6 3 6 7 6 7 6 5 5 4 7 6 2 6 3 5 9 4 7 7 6 4 10 164
DeCODE 1 1 1 6 6 3 7 7 3 7 10 8 3 7 3 4 8 10 8 2 1 2 10 3 4 9 10 6 150
HECO-DE 1 1 1 2 1 7 8 4 3 2 8 9 1 4 1 1 1 3 3 7 10 3 1 1 3 2 2 2 92
HECO-DEm 1 1 1 3 1 1 10 9 3 3 9 1 2 3 1 1 2 4 3 6 2 1 3 2 2 1 3 3 82
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Fig. 6.4 Average convergence rates on ten typical CEC2006 benchmark functions which are
divided into five groups, such as quadratic, polynomial, linear, nonlinear and cubic, where ρ

denotes the estimated percentage of feasible region in the search space.



84 HECO-DE: A Case Study

𝑃1

𝑃2

𝑃3

min𝑓1(𝑥)

min𝑓2(𝑥)

min𝑓λ/3(𝑥)

min𝑓1+λ/3(𝑥)

min𝑓2+λ/3(𝑥)

min𝑓2λ/3(𝑥)

min𝑓1+2λ/3(𝑥)

min𝑓2+2λ/3(𝑥)

min𝑓λ(𝑥)

Fig. 6.5 Three-population Pn,n = 1,2,3 in HECO-DEm

𝑃

min𝑓1(𝑥)

min𝑓2(𝑥)

min𝑓λ(𝑥)

Fig. 6.6 One population P in HECO-DE



Chapter 7

HECO-PDE: An Enhanced version of
HECO-DE with Principal Component
Analysis

The word “valley” is a popular term used in intuitively describing fitness landscapes. What is
a valley on a fitness landscape? How to identify the direction and location of a valley if it
exists? However, such questions are seldom rigorously studied in evolutionary optimization
especially when the search space is a high dimensional continuous space. This chapter
presents two methods of studying valleys on a fitness landscape. The first method is based
on the topological homeomorphism. It establishes a rigorous definition of a valley. A valley
is regarded as a one-dimensional manifold. The second method takes a different viewpoint
from statistics. It provides an algorithm of identifying the valley direction and location using
principle component analysis.

Multiobjective evolutionary algorithms (MOEAs) have been successfully applied to a
number of constrained optimization problems. Many of them adopt mutation and crossover
operators from differential evolution. However, these operators do not explicitly utilise
features of fitness landscapes. To improve the performance of algorithms, this chapter
aims at designing a search operator adapting to fitness landscapes. Through an observation,
we find that principle component analysis (PCA) can be used to characterise fitness land-
scapes. Based on this finding, a new search operator, called PCA-projection, is proposed.
In order to verify the effectiveness of PCA-projection, we design two algorithms enhanced
with PCA-projection for solving constrained optimization problems, called PMODE and
HECO-PDE, respectively. Experiments have been conducted on the IEEE CEC 2017 compe-
tition benchmark suite in constrained optimization. PMODE and HECO-PDE are compared
with the algorithms from the IEEE CE2017/2018 competition and another recent MOEA
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for constrained optimization. Experimental results show that an algorithm enhanced with
PCA-projection performs better than its corresponding opponent without this operator. Fur-
thermore, HECO-PDE is ranked first on all dimensions according to the competition rules.
This study reveals that decomposition-based MOEAs, such as HECO-PDE, are competitive
with best single-objective and multiobjective evolutionary algorithms for constrained opti-
mization, but MOEAs based on non-dominance, such as PMODE proposed in this chapter,
may not.

7.1 Previous Work

In evolutionary optimization, the term “fitness landscape” is a metaphor [115] to intuitively
describe the relationship between individuals (solutions) and their fitness values (solution
quality). The landscape metaphor originates from population genetics which was first used
by Wright [159] to visualize the relationship between biological genotypes and reproductive
success. Currently fitness landscapes become a valuable concept in evolutionary biology and
combinatorial optimization [117, 79].

A fitness landscape can be viewed as a mapping from a configuration space into a real
space, while the configuration space is equipped with a distance measure or a neighborhood
structure. Landscapes may change under different search operators or different distance
mesurements [114]. For combinatorial fitness landscape, a formal landscape theory was
proposed by Stadler [129] and then was further developed [130, 117].

The mathematical analysis of landscapes usually is a challenging task, thus several
statistical analyzing tool were introduced for learn about the nature of landscapes. One of
the earliest statistical measures of a landscape was the auto-correlation function proposed
by Weinberger [157]. Davidor [27] suggests a simple statistic, called epistasis variance, as a
mean to measure the amount of nonlinearity. Jones and Forrest [65] introduces the fitness
distance correlation to classify easy and hard fitness landscapes. Reeves and Eremeev [116]
took the number of optima as a statistical measure of a fitness landscapes. Merz [83]
introduced the random walks technique for analyzing the fitness landscapes of combinatorial
problems. Recently Moser et al. [94] proposed predictive diagnostic optimization as a means
of characterizing combinatorial fitness landscapes.

So far a lot of work has contributed to combinatorial fitness landscapes, but continuous
fitness landscapes still receive less analyses. Munoz et al. [96] introduced an information
content-based method for continuous fitness landscapes and their method generates four
measures related to the landscape features. This chapter focuses on studying a special
landscape: valleys. It aims to provide a rigorous analysis of valleys and answer two questions:
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1)What is a valley on a continuous fitness landscape specially when the search space is a
high dimension space? 2)How to identify the direction and location of a valley if it exists?

Many MOEAs have been proposed for solving constrained optimization problems [125].
Most of them adopt mutation and crossover operators from differential evolution (DE). How-
ever, these operators do not explicitly utilise characteristics of fitness landscapes. Intuitively,
a search operator which adapts to fitness landscapes may be more efficient than those without
adaptation. A recent theoretical study also claims that in terms of the time-based fitness land-
scape, unimodal functions are the easiest and deceptive functions to EAs are the hardest [46].
Therefore, it is important to design a landscape-adaptive search operator which may improve
the performance of EAs.

Our idea is to enhance EAs with principle component analysis (PCA). There exist a
suite of studies which have shown PCA may improve the performance of EAs. Munteanu
and Lazarescu [98] designed a PCA-mutation operator and claimed that PCA-mutation
is more successful in maintaining population diversity during search. Because of PCA’s
inherent capability of rebuilding a new coordinate system, Li et al. [75] applied PCA to the
design of crossover for reducing correlations among variables. PCA was used in particle
swam optimization (PSO) to mine population information for promising principal component
directions [16, 174, 103]. This information is utilized in velocity vectors of particles. Because
PCA is a powerful tool in dimensional reduction, it helped EAs solve high dimensional
optimization problems [162, 24]. Besides its application in designing search operators,
local principal component analysis is used for building a regularity model in multiobjective
estimation of distribution algorithms [173, 155]. However, the number of references of
applying PCA to EAs is still very small and it is worth making further investigations.

In this chapter, we design a new search operator adapting to fitness landscapes with
the aid of PCA. PCA is used to identify the maximal variance direction in a population.
Given a “valley” fitness landscape in the 3-dimensional space, we observe that the direction
obtained by PCA is consistent with the valley direction. Based on this observation, we
design a new search operator, called PCA-projection. The research question of this chapter
is whether a MOEA enhanced with PCA-projection is able to outperform its rival without
this operator or other state-of-arts EAs. To answer this question, we design two MOEAs
enhanced with PCA-projection, conduct experiments on the IEEE CEC 2017 benchmark suit
for constrained optimization competition [132] and compare them with EAs from the CEC
2018 competition [133].



88 HECO-PDE: An Enhanced version of HECO-DE with Principal Component Analysis

7.2 A Topological Method for Studying Valley Landscapes

Valleys is a popular term used in intuitively describing landscapes. But what is a valley on a
fitness landscape especially in a high dimensional spaces? This section aims to provide a
rigorous definition of valley and ridge landscapes from the topological viewpoint.

Continuous optimization problems can be roughly classified into two categories: min-
imization and maximization. For the sake of convenience, this chapter only considers the
single-objective minimization problem without a constraint, which is given as follows:

min f (x), x ∈ Rd, (7.1)

where f : Rd → R is a continuous function and Rd is the d-dimension real space.
A global fitness landscape is the set of triples {(x, f ,d) | x∈Rd} where d is the Euclidean

distance in Rd . A complex global landscape usually consists of several local landscapes
such as valley, ridge and plateau landscapes. A local fitness landscape is a set of triples
L = {(x, f ,d) | x ∈S ⊂ Rd} where S is a subset of Rd . The core question in this section
is under what kind of conditions, a landscape is called a valley? According to Oxford Online
English Dictionary, a valley is “a low area of land between hills or mountains, typically
with a river or stream flowing through it”. This definition is applicable to R2. However, it
becomes difficult to imagine a valley in a higher dimensional space. The meaning of “low
area”, “hills” and ‘mountain” needs formalization.

What is the difference between a valley landscape and a non-valley landscape? Let’s
explain their difference by two simple non-valley and valley landscapes in the 2-dimensional
space. The first example is a non-valley landscape:

Ls = {(x, fs,d) | x ∈ R2}, (7.2)

where fs is a sphere function, given as follows:

fs(x) = x2
1 + x2

2, . (7.3)

Figure 7.1 shows the contour and 3D graphs of the sphere landscape Ls in the domain
[−10,10]2. Since fs(x) is a sphere function, it is a common sense that no valley exists on
the sphere landscape. The sphere function can be taken as a natural benchmark landscape to
decide whether any other landscape contains a valley or not.

Given any x ∈R2, a point x′ is said in the lower fitness area than f (x) if f (x′)< f (x) and
in the higher fitness area than f (x) if f (x′) > f (x). The δ -neighbour of x is a hyper-cube,
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Fig. 7.1 The sphere landscape Ls where fs(x) = x2
1 + x2

2.

given by

Nδ (x) = {y | y ∈ [xi−δ ,xi +δ ]2}. (7.4)

The area ratio between the lower fitness area and higher fitness area of the neighbor Nδ (x) is
calculated by

Area(x′ ∈ Nδ (x) | fs(x′)< fs(x))
Area(x′ ∈ Nδ (x) | fs(x′)> fs(x))

. (7.5)

where the area of a subset S is given by

Area(S) =
∫

x∈S
d(x). (7.6)

The second example is a simple valley landscape:

Le = {(x, fe,d) | x ∈ R2}, (7.7)

where fe(x) is an elliptic function, given as follows:

fe(x) = x2
1 +(0.1x2)

2. (7.8)

Figure 7.2 shows the contour graph of the elliptic landscape Le in the domain [−10,10]2.
Different from the sphere landscape Ls, there is a valley on the elliptic landscape Le which
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is the line:

Ve = {x | x2 = 0}. (7.9)
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Fig. 7.2 The elliptic landscape Le where fe(x) = x2
1 +(0.1x2)

2.

The valley Ve satisfies two characteristics :

• Ve is a 1-dimensional manifold;

• Ve follows the gradient descent direction.

But these two characteristics are not sufficient for Ve to be a valley. Another important
characteristic is observed from Figure 7.3, that is, for the elliptic function, the area ratio
between the lower fitness area and higher fitness area of the neighbor Nδ (x) is smaller than
the area ratio for the sphere function.

Taking the sphere function as a benchmark, the above characteristic can be formalized as
follows:

• ∃α > 0 (e.g. set α = 10 for fe(x)), ∀δ ≤ α and ∀x ∈ Ve, it holds

Area(x′ ∈ Nδ (x) | fe(x′)< fe(x))
Area(x′ ∈ Nδ (x) | fe(x′)> fe(x))

<
Area(x′ ∈ Nδ (x) | fs(x′)< fs(x))
Area(x′ ∈ Nδ (x) | fs(x′)> fs(x))

. (7.10)

The parameter α represents a degree of the valley width. Furthermore let

β = max
x∈L

Area(y ∈ Nδ (x)), fe(y)< fe(x))
Area(y ∈ Nδ (x)), fe(y)> fe(x))

. (7.11)
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Fig. 7.3 A comparison between the elliptic landscape (left) and sphere landscape (right
figure).

The parameter β represent a degree of the valley narrowness. It should be mentioned that the
parameter β could take the value 0 in some extreme situation. For example,

Lz = {(x, fz,d)}, (7.12)

where fz(x) is given as follows:

fz(x) = x2
1, x ∈ R2. (7.13)

Figure 7.4 shows the contour and 3D graphs of this special elliptic landscape. It is clear
that a valley exists which is the line:

Vz = {x | x1 = 0}. (7.14)

Beyond simple elliptic valley landscapes, there are many different and complex valley
landscapes. It is impossible to list them one by one. A question is how to extend simple
valley landscapes to a more general valley landscape. The extension can be implemented
using the homeomorphism from topology. Given two topological spaces X and Y , a function
f : X →Y is called a homeomorphism if it satisfies the following properties: f is an injection
from X to Y , both f and its inverse function f−1 are continuous [95].

Given an elliptic function fe and its simple valley Ve, a general valley landscape can
be topologically constructed using the homeomorphism technique. Let h : R2→ R2 be a
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Fig. 7.4 The landscape Lz where fz(x) = x2
1.

homeomorphism and denote

y = h(x), (7.15)

g(y) = fe(h−1(x)), (7.16)

h(V ) = {(y,h(y)) | h−1(y) ∈ V }. (7.17)

h(V ) is called a valley if the homeomorphism h satisfies the following two conditions: let
y = h(x) and y′ = h(x′),

• the fitness order is preserved, i.e. f (x)< f (x′)⇐⇒ g(y)< g(y′);

• the area ratio related to the function g is smaller than the area ratio related to the sphere
function fs, i.e. ∃α > 0 and α♯ > 0, ∀δ ≤ α and δ ♯ ≤ α♯, ∀x ∈ V and y = h(x),

Area(y′ ∈ Nδ ♯(y) | g(y′)< g(y))
Area(y′ ∈ Nδ ♯(y) | g(y′)> g(y))

<
Area(x′ ∈ Nδ (x) | fs(x′)< fs(x))
Area(x′ ∈ Nδ (x) | fs(x′)> fs(x))

. (7.18)

The simplest homeomorphism which satisfies the about conditions is the linear transfor-
mation

y1 = a1x1, (7.19)

y2 = a2x2 (7.20)

where a1 ̸= a2 are two constants.
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Homeomorphism can be used to construct a well-known valley landscape which is
generated from Rosenbrock function. Consider the simple elliptic function

f (x1,x2) = (x1)
2 +100(x2)

2. (7.21)

Let the homeomorphism h(x1,x2) : R2→ R2 be

y1 = 1− x1, (7.22)

y2 = x2 +(1− x1)
2. (7.23)

Then the Rosenbrock function is generated as follows:

g(y1,y2) = (1− y1)
2 +100(y2− (y1)

2)2. (7.24)

After studying valley landscapes in the 2-dimensional space R2, a general valley land-
scape in any d-dimensional space Rd can be defined in a similar way for any dimensionality
d ≥ 2.

Definition 12. A simple elliptic valley landscape is

Le = {(x, fe(x))}, (7.25)

where fe : Rd → R is an elliptic function, given as follows:

fe(x) =
d−1

∑
i=1

(xi)
2 + γ(xd)

2, x ∈ Rd. (7.26)

where the parameter γ < 1.

Although it is difficult to visualize a fitness landscape if d > 3, it still is possible to
imagine the valley on this landscape Le which is

Ve = {x | xd = 0}. (7.27)

It is easy to verify the valley satisfying the following characteristics:

1. the valley is a 1-dimensional manifold;

2. the valley follows the gradient descent direction;
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3. ∃α > 0 (e.g. α = 10 for fe(x)), ∀δ ≤ α and ∀x ∈ Ve, it holds

Area(x′ ∈ Nδ (x) | fe(x′)< fe(x))
Area(x′ ∈ Nδ (x) | fe(x′)> fe(x))

<
Area(x′ ∈ Nδ (x) | fs(x′)< fs(x))
Area(x′ ∈ Nδ (x) | fs(x′)> fs(x))

. (7.28)

where fs(x) is a sphere function in the (d +1)-dimensional space, given by

fs(x) =
d

∑
i=1

(xi)
2, x ∈ Rd. (7.29)

Based on the simple elliptic valley landscape, a general valley landscape is defined as
below.

Definition 13. A general valley landscape V = {(x,g,d)} is constructed from a simple
elliptic Ve = {(x, f ,d)} using the homeomorphism technique in the following way: let
h : Rd → Rd be a homeomorphism and denote

y = h(x), (7.30)

ge(y) = fe(h−1(x)), (7.31)

h(V ) = {(y,h(y)) | h−1(y) ∈ V }. (7.32)

h(V ) is called a valley if the homeomorphism h satisfies the following two conditions: let
y = h(x) and y′ = h(x′),

• the fitness order is unchanged, i.e. f (x)< f (x′)⇐⇒ g(y)< g(y′);

• the area ratio related to the function g is smaller than the area ratio related to the
sphere function fs, i.e. ∃α > 0 and α♯ > 0, ∀δ ≤ α and δ ♯ ≤ α♯, ∀x ∈ V and y = h(x),

Area(y′ ∈ Nδ ♯(y) | g(y′)< g(y))
Area(y′ ∈ Nδ ♯(y) | g(y′)> g(y))

<
Area(x′ ∈ Nδ (x) | fs(x′)< fs(x))
Area(x′ ∈ Nδ (x) | fs(x′)> fs(x))

. (7.33)

At the end, the homeomorphism method of defining a valley can be generalized to define
a ridge straightforward. The analysis is almost identical except that a valley represents a
lower area but a ridge represents a higher area. Let’s show this link by a simple elliptic
landscape.

Le = {(x, fe,d) | x ∈ R2}, (7.34)
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where fe(x) is an elliptic function, given as follows:

fe(x) =−x2
1− (0.1x2)

2, x ∈ R2. (7.35)

Figure 7.5 shows the contour and 3-D graphs of the landscape Le. The ridge on Le

which is the line:

V = {(x1,x2) | x1 = 0}. (7.36)
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Fig. 7.5 The fitness landscape Le where fe(x) =−x2
1− (0.1x2)

2.

The same topological method can be applied to studying a ridge on a fitness landscape
because a ridge on the fitness landscape (x, f ,d) is equivalent to a valley on the fitness
landscape (x,− f ,d).

The topological method provides a rigorous definition of a valley or a ridge on a fitness
landscape. Because the method is based on topology, it potentially may lead to a rigorous
study of valleys and ridges.

7.3 A Statistical Method for Studying Valley and Ridge
Landscapes

So far the definition of valleys has been established in the previous section. It is regarded
as a one-dimensional manifold in a two or high dimensional space. But a big question still
exists, that is how to identify its location and direction of a valley or a ridge if it exists in
a fitness landscape. The topological method does not provide too much help. This section



96 HECO-PDE: An Enhanced version of HECO-DE with Principal Component Analysis

presents a statistical method for studying the valley and ridge landscapes. The purpose is to
find a practical method of identifying the location and direction of a valley or a ridge.

Let’s still start from an intuitive observation of the simple sphere and elliptic landscapes
discussed in the previous section:

Ls = {(x, fs,d) | x ∈ R2}, (7.37)

Le = {(x, fe,d) | x ∈ R2}, (7.38)

where fs is a sphere function and fe is an elliptic function, given as follows respectively:

fs(x) = x2
1 + x2

2, (7.39)

fe(x) = x2
1 +(0.1x2)

2. (7.40)

For the elliptic landscape Le, Figure 7.6 shows the location of a valley is at the line
V = {x | x0 = 0}. It is observed that the variance of the contour along the direction x0 = 0 is
much larger than that along the direction x1 = 0. This leads to an important characteristic of
the valley: the variance of the contour along the valley direction is maximal.
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Fig. 7.6 The elliptic landscape with a valley

Based on the above observation, a statistical method is proposed for identifying the valley
direction. The idea behind this method is statistical sampling. Suppose that a valley is located
in a domain, that is [−10,10]2 in Figure 7.7. Sample a population of points from this domain
at random. There are 100 points in Figure 7.7. The fitness value of these 100 points are
evaluated and then the best 10 points are selected which are marked by “x”. Figure 7.7 shows
the best 10 points distribute along the valley. Therefore the valley direction can be regarded
as a direction along which the variance of the selected points is maximal.
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Fig. 7.7 The valley direction and location identified by PCA-projection.

The task of identifying the direction with the maximal variance in a data exactly can
be implemented by the principle component analysis (PCA) [6]. Assume that the valley
direction is linear, the valley direction and location then can be approximated by the first
principle component found by linear PCA. Project the 10 selected points onto the first
principle component. Figure 7.7 shows that the projected points (labeled by a red line)
approximately represent the valley direction. This procedure is called PCA projection which
is described by Algorithm 1.

Algorithm 1 PCA projection
1: Sample a population P of points from a domain;
2: Select M individuals {x1, · · · ,xM} with smaller fitness values from the population P.

Denote these individuals by X.
3: Calculate the d×1 mean vector m and d×d covariance matrix :

m =
1
M

M

∑
i=1

xi, =
1

M−1

M

∑
i=1

(xi−m)(xi−m)T . (7.41)

4: Calculate the eigenvectors v1, · · · ,vd of the covariance matrix , sorted them so that
the eigenvalues of vi is larger than v j for i < j. Choose the first principle component
V = [e1.

5: Project xi onto the first principle component:

yi = VT (x−m). (7.42)

6: Reconstruct the projected point xi in the original space:

x′i = m+Vyi. (7.43)
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It should be pointed out that PCA-projection can be applied to any fitness landscape.
Consider the application of PCA-projection to the sphere function. Sample 100 points from
this domain at random and select the best 10 points. Project the 10 selected points onto the
first principle component. Figure 7.8 shows that the projected points (labeled by a red line)
with two different random seeds used in the sampling. Since the distribution of points along
each direction through the original point should be the same, the direction of the projected
points generated by PCA-projection could be any direction.
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Fig. 7.8 The projected points after PCA-projection with two different random seeds.

At the end, PCA-projection is applied to a well-known valley landscape, called Rosen-
brock function:

fr(x1,x2) = (1− x1)
2 +100(x2− x2

1), −1 < x1 < 2,−1 < x2 < 2 (7.44)

Its minimum point is at (1,1) with f (1,1) = 0. There exists a deep valley on the fitness
landscape generated by Rosenbrock function. Sample 100 points from [−1,2]2 at random
and select the best 10 points. Project the 10 selected points onto the first principle component.
Figure 7.9 shows that the projected points (labeled by dotted points) approximately represent
the valley direction and location.

7.4 Application of Principle Component Analysis in Evolu-
tionary algorithms

This chapter presents two methods of studying valley and ridge fitness landscapes. The first
method is based on the topological homeomorphism. A rigorous definition of a valley and a
ridge has been established. The second method is based on principle component analysis.
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Fig. 7.9 PCA and the valley landscape

It provides an algorithm of identifying the direction and location of a valley or a ridge if it
exists.

It is an interesting idea to apply PCA to the design of EAs but so far only a few research
chapters can be found on this topic. Munteanu and Lazarescu’s work [98] designed a mutation
operator based on PCA. They claimed that a PCA-mutation genetic algorithm (GA) is more
successful in maintaining population diversity during search. Their experimental results show
that a GA with the PCA-mutation obtained better solutions compared to solutions found
using GAs with classical mutation operators for a filter design problem.

Munteanu and Lazarescu [98] designed a new mutation operator on a projection search
space generated by PCA, rather than the original space. Their PCA mutation is described as
follows. A population with µ individuals is represented by an n×µ matrix X = [x1, · · · ,xµ ]

where n is the space dimension and µ the population size. Each x is an individual represented
by a column vector.

1: From the data set X, calculate the n×n covariance matrix :

= E[(x−m)(x−m)T ] (7.45)

where m = E[x] which is the mean over x1, · · · ,xµ .
2: Given the co-variance matrix , compute its eigenvectors v1, · · · ,vn and sort them in the

order of the corresponding eigenvalues of these eigenvectors from high to low. Form a
n×n matrix V = [v1, · · · ,vn].

3: Calculate the projection of the data set X using the orthogonal basis v1, · · · ,vn and obtain
a projected population, represented by the matrix Y = [y1, · · · ,yn]

T :

yi = VT (xi−m). (7.46)
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4: Compute the squared length of the projections along each direction vi, that is,

∥ Li(x j) ∥2= y2
i, j, i = 1, · · · ,n, j = 1, · · · ,µ. (7.47)

5: Choose quantities ci, j randomly between 0 and cmax where cmax is a constant parameter
of the mutation operator such that ci−1, j ≤ ci, j for i = 1, · · · ,n.

6: The mutation operator adds the quantities ci, j to each projected squared coordinate as
follows:

∥ L′i(x j) ∥2=∥ Li(x j) ∥2 +ci, j. (7.48)

7: Compute the sign of each element in the matrix Y, which is represented by the matrix
signum(Y).

8: Generate the child y′i from yi as follows: y′i, j equals to the square roots of the mutated
square projections ∥ L′i(x j) ∥2 multiplied by the corresponding sign signum(yi, j).

9: Obtain the mutated point in the original search space:

x′i = Vy′i +m. (7.49)

Notice that the above PCA-mutation does not reduce the data set X into a lower dimension
space, instead X and Y have the same dimension. This PCA-mutation aims to conduct
mutation in the projection space rather than the original space. However the dimensions of
the projection space and original space are the same.

7.5 A New Search Operator: PCA-projection

In order to improve the performance of EAs, we propose a new search operator, called
PCA-projection, which is able to adapt to fitness landscapes.

7.5.1 Principle Component Analysis and Valley Direction

Although PCA-mutation proposed in [98] was efficient for a filter design problem, it has a
disadvantage. PCA-mutation still acts on the same dimension space as the original search
space. Thus, as the population size increases, the calculation of eigenvalues and eigenvectors
in PCA becomes more and more expensive. In this chapter, we propose a different PCA-
search operator in which PCA is only applied to several selected points. A question is how to
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select points from a population for implementing PCA? The solution relies on the “valley”
concept.

7.5.2 Proposed PCA Projection

Based on the observation in the above subsection, we propose a new search operator as
Algorithm 1. Here is our idea: Given a population, we select a group of points with smaller
function values from the population and apply PCA to calculate principle components; then
project the points onto the principle components; at the end, reconstruct the projected points
in the original search space. These points are taken as the children. We call the search
operator PCA-projection, rather than PCA-mutation [98], because it does not include a
mutation step.

7.5.3 Characteristics of PCA-projection

PCA-projection is a nonlinear mapping from points in Rn to points in Rm which are assigned
along the first m principle components. It can be regarded as a multi-parent recombination
operator. Like other recombination operators, it works only if the parent population keeps a
degree of diversity. Otherwise, it might degenerate. For example, if k points are identical
(say x), then after PCA-projection, the projected points are still x. If k points distribute
on the same line (say y = ax+b), then the first principle component is y = ax+b. After
PCA-projection, there is no change to these k points.

PCA-projection generates the direction along which the distribution of points has the
maximal variance. It is not the gradient direction. Let’s show the difference through a simple
example. Consider the minimisation problem

min f (x,y) = |x|+0× y.

If k points distribute on the same line (say xi = 1,yi = i, where i = 1, · · · ,k), then the
first component direction found by PCA-projection is x = 1. But the gradient direction is
perpendicular to the line x = 1.

Compared with PCA-mutation in [98], PCA-projection has three new characteristics:

1. The time complexity of PCA-projection is less than PCA-mutation in [98]. Given k
points in Rn, the covariance matrix computation in PCA is O(k2n) and its eigenvalue
decomposition is O(n3). So, the complexity of PCA is O(k2n+n3). In PCA-projection,
only k good points are sampled from the population. For example, k = 8 in this
chapter, so, its time complexity is O(82n+n3). But in PCA-mutation, the number of
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points equals to the population size. For example, population size is 12n, so, its time
complexity is O(144n3 +n3).

2. The PCA-projection has an intuitive explanation. Given a valley landscape, it projects
an individual to a new position along the valley direction.

3. It also takes the advantage of compressing a higher dimensional data into a lower
dimension space. It projects a point into a lower dimensional space.

7.6 Two New Algorithms Enhanced by PCA-Projection

In this section, we present two MOEAs enhanced with PCA-projection for CSOPs.

7.6.1 New Algorithm 1: PMODE = CMODE + PCA-projection

We design the first algorithm though adding PCA-projection to CMODE, an algorithm pro-
posed by Cai and Wang [13, 151]. It combines multiobjective optimization with differential
evolution. CMODE is used to solve the standard bi-objective problem in equation 2.5

CMODE belongs to the family of MOEAs based on non-dominance. At each generation,
it identifies non-dominant solutions under functions ( f ,v) and replaces those dominated
solutions. It is straightforward to add PCA-projection into CMODE through the mixed
strategy, that is to apply PCA-projection with probability p and normal mutation and crossover
operations with probability 1− p. After PCA-projection is added into CMODE, we name
the new algorithm PMODE.

The difference between PMODE and CMODE is PCA-projection. There is no other
change in other parts. This design aims to evaluate the effectiveness of PCA-project without
the interface of other factors.

7.6.2 New Algorithm 2: HECO-PDE = HECO-DE +PCA-projection

We design the second algorithm through adding PCA-projection to HECO-DE. PCA-
projection is added into HECO-DE through a mixed strategy, that is to apply PCA-projection
with probability p and normal mutation and crossover operations with probability 1− p. For
the new algorithm enhanced with PCA-projection.
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7.7 Comparative Experiments and Results

In order to demonstrate the effectiveness of PCA-projection, PMODE was tested on IEEE
CEC2006 benchmark functions in Section ??. HECO-PDE and PMODE are also tested on the
IEEE CEC2017/2018 benchmark suite in constrained optimization competition in Section ??
and compared with the state-of-art EAs participated in the CEC 2018 competition [133].

Experimental settings is similar with HECO-DE. The parameters of HECO-PDE are set
as follows. Although fine-tuning parameters of HECO-PDE may lead to better results, the
setting is chosen as the same as that used in HECO-DE for a fair comparison.

1. the number of subproblem Q λ = 12;

2. in strategy competition, n0 = 2, K = 4, δ = 1/20;

3. the size of historical memories H = 5;

4. the initial and final required population sizes µ0 = 12×D, µTmax = λ .

7.7.1 General Performance of PMODE on CEC2006 benchmark

As shown in Tables 7.1−7.2, feasible solutions can always be found for 12 of 24 benchmark
functions that are g01, g02, g04, g06, g07, g08, g09, g10, g12, g16, g19 and g24 within
5×103 FES. In 5×104 FES, feasible solutions can be found in every run for all benchmark
functions apart from g20 and g22. g20 and g22 are very difficult for PMODE to solve
because they are still far away from feasible region until 5× 105 FES. However, within
5×105 FES, feasible solutions can be consistently found in all other 20 benchmark functions.
Additionally, very close or equal to best known solution can be found in g01, g08, g10, g11,
g12, g14, g16, g18, g19 and g24 in all runs, even better than best known solutions (shown as
negative value) can always be found in g03, g04, g05, g06, g07, g09, g13, g15, g17 and g23.
The result of the rest two benchmark functions g02 and g21 can also arrive at best known
solutions in most runs.

Table 7.3 shows the number of FES in each successful run as suggested in CEC 2006
Competition: | f (x)− f (x∗) |≤ 0.0001 and x is feasible. Feasible rate, the success rate, and
the success performance are also recorded in Table 7.3. The feasible rate represents the
percentage of runs where at least one feasible solution can be found by PMODE. The success
rate denotes the percentage of runs where the PMODE can find a solution that satisfies the
success condition. The success performance denotes the mean number of FES for successful
runs.
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As shown in Table 7.3, feasible solution with the probability 100% can be found in all
benchmark functions except for g20 and g22, and no feasible solution found yet for these
two function. For the success rate, PMODE can arrive 100% for all benchmark function
apart from g02, g20, g21 and g22. However, the success rate of g02 and g21 are both over
90% which means the successful runs arise in a majority of trials for these two test functions.
Regarding to the success performance, POMDE requires less than 1×105 FES for 16 test
functions, less than 2×106 FES for 21 test functions and less than 2.7×106 FES for 22 test
functions to achieve the target error accuracy level.

7.7.2 Experimental comparison of PMODE and CMODE

PMODE is compared with CMODE [151] on 24 benchmark test functions. 25 independent
runs were executed on each test function and the maximum number of FES was 5×105.

Tables 7.4 reports the detailed comparative results of PMODE and CMODE on function
error values and success performance. Additionally, a one-sample t-test [81] was imple-
mented to verify the difference between success performance generated by PMODE and the
results of COMDE. But the one-sample t-test was not used in function error values because
the sample standard deviation s in function error values of PMODE sometimes equals to 0
and the t-test is invalid in this case. In the t-test, the null hypothesis is that the sample mean
from 25 runs of PMODE equals to the population mean µ0 whose value is taken from [151].
The statistic formula of one sample test is given as follows:

t =
x−µ0

s/
√

n
, (7.50)

where x denotes the sample mean from PMODE, s denotes the sample standard deviation of
the sample and n denotes the sample size and µ0 is the mean from [151].

Thus, the comparison of the success performance does not only depends on their values,
but also should satisfies the statistic significance in the one-sample t-test, which means if
p-value > 0.05, the results of success performance between PMODE and CMODE have no
difference. As shown in Table 7.4, it can be observed that for f r(x) (denotes function error
values), PMODE clearly wins in 15 of 24 test functions (i.e., g03, g04, g06, g07, g08, g10,
g13, g14, g15, g17, g18, g21, g23, g24) while CMODE is better in only 4 test functions (i.e.,
g01, g02, g09, g19). In the aspect of success performance, PMODE can achieve the target
error accuracy level by fewer FES in 12 test functions (i.e., g02, g03, g05, g07, g09, g10, g14,
g15, g17, g18, g21, g23) while CMODE have better performance in only 6 test functions
(i.e., g01, g04, g06, g15, g19, g24). It can be observed that, although PMODE has smaller
FES than CMODE, p-value by one-sample t-test > 0.05 in g11, g12 and g13. Thus, there are
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no difference between the success performance of PMODE and CMODE on g11, g12 and
g13 according to the one-sample t-test.

The test problem g20 is not listed in Table 7.5 since there is no feasible solution can
be found. From Table 7.5, it can be seen that both PMODE and CMODE have good
performance in all test functions but except g20 and g22. PMODE and CMODE have same
performance for feasible rate in all test functions, where the average feasible rate are both
95.65%. However, PMODE wins again in success rate, although the success rate is not
100% in g02 and g21, PMODE can achieve an average 95.13% , whereas the success rate of
CMODE is 94.78% on average.

7.7.3 Comparison of PMODE, CMODE and all EAs in CEC 2006 Com-
petition

We also compare our experimental results with those EAs in CEC 2006 Competition. Ta-
ble 7.6 lists the average feasible rate and success rate of all other twenty-three test functions
tested by twelve EAs (PMODE, CMODE plus all 10 EAs participated in CEC 2006 Competi-
tion). DMS-PSO, ε_DE and SaDE can always get feasible solutions among all twenty-three
test problems while PMODE and CMODE both arrive at a feasible rate 95.65%. DE, MDE
and jDE-2 have the same performance with PMODE and CMODE in feasible rate. As shown
by success rate, ε_DE achieves 95.65%, which is the highest score again. PMODE and
CMODE also have a comparative performance in success rate with 95.13% and 94.78%,
respectively.

Table 7.7 shows the success performance FEs divided by FEs of the best algorithm among
the twelve EAs on twenty-three test problems. MDE, SaDE and DMS-PSO dominate among
all competition algorithms including PMODE and CMODE on success performance, whereas
PMODE and CMODE are ranked eighth and ninth respectively.

Table 7.8 lists the ranking of the twelve EAs in terms of f r(x), feasible rate, success
rate and success performance respectively. As a result, the final rank is calculated according
to the overall ranking of all four measures. As we can see that, ε_DE and DMS-PSO win
the first and second places among all twelve EAs respectively. It is worth mentioning that
PMODE, proposed algorithm in this chapter, is in the third place while CMODE is only
ranked seventh. Thus, PMODE gains a clear win against CMODE, and is among the top
three EAs. This means PMODE is competitive with other types of EAs too.
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7.7.4 Convergence Speed of PMODE

Fig. 7.10 describes the convergence speed of PMODE. The convergence speed is measured
by the average convergence rate Rt defined as follows [47]:

Rt = 1−
∣∣∣∣ f (xt)− f ∗

f (x0)− f ∗

∣∣∣∣1/t

(7.51)

where Rt denotes the normalized convergence speed, t the number of current generation, f (xt)

the objective value at t generation, and f ∗ the objective value of the known optimal solution.
In addition, Rt may take a negative value since the event | f (xt)− f ∗ |>| f (x0)− f ∗ | could
happen. This means, x0 is an infeasible solution but its objective value is less than xt which
is a feasible solution. In this case, the convergence speed takes a negative value as shown by
g23 in Fig. 7.10a.

Using the average convergence rate Rt , we can easily evalute and compare the convergence
speed of different algorithms. It is better than the logarithmic rate log( f (xt)− fopt) used in
many references [76] because the logarithmic rate itself does not provide any information
about the convergence rate but only its slop does. However, the average convergence rate Rt

provides a quantitative value of the convergence speed.
Fig. 7.10 indicates the convergence speed of PMODE for 24 benchmark functions. In

order to avoid stochastic distribution, the plotting stops at f (xt)− f ∗ ≤ 10e−6. Since there
is a large difference between convergence speed, test functions are divided into 8 groups
by required FES, and each sub-figure contains two to four lines corresponding to their test
functions. The horizontal axis represents FES, while the vertical axis represents Rt . As
shown in Figs. 7.10a-7.10h, the convergence speed of all test functions follow the same rules:
from high to low and become steady in the end. The average convergence rate Rt provides a
quantitative value of the convergent speed. For example, Rt = 0.0005 means that the error
et = 0.9995te0 at the tth generation. Thus Rt provides an exact value of the convergent speed.
However the index log( f (xt)− fopt) cannot do it in this way.

For g23, g10 and g21 in Fig. 7.10a, 7.10d and 7.10g, the negative value of Rt means
f (xt)> f (x0). This means initially an infeasible solution is generated with a good function
value f (x0) but later a feasible solution xt is found with a worse function value f (xt).

In Fig. 7.10h, the function g22 is an intractable problem for PMODE which stops at
1.7×104 FES. The function error value doesn’t make change after that FES.
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7.7.5 Comparative Experimental Results on CEC2017 Benchmark

Table 7.9 summarises ranks of all algorithms on four dimensions and total ranks. HECO-
PDE and PMODE got lower rank values than HECO-DE and CMODE, respectively. This
result clearly demonstrates that HECO-DE and CMODE are improved by PCA-projection.
Moreover, HECO-PDE got the lowest rank value among all compared algorithms. This result
means that HECO-PDE enhanced with PCA-projection is the best in terms of the overall
performance.

7.7.6 Detailed Experimental results of PMODE on CEC2017 bench-
mark

This subsection provides detailed experimental results of PMODE and HECO-PDE. 25
independent runs of PMODE and HECO-PDE are taken on each problem and dimension re-
spectively. The maximum function evaluations is set to 20000×D, where D is the dimension
of an optimization problem.

Tables A.9−A.12 in Appendix A gives the experimental results of PMODE in terms of
the best, median, worst, mean, standard deviation and feasibility rate of the function values
10D, 30D, 50D and 100D. c is the number of violated constraints at the median solution:
the sequence of three numbers indicate the number of violations (including inequality and
equality) by more than 1.0, in the range [0.01,1.0] and in the range [0.0001,0.01] respectively.
v denotes the mean value of the violations of all constraints at the median solution. SR is the
feasibility rate of the solutions obtained in 25 runs. vio denotes the mean constraint violation
value of all the solutions of 25 runs.

7.7.7 Experimental Results of HECO-PDE

Tables A.13−A.16 in Appendix A shows the experimental results of HECO-PDE in terms of
the best, median, worst, mean, standard deviation and feasibility rate of the function values
10D, 30D, 50D and 100D. c is the number of violated constraints at the median solution:
the sequence of three numbers indicate the number of violations (including inequality and
equality) by more than 1.0, in the range [0.01,1.0] and in the range [0.0001,0.01] respectively.
v denotes the mean value of the violations of all constraints at the median solution. SR is the
feasibility rate of the solutions obtained in 25 runs. vio denotes the mean constraint violation
value of all the solutions of 25 runs.
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The detailed rank values of all algorithms on mean values and median solutions on 28
test problems with the dimension of 10D, 30D, 50D and 100D are shown in Table 7.10-7.17,
respectively.

Regarding the test functions with 10D, rank values based on mean values and median
solution on the 28 test functions are reported in Table 7.10 and 7.11, respectively. As shown
in Table 7.10, in terms of mean values with 10D, HECO-DE and CMODE got total rank
values, with 81 and 236 respectively. By contrast, HECO-PDE got the lowest rank value,
with 67 and PMODE also got a lower rank value than CMODE, with 218. As shown in
Table 7.11, in terms of median solutions with 10D, HECO-DE and CMODE got total rank
values, with 91 and 207 respectively. By contrast, HECO-PDE got the lowest rank value,
with 87 while PMODE got the same rank value with CMODE, with 207.

Regarding the test functions with 30D, rank values based on mean values and median
solution on the 28 test functions are reported in Table 7.12 and 7.13, respectively. As shown
in Table 7.12, in terms of mean values with 30D, HECO-DE and CMODE got total rank
values, with 82 and 307 respectively. By contrast, HECO-PDE got the lowest rank value,
with 68 and PMODE got a slightly lower rank value than CMODE, with 305. As shown in
Table 7.13, in terms of median solutions with 30D, HECO-DE and CMODE got total rank
values, with 83 and 311 respectively. By contrast, HECO-PDE got the lowest rank value,
with 71 and PMODE got lower rank value than CMODE, with 306.

Regarding the test functions with 50D, rank values based on mean values and median
solution on the 28 test functions are reported in Table 7.14 and 7.15, respectively. As shown
in Table 7.14, in terms of mean values with 50D, HECO-DE and CMODE got total rank
values, with 90 and 314 respectively. By contrast, HECO-PDE got the lowest rank value,
with 77 and PMODE got a slightly lower rank value than CMODE, with 312. As shown in
Table 7.15, in terms of median solutions with 50D, HECO-DE and CMODE got total rank
values, with 87 and 314 respectively. By contrast, HECO-PDE got the lowest rank value,
with 75 while PMODE got a higher rank value than CMODE, with 318.

Regarding the test functions with 100D, rank values based on mean values and median
solution on the 28 test functions are reported in Table 7.16 and 7.17, respectively. As shown
in Table 7.16, in terms of mean values with 100D, HECO-DE got highest total rank value
with 87 and CMODE got 315 respectively. By contrast, HECO-PDE got higher rank value
than HECO-DE with 88 while PMODE got a lower rank value than CMODE, with 305. As
shown in Table 7.17, in terms of median solutions with 100D, HECO-DE and CMODE got
total rank values, with 96 and 315 respectively. By contrast, HECO-PDE got the lowest rank
value with 89, while PMODE got a higher rank value than CMODE with 321.
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According to the CEC 2018 competition rules, the ranks of HECO-PDE and HECO-DE
are on the top two on each dimension but CMODE and PMODE on the bottom two. This
result confirms our guess that MOEAs based on non-dominance, such as PMODE and
CMODE, may not perform as good as decomposition-based MOEAs, such as HECO-PDE
and HECO-DE for solving CSOPs.

7.8 summary

This chapter firstly presents two methods of studying valley and ridge fitness landscapes.
The first method is based on the topological homeomorphism. A rigorous definition of a
valley and a ridge has been established. The second method is based on principle component
analysis. It provides an algorithm of identifying the direction and location of a valley or a
ridge if it exists.

From an experimental observation, we find that given a valley landscape, the maximal
variance direction in a population can be regarded as the valley direction. Based on this
finding, a new search operator, called PCA-projection, is proposed, in which PCA is used to
project points along the maximal variance direction. PCA-projection can be easily added
into an existing MOEA through a mixed strategy. We design two MOEAs enhanced with
PCA-projection, called HECO-PDE and PMODE, for evaluating the effectiveness of this
new operator. Experimental results show that an EA enhanced with PCA-projection performs
better than its corresponding opponent without this operator. The proposed PMODE not only
has significantly improved the solution quality when compared with CMODE, an state-of-
the art MOEA for CSOPs, but is also very competitive with the EAs in IEEE CEC 2006
Competition and is ranked third. Furthermore, HECO-PDE is ranked first on all dimensions
when compared with the state-of-art single-objective EAs from the IEEE CEC 2017/2018
competition and another recent MOEA (DeCODE) for constrained optimization. This study
also reveals that decomposition-based MOEAs, such as HECO-PDE and HECO-DE, are
competitive with best single-objective and multi-objective EAs in constrained optimization,
but MOEAs based on non-dominance, such as PMODE and CMODE, may not perform so
well on the IEEE CEC 2017/2018 benchmark functions. For the future work, PCA-projection
can be applied to other EAs.
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Table 7.1 Function error values achieved when FES = 5× 103, FES = 5× 104, and FES
= 5×105 for test functions g01-g12

FES g01 g02 g03 g04
Best 3.7476E+00 (0) 3.9521E-01 (0) 8.1970E-01 (0) 8.0248E+01 (0)

Median 7.1483E+00 (0) 4.6885E-01 (0) 9.9764E-01 (0) 1.3409E+02 (0)
5×103 Worst 8.3093E+00 (0) 5.8431E-01 (0) 1.0004E+00 (1) 2.1045E+02 (0)

Mean 6.5899E+00 4.7402E-01 9.6788E-01 1.4122E+02
Std 1.4271E+00 5.6480E-02 6.0624E-02 3.6330E+01
Best 8.7244E-02 (0) 1.4509E-01 (0) 2.6009E-05 (0) 5.3865E-03 (0)

Median 2.1775E-01 (0) 2.4452E-01 (0) 3.6454E-04 (0) 1.9360E-02 (0)
5×104 Worst 6.5961E-01 (0) 2.9740E-01 (0) 2.8050E-03 (0) 6.3210E-02 (0)

Mean 2.5840E-01 2.4635E-01 4.3464E-04 2.3514E-02
Std 1.3474E-01 3.2326E-02 5.4310E-04 1.5553E-02
Best 0.0000E+00 (0) 1.4432E-15 (0) -2.8865E-15 (0) -3.6379E-12 (0)

Median 4.6185E-14 (0) 1.6653E-15 (0) -2.6645E-15 (0) -3.6379E-12 (0)
5×105 Worst 1.8172E-12 (0) 8.7220E-03 (0) -2.6645E-15 (0) -3.6379E-12 (0)

Mean 1.7209E-13 6.7092E-04 -2.7622E-15 -3.6379E-12
Std 3.7931E-13 2.3701E-03 1.1249E-16 0.0000E+00

FES g05 g06 g07 g08
Best 1.3619E+01 (0) 9.7204E+00 (0) 4.1846E+01 (0) 7.7709E-06 (0)

Median -7.0744E+00 (2) 3.6650E+01 (0) 6.6091E+01 (0) 2.1193E-04 (0)
5×103 Worst 9.6255E+01 (3) 7.5112E+01 (0) 1.1750E+02 (0) 1.0131E-03 (0)

Mean 5.1398E+01 3.8587E+01 7.0290E+01 2.9866E-04
Std 1.1228E+02 1.7128E+01 2.2190E+01 2.8676E-04
Best 6.5827E-08 (0) 1.7270E-07 (0) 1.1916E-01 (0) 1.5668E-14 (0)

Median 2.8887E-07 (0) 1.9594E-06 (0) 1.7154E-01 (0) 1.0883E-08 (0)
5×104 Worst 1.0345E-06 (0) 1.3193E-05 (0) 3.2815E-01 (0) 6.2483E-07 (0)

Mean 3.4680E-07 2.7423E-06 1.8937E-01 7.4641E-08
Std 2.0430E-07 2.6518E-06 4.7690E-02 1.3977E-07
Best -1.8189E-12 (0) -1.6370E-11 (0) -2.3803E-13 (0) 2.7755E-17 (0)

Median -1.8189E-12 (0) -1.6370E-11 (0) -2.2737E-13 (0) 4.1633E-17 (0)
5×105 Worst -1.8189E-12 (0) -1.6370E-11 (0) -2.1671E-13 (0) 4.1633E-17 (0)

Mean -1.8189E-12 -1.6370E-11 -2.2851E-13 4.1078E-17
Std 0.0000E+00 0.0000E+00 4.6683E-15 2.7755E-18

FES g09 g10 g11 g12
Best 2.3934E+01 (0) 4.1409E+03 (0) 2.8214E-05 (0) 2.1640E-05 (0)

Median 4.9688E+01 (0) 5.9270E+03 (0 3.3153E-04 (0) 9.2278E-05 (0)
5×103 Worst 8.6439E+01 (0) 1.1352E+04 (0) 2.6914E-03 (1) 3.9859E-04 (0)

Mean 5.2651E+01 6.3646E+03 3.8302E-03 1.2505E-04
Std 1.7102E+01 1.7857E+03 1.2484E-02 9.1642E-05
Best 1.8563E-04 (0) 7.2400E+00 (0) 9.4873E-11 (0) 0.0000E+00 (0)

Median 7.3393E-04 (0) 1.1578E+01 (0) 4.4319E-10 (0) 0.0000E+00 (0)
5×104 Worst 2.5274E-03 (0) 2.1756E+01 (0) 3.2906E-09 (0) 0.0000E+00 (0)

Mean 8.0712E-03 1.2072E+01 7.9941E-10 0.0000E+00
Std 5.5073E-04 3.2711E+00 8.2203E-10 0.0000E+00
Best -2.2737E-13 (0) -7.2759E-12 (0) 0.0000E+00 (0) 0.0000E+00 (0)

Median -2.2737E-13 (0) -7.2759E-12 (0) 0.0000E+00 (0) 0.0000E+00 (0)
5×105 Worst -1.1368E-13 (0) -7.2759E-12 (0) 0.0000E+00 (0) 0.0000E+00 (0)

Mean -2.0463E-13 -7.2759E-12 0.0000E+00 0.0000E+00
Std 4.6412E-14 0.0000E+00 0.0000E+00 0.0000E+00
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Table 7.2 Function error values achieved when FES = 5× 103, FES = 5× 104, and FES
= 5×105 for test functions g13-g24

FES g13 g14 g15 g16
Best 9.2923E-01 (0) -2.0579E+02 (3) 1.1259E-02 (0) 5.0879E-02 (0)

Median 7.3286E-01 (2) -1.2254E+02 (3) 1.1329E-01 (1) 9.8467E-02 (0)
5×103 Worst 8.2007E-01 (3) -3.7664E+01 (3) 7.5665E-01 (2) 2.1830E-01 (0)

Mean 6.6186E-01 -1.2076E+02 4.7561E-01 1.0361E-01
Std 3.2237E-01 3.7009E+01 5.5578E-01 3.4454E-02
Best 7.1483E-09 (0) 1.2165E-02 (0) 4.1154E-11 (0) 7.9541E-07 (0)

Median 3.8363E-08 (0) 5.7221E-02 (0) 2.0634E-10 (0) 1.3600E-06 (0)
5×104 Worst 3.6771E-07 (0) 3.0697E-01 (0) 1.4682E-09 (0) 3.2443E-06 (0)

Mean 7.2797E-08 8.8248E-02 3.3435E-10 1.6191E-06
Std 9.0395E-08 7.4330E-02 3.4142E-10 6.9377E-07
Best -2.4286E-16 (0) 1.4210E-14 (0) -1.1368E-13 (0) 3.7747E-15 (0)

Median -2.2204E-16 (0) 1.4210E-14 (0) -1.1368E-13 (0) 3.7747E-15 (0)
5×105 Worst -1.9428E-16 (0) 2.1316E-14 (0) -1.1368E-13 (0) 3.7747E-15 (0)

Mean -2.1954E-16 1.4779E-14 -1.1368E-13 3.7747E-15
Std 1.0385E-17 1.9674E-15 0.0000E+00 0.0000E+00

FES g17 g18 g19 g20
Best 2.1463E+02 (0) 6.7675E-01 (0) 1.2932E+02 (0) 1.2534E+01 (14)

Median 1.0605E+02 (2) 8.7304E-01 (2) 3.0020E+02 (0) 1.0197E+01 (16)
5×103 Worst 9.7101E+02 (3) 1.6762E-01 (5) 4.0959E+02 (0) 9.3376E+00 (19)

Mean 1.2074E+02 7.5218E-01 2.8502E+02 1.0683E+01
Std 1.3696E+02 1.8435E-01 7.4689E+01 1.8991E+00
Best 1.0381E-03 (0) 1.5288E-03 (0) 2.7929E+00 (0) 8.6285E-01 (14)

Median 3.5125E-03 (0) 3.5573E-03 (0) 4.9162E+00 (0) 1.7833E+00 (16)
5×104 Worst 2.8967E+00 (0) 6.2765E-03 (0) 1.0079E+01 (0) 5.4970E-01 (19)

Mean 6.4163E-01 3.6941E-03 5.3814E+00 8.6565E-01
Std 9.4554E-01 1.3026E-03 1.7217E+00 4.1305E-01
Best -1.8189E-12 (0) 2.2204E-16 (0) 5.7661E-10 (0) 7.9138E-02 (10)

Median -1.8189E-12 (0) 2.2204E-16 (0) 3.2166E-09 (0) 8.3353E-02 (15)
5×105 Worst -1.8189E-12 (0) 2.2204E-16 (0) 1.3770E-09 (0) 7.3211E-02 (17)

Mean -1.8189E-12 2.2204E-16 3.9057E-09 8.4100E-02
Std 8.2871E-25 0.0000E+00 3.0780E-09 2.5118E-02

FES g21 g22 g23 g24
Best -1.4412E+01 (1) 6.4219E+03 (4) -4.6027E+02 (1) 1.7725E-03 (0)

Median 6.0401E+02 (2) 4.1341E+03 (7) -1.6899E+02 (3) 7.4986E-03 (0)
5×103 Worst 1.6334E+02 (2) 2.0828E+03 (13) -3.1643E+02 (5) 1.6723E-02 (0)

Mean 1.7658E+02 6.6432E+03 -2.1998E+02 7.8850E-03
Std 1.7532E+02 5.5802E+03 4.1690E+02 3.9429E-03
Best 1.4102E-02 (0) -2.3478E+02 (6) 9.2163E+00 (0) 7.8120E-09 (0)

Median 4.4718E-02 (0) -1.9485E+02 (9) 2.1680E+01 (0) 1.1290E-07 (0)
5×104 Worst 1.3106E+02 (0) -2.2276E+02 (13) 4.9589E+01 (0) 5.9857E-07 (0)

Mean 1.3327E+01 -2.2896E+02 2.3894E+01 1.3876E-07
Std 3.7031E+01 1.1599E+01 1.0062E+01 1.4024E-07
Best -3.0561E-10 (0) -2.3643E+02 (8) -5.6843E-13 (0) 3.2862E-14 (0)

Median -2.6631E-10 (0) -2.3643E+02 (11) -4.5474E-13 (0) 3.2862E-14 (0)
5×105 Worst 1.3097E+02 (0) -2.3414E+02 (14) 1.1368E-13 (0) 3.2862E-14 (0)

Mean 5.2391E+00 -8.0649E+01 -3.4560E-13 3.2862E-14
Std 2.6195E+01 6.0696E+02 2.0620E-13 0.0000E+00
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Table 7.3 Number of FES to achieve the success condition, success rate, feasible rate, and
success performance

Prob. Best Median Worst Mean Std.
Feasible
Rate

Success
Rate

Success
Performance

g01 134184 165520 224488 166889 19031.01 100% 100% 166889
g02 141048 179808 216256 179421 20577.24 100% 92% 179421
g03 44104 53376 66680 53123 5275.58 100% 100% 53123
g04 70328 76392 84688 76745 3366.5 100% 100% 76745
g05 23616 26560 28696 26497 1266.67 100% 100% 26497
g06 29272 38088 42992 37602 2938.38 100% 100% 37602
g07 117504 123496 135192 123904 3918.02 100% 100% 12394
g08 3008 5920 9064 5970 1610.98 100% 100% 5970
g09 51032 58264 64408 57842 3854.65 100% 100% 57842
g10 133384 137504 148248 138412 3881.14 100% 100% 138412
g11 2192 5888 8248 5655 1340.43 100% 100% 5655
g12 1240 4576 7784 4643 1926.71 100% 100% 4643
g13 22096 28048 40112 29042 4696.05 100% 100% 29042
g14 82040 92016 100432 91817 5069.44 100% 100% 91817
g15 10288 11960 12808 11839 585.51 100% 100% 11839
g16 26512 30760 33176 30615 1829.15 100% 100% 30615
g17 63976 71024 161608 92195 32845.84 100% 100% 92195
g18 74048 82024 95560 83586 5588.53 100% 100% 83586
g19 243360 262936 292600 264423 12521.55 100% 100% 264423
g20 - - - - - 0% 0% -
g21 88040 90052 237656 101595 42137.78 100% 96% 101595
g22 - - - - - 0% 0% -
g23 171800 199824 231864 199496 19517.02 100% 100% 199496
g24 14400 24736 29408 23728 4546.14 100% 100% 23728

Table 7.4 Comparison of PMODE with respect to CMODE on f r(x) and success performance.
The winner values are shown in bold.

Prob. f r(x) Success Performance
PMODE CMODE PMODE CMODE p-value

g01 1.7209E-13 0.0000E+00 166889 121077 1.1739E-11
g02 6.7092E-04 2.0387E-08 179421 189820 1.8520E-02
g03 -2.7622E-15 1.1665E-09 53123 75085 7.2272E-12
g04 -3.6379E-12 7.6398E-11 76745 72748 3.9811E-06
g05 -1.8189E-12 -1.8190E-12 26497 28873 3.1053E-39
g06 -1.6370E-11 3.3651E-11 37602 35464 1.3063E-03
g07 -2.2851E-13 7.9793E-11 12394 155968 1.0295E-23
g08 4.1078E-17 8.1964E-11 5970 5885 7.9285E-01
g09 -2.0463E-13 -9.8198E-11 57842 71122 5.1561E-15
g10 -7.2759E-12 6.2827E-11 138412 183255 2.8388E-27
g11 0.0000E+00 0.0000E+00 5655 6023 1.8332E-01
g12 0.0000E+00 0.0000E+00 4643 5009 3.5277E-01
g13 -2.1954E-16 4.1897E-11 29042 30689 9.2308E-02
g14 1.4779E-14 8.5159E-12 91817 107976 2.8797E-14
g15 -1.1368E-13 6.0822E-11 11839 12855 7.3365E-09
g16 3.7747E-15 6.5213E-11 30615 29332 1.8059E-03
g17 -1.8189E-12 1.8189E-12 92195 139746 1.7682E-07
g18 2.2204E-16 1.5561E-11 83586 105020 4.6431E-16
g19 3.9057E-09 2.4644E-10 264423 251676 3.2721E-05
g21 5.2391E+00 2.6195E+01 101595 128758 4.4012E-03
g23 -3.4560E-13 4.4772E-11 199496 244612 2.7069E-11
g24 3.2862E-14 4.6735E-12 23728 21820 4.6499E-02

Number of winners 15 4 12 6 -
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Table 7.5 Comparison of PMODE and CMODE on feasible rate and success rate

Prob. Feasible Rate Success Rate
PMODE CMODE PMODE CMODE

g01 100% 100% 100% 100%
g02 100% 100% 92% 100%
g03 100% 100% 100% 100%
g04 100% 100% 100% 100%
g05 100% 100% 100% 100%
g06 100% 100% 100% 100%
g07 100% 100% 100% 100%
g08 100% 100% 100% 100%
g09 100% 100% 100% 100%
g10 100% 100% 100% 100%
g11 100% 100% 100% 100%
g12 100% 100% 100% 100%
g13 100% 100% 100% 100%
g14 100% 100% 100% 100%
g15 100% 100% 100% 100%
g16 100% 100% 100% 100%
g17 100% 100% 100% 100%
g18 100% 100% 100% 100%
g19 100% 100% 100% 100%
g21 100% 100% 96% 80%
g22 0% 100% 0% 0%
g23 100% 0% 100% 100%
g24 100% 100% 100% 100%

Mean 95.65% 95.65% 95.13% 94.78

Table 7.6 Comparison of PMODE, CMODE and all EAs in CEC 2006 Competition on
feasible rate and success rate

Algorithms Feasible Rate Success Rate
DE 95.65% 78.09%

DMS-PSO 100% 90.61%
ε_DE 100% 95.65%
GDE 92.00% 77.39%
jDE-2 95.65% 80.00%
MDE 95.65% 87.65%

MPDE 94.96% 87.65%
PCX 95.65% 94.09%

PESO+ 95.48% 67.83%
SaDE 100% 87.13%

CMODE 95.65% 94.78
PMODE 95.65% 95.13%
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Table 7.7 Comparison of PMODE, CMODE and all EAs in CEC 2006 Competition on
success performance FEs divided by FEs of the best algorithm. Note: g20 (with a mark
EX) is excluded in the competition. g22 (with a mark -) no values were available in the
competition data.

EAs
FEsbest g01 g02 g03 g04 g05 g06 g07 g08

25115 96222 24861 15281 21306 5202 26578 918
DE 1.3304 1.4017 - 1.0461 5.0256 1.3731 3.5290 1.1830

DMS-PSO 1.3272 1.8201 1.0289 1.6625 1.3790 5.3126 1.0000 4.4928
ε_DE 2.3615 1.5571 3.5963 1.7156 4.5729 1.4189 2.7957 1.2407
GDE 1.6133 1.5543 143.8877 1.0000 9.0821 1.2501 4.6654 1.6002
jDE-2 2.0062 1.5163 - 2.6653 20.9724 5.6686 4.8064 3.5251
MDE 3.0011 1.0000 1.8096 2.7198 1.0000 1.0000 7.3069 1.0000

MPDE 1.7292 3.1694 1.0000 1.3666 10.1600 2.0327 2.1597 1.6498
PCX 2.1981 1.3292 1.4053 2.0279 4.4478 6.5015 4.4067 3.0784

PESO+ 4.0427 4.2905 18.1268 5.2271 21.2267 10.8627 13.8191 6.6710
SaDE 1.0000 1.9107 12.0254 1.6430 3.4263 2.4118 1.0398 1.4412

CMODE 4.8209 1.9727 3.0201 4.7606 1.3551 6.8173 5.8683 6.4106
PMODE 6.6449 1.8646 2.1368 5.0222 1.2436 7.2283 4.6619 6.5032

EAs
FEsbest g09 g10 g11 g12 g13 g14 g15 g16

16152 25520 3000 1308 21732 25220 10458 8730
DE 1.5976 4.6715 4.4600 3.9021 1.5976 2.7052 5.5429 1.3278

DMS-PSO 1.8237 1.0000 4.8750 4.1356 1.8237 1.0000 2.7634 6.1260
ε_DE 1.4315 4.1236 5.4733 3.1529 1.4315 4.4980 8.0528 1.4875
GDE 1.8716 3.2368 2.8200 2.4075 1.8716 9.1247 7.1605 1.5148
jDE-2 3.4001 5.7269 17.9760 4.8593 3.4001 3.8797 23.0812 3.6306
MDE 1.0000 6.4326 1.0000 1.0000 1.0000 11.5639 1.0000 1.0000

MPDE 1.3029 1.9055 7.7854 3.2401 1.3029 1.6937 19.1408 1.4963
PCX 2.8806 3.4886 12.8960 6.8502 2.8806 2.3488 4.4880 3.4817

PESO+ 6.0391 110.8383 150.0333 6.1835 6.0391 - 43.0388 5.6174
SaDE 1.3278 1.7307 8.3703 1.9694 1.3278 1.7843 2.5818 1.7123

CMODE 4.4032 7.1808 2.0076 3.8295 1.4121 4.2813 1.2292 3.3599
PMODE 3.5811 5.4236 1.8850 3.5496 1.3363 3.6406 1.1320 3.5068

EAs
FEsbest g17 g18 g19 g21 g22 g23 g24 g20

26364 28261 21830 38217 - 129550 1794 EX
DE 50.3891 2.8151 8.1186 4.2571 - - 1.6856 EX

DMS-PSO - 1.1741 1.0000 3.6722 - 1.6251 10.8004 EX
ε_DE 3.7498 2.0931 16.3239 3.5362 - 1.5497 1.6455 EX
GDE 81.4890 16.9874 10.5489 15.1615 - 8.2081 1.7051 EX
jDE-2 426.0602 3.6963 9.1548 3.3103 - 2.7592 5.6834 EX
MDE 1.0000 3.6617 - 2.9455 - 2.7821 1.0000 EX

MPDE 27.7422 1.5585 5.4180 5.4703 - 1.6261 2.4204 EX
PCX 5.1627 2.4779 5.9403 1.0000 - 1.2900 6.4916 EX

PESO+ - 8.2431 - - - - 11.1371 EX
SaDE 474.1314 1.0000 2.3896 4.2958 - 1.0000 2.5775 EX

CMODE 5.3006 3.7160 11.5289 3.3691 - 1.8881 12.1627 EX
PMODE 3.4970 2.9576 12.1128 2.6583 - 1.5399 13.2263 EX
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Table 7.8 The ranking of PMODE, CMODE and all ten algorithms in CEC 2006 Competition
on f r(x), feasible rate, success rate, success performance and the final rank

Algorithms f r(x) Feasible Rate Success Rate Success Performance Final Rank
DE 9 4 10 6 8

DMS-PSO 4 1 5 3 2
ε_DE 2 1 1 4 1
GDE 12 12 11 10 11
jDE-2 10 4 9 11 10
MDE 7 4 6 1 4

MPDE 5 11 7 5 8
PCX 3 4 4 7 4

PESO+ 11 10 12 12 11
SaDE 9 1 8 1 6

CMODE 6 4 3 9 7
PMODE 1 4 2 8 3

Table 7.9 Total ranks of CMODE, PMODE, HECO-DE, HECO-PDE, DeCODE and seven
EAs in CEC2018 competition

Algorithm/Dimension 10D 30D 50D 100D Total
CAL_LSAHDE(2017) 418 398 428 435 1679
LSHADE44+IDE(2017) 299 365 385 353 1402
LSAHDE44(2017) 319 313 308 310 1250
UDE(2017) 330 344 345 390 1409
MA_ES(2018) 266 240 243 246 995
IUDE(2018) 193 226 224 292 935
LSAHDE_IEpsilon(2018) 199 246 292 333 1070
DeCODE 237 276 277 296 1086
CMODE 443 618 628 631 2320
PMODE 425 610 630 626 2291
HECO-DE 173 164 177 183 697
HECO-PDE 155 138 152 177 622

Table 7.10 Ranks of HECO-PDE and Other EAs based on mean values on the 28 functions
of 10 dimensions

Problem 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Total
CAL_LSAHDE(2017) 1 1 10 10 12 6 7 12 11 12 7 1 12 7 8 10 11 12 1 8 12 12 9 10 10 12 10 1 235
LSHADE44+IDE(2017) 1 1 8 7 1 12 6 1 1 2 1 3 1 9 5 8 6 10 4 4 2 7 8 8 8 6 11 10 151
LSAHDE44(2017) 1 1 9 5 1 11 5 1 10 2 2 10 1 8 9 9 7 9 2 1 4 9 7 7 9 7 9 11 167
UDE(2017) 1 1 7 8 11 7 4 1 8 2 10 1 11 6 6 7 8 8 9 10 8 11 6 4 7 9 8 7 186
MA_ES(2018) 1 1 1 9 1 5 2 1 1 2 5 12 7 10 12 1 12 1 12 9 9 8 10 6 1 8 2 9 158
IUDE(2018) 1 1 5 3 1 1 8 1 1 2 6 7 1 3 4 1 5 7 4 7 3 10 1 4 1 4 7 6 105
LSAHDE_IEpsilon(2018) 1 1 6 4 1 8 3 1 1 2 3 5 1 2 7 1 4 2 3 6 5 1 3 9 1 5 1 12 99
DeCODE 1 1 1 6 1 1 1 11 8 1 9 4 10 1 1 6 3 11 10 5 1 1 5 1 6 3 12 4 125
CMODE 1 1 11 11 1 10 12 1 12 10 12 6 7 11 11 11 9 6 11 12 11 1 11 11 11 11 6 8 236
PMODE 1 1 12 12 1 9 10 1 1 10 11 11 7 12 10 12 10 5 4 11 10 1 12 12 12 10 5 5 218
HECO-DE 1 1 1 1 1 1 11 1 1 2 8 9 1 5 2 1 1 4 4 3 7 1 4 3 1 1 3 3 82
HECO-PDE 1 1 1 1 1 1 9 1 1 2 4 8 1 3 2 1 1 3 4 2 6 1 2 2 1 2 4 2 68



116 HECO-PDE: An Enhanced version of HECO-DE with Principal Component Analysis

0 50000 100000 150000 200000 250000

−0.00075

−0.00050

−0.00025

0.00000

0.00025

0.00050

0.00075

0.00100
g01
g02
g23

(a)

0 20000 40000 60000 80000 100000
0.00

0.01

0.02

0.03

0.04

0.05

0.06
g03
g04
g09

(b)

0 10000 20000 30000 40000 50000
−0.010

−0.005

0.000

0.005

0.010

0.015

0.020 g05
g06
g16
g24

(c)

0 25000 50000 75000 100000 125000 150000 175000

−0.001

0.000

0.001

0.002

0.003

0.004

0.005

0.006
g07
g10
g14

(d)

0 2500 5000 7500 10000 12500 15000 17500
0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200 g08
g11
g12

(e)

0 5000 10000 15000 20000 25000 30000 35000
−0.005

0.000

0.005

0.010

0.015

0.020

0.025
g13
g15
g22

(f)

0 20000 40000 60000 80000 100000 120000

−0.001

0.000

0.001

0.002

0.003

0.004

0.005
g17
g18
g21

(g)

0 100000 200000 300000 400000 500000
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035 g19
g20

(h)

Fig. 7.10 Convergent speed graphs for g01-g24
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Table 7.11 Ranks of HECO-PDE and Other EAs based on median solution on the 28 functions
of 10 dimensions

Problem 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Total
CAL_LSAHDE(2017) 1 1 10 10 1 8 5 12 12 1 4 3 1 8 8 10 10 11 1 8 4 1 9 12 10 10 11 1 183
LSHADE44+IDE(2017) 1 1 9 5 1 10 6 1 1 2 2 4 1 10 7 9 6 10 4 4 5 1 10 9 9 8 10 2 148
LSAHDE44(2017) 1 1 8 7 1 9 7 1 1 2 4 12 1 9 10 8 7 8 2 1 1 1 8 8 8 6 9 11 152
UDE(2017) 1 1 6 8 1 7 4 1 10 2 10 1 1 1 5 7 9 9 11 10 1 1 1 5 7 9 8 7 144
MA_ES(2018) 1 1 1 9 1 1 2 1 1 2 2 5 1 3 12 1 8 1 10 9 6 1 3 7 1 7 1 10 108
IUDE(2018) 1 1 1 1 1 1 8 1 1 2 1 8 1 3 5 1 1 6 4 7 7 1 4 5 1 1 7 7 88
LSAHDE_IEpsilon(2018) 1 1 7 4 1 1 3 1 1 2 6 6 1 3 4 1 5 2 3 6 11 1 6 3 1 5 2 12 100
DeCODE 1 1 1 6 1 1 1 1 10 2 9 1 1 1 1 6 4 12 12 5 1 1 1 1 6 4 12 9 112
CMODE 1 1 11 12 1 11 11 1 1 12 12 7 1 11 11 11 11 5 4 12 8 1 11 10 11 11 6 2 207
PMODE 1 1 12 11 1 12 12 1 1 2 11 9 1 12 9 12 12 7 4 11 10 1 12 11 12 12 5 2 207
HECO-DE 1 1 1 1 1 1 9 1 1 2 8 11 1 6 2 1 2 4 4 3 9 1 7 4 1 3 3 2 91
HECO-PDE 1 1 1 1 1 1 10 1 1 2 7 10 1 6 2 1 2 3 4 2 12 1 5 2 1 2 4 2 87

Table 7.12 Ranks of HECO-PDE and Other EAs based on mean values on the 28 functions
of 30 dimensions

Problem 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Total
CAL_LSAHDE(2017) 1 1 10 10 10 6 8 1 10 10 4 10 10 10 11 12 10 11 1 3 10 10 10 12 10 10 10 1 222
LSHADE44+IDE(2017) 1 1 9 6 1 11 4 10 1 9 3 7 7 9 7 8 7 9 4 5 8 7 9 9 8 7 11 9 187
LSAHDE44(2017) 1 1 8 4 1 10 5 2 1 1 2 5 6 8 8 9 6 6 2 1 7 8 7 8 9 6 9 10 151
UDE(2017) 1 1 5 9 7 4 2 9 7 8 8 8 8 6 6 7 8 7 9 9 4 6 5 6 6 8 8 6 178
MA_ES(2018) 1 1 1 8 1 3 1 2 1 1 1 9 1 7 12 1 9 2 10 10 9 1 6 7 1 9 1 4 120
IUDE(2018) 1 1 6 5 1 7 7 2 7 1 5 2 5 1 5 4 3 5 7 8 6 5 4 3 5 2 5 7 120
LSAHDE_IEpsilon(2018) 1 1 7 1 1 9 3 2 1 1 9 6 9 5 3 6 5 1 3 2 3 9 2 5 7 5 2 12 121
DeCODE 1 1 1 7 9 5 6 8 9 1 12 1 1 2 4 5 4 12 8 4 5 4 8 4 4 1 12 5 144
CMODE 12 12 12 11 12 8 11 12 12 12 10 12 11 11 10 10 12 10 11 11 12 12 11 10 11 11 7 11 307
PMODE 11 11 11 12 11 12 12 11 11 11 11 11 12 12 9 11 11 8 12 12 11 11 12 11 12 12 6 8 305
HECO-DE 1 1 1 2 8 1 9 2 1 1 7 4 1 4 1 1 1 4 4 6 2 3 3 2 1 4 3 3 81
HECO-PDE 1 1 1 2 1 1 10 2 1 1 6 3 1 3 1 1 2 3 4 7 1 2 1 1 1 3 4 2 67

Table 7.13 Ranks of HECO-PDE and Other EAs based on median solution on the 28 functions
of 30 dimensions

Problem 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Total
CAL_LSAHDE(2017) 1 1 10 10 1 6 8 1 1 1 4 8 10 7 9 12 10 9 1 3 3 10 6 12 12 10 9 1 176
LSHADE44+IDE(2017) 1 1 9 2 1 10 6 10 2 10 3 2 1 10 7 8 8 11 4 5 9 7 9 9 8 5 11 9 178
LSAHDE44(2017) 1 1 8 5 1 9 5 2 2 2 2 7 8 9 8 9 7 5 2 1 8 8 8 7 9 8 10 10 162
UDE(2017) 1 1 5 9 1 4 2 9 8 9 8 9 7 6 6 5 9 7 7 9 3 6 1 6 6 9 7 6 166
MA_ES(2018) 1 1 1 8 1 3 1 2 2 2 1 10 1 8 12 1 6 1 10 10 10 1 7 8 1 6 1 4 120
IUDE(2018) 1 1 6 6 1 8 4 2 8 2 6 4 1 1 3 4 3 6 7 8 3 1 1 1 5 1 5 7 106
LSAHDE_IEpsilon(2018) 1 1 7 1 1 7 3 2 2 2 9 5 9 3 5 7 5 2 3 2 7 9 4 5 7 2 2 12 125
DeCODE 1 1 1 6 1 5 7 2 8 2 12 1 1 1 3 5 4 12 9 4 3 1 10 4 4 7 12 5 132
CMODE 12 11 12 11 12 11 11 12 12 11 11 12 11 11 11 10 12 10 11 11 12 12 11 10 11 11 8 11 311
PMODE 11 12 11 12 11 12 12 11 11 12 10 11 12 12 10 11 11 8 12 12 11 11 12 11 10 12 6 8 305
HECO-DE 1 1 1 2 1 1 9 2 2 2 7 6 1 4 1 1 2 4 4 6 2 5 5 3 1 4 3 2 83
HECO-PDE 1 1 1 2 1 1 10 2 2 2 5 3 1 4 1 1 1 3 4 7 1 1 3 2 1 3 4 3 71

Table 7.14 Ranks of HECO-PDE and Other EAs based on mean values on the 28 functions
of 50 dimensions

Problem 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Total
CAL_LSAHDE(2017) 10 10 10 10 9 4 8 10 10 8 4 7 10 10 10 10 10 8 1 12 6 9 10 10 10 10 7 1 234
LSHADE44+IDE(2017) 9 1 9 5 1 10 5 9 7 10 1 4 7 9 7 8 8 7 4 4 9 5 8 9 9 8 10 9 192
LSAHDE44(2017) 1 1 8 3 1 9 4 1 3 1 2 9 6 8 8 9 7 6 3 1 10 6 6 8 8 7 6 8 150
UDE(2017) 1 1 5 9 10 3 2 8 1 9 5 6 9 6 6 6 9 11 9 7 3 8 5 6 6 9 11 5 176
MA_ES(2018) 1 1 1 8 1 1 1 2 8 1 3 10 8 7 9 1 6 1 10 9 8 4 7 7 1 5 1 4 126
IUDE(2018) 1 1 6 7 1 11 7 4 1 1 7 3 5 1 3 5 3 5 8 8 4 3 4 3 5 1 5 7 120
LSAHDE_IEpsilon(2018) 1 1 7 4 8 8 3 7 6 7 8 8 4 4 5 7 5 2 7 2 5 10 2 5 7 6 2 10 151
DeCODE 1 1 1 6 1 2 6 3 9 6 12 5 1 2 4 4 4 12 2 3 7 2 9 4 4 4 12 6 133
CMODE 12 12 11 11 11 12 12 12 11 12 11 11 12 12 12 11 12 9 12 10 11 11 11 11 11 11 9 11 314
PMODE 11 11 12 12 12 7 11 11 12 11 10 12 11 11 11 12 11 10 11 11 12 12 12 12 12 12 8 12 312
HECO-DE 1 1 1 1 1 6 9 6 3 5 9 1 3 5 1 1 2 3 4 5 1 7 3 2 1 3 3 2 90
HECO-PDE 1 1 1 1 1 5 10 5 3 4 6 2 2 3 1 1 1 4 4 6 2 1 1 1 1 2 4 3 77
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Table 7.15 Ranks of HECO-PDE and Other EAs based on median solution on the 28 functions
of 50 dimensions

Problem 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Total
CAL_LSAHDE(2017) 1 1 10 10 1 6 8 10 7 8 4 7 10 6 12 10 10 9 1 3 7 9 6 10 10 10 7 1 194
LSHADE44+IDE(2017) 1 1 9 2 1 9 5 9 9 10 3 3 8 10 7 9 8 8 5 5 9 7 9 9 9 8 11 9 193
LSAHDE44(2017) 1 1 8 5 1 8 4 1 3 1 1 10 7 9 9 8 7 6 4 1 10 8 8 8 8 7 6 8 158
UDE(2017) 1 1 5 9 10 5 2 8 1 9 5 5 9 7 6 6 9 7 10 8 1 6 2 7 6 9 10 5 169
MA_ES(2018) 1 1 1 8 1 3 1 2 8 1 2 9 1 8 8 1 5 1 9 10 8 5 7 6 1 4 1 4 117
IUDE(2018) 1 1 6 7 1 10 7 3 1 1 6 4 1 3 1 5 1 5 2 9 4 4 2 1 4 2 5 7 104
LSAHDE_IEpsilon(2018) 1 1 7 1 1 7 3 7 3 7 8 8 6 1 5 7 6 2 8 2 5 10 5 5 7 6 2 10 141
DeCODE 1 1 1 6 1 4 6 6 10 6 12 5 1 3 4 4 4 12 3 4 6 3 10 4 4 5 12 6 144
CMODE 12 12 12 11 11 12 12 12 11 11 11 12 12 11 10 11 11 10 12 11 11 11 12 11 11 11 8 12 314
PMODE 11 11 11 12 12 11 11 11 12 12 10 11 11 12 11 12 12 11 11 12 12 12 11 12 12 12 9 11 318
HECO-DE 1 1 1 2 1 2 9 4 3 4 9 2 1 5 2 1 3 4 5 6 3 2 4 3 1 3 3 2 87
HECO-PDE 1 1 1 2 1 1 10 5 3 4 7 1 1 2 2 1 2 3 5 7 2 1 1 2 1 1 4 3 75

Table 7.16 Ranks based on mean values on the 28 functions of 100 dimensions

Problem 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Total
CAL_LSAHDE(2017) 9 9 11 10 6 3 9 10 8 9 5 5 9 10 10 10 10 11 1 12 10 7 10 10 10 10 9 1 234
LSHADE44+IDE(2017) 10 10 8 4 4 11 4 6 2 7 1 1 6 9 5 8 8 7 3 4 5 6 6 7 9 8 10 7 176
LSAHDE44(2017) 1 1 7 3 3 10 5 1 1 1 4 10 7 8 8 9 6 6 2 3 9 5 8 6 8 6 6 9 153
UDE(2017) 8 8 5 9 10 4 2 9 10 8 6 2 10 5 7 5 9 8 9 8 4 10 2 8 5 9 11 5 196
MA_ES(2018) 1 1 1 7 9 1 1 2 9 4 2 8 4 7 9 1 5 1 10 9 8 2 7 4 1 5 3 4 126
IUDE(2018) 1 1 9 8 5 12 7 3 6 5 3 3 8 1 4 6 3 5 8 7 2 8 5 5 6 3 5 8 147
LSAHDE_IEpsilon(2018) 7 7 6 5 8 9 3 7 7 6 8 4 5 4 6 7 7 2 6 2 3 9 4 9 7 7 4 10 169
DeCODE 1 1 1 6 7 2 6 8 3 10 10 6 3 6 3 4 4 12 7 1 1 1 9 3 4 4 12 6 141
CMODE 12 12 10 12 12 8 12 11 12 12 11 11 12 11 12 12 11 10 12 11 12 12 11 11 12 12 8 11 315
PMODE 11 11 12 11 11 6 11 12 11 11 12 12 11 12 11 11 12 9 11 10 11 11 12 12 11 11 7 12 305
HECO-DE 1 1 1 1 1 7 8 4 3 2 9 7 1 3 1 1 1 3 3 5 7 3 3 2 3 2 2 2 87
HECO-PDE 1 1 1 2 1 5 10 5 3 3 7 9 2 2 1 1 2 4 3 6 6 4 1 1 2 1 1 3 88

Table 7.17 Ranks based on median solution on the 28 functions of 100 dimensions

Problem 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Total
CAL_LSAHDE(2017) 9 9 10 10 7 5 9 10 6 9 5 4 9 1 10 10 10 9 1 1 3 7 6 10 10 10 10 1 201
LSHADE44+IDE(2017) 10 10 9 1 3 9 5 6 2 8 4 2 6 10 6 8 7 6 3 5 7 5 7 8 9 7 6 8 177
LSAHDE44(2017) 1 1 8 4 4 8 6 1 1 1 2 10 7 9 9 9 5 7 2 4 8 4 9 9 8 4 7 9 157
UDE(2017) 8 8 5 9 10 4 2 9 8 10 6 1 10 6 8 5 9 8 9 9 5 10 3 6 5 8 8 5 194
MA_ES(2018) 1 1 1 7 9 2 1 2 10 5 1 6 4 8 4 1 4 1 10 10 6 3 8 4 1 5 1 4 120
IUDE(2018) 1 1 7 8 5 10 4 3 9 4 3 3 8 2 7 6 3 5 7 8 2 8 5 5 6 3 5 7 145
LSAHDE_IEpsilon(2018) 7 7 6 5 8 6 3 7 7 6 8 5 5 5 4 7 6 2 6 3 4 9 4 7 7 6 4 10 164
DeCODE 1 1 1 6 6 3 7 8 3 7 12 7 3 7 3 4 8 12 8 2 1 1 10 3 4 9 12 6 155
CMODE 12 12 11 12 11 11 12 11 12 12 10 11 11 11 11 12 11 10 11 11 12 12 11 11 11 12 11 11 316
PMODE 11 11 12 11 12 12 11 12 11 11 11 12 12 12 12 11 12 11 12 12 11 11 12 12 12 11 9 12 321
HECO-DE 1 1 1 3 1 7 8 4 3 2 9 9 2 4 1 1 1 3 3 6 10 2 2 2 3 2 3 2 96
HECO-PDE 1 1 1 1 1 1 10 5 3 3 7 8 1 3 1 1 2 4 3 7 9 6 1 1 2 1 2 3 89



Chapter 8

Conclusions and Future Work

8.1 Conclusions

In this thesis, we developed several different MOEAs for solving CSOPs with theoretical
analysis and experimental studies.

In Chapter 2, we summarised exsiting multi-objective methods for constrained optimiza-
tion into three schemes: schemes with two objectives, schemes with many objectives and
schemes with other objective(s).

In Chapter 3, we introduced the problem definitions and evaluation criteria for the IEEE
CEC2006 and IEEE CEC2017 competition on single-objective constrained real-parameter
optimization. The methodology of comparing different algorithms are also summarized.

In Chapter 4 and 5, two different models for solving CSOPs were proposed. The first
model is to construct other helper fitness functions from weighted sums of the normalised
original objective and the normalised degree of constraint violation besides the standard
model with two objectives. The new model is compared with the standard model used
in CMODE. Experimental results show that CMODE with three fitness functions obtains
remarkable better performance than that with the standard two fitness functions on most
benchmark functions (12/13) from IEEE CEC2006 competition. However, as shown in
Chapter 7 this model cannot maintain high performance in IEEE CEC2017/2018 benchmark
functions. Thus, the other model converts a constrained optimization problem into a problem
with helper and equivalent objectives (HECO). We theoretically analyse the computation
time of HECO on a hard problem called “wide gap”. The “wide gap” problem means that an
algorithm needs exponential time to cross between two fitness levels. We prove that using
helper and equivalent objective HECO may shorten the time of crossing the “wide gap”.

Then, in Chapter 6, a case study was conducted to validate our HECO framework. A new
algorithm, called HECO-DE, is designed which employs helper and equivalent objectives
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and reuses search operators from LSHADE44 [107]. Experimental results show that with
the aid of helper and equivalent objectives, HECO-DE has outperformed LSHADE44,
the winner of the CEC 2018 competition [133] and a latest decomposition-based MOEA,
DeCODE [148]. This case study proves the efficiency of the helper and equivalent objective
method for constrained optimization. Tchebycheff decomposition a multi-population version
of HECO-DE, called HECO-DEm are proposed to enhance our results. HECO-DEm divides
a population into three subpopulations. Different from HECO-DE, different weights are
assigned to objective decomposition in each subproblems. This makes search directions in
one subpopulation are different from another subpopulation. Unlike HECO-DE, HECO-DEm
is suitable for parallel computation. It is expected that using multi-population can maintain
population diversity and increase search directions, then it may improve the capacity of
HECO-DE to handle complex fitness landscapes especially in a high dimensional search
space. Experiment results show that its overall performance is the same as HECO-DE and
much better than other eight algorithms under comparison. The multi-population version
performs slightly better than HECO-DE in 50 and 100 dimensional functions. However, the
Tchebycheff decomposition approach might not be as effective as weighted sum approach in
HECO-DE according to the experiment study. These extensive experimental indicates that
our HECO performs very well.

In Chapter 7, we presented two methods of studying valleys on a fitness landscape. The
first method is based on the topological homeomorphism. It establishes a rigorous definition
of a valley. A valley is regarded as a one-dimensional manifold. The second method takes a
different viewpoint from statistics. It provides an algorithm of identifying the valley direction
and location using principle component analysis. From an experimental observation, we find
that given a valley landscape, the maximal variance direction in a population can be regarded
as the valley direction. Based on this finding, a new search operator, called PCA-projection, is
proposed, in which PCA is used to project points along the maximal variance direction. PCA-
projection can be easily added into an existing MOEA through a mixed strategy. We design
two MOEAs enhanced with PCA-projection, called HECO-PDE and PMODE, for evaluating
the effectiveness of this new operator. Experimental results show that an EA enhanced with
PCA-projection performs better than its corresponding opponent without this operator. The
proposed PMODE not only has significantly improved the solution quality when compared
with CMODE, an state-of-the art MOEA for CSOPs, but is also very competitive with the
EAs in IEEE CEC 2006 Competition and is ranked third. Furthermore, HECO-PDE is ranked
first on all dimensions when compared with the state-of-art single-objective EAs from the
IEEE CEC 2017/2018 competition and another recent MOEA (DeCODE) for constrained
optimization. This study also reveals that decomposition-based MOEAs, such as HECO-
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PDE and HECO-DE, are competitive with best single-objective and multi-objective EAs
in constrained optimization, but MOEAs based on non-dominance, such as PMODE and
CMODE, may not perform so well on the IEEE CEC 2017/2018 benchmark functions.

8.2 Future Work

Further studies are required to understand and extend the methods proposed in the thesis.
In Chapters 4 and 5, we proposed two novel models for solving CSOPs. However, search

operators are still from existing EAs, such as CMODE [151] and LSHADE44 [107] which are
developed from DE. In the future, we may try different EAs, for example, PSO or CMA-ES
with the HECO framework. PCA-projections in Chapter 7 could also be tested with other
EAs. Further, we may develop our own search operators which are totally different from
current EAs for solving CSOPs.

There are an extensive research of conducting into the three types of schemes explored in
this Thesis. However, there are still several research issues that remain to be solved in each
area. Some possible fields of future work for each area can be identified in the future work.
We have explored multi-objective methods for constrained single-objective optimization
problems is the area and analyzed in this thesis. Thus, one of the main challenges is the
selection of the robust technique to be applied. Since they arose with the aim of avoiding the
tuning of parameters in penalty-based schemes, this is a large drawback to its use. Thus, in
our opinion, there should be an effort to apply these techniques using a common framework
with the aim of better analyzing their performance. For instance, HECO framework in the
thesis. A set of solvers might be picked and integrated with adaptive selection mechanisms as
hyperheuristics. If successful, this might facilitate the solving of new problems where there
is not much information on the fitness landscape. As we have shown, for some constrained
optimization problems, some single- objective schemes are superior to multi-objective
schemes. It would be very interesting to identify those properties that hamper optimization
for multi-objective methods. In addition, exploring the properties of the best single-objective
schemes to understand the differences might give some insight into possible areas to explore.
For instance, many successful single-objective schemes incorporate the use of a local search.
This area of research has also been explored in some multi-objective schemes, but the number
of proposals is very scarce. In addition, in keeping with the idea of applying hyperheuristics,
these might be used to combine single-objective and multi-objective methods.

Finally, it is important to note that in recent years, several advances have been made
in the field of many-optimization. Since in some optimization problems a large number
of constraints arise, the application of some of the latest advances in this field is very
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promising. Considering the importance in constrained problems of producing some bias in
the search so as to avoid the over-exploration of non-promising regions, the direct use of
many-optimization is probably not helpful. However, some of the ideas explored in this area
might be successfully adapted to constrained optimization.

The number of methods that consider diversity as an objective is more limited. In any case,
several different schemes have been devised, and a large number of different optimization
problems have been tackled. As was mentioned earlier, some of the schemes proposed
have not been compared against some traditional diversity preservation techniques, such as
fitness sharing or crowding. Thus, developing a comparison among the different proposals
with some of the most recent published benchmark problems would be of great value. It
is also important to note that some of the currently used schemes have limited their use to
some specific areas. For instance, the multi-objective novelty-based approaches have only
been used in the field of evolutionary robotics. Since they have obtained very promising
results, it would be very interesting to test them, for example, in real-parameter optimization
environments. In addition, some other diversity preservation techniques might inspire new
innovations.

The current test problems are mainly from CEC2006 and CEC2017/2018 benchmark
problems. However, CEC2006 benchmark functions have already been solved by various
EAs. Additionally, CEC2017/2018 benchmark functions are still artificial real-parameter
problems. Different from the first two, the brand new CEC2020 benchmark functions [134]
are a set of 57 real-world optimization problems which have been difficult for solving because
of their complex objective function with a substantial number of constraints. To validate
effectiveness and strength of our proposed algorithms, EAs based on HECO and future
algorithms will be tested on the new benchmark functions.
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Table A.1 Function values of HECO-DE achieved for 10D (FESmax = 20000×D) on IEEE
CEC2017 benchmarks

problem C01 C02 C03 C04 C05 C06 C07
Best 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 -9.91896e+02

Median 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 -9.68180e+02
c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00

mean 0.00000e+00 0.00000e+00 0.00000e+00 5.42911e+00 8.69719e-31 0.00000e+00 -9.56102e+02
Worst 0.00000e+00 0.00000e+00 0.00000e+00 1.35728e+01 2.17430e-29 0.00000e+00 -8.80241e+02

std 0.00000e+00 0.00000e+00 0.00000e+00 6.64928e+00 4.26074e-30 0.00000e+00 3.35462e+01
SR 100 100 100 100 100 100 100
vio 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00

Problem C8 C9 C10 C11 C12 C13 C14
Best -1.34840e-03 -4.97525e-03 -5.09647e-04 -1.68818e-01 3.98790e+00 0.00000e+00 2.37633e+00

Median -1.34840e-03 -4.97525e-03 -5.09647e-04 -1.66490e-01 3.98790e+00 0.00000e+00 2.37633e+00
c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00

mean -1.34840e-03 -4.97525e-03 -5.09647e-04 -1.04491e+00 3.98791e+00 1.59463e-01 2.37633e+00
Worst -1.34840e-03 -4.97525e-03 -5.09647e-04 -5.03190e+00 3.98796e+00 3.98658e+00 2.37633e+00

std 3.82639e-16 0.00000e+00 0.00000e+00 1.34370e+00 1.05948e-05 7.81207e-01 1.33227e-15
SR 100 100 100 56 100 100 100
vio 0.00000e+00 0.00000e+00 0.00000e+00 2.41023e-05 0.00000e+00 0.00000e+00 0.00000e+00

Problem C15 C16 C17 C18 C19 C20 C21
Best 2.35612e+00 0.00000e+00 1.08553e-02 1.00000e+01 0.00000e+00 5.59892e-02 3.98790e+00

Median 2.35612e+00 0.00000e+00 1.08553e-02 5.04203e+01 0.00000e+00 2.94245e-01 3.98790e+00
c 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
v 0.00000e+00 0.00000e+00 4.50000e+00 0.00000e+00 6.63359e+03 0.00000e+00 0.00000e+00

mean 2.35612e+00 6.28263e-02 1.08347e-02 3.43142e+01 0.00000e+00 3.01877e-01 3.98790e+00
Worst 2.35612e+00 1.57066e+00 1.03418e-02 5.19710e+01 0.00000e+00 5.23269e-01 3.98791e+00

std 1.06951e-15 3.07785e-01 1.00610e-04 1.98547e+01 0.00000e+00 1.30553e-01 2.61846e-06
SR 100 100 0 100 0 100 100
vio 0.00000e+00 0.00000e+00 4.54000e+00 0.00000e+00 6.63359e+03 0.00000e+00 0.00000e+00

Problem C22 C23 C24 C25 C26 C27 C28
Best 6.17530e-30 2.37633e+00 2.35612e+00 3.09207e-86 1.08553e-02 9.05515e+01 3.74160e-15

Median 6.17530e-30 2.37633e+00 2.35612e+00 1.63062e-74 1.08553e-02 9.57215e+01 1.01234e-10
c 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
v 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 4.50000e+00 0.00000e+00 6.63359e+03

mean 1.59463e-01 2.37633e+00 2.35612e+00 4.39784e-01 1.93244e-02 9.38603e+01 2.33151e-08
Worst 3.98658e+00 2.37633e+00 2.35612e+00 1.57066e+00 2.27203e-01 9.57221e+01 2.01317e-07

std 7.81207e-01 3.52023e-07 4.59998e-08 7.05223e-01 4.24337e-02 2.48162e+00 5.59317e-08
SR 100 100 100 100 0 100 0
vio 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 4.90000e+00 0.00000e+00 6.63359e+03
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Table A.2 Function Values of HECO-DE Achieved for 30D (FESmax = 20000×D)

problem C01 C02 C03 C04 C05 C06 C07
Best 0.00000e+00 0.00000e+00 0.00000e+00 1.35728e+01 0.00000e+00 0.00000e+00 -2.97725e+03

Median 2.44177e-29 2.44177e-29 4.10208e-29 1.35728e+01 0.00000e+00 0.00000e+00 -1.77011e+03
c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
v 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 6.07711e-04

mean 2.78897e-29 3.05062e-29 3.93642e-29 1.35728e+01 1.59465e-01 0.00000e+00 -2.10204e+03
Worst 1.06656e-28 9.93965e-29 9.95937e-29 1.35728e+01 3.98662e+00 0.00000e+00 -2.76259e+03

std 2.55048e-29 2.53801e-29 2.96881e-29 2.63476e-15 7.81216e-01 0.00000e+00 8.69986e+02
SR 100 100 100 100 100 100 16
vio 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 8.80450e-04

Problem C8 C9 C10 C11 C12 C13 C14
Best -2.83981e-04 -2.66551e-03 -1.02842e-04 -9.24361e-01 3.98327e+00 0.00000e+00 1.40852e+00

Median -2.83981e-04 -2.66551e-03 -1.02842e-04 6.09128e+00 3.98463e+00 0.00000e+00 1.40852e+00
c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v 0.00000e+00 0.00000e+00 0.00000e+00 8.12995e-22 0.00000e+00 0.00000e+00 0.00000e+00

mean -2.83981e-04 -2.66551e-03 -1.02842e-04 -3.07691e+02 3.98460e+00 0.00000e+00 1.41033e+00
Worst -2.83981e-04 -2.66551e-03 -1.02841e-04 -1.88170e+03 3.98646e+00 0.00000e+00 1.42415e+00

std 9.41607e-11 3.55271e-16 1.02224e-10 5.66173e+02 8.84065e-04 0.00000e+00 4.03595e-03
SR 100 100 100 44 100 100 100
vio 0.00000e+00 0.00000e+00 0.00000e+00 3.11118e+01 0.00000e+00 0.00000e+00 0.00000e+00

Problem C15 C16 C17 C18 C19 C20 C21
Best 2.35612e+00 0.00000e+00 3.08555e-02 4.22186e+01 0.00000e+00 2.20283e+00 3.98290e+00

Median 2.35612e+00 0.00000e+00 1.47580e+00 5.34725e+01 0.00000e+00 2.59641e+00 3.98486e+00
c 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
v 0.00000e+00 0.00000e+00 1.45000e+01 0.00000e+00 2.13749e+04 0.00000e+00 0.00000e+00

mean 2.35612e+00 0.00000e+00 5.95048e-01 5.07349e+01 0.00000e+00 2.60824e+00 3.98469e+00
Worst 2.35612e+00 0.00000e+00 6.86588e-01 5.48137e+01 0.00000e+00 3.02403e+00 3.98602e+00

std 1.32633e-15 0.00000e+00 4.74854e-01 4.57596e+00 0.00000e+00 2.17753e-01 9.06801e-04
SR 100 100 0 100 0 100 100
vio 0.00000e+00 0.00000e+00 1.49000e+01 0.00000e+00 2.13749e+04 0.00000e+00 0.00000e+00

Problem C22 C23 C24 C25 C26 C27 C28
Best 3.50703e-12 1.40854e+00 2.35612e+00 0.00000e+00 6.66654e-01 2.08761e+02 0.00000e+00

Median 1.05155e-06 1.40862e+00 2.35612e+00 0.00000e+00 8.81989e-01 2.08769e+02 1.78375e-06
c 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
v 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.55000e+01 0.00000e+00 2.13749e+04

mean 8.00599e-05 1.40889e+00 2.35612e+00 0.00000e+00 8.64329e-01 2.27503e+02 3.33268e-01
Worst 1.81267e-03 1.41193e+00 2.35612e+00 0.00000e+00 9.61474e-01 2.51358e+02 3.90569e+00

std 3.54137e-04 8.42014e-04 1.00417e-07 0.00000e+00 8.88294e-02 2.11389e+01 9.60838e-01
SR 100 100 100 100 0 100 0
vio 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.55000e+01 0.00000e+00 2.13761e+04
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Table A.3 Function Values of HECO-DE Achieved for 50D (FESmax = 20000×D)

problem C01 C02 C03 C04 C05 C06 C07
Best 1.10354e-28 1.36473e-28 2.24431e-28 1.35728e+01 0.00000e+00 0.00000e+00 -4.00718e+03

Median 2.29078e-28 2.44756e-28 5.41553e-28 1.35728e+01 9.12120e-30 2.00943e+02 -2.44889e+03
c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
v 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.16020e-04

mean 3.37842e-28 2.92104e-28 5.58198e-28 1.35728e+01 1.64818e-29 1.39232e+02 -3.08941e+03
Worst 1.53740e-27 6.90845e-28 9.95937e-28 1.35728e+01 8.92399e-29 2.89572e+02 -3.25560e+03

std 2.82620e-28 1.37442e-28 2.27814e-28 2.89693e-14 2.52948e-29 1.27084e+02 7.42860e+02
SR 100 100 100 100 100 52 24
vio 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.39134e-03 3.26548e-04

Problem C8 C9 C10 C11 C12 C13 C14
Best -1.34463e-04 -2.03709e-03 -4.82662e-05 -2.52965e+01 3.98156e+00 0.00000e+00 1.09995e+00

Median -1.33775e-04 -2.03709e-03 -4.82592e-05 -2.90737e+03 3.98261e+00 5.32402e-27 1.11954e+00
c 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
v 0.00000e+00 0.00000e+00 0.00000e+00 1.08397e+02 0.00000e+00 0.00000e+00 0.00000e+00

mean -1.30457e-04 -2.03709e-03 -4.82539e-05 -2.32090e+03 3.98257e+00 6.15871e+00 1.12293e+00
Worst -9.48622e-05 -2.03709e-03 -4.81877e-05 -2.55864e+03 3.98319e+00 7.52752e+01 1.15587e+00

std 8.54223e-06 6.15348e-16 1.64358e-08 9.08096e+02 3.98495e-04 2.03125e+01 1.75211e-02
SR 100 100 100 0 100 100 100
vio 0.00000e+00 0.00000e+00 0.00000e+00 1.29300e+02 0.00000e+00 0.00000e+00 0.00000e+00

Problem C15 C16 C17 C18 C19 C20 C21
Best 2.35612e+00 0.00000e+00 1.77100e-01 4.42174e+01 0.00000e+00 4.89241e+00 3.98145e+00

Median 2.35612e+00 0.00000e+00 6.41481e-01 4.61632e+01 0.00000e+00 5.59980e+00 3.98235e+00
c 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
v 0.00000e+00 0.00000e+00 2.55000e+01 0.00000e+00 3.61162e+04 0.00000e+00 0.00000e+00

mean 2.35612e+00 0.00000e+00 7.55210e-01 4.64731e+01 0.00000e+00 5.60828e+00 3.98242e+00
Worst 2.35612e+00 0.00000e+00 1.03384e+00 4.92174e+01 0.00000e+00 6.17004e+00 3.98453e+00

std 1.69686e-15 0.00000e+00 3.71225e-01 1.08924e+00 0.00000e+00 3.45360e-01 6.31632e-04
SR 100 100 0 100 0 100 100
vio 0.00000e+00 0.00000e+00 2.53000e+01 0.00000e+00 3.61162e+04 0.00000e+00 0.00000e+00

Problem C22 C23 C24 C25 C26 C27 C28
Best 1.37618e+01 1.09997e+00 2.35612e+00 0.00000e+00 8.96182e-01 2.47643e+02 2.56358e-04

Median 1.56511e+01 1.10006e+00 2.35612e+00 0.00000e+00 9.99371e-01 2.47664e+02 6.60701e-01
c 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
v 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.55000e+01 0.00000e+00 3.61166e+04

mean 9.59266e+01 1.10114e+00 2.35612e+00 1.58932e-15 9.97925e-01 2.55605e+02 1.22326e+00
Worst 1.95227e+03 1.12130e+00 2.35612e+00 3.97330e-14 1.04168e+00 2.64241e+02 8.39748e+00

std 3.79187e+02 4.18541e-03 4.99851e-08 7.78605e-15 3.46115e-02 8.27783e+00 2.01178e+00
SR 96 100 100 100 0 100 0
vio 5.00660e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.55000e+01 0.00000e+00 3.61202e+04
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Table A.4 Function Values of HECO-DE Achieved for 100D (FESmax = 20000×D)

problem C01 C02 C03 C04 C05 C06 C07
Best 1.39645e-20 2.82470e-19 1.70210e-19 1.35728e+01 6.25206e-16 7.81280e+02 -5.86436e+03

Median 6.45277e-18 8.86775e-18 2.26735e-18 1.35728e+01 5.34121e-14 8.81984e+02 -5.08220e+03
c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0
v 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.91733e-03 9.30853e-05

mean 1.73680e-17 1.70709e-17 3.89365e-18 1.35728e+01 1.16002e-12 8.59412e+02 -4.71743e+03
Worst 9.62873e-17 8.54605e-17 1.94437e-17 1.35728e+01 2.35813e-11 9.39791e+02 -4.93686e+03

std 2.45766e-17 2.23586e-17 4.69314e-18 3.52814e-06 4.59692e-12 1.19393e+02 6.87463e+02
SR 100 100 100 100 100 4 44
vio 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.77383e-03 1.56297e-04

Problem C8 C9 C10 C11 C12 C13 C14
Best -3.45438e-05 0.00000e+00 -1.71209e-05 -6.63258e+03 1.02834e+01 3.32054e+01 7.84202e-01

Median 2.13381e-04 0.00000e+00 -1.68397e-05 -7.37344e+03 3.18082e+01 3.32106e+01 8.16159e-01
c 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
v 0.00000e+00 0.00000e+00 0.00000e+00 1.00349e+02 0.00000e+00 0.00000e+00 0.00000e+00

mean 2.11219e-04 0.00000e+00 -1.68393e-05 -7.25820e+03 2.96135e+01 3.36611e+01 8.17791e-01
Worst 5.05202e-04 0.00000e+00 -1.64859e-05 -7.98338e+03 3.35380e+01 3.71947e+01 8.81631e-01

std 1.43678e-04 0.00000e+00 1.40929e-07 4.61216e+02 6.66521e+00 1.06502e+00 2.51557e-02
SR 100 100 100 0 100 100 100
vio 0.00000e+00 0.00000e+00 0.00000e+00 1.23998e+02 0.00000e+00 0.00000e+00 0.00000e+00

Problem C15 C16 C17 C18 C19 C20 C21
Best 2.35612e+00 0.00000e+00 2.87759e-01 4.62791e+01 0.00000e+00 1.31030e+01 1.24660e+01

Median 2.35612e+00 0.00000e+00 7.33502e-01 5.20791e+01 0.00000e+00 1.46739e+01 3.17885e+01
c 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0
v 0.00000e+00 0.00000e+00 5.05000e+01 4.11325e-03 7.29695e+04 0.00000e+00 0.00000e+00

mean 2.35612e+00 0.00000e+00 7.41230e-01 8.71777e+01 0.00000e+00 1.45065e+01 3.12120e+01
Worst 2.35612e+00 0.00000e+00 1.04448e+00 4.65393e+01 0.00000e+00 1.52835e+01 3.30128e+01

std 1.39022e-15 0.00000e+00 2.38862e-01 4.24470e+01 0.00000e+00 5.76377e-01 3.84882e+00
SR 100 100 0 32 0 100 100
vio 0.00000e+00 0.00000e+00 5.03400e+01 9.33013e+00 7.29695e+04 0.00000e+00 0.00000e+00

Problem C22 C23 C24 C25 C26 C27 C28
Best 7.94816e+01 7.84233e-01 2.35612e+00 1.57066e+00 9.78423e-01 2.84774e+02 3.80708e+01

Median 2.14603e+03 7.84294e-01 2.35612e+00 6.28305e+00 1.05080e+00 3.18841e+02 4.59190e+01
c 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
v 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 5.05000e+01 0.00000e+00 7.30555e+04

mean 1.75393e+04 7.88594e-01 2.35612e+00 5.27774e+00 1.05947e+00 3.05235e+02 4.40258e+01
Worst 4.61479e+03 8.12544e-01 2.35612e+00 1.88494e+01 1.09882e+00 3.18900e+02 6.41817e+01

std 3.23366e+04 8.85911e-03 2.00166e-08 4.28180e+00 3.31383e-02 1.66844e+01 1.09266e+01
SR 52 100 100 100 0 100 0
vio 3.20548e+01 0.00000e+00 0.00000e+00 0.00000e+00 5.05000e+01 0.00000e+00 7.30540e+04
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Table A.5 Function values of HECO-DEtch achieved for 10D (FESmax = 20000×D) on
IEEE CEC2017 benchmarks

problem C01 C02 C03 C04 C05 C06 C07
Best 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 -5.83545e+02

Median 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 -1.56209e+02
c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00

mean 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 -2.86443e+02
Worst 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 -1.56636e+02

std 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.58630e+02
SR 1.0 1.0 1.0 1.0 1.0 1.0 0.64
vio 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 6.11581e-04

Problem C8 C9 C10 C11 C12 C13 C14
Best -1.34840e-03 -4.97525e-03 -5.09647e-04 -1.00675e-01 3.98790e+00 0.00000e+00 2.37633e+00

Median -1.34840e-03 -4.97525e-03 -5.09647e-04 -2.16947e+00 3.98791e+00 0.00000e+00 2.37633e+00
c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v 0.00000e+00 0.00000e+00 0.00000e+00 1.14980e-07 0.00000e+00 0.00000e+00 0.00000e+00

mean -1.34840e-03 -4.97525e-03 -5.09647e-04 -3.12366e+00 3.98811e+00 0.00000e+00 2.38973e+00
Worst -1.34840e-03 -4.97525e-03 -5.09647e-04 -2.19040e+01 3.98901e+00 0.00000e+00 2.64782e+00

std 0.00000e+00 0.00000e+00 0.00000e+00 4.08583e+00 3.53821e-04 0.00000e+00 5.31318e-02
SR 1.0 1.0 1.0 0.04 1.0 1.0 1.0
vio 0.00000e+00 0.00000e+00 0.00000e+00 3.77175e-02 0.00000e+00 0.00000e+00 0.00000e+00

Problem C15 C16 C17 C18 C19 C20 C21
Best 2.35612e+00 0.00000e+00 1.08553e-02 1.00000e+01 0.00000e+00 6.16717e-02 3.98790e+00

Median 2.35612e+00 0.00000e+00 1.08553e-02 5.04203e+01 0.00000e+00 2.17529e-01 3.98790e+00
c 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
v 0.00000e+00 0.00000e+00 4.50000e+00 0.00000e+00 6.63359e+03 0.00000e+00 0.00000e+00

mean 2.85878e+00 0.00000e+00 1.08142e-02 4.20874e+01 0.00000e+00 2.10051e-01 3.98809e+00
Worst 8.63931e+00 0.00000e+00 1.03418e-02 4.71896e+01 0.00000e+00 4.39838e-01 3.98924e+00

std 1.45466e+00 0.00000e+00 1.39288e-04 1.60693e+01 0.00000e+00 9.15871e-02 3.56503e-04
SR 1.0 1.0 0.0 0.84 0.0 1.0 1.0
vio 0.00000e+00 0.00000e+00 4.58000e+00 5.65968e-06 6.63359e+03 0.00000e+00 0.00000e+00

Problem C22 C23 C24 C25 C26 C27 C28
Best 6.17530e-30 2.37633e+00 2.35612e+00 1.14425e-76 1.08553e-02 3.45960e+01 7.70404e-17

Median 6.17530e-30 2.37633e+00 2.35612e+00 1.04739e-63 1.08553e-02 3.65978e+01 5.00778e-12
c 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
v 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 4.50000e+00 0.00000e+00 6.63359e+03

mean 7.50355e-30 2.37633e+00 2.35612e+00 1.88479e-01 2.23145e-02 3.62779e+01 3.89176e-09
Worst 1.31888e-29 2.37633e+00 2.35613e+00 1.57066e+00 2.27185e-01 3.65997e+01 4.66031e-08

std 1.83291e-30 4.16406e-07 1.89626e-06 5.10403e-01 4.40828e-02 7.33678e-01 1.00152e-08
SR 1.0 1.0 1.0 1.0 0.0 1.0 0.0
vio 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 4.66000e+00 0.00000e+00 6.63359e+03



143

Table A.6 Function values of HECO-DEtch achieved for 30D (FESmax = 20000×D) on
IEEE CEC2017 benchmarks

problem C01 C02 C03 C04 C05 C06 C07
Best 1.02552e-29 0.00000e+00 6.31089e-30 0.00000e+00 0.00000e+00 0.00000e+00 -1.11604e+03

Median 4.40406e-29 3.54987e-29 1.04130e-28 1.35728e+01 0.00000e+00 0.00000e+00 -6.55567e+02
c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00

mean 4.63998e-29 4.02166e-29 2.09094e+01 1.38401e+01 1.59465e-01 0.00000e+00 -6.71969e+02
Worst 1.18576e-28 1.00148e-28 7.46827e+01 3.38284e+01 3.98662e+00 0.00000e+00 -2.08488e+02

std 2.49005e-29 2.78473e-29 3.35296e+01 4.86919e+00 7.81216e-01 0.00000e+00 2.08023e+02
SR 1.0 1.0 1.0 1.0 1.0 1.0 1.0
vio 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00

Problem C8 C9 C10 C11 C12 C13 C14
Best -2.83981e-04 -2.66551e-03 -1.02842e-04 -4.36655e+01 3.98253e+00 0.00000e+00 1.40852e+00

Median -2.83981e-04 -2.66551e-03 -1.02842e-04 -6.59455e+02 3.98253e+00 0.00000e+00 1.40852e+00
c 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
v 0.00000e+00 0.00000e+00 0.00000e+00 3.58931e+01 0.00000e+00 0.00000e+00 0.00000e+00

mean -2.83981e-04 -2.66551e-03 -1.02842e-04 -6.08398e+02 3.98253e+00 1.83975e-27 1.40852e+00
Worst -2.83981e-04 -2.66551e-03 -1.02842e-04 -1.09775e+03 3.98254e+00 9.74717e-27 1.40852e+00

std 1.27221e-14 2.51215e-16 2.17034e-14 3.48382e+02 5.04377e-06 3.07577e-27 9.65830e-16
SR 1.0 1.0 1.0 0.0 1.0 1.0 1.0
vio 0.00000e+00 0.00000e+00 0.00000e+00 3.84761e+01 0.00000e+00 0.00000e+00 0.00000e+00

Problem C15 C16 C17 C18 C19 C20 C21
Best 2.35612e+00 0.00000e+00 3.08555e-02 4.32174e+01 0.00000e+00 7.10332e-01 3.98253e+00

Median 2.35612e+00 1.57066e+00 3.06980e-02 5.34725e+01 0.00000e+00 1.20626e+00 3.98253e+00
c 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
v 0.00000e+00 0.00000e+00 1.55000e+01 0.00000e+00 2.13749e+04 0.00000e+00 0.00000e+00

mean 2.35612e+00 1.50783e+00 2.05774e-01 5.15377e+01 0.00000e+00 1.23421e+00 3.98253e+00
Worst 2.35612e+00 1.57066e+00 9.80099e-01 4.32472e+01 0.00000e+00 1.72825e+00 3.98254e+00

std 1.14089e-15 3.07785e-01 3.15697e-01 3.35522e+00 0.00000e+00 2.13322e-01 3.89641e-06
SR 1.0 1.0 0.0 0.76 0.0 1.0 1.0
vio 0.00000e+00 0.00000e+00 1.50200e+01 1.29011e-04 2.13749e+04 0.00000e+00 0.00000e+00

Problem C22 C23 C24 C25 C26 C27 C28
Best 7.08035e-09 1.40852e+00 2.35612e+00 1.57066e+00 3.02961e-02 3.57765e+01 4.85465e-01

Median 5.06148e-04 1.40853e+00 2.35612e+00 6.28305e+00 7.33787e-01 3.57792e+01 -2.25721e-02
c 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
v 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.55000e+01 0.00000e+00 2.13852e+04

mean 3.80126e+00 1.41394e+00 2.35612e+00 4.96358e+00 6.59117e-01 3.57326e+01 2.40995e+00
Worst 8.94695e+01 1.49544e+00 2.35612e+00 6.28305e+00 9.48340e-01 3.51349e+01 4.72726e+00

std 1.75049e+01 1.82287e-02 2.42989e-07 2.11586e+00 2.69646e-01 1.39494e-01 2.32024e+00
SR 1.0 1.0 1.0 1.0 0.0 0.8 0.0
vio 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.55000e+01 8.11154e-05 2.13846e+04
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Table A.7 Function Values of HECO-DEtch Achieved for 50D (FESmax = 20000×D) on
IEEE CEC2017 benchmarks

problem C01 C02 C03 C04 C05 C06 C07
Best 2.33811e-28 2.22471e-28 7.46384e+01 1.35728e+01 1.62025e-28 0.00000e+00 -1.56358e+03

Median 4.33590e-28 4.41516e-28 7.46827e+01 1.35728e+01 6.36019e-28 4.16449e+02 -1.09218e+03
c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00

mean 4.86975e-28 5.11279e-28 8.00090e+01 1.46248e+01 4.78395e-01 3.50447e+02 -1.08671e+03
Worst 1.43257e-27 1.22501e-27 1.49360e+02 3.28334e+01 3.98662e+00 5.27481e+02 -4.56629e+02

std 2.47574e-28 2.70971e-28 1.70695e+01 3.79380e+00 1.29550e+00 1.56952e+02 2.37029e+02
SR 1.0 1.0 1.0 1.0 1.0 1.0 1.0
vio 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00

Problem C8 C9 C10 C11 C12 C13 C14
Best -2.83981e-04 -2.66551e-03 -1.02842e-04 -4.36655e+01 3.98253e+00 0.00000e+00 1.40852e+00

Median -2.83981e-04 -2.66551e-03 -1.02842e-04 -6.59455e+02 3.98253e+00 0.00000e+00 1.40852e+00
c 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
v 0.00000e+00 0.00000e+00 0.00000e+00 3.58931e+01 0.00000e+00 0.00000e+00 0.00000e+00

mean -2.83981e-04 -2.66551e-03 -1.02842e-04 -6.08398e+02 3.98253e+00 1.83975e-27 1.40852e+00
Worst -2.83981e-04 -2.66551e-03 -1.02842e-04 -1.09775e+03 3.98254e+00 9.74717e-27 1.40852e+00

std 1.27221e-14 2.51215e-16 2.17034e-14 3.48382e+02 5.04377e-06 3.07577e-27 9.65830e-16
SR 1.0 1.0 1.0 0.0 1.0 1.0 1.0
vio 0.00000e+00 0.00000e+00 0.00000e+00 3.84761e+01 0.00000e+00 0.00000e+00 0.00000e+00

Problem C15 C16 C17 C18 C19 C20 C21
Best 2.35612e+00 1.57066e+00 1.04125e-01 4.61632e+01 0.00000e+00 1.81371e+00 3.98145e+00

Median 5.49772e+00 1.57066e+00 8.67242e-01 5.91157e+01 0.00000e+00 2.45603e+00 3.98145e+00
c 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0
v 0.00000e+00 0.00000e+00 2.55000e+01 5.82542e-04 3.61162e+04 0.00000e+00 0.00000e+00

mean 4.61807e+00 3.26712e+00 7.74806e-01 5.85986e+01 0.00000e+00 2.47483e+00 4.66337e+00
Worst 5.49772e+00 6.28305e+00 1.01154e+00 8.88318e+01 0.00000e+00 3.38270e+00 1.79425e+01

std 1.41057e+00 2.26195e+00 2.56555e-01 2.66451e+01 0.00000e+00 3.16030e-01 2.77716e+00
SR 1.0 1.0 0.0 0.28 0.0 1.0 1.0
vio 0.00000e+00 0.00000e+00 2.54600e+01 2.53973e+00 3.61162e+04 0.00000e+00 0.00000e+00

Problem C22 C23 C24 C25 C26 C27 C28
Best 1.25799e+01 1.09995e+00 2.35612e+00 6.28305e+00 6.26466e-01 3.57398e+01 5.96235e+00

Median 2.10684e+01 1.10007e+00 2.35612e+00 6.28305e+00 9.55149e-01 3.57407e+01 1.51406e+01
c 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
v 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.55000e+01 0.00000e+00 3.61453e+04

mean 4.73971e+01 1.12484e+00 3.23577e+00 7.53968e+00 8.91679e-01 3.56785e+01 9.99076e+00
Worst 1.84712e+02 1.24170e+00 5.49772e+00 2.51326e+01 9.64372e-01 3.48836e+01 2.08246e+01

std 4.49649e+01 3.46416e-02 1.41057e+00 3.97384e+00 1.01931e-01 1.81549e-01 5.83995e+00
SR 1.0 1.0 1.0 1.0 0.0 0.76 0.0
vio 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.55000e+01 9.02305e-05 3.61466e+04
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Table A.8 Function Values of HECO-DEtch Achieved for 100D (FESmax = 20000×D) on
IEEE CEC2017 benchmarks

problem C01 C02 C03 C04 C05 C06 C07
Best 7.87020e-24 2.19825e-23 1.39153e+02 1.59192e+01 2.00681e-25 8.31414e+02 -3.21361e+03

Median 5.92127e-22 2.81110e-22 2.34650e+02 5.07426e+01 1.58380e-18 1.07772e+03 -2.51495e+03
c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00

mean 1.12470e-21 1.74755e-21 2.64652e+02 5.58766e+01 4.17532e-17 1.05746e+03 -2.54099e+03
Worst 5.78312e-21 1.42572e-20 5.87215e+02 1.06460e+02 8.26620e-16 1.29497e+03 -2.04866e+03

std 1.46967e-21 3.12464e-21 9.46691e+01 2.02339e+01 1.61154e-16 1.43582e+02 2.75687e+02
SR 1.0 1.0 1.0 1.0 1.0 1.0 1.0
vio 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00

Problem C8 C9 C10 C11 C12 C13 C14
Best 4.66174e-02 0.00000e+00 -1.70239e-05 -4.17294e+03 3.98064e+00 3.37623e+01 7.84202e-01

Median 8.91640e-02 0.00000e+00 -1.68884e-05 -4.74436e+03 3.16133e+01 2.57830e+02 7.84202e-01
c 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
v 3.92488e-03 0.00000e+00 0.00000e+00 1.82917e+02 0.00000e+00 0.00000e+00 0.00000e+00

mean 1.05340e-01 6.62849e-03 -1.68609e-05 -4.77995e+03 2.80143e+01 2.83757e+02 7.85257e-01
Worst 2.29738e-01 1.65712e-01 -1.64890e-05 -5.21684e+03 3.96545e+01 7.92822e+02 8.10576e-01

std 4.63973e-02 3.24729e-02 1.47418e-07 2.51454e+02 1.03992e+01 2.43915e+02 5.16821e-03
SR 0.0 1.0 1.0 0.0 1.0 1.0 1.0
vio 5.83750e-03 0.00000e+00 0.00000e+00 1.67675e+02 0.00000e+00 0.00000e+00 0.00000e+00

Problem C15 C16 C17 C18 C19 C20 C21
Best 8.63931e+00 6.28305e+00 8.77979e-01 6.18991e+01 0.00000e+00 5.29753e+00 3.98065e+00

Median 1.17809e+01 6.28305e+00 1.03052e+00 1.51742e+02 0.00000e+00 5.95815e+00 3.16157e+01
c 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0
v 0.00000e+00 0.00000e+00 5.05000e+01 2.12265e+01 7.29695e+04 0.00000e+00 0.00000e+00

mean 1.05243e+01 6.28305e+00 1.02651e+00 9.12670e+01 0.00000e+00 6.07722e+00 2.52872e+01
Worst 1.17809e+01 6.28305e+00 1.06315e+00 8.36330e+01 0.00000e+00 7.07637e+00 3.19797e+01

std 1.53906e+00 6.63198e-07 3.88977e-02 2.88933e+01 0.00000e+00 4.35800e-01 9.57386e+00
SR 1.0 1.0 0.0 0.0 0.0 1.0 1.0
vio 0.00000e+00 0.00000e+00 5.05000e+01 1.62008e+01 7.29695e+04 0.00000e+00 0.00000e+00

Problem C22 C23 C24 C25 C26 C27 C28
Best 8.07539e+01 7.84210e-01 5.49772e+00 1.25662e+01 9.37221e-01 3.56722e+01 1.50539e+01

Median 4.04097e+02 7.84269e-01 8.63931e+00 2.51326e+01 1.00161e+00 3.56745e+01 2.03093e+01
c 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
v 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 5.05000e+01 0.00000e+00 7.30675e+04

mean 5.49638e+02 7.98405e-01 7.50834e+00 2.68291e+01 9.89270e-01 3.50493e+01 3.60545e+01
Worst 1.93901e+03 9.10384e-01 8.63931e+00 5.65485e+01 1.01292e+00 2.98540e+01 6.64827e+01

std 4.99989e+02 2.61596e-02 1.50796e+00 1.04660e+01 2.29410e-02 1.35451e+00 1.13389e+01
SR 1.0 1.0 1.0 1.0 0.0 0.64 0.0
vio 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 5.05000e+01 1.39297e-03 7.30687e+04
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Table A.9 Function Values of PMODE Achieved for 10D (FESmax = 20000×D)

problem C01 C02 C03 C04 C05 C06 C07
best 2.14611e-24 9.11866e-25 9.41726e+03 3.88033e+01 9.91336e-22 7.39402e+01 -1.60857e+02

median 5.68959e-24 4.44967e-24 1.71079e+04 8.32015e+01 3.52520e-20 1.78727e+02 -7.46900e+01
c 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 3 0 2 0 0
v 0.00000e+00 0.00000e+00 1.16861e-02 0.00000e+00 0.00000e+00 5.24831e-01 7.57086e+01

Mean 8.63981e-24 6.48690e-24 5.94558e+04 8.13511e+01 6.08489e-20 2.16101e+02 -5.61896e+01
Worst 3.43159e-23 1.80413e-23 4.46449e+04 1.02793e+02 2.59659e-19 1.35417e+03 -9.13489e+01

std 7.75626e-24 4.92035e-24 8.34239e+04 1.39084e+01 6.96775e-20 2.51834e+02 5.98942e+01
SR 100 100 4 100 100 16 4
vio 0.00000e+00 0.00000e+00 1.65910e-02 0.00000e+00 0.00000e+00 5.21616e-01 7.85737e+01

problem C08 C09 C10 C11 C12 C13 C14
best -1.34840e-03 -4.97525e-03 -5.09646e-04 -1.62228e+02 3.98790e+00 5.15504e-21 2.39559e+00

median -1.34840e-03 -4.97525e-03 -5.09645e-04 -3.70137e+02 3.98863e+00 6.58037e-20 3.39761e+00
c 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
v 0.00000e+00 0.00000e+00 0.00000e+00 2.40353e+02 0.00000e+00 0.00000e+00 4.58844e-06

Mean -1.34840e-03 -4.97525e-03 -5.09645e-04 -3.55967e+02 4.83886e+00 1.59463e-01 3.45367e+00
Worst -1.34840e-03 -4.97525e-03 -5.09637e-04 -5.43096e+02 1.46065e+01 3.98658e+00 3.67062e+00

std 3.25752e-10 0.00000e+00 2.05524e-09 9.43249e+01 2.87977e+00 7.81207e-01 3.43063e-01
SR 100 100 100 0 100 100 48
vio 0.00000e+00 0.00000e+00 0.00000e+00 2.37912e+02 0.00000e+00 0.00000e+00 5.32261e-05

problem C15 C16 C17 C18 C19 C20 C21
best 5.49772e+00 5.18363e+01 9.97584e-01 1.00000e+01 0.00000e+00 1.47930e+00 3.98790e+00

median 1.17811e+01 5.65481e+01 9.14289e-01 3.62209e+01 0.00000e+00 1.81463e+00 3.98881e+00
c 0 0 1 0 0 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0
v 5.51058e-05 1.46131e-04 5.50540e+00 1.29979e-01 6.63359e+03 0.00000e+00 0.00000e+00

Mean 1.21578e+01 6.15751e+01 9.80767e-01 4.10083e+01 0.00000e+00 1.81955e+00 5.46111e+00
Worst 8.63678e+00 5.65464e+01 1.00244e+00 5.17217e+01 0.00000e+00 2.17692e+00 2.27853e+01

std 3.90569e+00 8.31210e+00 5.62635e-02 1.44737e+01 0.00000e+00 1.76447e-01 4.99452e+00
SR 40 12 0 4 0 100 100
vio 3.24071e-04 1.99125e-04 5.50824e+00 2.93346e+00 6.63359e+03 0.00000e+00 0.00000e+00

problem C22 C23 C24 C25 C26 C27 C28
best 4.75166e-21 2.40531e+00 5.49772e+00 5.65486e+01 1.51776e-01 6.28153e+01 0.00000e+00

median 1.04790e-19 3.81500e+00 1.49229e+01 4.39817e+01 1.00954e+00 1.37228e+01 0.00000e+00
c 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 2 0 1 0 0
v 0.00000e+00 0.00000e+00 2.11608e-04 1.46534e-04 5.50411e+00 2.76359e-01 6.63359e+03

Mean 2.88192e-19 3.29617e+00 1.37914e+01 6.26432e+01 9.08549e-01 2.33382e+01 1.62221e+00
Worst 2.27974e-18 3.31445e+00 1.49199e+01 7.53947e+01 1.00543e+00 2.82342e+00 6.37173e+00

std 5.20942e-19 4.03648e-01 3.65075e+00 1.19573e+01 2.12119e-01 2.20528e+01 2.92278e+00
SR 100 52 20 4 0 0 0
vio 0.00000e+00 6.82870e-05 4.23089e-04 2.31590e-04 5.46639e+00 2.48248e-01 6.63622e+03
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Table A.10 Function Values of PMODE Achieved for 30D (FESmax = 20000×D)

problem C01 C02 C03 C04 C05 C06 C07
best 8.45246e+00 1.31645e+00 1.21533e+05 1.62387e+02 2.37034e+01 8.68151e+02 -7.78047e+01

median 6.22106e+01 6.14986e+01 4.46899e+05 3.66171e+02 1.22896e+02 2.23162e+03 -1.15271e+02
c 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 4 1 0 2 0 0
v 0.00000e+00 0.00000e+00 1.56053e-02 0.00000e+00 0.00000e+00 3.04630e+00 1.40266e+03

Mean 1.01581e+02 8.79346e+01 5.24967e+05 3.25711e+02 1.76987e+02 2.75522e+03 -6.32051e+01
Worst 3.13217e+02 5.79893e+02 2.19709e+05 3.91920e+02 8.55390e+02 1.96412e+03 -1.85538e+02

std 8.75557e+01 1.15326e+02 4.36345e+05 7.78934e+01 1.76071e+02 1.34597e+03 8.25769e+01
SR 100 100 8 100 100 0 0
vio 0.00000e+00 0.00000e+00 2.97523e-02 0.00000e+00 0.00000e+00 3.07096e+00 1.37837e+03

problem C08 C09 C10 C11 C12 C13 C14
best 4.30883e+00 -2.66551e-03 2.93934e+00 -1.95483e+03 2.58898e+02 7.91928e+05 1.16005e+01

median 8.11294e+00 1.04331e+00 1.12307e+00 -2.39334e+03 8.71198e+02 4.03949e+06 1.73876e+01
c 2 0 0 0 0 0 2 0 0 1 0 0 1 0 0 1 0 0 2 0 0
v 2.27078e+02 0.00000e+00 9.07387e+04 6.74605e+02 3.93445e+02 2.83340e+02 2.44359e+03

Mean 9.09124e+00 1.22155e+00 5.79186e+00 -1.58495e+03 9.71512e+02 1.01176e+07 1.69531e+01
Worst 1.59694e+01 5.12011e+00 8.62571e+00 -1.61106e+03 3.21002e+03 6.20270e+07 1.95298e+01

std 3.15098e+00 1.49632e+00 3.96077e+00 5.24220e+02 5.76453e+02 1.34472e+07 1.88152e+00
SR 0 60 0 0 0 0 0
vio 2.63526e+02 4.79756e-02 1.04036e+05 8.29760e+02 4.46996e+02 3.57934e+02 2.53791e+03

problem C15 C16 C17 C18 C19 C20 C21
best 1.17809e+01 2.01062e+02 1.02982e+00 2.55074e+02 4.15257e+01 8.22588e+00 2.89044e+02

median 1.49226e+01 2.08916e+02 1.15328e+00 8.36250e+02 4.02094e+01 9.25366e+00 7.53484e+02
c 0 0 0 0 0 1 2 0 0 1 0 0 1 0 0 0 0 0 1 0 0
v 9.70150e-06 7.20124e-05 2.62061e+02 4.75943e+05 2.14626e+04 0.00000e+00 3.14773e+02

Mean 1.81898e+01 2.11052e+02 1.17571e+00 9.55141e+02 5.60410e+01 9.23266e+00 7.69190e+02
Worst 2.12045e+01 2.01059e+02 1.45716e+00 2.05000e+03 8.07226e+01 1.00181e+01 1.32907e+03

std 2.73591e+00 1.23599e+01 1.00234e-01 4.97848e+02 1.26095e+01 4.38197e-01 2.77606e+02
SR 48 16 0 0 0 100 0
vio 1.84991e-04 1.85297e-04 3.06938e+02 9.84241e+05 2.14638e+04 0.00000e+00 3.45572e+02

problem C22 C23 C24 C25 C26 C27 C28
best 2.62086e+06 1.90652e+01 1.49225e+01 1.90066e+02 1.21225e+00 9.75533e+02 6.22618e+01

median 2.21334e+07 2.03930e+01 1.80597e+01 2.01061e+02 1.59385e+00 5.32941e+03 7.70427e+01
c 2 0 0 2 0 0 0 0 1 0 0 1 2 0 0 1 0 0 1 0 0
v 6.24786e+02 1.24452e+04 3.08672e-03 1.07590e-04 1.14320e+03 4.62537e+05 2.14813e+04

Mean 4.79527e+07 2.04905e+01 1.89402e+01 2.36413e+02 1.65233e+00 3.53610e+03 9.64144e+01
Worst 3.09761e+08 2.13998e+01 2.61751e+01 3.56724e+02 2.35945e+00 7.53113e+03 1.69217e+02

std 6.33025e+07 7.08163e-01 2.51595e+00 3.83776e+01 3.21242e-01 1.96683e+03 2.58908e+01
SR 0 0 36 28 0 0 0
vio 7.67227e+02 1.37688e+04 1.47415e+02 2.75679e+02 1.26016e+03 9.43760e+05 2.14813e+04
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Table A.11 Function Values of PMODE Achieved for 50D (FESmax = 20000×D)

problem C01 C02 C03 C04 C05 C06 C07
best 2.28064e+03 1.98396e+03 1.93920e+05 3.55349e+02 5.97421e+03 1.75834e+03 -5.36955e+02

median 4.52311e+03 3.66519e+03 8.18781e+06 4.77077e+02 1.92933e+04 8.24012e+03 -1.18883e+02
c 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 3 1 0 2 0 0
v 0.00000e+00 0.00000e+00 2.11433e-02 0.00000e+00 0.00000e+00 3.67257e+00 2.89321e+03

Mean 4.57826e+03 3.86686e+03 2.56010e+06 5.28980e+02 2.07483e+04 5.21220e+03 -1.52570e+02
Worst 6.58848e+03 5.80477e+03 1.80087e+06 6.71820e+02 6.05995e+04 4.84112e+03 -2.33206e+02

std 9.65902e+02 9.24684e+02 3.45818e+06 1.19169e+02 1.16951e+04 2.34983e+03 1.35106e+02
SR 100 100 8 100 100 16 0
vio 0.00000e+00 0.00000e+00 4.21099e-02 0.00000e+00 0.00000e+00 3.45598e+00 2.82329e+03

problem C08 C09 C10 C11 C12 C13 C14
best 1.02717e+01 5.74202e+00 1.74030e+01 -1.47463e+03 3.75936e+03 4.56714e+07 1.83443e+01

median 1.47237e+01 6.01563e+00 2.35321e+01 -1.04457e+03 6.65909e+03 1.81715e+08 1.96039e+01
c 2 0 0 1 0 0 2 0 0 1 0 0 1 0 0 2 0 0 2 0 0
v 1.36576e+03 1.25530e+02 2.42791e+06 4.02216e+03 3.25068e+03 2.07518e+03 1.03922e+04

Mean 1.67054e+01 7.26445e+00 1.77968e+01 -1.28194e+03 7.21543e+03 1.91988e+08 1.96436e+01
Worst 2.12763e+01 9.49550e+00 1.47180e+01 -9.95573e+02 1.61630e+04 6.34024e+08 2.09103e+01

std 3.86802e+00 1.35384e+00 5.56564e+00 3.36372e+02 2.58950e+03 1.28596e+08 6.79060e-01
SR 0 0 0 0 0 0 0
vio 1.34029e+03 2.09972e+02 2.50252e+06 4.14513e+03 3.50114e+03 2.07567e+03 1.00248e+04

problem C15 C16 C17 C18 C19 C20 C21
best 1.80641e+01 4.08407e+02 1.81562e+00 4.67375e+03 1.25353e+02 1.62035e+01 3.46898e+03

median 2.23511e+01 4.03140e+02 2.69752e+00 1.04115e+04 1.35750e+02 1.75255e+01 7.01829e+03
c 2 0 0 1 1 0 2 0 0 2 0 0 1 0 0 0 0 0 1 0 0
v 7.95359e+02 5.63050e+02 3.32053e+03 5.38874e+07 3.63004e+04 0.00000e+00 3.40038e+03

Mean 2.41366e+01 4.36228e+02 2.61806e+00 8.17305e+03 1.28788e+02 1.74999e+01 6.90454e+03
Worst 2.81105e+01 6.32413e+02 3.56693e+00 9.97025e+03 1.40672e+02 1.87708e+01 1.08995e+04

std 5.05616e+00 6.03201e+01 3.83810e-01 2.02373e+03 1.62059e+01 5.63727e-01 1.86784e+03
SR 8 4 0 0 0 100 0
vio 9.94883e+02 8.85680e+02 3.16162e+03 5.42517e+07 3.62998e+04 0.00000e+00 3.34437e+03

problem C22 C23 C24 C25 C26 C27 C28
best 6.58082e+08 2.09123e+01 3.70265e+01 5.58189e+02 4.31932e+00 1.50354e+04 1.72173e+02

median 2.09933e+09 2.14984e+01 4.47071e+01 7.44848e+02 6.25467e+00 2.78702e+04 2.02544e+02
c 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 1 0 0
v 7.26657e+03 4.93000e+04 9.13401e+03 7.52269e+03 1.04348e+04 4.85357e+07 3.63275e+04

Mean 2.02531e+09 2.13180e+01 4.55004e+01 7.72193e+02 6.51825e+00 2.64735e+04 2.12540e+02
Worst 4.14934e+09 2.14182e+01 7.05414e+01 9.87128e+02 9.74742e+00 5.25566e+04 3.08671e+02

std 7.91057e+08 2.26072e-01 9.58023e+00 1.16580e+02 1.46486e+00 7.94598e+03 3.13167e+01
SR 0 0 0 0 0 0 0
vio 6.99710e+03 4.94889e+04 9.41546e+03 7.98474e+03 1.09620e+04 5.85456e+07 3.63287e+04
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Table A.12 Function Values of PMODE Achieved for 100D (FESmax = 20000×D)

problem C01 C02 C03 C04 C05 C06 C07
best 2.19725e+04 3.08252e+04 8.81317e+05 8.80889e+02 1.74982e+05 4.28539e+03 -5.36330e+01

median 3.48956e+04 4.21954e+04 1.64864e+07 1.05770e+03 3.53987e+05 1.18699e+04 -3.22051e+02
c 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 5 0 0 2 0 0
v 0.00000e+00 0.00000e+00 4.56214e-02 0.00000e+00 0.00000e+00 6.78371e+00 6.86213e+03

Mean 3.48826e+04 4.22447e+04 4.43083e+06 1.07373e+03 3.44449e+05 1.10830e+04 -1.49642e+02
Worst 4.50649e+04 5.53684e+04 1.44167e+07 1.40462e+03 5.35239e+05 5.70569e+03 -9.51640e+01

std 6.46300e+03 6.58780e+03 3.88766e+06 1.34842e+02 8.99856e+04 4.10730e+03 1.92704e+02
SR 100 100 8 100 100 8 0
vio 0.00000e+00 0.00000e+00 6.03512e-02 0.00000e+00 0.00000e+00 6.29700e+00 6.90888e+03

problem C08 C09 C10 C11 C12 C13 C14
best 2.07891e+01 1.02028e+01 3.48310e+01 -1.42141e+03 3.13441e+04 1.56586e+09 2.07419e+01

median 2.76848e+01 8.33249e+00 3.71183e+01 -9.50141e+02 3.75117e+04 3.12784e+09 2.12499e+01
c 2 0 0 1 0 0 2 0 0 1 0 0 1 0 0 1 0 0 2 0 0
v 7.53044e+03 6.19357e+03 4.52030e+07 1.53424e+04 1.84512e+04 1.19932e+04 5.14897e+04

Mean 2.57686e+01 9.37371e+00 3.81451e+01 -1.44764e+03 3.79194e+04 3.21154e+09 2.12221e+01
Worst 3.55284e+01 9.85473e+00 3.92237e+01 -1.87066e+03 4.90522e+04 5.25677e+09 2.12777e+01

std 4.91663e+00 8.36433e-01 5.42529e+00 2.32202e+02 4.38064e+03 9.73355e+08 1.97632e-01
SR 0 0 0 0 0 0 0
vio 7.58180e+03 6.67623e+03 4.67914e+07 1.58347e+04 1.86740e+04 1.22397e+04 5.20788e+04

problem C15 C16 C17 C18 C19 C20 C21
best 3.77923e+01 1.29718e+03 6.87595e+00 3.08885e+04 2.94193e+02 3.74545e+01 2.74753e+04

median 3.78513e+01 1.49338e+03 1.01553e+01 3.87156e+04 3.56124e+02 3.90835e+01 3.62471e+04
c 2 0 0 2 0 0 2 0 0 2 0 0 1 0 0 0 0 0 1 0 0
v 1.52068e+04 1.30303e+04 1.81611e+04 1.06212e+09 7.33963e+04 0.00000e+00 1.78372e+04

Mean 4.32079e+01 1.50611e+03 9.95507e+00 4.00109e+04 3.50146e+02 3.90733e+01 3.58695e+04
Worst 5.12716e+01 1.65646e+03 1.20672e+01 4.21590e+04 4.24377e+02 4.02646e+01 4.50014e+04

std 3.66450e+00 1.00916e+02 1.27062e+00 3.97574e+03 2.95260e+01 7.19816e-01 4.72648e+03
SR 0 0 0 0 0 100 0
vio 1.49949e+04 1.33886e+04 1.77606e+04 1.03625e+09 7.33968e+04 0.00000e+00 1.76425e+04

problem C22 C23 C24 C25 C26 C27 C28
best 1.61392e+10 2.14640e+01 6.86652e+01 2.11668e+03 2.04175e+01 9.99239e+04 3.98592e+02

median 3.19578e+10 2.15640e+01 7.90501e+01 2.58110e+03 2.85646e+01 1.39773e+05 5.50789e+02
c 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 1 0 0
v 3.76342e+04 1.88806e+05 5.61628e+04 4.98537e+04 5.49798e+04 1.06865e+09 7.34298e+04

Mean 3.42906e+10 2.14957e+01 7.90906e+01 2.52591e+03 2.92427e+01 1.26691e+05 4.94682e+02
Worst 6.23980e+10 2.15599e+01 8.25268e+01 3.05519e+03 3.75458e+01 1.25816e+05 6.46487e+02

std 1.15359e+10 1.46944e-01 4.83272e+00 2.06318e+02 4.91052e+00 1.78593e+04 5.21990e+01
SR 0 0 0 0 0 0 0
vio 3.82006e+04 1.85570e+05 5.70819e+04 4.89022e+04 5.63358e+04 1.09278e+09 7.34291e+04
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Table A.13 Function Values of HECO-PDE Achieved for 10D (FESmax = 20000×D)

problem C01 C02 C03 C04 C05 C06 C07
best 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 -2.58748e+02

median 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 -1.17310e+03
c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
v 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.91686e-03

Mean 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 -7.46594e+02
Worst 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 -4.48664e+02

std 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 7.86557e+02
SR 100 100 100 100 100 100 4
vio 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.31995e-03

problem C08 C09 C10 C11 C12 C13 C14
best -1.34840e-03 -4.97525e-03 -5.09647e-04 -1.68819e-01 3.98790e+00 0.00000e+00 2.37633e+00

median -1.34840e-03 -4.97525e-03 -5.09647e-04 -1.68792e-01 3.98883e+00 0.00000e+00 2.37633e+00
c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00

Mean -1.34840e-03 -4.97525e-03 -5.09647e-04 -1.68092e-01 3.98918e+00 0.00000e+00 2.37633e+00
Worst -1.34840e-03 -4.97525e-03 -5.09647e-04 -1.58782e-01 3.99096e+00 0.00000e+00 2.37633e+00

std 3.48093e-16 0.00000e+00 3.31451e-15 2.15091e-03 1.08240e-03 0.00000e+00 0.00000e+00
SR 100 100 100 100 100 100 100
vio 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00

problem C15 C16 C17 C18 C19 C20 C21
best 2.35612e+00 0.00000e+00 1.08553e-02 1.00000e+01 0.00000e+00 1.04005e-01 3.98796e+00

median 2.35612e+00 0.00000e+00 1.08553e-02 5.04203e+01 0.00000e+00 3.68418e-01 3.98991e+00
c 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
v 0.00000e+00 0.00000e+00 4.50000e+00 0.00000e+00 6.63359e+03 0.00000e+00 0.00000e+00

Mean 2.35612e+00 0.00000e+00 1.08553e-02 3.91026e+01 0.00000e+00 3.58433e-01 3.98967e+00
Worst 2.35612e+00 0.00000e+00 1.08553e-02 5.04203e+01 0.00000e+00 5.20013e-01 3.99246e+00

std 1.11995e-15 0.00000e+00 1.08780e-16 1.81487e+01 0.00000e+00 1.07653e-01 1.26111e-03
SR 100 100 0 100 0 100 100
vio 0.00000e+00 0.00000e+00 4.50000e+00 0.00000e+00 6.63359e+03 0.00000e+00 0.00000e+00

problem C22 C23 C24 C25 C26 C27 C28
best 3.48642e-27 2.37633e+00 2.35612e+00 0.00000e+00 1.08553e-02 9.05515e+01 0.00000e+00

median 3.48642e-27 2.37633e+00 2.35612e+00 0.00000e+00 1.08553e-02 9.57215e+01 0.00000e+00
c 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
v 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 4.50000e+00 0.00000e+00 6.63359e+03

Mean 3.49026e-27 2.37633e+00 2.35612e+00 0.00000e+00 7.37529e-02 9.40671e+01 0.00000e+00
Worst 3.51844e-27 2.37633e+00 2.35612e+00 0.00000e+00 7.10694e-01 9.57217e+01 0.00000e+00

std 1.04062e-29 5.21413e-07 5.18534e-08 0.00000e+00 1.75700e-01 2.41167e+00 0.00000e+00
SR 100 100 100 100 0 100 0
vio 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 4.50000e+00 0.00000e+00 6.63359e+03
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Table A.14 Function Values of HECO-PDE Achieved for 30D (FESmax = 20000×D)

problem C01 C02 C03 C04 C05 C06 C07
best 0.00000e+00 0.00000e+00 0.00000e+00 1.35728e+01 0.00000e+00 0.00000e+00 -2.45791e+03

median 9.33075e-30 1.17959e-29 3.49071e-29 1.35728e+01 0.00000e+00 0.00000e+00 -2.68829e+03
c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
v 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 7.93332e-04

Mean 1.59799e-29 1.96421e-29 3.95614e-29 1.35728e+01 0.00000e+00 0.00000e+00 -1.94723e+03
Worst 7.51020e-29 6.70162e-29 1.34895e-28 1.35728e+01 0.00000e+00 0.00000e+00 -2.51299e+03

std 2.11761e-29 1.97404e-29 3.35121e-29 1.28144e-14 0.00000e+00 0.00000e+00 9.19644e+02
SR 100 100 100 100 100 100 0
vio 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.05592e-03

problem C08 C09 C10 C11 C12 C13 C14
best -2.83981e-04 -2.66551e-03 -1.02842e-04 -9.24713e-01 3.98253e+00 0.00000e+00 1.40852e+00

median -2.83981e-04 -2.66551e-03 -1.02842e-04 -8.77334e-01 3.98257e+00 0.00000e+00 1.40852e+00
c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
v 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00

Mean -2.83981e-04 -2.66551e-03 -1.02842e-04 -1.87293e+02 3.98269e+00 0.00000e+00 1.40852e+00
Worst -2.83981e-04 -2.66551e-03 -1.02840e-04 -1.25684e+03 3.98341e+00 0.00000e+00 1.40852e+00

std 5.00769e-11 3.79326e-16 2.41501e-10 3.71804e+02 2.14922e-04 0.00000e+00 7.00761e-16
SR 100 100 100 64 100 100 100
vio 0.00000e+00 0.00000e+00 0.00000e+00 1.26005e+01 0.00000e+00 0.00000e+00 0.00000e+00

problem C15 C16 C17 C18 C19 C20 C21
best 2.35612e+00 0.00000e+00 3.08555e-02 3.00000e+01 0.00000e+00 2.50134e+00 3.98253e+00

median 2.35612e+00 0.00000e+00 1.44943e+00 5.34725e+01 0.00000e+00 2.84742e+00 3.98262e+00
c 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
v 0.00000e+00 0.00000e+00 1.45000e+01 0.00000e+00 2.13749e+04 0.00000e+00 0.00000e+00

Mean 2.35612e+00 0.00000e+00 6.51135e-01 4.85514e+01 0.00000e+00 2.87611e+00 3.98269e+00
Worst 2.35612e+00 0.00000e+00 9.51999e-01 5.82173e+01 0.00000e+00 3.19426e+00 3.98327e+00

std 1.13742e-15 0.00000e+00 4.82474e-01 8.31285e+00 0.00000e+00 1.88661e-01 1.94653e-04
SR 100 100 0 100 0 100 100
vio 0.00000e+00 0.00000e+00 1.49400e+01 0.00000e+00 2.13749e+04 0.00000e+00 0.00000e+00

problem C22 C23 C24 C25 C26 C27 C28
best 3.59077e-14 1.40852e+00 2.35612e+00 0.00000e+00 6.11945e-01 2.08760e+02 0.00000e+00

median 7.91069e-10 1.40852e+00 2.35612e+00 0.00000e+00 8.53762e-01 2.51342e+02 3.33028e-06
c 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
v 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.55000e+01 0.00000e+00 2.13749e+04

Mean 4.13459e-08 1.40853e+00 2.35612e+00 0.00000e+00 8.41942e-01 2.36013e+02 4.23646e-06
Worst 7.52530e-07 1.40858e+00 2.35612e+00 0.00000e+00 1.01187e+00 2.51347e+02 1.77740e-05

std 1.48613e-07 1.46320e-05 8.05949e-08 0.00000e+00 8.41683e-02 2.04397e+01 3.62229e-06
SR 100 100 100 100 0 100 0
vio 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.55000e+01 0.00000e+00 2.13749e+04
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Table A.15 Function Values of HECO-PDE Achieved for 50D (FESmax = 20000×D)

problem C01 C02 C03 C04 C05 C06 C07
best 1.04672e-28 4.57539e-29 1.81832e-28 1.35728e+01 0.00000e+00 0.00000e+00 -3.78512e+03

median 2.08259e-28 2.17442e-28 3.30138e-28 1.35728e+01 9.12120e-30 1.41843e+02 -8.31534e+02
c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
v 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 5.66334e-04

Mean 2.51258e-28 2.17115e-28 4.12290e-28 1.35728e+01 4.52846e-29 1.16974e+02 -2.79070e+03
Worst 5.16815e-28 4.33787e-28 8.70114e-28 1.35728e+01 4.25245e-28 1.66179e+02 -3.52267e+03

std 1.21265e-28 8.04570e-29 1.98135e-28 2.10181e-15 8.97841e-29 9.83836e+01 9.79449e+02
SR 100 100 100 100 100 76 12
vio 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.42773e-04 8.24621e-04

problem C08 C09 C10 C11 C12 C13 C14
best -1.34466e-04 -2.03709e-03 -4.82659e-05 -3.11531e+02 3.98145e+00 0.00000e+00 1.09995e+00

median -1.33456e-04 -2.03709e-03 -4.82628e-05 -1.62884e+03 3.98150e+00 1.33101e-27 1.09995e+00
c 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
v 0.00000e+00 0.00000e+00 0.00000e+00 3.29899e+01 0.00000e+00 0.00000e+00 0.00000e+00

Mean -1.31402e-04 -2.03709e-03 -4.82606e-05 -1.54196e+03 4.22857e+00 1.59465e-01 1.10073e+00
Worst -1.12487e-04 -2.03709e-03 -4.82487e-05 -2.67003e+03 7.06997e+00 3.98662e+00 1.11946e+00

std 4.80757e-06 1.40141e-15 4.96661e-09 6.80331e+02 8.37725e-01 7.81216e-01 3.82241e-03
SR 100 100 100 0 100 100 100
vio 0.00000e+00 0.00000e+00 0.00000e+00 3.55113e+01 0.00000e+00 0.00000e+00 0.00000e+00

problem C15 C16 C17 C18 C19 C20 C21
best 2.35612e+00 0.00000e+00 6.04826e-02 4.42174e+01 0.00000e+00 5.15997e+00 3.98145e+00

median 2.35612e+00 0.00000e+00 5.45231e-01 4.61632e+01 0.00000e+00 6.24310e+00 3.98149e+00
c 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
v 0.00000e+00 0.00000e+00 2.55000e+01 0.00000e+00 3.61162e+04 0.00000e+00 0.00000e+00

Mean 2.35612e+00 0.00000e+00 6.17102e-01 4.76107e+01 0.00000e+00 6.10145e+00 4.10501e+00
Worst 2.35612e+00 0.00000e+00 9.20881e-01 6.22173e+01 0.00000e+00 6.92786e+00 7.06871e+00

std 1.55368e-15 0.00000e+00 3.32818e-01 3.65297e+00 0.00000e+00 4.34170e-01 6.04962e-01
SR 100 100 0 100 0 100 100
vio 0.00000e+00 0.00000e+00 2.52200e+01 0.00000e+00 3.61162e+04 0.00000e+00 0.00000e+00

problem C22 C23 C24 C25 C26 C27 C28
best 5.13492e-01 1.09995e+00 2.35612e+00 0.00000e+00 8.01254e-01 2.47635e+02 1.65653e-05

median 1.40918e+01 1.09996e+00 2.35612e+00 0.00000e+00 9.36281e-01 2.64205e+02 3.28074e+00
c 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
v 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.55000e+01 0.00000e+00 3.61248e+04

Mean 1.34654e+01 1.09997e+00 2.35612e+00 3.02025e-14 9.31995e-01 2.58242e+02 2.76288e+00
Worst 1.60992e+01 1.10009e+00 2.35612e+00 7.55062e-13 1.01406e+00 2.64215e+02 7.12744e+00

std 2.82924e+00 3.13374e-05 1.72250e-08 1.47961e-13 5.29458e-02 7.95311e+00 2.53458e+00
SR 100 100 100 100 0 100 0
vio 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.55000e+01 0.00000e+00 3.61255e+04
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Table A.16 Function Values of HECO-PDE Achieved for 100D (FESmax = 20000×D)

problem C01 C02 C03 C04 C05 C06 C07
best 4.74860e-24 2.08968e-23 1.09781e-23 1.35728e+01 1.24693e-16 5.85856e+02 -6.04093e+03

median 2.96855e-22 7.65701e-22 2.63175e-22 1.35728e+01 5.60537e-15 9.10968e+02 -5.12059e+03
c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
v 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 3.43542e-04

Mean 7.92774e-22 6.12831e-21 1.04964e-21 1.36666e+01 1.13652e-13 8.17227e+02 -4.19316e+03
Worst 4.80812e-21 4.10046e-20 7.98385e-21 1.59192e+01 1.63788e-12 8.24776e+02 -5.64890e+03

std 1.10948e-21 1.11876e-20 1.84224e-21 4.59810e-01 3.33214e-13 1.19466e+02 1.20840e+03
SR 100 100 100 100 100 64 20
vio 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.07363e-03 4.02313e-04

problem C08 C09 C10 C11 C12 C13 C14
best 9.89426e-05 0.00000e+00 -1.69783e-05 -6.28804e+03 1.88621e+01 3.32042e+01 7.84202e-01

median 4.62686e-04 0.00000e+00 -1.66940e-05 -6.98033e+03 3.16345e+01 3.32046e+01 7.86865e-01
c 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
v 0.00000e+00 0.00000e+00 0.00000e+00 8.12562e+01 0.00000e+00 0.00000e+00 0.00000e+00

Mean 4.54336e-04 0.00000e+00 -1.67005e-05 -6.83288e+03 3.11306e+01 3.36826e+01 7.96313e-01
Worst 9.65755e-04 0.00000e+00 -1.62289e-05 -6.23668e+03 3.18122e+01 3.71880e+01 8.38008e-01

std 1.64588e-04 0.00000e+00 2.14329e-07 3.27748e+02 2.50488e+00 1.29435e+00 1.52042e-02
SR 100 100 100 0 100 100 100
vio 0.00000e+00 0.00000e+00 0.00000e+00 9.43117e+01 0.00000e+00 0.00000e+00 0.00000e+00

problem C15 C16 C17 C18 C19 C20 C21
best 2.35612e+00 0.00000e+00 2.59387e-01 4.62791e+01 0.00000e+00 1.47876e+01 1.20688e+01

median 2.35612e+00 0.00000e+00 8.79248e-01 1.30626e+02 0.00000e+00 1.58000e+01 3.15911e+01
c 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0
v 0.00000e+00 0.00000e+00 5.05000e+01 2.11765e+01 7.29695e+04 0.00000e+00 0.00000e+00

Mean 2.35612e+00 0.00000e+00 8.01474e-01 8.51306e+01 1.68587e-09 1.58580e+01 3.03467e+01
Worst 2.35612e+00 0.00000e+00 1.01669e+00 4.48688e+01 4.21468e-08 1.72009e+01 3.21128e+01

std 1.37309e-15 0.00000e+00 2.12703e-01 4.01418e+01 8.25906e-09 6.38805e-01 4.49296e+00
SR 100 100 0 32 0 100 100
vio 0.00000e+00 0.00000e+00 5.05000e+01 1.18429e+01 7.29695e+04 0.00000e+00 0.00000e+00

problem C22 C23 C24 C25 C26 C27 C28
best 7.82296e+01 7.84209e-01 2.35612e+00 1.57066e+00 1.00167e+00 2.84751e+02 2.38846e+01

median 2.12380e+04 7.84225e-01 2.35612e+00 1.57066e+00 1.04543e+00 2.84829e+02 5.38774e+01
c 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
v 1.54193e+01 0.00000e+00 0.00000e+00 0.00000e+00 5.05000e+01 0.00000e+00 7.30594e+04

Mean 3.23001e+04 7.84396e-01 2.35612e+00 5.27774e+00 1.05214e+00 2.99755e+02 5.15351e+01
Worst 8.20487e+02 7.87071e-01 2.35612e+00 3.29866e+01 1.09745e+00 3.18890e+02 9.74830e+01

std 8.81380e+04 5.65603e-04 3.39107e-09 6.63285e+00 2.54681e-02 1.68980e+01 1.51348e+01
SR 48 100 100 100 0 100 0
vio 3.65205e+01 0.00000e+00 0.00000e+00 0.00000e+00 5.05000e+01 0.00000e+00 7.30575e+04
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Table A.17 Function Values of HECO-DEm Achieved for 10D (FESmax = 20000×D)

problem C01 C02 C03 C04 C05 C06 C07
Best 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 -1.81458e+03

Median 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 -2.82915e+03
c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
v 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 6.15401e-03

mean 0.00000e+00 5.04871e-31 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 -3.34819e+03
Worst 0.00000e+00 1.26218e-29 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 -1.17961e+03

std 0.00000e+00 2.47335e-30 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.05910e+03
SR 100 100 100 100 100 100 4
vio 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.04202e-02

Problem C8 C9 C10 C11 C12 C13 C14
Best -1.34840e-03 -4.97525e-03 -5.09647e-04 -8.40903e+00 3.98830e+00 0.00000e+00 2.37633e+00

Median -1.34840e-03 -4.97525e-03 -5.09647e-04 -3.17864e+02 3.98906e+00 0.00000e+00 2.37633e+00
c 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
v 0.00000e+00 0.00000e+00 0.00000e+00 1.97405e+02 0.00000e+00 0.00000e+00 0.00000e+00

mean -1.34840e-03 -4.97522e-03 -5.09646e-04 -2.77575e+02 3.98911e+00 0.00000e+00 2.37741e+00
Worst -1.34840e-03 -4.97471e-03 -5.09632e-04 -7.37789e+02 3.98995e+00 0.00000e+00 2.39926e+00

std 5.30054e-10 1.05983e-07 3.19858e-09 2.35591e+02 4.81542e-04 0.00000e+00 4.49574e-03
SR 100 100 100 0 100 100 100
vio 0.00000e+00 0.00000e+00 0.00000e+00 2.98226e+02 0.00000e+00 0.00000e+00 0.00000e+00

Problem C15 C16 C17 C18 C19 C20 C21
Best 2.35612e+00 0.00000e+00 1.08553e-02 1.00000e+01 0.00000e+00 1.08446e-01 3.98823e+00

Median 2.35612e+00 0.00000e+00 1.08553e-02 4.14306e+01 0.00000e+00 2.09644e-01 3.98901e+00
c 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0
v 0.00000e+00 0.00000e+00 4.50000e+00 4.51116e-04 6.63359e+03 0.00000e+00 0.00000e+00

mean 2.35613e+00 0.00000e+00 1.08553e-02 4.70807e+01 3.21236e-08 2.15090e-01 3.98911e+00
Worst 2.35615e+00 0.00000e+00 1.08553e-02 1.27908e+02 6.59566e-07 3.08327e-01 3.98993e+00

std 5.85373e-06 0.00000e+00 2.19061e-11 1.90103e+01 1.29748e-07 4.94361e-02 3.93591e-04
SR 100 100 0 4 0 100 100
vio 0.00000e+00 0.00000e+00 4.50000e+00 6.64445e-01 6.63359e+03 0.00000e+00 0.00000e+00

Problem C22 C23 C24 C25 C26 C27 C28
Best 3.48642e-27 2.37645e+00 2.35612e+00 0.00000e+00 1.08665e-02 6.30390e+01 2.27431e-06

Median 3.48642e-27 2.37760e+00 2.35613e+00 0.00000e+00 1.18308e-02 9.57559e+01 2.06865e-04
c 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
v 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 4.50000e+00 0.00000e+00 6.63359e+03

mean 3.68203e-27 2.37770e+00 2.35613e+00 0.00000e+00 2.23054e-01 9.27724e+01 7.63192e-04
Worst 5.83550e-27 2.38249e+00 2.35613e+00 0.00000e+00 2.39788e-01 9.15890e+01 8.02173e-03

std 6.35166e-28 1.15371e-03 2.98231e-06 0.00000e+00 4.18028e-01 7.66527e+00 1.63246e-03
SR 100 100 100 100 0 96 0
vio 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 4.66008e+00 3.16360e-07 6.63359e+03
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Table A.18 Function Values of HECO-DEm Achieved for 30D (FESmax = 20000×D)

problem C01 C02 C03 C04 C05 C06 C07
Best 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 -3.60727e+03

Median 1.67633e-29 1.73549e-29 2.52435e-29 0.00000e+00 0.00000e+00 0.00000e+00 -5.42620e+03
c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
v 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.68435e-03

mean 1.98315e-29 2.07663e-29 3.61535e-29 0.00000e+00 0.00000e+00 0.00000e+00 -4.54869e+03
Worst 4.96613e-29 6.61287e-29 1.38051e-28 0.00000e+00 0.00000e+00 0.00000e+00 -5.69223e+02

std 1.27343e-29 1.52493e-29 3.49185e-29 0.00000e+00 0.00000e+00 0.00000e+00 2.70823e+03
SR 100 100 100 100 100 100 4
vio 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.29572e-03

Problem C8 C9 C10 C11 C12 C13 C14
Best -2.83981e-04 -2.66551e-03 -1.02842e-04 -1.57668e+03 3.98295e+00 0.00000e+00 1.40852e+00

Median -2.83945e-04 -2.66551e-03 -1.02840e-04 -2.15506e+03 3.98312e+00 0.00000e+00 1.40864e+00
c 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
v 0.00000e+00 0.00000e+00 0.00000e+00 3.33707e+02 0.00000e+00 0.00000e+00 0.00000e+00

mean -2.80345e-04 -2.66551e-03 -1.02834e-04 -2.06818e+03 3.98316e+00 0.00000e+00 1.42079e+00
Worst -2.65088e-04 -2.66551e-03 -1.02734e-04 -2.51607e+03 3.98347e+00 0.00000e+00 1.48320e+00

std 6.42147e-06 6.41459e-16 2.12285e-08 3.30259e+02 1.24240e-04 0.00000e+00 1.97418e-02
SR 100 100 100 0 100 100 100
vio 0.00000e+00 0.00000e+00 0.00000e+00 3.67494e+02 0.00000e+00 0.00000e+00 0.00000e+00

Problem C15 C16 C17 C18 C19 C20 C21
Best 2.35612e+00 0.00000e+00 3.08555e-02 4.22186e+01 0.00000e+00 1.62688e+00 3.98301e+00

Median 2.35612e+00 0.00000e+00 3.37703e-01 5.04466e+01 0.00000e+00 1.99928e+00 3.98315e+00
c 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0
v 0.00000e+00 0.00000e+00 1.45000e+01 9.91424e-05 2.13749e+04 0.00000e+00 0.00000e+00

mean 2.35612e+00 0.00000e+00 5.25700e-01 5.03142e+01 2.22417e-06 1.98773e+00 3.98315e+00
Worst 2.35612e+00 0.00000e+00 2.72938e-01 2.78808e+01 2.61852e-05 2.25914e+00 3.98334e+00

std 1.23390e-15 0.00000e+00 5.65156e-01 1.51319e+01 5.29215e-06 1.46058e-01 8.94603e-05
SR 100 100 0 40 0 100 100
vio 0.00000e+00 0.00000e+00 1.45400e+01 1.83117e+00 2.13749e+04 0.00000e+00 0.00000e+00

Problem C22 C23 C24 C25 C26 C27 C28
Best 3.43758e-10 1.40866e+00 2.35612e+00 0.00000e+00 4.03349e-01 2.08792e+02 7.40860e-05

Median 3.12399e-08 1.40882e+00 2.35612e+00 0.00000e+00 5.31595e-01 2.51410e+02 -9.20630e-01
c 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
v 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.55000e+01 0.00000e+00 2.13759e+04

mean 8.26259e-06 1.40887e+00 2.35612e+00 0.00000e+00 5.48569e-01 2.40770e+02 1.57359e+00
Worst 1.83184e-04 1.40944e+00 2.35613e+00 0.00000e+00 9.65321e-01 2.51100e+02 6.32577e+00

std 3.57607e-05 1.87882e-04 7.92192e-07 0.00000e+00 2.58519e-01 1.80539e+01 2.30750e+00
SR 100 100 100 100 0 96 0
vio 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.54200e+01 1.87457e-06 2.13803e+04
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Table A.19 Function Values of HECO-DEm Achieved for 50D (FESmax = 20000×D)

problem C01 C02 C03 C04 C05 C06 C07
Best 1.54617e-28 1.74646e-28 2.29953e-28 0.00000e+00 0.00000e+00 0.00000e+00 -8.30066e+03

Median 3.13178e-28 2.90017e-28 4.37029e-28 0.00000e+00 0.00000e+00 0.00000e+00 -5.97795e+03
c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
v 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 5.73577e-04

mean 3.57986e-28 3.00664e-28 5.07364e-28 0.00000e+00 3.29675e-29 0.00000e+00 -7.09549e+03
Worst 1.15283e-27 4.65428e-28 1.08192e-27 0.00000e+00 2.43129e-28 0.00000e+00 -6.43523e+03

std 2.08734e-28 7.55438e-29 2.15736e-28 0.00000e+00 6.45782e-29 0.00000e+00 1.38069e+03
SR 100 100 100 100 100 100 16
vio 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 1.05240e-03

Problem C8 C9 C10 C11 C12 C13 C14
Best -1.30636e-04 -2.03709e-03 -4.82623e-05 -3.38834e+03 3.98180e+00 0.00000e+00 1.09995e+00

Median -7.40684e-05 -2.03709e-03 -4.81854e-05 -4.60226e+03 3.98376e+00 0.00000e+00 1.09995e+00
c 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
v 0.00000e+00 0.00000e+00 0.00000e+00 7.04581e+02 0.00000e+00 0.00000e+00 0.00000e+00

mean 7.59856e-04 -2.03709e-03 -4.81397e-05 -4.43649e+03 3.98361e+00 2.31226e-27 1.10205e+00
Worst 1.56964e-02 -2.03709e-03 -4.78305e-05 -5.05406e+03 3.98529e+00 1.68660e-26 1.14546e+00

std 3.07632e-03 3.18067e-11 1.21443e-07 3.81468e+02 8.68746e-04 3.74247e-27 8.96278e-03
SR 96 100 100 0 100 100 100
vio 1.43881e-06 0.00000e+00 0.00000e+00 8.50673e+02 0.00000e+00 0.00000e+00 0.00000e+00

Problem C15 C16 C17 C18 C19 C20 C21
Best 2.35612e+00 0.00000e+00 5.08555e-02 4.61632e+01 0.00000e+00 4.26739e+00 3.98172e+00

Median 2.35612e+00 0.00000e+00 1.28612e+00 5.28819e+01 0.00000e+00 4.66553e+00 3.98337e+00
c 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0
v 0.00000e+00 0.00000e+00 2.45000e+01 1.75961e-01 3.61162e+04 0.00000e+00 0.00000e+00

mean 2.35612e+00 0.00000e+00 7.63255e-01 7.64020e+01 7.99304e-06 4.63586e+00 3.98328e+00
Worst 2.35612e+00 0.00000e+00 1.02051e+00 7.12913e+01 1.13945e-04 4.89938e+00 3.98514e+00

std 1.15463e-15 0.00000e+00 4.99949e-01 3.08343e+01 2.44104e-05 1.62296e-01 1.04513e-03
SR 100 100 0 16 0 100 100
vio 0.00000e+00 0.00000e+00 2.49000e+01 9.24021e+00 3.61162e+04 0.00000e+00 0.00000e+00

Problem C22 C23 C24 C25 C26 C27 C28
Best 1.33283e+01 1.10002e+00 2.35612e+00 0.00000e+00 4.68759e-01 2.47726e+02 1.51589e+00

Median 1.50613e+01 1.10008e+00 2.35612e+00 0.00000e+00 7.93231e-01 2.47780e+02 9.12297e+00
c 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
v 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.55000e+01 0.00000e+00 3.61294e+04

mean 1.50437e+01 1.10009e+00 2.35612e+00 4.79535e-15 7.79536e-01 2.53585e+02 4.88724e+00
Worst 1.70559e+01 1.10026e+00 2.35612e+00 1.19884e-13 1.03293e+00 2.43784e+02 3.78243e+00

std 8.63486e-01 5.30948e-05 2.65096e-07 2.34923e-14 1.54321e-01 8.14018e+00 2.75696e+00
SR 100 100 100 100 0 92 0
vio 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 2.55000e+01 1.20599e-05 3.61294e+04
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Table A.20 Function Values of HECO-DEm Achieved for 100D (FESmax = 20000×D)

problem C01 C02 C03 C04 C05 C06 C07
Best 2.52934e-20 9.99851e-20 1.29343e-19 0.00000e+00 8.47526e-12 0.00000e+00 -1.12952e+04

Median 3.21140e-18 1.59257e-18 7.70459e-19 1.35728e+01 2.85091e-10 3.01216e-09 -1.06108e+04
c 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2
v 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 3.24552e-04

mean 5.25055e-18 3.34629e-18 1.36734e-18 1.30506e+01 1.62991e-09 2.79943e-04 -9.05882e+03
Worst 2.75162e-17 1.50461e-17 5.11185e-18 1.37466e+01 1.47056e-08 3.39886e-03 -8.59931e+03

std 6.07200e-18 3.62041e-18 1.46077e-18 2.66437e+00 3.31263e-09 7.83654e-04 1.77548e+03
SR 100 100 100 100 100 100 20
vio 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 5.77794e-04

Problem C8 C9 C10 C11 C12 C13 C14
Best 6.92863e-04 0.00000e+00 -1.66825e-05 -8.29270e+03 3.98089e+00 3.32095e+01 7.84202e-01

Median 1.84414e-02 0.00000e+00 -1.62462e-05 -9.49008e+03 3.98133e+00 3.37832e+01 7.87225e-01
c 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
v 8.21285e-05 0.00000e+00 0.00000e+00 1.09098e+03 0.00000e+00 0.00000e+00 0.00000e+00

mean 9.90362e-02 4.14392e-08 -1.61547e-05 -9.51644e+03 9.15114e+00 3.36573e+01 7.90260e-01
Worst 5.96787e-01 1.03598e-06 -1.54195e-05 -1.02215e+04 3.23185e+01 3.44038e+01 8.05247e-01

std 1.52133e-01 2.03010e-07 3.73374e-07 3.73248e+02 1.01662e+01 3.35805e-01 7.30032e-03
SR 48 100 100 0 100 100 100
vio 3.43250e-02 0.00000e+00 0.00000e+00 1.65473e+03 0.00000e+00 0.00000e+00 0.00000e+00

Problem C15 C16 C17 C18 C19 C20 C21
Best 2.35612e+00 0.00000e+00 1.00856e-01 5.20825e+01 0.00000e+00 1.18717e+01 3.98079e+00

Median 2.35612e+00 0.00000e+00 1.00081e+00 9.04730e+01 0.00000e+00 1.28181e+01 3.98137e+00
c 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0
v 0.00000e+00 0.00000e+00 5.05000e+01 2.12370e+01 7.29695e+04 0.00000e+00 0.00000e+00

mean 2.35612e+00 0.00000e+00 8.99323e-01 8.92581e+01 1.45123e-05 1.28040e+01 1.21426e+01
Worst 2.35612e+00 0.00000e+00 1.06281e+00 8.53313e+01 1.25188e-04 1.35483e+01 3.31102e+01

std 1.17495e-15 0.00000e+00 3.75765e-01 2.62678e+01 3.79977e-05 4.34238e-01 1.25873e+01
SR 100 100 0 8 0 100 100
vio 0.00000e+00 0.00000e+00 5.02200e+01 1.78802e+01 7.29695e+04 0.00000e+00 0.00000e+00

Problem C22 C23 C24 C25 C26 C27 C28
Best 7.97619e+01 7.84305e-01 2.35612e+00 1.57066e+00 1.00792e+00 2.85076e+02 6.01060e+01

Median 9.16889e+01 7.84394e-01 2.35612e+00 1.57066e+00 1.01577e+00 3.19137e+02 7.28285e+01
c 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0
v 0.00000e+00 0.00000e+00 0.00000e+00 0.00000e+00 5.05000e+01 0.00000e+00 7.30857e+04

mean 2.21629e+03 7.84461e-01 2.35612e+00 4.27243e+00 1.02233e+00 3.02092e+02 6.55626e+01
Worst 5.12128e+04 7.85472e-01 2.35612e+00 1.88494e+01 1.09906e+00 3.01627e+02 9.30328e+01

std 1.00027e+04 2.30716e-04 1.01355e-07 4.25033e+00 2.26688e-02 1.67693e+01 1.17741e+01
SR 92 100 100 100 0 92 0
vio 9.17850e+00 0.00000e+00 0.00000e+00 0.00000e+00 5.05000e+01 3.59885e-05 7.30831e+04
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