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Abstract: A study is presented of the oscillatory shear-ordering dynamics of viscoelastic photonic
crystal media, using an optical shear cell. The hard-sphere/“sticky”-shell design of these polymeric
composite particles produces athermal, quasi-solid rubbery media, with a characteristic viscoelastic
ensemble response to applied shear. Monotonic crystallization processes, as directly measured by the
photonic stopband transmission, are tracked as a function of strain amplitude, oscillation frequency,
and temperature. A complementary generic spatio-temporal model is developed of crystallization
due to shear-dependent interlayer viscosity, giving propagating crystalline fronts with increasing
applied strain, and a gradual transition from interparticle disorder to order. The introduction of
a competing shear-induced flow degradation process, dependent on the global shear rate, gives
solutions with both amplitude and frequency dependence. The extracted crystallization timescales
show parametric trends which are in good qualitative agreement with experimental observations.

Keywords: polymers; shear-induced crystallization; photonic crystals; composite materials; viscoelasticity

1. Introduction

Iridescent 3D photonic structures with systematic structural ordering can be found in
opal gemstones, and in many other manifestations in nature [1–4]. These are microstruc-
tures with a wavelength-scale dielectric periodicity, with an inherent ability to give distin-
guishing optical properties (e.g., structural color), which are not accessible in a comparable
fashion using dyes or pigments [5–8]. Whilst methods such as holography or imprinting en-
able these effects to be replicated to some extent on 2D surfaces, genuine 3D bulk structures
have generally been more challenging to engineer artificially. This is particularly the case
in striving for large scale assembly methods, that are sufficiently cost effective to facilitate
widespread application. Widely studied strategies for assembling bulk-ordered optical
materials have conventionally relied upon the self-assembly of high and low refractive
index components [9–15]. However, the resultant structures lack the mechanical tractability
and robustness needed for many practical applications and, critically, any reproducible
bulk-scaling remains very limited.

By marked contrast, the authors’ recent work on “polymer opals” (POs), based on
arrays of composite polymer microparticles, has demonstrated how such synthetic opals are
an archetypal platform for next generation bulk-scale photonic crystals, coatings, and smart
materials [16–24]. These mass-produced particles, constructed of rigid polystyrene sphere
cores with a grated-on softer ethyl-acrylate shell, may be permanently shear-assembled
into permanent solvent-free quasi-solids.

The design of these polymeric composite particles in illustrated in Figure 1; the hard-
sphere/“sticky”-shell produces a rubbery bulk medium, with a characteristic viscoelastic
rheology. Control of particle diameters over the range of around 200–300 nm allows tuning
of the Bragg wavelength, and associated vibrant structural color, over the whole visible and
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near infrared spectral region. The Bending-Induced Oscillatory Shear (BIOS) crystalline
ordering process is also still possible with polydispersity levels far beyond that feasible
for colloidal self-assembly, thus greatly reducing the requirements for low particle size
dispersity [25,26]. Both BIOS and the related edge-induced rotational shearing (EIRS)
process [16] can thus reproducibly generate 3D opals over areas of square-meters and film
thicknesses of several hundred microns; a system which may thus be considered to be the
largest nano-assembled ordered structures ever demonstrated [20,27,28].

Figure 1. Schematic of an optical shear cell is shown in (a), with the optical path through the windows and cell, allowing
real-time capture of transmission spectra, also illustrated. The composite core–shell structure, consisting of polystyrene (PS),
poly-methylmethacrylate (PMMA) and poly-ethylacrylate (PEA) is shown in (b), together with a schematic of the ensemble
interactions as particles form macroscopic polymer opal arrays. In (c,d), the measured storage (G′) and loss (G′ ′) moduli
for the polymer opal material are given, together with the inferred viscosity. Strain dependence is shown in (c) at a 5 Hz
frequency; angular frequency dependence is shown in (d) at 100% strain amplitude. Rheometric measurements are taken
using an AR-2000 oscillatory rheometer (TA instruments), in a cone-and-plate geometry (radius 2 cm, angle = 1◦, working
gap = 27 mm). Image elements of part (b) have previously appeared under CC-BY license in reference [17].

In BIOS, strong ordering forces within the films are generated by lateral shearing of
the disordered melt of nanoparticles, leading to the formation of close-packed solvent free
periodic nanostructures. Core–shell precursor spheres are homogenized by extrusion and
then rolled into thin films laminated between two rigid PET sheets. The BIOS process is
then applied to the sandwich structure, and an ordered PO layer is obtained. The BIOS
processing cycle is achieved by mechanically oscillating the sandwich structure around a
fixed cylindrical surface under tension at a stabilized temperature. This generates strong
shearing forces inside the PO purely parallel to the surface and resultant strains of magnitude
up to 300%. Multiple reported crystallographic and microscopic characterizations [17,29,30]
have repeatedly confirmed a random hexagonal packing arrangement, with some in-plane
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layering, and a progressive development of ordering through the structure from the surfaces.
The final PO thin films show exceptional mechanical robustness, flexibility, and stretchability
(>100%), allowing for the tuning of optical properties by viscoelastic deformation [19,31].

Whilst shear-induced ordering methods in POs have been demonstrated in detail
and the end products characterized, relatively little was known concerning the time de-
pendence of photonic crystal formation or the underlying microscopic mechanisms, until
the direct measurement of monotonic ordering dynamics in a shear-cell geometry by
Snoswell et al. [32]. Certainly, no complete theoretical understanding or models of this
ordering yet exist, despite the evident utility in facilitating a host of new scientific insights
into tunable analog structures, which are mechanically impossible in more conventional
“monolithic” photonic structures.

We might make an instructive comparison to, and also draw pertinent distinctions
with, some other systems of shear assembly of micron-sized particles, such as low viscosity
colloidal suspensions [33–35]. Recent studies have described the effects of oscillatory
shear under a range of conditions in such systems [36–42], where continuous shear can
crystalize colloidal monodisperse particles when there is a suitable fluid medium present.
A notable variant of these methods is shear alignment in anisotropic ensembles [43,44]. As
a fundamental distinction, POs do not contain a discrete fluid phase, and therefore cannot
be directly compared to these systems of colloidal suspensions. Rheological studies [45,46]
have demonstrated that the grafted soft-shell polymer forms a quasi-continuous viscoelastic
matrix during the shear-ordering process, and mobility of the (athermal, nondiffusive)
rigid spheres is highly inhibited by the gum-like medium. There is strong viscoelastic
dissipation inside the system, and the characteristic Péclet number, Pe =

.
γa2/D0 (where a is

the particle radius,
.
γ the shear rate, and D0 the Stokes-Einstein diffusion coefficient) [47] in

the opals is therefore consistently many orders of magnitude greater than in the colloidal
suspensions. For typical values of

.
γ∼ 1 s−1, a ∼ 150 nm, resultant orders of magnitude are

D0 ~ 1 × 10−15 cm2 s−1 and Pe ≥ 105; this even exceeds the values characteristic of some
colloids reported in strongly confined geometries and flows [48–50]. The colloidal systems
are also entropy driven; metastable crystallization structures are determined by free-energy
minima from a combination of electrostatic forces and interparticle interactions [51]. Other
stabilization mechanisms are also possible, for example, sterically by ligands [52] (typical
hard sphere case) or by electrostatic repulsion for charge stabilized particles [53]. The
PO system, in comparison, does not have this inherent ability to self-assemble, and the
equilibrium state is mainly generated by the accumulation and release mechanisms of
strain energy from external macroscopic forces [54]. In such a system, where via short-
range “sticky” interactions are prevalent, particles can additionally exert significant torque
on each other, providing a mechanism by which excessive shearing causes shear melting
and thus crystal dissolution. These are fundamental differences in behavior, meriting new
theoretical approaches, offering critical insights into the microscopic mechanisms involved.

In this paper, we present an experimental study of viscoelastic photonic crystal media,
focusing on the key oscillatory shear-ordering dynamics. Direct measurement of the pho-
tonic stopband transmission in an optical shear cell allows the monotonic crystallization
processes to be tracked as a function of oscillation frequency, strain amplitude, and temper-
ature. A complementary generic model of crystallization due to shear-dependent interlayer
viscosity is developed here, giving propagating crystalline fronts with increasing applied
strain, and a gradual transition from disorder to order. The aim here is development to-
wards a generic understanding of such systems, beyond the low strain/shear-rate assembly
in, for example, colloids. The introduction into simulations of competing shear-induced
flow degradation processes now give spatio-temporal solutions for the particle ordering,
with both amplitude and frequency dependence. The extracted crystallization timescales,
when degradation is dependent on the global shear rate, show parametric trends which are
in close qualitative agreement with experimental observations.
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2. Materials and Methods
2.1. Samples

The base core-interlayer-shell (CIS) particles for the polymer opal material described
in this paper are illustrated in Figure 1. As previously reported, these are synthesized
using a strategy of multistage emulsion polymerization [55–57]. The core-particle precur-
sors used consist of a hard cross-linked polystyrene (PS) core, grown to approximately
230 nm in diameter, then coated with a thin (~10 nm) poly(methyl methacrylate) interlayer
containing the comonomer allyl methacrylate (ALMA) as a grafting agent [58]. A softer
polyethylacrylate (PEA) outer-shell was added, giving a total particle dimeter of ≈270 nm.
Details of the particle size and dispersity characterization for the batch used in this report
are given in Appendix A. The net refractive index contrast between core and shell material
is thus ∆n ≈ 0.11 (or ∆n/n ≈ 7%), and the volume fraction of cores is ∼55%. The CIS
precursor batch in this case is modified by a 2.5% thiolation of the shell PEA material,
facilitating rheological testing at a slightly increased Reynolds number (Re) than for many
of the POs previously studied; the measured Tg value of∼−25 ◦C is some 10 ◦C lower than
in earlier reports. The as-synthesized “polymer opal” is a stable viscoelastic quasi-solid,
formed only as an ensemble of the composite particles with no separate solvent medium,
and remained in this form during subsequent storage and use in the studies described here.

A general overview of the measured standard rheological parameters of the resultant
PO material is given in Figure 1. The general signatures of viscoelastic behavior are
confirmed, with the cross-over of the storage- and loss-modulus plots at strains of around
10–20%, indicating the yield point at which planes slippage may occur, in agreement with
our earlier reports [31]. At a low oscillation frequency, sub-yield viscosities are in the range
of 7000–8000 Pa·s at room temperature, decreasing to around 2000 Pa·s at 100 ◦C.

2.2. Shear Cell Assembly

The Linkam CSS450 shear cell [59] used in the experimental section of this work is
illustrated in Figure 1. The as-synthesized PO composite material is carefully encapsulated
between two parallel circular quartz windows with a radius of 1.5 cm and spacing set to
300 µm, giving a total sample volume of ~0.2 µL. Overlapping viewing ports with a radius
of 1.4 mm are built into each supporting plate at a radius of ~1 cm from the center of the
quartz windows, such as to allow continuous optical interrogation of the sample. Shearing
of the sample is then achieved by a mechanical rotation of the bottom quartz window,
relative to the fixed stationary top window. As the cell is of a cylindrical geometry, the shear
motion of this arrangement thus provides only a close approximation to linear shear, with
the strain defined at the point of observation in the (middle of the) observation window,
which is offset from the center by a distance of 7.5 mm. To achieve the required range of
viscoelastic response, the cell may be heated to thermocouple stabilized temperatures in
the range of 20–100 ◦C.

The standard testing cycle used for samples in the shear cell is given in Table 1. In the
initial step, a single continuous constant shear (2 s−1) over 10 s is employed to “randomize”
the sample and establish a base condition of disorder, from which ordering could be
initiated. Secondly, a 10 s period of stationary “relaxation” allowed any residual elastic
forces present to dissipate. Finally, an oscillatory shearing step of up to 5 min is employed
to “crystallize” the opal via shear ordering; by adjusting the transverse displacement of
the cell plates (δl) over the sinusoidal cycle, the shear-strain amplitude (σ) was set by the
ratio of δl/d, where d is the shear-cell sample thickness. Following the completion of the
third step and the post-step relaxation of any residual phase-dependence, the sample can
then be seen to gradually deteriorate away from the attained shear-ordered state over
a period of some hours to days. This reiterates another distinction with shear-ordering
colloidal systems, where a minimum shear rate is required to sustain stable crystallization
and dissolution by diffusion would normally ensue.
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As a general methodology, parametric variations in amplitude (σ), oscillation fre-
quency (f) and temperature (T) are completed and reported as a discrete series of measure-
ments, where the remaining two variables are fixed constants.

Table 1. Standard three-step sequence used in the shear-cell characterization of opal samples. The mode of shearing,
inter-plate gap, range of strain amplitude, range of shear rate, range of oscillation frequency and cycle time are shown for
each step.

Step Mode of Shear Gap (µm) Strain Shear Rate
(s−1)

Frequency
(Hz) Time (s)

1 (Randomize) continuous 300 - 2 - 10
2 (Relaxation) relaxation 300 - - - 10

3 (Crystallization) oscillatory 300 25–350% 0.01–140 0.01–10 300

2.3. Microscopy/Spectroscopy

An adapted Olympus BX43 microscope, using an incandescent white light source fo-
cused to a measured spot size of approximately 10 µm in diameter (×5 magnification), is
used to couple light through the sample cell. The transmitted light signal is then collected
using suitable focusing optics and a fiber-coupled CCD spectrometer to enable real-time
spectroscopic measurements. Spectra are taken from a tiny spot at the microscope focus in the
middle of this frame, as verified by an independent measurement of light collection, across
which the applied strain varies only by around 0.1%. Transmittance spectra are captured
every 0.5 s during steps 1–3 of the experimental cycle and were then normalized against an
appropriate control measurement of the empty cell. All the microscopic images displayed are
taken with a 5 MP video camera and a standard RGB white-light balance. Data are primarily
taken in transmission mode, as there are adverse practical issues of specular reflections from
the optical windows and the normalization of spectra to overcome in reflectance. Secondly, the
transmission mode yields information about light which has propagated across the complete
300 µm bulk thickness of the sample, whereas the reflectivity is only representative of sample
properties down to the optical Bragg depth of order 10 µm.

As illustrated in Figure 2a, the key spectral dynamics are examined across the phases
of the cycle by directly tracking the transmission/extinction coefficient at the center of
the photonic stopband, λ = 610 nm. Tracking the short wavelength extinction, as per
the methodology in earlier studies [32,46], relates only to the residual scattering (average
density) from the disorder centers. Current experiments are unable to decouple residual
background scatter coming from sources other than the periodic sphere structure, sphere
size polydispersity or refractive index inhomogeneity, for example.
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Figure 2. (a) Schematic illustration of the evolution of the stopband transmittance during the three-
step characterization sequence, with a final relaxation step at the end of oscillatory shear. The
photographic images in the inset compare the appearance of transmitted white light through the
shear cell before (top) and after (bottom) the main oscillatory-shear cycle; uniform ordering, and a
characteristically intense green structural color, are in evidence in the latter case. Both images were
captured using an Olympus BX43 microscope, magnification ×5, and image scale bars ≈100 µm.
In (b), transmission spectra are shown evolving with time during the oscillatory shear-ordering
phase (step 3 in cycle). Successive spectra are 0.5 s apart in time, allowing a data slice at the photonic
stopband minimum at λ = 610 nm, as illustrated by the arrow.

3. Results
3.1. Experimental Results

The progress of crystallization within the sample cell may also be followed visually in
the microscope from the developing intense structural colors. Representative transmission
micrograph images can be seen in in Figure 2a comparing an image frame capture where
poor crystalline ordering is evident, with the intense green structural color following
oscillatory shear. Due care is practiced in ensuring homogeneity within the areas from
which spectra are subsequently gathered, as some small imperfections are evident over
wider sample regions; these are mostly associated with localized cavities and contaminants,
and edge effects.

In Figure 2b representative optical spectra taken during the phase of the testing cycle
are shown during crystallization (oscillatory shear at 1 Hz, strain amplitude 150%). The
progress of crystallization may be inferred from the change in transmission at the low-
wavelength side of the resonance. Initially, there is a broad low transmittance across the
spectrum, which is directly indicative of the particle spacing (radial distribution function)
in the medium [60]. As ordering develops, the spectrum shows a marked stopband
resonance centered around λ = 610 nm, with higher transmittance at both the low and
high energy sides. The progressive red shifting of the resonance (≈ 580 to 610 nm) with
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increasing ordering, as the in-plane packing density increases, is also consistent with
previous reports [16].

To gain a more satisfactory quantitative insight into the dynamics of crystal formation
in the shear cell, the data are now plotted as extinction coefficients (at λ = 610 nm) against
time. The on-resonance extinction coefficient (α) is here empirically defined as:

α =
− ln(T)

d
, (1)

where T is the fractional transmittance and d is the sample thickness. The clear monotonic
temporal development of crystallization with oscillatory shearing is consistent with all of
our earlier reports, whereby the increasing ordering was tracked spectroscopically using
incremental multipass methods [16,17]. Intuitively, we expect there should therefore be an
equilibrium point (with corresponding end-point coefficient, α0) at which the rate of defect
generation is equal to the rate of crystallization. In this form, the data may be readily and
conveniently fitted to an offset exponential function of the form:

α(t) = α0

(
1− Ae−

t
τ

)
, (2)

where α0 and A are offset constants and τ is the timescale. As a caveat, the experimental
error in the measurement of T is ascertained to be in the order of 0.1%, which introduces a
significant distributed baseline error in α0; this variation is not observed to be significant
within a discrete series of measurements on the same sample load. However, changes in
the residual scattering between different sample loads and experimental series do present
such changes in the extinction baseline.

This generic timescale can also be usefully expressed in terms of the number of
oscillation cycles (N) and frequency (f ), that is:

τN = τ/ f . (3)

Additionally, N may be straightforwardly determined from the total cumulative
applied strain (γ) and strain amplitude (σ) of the sinusoidal cycle, thus:

N = γ/4σ. (4)

In Figure 3, the extinction coefficient time-dynamics are shown, for a series of different
oscillation frequencies (fixed strain amplitude) and a series of strain amplitudes (constant
frequency). In each case, shear-ordering timescales (and thus τN) were extracted using
exponential fitting as per Equation (2), and these values are shown in Table 2. Across the
range of variables, some measurement cycles do not asymptotically reach α0 within 5 min
(particularly at low frequency, low strain amplitude and at room temperature). Other
samples reach α0 within a few seconds and indeed begin to exhibit some spectral changes
and degradation before the end of step III, as the total applied strain at a high frequency
and/or high strain amplitude begin to produce degradation by further motion.
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Table 2. Extracted shear-ordering timescales (and thus τN) as strain amplitude (σ), oscillation frequency
(f ) and temperature (T) are varied against the fixed values of σ = 100%, f = 1 Hz, and T = 50 ◦C. For the
strain dependence data, the extracted extinction coefficients (α0) at λ = 610 nm are also given.

Fixed f, T Fixed σ, T Fixed f, σ

σ(%) τ = τN α0(cm−1) f (Hz) τ(s) τN T(◦C) τ = τN
50 18.9 (±0.3) 121.4 0.01 178.7 1.8 (±0.4) 25 26.7 (±1.0)
75 11.6 (±0.1) 142.0 0.05 52.5 2.6 (±0.1) 37.5 24.9 (±1.1)
100 5.2 (±0.2) 184.4 0.1 45.8 4.6 (±0.2) 50 7.2 (±0.2)
150 4.3 (±0.1) 168.1 0.25 25.8 6.5 (±0.6) 62.5 3.7 (±0.1)
200 4.0 (±0.1) 139.8 0.5 18.9 9.5 (±1.0) 75 3.0 (±0.1)
250 8.7 (±0.2) 133.5 1.0 12.6 12.6 (±0.4) 87.5 3.8 (±0.3)
300 39.9 (±0.9) 113.8 1.5 9.0 13.5 (±2.3) 100 2.7 (±0.1)
350 137.1 (±8.9) 56.2 2.5 7.4 18.5 (±0.5)

Due to the finite increments of data sampling (0.5 s) relative to the oscillatory cycles,
timescales of less than the order of a second are not practicably meaningful/attainable.
Whilst the simple exponential fitting of data is therefore imperfect, the fit is reasonable
within the reliable time window over which the ordering from base condition to equilibrium
clearly proceeds, and gives us a predominantly characteristic timescale for the process.

Figure 3. Time evolution of the extinction coefficient at the stopband wavelength of λ = 610 nm at
a temperature of 50 ◦C. This is shown for various shear amplitudes at frequency 1 Hz in (a), and
for various oscillation frequencies at a shear amplitude of 150% in (b), as indicated. Exponential
trend lines are used to extract shear-ordering timescales, as limited to the illustrated range of fitting.
(c) Shows the temperature dependence of experimentally derived τN values for parameters of
frequency = 1 Hz and strain = 100%, in comparison to the rheometrically measured viscosity. An
indicative trendline is added to the former, using smoothing spline fitting.
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3.1.1. Strain Amplitude (σ) Dependence

In Figure 3a, representative α(t) plots are shown for strain amplitudes ranging from
50% to 300%, with the frequency and temperature fixed at 1 Hz and 50◦ C, respectively. As
a clear trend, the ordering time/timescale is initially seen to decrease with increasing strain
amplitude, with the shortest τN values occurring at around σ ≈ 200%. As the amplitude
is increased further, the ordering timescale is seen to increase again, being two orders of
magnitude larger at σ ≈ 300%; this is further analyzed in Table 2. As may also be inferred
from Figure 3a, the end ranges of the amplitude (below σ ≈ 100% and above σ ≈ 250%)
tend to show a suboptimal ordering efficacy, with a lower endpoint α0. Indeed, tests at
25% and 350% showed no measurable development of the photonic stopband within the
timeframes of the experiment.

In agreement with earlier reports [16,17,30], it is seen that a larger strain is able to
increase both the equilibrium level of ordering and also the speed of crystallization. A large
shearing force on the polymer opal provides more stored elastic energy to facilitate sphere
rearrangement with respect to a constant activation energy threshold. Intuitively, for effective
crystallization to proceed, the stored energy must be greater than this required activation
energy. However, very high strain values facilitate the dissipative processes competing with
ordering, which are associated with shear-induced flow and displacement of particles; such
processes also inhibit ordering of the opal from the base disordered condition [61].

3.1.2. Oscillation Frequency (f ) Dependence

In Figure 3b, representative α(t) plots are shown for oscillation frequencies ranging
from 0.01 to 2.5 Hz (i.e., time periods of 100 down to 0.4 s), with strain amplitude and
temperature fixed at 150% and 50 ◦C, respectively. The extracted ordering timescales must
be explicitly converted into τN in this instance, according to the frequency dependence
noted in Equation (3). Analysis shows that the shear ordering at lower frequencies is
particularly effective; at 0.01 Hz, the value of τN is less than two complete cycles. At such
low frequencies, the inherent hysteresis of the viscoelastic system can also be discerned
in a way not readily possible at higher cyclical rates. Confirmation of the presence of this
residual creep relaxation, superimposed upon the overall monotonic ordering trend, is
consistent with earlier interpretations of the dependency and limitations of the ordering
speed, where temporal asymmetry requires that strain rates are comparable to local creep
rates in this highly viscous system.

As f is increased, τN increases in a sublinear fashion, with around 20 completed cycles
required for effective ordering above 2.5 Hz. However, the mechanical stability of the
sample and equipment becomes less reliable at f = 5 Hz and higher. Making quantitative
comparisons with the many experimental reports of shear crystallization in low Pe colloidal
suspensions [37], crystallization was observed to proceed on timescales of 10 s of seconds
to minutes, within comparable regimes of stress/strain (up to ∼100%) and frequency
(1–10 Hz) to those reported here. Generally, the relaxation behavior of these nonpermanent
structures on the cessation of shear was markedly different.

3.1.3. Temperature Dependence

Figure 3c, shows the temperature dependence of experimentally derived τN values
for parameters of frequency = 1 Hz and strain = 100%, in comparison to the rheometrically
measured viscosity. The ordering timescales decrease by approximately one order of
magnitude in heating from room temperature up to 100 ◦C, with the overall trend tracking
a corresponding softening of the PO. Rheological measurement indicates that storage (G′)
and loss (G′ ′) cross-over, occurs at 40–50 ◦C, with the inferred viscosity illustrated in the
figure for comparison, where there is commensurately the greatest rate of decrease in τN(T).
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3.2. Theory and Simulation

In this section, we expand earlier intuitive rheological ordering models, where order-
dependent shear viscosities underpin the driving mechanisms in this athermal system
(Pe ~ 105–106). These simulations gave an initial understanding of the exceptional ability
of shear-ordering processes (such as BIOS) for inducing order in solvent-free viscoelastic
systems of particles [62]. As the disordered spheres are compelled to separate into distinct
planes, the shear viscosity drops, leading to a commensurate in-plane ordering where
neighboring rows of spheres become aligned along the shearing direction. This is in broad
agreement with the aforementioned microscopy studies on PO films, which revealed a
layered cross-section with ordered regions propagating inwards from the outer surfaces.
This is additionally, the pertinent laminar geometry in the experimental application of
BIOS to the PET–PO–PET Timoshenko sandwich system [63].

However, whilst these previous models successfully show attributes strongly resem-
bling the empirical observations in POs, such as a spatially broad crystallization front
flowing from the interface and a saturated crystalline order behind it, there are areas
for important further development. Critical parametric dependences, particularly those
pertinent to oscillatory shear (amplitude, frequency etc.), were not encompassed. Nor were
any competing order-degradation processes, such as shear melting, which would be antici-
pated especially at high strain amplitudes and frequencies, and which are clearly evident
experimentally. In the following sections, we focus upon these necessary improvements to
the efficacy and physical realism of our simulation models.

3.2.1. Intuitive Model

Treating the PO as approximating a series of lamina layers stacked across the depth (H)
of the sample, the natural units for spatial increments thus become 2d/H, where d is the sphere
radius; successive layer elements are then defined by their index i. In order to parameterize
the monotonic net ordering due to shear-induced thinning, a local shear rate

.
γ for the ith layer

is defined, which increases as the local crystalline order parameter ci increases:

.
γi = a· f (ci), (5)

where is proportional to the total shear strain applied across the entire film thickness. Param-
eter ci is a generic direction-averaged order parameter varying from zero (the disordered
amorphous state) to one (optimized ordering condition). As per Figure 4d inset, we model
the system as layers which when sheared, locally apply forces that lead to enhanced crys-
tal order. The different types of order, which range from the stacking of planes to the
nanoparticle ordering within each plane, are not distinguished in this model, and all lateral
inhomogeneity is ignored. An increasing shear strain (as per when the optical cell windows
are rotated with respect to each other) is nonuniformly distributed between different layers
depending on their local order ci(zi,t) at depth zi and time t. According to Newton’s 2nd
law, an additional velocity (α shear rate) added to each layer must generate an interlayer
drag force that is proportional to the velocity difference between neighboring layers, that is:

Fidt ∝ (vi − vi−1) ∝ ∂z
.
γi, (6)
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Figure 4. (a) Simulated nonlinear diffusion of crystal order into a sample with increasing total applied strain, showing a grad-
ual depth transition which replicates experimental observations. The simulation parameters were strain amplitude = 150%,
frequency = 1 Hz, and a z-scale for the ordering parameter, c, is shown as an inset. The nonlinear transfer relations between
the normalized shear rate and crystalline order in each layer, f (c), used in simulations are plotted in (b), comparing the
intuitive two-phase model for a colloid, with the polymer opal as indicated. (c) Shows how the order parameter varies at
the cell midpoint (z = H/2) and full depth (H) as a function of total applied strain. (d) Shows how the order parameter, as
spatially averaged across the 300 µm width of the sample, varies as a function of the number of BIOS oscillations (N). The
inset schematic illustrates the assumed mechanism of ordering forces for individual errant spheres, where there is a relative
layer velocity of ∆νi.

Since vi α
.
γi, the incremental improvement in the local ordering, as described above,

may be parameterized at each time point as,

dci = u·dt(vi − vi−1), (7)

or generalizing to continuous spatio-temporal coordinates,

∂c
∂t

= u
∂

.
γ

∂z
= u·a(t)∂ f

∂z
, (8)

The value of the constant u here is set following the semiempirical reports of
Shereda et al. [64,65], as subsequently implemented by Zhao et al. [17]. By numerical
integration, solutions, ci (zi,t) may be obtained, for the development of ordering under
applied shear across the sample depth H, with the normalization constraint on a (t) in terms
of the total shear strain, γtotal , such that:

a(t)
∫ H

0
f [c(z, t)]dz = H

dγtotal
dt

. (9)
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A typical graphical output of ci(zi,t), showing the order parameter as a function of both
applied strain and depth, can be seen in Figure 4a. Within this generic model, that incorporates
the key elements of shear-induced ordering, the transfer function f (c) can be suitably adapted
for different dependencies of the viscosity on the crystal ordering. In the case of a colloidal
crystal, the transfer function is a simple “two-phase” step-function (Figure 4b), where only
either amorphous or crystalline phases may exist. This produces the characteristic “growth
front” behavior with a sharp threshold between ordered and amorphous regions [17,65].
However, for a viscoelastic medium characterized by a more gradual shear thinning and
corresponding continuous monotonic transfer function, the model predicts a gradation of
ordering across a wider front, as expected (Figure 4a). The progressive ordering in this system
therefore also relies on irreversible dissipative forces acting upon errant spheres (Figure 4d
inset); forces which are independent of the sign of the velocity difference between neighboring
planes, and hence the oscillatory shear direction cycle.

To provide a better context of the spatial solutions generated, the value of ci(z) is
plotted as a function of shear strain (implicit t dependence) at depth points z = H/2 and H,
in Figure 4c. These again illustrate the propagation of ordering, with c increasing mono-
tonically at all points in space with the sample, before optimal ordering is asymptotically
reached. To gain a point of comparison with the experimental interrogation methods,
where the spectral signatures of ordering are probed across the shear-cell depth, a spatial
averaging of c(z) is now introduced, for 0 < z ≤ H under standard simulation parameters,
strain amplitude (σ) = 150% and oscillation frequency (f ) = 1 Hz. The spatially averaged
order 〈c〉 is plotted against the number of oscillatory cycles (N) in Figure 4d, showing the
exponential increase in sample ordering towards an asymptotic maximum value.

3.2.2. Frequency and Amplitude Dependence

In steady-state shearing, the crystallites are pulled apart with increasing strain dis-
placement. By contrast, oscillatory shear is able to cyclically nudge errant particles towards
the lower viscosity (and more highly ordered) state, in strong corroboration with the ex-
perimentally observed behaviors. In order to account for the cyclicity of oscillatory shear,
and the observed dependences on frequency and strain amplitude (rather than total linear
strain), we now develop the basic intuitive model into two variants, both incorporating
shear-induced flow degradation mechanisms.

In Model A, a simple competing degradation effect within each element is included
by the addition of an extra term to Equation (8):

.
ci = u∂z

.
γi − κi, (10)

where κ is a numerical constant, producing a linearly proportional degradation of the
ordering in layer i. A representative ci (zi,t) output from this model is shown in Figure 5a,
together with the de facto time dependence of c (z) in Figure 5c and 〈c〉 as a function of
N cycles in Figure 5d. The general behavior shows the expected gradual depth transition
to ordering at lower shear strains, followed by a gradual disordering at a higher N; this
is reminiscent of experimental observations in some PO samples, whereby a “wave” of
the most optimally ordered regions is seen to migrate to below the interface with many
repeated applications of BIOS. However, the spatio-temporal profile generated by this
limited model shows unphysical behavior at a high N, as the degradation scales with the
applied shear, and the system is broken up rather than equilibrating as intuition demands.
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Figure 5. (a) Simulated nonlinear diffusion of crystal order into a sample with increasing total applied strain using Model A
(degradation proportional to total applied strain), showing a gradual depth transition as illustrated by the arrow, followed by
gradual disordering at high strains. The degradation constant κ has a notional value of 2.6 × 10−10 in this case. (b) Shows a
comparative simulation using Model B (global shear-rate degradation), showing a gradual depth transition which replicates
experimental observations. The degradation constant k has a value of 0.5 s in this case. In both (a,b), the simulation
parameters were, strain amplitude = 150%, frequency = 1 Hz, and a common z-scale for the ordering parameter, c, is shown
as an inset to (b). Comparing simulation models A and B, (c) shows how the order parameter varies at the cell midpoint
(z = H/2) and full depth (H) as a function of total applied strain. Commensurately, (d) shows how the order parameter, as
spatially averaged across the 300 mm width of the sample, varies as a function of the number of BIOS oscillations (N).

In Model B, we instead incorporate diametrically competing ordering and disordering
terms for each element, and

.
ci is now dependent on the global shear rate (

.
γg) across the

depth of the film. Equation (8) can again be modified by the introduction of an additional
linear term thus:

.
ci =

(
u− k

.
γg

)
∂z

.
γi. (11)

In this expression, k is a degradation constant with units of seconds, with u again
being a constant associated with the shear-ordering rate. A representative ci(zi,t) output
from this model is shown in Figure 5b, together with c(z) and 〈c〉 trends in comparison
to Model A in Figure 5c,d. In addition to the intuitively correct monotonic ordering
behaviors, whereby asymptotic ordering is reached at all depths at long times, the inherent
dependence of the shear rate on both the oscillation frequency and strain amplitude now
facilitates detailed quantitative analyses of these simulation outputs. A feature of this
model is that a singularity is reached when the ordering and dissipative terms become
equal, such that

.
ci ≈ 0 and therefore, u = k

.
γg. Taking the point at which net ordering

ceases at a high strain amplitude, experimentally found to be at around σ ≈ 350%, and by
evaluating the corresponding shear rate as being

.
γg = 4σ f = 14 s−1, it is possible to extract

a value of k ≈ 0.5 s which is then used across all simulations to ensure physical consistency.
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By applying a standard exponential best fit to the 〈c〉 functions of the form shown in
Figure 5d for Model B, the simulated ordering timescales (i.e., τ and τN) may be extracted, in
a directly analogous fashion to the experimental data and the monotonic trend of Equation (2).
A representative comparison is made in Figure 6a, showing the experimental time evolution of
the stopband extinction coefficient along with the directly corresponding simulation outputs.
This additionally reconfirms the preferred suitability of intuitive simulation model B over
model A. In Figure 6b, the predicted values of τN are plotted as a function of the strain
amplitude, with the experimental values from Table 2 in the range of σ = 50–350% also plotted
for direct comparison. Particularly in the range of σ = 50–250%, there is strong quantitative
agreement in the τN values and also a good qualitative correspondence between the overall
functional trends. Only as the asymptotic

.
ci ≈ 0 point is approached at σ = 300–350% is there

significant divergence between the experiment and simulation.
In Figure 6c, the predicted values of τN are plotted as a function of the oscillation

frequency, with the corresponding experimental values from Table 2 in the range of f = 0.01
to 2.5 Hz plotted again for direct comparison. At low frequency, the two plots have both a
good qualitative and quantitive agreement, with efficient development of ordering over
few oscillatory cycles, and τN which increases gradually as a weak function of f. At above
around f = 0.2 Hz, the qualitative agreement continues, as the number of required cycles
for ordering increases monotonically. However, the model gives a rather steeper rate of
rise of τN above around 1 Hz, whereas the experimental data shows a more gradual rise
(τN increases approximately from 5 up to 15) in the range of 0.2 to 2 Hz.

Figure 6. (a) Shows a representative side-by-side comparison of the experimental time evolution
of the stopband extinction coefficient, with the directly corresponding simulation outputs for both
Model A and Model B, in terms of the spatially averaged order parameter <c>. In this case, the
temperature was 50 ◦C, frequency = 1 Hz, and shear amplitude = 150%. (b) Strain dependence of τN

at 50 ◦C and frequency = 1 Hz, comparing the simulation model and experimentally derived values
as indicated. (c) Shows the corresponding frequency dependence at strain amplitude 150%. In the
lower two graphics, indicative trendlines are added, using smoothing spline fitting.
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4. Discussion and Conclusions

This study of thermal viscoelastic photonic crystal media in an oscillatory shear cell,
confirms the monotonic nature of shear-ordering crystallization processes. The optically
interrogated system dynamics were tracked experimentally as a function of key parameters
(including strain amplitude, oscillation frequency, and temperature) over a far greater range
than previously reported. This facilitates the quantitative improvement of complementary
generic models, where shear-dependent interlayer viscosity reproduces the propagation of
crystalline fronts and a gradual transition from disorder to order.

Spatio-temporal simulations with both strain amplitude and oscillation frequency
dependence arise from the introduction of a competing shear-induced degradation pro-
cess, dependent on the global shear rate. An encouraging correspondence between the
experimental extracted and theoretically derived ordering timescales is evident from these
“first-principles” intuitive models. These are important steps in the physical understanding
and optimization of such engineered shear-ordering composite systems, including the
polymer opal film arrays as bulk produced using analogous BIOS methods [27].

The simulated strain dependence of ordering efficacy and timescale shows a par-
ticularly good agreement with the experiment; confirming an optimal regime of shear
amplitude in the range of σ = 100–250%, where local activation energies are exceeded, but
below where flow degradation of the crystal is the dominant effect. The corresponding
frequency dependence of the ordering timescale produces the same qualitative behavior
between experimental data and simulation; on a cycle-by-cycle comparison, lower frequen-
cies (f < 1 Hz) produce a more efficient ordering process, as shear-induced dissipation rates
are low. Relative timescales then rapidly lengthen as f increases towards 1 Hz and higher.

Beyond the progress reported here, there are a number of ways in which better
simulation convergence might be attempted, especially if a Monte Carlo or machine-
learning approach becomes tractable. Firstly, the empirical constants relating to shear-
dependent ordering and dissipation rates (u and k respectively in Equation (9)) may be
fine-tuned within physical constraints. On a related theme, the model makes the ad hoc
assumption of linearity between the crystal dissipation and global shear rate, as with the
ordering forces. Whilst there is some intuitive justification for this, in the laminar flow
regimes associated with low Re, the comparable suitability (or lack thereof) of nonlinear
dissipation models may offer further physical insights. Moreover, the transfer function
f (c) as applied in Equation (9), whilst highly successful in the initial implementation by
Zhao et al., may be further tweaked to best represent the noncolloidal “sticky” interparticle
interactions and gradation of ordering observed.

On a final note, a further challenge remains in the simulation of the temperature
dependence of shear-ordering in this system. Whilst not straightforward or obvious from
our earlier formalisms, the experimental correlation of ordering timescales with the bulk
sample viscosity at least offers a future potential steer. It is wholly expected that, at such
high characteristic Péclet numbers, the shear-dependent ordering and dissipation rates
from our model of crystal formation will relate to rheology, and not to thermodynamics as
for the colloidal suspension systems.
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Appendix A

Figure A1. Measured dynamic light scattering (DLS) data for the polymer core–shell sample batch
used experimentally, after particles had been redispersed into water at 25 ◦C. The hydrodynamic
diameter of particles showed a peak value of 275.0 nm (average value 256.2 nm), and a polydispersity
index (PDI) value of 0.044.
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