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A B S T R A C T   

To feed the world increasing population, expansion in the area under arable cultivation is expected, with the 
majority projected to occur in Sub-Sahara Africa and Latin American countries. However, many existing Preci-
sion Agriculture (PA) techniques are difficult to transfer to agricultural systems in these regions as they rely on 
prohibitively expensive crop monitoring systems. Satellite Earth Observation (EO) has the ability to provide 
affordable solutions, particularly to identify yield-limiting conditions within site-specific management zones 
(MZs). This paper presents the Earth Observation-based Anomaly Detection (EOAD) approach, a novel system for 
the detection of in-field anomalies through automatic thresholding of optical Vegetation Index data, based on 
their deviation from a normal distribution. The EOAD sets dynamic thresholds for the pixel values within a parcel 
by removing the atypical values in increments from the tails towards the median until the distribution is normal. 
The distribution normality is assessed based upon measures of skewness and kurtosis for each iteration. The 
anomaly detection approach demonstrated a strong agreement, 80% overall accuracy, with identified in-field 
anomalies when applied to rice plots in the Ibague Plateau, Colombia, using both Sentinel-2 and PlanetScope 
imagery. Areas identified as anomalous during the booting stage were shown to be significantly (p ⩽0.005) 
associated with a decrease in final yield. Additionally, the percentage of anomalies detected with the EOAD 
improved the detection of underperforming plots in early growth stages. Using freely available data and soft-
ware, this automated approach demonstrates an exciting potential for use in improving agricultural practices in 
low-resource regions.   

1. Introduction 

Projections indicate that by 2050 arable land is estimated to increase 
by 12% in low-income countries compared to 2009 levels (Alexandratos 
and Bruinsma, 2012; Kirova et al., 2019). Adopting environmentally 
sustainable cropping systems in these regions is crucial to increase 
resistance to environmental stress, enhanced crops nutritional content, 
and, ultimately, safeguard food supplies in a changing world. However, 
the adoption of Precision Agriculture (PA) technologies has been slow 
(Joint Research Centre of the European Commission, 2014). The high- 

tech nature of traditional PA technologies, developed in advanced 
countries, involves quantifying biophysical parameters to characterise 
the very particular conditions of an agricultural system, making it 
difficult to transfer to others (Delgado et al., 2019; Joint Research Centre 
of the European Commission, 2014). Nevertheless, rapid changes in the 
socio-economic conditions of the developing World coupled with de-
mands from specialised markets call for the development of softer PA 
approaches that are both scalable and transferable (Mondal and Basu, 
2009). 

A more affordable approach to achieve PA goals is the 
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implementation of agricultural practices based on site-specific man-
agement zones (MZs) (Gavioli et al., 2019; Koch et al., 2004; Méndez- 
Vázquez et al., 2019). These are anomalous areas within a field that have 
yield-limiting factors (Ye et al., 2007). Gavioli et al. (2019) found that 
applying a multivariate spatial analysis based on Moran’s index and 
spatially weighted Principal Component Analysis (sPCA) on yield, soil 
physical properties and topographic data facilitated to define highly 
homogeneous management zones in corn and soybean crops, in Brazil. 
However, early detection of anomalous areas is challenging due to their 
sporadic nature (both in time and space) and lack of clearly visible 
symptoms without close observation, demanding frequent and detailed 
ground inspection (Shaw and Kelley, 2005). 

The identification of anomalous areas within crop fields using 
Remote Sensing (RS) has been successfully used to improve agricultural 
practices (Pérez et al., 2000; Shaw and Kelley, 2005). However, ap-
proaches have largely relied on the use of aerial imagery and near- 
ground sensors at a cost that is prohibitive to many farmers, particu-
larly in resource-poor regions of the World. Satellite Earth Observation 
(EO) has the potential to support in-field crop anomaly detection 
reducing frequent detailed scouting, but due to its relatively coarse 
spatial resolution, satellite EO has mainly been used at regional scales, 
ignoring in-field variability. For example, medium spatial resolution 
satellite imagery, such as Landsat (30 m), have been used primarily to 
map land cover change within agricultural areas rather than monitoring 
anomalies within crops (e.g. Dutrieux et al., 2016). Also, studies that 
analyse temporal patterns of crop growth are usually performed with 
higher frequency imagery, such as Moderate Resolution Imaging Spec-
troradiometer (MODIS) and SPOT Vegetation (SPOT-VGT) (e.g. Bolton 
and Friedl, 2013; Eerens et al., 2014; Funk and Budde, 2009; Lasapo-
nara, 2006; Rembold et al., 2019), at a sacrifice of spatial resolution 
(MODIS:250 m, SPOT-VGT: 1000 m) and are therefore limited to making 
assessments at regional and global scales (Bolton and Friedl, 2013; 
Eerens et al., 2014; Lasaponara, 2006), rather than informing sub-plot 
farm management decisions. 

The pixel-based nature of current approaches to detect in-field 
anomalies, applied mostly to aerial imagery and near-ground sensors, 
is sensitive to noise (producing a salt and pepper effect) and makes it 
difficult to account for contextual information Chen et al. (2012). The 
use of kernel filters, or moving windows, enables pixels contextual in-
formation to be considered (Tewkesbury et al., 2015). For these ap-
proaches, often hard thresholds are applied to spectral data in a plot 
based on statistical metrics retrieved from the distribution of the data 
within a moving window. McCann et al. (2017) mapped local anomalies 
based on the number of Median Absolute Deviations (MADS) for a given 
moving window around a centre pixel. Although this demonstrated 
promising results, the accuracy obtained varied highly depending on the 
window size, growth stage and number of MADS chosen (McCann et al., 
2017). 

Rather than using variable kernels to define anomalous pixels, 
object-based image analysis (OBIA) offers an opportunity to use the 
agricultural plot as a fixed spatial unit of analysis. It eliminates the 
window size variable and is especially relevant for in-field anomaly 
detection, given the fact that agricultural management decisions are 
usually made on a per-field basis (Belgiu and Csillik, 2018; Long et al., 
2013). OBIA is, however, preferred only if the objects of interest (i.e. 
agricultural fields) are significantly larger than the pixels of the image 
(Blaschke, 2010; Gilbertson and van Niekerk, 2017). This, therefore, 
excludes the use of broad spatial resolution sensors such as MODIS and 
SPOT-VGT for in-field anomaly detection and restricts the use of Landsat 
when monitoring plots smaller than 4 ha, as there would not be a suf-
ficient number of pixels to carry out a robust analysis. Sentinel-2 im-
agery, with a 10–20 m spatial resolution and a revisit time of 5 days, 
provides an opportunity to explore the use of freely available EO data for 
conducting OBIA-based crop monitoring in small to medium size crop 
plots. 

Thresholding spectral data to determine whether pixels are 

anomalous or not is also challenging and current research is still limited. 
This is because each crop plot has its particular characteristics (e.g. soil 
properties, plant species, phenological stage, weather conditions, or 
management practices) that need to be accounted for independently. 
Several studies have developed methods that use ground truth data to 
train the anomaly detection models or tune the value of the threshold 
point to produce higher accuracies (e.g. Liang et al., 2021; Kanjir et al., 
2018; McCann et al., 2017; Mouret et al., 2021). However, few authors, 
such as Thomas et al. (2018) that developed a histogram-based tech-
nique to detect mangrove forest changes, have developed automatic 
thresholding techniques for anomaly detection. With constantly 
improving technology in terms of the sensors, satellite EO offers the 
potential to develop transferable, scalable, and low-cost PA solutions to 
detect in-field crop anomalies and implement corrective actions that 
maximise the production along the crop cycle. It requires methods that 
automatically tune the threshold values for each crop plot, considering 
its particular biophysical conditions. 

This research presents a novel approach for the detection of in-field 
crop anomalies over space and time using medium and high-resolution 
EO-derived products. The Earth Observation-based Anomaly Detection 
(EOAD) approach implements a simple histogram analysis technique for 
delineating potentially anomalous pixels. This was tested over rice plots 
in the Ibague Plateau, Colombia, with comparisons being made with 
field observations of anomalous areas and final yield data. We also 
tested the ability of the EOAD to forecast low-performance fields at early 
growth stages to prioritise efforts to optimise the overall productivity in 
the whole agricultural system. 

2. Materials and methods 

2.1. Study area 

The demonstration area is located within the Ibague plateau plain in 
the Central Andes, Colombia, at 4.3 ◦N, 75.0◦ W (Fig. 1). The altitude 
varies between 704 and 934 meters above sea level and the climate is 
semi-humid, with an average temperature of 23.2◦ C and annual average 
precipitation of 1690 mm (Instituto de Hidrología Meteorología y 
Estudios Ambientales de Colombia, 2020). 

The most important agricultural production system in the area is 
irrigated rice (Oryza sativa). The rice cycle duration ranges between 115 
and 130 days after the emergence date (DAE), and due to the equatorial 
climatic conditions, the cereal is produced throughout the year, for 
which the crop calendar among neighbouring fields can be different. 

The period of rice growth can be divided into three agronomic 
phases: 1) vegetative, 2) reproductive, and 3) ripening/grain filling 
(Kuenzer and Knauer, 2013; Moldenhauer et al., 2013). The classifica-
tion of the sub-phases within these 3 main stages varies among farming 
systems. Growers in the Ibague Plateau sub-divide the vegetative phase 
of rice into three further substages: i) Germination, ii) seedling emer-
gence, iii) tillering and a ripening/grain filling (See Fig. 2). The plot age 
is counted from the field date of emergence, which is defined as the date 
when 80% of the plants have emerged. 

Rice fields are irrigated using a contour-levee technique. Under this 
irrigation technique, the water layer depth is dynamically changing over 
space and time, leading to a heterogeneous development of rice plants 
and weeds along the field (Okada and Lopez-Galvis, 2018). When dry 
patches are identified, the water flow is fixed, so the plants grow at the 
expected rate. 

2.2. Datasets and Image processing 

2.2.1. Field Observations 
Field observations were made over a 100 m regular grid between 

December 2019 and February 2020. A total of 36 reference points were 
recorded in 8 plots using the QField mobile app Version 1.2 on a mobile 
phone. For each point, the coordinates, the presence/absence of 
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anomalies, the type of anomaly (When the observation was considered 
anomalous) and a picture were registered. The identification of the 
presence/non-presence of anomalies in each point was performed 
visually by the farm agronomists, based on their expertise and crop 
knowledge. 

To account for GPS accuracy, a 10 m radius buffer was applied 
around each field data collection point. Field boundaries were manually 
digitised using PlanetScope imagery and ground control points. 
Although this was a highly manual approach, published methods 
demonstrate the potential for automatically delineating both regular 
and irregular shaped agricultural fields using medium resolution EO 
imagery (Robb et al., 2020). A negative 10 m buffer was applied over the 
crop plot boundaries to reduce edge effects and potential image align-
ment artefacts. 

2.2.2. EO Imagery 
Satellite optical data were acquired over the study site between 

January 2018 and February 2020 (Fig. 3). These datasets were selected 
to test the performance of the anomaly detection technique using widely 
used commercial (PlanetScope) and non-commercial (Sentinel-2) EO 
imagery. 

For this study, 47 Sentinel-2 images were downloaded via Google 
Cloud Public Dataset and 15 Planet imagery were accessed through the 
Planet Explorer browser (Fig. 3). 

The Sentinel-2 mission comprises a constellation of two polar- 
orbiting satellites placed in the same sun-synchronous orbit. It pro-
vides 10 days revisit at the equator with one satellite and 5 days with 2 

satellites (ESA, 2013). Each Sentinel-2 satellite carries the Multi-Spectral 
Instrument (MSI), which measures the Earth’s reflected radiance in 13 
spectral bands (See Fig. 4). The Sentinel-2 Level-1C products are top-of- 
atmosphere reflectance ortho-images in UTM/WGS84 projection. They 
are resampled with a constant Ground Sampling Distance (GSD) of 10, 
20, and 60 m, depending on the native resolution of each spectral band 
(ESA, 2013). 

The Sentinel-2 L1C products were processed to surface reflectance 
and terrain corrected using the 6S radiative transfer model in the At-
mospheric and Radiometric Correction of Satellite Imagery (ARCSI) 
software (Bunting et al., 2018). All image bands were sampled to 10 ×
10 m resolution and clouds and shadows were masked through using an 
extra-trees classifier. 

The commercial PlanetScope constellation consists of individual 
satellites (Doves) that follow a Sun-Synchronous orbit and are able to 
acquire daily images from the entire Earth’s surface (Lemajic Blanka 
et al., 2018; Wicaksono and Lazuardi, 2018). Each PlanetScope CubeSat 
has a four-band frame imager with a split-frame Visible  + Near-Infrared 
filter, resampled with an approximate GSD of 3.7 m at nadir (Planet 
Labs, 2019). 

PlanetScope 3B level images, acquired between January 2019 and 
February 2020, are delivered as orthorectified, surface reflectance 
image products (Planet Labs, 2019) and no additional pre-processing 
operations were applied to them. 

The resulting Analysis Ready Data (ARD) was used to calculate a 
suite of vegetation indices (VIs) demonstrated in previous studies to be 
sensitive to a variety of crop properties (See Table 1). The selected 

Fig. 1. Map showing the location of the Ibague plateau study site, Colombia.  

Fig. 2. Rice phenology at the Ibague Plateau.  

Fig. 3. Acquisition dates of the PlanetScope and Sentinel-2 scenes.  
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indices have shown to be good indicators of two main categories of crop 
biophysical properties: 1) Photosynthetic Pigments (PP) and 2) Vege-
tation and soil Water Content (VWC). Due to its relatively limited 
spectral capabilities, not all VIs were able to be calculated using the 
PlanetScope imagery (five in total, compared to 24 for Sentinel-2). 
Sentinel-2 has more than one Near-infrared (NIR) and red-edge chan-
nels; therefore, all possible combinations of these VIs were considered 
(e.g. Normalised Difference Vegetation Index was calculated for 
Sentinel-2 twice: The first using band 8 and the second using band 8a). 

2.2.3. Yield measurements 
The yield was measured by a sensor mounted on the rice combine 

harvester that recorded an estimated wet grain yield (T/ha) per linear 
meter. Yield data was interpolated into raster surfaces using inverse 
distance weighting and resampled to match the EO derived products 
using a bilinear interpolation. The yield values for all the plots were 
normalised between 0 and 1 to minimise the production variability 
among plots due to different management conditions. 

2.3. The EO-based plot-level Anomaly Detection (EOAD) technique 

The Optical vegetation indices were used as input for the EO-based 
plot-level Anomaly Detection (EOAD) method. The anomaly surfaces 
obtained were then compared with the ground data to detect the method 
accuracy and the impact of the predicted anomalies over the yield. The 
methodological workflow is presented in Fig. 6. 

2.3.1. Histogram analysis 
The EOAD technique is based on thresholding the histogram of EO 

data (i.e. VI values) within a crop plot. The python algorithm to 
implement the EOAD method can be found at Castillo-Villamor et al. 
(2021). Thresholds are designed to classify pixels into one of three 
classes: 1) high-anomalous, 2) low-anomalous and 3) non-anomalous. 
There are two key assumptions that EOAD is based on: i) VI values for 
non-anomalous pixels will be normally distributed in a crop plot, and ii) 
pixel values that deviate from this normal distribution are considered 
anomalous (i.e. significantly high or significantly low values). The 
thresholding process used by EOAD is illustrated in Fig. 5. Here, pixels 
are excluded by iteratively removing the tail bins of the VI histogram 
(per plot) until normality is achieved. The degree of normality is based 
on measures of kurtosis and skewness, where the iteration that produced 
the lowest kurtosis and skewness represents the most normal distribu-
tion. At this point, the upper and lower bin values are extracted, rep-
resenting corresponding thresholds for determining whether a pixel is 

considered high-anomalous or low-anomalous, the rest remaining as 
non-anomalous. This approach allows considering the inherent vari-
ability of the properties of the plot, independently of the variability that 
may occur between parcels as a consequence of different management 
practices. The bin width (BW) is defined independently for each plot 
following Freedman and Diaconis (Freedman and Diaconis (1981)) 
using the interquartile range (IQR), where n is the number of available 
values (See Eq. 1). 

BW =
(
2 × IQR × n− 1/3) (1)  

2.3.2. Accuracy assessment 
The EOAD approach was initially validated against field observations 

of anomalies to determine which VI products could accurately map 
anomalies. Secondarily, statistical comparisons were drawn with yield 
data to determine EOAD’s potential for directly informing agricultural 
practices that lead to increases in yield. A summary of these analyses is 
provided in Fig. 6. 

EOAD was applied to all crop plots at the study site using all available 
VIs outlined in Table 1. A set of field validation points were used to 
assess the accuracy of the EO-based anomaly detection technique for 
identifying true anomalies observed in the field. The 10 m buffer area 
associated with each ground point was intersected with the anomaly 
presence/absence classified products where the corresponding EO and 
field collection dates were within 8 days. For the studied rice plots, the 
36 reference points were found in four (4) Sentinel-2 and four (4) 
PlanetScope images within ±8 days, resulting in 78 and 72 observations, 
respectively. For each observation, the EO-derived anomaly status was 
compared against the anomaly status recorded in the field using a 
confusion matrix, thereby summarising the number of true positives 
(TP), false positives (FP), false negatives (FN) and true negatives (TN). 

Two standard metrics were derived from the confusion matrix (See 
Table 2): The overall accuracy (OA) and the true skill statistic (TSS). The 
overall accuracy represents the proportion of correctly predicted sites. It 
is defined as the ratio between the correctly classified points to the total 
number of points (Sokolova et al., 2006; Tharwat, 2021). The TSS, also 
known as the Hanssen-Kuipers discriminant, compares the number of 
correct predictions, minus those attributable to random guessing, to a 
hypothetical set of perfect predictions. The TSS is used to correct the 
model’s overall accuracy by the accuracy expected to occur by chance 
(Allouche et al., 2006). 

2.3.3. Period with lower presence of climatic extreme events 
To control for variations caused by climate and prevailing weather, 

Fig. 4. Planet Scope and Sentinel-2 spectral wavelengths differentiated by spatial resolution.  
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satellite data analysed were acquired during a period that was not 
considered extremely wet or dry conditions defined by the Standardised 
Precipitation Index (SPI), where SPI was between − 1.5 and 1.5 (McKee 
et al., 1993). SPI was calculated using historical rainfall records between 
1980–2010 from the meteorological station of the Perales Airport 
(4.4241 ◦N, 75.1394◦ W). Hereafter, we will refer to this as the typical 
precipitation period. It is used to determine the time-lapse to assess the 
impact of the predicted anomalies over the yield. 

2.3.4. Impact of anomalies at different crop stages over yield 
Those Sentinel-2 VIs with overall accuracy scores above 70% and 

TSS values greater than 0.5 were analysed further to determine whether 
EOAD-observed anomalies were related to crop yield. Firstly, the 
anomaly-predicted surfaces derived from each product were compared 
with the final yield to identify if such anomalies at distinct growth stages 
impacted the final production. 

The yield for anomalous and non-anomalous pixels at each of the five 
growth stages was compared using an independent two-sample t-test 
when the two samples variances were equal and a Welch-Satterthwaite 
test when the variances were unequal. The analysis was performed over 
a sample extracted from all the pixels falling within 13 plots, sown with 
four rice varieties during the typical precipitation period. 

2.3.5. Early detection of underperforming plots 
The percentage of the anomalous area within each plot was used as 

one predictor of low-performing plots in the rice production system. If 
this relationship proved to be true, it might help prioritise those fields 
that require more immediate attention and therefore optimise the 
overall productivity in the agricultural system. 

First, a set of thresholds were established to classify the farm his-
torical yield into high and low. The thresholds were chosen in terms of 
the different number of standard deviations away from the farm yield 
mean, as presented in Table 3. 

For each of these thresholds, we used two sets of variables as pre-
dictors of high and low yield plots at each of the single growth stages:  

• Set of variables A: Mean VI per plot, rice cultivar and emergence 
month.  

• Set of variables B: Mean VI per plot, percentage of the anomalous 
area within the field, rice cultivar and emergence month. 

To reduce the problems that imbalanced data can create in the 
classification, the training data was balanced for high/low yields at each 
threshold by random oversampling (Japkowicz and Stephen, 2002). 
Balancing was done independently for each VI and threshold at the 
different growth stages. 

The tree-based pipeline optimization tool - TPOT, (Le et al., 2020) 
was used to define the machine learning classifier to be trained. The 
TPOT classifier class (TPOTClasifier) was used over the two groups of 

Table 1 
Multi-spectral vegetation indices evaluated.  

Index Formula Convention/bands   

Sentinel-2 PlanetScope 

NDVI ρnir − ρred
ρnir + ρred  

NDVI_b8 (ρ833,ρ665)  NDVI (ρ820,

ρ630)    
NDVI_b8A (ρ865,ρ665)   

SAVI (1 + L)(ρnir − ρred)

ρnir + ρred + L  
SAVI_b8 (ρ833,ρ665)  SAVI (ρ820,

ρ630)    
SAVI_b8A (ρ865,ρ665)   

EVI G
ρnir − ρred

ρnir + C1ρred − C2ρblue + L  
EVI_b8 (ρ833,ρ665)  EVI (ρ820,ρ630)    

EVI_b8A (ρ865,ρ560)   
CIg ρnir

ρgreen
− 1  CIg_b8 (ρ833,ρ560)  CIg (ρ820,ρ545)    

CIg_b8A (ρ865,ρ560)   
CIre ρ nir

ρ red − edge
− 1  CIre_b8_5 (ρ833,ρ704)     

CIre_b8_6 (ρ833,ρ740)     
CIre_b8_7 (ρ833,ρ783)     
CIre_b8A_5 (ρ865,ρ704)     
CIre_b8A_6 (ρ865,ρ740)     
CIre_b8A_7 (ρ865,ρ783)   

GNDVI ρnir − ρgreen

ρnir + ρgreen  

GNDVI_b8 (ρ833,ρ560)  GNDVI (ρ820,

ρ545)    
GNDVI_b8A (ρ865,

ρ560)   
RENDVI ρnir − ρred− edge

ρnir + ρred− edge  

RENDVI_b8_5 (ρ833,

ρ704)     
RENDVI_b8_6 (ρ833,

ρ740)     
RENDVI_b8_7 (ρ833,

ρ783)     
RENDVI_b8A_5 (ρ865,

ρ704)     
RENDVI_b8A_6 (ρ865,

ρ740)     
RENDVI_b8A_7 (ρ865,

ρ783)   
NDII ρnir − ρswir

ρnir + ρswir  

NDII_b8_11 (ρ833,

ρ1610)     
NDII_b8_12 (ρ833,

ρ2186)     
NDII_b8A_11 (ρ865,

ρ1610)     
NDII_b8A_12 (ρ865,

ρ2186)   

For SAVI, the canopy background adjustment constant L accounts for differential 
near-infrared extinction through the canopy. For EVI, L is a soil adjustment 
factor, G is a gain factor, set to 2.5, and C1 and C2 are coefficients that describe 
the use of the blue band to correct the red channel for aerosol scattering (Set to 6 
and 7.5, respectively) 

Fig. 5. Extraction of thresholds using the histogram analysis approach.  
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predictors using the NDVI_b8 data during the seedling and booting 
stages with default hyperparameters, with the exception being the 
following:  

• Number of generations: 50;  
• Population size: 50;  
• Population size: 50;  
• Number of cross-validation folds (CV): 5. 

The resulting best model was trained for all VIs using the data 
available at each phenological stage in such a way that 75% was being 
used as the training set while the remaining 25% was used as the test set. 

K-fold cross-validation for the area under the ROC curve (Bradley, 
1997; Hanley and McNeil, 1982) was used to assess the model perfor-
mance for each threshold and VI at each growth stage. The mean AUC 
and the AUC standard deviation were retrieved for each of the 5 folds. 

3. Results 

A worked example of how the EOAD technique automatically splits 

the VIs histogram data into high-anomalous, low-anomalous and non- 
anomalous pixels is given in Fig. 7. Among the anomalies identified in 
the field, over 87% were due to two main factors: (1) water shortages 
and (2) low plant density. In terms of growth, 75% of field-observed 
anomalies were registered during the tillering stage, between 33 and 
44 DAE. The remaining 25% anomalous points were identified during 
the booting stage (70 days). Where EOAD was able to accurately detect 
true-anomalous points, 56% registered as having lower plant density 
than the plot average, and over 37% exhibited a shortage of water. All 
areas identified as having a water shortage also presented lower plant 
development in comparison with the other plants in the plot. 

3.1. Accuracy differences among vegetation indices 

Fig. 8 presents the values of the metrics used to assess the EOAD 
accuracy for different VIs. Overall, the VIs that showed the highest ac-
curacies (>70%) in terms of correctly identifying anomalous points in a 
plot, were related to normalised difference indices that use the NIR 
bands, i.e. NDVI, SAVI and GNDVI. The accuracy of the NIR-based VIs 
seemed to remain consistent between Sentinel-2 and PlanetScope, 
demonstrating their relative robustness in terms of accurately repre-
senting anomalous areas in a crop plot. Interestingly, there was no sig-
nificant difference in the accuracy obtained using the NDVI when 
calculated by either Sentinel-2 band 8 (10 m), Sentinel-2 band 8a (20 m) 
or PlanetScope (3 m), suggesting that spatial scale is not a controlling 
factor, at least for this particular VI. 

For Sentinel-2, the highest accuracies evidenced in Fig. 8 (overall 
accuracies above 70% and TSS greater than 0.5) were reached using 
normalised difference indices estimated with the band 8 (i.e. SAVI_b8, 
GNDVI_b8, reNDVI_b8_5 and NDVI_b8). Among the VIs that employed 
the red-edge channels (n = 3), only those where the red-edge band 5 
was used, produced accuracies above 70%. Similar trends are presented 
in terms of TSS, where those indices that included the red-edge band 5 
showed improved accuracy in comparison with red-edge bands 6 and 7. 
Among the red-edge indices considered, the reNDVI always showed 

Fig. 6. Flowchart describing the processes involved in the anomaly detection method and assessment.  

Table 2 
Performance metrics derived from the confusion matrix.  

Metric Formula 

Overall accuracy (OA) TP + TN
TP + TN + FP + FN  

TSS (TP × TN) − (FP × FN)

(TP + FN) × (FP + TN)

Table 3 
Yield thresholds.  

Threshold 1 2 3 4 

Value X  0.5 σ  σ  1.5 σ   
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significant higher accuracies in comparison with CIre. In general, the 
lowest accuracies recorded were obtained with VIs that included the red- 
edge bands 6 and 7. Similarly to Sentinel-2, the NDVI estimated with 
PlanetScope images showed higher accuracy in comparison with other 
normalised indices (i.e. CIg, and GNDVI). However, unlike the Sentinel- 
2 derived indices, the use of EVI showed increased accuracy and the 
GNVI index produced one of the lowest accuracies. For these indices, 
recorded true-positives were exclusively related to low-anomalies. As 
such, analysis from this point only relates to detected low-anomalies. 

3.2. Period with lower presence of climatic extreme events 

The typical precipitation period was set between January 2018 and 
July 2019 to avoid the effects that the high SPI in November 2017 could 
have on the plants. Fig. 9 presents the SPI values estimated from January 
2016 until March 2020 and the thresholds (SPI=± 1.5) that determine 
the typical rainfall period. 

3.3. Impact of anomalies at different crop stages over yield 

Fig. 10 shows the normalised yield obtained for anomalous and non- 
anomalous pixels and the t-test values of the comparisons of these 2 
groups for the Sentinel-2 VIs with overall accuracy scores above 70% 
and TSS values greater than 0.5. Among the different growth stages, the 
presence of anomalies during the booting stage using normalised dif-
ference indices in the visible and NIR were significantly associated with 
final yield (α = 0.05). In general, those pixels found anomalous during 
the booting stage using the GNDVI_b8, reNDVI_b8_5, and NDVI_b8 
indices tended to produce significantly lower yields at the harvest. 

The shortwave infrared-based index NDII calculated with the band 8 
showed significant differences (α = 0.005 and α = 0.05) in yield be-
tween anomalous and non-anomalous areas occurring during the seed-
ling stage. Fig. 11 shows the normalised yield obtained for anomalous 
and non-anomalous pixels and the t-test values of the comparisons of 
these 2 groups for two band combinations of Sentinel-2 NDII indices. 
NDII is an indicator of water content and the region of 2190 nm (Band 
12), particularly, has shown to be more sensitive to soil moisture than 
band 11 at 1640 nm (Wang et al., 2008). Yields for anomalous pixels 
(lower values) found with the NDII (band 8) tended to be higher. The 
NDII values of those pixels were mostly positive and associated with 
areas with a higher soil and plant water content, based on the visual 
observations in the field. 

3.4. Early detection of anomalous plots 

The histogram of the historical average plot yields in the farm, as 
well as the four thresholds defined to classify plots into high and low 
performing, are presented in Fig. 12. The farm yield values did not show 
evidence of non-normality after performing a Shapiro–Wilk test (α =

0.05, W  = 0.99, p-value  = 0.103). 
The Gradient Boost (GB) classifier was selected as the most suitable 

model to predict high and low performing plots during the seedling and 
booting stages using TPOT over the NDVI_b8 products. The cross- 
validated mean AUC values of the GB classifier for all the VIs at 
different growth stages are presented in Fig. 13. 

In general, the classifier performance improved as the yield thresh-
olds moved away from the mean. The addition of the percentage of the 
anomalous area within the plot improved the performance of the model 
for all the thresholds above the yield mean. In both sets of variables, the 
model fit to the booting and ripening data showed cross-validated mean 
AUC values above 90% and above 80% when fit to the seedling and 
tillering data for the thresholds above the yield mean. Despite the high 
performance at predicting high/low yield plots at the ripening stage, it is 
too late to implement actions that optimise crop productivity. 

The increased performance of the model fit to the booting and 
ripening data is also evidenced in the variability of the cross-validated 
mean AUC values. Fig. 14 shows that the mean AUC values variability 
for the model, fit over the set of variables B, is lower at booting and 
ripening stages. In contrast, the panicle formation presents not only the 
lowest CV mean AUC values but also the larger standard deviation of 
these values. 

4. Discussion 

The proposed Earth Observation derived Anomaly Detection (EOAD) 
method was able to identify and map crop anomalies with accuracy 

Fig. 7. Example of the histogram analysis performed over one rice field. (a) The 
NDVI raster, (b) thresholds that produced the lowest kurtosis and skewness, (c) 
anomaly-predicted surface. 
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scores up to 80% comparing favourably with other anomaly detection 
approaches reporting accuracies of 50–70% (e.g. McCann et al., 2017). 
EOAD is based on a simple automatic thresholding approach applied to 
the distribution of VI values within a crop plot. Its simplicity and reli-
ance on the basic statistics of a field/plot’s pixels mean that it can be 
transferred to any VI or, indeed, any geographically continuous data, e. 
g. point cloud metrics, gridded temperature etc. 

This automated approach offers procedural advantages over other 
approaches, such as McCann et al. (2017) that detected anomalies by 
applying manually set thresholds to Median Absolute Deviation (MAD) 
values calculated over a moving window. Furthermore, because the 
McCann et al. (2017) employs a moving window, thereby taking 
advantage of the relatively high spatial resolution aerial or drone im-
agery to which it was applied, the size of the anomalous area detected is 
limited to the size of the kernel used, i.e. areas smaller than the kernel 
will be missed, whereas EOAD can detect anomalous areas at the pixel 
level making it better suited to relatively course satellite EO data. 

The EOAD approach was successful in detecting (overall accuracy 
>70%) anomalous pixels using both Sentinel-2 and PlanetScope imag-
ery. This consistency demonstrates the potential for applying the 
approach to a range of broadband EO systems. A major drawback of 
optical EO imagery is the dependence on cloud-free conditions, but the 
consistency in performance over the two sensors investigated offers the 
potential to detect anomalies in relatively large (> 4 ha) crop plots, 
using different systems, e.g. Sentinel-2 and Landsat, meaning a greater 

frequency of revisit, a higher chance of making cloud-free observations 
and increases the monitoring frequency throughout the growing cycle. 
Future work should implement EOAD to Landsat imagery to demon-
strate its transferability to this widely used source and exploit its rich 
archive of data. 

Intelligent management of water throughout the crop cycle is 
essential for overall profitability, management of diseases, nutrient 
management and development of rice plants (Henry et al., 2018). Under 
the contour-levee irrigation scheme, the level of homogeneity in water 
distribution along the plot is defined when the “irrigator” sets the levees 
breaks during the field preparation (Okada and Lopez-Galvis, 2018). In 
later crop stages, the lack of adequate water supply is reflected not only 
in the plant growth but also in the activation of products applied, such as 
fertilisers or herbicides (Henry et al., 2018; Vories et al., 2017). 

The sooner in-field anomalies are identified and fixed; the more 
homogeneous the final yield and grain quality will be (Marchesi et al., 
2010). The EOAD approach can be used to detect these types of anom-
alies, particularly, the NDII_b8_12 index showed to detect anomalies 
related to soil moisture in the early stages of the crop and apply irri-
gation to aid emergence (Takeda et al., 2019). Similarly, the approach 
can be used to detect patches with low plant density due to other factors 
such as seed quality and sowing/soil heterogeneity in order to re-sow the 
seeds (Jarrod Hardke et al., 2018). In the present study, anomalous- 
detected areas were targeted by farm staff to detect dry patches and 
fix the water supply or identify the areas with low plant density for site- 

Fig. 8. Anomaly detection accuracy metrics obtained with the optical vegetation indices.  

Fig. 9. SPI values from January 2016 until March 2020.  
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located re-sowing. 
Due to the constant and careful monitoring activities performed by 

the farm staff daily, the proportion of anomalies registered in the field 
were small in comparison to the field area (<3%). Nevertheless, in cir-
cumstances where the amount of change increases, the tailed histogram 
shape makes it more challenging to find an optimal threshold. For 
example, one rice plot, which was not considered in the field sampling in 

this study, was unevenly treated with Nitrogen fertiliser (by aeroplane), 
manifesting itself in a left-tailed histogram of PlanetScope-derived NDVI 
values (Fig. 15). Although this scenario did not actually occur in any 
field sampled, and it might not produce an optimum threshold, it gives 
insights about how the technique can still produce sensible responses 
under the presence of larger anomalous areas. This information alerts 
the farmer about the presence of potentially anomalous zones. Further 

Fig. 10. Box plots of yield obtained for anomalous and non-anomalous pixels values at different growth stages (VIs that showed the highest accuracy and TSS). The t- 
test values correspond to each pairwise comparison between pixels predicted as non-anomalous (blue box-plot) and those predicted as anomalous (red box-plots) ** 
Significant at α = 0.005; * Significant at α = 0.005. 

Fig. 11. Box plots of yield obtained for anomalous and non-anomalous pixels values at different growth stages using the NDII (band 8). The t-test values correspond 
to each pairwise comparison between pixels predicted as non-anomalous (blue box-plot) and those predicted as anomalous (red box-plots). ** Significant at α=0.005; 
* Significant at α =0.005. 
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research has to be done to establish a more robust relationship between 
the extent of the anomalous area and the accuracy of the thresholds 
detected. 

Although the EOAD approach was only demonstrated for rice crops, 
the approach is based on the variability in reflectance as an indicator of 
biophysical properties of the crops, particularly canopy density. This is 

not unique to rice crops, and therefore there is clear potential to be 
applied to different crop types and different agricultural systems. It is 
likely that where other crops are considered, different physical charac-
teristics of the crop would be more important in determining whether an 
area of a field is considered anomalous or not. The intention of EOAD is 
not to provide a definitive prediction or estimate of biophysical prop-
erties, but its simplicity and reliance on freely available EO data means 
that it can be used as a convenient alternative for systematic anomaly 
screening that is fundamental in crop management, i.e. decision-makers 
can focus attention towards areas identified as anomalous and perform 
site-specific practices based on their expertise and knowledge about the 
crop and its context. Indeed, the EOAD approach as a whole tried to 
deviate from previous PA approaches by providing broad indications to 
the farmer for further inspection on the ground, rather than attempting 
to provide a definitive prediction of, for instance, plant Nitrogen content 
or final yield. This is especially important in relatively resource-limited 
regions of the world where farm data monitoring networks that supply 
spatial and temporal information on the biophysical properties of agri-
cultural systems are prohibitively expensive. 

For Sentinel-2, EOAD performed best when VIs were used that relate 
to LAI and vegetation coverage, namely, the SAVI_b8 and GNDVI_b8 
indices (Overall accuracy 80% and TSS > 0.6). Although EOAD can 
detect both high and low anomalies, true positive matches with field 

Fig. 12. Histogram of farm average yield values per plot and thresholds used to 
classify the fields into high and low performing. 

Fig. 13. Cross validated mean AUC values of the GB classifier for all the VIs at different growths stages using the two sets of variables.  

Fig. 14. Standard deviation of cross-validated AUC values of the GB classifier fit to the set of variables B at different crop growth stages for the VIs presented 
in Table 1. 
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data were exclusively low-anomalous areas associated with lower can-
opy density and lower vegetation coverage. Specifically, the success of 
GNDVI aligns with other studies that identified the GNDVI as better to 
predict LAI in rice than the conventional NDVI (Wang et al., 2007). As 
most of the field validation points were registered during the tillering 
phase, the higher accuracy of SAVI reflects its ability to minimise soil 
brightness that characterises canopies with intermediate levels of 
vegetation cover (Huete, 1988), such as rice during the tillering stage. 

Most of the Sentinel-2 VIs that produced the highest accuracies are 
transferable to other systems such as Landsat and PlanetScope, except 
the reNDVI. However, the results of this study showed that slightly 
different accuracy scores were achieved when comparing Sentinel-2 and 
PlanetScope EOAD results applied over the same VIs. Specifically, the 

PlanetScope GNDVI did not perform as well as the equivalent for 
Sentinel-2. This is likely due to the difference in spectral response curve 
for the green channel, with the PlanetScope channel being much broader 
(500–590 nm) compared to Sentinel-2 (542–578 nm) (Fig. 16). 

A number of the poorer performing VIs are designed to be sensitive to 
specific absorption features that may be indicative of leaf chemistry or 
pigments. It is important to note that the ground truth data used in this 
study related mainly to observations of canopy coverage. Further 
research should draw comparisons with variables such as Chlorophyll 
content to assess the capability of the EOAD to indicate, for instance, 
Nitrogen deficiency, which is known to affect crop productivity as it 
enhances and stabilises crop growth and yield production (Kuenzer and 
Knauer, 2013; Wang et al., 2012). In addition, field observations were 

Fig. 15. Results obtained for the PlanetScope NDVI values of a plot with a left-tailed histogram due to the presence of a large anomalous area, consequence of uneven 
Nitrogen application (a) NDVI values, (b) Anomaly-prediction product, (c) Photography of the plot, (d) Histogram of NDVI pixels. 

Fig. 16. Sentinel-2 and Planet Scope spectral response functions.  
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only available for the tillering and booting stage. Future work should 
consider sampling at different phenological stages to identify the per-
formance of different VI to detect anomalies at each growth stage. 

Although the detection of anomalies can provide crucial information 
for plot-level management decisions, often, PA is focused on the ability 
of data to indicate or even predict yield. For optical VIs, the occurrence 
of crop anomalies at different stages impacted the final yield differently. 
In general, the anomalies identified with the EOAD during later growth 
stages, using normalised difference indices that included the NIR bands, 
tended to have a larger impact on the yield for most optical VIs. 
Particularly, the anomalies that occurred at the booting stage tended to 
produce significant yield differences between anomalous and non- 
anomalous pixels in those indices sensitive to chlorophyll. The signifi-
cant effect of crop condition during the booting stage over yield was also 
evidenced with the use of average plot VI metrics to predict high/low 
yield plots. This coincides with the findings of authors such as Chang 
et al. (2005, 2019, 2017) that indicated a strong relationship between 
yield and crop condition at the booting stage. This relationship is a 
consequence of the high Nitrogen (N) absorption rate occurring during 
this stage (Liu et al., 2016; Xiang et al., 2013). It is during the booting 
stage that farmers apply nitrogen fertilisers as rice crops demand 
adequate N supply to maximise yield. Thus, early detection of anomalies 
during the booting stage is key to implement localised corrective prac-
tices but also to identify those plots that require more immediate 
attention. This, as the inclusion of the percentage of anomalies found 
with the EOAD improved the prediction of high/low yield plots using the 
GB classifier. Additionally, the crop anomalies detected during the 
ripening stage showed a significant relationship with final yield, though 
at this stage, the crop is in such an advanced state of development that 
no correct actions can be implemented to optimise the field productivity. 

Yields for anomalous pixels (lower values) during the seedling stage 
tended to be higher when implementing the EOAD on the NDII_b8. 
Despite the fact that soil water conditions during the seedling stage 
affect crop establishment (Takeda et al., 2019), no further evidence was 
found regarding the relationship between crop reflectance and yield at 
this particular stage. Interviews with local farm agronomist revealed 
that this behaviour occurs due to the presence of a deeper water layer 
that delays the emergence of rice plants. However, once the plants 
emerge, they remain wetter during the whole crop cycle and produce 
higher yields. Negative NDII values for areas with low LAI can also be an 
indicator of dry patches and therefore be equally presented as anoma-
lies. Thus, it is required to contrast the NDII_b8_12 surfaces and the 
anomalous-predicted pixels during the seedling stage to see if the values 
are positive or negative, the latter representing dry areas that require 
immediate irrigation. 

In terms of the best indices to monitor anomalies in rice plots, 
SAVI_b8 and GNDVI_b8 showed to be the most accurate at detecting 
anomalies in the field. The anomalies detected with the GNDVI_b8 also 
showed a significant negative impact on the yield when detected at the 
booting stage in comparison to the use of SAVI_b8. Earlier identification 
of potential underperforming areas can be achieved with the application 
of the EOAD method using the NDII_b8_11 and NDII_b8_12 at the 
seedling. These indices did not show a high accuracy to detect anoma-
lies, however, it can be a consequence of the lack of sample points during 
this particular stage. 

5. Conclusion 

The EOAD method presented in this paper was able to map anoma-
lies at a sub-plot level in rice crops in Colombia. The success of this 
approach was evidenced through direct comparisons with in situ ob-
servations of anomalies. Detected anomalies can be used to direct 
farmers to areas of fields to determine what strategy needs to be put in 
place, such as fixing water supply, to correct for these anomalies 
bringing about and ultimately an overall improvement to crop yields. 
Indeed, our study found that areas where anomalies were detected had 

significantly lower final rice yields for specific VIs. 
The percentage of anomalies detected within the fields also shows to 

play an important role as a predictor of high/low yield plots at early 
stages, including seedling and booting. Thus, the EOAD method also 
allows identifying plots that require more immediate attention and then 
assess the more problematic areas within the field. 

In this study, EOAD was applied to a number of VIs. For the rice crops 
studied, the use of GNDVI_b8 products produced the best combination of 
high accuracy and promising detection of potential underperforming 
areas when implemented at the booting stage. However, future work 
should include field data at multiple ages during the crop cycle to 
identify the performance of different VI to detect anomalies at each 
growth stage and check their impact on yield. 

Although this study tested EOAD using just two EO optical data 
sources, Sentinel-2 and PlanetScope, VIs like GNDVI employ spectral 
channels common across many EO systems, meaning the EOAD can 
potentially be applied to imagery from multiple sources, increasing the 
frequency of anomaly detection. As such, EOAD’s ability to be applied to 
a number of commonly used EO systems means greater observations, 
thereby providing greater confidence when informing decision-makers 
on the ground. 

Ultimately, the EOAD is designed to be a simple technique, without 
the need for manual calibration, or indeed, prior expertise in spectral 
analysis of crops. In this respect, EOAD is applied to histogram data for 
individual crop plots, in this instance, with data from commonly used 
VIs (e.g. NDVI, SAVI, GNDVI etc.), derived from freely available EO 
data. As such, the EOAD approach represents an efficient and low-cost 
means of collecting PA information almost anywhere in the world. If 
coupled with automatic approaches for field delineation, this represents 
an exciting and tractable tool for informing agricultural practices, 
especially in relatively resource-poor regions of the world where food 
security is paramount. Although the detection of anomalies can provide 
crucial information for plot-level management decisions, often, PA is 
focused on the ability of data to indicate or even predict yield. In gen-
eral, the EOAD, when applied to high performing VIs (GNDVI_b8, 
reNDVI_b8_5 and NDVI_b8), demonstrated significant differences in 
yield between areas that were detected as anomalous and non- 
anomalous, giving further confidence that the developed method can 
add value to farming operations using freely available EO data. 
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