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Abstract

Background: Respiratory symptoms are common in early life and often transient. It

is difficult to identify in which children these will persist and result in asthma.

Machine learning (ML) approaches have the potential for better predictive perfor-

mance and generalisability over existing childhood asthma prediction models. This

study applied ML approaches to predict school‐age asthma (age 10) in early life

(Childhood Asthma Prediction in Early life, CAPE model) and at preschool age

(Childhood Asthma Prediction at Preschool age, CAPP model).

Methods: Clinical and environmental exposure data was collected from children

enrolled in the Isle of Wight Birth Cohort (N = 1368, ∼15% asthma prevalence).

Recursive Feature Elimination (RFE) identified an optimal subset of features pre-

dictive of school‐age asthma for each model. Seven state‐of‐the‐art ML classifica-

tion algorithms were used to develop prognostic models. Training was performed by

applying fivefold cross‐validation, imputation, and resampling. Predictive perfor-

mance was evaluated on the test set. Models were further externally validated in

the Manchester Asthma and Allergy Study (MAAS) cohort.

Results: RFE identified eight and twelve predictors for the CAPE and CAPP models,

respectively. Support Vector Machine (SVM) algorithms provided the best perfor-

mance for both the CAPE (area under the receiver operating characteristic curve,

AUC = 0.71) and CAPP (AUC = 0.82) models. Both models demonstrated good

generalisability in MAAS (CAPE 8‐year = 0.71, 11‐year = 0.71, CAPP 8‐year = 0.83,

11‐year = 0.79) and excellent sensitivity to predict a subgroup of persistent

wheezers.

Conclusion: Using ML approaches improved upon the predictive performance of

existing regression‐based models, with good generalisability and ability to rule in

asthma and predict persistent wheeze.
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1 | INTRODUCTION

Childhood asthma is highly heterogeneous, with numerous factors

contributing towards its development, persistence and severity.1–3

Despite approximately 80% of asthmatic children developing symp-

toms (suchaswheeze) before the ageof six, these clinical symptomsare

neither universally present in early life among all future asthmatics nor

specific to asthma.4 With the added difficulty of making an objective

asthma diagnosis before the age of five, both under‐treatment and
over‐treatment of wheezing disorders are common in early life.5,6

The ability to predict the development of school‐age asthma can
help to identify high‐risk preschool children and distinguish them

from children whose symptoms are likely to be transient.7 Further-

more, early prediction of asthma susceptibility will be critical for the

successful implementation of potential primary prevention strategies

to reduce the risk of developing asthma.

A recent systematic review identified twenty‐one logistic

regression‐based models for predicting childhood asthma.8 However,
none of these models have been implemented into standard clinical

practice, possibly due to relatively weak predictive power, poor

generalisability and need for specialised clinical testing. The review

further proposed that regression‐based methods for predicting

childhood asthma may have been exhausted, with the identified

models offering similar predictive power to each other and being

unable to be significantly improved upon.8

Machine learning approaches have increasingly been applied to a

wide range of healthcare problems due to their ability to integrate large

quantities of heterogeneous data, handle complex interactions between

variables and identify patterns within data.9 Particularly for disease

prediction,where interactions betweenbiological variables are complex,

machine learning approaches have the potential to identify novel pre-

dictorswhichmayhavebeenpreviouslyoverlookedby regression‐based
approaches.9–11 Furthermore, application of methods to reduce model

overfitting may address the poor generalisability of existing prediction

models in independent populations. Machine learning approaches have

shown promise in predicting a variety of clinical asthma outcomes,

phenotypes and decisions,12–16 including the diagnostic or prognostic

prediction of school‐age asthma development.17–25While these studies

tend to offer improved predictive performance, none of these studies

support their findingswithexternal validationsof theirmodelsorexplain

how their “black‐box” models (where relevant) arrive at their pre-

dictions. Without these two components, machine learning models will

fail to obtain the trust of physicians and continue to be limited in their

clinical utility, regardless of the superior prediction accuracy they may

offer.26,27

This study aimed to utilise machine learning approaches to

improve upon the performance of traditional regression methods and

develop explainable and independently validated prediction models

for childhood asthma. Two prognostic prediction models, the Child-

hood Asthma Prediction in Early‐life (CAPE) and Childhood Asthma

Prediction at Preschool‐age (CAPP) models, were developed to pre-

dict school‐age asthma at 10 years, within a general population‐
based cohort, using information available from the first two years

and first four years of life, respectively.

2 | METHODS

2.1 | Developmental study population

Data was obtained from 1456 individuals from the Isle of Wight Birth

Cohort (IOWBC). Study recruitment and participant details have

been previously described28 (see supporting information S1). Ethical

approval was obtained from the Isle of Wight Local Research Ethics

Committee at recruitment and 1‐, 2‐ and 4‐year assessments (No.
05/89) and 10‐year assessments including genetic studies (No. 18/

98). Prior to participation in the study at each follow‐up, written
informed consent was obtained from parents of children, and assent

from children (where applicable). This study received approval from

the University of Southampton Faculty of Medicine ethics committee

(ERGO number 46033.R1).

2.2 | Prediction outcome

School‐age asthma, evaluated at age 10, was defined as “a doctor

diagnosis of asthma ever and at least one episode of wheezing or use

of asthma medication in the last 12 months”. Only individuals with a

reported asthma status at the 10‐year follow‐up were included in the
analyses (n = 1368).

2.3 | Candidate predictors

Fifty‐four candidate predictors previously reported to be associated

with childhood asthma, and forwhich datawas available in the IOWBC,

were identified (Table E1). Candidate predictors included data on

subject demographics, lifestyle, clinical symptoms of allergy and

asthma and environmental exposures collected across three time

points: at birth (prenatal and perinatal data), early life (combined
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exposure at either the 1‐year or the 2‐year follow‐ups) and at pre-

school age (4‐year follow‐up).

2.4 | Model development

All stages of model development were performed independently for

the CAPE and CAPP models (Figure 1).

2.5 | Feature selection

For each model, feature selection was performed on the complete

dataset for all available candidate predictors (without any missing

values) using Recursive Feature Elimination (RFE) with a random

forest algorithm, using fivefold cross‐validation (see supporting -

information S1).

2.6 | Model construction and optimisation

To identify the best classification algorithm, seven machine learning

classifiers were implemented: two support vector machines (SVM)

(linear and radial basis (RBF) kernel functions), decision tree, random

forest, naive Bayes, multilayer perceptron, and K‐Nearest Neigh-

bours (see supporting information S1).

Each machine learning algorithm was initially trained and eval-

uated on the subset of individuals who had complete data for the

F I GUR E 1 Workflow for the development and validation of asthma prediction models using machine learning approaches. Model
development in the Isle of Wight Birth Cohort (IOWBC) was performed independently in for the construction of the CAPE and CAPP tools.
(A) Feature selection was performed using only individuals with complete data for all candidate predictors. (B, C) Seven machine learning

classifiers (two support vector machines with different kernel functions (linear and radial basis function), naïve Bayes classifier, decision tree,
multilayer perceptron, random forest and K‐nearest neighbours) were developed. Models were developed using complete data for the subset of
features identified from feature selection (B), and subsequently redeveloped using optimised training datasets (C). Training dataset optimisation

consisted of the step‐wise application of imputation and resampling (oversampling using ADASYN and random undersampling) to the entire
IOWBCdataset not allocated to the test dataset, including thosewithmissingpredictor data (CAPE:n=1113;CAPP:n=1185). (D)ThebestCAPE
andCAPPmodelswere selected based on performance in the test set. (E) Selectedmodelswere externally validated to predict school‐age asthma
at ages 8 and 11 years in an independent population (Manchester Asthma and Allergy Study, MAAS). †The performance of the best CAPE model
wasdevelopedon thecomplete trainingdataset, undersampled tobalance class proportions (n=136). ThebestCAPPmodelwasdevelopedon the
complete training dataset, with cases oversampled by 300% and controls undersampled to balance class proportions (n = 408)
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predictors selected through RFE. The dataset was split (ratio of 2:1,

preserving class proportions) into a training and holdout test set for

model development and validation, respectively (Figure 1). Within a

fivefold cross‐validation, the hyperparameters for each model were

tuned using a grid search, optimising for its balanced accuracy (see

supporting information S1, Table E2).

The training dataset was then optimised to further improve the

performance of the classification algorithms. Multiple imputation us-

ing Multivariate Imputation by Chain Equations (MICE),29 over-

sampling using an adaptive synthetic sampling approach (ADASYN),30

and random under‐sampling were implemented in a stepwise

approach to address the degree of missing data and class imbalance in

the training set (see supporting information S1). The seven algorithms

were then redeveloped, with hyperparameters retuned, on each

optimised training set to identify the best asthma prediction model(s)

and tested on the same holdout test set (Figure 1).

The best CAPE and CAPP models were selected based on their

discriminative performance on the test set using the area under the

receiver operating characteristics curve (AUC). Sensitivity, specificity,

positive and negative predictive values (PPV and NPV), positive and

negative likelihood ratios (LR+ and LR−), balanced accuracy, F1‐
score and Brier score were reported at the optimal threshold that

maximized the Youden's Index, with 2000 bootstrap samples used to

calculate 95% confidence intervals for the performance measures.

2.7 | External validation

The best performing models were validated in the Manchester

Asthma and Allergy Study (MAAS) cohort31 to predict school‐age
asthma at ages eight and eleven (Figure 1, see supporting informa-

tion S1). Data extracted from MAAS was closely matched to maxi-

mise the similarity of predictor and outcome definitions used in the

development cohort (Table E3).

2.8 | Sensitivity analyses

Sensitivity analyses were conducted to comprehensively evaluate the

developed models, including evaluations of (i) their generalisability in

high risk subgroups; (ii) their robustness to predict an alternative

definition of school‐age asthma; (iii) the resolution of the predictions
to distinguish between individuals presenting with distinct wheeze

phenotypes throughout childhood and adolescence; and (iv) their

performance compared to similar regression‐based models (see

supporting information S1).

2.9 | Explaining the ‘black‐box’ models

SHapley Additive exPlanations (SHAP)32 were used to evaluate

feature importance and provide global explanations for how pre-

dictions were made by the CAPE and CAPP models (see

supporting information S1). Examples of how SHAP can be used

locally to explain individual predictions were also provided.

3 | RESULTS

In the IOWBC, 1368 enrolled participants had a defined asthma

outcome at age 10, of whom 201 (14.69%) were asthmatic. Baseline

characteristics between individuals with complete data were largely

comparable with the full IOWBC dataset (Table E4).

3.1 | Childhood Asthma Prediction in Early‐life
(CAPE) model

Complete data on all 39 predictors collected by age two was avail-

able for 490 individuals. RFE identified a subset of eight predictors

for inclusion in the CAPE model, with an average balanced accuracy

of 64.49%. Figure 2A details the feature importance, direction, and

magnitude of asthma risk for each selected predictor based on SHAP.

Complete data for these eight predictors was available for 765 in-

dividuals; 510 (68 asthmatics) and 255 (34 asthmatics) individuals

were allocated to the initial training and test sets, respectively. An

SVM classifier (RBF kernel) was the best performing classification

algorithm for the CAPE model (AUC = 0.71, Brier score = 0.21)

(Table 1A).

3.2 | External validation of the CAPE model

To predict the development of asthma at the 8‐year and 11‐year
time‐points in MAAS, complete data on the eight CAPE predictors

was available for 322 and 299 individuals, respectively. Table E5

compares the distribution of predictors in the IOWBC and MAAS.

The CAPE model demonstrated moderate generalisability, maintain-

ing an AUC = 0.71 at both 8 and 11 years (Table 1A; Figure 3),

despite slight reductions in PPV. In the high‐risk subgroups, despite a
3%–4% increase in PPV, overall predictive performance decreased

(Table 1A).

3.3 | Childhood Asthma Prediction at Preschool‐age
(CAPP) model

For the CAPP model, 373 individuals had complete data for all 54

candidate predictors available by age four. RFE identified an optimal

subset of 12 predictors for inclusion in the model, with an average

balanced accuracy of 74.93% (Figure 2B). Complete data for these 12

predictors was available for 548 individuals, of whom 365 (51 asth-

matics) and 183 (25 asthmatics) individuals were assigned to the

initial training and test sets, respectively. The best performing clas-

sification algorithm for the CAPP model was an SVM (linear kernel)

classifier (AUC = 0.82, Brier score = 0.18) (Table 1B).
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3.4 | External validation of the CAPP model

For validation of the CAPP model in MAAS at the 8‐year and 11‐year
time‐points, complete data for the 12 CAPP predictors was available

for 282 and 267 individuals, respectively. The model demonstrated

good generalisability to predict asthma at both 8 and 11 years

(AUC = 0.83 and 0.79, respectively) in the unselected MAAS sub-

group (Table 1B; Figure 3). PPV also remained comparable in MAAS

(PPV = 0.45 and 0.41, respectively), with further improvements re-

ported in the high‐risk subgroup validations at both time‐points
(Table 1B).

3.5 | Sensitivity analysis

The CAPE and CAPP models were robust in correctly predicting non‐
asthmatics using the alternative asthma definition (similar NPV).

However, neither model was robust in predicting asthmatics, with an

increase in false positive predictions reducing the PPV by approxi-

mately 50% for both models, likely due to disagreement between the

original and modified asthma definitions (Table E6; Figure E1).

Furthermore, both models showed excellent power to predict a

persistent wheeze phenotype, with 100% and 90% of individuals with

persistent wheeze offered a positive prediction by the CAPE and

F I GUR E 2 SHAP feature explanations for the CAPE and CAPP models. The SHAP summary plots describe the contribution of the features

selected during RFE for inclusion in the CAPE (A) and CAPP models (B). Predictors are listed in descending order of their SHAP value. The
higher the SHAP value, the larger its contribution on model predictions. Each dot in each predictor row corresponds to a separate individual.
The placing of the dot along the x‐axis represents the contribution of the predictor in the individual's asthma prediction. The colour of the dot
refers to the feature value, with higher values in red and lower values in blue. For example, early life cough offers the highest contribution to
the random forest model, with higher values (presence of early life cough) having a positive contribution towards a prediction of asthma. The
absence of early life cough (blue dots) reduces the impact/contribution of the model delivering a prediction of asthma
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CAPP models in the IOWBC, respectively (90% and 57% in MAAS,

respectively) (Figure 4).

3.6 | Comparison with regression methods

Both the CAPE and CAPP models outperformed their equivalent

logistic regression models (Table E7; Figure 3). There was a sub-

stantial decline in predictive performance of the CAPE‐logistic
regression model (AUC = 0.59 vs. 0.71), with predictions being no

better than chance in MAAS at 8 and 11 years (AUC = 0.47 and 0.49,

respectively). Predictive power of the CAPP‐logistic regression

model was also lower compared to the CAPP‐machine learning model
(AUC = 0.76 vs. 0.82, PPV = 0.33 vs. 0.47).

Whilst the benchmark regression‐based model for the CAPE

model (Persistent Asthma Predictive Score)33 was unable to be

replicated due to lack of data on key predictors in the IOWBC, the

model comparable with the CAPP model, PARS (Paediatric Asthma

Risk Score),34 was replicated in the IOWBC and MAAS (AUC in

IOWBC = 0.77, MAAS 8‐year = 0.79, MAAS 11‐year = 0.76). Among

individuals with predictions available for both the CAPP and PARS

models, positive net reclassification indices show that the proportion

of reclassifications made by the CAPP model offered equal, if not

greater, accuracy to predict future asthmatics than PARS in both the

IOWBC (Table 2) and MAAS (Table E8).

3.7 | Explaining the “black‐box” models

Based on SHAP, only a subset of predictors included in each model

were shown to have a major contribution on the predictions—early

life cough and wheeze for the CAPE model and preschool cough,

atopy and polysensitisation for the CAPP model (Figure E2). The

contributions of these predictors were consistent with explanations

of individual predictions (Figure E3). Redevelopment of the models

including only these highly contributing predictors showed similar

performance for the CAPP model but a 10% fall in AUC for the CAPE

model (Figure E4).

4 | DISCUSSION

4.1 | Summary of findings

Two models, predicting school‐age asthma at age 10 within a general
population, were developed using machine learning classification

methods. The CAPE model uses a RBF SVM classifier and eight

predictors to predict school‐age asthma in early life. The CAPP model
uses a linear SVM classifier and twelve predictors available by age

four. Both machine learning models offered superior predictive po-

wer and generalisability upon external validation compared to

equivalent models developed using logistic regression methods as

well as existing regression‐based models. Whilst the primary pre-

diction outcome was school‐age asthma, both models demonstrated

excellent sensitivity in predicting individuals likely to experience

persistentwheeze throughout childhood.

4.2 | Comparisons with existing models

To date, twenty‐one regression‐based prediction models have been

developed for childhood asthma (reviewed in Kothalawala et al.8), of

which only six have been externally validated (Table E9). A recent

systematic review further identified 10 studies that developed pre-

diction models for childhood asthma using machine learning ap-

proaches, but only eight specifically predicted school‐age asthma

(5–14 years).26 Another study directly compared the performance of

a current regression‐based asthma prediction model, PARS, with a

conditional inference tree‐based decision rule model using the same

predictors.25 However, none of these studies externally validated the

machine learning models they proposed.

Similar to the CAPE and CAPP models, most published asthma

prediction models are very good at ruling out asthma rather than

ruling in asthma, resulting partly from low power due to low asthma

prevalence.8 Even if existing models offer good PPV, this often de-

grades upon validation.8 Indeed, despite having similar asthma

prevalence to existing studies in the original training set, the machine

learning‐based CAPP model offered a 30% improvement in

F I GUR E 3 Discriminative performance of the CAPE and CAPP machine learning models. The ROC curves compare the discriminative
performance of the CAPE and CAPP machine learning models, their equivalent logistic regression models and the PARS model in the IOWBC
at age 10 (A) and upon validation in MAAS at age 8 years (B) and 11 years (C)
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sensitivity compared to the only model suggested in asthma guide-

lines described to date (sensitivity: CAPP = 0.72 vs. loose Asthma

Predictive Index = 0.42)35 and further 10% improvement in PPV

compared to its benchmark model, PARS. This is consistent with

Owora et al.‘s novel tree‐based model offering better predictive

performance compared to an equivalent regression‐based PARS

model (AUC = 0.85 vs. 0.71).25 Many of the other machine learning

models also demonstrated greater performance to predict asthma

than existing regression‐based models.26 However, with low sample

sizes and indications of overfitting in many of these studies, the lack

of external validation renders it impossible to evaluate any superior

performance offered by these models, especially since they were all

developed in high‐risk populations. Importantly, our CAPP machine

learning model was more generalisable and retained its positive

predictive power upon replication compared to its equivalent logistic

regression model. Furthermore, reclassification tables comparing the

CAPP and PARS models were suggestive of the CAPP model pre-

dicting future asthmatics more accurately than PARS, with a greater

proportion of correct reclassifications than incorrect reclassification

made by the CAPP model in both the IOWBC and MAAS. However,

this needs to be confirmed within a larger cohort. The moderate but

limited predictive power of the CAPE model compared to the CAPP

F I GUR E 4 CAPE and CAPP model predictions and corresponding wheeze trajectories. The proportion of individuals corresponding to

their most probable wheeze phenotype is presented for those predicted to be asthmatic or non‐asthmatic by the CAPE and CAPP models in
the IOWBC (A, B) and MAAS (C, D)
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model was unsurprising given the known difficulty of predicting the

future development of childhood asthma using data from the first few

years of life.36

4.3 | Predictor selection and availability

Both the CAPE and CAPP models include data collected across

multiple time‐points (Figures E5 and E6). Given the variable nature of
asthma development and risk throughout early childhood, the

consideration of predictors across multiple time‐points allowed for

the identification of novel combinations of predictors that together

improved the ability of the models to predict asthma. Whilst data

collected across multiple time‐points may hinder the utility of the

models, the selected predictors are all typically reported during

routine health visits or tracked in child health records. Only the

predictors of atopy and polysensitisation, which require a skin prick

test (SPT), may restrict the applicability of the CAPP model in pri-

mary care. However, as these predictors are well‐established in the

literature, were shown to make large contributions to the predictions

(Figure E2), and resulted in a 10% reduction in AUC when excluded

from the model (Table E10), the predictive benefit offered by the

inclusion of sensitisation was deemed to outweigh the potential

reduction in applicability.

Of the predictors selected for inclusion in the two models, some

were well‐established risk factors with a clear inferred direction of

asthma risk (Figure 2). Others were predictors which have not pre-

viously been used in childhood asthma prediction models (maternal

age at the time of the child's birth, age of solid food introduction and

total breastfeeding duration) and offer a less clear direction of

asthma risk. The selection of these novel predictors, over others that

have a more established biological relevance in the literature (such as

parental asthma, eczema or allergic rhinitis), may be cautiously

accepted by the clinical community. However, RFE identifies the

subset of features that collectively offer the best predictive accuracy

rather than devising a comprehensive list of childhood asthma risk

factors, which may be biologically sound but lacking in predictive

power.37 In fact, the predictors of wheeze and cough were among

those repeatedly included in the majority of machine learning models

identified to date.26 The predictors of atopy, polysensitisation and

wheeze were also included in Owora et al.‘s machine learning model,

however the predictors were taken from the PARS model rather than

being identified from an independent feature selection.25 It is also

important to acknowledge the possibility that the selection of these

novel predictors may stem from an inherent bias of the random

forest algorithm to assign greater importance to features which are

continuous or which have a large number of categories.38 However,

as the CAPE and CAPP models developed using these selected pre-

dictors demonstrated improved performance against existing pre-

diction models, any bias stemming from the feature selection process

did not appear to limit the inclusion of features that were truly

predictive of school‐age asthma.

4.4 | Prediction generalisability, robustness and
resolution

In the unselected MAAS cohort, the CAPE and CAPP models showed

moderate to good generalisability to predict asthma across school

ages, despite the marginal decline in the PPV of the CAPE model.

TAB L E 2 Reclassification table showing changes in prediction categorisation between the PARS and CAPP model

Predicted risk (CAPP model) Reclassified by CAPP (%)

Predicted risk (PARS model) No asthma Asthma Total Increased risk Decreased risk Correctly reclassified NRI

No asthma at age 10 (n = 149)

No asthma 130 9b 139

Asthma 1a 9 10 9 (6%) 1 (<1%) 1 (<1%) −0.05

Total 131 18 149

Asthma at age 10 (n = 25)

No asthma 7 8a 15

Asthma 0b 10 10 8 (32%) 00 (0%) 8 (32%) 0.32

Total 7 18 25

Total 17 1 9

Note: Reclassification table comparing the change in individual asthma predictions with the CAPP model instead of the PARS model (reference model).

For the PARS model, categorisations of predictions as asthmatic and non‐asthmatic was based on the optimal threshold (cutoff = 7) as defined in their

original publication. Results are presented separately for individuals who were asthmatic and non‐asthmatic at age 10. Values in bold identify the

number of individuals with disagreement in their asthma predictions made by the CAPP and PARS models. NRI = net reclassification index is given

separately for true asthmatics and non‐asthmatics.
aReclassified into a more appropriate risk group by the CAPP model with respect to classifications made by the PARS model.
bReclassified into a less appropriate risk group by the CAPP model with respect to classifications made by the PARS model.
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Validation in high‐risk MAAS subgroups showed the PPV of both

models to increase with the number of allergic parents, suggesting

that confidence in ruling in asthma improves in high‐risk groups; but
replication in a larger study population is required.

The lack of a clear definition for asthma is an unavoidable limi-

tation in epidemiological studies.39 The asthma definition used in this

study aimed to account for children with a clinical indication of

asthma (physician diagnosed) who were actively symptomatic, but

also those potentially asymptomatic at the time of assessment due to

the use of symptom relieving medications. Whilst both models were

robust in predicting non‐asthmatics using an alternative asthma

definition of wheeze and bronchial hyper‐responsiveness (BHR), they
had reduced power to predict true asthmatics (∼50% decline in PPV).

The latter may be explained by objective tests, such as spirometry

and BHR, being influenced by treatment; potential asthmatics on

controller medications, whom the models are trained to identify as

asthmatic, may be considered as non‐asthmatic with the alternative

definition, resulting in greater false positive predictions.

As the aim of this study was to compare whether machine

learning approaches could improve upon existing regression‐based
models that predict childhood asthma, the primary prediction

outcome for this study was restricted to school‐age asthma rather

than predicting asthma phenotypes. However, acknowledging the

importance of exploring specific sub‐phenotypes of asthma, the res-
olution of the machine learning models to predict an individual's

future wheeze trajectory was explored. Notably, both the CAPE and

CAPP models showed excellent sensitivity to predict individuals with

a persistent wheeze phenotype; these individuals would likely benefit

from early primary or secondary asthma prevention/management.

To promote the clinical use of complex machine learning

methods, studies must address the major hurdle of model inter-

pretability. This study demonstrates how tools such as SHAP values32

can be used to unravel explanations of complex black‐box machine

learning algorithms that have shown to improve the accuracy of

childhood asthma predictions.

4.5 | Strengths and limitations

This study had a number of strengths. First, each model was devel-

oped to make timely predictions to identify future asthmatics within

a general population, rather than among those already considered at

high‐risk (mainly those experiencing wheeze or with a familial history
of asthma/allergy). Second, by utilising machine learning methods,

novel predictor subsets for school‐age asthma were identified and

the developed models offered improved predictive performance over

current regression‐based methods. Third, to our knowledge, this is

the first study to externally validate asthma prediction models

developed using machine learning approaches. The models demon-

strated good generalisability to predict school‐age asthma across

multiple time‐points, without degrading the predictive power to rule
in asthma (particularly with the CAPP model). Fourth, the two models

displayed excellent sensitivity to predict a subgroup of individuals

with persistent wheeze. Finally, this study was able to use SHAP to

address one of the key issues preventing the uptake of machine

learning methods in clinical practice—the inability to interpret the

models and explain the individual predictions made.

However, this study was limited by both model development and

validation being conducted in predominantly Caucasian populations.

Machine learning also requires large datasets—the introduction of

more data would undoubtedly improve the performance of the ma-

chine learning models and offer more precise performance estimates

with smaller confidence intervals. To retain a sample size appropriate

for machine learning, feature selection was conducted before per-

forming a train‐test split. This decision could have resulted in infor-

mation leakage, potentially biasing the performance seen in the

IOWBC test sets. To mitigate any bias, external replication was used

to evaluate the models; as performance in MAAS was similar to the

IOWBC, data leakage was not deemed a significant problem. Finally,

whilst genomic data was available in the IOWBC, only clinical and

environmental predictors were considered in order to maximize the

clinical applicability of the models. It is possible that the consider-

ation of genomic predictors might significantly improve childhood

asthma predictions further22,40; however, the aim of this study was to

explore whether machine learning methods could surpass the pre-

dictive ceiling that existing logistic regression methods appeared to

be limited to. Hence, to provide a fair comparison with existing

regression‐based models, such asthma biomarkers were not incor-

porated into this study.

5 | CONCLUSION AND FUTURE WORK

Using machine learning, the CAPE and CAPP models were able to

surpass the predictive performance of similar models developed us-

ing traditional logistic regression‐based methods. Both models were

generalisable in an independent population, with the CAPP model

also demonstrating superior predictive power to rule in true asth-

matics compared to its benchmark model (and was retained upon

validation). Future application of these models could include the

development of a personalised tool/app capable of providing expla-

nations of which predictors contributed to an individual's predicted

probability of developing asthma. Both models also demonstrated

excellent sensitivity to predict a subgroup of persistent wheezers.

Therefore, rather than developing an all‐encompassing asthma pre-

diction tool, further research into predicting specific ‘asthmas’ using

machine learning approaches may offer greater predictive insight and

clinical utility. Finally, continued exploration of machine learning

approaches and the identification and integration of novel bio-

markers is warranted to further improve the power to predict future

childhood asthma.
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