Metadata, citation and similar papers at core.ac.uk

Provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

Automated Detection of Refactorings in Evolving
Components

Danny Dig, Can Comertoglu, Darko Marinov, and Ralph Johnson

Department of Computer Science
University of Illinois at Urbana-Champaign
201 N. Goodwin Ave.
Urbana, IL 61801, USA
{di g, conertog, mari nov, j ohnson}@s. ui uc. edu

Abstract. One of the costs of reusing software components is migrating appli-
cations to use the new version of the components. Migrating an application ca
be error-prone, tedious, and disruptive of the development psoGes previous
work shows that more than 80% of the disruptive changes in four diffesom-
ponents were caused by refactorings. If the refactorings that haggeetween
two versions of a component could be automatically detected, a refagtooh
could replay them on applications. We present an algorithm that deteatsaef
ings performed during component evolution. Our algorithm uses a ic@atidn

of a fast syntactic analysis to detect refactoring candidates and a rpEesive
semantic analysis to refine the results. The experiments on codebagewgra
from 17 KLOC to 350 KLOC show that our algorithm detects refactorings in
real-world components with accuracy over 85%.

1 Introduction

Part of maintaining a software system is updating it to usddtest version of its com-
ponents. Developers like to reuse software componentsitilgbuild a system, but
reuse makes the system dependent on the components. |dealiyterface of a com-
ponent never changes. In practice, however, new versioosmponents often change
their interfaces and require the developers to change gtemyto use the new versions
of the components.

An important kind of change in object-oriented software igefactoring. Refac-
torings [FBB"99] are program transformations that change the strucfusepoogram
but not its behavior. Example refactorings include chagdire names of classes and
methods, moving methods and fields from one class to anathdrsplitting methods
or classes. An automated tool, calledactoring engingcan apply the refactorings to
change the source code of a component. However, a refagtemigine can change only
the source code that it has access to. Component develdparsio not have access to
the source code of all the applications that reuse the coermsnTherefore, refactor-
ings that component developers perform preserve the bateithe component but not
of the applications that use the component; although thagehés a refactoring from
the component developers’ point of view, it is not a refacipifrom the application
developers’ point of view.

https://core.ac.uk/display/4820372?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

One approach to automate the update of applications wherctdmeponents change
is to extend the refactoring engine to record refactoringthe component and then to
replay them on the applications. Record-and-replay ottefangs was recently demon-
strated in CatchUp [HDO05] and JBuilder2005 and is plannedet@ standard part of
Eclipse 3.2 Milestone 4. As component developers refabir tode, the refactoring
engine creates a log of refactorings. The developers skgddy along with the new
version of the component. An application developer can thpgmade the application to
the new version by using the refactoring engine to play bhekdg of refactorings.

While replay of refactorings shows great promise, it reliestee existence of refac-
toring logs. However, logs are not available for the exgstuersions of components.
Also, logs will not be available for all future versions; serdevelopers will not use
refactoring engines with recording, and some developdtperiform refactorings man-
ually. To exploit the full potential of replay of refactogs, it is therefore important to
be able to automatically detect the refactorings used tatera new version of a com-
ponent.

We propose a novel algorithm that detects a log of refaajsrivetween two ver-
sions of a component. Our algorithm assumes the open-wevielopment where com-
ponents are reused outside the organization, and therferehanges do not happen
overnight but follow a long deprecate-replace-removeciiftde. Obsolete entities will
coexist with their newer counterparts until they are no Ergupported. Also, multiple
refactorings can happen to the same entity or related estifihis lifecycle introduces
enough noise that existing algorithms for detection of aefdangs [APM04, DDNOO,
GWO05, GZ05,RD03] cannot accurately detect the refactoriBgisting algorithms as-
sumed closed-world development, where codebases are niydd-bouse and changes
happen abruptly (e.g., one entity dies in a version and a eiagtored entity starts from
the next version).

We aim for our algorithm to detect refactorings for replayttmthe minimal in-
volvement from developers. Therefore, the algorithm needketect refactorings with
a high accuracy: if the algorithm adds to a log a change thadtisctually a refactor-
ing (false positive), the developer needs to remove it frbenlbg or the replay could
potentially introduce bugs; if the algorithm does not ad@ fog an actual refactoring
(false negative), the developer needs to manually find itaadttit to the log. Existing
algorithms [APM04, DDNO0O, GWO05, GZ05, RD03] aimed at detattof refactorings
for the purpose of program comprehension. Therefore, taeyalerate lower accuracy
as long as they focus the developer’s attention on the nei@aats of the software.

Our algorithm combines a fast syntactic analysis to detfetctoring candidates
and a more expensive semantic analysis to refine the reGultssyntactic analysis is
based on Shingles encoding [Bro97], a technique from Inédion Retrieval. Shingles
are a fast technique for finding similar fragments in texisfileur algorithm applies
shingles to source files. Most refactorings involve refiarting of the source files that
results in similar fragments of source text between difiexersions of a component.
Our semantic analysis is based on tbference graphthat represent references among
source-level entities, e.g., calls among methods. Thilysisanalyzes the semantic re-
lationship between candidate entities to determine winditley represent a refactoring.

Eclipselli 2.1.3 Eclipsalll 3.1

Abstract Abstract
TextEditor TextEditor

7

performBRevert
Operation
WO, PR

doRevert
To3aved()

doRevert performRevert

0

ToSaved()

Fig. 1. An excerpt from Eclipse versions 2.1 and 3.0 showing two refacterirepame method
and changed method signature, applied to the same method.

We have implemented our algorithm in an Eclipse pluginsthRefactoringCrawler,
that detects refactorings in Java components. The ideag ialgorithm can be applied
to other programming languages. RefactoringCrawler atiyreletects seven types of
refactorings, focusing on the most common rename and mdaetogings [DJO5]. We
have evaluated RefactoringCrawler on three componengsmgin size from 17 KLOC
to 350 KLOC. The results show that RefactoringCrawler scédereal-world compo-
nents, and its accuracy in detecting refactorings is ové.85

The RefactoringCrawler tool and our evaluation results asailable at
http://netfil es.uiuc. edu/di g/ RefactoringCraw er.

2 Example

We next illustrate some refactorings that our algorithnedest between two versions of
a component. We use an example from the EclipseUl compori¢iné c&clipse devel-
opment platform. We consider two versions of EclipseUlnfrEclipse versions 2.1.3
and 3.0. Each of these versions of EclipseUl has over 1,@38e$ and 10,000 methods
in the public API (of non-internal packages). Our algoritfirst uses a fast syntactic
analysis to find similar methods, classes, and package&batthe two versions of the
component. (Section 4 presents the details of our syntaotitysis.) For EclipseUl,
our algorithm finds 231,453 pairs of methods with similariesd487 pairs of similar
classes, and 22 pairs of similar packages. (Section 8 pgeesere details of this case
study.) These similar entities are candidates for refawer Our example focuses on
two pairs of similar methods.

Figure 1 shows two pairs of similar methods from the two \mrsi of the
class Abt stract Text Edi tor from Eclipse 2.1 and 3.0. The syntactic analysis
finds that the methodioRevert ToSaved in version 2.1 is similar to (although
not identical with) the methodoRevert ToSaved in version 3.0, and the method

per f or nRever t Oper at i on is similar to the methoder f or nRever t . Our algorithm
then uses a semantic analysis to detect the refactoringsvéra performed on these
pairs. As the result, our algorithm detects that the metieod or nRever t Oper ati on
was renamed tper f or mOper at i on, and its signature changed from having two ar-
guments in the first version to no argument in the secondarr€ur previous manual
inspection [DJO5] of the Eclipse documentation and codeéddound that these two
refactorings, renamed method and changed method signateire performed.

Our semantic analysis applies a series of detection stestduat find whether can-
didate pairs of similar entities are indeed results of refidicgs. The key informa-
tion that the strategies consider is tieéerencesdetween the entities in each version.
For methods, the references correspond to call edges. Faxample methods, both
per f or nRevert Oper ati on andper f or nRevert have only one call in the entire
EclipseUl: they are both called exactly once framRevert ToSaved. Our analysis
represents this information with an edge, labeled with thenlmer of calls, between
these methods. We present how the two strategies for renamattbds and changed
method signature proceed in our running example.

The strategy that detects renamed methods discards thef paiRever t ToSaved
methods since they have the same name. This strategy, howresestigates further
whethemer f or rRevert is a renaming ofer f or nRever t Oper at i on. The strategy
(lazily) finds the calls to these two methods and realizesttiey are called (the same
number of times) from the correspondidgRevert ToSaved methods in both ver-
sions. Therefore, methogr f or nRever t Oper ati on andper f or nRevert (i) are
both in classAbt st r act Text Edi t or, (ii) have similar method bodies, (iii) have sim-
ilar incoming call edges, but (iv) differ in the name. Theagtgy thus concludes that
per f or nRevert is a renaming oper f or rRevert Qper at i on.

The strategy that detects changed method signatures atssidecs all pairs
of similar methods. This strategy discards the pairdoRevert ToSaved meth-
ods since they have the same signature. This strategy, kowavestigates further
per f or nRever t Qper at i on andper f or nrRevert methods, because they represent
the same method but renamed. It is important to point out tieestrategieshare
detected refactoringsalthough per f or rRevert Qper ati on and per f or nRevert
seemingly have different names, the RenameMethod strabtegy already found
that these two methods correspond. The ChangedMethod8ignthus finds that
per f or nRevert Oper at i on and per f or mOper at i on have similar bodies, “same”
name, similar call edges, but different signatures. Thetesgly thus correctly concludes
that a changed method signature refactoring was applipdrtbor nOper at i on.

3 Algorithm Overview

This section presents a high-level overview of our alganifior detection of refactor-
ings. Figure 2 shows the pseudo-code of the algorithm. Tpetiare two versions of
a component, and the output is a log of refactorings appliediato producec2. The

! Thesereferenceslo not refer to pointers between objects but to references amonguteeso
code entities in each version of the component.

Ref act ori ngs det ect Refactori ngs(Conmponent c¢1, Conponent c2) {
/'l syntactic analysis
Graph gl = parseLightweight(cl);
Graph g2 = parseli ghtweight(c2);
Shingles sl conput eShi ngl es(gl);
Shingles s2 conput eShi ngl es(g2);
Pairs pairs findSimlarEntities(gl, g2, sl, s2);
/1 semantic anal ysis
Ref actorings | og = emptyRefactorings();
foreach (DetectionStrategy strategy) {
do {
Ref actorings |1 og’ = |o0g.copy();
foreach (Pair <el, e2> frompairs relevant to strategy) {
if (strategy.isLikelyRefactoring(el, e2, gl, g2, log)) {
| 0g. add(<el, e2>, strategy);

}
}
} while (!log .equals(log)); // fixed point
}
return | og;

Fig. 2. Pseudo-code of the conceptual algorithm for detection of refactorings

algorithm consists of two analyses: a fagntactic analysishat finds candidates for
refactorings and a precisemantic analysighat finds the actual refactorings.

Our syntactic analysis starts by parsing the source filehetwo versions of the
component into théghtweightASTs, where the parsing stops at the declaration of the
methods and fields in classes. For each component, the gg@rsiduces a graph (more
precisely, a tree to which analysis later adds more edgesh Bode of the graphs
represents a source-level entity, namely a package, a eassthod, or a field. Each
node stores a fully qualified name for the entity, and eacthatkhode also stores the
fully qualified names of method arguments to distinguishrioesled methods. Nodes
are arranged hierarchically in the tree, based on thely fyllalified names: the node
p.n is a child of the node.

The heart of our syntactic analysis is the use ofShingles encodintp find similar
pairs of entities (methods, classes, and packages) in thedwgions of the component.
Shingles are “fingerprints” for strings with the followingqgperty: if a string changes
slightly, then its shingles also change slightly. Theref@hingles enable detection of
strings with similar fragments much more robustly than theitional string matching
techniques that are not immune to small perturbations Exeamings or small edits.
Section 4 presents the computation of shingles in detail.

The result of our syntactic analysis is a set of pairs of istithat have similar
shingles encodings in the two versions of the component: Rair consists of an entity
from the first version and an entity of the same kind from theoad version; there are

separate pairs for methods, classes, and packages. Thesefpgimilar entities are
candidates for refactorings.

Our semantic analysis detects from the candidate paire tivbsre the second en-
tity is a likely refactoring of the first entity. The analysaipplies seven strategies for
detecting specific refactorings, for example RenameMetiro@hangeMethodSigna-
ture. Section 5 presents the strategies in detail. The sisayplies each strategy until
it finds all possible refactorings of its type. Each strateggsiders all pairs of entities
(e1, e2) of the appropriate type, e.g., RenameMethod considerspaitg of methods.
For each pair, the strategy computes how likely is thatvas refactored int@,; if
the likelihood is above a user-specified threshold, theéegiyaadds the pair to the log
of refactorings that the subsequent strategies can usegdunither analysis. Note that
each strategy takes into account already detected refagsoisharing detected refac-
torings among strategies is a key for accurate detectiorfattorings when multiple
types of refactorings applied to the same entity (e.g., é&atetvas renamed and has
a different signature) or related entities (e.g., a methad menamed and also its class
was renamed).

4 Syntactic Analysis

To identify possible candidates for refactorings, our ath first determines pairs
of similar methods, classes, and packages. Our algorithm uses thgl&hencod-
ing [Bro97] to compute a fingerprint for each method and daetees two methods
to be similar if and only if they have similar fingerprints. like the traditional hashing
functions that map even the smallest change in the input torgpletely different hash
value, the Shingles algorithm maps small changes in thet ilgpsmall changes in the
fingerprint encoding.

4.1 Computing Shingles for Methods

The Shingles algorithm takes as input a sequence of tokethc@mputes a multi-
set of integers called shingles. The tokens represent thioehdody or the Javadoc
comments for the method (as interface methods and abstetbbds have no body).
The tokens do not include method name and signature becefas¢arings affect these
parts. The algorithm takes two parameters, the length dflitieg window,1, and the
maximum size of the resulting multisef, Given a sequence of tokens, the algorithm
uses the sliding window to find all subsequences of legticomputes the shingle for
each subsequence, and selectstheinimum shingles for the resulting multiset. Our
implementation uses the Rabin’s hash function [Rab81] toprde the shingles.

If there are less thaf shingles for some method, then the multiset has all those les
than S integers. This is the case with many setters and gettersand sonstructors
and other initializers. The parametgracts as the upper bound for the space needed to
represent shingles: a larger valugsofnakes calculations more expensive, and a smaller
value makes it harder to distinguish strings. Our impleragon sets the number of
shingles proportional to the length of the method body/cemis

Siringl: Shingles : {- 1942326283, -16T2 19785, \
[DomunentProvider p= getDomumentProviden); -I2148TTELE, F6TI2I3TY, 208215202,

if (p== mll) 1W0TETO1ZE, 1431157461, T4 1957
returm, SERERTFET Ty

perftrmB ere D peraton create e o peraton)

getProgress Moniton]];

Siring?: Shingles: { -19473%283, -16TI190TEE,
[DompnentProvider p= getDommentProvide); -L2148TIELE, E6TI2I3TY, M08215202,
if (p==mll] TATETO12E, 143115740, 577402 106,

rebom,

perfbrmRevet(]; _/)

Fig. 3. Shingles encoding for two similar strings. Notice that small changes (limgi#) in the
input strings produce small changes (underlined) in the Shingles iexgcod

Figure 3 shows the result of calculating the shingles for ethod bodies with
W = 2andS = 10. The differences in the bodies and the shingle values arerlined.
Notice that the small changes in the tokens produce onlylsthahges in the shingle
representation, enabling the algorithm to find the sintiksibetween methods.

4.2 Computing Shingles for Classes and Packages

Our analysis uses the shingles for methods to compute €isirigt classes and pack-
ages. Our analysis computes the shingles of a class by ttiéngnion of the shingles

of the methods in that class and selecting the mininsiy, s values. Analogously, our

analysis computes the shingles of a package by taking tlom wfithe shingles of the

classes in that package and selecting the mininSygy.4. values.

4.3 Finding Candidates

Our analysis uses the shingles to find candidates for refagg Each candidate is
a pair of similar entities from the two versions of the com@ain This analysis is an
effective way of eliminating a large number of pairs of éast so that the expensive
operation of computing the call graphs is only done for a ssadset of all possible
pairs. More specifically, led; and M, be the multisets of shingles for a pair of meth-
ods, classes, or packages. The analysis computes thergtyrasithe average overlap

of these two multisets:
|MyNMs)| T | Man M, |
[M] [Ma]

2
If this similarity value is above the user-specified thrdghthe pair is deemed similar
and passed to the semantic analysis.

5 Semantic Analysis

We present the semantic analysis that our algorithm usestézidrefactorings. Recall
from Figure 2 that the algorithm applies each detectiortegsauntil it reaches a fixed

point and that all strategies share the same log of deteetadtorings| og. This shar-
ing is crucial for successful detection of refactorings whaultiple types of refactorings
happened to the same entity (e.g., a method was renamed siladlifferent signature)
or related entities (e.g., a method was renamed and aldads was renamed). We first
describe how the strategies use the shared log of refagtorifle then describefer-
enceghat several strategies use to compute the likelihood attefing. We also define
the multiplicity of references and the similarity that olg@ithm computes between
references. We finally presents details of each strategg.tBthe sharing of the log,
our algorithm imposes an order on the types of refactorindsticts first. Specifically,
the algorithm applies the strategies in the following order

RenamePackage (RP)
RenameClass (RC)
RenameMethod (RM)
PullUpMethod (PUM)
PushDownMethod (PDM)
MoveMethod (MM)
ChangeMethodSignature (CMS)

NogrwhE

5.1 Shared Log

The strategies compare whether an entity in one graph games to an entity in an-
other graplwith respect to the already detected refactorinigsparticular with renam-
ing refactorings. Suppose that the log of refactoringg already contains several re-
namings that map fully qualified names from versidrto versionc2. These renamings
map package names to package names, class names to classoramethod names to
method names. We define a renaming funcgidhat maps a fully qualified nanfeyn
from c1 with respect to the renamingslig:

p(fan,l og) = if (defined og(f gqn)) thenl og(f qn)
elsep(pre(f gn),l og) +". " + suf(f gn)
o 1 0g) =",

where suf and pre are functions that take a fully qualified enamd return its simple
name §uffiy) and the entire name but the simple nampeef{iX), respectively. The func-
tion p recursively checks whether a renaming of some part of thg duialified name
is already in og.

5.2 References

The strategies compute the likelihood of refactoring basedeferencesamong the
source-code entities in each of the two versions of the comap In each graph that
represents a version of the component, our algorithm flpadds an edge from a node
n' to a noden if the source entity represented by has a reference to a source entity
represented by. (The graph also contains the edges from the parse tree.)e¥ied
references for each kind of nodes/entities in the followiray:

— There is a reference from a node/methotito a node/methodh iff m’ callsm.
Effectively, references between methods correspond tedges in call graphs.
— There is a reference from a nodéto a node/clas§’ iff:
e 1n/ is a method that has (i) an argument or return of gper (ii) an instantia-
tion of classC, or (iii) a local variable of clas§'.
e 7' is aclass that (i) has a field whose typ&ir (ii) is a subclass of’.
— There is a reference from a nodeto a node/packageiff n’ is a class that imports

some class from the package

There can be several references from one entity to anothieexample, one method
can have several calls to another method or one class cas&eal fields whose type
is another class. Our algorithm assigns to each edgelgiplicity that is the number
of references. For example, if a methed has two calls to a method, then the edge
from the node:’ that represents:’ to the node: that represents: has multiplicity two.
Conceptually, we consider that there is an edge betweemaryddes, potentially with
multiplicity zero. We writeu:(n’, n) for the multiplicity from the node:’ to the noden.

5.3 Similarity of References

Our algorithm uses a metric to determine the similarity éérences to entities in the
two versions of the component, with respect to a given logetdatorings. We write
n € g for a noden that belongs to a graph Consider two nodes; € g1 andn, € g2.
We define the similarity of their incoming edges as follows fi¥st define thelirected
similarity between two nodes with respect to the refactorings. We tlenthe overall
similarity betweem; andn, as the average of directed similarities betwegrandn
and betweem, andn; .

We define the directed similarity between two nodeandn’ as the overlap of
multiplicities of theircorrespondingncoming edges. More precisely, for each incom-
ing edge from a node; to n, the directed similarity finds a nod€ = p(n;,! og)
that corresponds ta; (with respect to refactorings) and then computes the gveria
multiplicities between the edges from to n and fromn/, to »’. The number of over-
lapping incoming edges is divided by the total number of miow edges. The formula
for directed similarity is:

>_p, min(m(ng, n), m(p(ni, 1 0g), n’))

The overall similarity is the average of directed similiast

5(n,n’,1 0g) =

6(711,712,' Og) + 6(77’2?”1" Og_l)
2

We describe informally an equivalent definition of direcssahilarity based on the
view of graphs with multiplicities as multigraphs that caavé several edges between
two same nodes. The set of edges between two nodes can behdewemultiset, and
finding the overlap corresponds to finding the intersectioone multiset of edges with
the other multiset of edges (for nodes corresponding wipeet to the refactorings).
In this view, similarity between edges in the graph is comgalty analogous to the
similarity of multisets of shingles.

o(ny,ne,l 0og) =

| Refactoring | Syntactic Checks [Semantic Checks

RP(1, p2) p2 ¢ gl o(p1,p2,100) >T
p(pre(p1), | 0g) = pre(p2)
suf(p1) # suf(pz)
RC(Ch1, C2) C2¢9l o(Cy1,Ca,100) > T
p(pre(Ch),1 0g) = pre(Cz)
suf(C1) # suf(Cs)
RM(m1, m2) mo & gl o(mi,ma,l09) > T
p(pre(ma),| 0g) = pre(msz)
suf(m1) # suf(ms)

PUM(m1, m2) mo & gl o(mi,me,l 0g) > T
plpre(m1), 1 0g) # pre(ms) | p(pre(ms), | 0g) descendant-of pter.)
suf(m.) = suf(mz)
PDM(m1, mz2) ma € gl o(myi,me,l 0g) > T
p(pre(mi), | 0g) # pre(msz) | p(pre(ma), | 0g) ancestor-of prém:)
suf(m1) = suf(ms)

MM(m1, ma) mo & gl o(mi,ma,l0g) > T
p(pre(ma),1 0g) # pre(ms) |=p(pre(m:),1 0g) anc.-or-desc. pfen>)
suf(m1) = suf(mz) references-properly-updated
CMS(m1, m2)| p(fgn(ma),l og) = fqn(mz) o(mi,me,l 0g) > T

signaturém:) # signaturéms)

Fig. 4. Syntactic and semantic checks performed by different detection seatéy refac-
torings: RP=RenamePackage, RC=RenameClass, RM=RenameMBthibt-PullUpMethod,
PDM=PushDownMethod, MM=MoveMethod, and CMS=ChangeMethau8ige.

5.4 Detection Strategies

We next precisely describe all detection strategies faotefings. Each strategy checks
appropriate pairs of entities and has access to the gmgblad g2 and thel og of
refactorings. (See the call icsLi kel yRef act ori ng in Figure 2.) Figure 4 shows
the seven strategies currently implemented in RefactGragler. For each pair, the
strategy first performs a fast syntactic check that detezswvhether the pair is relevant
for the refactoring and then performs a semantic check #tatrohines the likelihood of
the refactoring. The semantic checks compare the sinyilafiteferences to the user-
specified threshold valug.

RenamePackage (RP), RenameClass (RC), and RenameMeMpst(&egies are
similar. The first syntactic check requires the entity frgznnot to be ing1; otherwise,
the entity is not new. The second check requires the twaentid have the same name
prefix, modulo the renamings Irog; otherwise, the refactoring is a potential move but
not a rename. The third check requires the two entities te Héferent simple names.

PullUpMethod (PUM) and PushDownMethod (PDM) are the opeasieach other.
Figure 5 illustrates a PUM that pulls up the declaration ofedhud from a subclass into
the superclass such that the method can be reused by otlobassds. Figure 6 illus-
trates a PDM that pushes down the declaration of a method &euperclass into a
subclass that uses the method because the method is no tenged by other sub-
classes. In general, the PUM and PDM can be between sevasakgl related by in-

10

Wersion 1 ersion 2

Class1 Class1
M2l
Class2 Class2
il {}
+miZ{} b

Fig. 5. PullUpMethod: method® is pulled up from the subclag® into the superclassl.

heritance, not just between the immediate subclass anddags therefore, PUM and
PDM check that the original class isdl@scendanand anancestoy respectively, of the
target class. These inheritance checks are done on the ggaph

MoveMethod (MM) has the second syntactic check that requfre parent classes
of the two methods to be different. Without this check, MM webincorrectly classify
all methods of a renamed class as moved methods. The seaqoadtsecheck requires
that the declaration classes of the methods not be relatethbyitance; otherwise, the
refactorings would be incorrectly classified as MM as oppasea PUM/PDM. The
third check requires that all references to the target ddssemoved in the second
version and that all calls to methods from the initial classéplaced with sending a
message to an instance of the initial class. We illustratediieck on the sample code
in Figure 7. In the first version, methad. nt calls a method’1. xyz of the same class
C1 and also calls a metha@2. n2. After ml is moved to the class2, ni can call any
method inC2 directly (e.g.,n2), but any calls to methods residing @1 need to be
executed through an instancecif.

ChangeMethodSignature (CMS) looks for methods that haweséime fully qual-
ified name (modulo renamings) but different signatures. Jigaature of the method
can change by gaining/loosing arguments, by changing the ¢ the arguments, by
changing the order of the arguments, or by changing therréype.

6 Discussion of the Algorithm

Our example from Section 2 illustrates some of the challengeutomatic detection
of refactorings that happened in reusable components. Weerplicitly discuss three
main challenges and present how our algorithm addresses the

The first challenge is the size of the code to be analyzed. Aeresive semantic
analysis—for example finding similar subgraphs in call geaphore generally, in the
entire reference graphs)—might detect refactorings bus doé scale up to the size of

11

Version 1 Version 2

Class1 Class1
Hn2o(}
Class2 el
4
=

Fig. 6. PushDown: method? is pushed down from the supercla3k into the subclas€2.

class C1¢ class CZ24§
public woid wml(Cd c2){ public woid ml (C1l cl)/{
XY= () cl.xyz():
c2.m ()2 w2
} '
puhlic woid xy={) §.} public wvoid m2() 4.}
¥ H

Fig. 7.Methodn1 moves from clas€1 in one version to clags2 in the next version. The method
body changes to reflect that the local methods (e®) are called directly, while methods from
the previous class (e.yz) are called indirectly through an instanceGif.

real-world components with tens of thousands of entitiesluding methods, classes,
and packages. A cheap syntactic analysis, in contrast trilghmany similar entities
but is fallible to renamings. Also, an analysis that would tade into account the se-
mantics of entity relationships would produce a large nundfdalse positives. Our
algorithm uses a hybrid of syntactic and semantic analysédast syntactic analysis
creates pairs of candidate entities that are suspectedaat@ang, and a more precise
semantic analysis on these candidates detects whetheardn@ydeed refactorings.
The second challenge is the noise introduced by preseracighard compatibility
in the components. Consider for example the following cleanghe Struts framework
from version 1.1 to version 1.2.4: the methoel f or min the classCont rol | er was
renamed t@xecut e, butper f or mstill exists in the later version. Howeverer f or m
is deprecated, all the internal references to it were repladth references texecut e,
and the users are warned to es@cut e instead ofper f or m Since it is not feasible to
perform an expensive analysis on all possible pairs ofiest#tcross two versions of a

12

Ciren

/ : £
e %
G2 s,
C1 [Cilren

=

{12.36.45}] - 613}

: i }?"a @

: ; i,

123645 Fi o ;

L } SR ! N ci 0{@@95-, 12.36,48)__ Pl T
(1 s 4

@

(12,3645} A {513

(2a)

(28

Fig. 8. Class and Method Rename

component, any detection algorithm has to consider onlypaetiof pairs. Some previ-
ous work [APM04, DDNO0O, GZ05] considers only the outdatetitiers that die in one
version and then searches for refactored counterpartarthateated in the next version.
The assumption that entities change in this fashion inde&t$lin the closed-world de-
velopment (where the only users of components are the coempatevelopers) but
does not hold in the open-world development where outdattiless coexist with their
refactored counterparts. For example, previous algoritarmot detect thater f or m
was renamed texecut e sinceper f or mstill exists in the subsequent version. Our al-
gorithm detects thater f or min the first version anéxecut e in the second version
have the same shingles and their call sites are the samehareddre our algorithm
correctly classifies the change as a method rename.

The third challenge is the noise introduced by multiple ¢feings happening to
the same entity or related entities. Our example from Se@&jdor instance, shows two
refactorings, rename method and change method signapyléecto the same method.
An example of refactorings happening to related entitiegimaming a method along
with renaming the method’s class. Figure 8 illustrates #usnario. Across the two
versions of a component, claS$ was renamed t@1REN, and one of its methodsg,
was renamed te2REN. During component evolution, regardless of whether thescla
or method rename was executed first, the end result is the $auffigure 8, the upper
part shows the case when the class rename was executedfirtiiedower part shows
the case when the method rename was executed first.

Our algorithm addresses the third challenge by imposingrdaran the detection
strategies and sharing the information about detectedtmfags among the detection
strategies. Any algorithm that detects refactorings cptualy reconstructs the log of
refactorings and thus not only the start and the end statecofrmonent but also the

13

intermediate states. Our algorithm detects the two refaxgte in Figure 8 by following
the upper path. When detecting a class rename, the algoatten into account only the
shingles for class methods and not the method names. Therefor algorithm detects
classCLREN as a rename of clasdl although one of its methods was renamed. This
information is fed back into the loop; it conceptually restrncts the state 2a, and the
analysis continues. The subsequent analysis for the remaatied checks whether the
new-name method belongs to the same class as the old-namedysihce the previous
detection discovered that is equivalent modulo rename witti REN, n2REN can be
detected as a renamerdi.

The order in which an algorithm detects the two refactorimgsters. We described
how our algorithm detects a class rename followed by a methioame. Consider, in
contrast, what would happen to an algorithm that attempfsitow the bottom path.
When analyzing what happened between the meth@dand n2REN, the algorithm
would need the intermediate state 2b (whef&EN belongs toCl) to detect thatr2
was renamed taR2REN. However, that state is not given, and in the end starEN
belongs taC1REN, so the algorithm would mistakenly conclude thaREN was moved
to another classdLREN). The subsequent analysis of what happened between classes
C1 andC1REN would presumably find that they are a rename and would thed toee
backtrack to correct the previously misqualified move mdths a rename method.
For this reason, our algorithm imposes an order on the detestrategies and runs
detection of renamings top-down, from packages to classe®thods.

To achieve a high levels of accuracy, our algorithm uses a-pant computation
in addition to the ordering of detection strategies. The@@aigm runs each strategy re-
peatedly until it finds no new refactorings. This loop is reseey because entities are in-
tertwined with other entities, and a strategy cannot deteefactoring in one entity un-
til it detects a refactoring in the dependent entities. Retance, consider this example
change that happened in the Struts framework between thiorerl.1 and 1.2.4: in the
classAct i onCont rol | er, the methogber f or mwas renamed texecut e. The imple-
mentation ofper f or min Acti onCont rol | er is a utility class that merely delegates
to different subclasses att i on by sending them per f or mmessage. For 11 of these
Acti on classes, their callers consist mostly of theti onControl |l er. perform
Therefore, unless a tool detects first that f or mwas renamed texecut e, it can-
not detect correctly the similarity of the incoming call eddor the other 11 methods.
After the first run of the RenameMethod detection, our ReféogCrawler tool misses
the 11 other method renames. However, the feedback loopthddsformation about
the rename oper f or m and the second run of the RenameMethod detection correctly
finds another 11 renamed methods.

7 Implementation

We have implemented our algorithm for detecting refactggim RefactoringCrawler,
a plugin for the Eclipse development environment. The usadd the two versions of
the component to be compared as projects inside the Eclipdespace and selects the
two projects for which RefactoringCrawler detects refaaigs. To experiments with
the accuracy and performance of the analysis, the user tdnesealues for different

14

Problems | Javadoc | Declaration | Search | Console | Tasks

= == RenamedClasses [1 refactorings]:
= %] Pair
E class= arg.apache. struts tiles . Untyppedattribute
! - E class= arg.apache. struts.tiles Untypedattribute
= = Renamediethods [20 refactorings]
L E :._":o: Pair
E method= org.apache. struks. webapp. kiles. dynPortal. SetPortalPrefsAction. perform

E method= org.apache. struts. webapp.tiles. dynPartal. SetPortalPrefsAction. execute
o

=

Fig. 9. Refactoring view.

<taml version="1.0" encoding="UTF-8" 7>
- «refactoringsessions
— «refactoring name="RenamedClasses">
<parameter name="new name"=org.apache._struts.tiles.UntypedAttribute</parameter>
<parameter name="old name">org.apache.struts tiles.UntyppedAttribute</parameters
=/refactorings
- «refactoring name="RenamedMethods">
«<parameter name="new name">org.apache.struts.webapp.tiles.template.DynTemplateAction.execute</parameter>
<parameter name="old name">org.apache.struts.webapp.tiles.template.DynTemplateAction.performe</parameters>
</refactoring>

Fig. 10. XML sample output that can be loaded into a replay refactorings tool.

parameters, such as the size of the sliding window for thadis encoding (Section

4); the number of shingles to represent the digital fingatpf methods, classes and
package; and the thresholds used in computing the simyilafishingles encoding or

the reference graphs. RefactoringCrawler provides a sifatilt parameter values that
should work fine for most Java components.

RefactoringCrawler provides an efficient implementatibthe algorithm shown in
Figure 2. RefactoringCrawler lazily runs the expensive potation (such as finding
references) and caches the intermediate results.

RefactoringCrawler performs the analysis and returns hhekresults inside an
Eclipse view as illustrated in the example in Figure 9. RefidwgCrawler presents
only the refactorings that happened to the public API levfethe component since
only these can affect the component users. Refactoring€ragtoups the results in
categories corresponding to each refactoring strategyblealicking on any leaf Java
element opens an editor having selected the declaratidrabparticular Java element.

RefactoringCrawler also allows the user to export the tesnto an XML format
compatible with the format that CatchUp [HDO5] uses to loddaof refactorings.
A similar format is planned for the Eclipse 3.2 Milestone 4d#tionally, the XML
format allows the developer to further analyze and editdlgedlemoving false positives
or adding missed refactorings. Figure 10 gives a sampleeobthiput produced after
detecting refactorings in Struts.

8 Evaluation

We have evaluated RefactoringCrawler on three real-warfdgonents. We chose the
components that had good release notes describing the ARgeh; these notes helped
us to manually check the correctness of the logs of refagjerproduces by Refactor-
ingCrawler. In general, it is easier to spot the false pessiti(refactorings erroneously

15

reported by RefactoringCrawler) by comparing the refantpagainst the source code
than it is to detect the false negatives (refactorings thefa&oringCrawler missed).
Sometimes the description of the change in release notelslwaap 1-to-1 with refac-
torings defined in refactoring catalogs [FBB9]. Other times, the release notes would
be vague like “we eliminated duplication in class X". Forgbecases, we had to look
in the source code to find out what the exact type of changeWés extensive manual
analysis allowed us to build a repository of refactorings thappened between the two
versions. We compare these manually found refactoringmsigine refactorings that
were found by Refactoring Crawler to determine the falsatiegs.

For each component we chose for comparison two major reddhsé span large
architectural changes. There are two benefits to choosifjay meeases as comparison
points. First, it is likely that there will be lots of changkstween the two versions.
Second, it is likely that those changes will be documented firoviding some starting
point for a detailed analysis of the changes.

The case study benchmarks along with the tool and the ddtesfactorings can be
found online aht t p: // netfil es. ui uc. edu/ di g/ Ref act ori ngCr aw er.

8.1 Case Study Components

Table 1 shows the size of the case study components. Relesetive the size (in
pages) of the documents describing the API changes. Thésgwere provided by the
component developers.

Size |PackagelassegMethodsRelease Notes
KLOC [Pages]

Eclipse.Ul 2.1.3 222 105 | 1151 | 10285 -
Eclipse.Ul 3.0| 352 192 | 1735| 15894 8
Struts 1.1 114 88 460 | 5916 -

Struts 1.2.4 | 97 78 469 | 6044 16
JHotDraw 5.2| 17 19 160 | 1458 -
JHotDraw 5.3| 27 19 195 | 2038 3

Table 1.Size of the studied components.

Eclipse Platform [eclipse.org] was initially developed by IBM and later ra$ed to the
open source community. The Eclipse Platform provides maPisAand many different
smaller frameworks. The key framework in Eclipse is a pludrased framework that
can be used to develop and integrate software tools. Thisefrerk is often used to
develop Integrated Development Environments (IDEs). @atldéhe plugins that make
up the framework, we focus on the Ul subcomponent (Eclip§ethat contains 13
plugins.

We chose two major releases of Eclipse, namely 2.1 (Marcl32a6d 3.0 (June
2004). Eclipse 3.0 came with some major themes that affabeed\PIs. Therespon-
sivenessheme ensured that more operations run in the backgrouhdutiblocking the

16

user. New APIs allow long-running operations like buildsl aearches to be performed
in the background while the user continues to work.

Another major theme in 3.0 isch-client platforms Eclipse was designed as a uni-
versal IDE. However many components of Eclipse are notqaatily specific to IDEs
and can be reused in other rich-client applications (ewg-pts, help system, update
manager, window-based GUIs). This architectural themelwad factoring out IDE-
specific elements. APIs heavily affected by this changelared that made use of the
filesystem resources. For instarld@r kbenchPage is an interface used to open an
editor for a file input. All methods that were resource spedifose that dealt with
opening editors over files) were removed from the interfécelient who opens an
editor for a file should convert it first to a generic editoruhpNow the interface can
be used by both non-IDE clients (e.g. an electronic maihtlibat edits the message
body) as well as IDE clients.

Struts [struts.apache.org] is an open source framework for ngldiava web appli-
cations. The framework is a variation of the Model-View-@otier (MVC) design
paradigm. Struts provides its own Controller componentiatedjrates with other tech-
nologies to provide the Model and the View.

For the Model, Struts can interact with standard data aceebhgologies, like JDBC
and EJB, as well as most any third-party packages, like iHdder iBATIS, or Object
Relational Bridge. For the View, Struts works well with JSeaver Pages, as well as
Velocity Templates, XSLT, and other presentation systdesause of this separation
of concerns, Struts can help control change in a Web projetipaomote job special-
ization.

We chose for comparison version 1.1(June 2003), a majorrpkesise, and 1.2.4
(September 2004). All the API changes reveal consolidatiork that was done in
between the two releases. The framework developers eliedrduplicated code and
removed unmaintained or buggy code.

JHotDraw [http://www.jhotdraw.org/] is a two-dimensional graphiramework for
structured drawing editors. It was originally develope@®&malltalk by Kent Beck and
Ward Cunningham. Erich Gamma and Thomas Eggenschwiletapmathe Java ver-
sion, then it became an open-source project. The origindDkHev was one of the first
projects specifically designed for reuse and labeled aswefrerk. It was also one of
the first systems documented in terms of design patterns.

In contrast to the Swing graphics library, JHotDraw defindmsic skeleton for a
GUI-based editor with tools in a tool palette, differentwse user-defined graphical
figures, and support for saving, loading, and printing dr@si The framework has
been used to create many different editors from CASE tooks Reert diagram editor
[http://www.jhotdraw.org/survey/applications.html].

We chose for comparison version 5.2 (February 2001) and)ardu@ary 2002). The
purpose of 5.3 release was to clean up the APIs and fix bugs.

17

[[RM [RC] RP[MM [PUM [PDM| CMS][PrecisiorjRecall
EclipseU! 2.1.3 - 3.0 2,1,0/0,0,00,0,9 8,2,4(11,0,00,0,0 6,0,0| 90% | 86%
Struts 1.2.1 - 1.2.4/20,0,11,0,1/0,0,020,0,7 1,0,0|0,0,0/24,0,1| 100% | 86%
JHotDraw 5.2 - 5.3| 5,0,0/0,0,00,0,4 0,0,0| 0,0,0{0,0,0119,0,0] 100% |100%
Table 2. Triplets of (GoodResults, FalsePositives, FalseNegatives) for ReEviathod(RM), Re-
nameClass(RC), RenamePackage(RP), MoveMethod(MM), Pullth@déPUM), PushDown-
Method(PDM), ChangeMethodSignature(CMS)

8.2 Measuring the Recall and Precision

To measure the accuracy of our tool when detecting refangsyiwe use two standard
metrics from the Information Retrieval fiel&Recall is the ratio of the number of
relevant refactorings found by the tool (good results) te tbtal number of actual
refactorings in the component. It is expressed as the pegen

_ GoodResults
RECALL = GoodResults+FalseNegatives

Precisionis the ratio of the number of relevant refactorings foundhgytool to the
total number of irrelevant and relevant refactorings fobgdhe tool. It is expressed as
the percentage:

PRECISION = GoodResults

GoodResults+FalsePositives

Ideally, the recall and precision should be 100%. If that thescase, the refactor-
ings found could be fed into a tool that replays the refangsito automatically upgrade
component-based applications. However, due to the imigsaintroduced in order to
maintain backwards compatibility of open-world comporseiitis hard to have 100%
precision and recall.

Table 2 shows how many instances of each refactoring werglffor the three com-
ponents. These results use the default values for the pteesie RefactoringCrawler.
For each refactoring type, we show in a triplet how many goeslults Refactor-
ingCrawler found, how many false positives Refactoring@ea found, and how many
false negatives (according to the release notes) Refagtrawler found. We compute
the recall and precision for each case study by taking intoaat all the refactorings.

RefactoringCrawler ran on a Fujitsu laptop with a 1.73GHatken 4M CPU and
1.25GB of RAM. It took 4 min and 55 sec for detecting the refaicigs in Struts, 37
sec for JHotDraw, and 16 min 38 sec for EclipseUl.

Manual analysis revealed the reason why RefactoringCrawigsed a few refac-
torings. In Struts, for instance, methd®quest Uil s. conput ePar anet ers
is moved to TagUtils. conputeParaneters and method
Request Uti | s. pageURL is moved to TagUtils. pageURL. There are
quite a few calls to these methods from a test class. It apjplearthe test code was not
refactored, and therefore it still calls the old methodt(tkaeprecated). This results in
quite different call sites between the old and the refactonethod.

18

_L
fa

—a

=]
m
i
§

i
e

2
(]
|

Precision and Recall Values
L oL
o
E

o

0.2 0.4 0.6 08 1
Recall Threshold Values

= = Precizion

Fig. 11.Recall and Precision vary with the value of threshold

8.3 The Impact of Parameters’ Value

Next we want to determine how the recall and precision chavigen using different
values for the user specified parameters (size of the windamber of shingles per
method, similarity thresholds). Since the accuracy of tiet depends on the values of
the parameters, we wanted to offer the user the range wheredhll and precision are
at their peak. Figure 11 shows how different values for tiesthold parameter affects
the accuracy of the tool for the Struts component. Very lowes for thresholds for
computing the similarity of the method bodies and referegraghs produce a large
number of candidates to be analyzed. This results in largabets of false positives,
but increases the chance that all the relevant refactoargfound among the results.
High values for thresholds mean that only those candidat@shtave almost perfect
body resemblance are taken into account. This reduces thberuwof false positives
but can miss some refactorings. Figure 12 shows how the mgrtithe varies for the
JHotDraw case study. For low thresholds, the number of datels passed to semantic
analysis is large, resulting in longer analysis time. Fghtihresholds, fewer candidates
pass the syntactic test into semantic analysis, resutit@aier running times.

8.4 Strengths and Limitations

This subsection reports on the strengths of the methodgbogposed for detecting
refactorings and our tool. We conclude with the main liniitas and propose new ex-
tensions to overcome the weaknesses.

Strengths

— Good Precision and RecallThe evaluation on the case studies revealed that both

precision and recall of RefactoringCrawler are over 85%esehhigh accuracy lev-
els are due to the combination of syntactic and semantioysesl Compared to

19

b
o
=

(o]

=

o
|=

.
N
e

o1 02 03 04 05 0B 07 08 09 1

Threshold Values

i
)

[
o

Runtime {sec)

i
o

o)

Fig. 12. Running time for JHotDraw case study decreases exponentially with hilgreshold
values

other approaches [APM04, DDNOO, GW05, GZ05, RD03] that udg syntactic
analysis and produce large amounts of false positives,anlréquires little hu-
man intervention to validate the refactorings. The resarésgood enough to be fed
to a replay tool that can automatically upgrade componasedt) applications by
incorporating the refactorings into applications.

— Robust.Our tool succeeds to detect refactorings in the presencaisé mtroduced
because of maintaining backwards compatibility, the nofsaultiple refactorings
and the noise of renamings. Renamings create huge probterother approaches
but do not impede our tool. Since our tool identifies codetiest{imethods, classes,
packages) based on their body resemblance and not on tme@snaur tool can
successfully track the same entity across different vassieven when its name
changes. For previous approaches, a rename is equivataranventity disappear-
ing and a brand new entity appearing in the subsequent veriwther problem
for previous approaches is the application of multiple cfeings to the same en-
tity. Our tool takes this into account by sharing the log dactorings between
the detection strategies and repeating each strategyiturgdches a fixed point.
Lastly, our tool detects refactorings in an open-world dgwment where, due to
backwards compatibility, obsolete entities coexist whihit refactored counterparts
until the former are removed. We can detect refactoringsighsan environment
because most of refactorings involve repartitioning thease code. This results in
parts of the code from a release being spread in differeneplan the next release.
Our algorithm starts by detecting the similarities betwten versions.

— Scalable.Running expensive semantic analysis (like identifyingilinsubgraphs
in the entire reference graph) on large code bases congp$itens of thousands
of nodes (methods, classes, packages) is not feasible ol s, we run first an
inexpensive syntactic analysis that reduces the wholet idiponain to a relatively
small number of candidates to be analyzed semanticalbokRefactoringCrawler
around 16 min to do the analysis for the org.eclipse.ui (3@K) subcomponent
of the Eclipse framework.

20

Limitations

— Poor support for interfaces and fields.Since our method tracks the identity of
methods, classes and packages based on their textual badiest on their names,
it does not fit for those entities that lack a body. Both clasdgl§iand interface meth-
ods do not contain any body other than their declaration néfter the syntactic
analysis, only entities that have a body resemblance asegds semantic analy-
sis. Therefore, refactorings that happened to fields orfatte methods cannot be
detected. This was the case with org.eclipse.ui where lagtwersion 2.1.3 and
3.0 lots of static fields were moved to other classes and fotsterface methods
were moved to abstract classes. To counteract the lack ofaiexodies for inter-
face methods or fields, we treated their associated javamlnonents as their text
bodies. This seems to work for some cases, but not all.

— Requires Experimentation.As with any heuristics approach, coming up with the
right values for the detection algorithms might take a faal$r Selecting thresh-
olds too high reduces the false positives toward zero, utiéas some refactorings
due to the fact that only those candidates that have pedeemblance are selected.
Selecting threshold too low produces large number of fabsitipes, but increases
the chances that all relevant refactorings are found amuoagesults. We learned
that threshold between 0.5 and 0.7 produce good results.

9 Related Work

We provide an overview of related work on refactorings, endted detection of refac-
torings, and the use of Shingles encoding.

9.1 Refactoring

Programmers have been cleaning up their code for decadesjththe termefactoring
was coined much later [0J90]. Opdyke [Opd92] wrote the fiashlog of refactorings
while Roberts and Brant [Rob99] were the first to implemergfaatoring engine. The
refactoring field gained much popularity with the catalogrefactorings written by
Fowler et al. [FBB 99]. Soon after this, IDEs began to incorporate refactogingines,
Eclipse being the one with the richest set of refactoring&u@la and Batory [TBO1]
describe the large architectural changes in two framewaslkslarge sequence of small
refactorings. They estimate that automated refactorirgd@times quicker to perform
than manual ones. More recent research on refactoringsdsxtae analysis for auto-
mated refactorings with more powerful techniques. Tip e{BKBO03], for example,
use type constraints to support the analysis for refagerthat introduce generaliza-
tion. Donovan et al. [DKTEO4] use a pointer analysis and eceastraint-based anal-
ysis to support refactorings that replace the instantiatibraw classes with generic
classes. Dinklage and Diwan [vDDO04] use different heuwssto convert from non-
generic classes to generic classes. Balaban et al. [BTH®3paautomatically replace
obsolete library classes with their newer counterpartsn@ment developers have to
provide mappings between legacy classes and their reptatsrand an analysis based

21

on type constraints determines where the replacement caoree Thomas [Tho05]
acknowledges that refactorings in the components redolirtegration problems and
advocates the need for languages that would allow one tdfgpetactorings. This
would allow users to create customizable refactorings.

9.2 Detection of refactorings

Researchers have already developed some tool support tiestidg and classifying
structural evolution, mostly spawned from the reengimgegommunity. Detection
of class splitting and merging was the main target of theendrtools. Demeyer et
al. [DDNO0O] use a set of object-oriented change metrics andistics to detect refac-
torings that will serve as markers for the reverse engig@onio et al. [APMO04] use
a technique inspired from the Information Retrieval to detiscontinuities in classes
(e.g., a class was replaced with another one, a class wasnspltwo, or two classes
merge into one). Based on Vector Space cosine similargy,¢bmpare the class identi-
fiers found in two subsequent releases. Therefore, if a,dagBesol ver , was present
in versionn but disappears in versiom + 1 and a new clasSi npl eResol ver ap-
pears in versiom + 1, they conclude that a class replacement happened. Godfcey a
Zou [GZ05] are the closest to the way how we envision detgdinuctural changes.
They implemented a tool that can detect for procedural coteesrefactorings like
renaming, move method, split, and merge. Whereas we stant $ftongles analysis,
they employ origin analysis along with a more expensiveyaision call graphs to de-
tect and classify these changes. Rysselberghe and Denriy68] use a clone finding
tool (Duploc) to detect methods that were moved across #ssek. Gorg and Weisger-
ber [GWO05] analyze subsequent versions of a component ingroafion management
repositories to detect refactorings.

Existing work on automatic detection of refactorings addes some of the needs
of reverse engineers who must understand at a high level howvéy components
evolved. For this reason, most of the current work focusedeiacting merging and
splitting of classes. However, in order to automaticall\grate component-based ap-
plications we need to know the changes to the API. Our workpements existing
work because we must look also for lower level refactorirfgg affect the signatures
of methods. We also address the limitations of existing watk respect to renamings
and noise introduced by multiple refactorings on the santigyea the noise introduced
by the deprecate-replace-remove cycle in the open-worithoments.

9.3 Shingles encoding

Clone detection based on Shingles encoding is a reseamteshtin other fields like
internet content management and file storage. Ramaswamly [&llaD04] worked

on automatic detection of duplicated fragments in dynaltyicgenerated web pages.
Dynamic web pages cannot be cached, but performance canpoevied by caching
fragments of web pages. They used Shingles encoding tatdietgments of web pages
that did not change. Manber [Man93] and Kulkarni [KDLT04] oy shingles-based
algorithms to detect redundancy in the file system. Theygsepnore efficient storage
after eliminating redundancy. Li et al. [LLMZ04] use shiaglto detect clones of text

22

in the source code of operating systems. They further aaahe clones to detect bugs
due to negligent copy and paste.

10 Conclusions

Syntactic analyses are too unreliable, and semantic aagmbre too slow. Combining
syntactic and semantic analyses can give good results.Bgioing Shingles encoding
with traditional semantic analyses, and by iterating thelyses until a fixed point was
discovered, we could detect over 85% of the refactoringsengnoducing less than 10%
false positives.

The algorithm would work on any two versions of a system. Bglnot assume that
the later version was produced by any particular tool. Ifwa wersion is produced by a
refactoring tool that records the refactorings that areemétten the log of refactorings
will be 100% accurate. Nevertheless, there may not be tlogptiise or the opportunity
to use a refactoring tool, and it is good to know that refantgs can be detected nearly
as accurately without it.

There are several applications of automated detectionfattaings. First, a log
of refactorings helps in the automated migration of compbibased applications. As
our previous study [DJ0O5] shows, more than 80% of the API gharihat break com-
patibility with existing applications are refactoringstdol like Eclipse can replay the
log of refactorings. The replay is done at the applicatio®where both the component
and the application reside in the same workspace. In this, ¢the refactoring engine
finds and correctly updates all the references to the rafadtentities, thus migrating
the application to the new API of the component.

Second, a log of refactorings can improve how current cordiipn management
systems deal with renaming. A tool like CVS looses all thengjgehistory for a source
file whose main class gets renamed, since this appears as didhsource file was
removed and a source file with a new name was added. A log aftoefags can help
the configuration management system to correlate the olffélders with the new
files/folders when the main class or package was renamed.

Third, a log of refactoring can help a developer understawd &n object-oriented
system has evolved from one version to another. For exaraplexplicit list of re-
namings tells how the semantics of the refactored entitpgéd, while a list of moved
methods tells how the class responsibilities shifted.

The tool and the evaluation results are available at
http://netfil es.uiuc. edu/di g/ RefactoringCraw er.

References

[APMO04] G. Antoniol, M. Di Penta, and E. Merlo. An automatic approacldemtify class evo-
lution discontinuitiesin Proceedings of the 7th International Workshop on Principles
of Software Evolution2004.

[Bro97] A. Broder. On resemblance and containment of document®roceedings of SE-
QUENCES$1997.

23

[BTFO5] Ittai Balaban, Frank Tip, and Robert Fuhrer. Refactoringpsrt for class library mi-
gration. INOOPSLA '05: Proceedings of the 20th annual ACM SIGPLAN conferenc
on Object oriented programming systems languages and applicapfjiagss 265279,
New York, NY, USA, 2005. ACM Press.

[DDNOQ] S. Demeyer, S. Ducasse, and O. Nierstrasz. Findingteefags via change metrics.
in Proceedings of OOPSLAR000.

[DJO5] D. Dig and R. Johnson. The role of refactoring in api evoluti@sM, 2005.

[DKTEO4] Alan Donovan, Adam Kiezun, Matthew S. Tschantz, and M&tt2. Ernst. Con-
verting java programs to use generic libraries. O@PSLA ’'04: Proceedings of the
19th annual ACM SIGPLAN conference on Object-oriented programrsiysiems,
languages, and applicationgolume 39, pages 15-34, New York, NY, USA, October
2004. ACM Press.

[FBB*99] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. RobetRefactoring: Improving
the Design of Existing Codédison-Wesley, 1999.

[GWO05] Carsten Gorg and Peter Weisgerber. Detecting and visualiZimgfoeings from soft-
ware archives. IWWPC '05: Proceedings of the 13th International Workshop on Pro-
gram Comprehensigmpages 205-214, Washington, DC, USA, 2005. IEEE Computer
Society.

[GZ05] M. Godfrey and L. Zou. Using origin analysis to detect merging splitting of source
code entities|EEE Transactions on Software Engineeri2§05.

[HDO5] J.Henkel and A. Diwan. Catchup! capturing and replayingetfrings to support api
evolution. ICSE 2005.

[KDLTO4] P. Kulkarni, F. Douglis, J. LaVoie, and J. Tracey. Redandy elimination within
large collections of filesUSENIX 2004.

[LLMZ04] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zh@P-Miner: A tool for
finding copy-paste and related bugs in operating system coderobeedings of the
Sixth Symposium on Operating System Design and Implementation (O DEG4s
289-302, 2004.

[Man93] Udi Manber. Finding similar files in a large file systefiech Report 93-33, University
of Arizong 1993.

[0J90] Bill Opdyke and Ralph Johnson. An aid in designing applicatioméworks and
evolving object-oriented systems. Rroceedings of 1990 Symposium on Object-
Oriented Programming Emphasizing Practical Applications (SOOPPA "B830.

[Opd92] BIll Opdyke. PhD thesis, University of lllinois at Urbana-Chgaign, 1992.

[Rab81] M. O. Rabin. Fingerprinting by random polynomialEechnical report, Center for
Research in Computing Technolod®81.

[RDO3] F.Van Rysselberghe and S. Demeyer. Reconstruction oéssful software evolution
using clone detectionProceedings of the International Workshop on Principles of
Software Evolution2003.

[RILDO4] L. Ramaswany, A. lyengar, L. Liu, and F. Douglis. Autaticadetection of fragments
in dynamically generated web pag&sWWw 2004.

[Rob99] Don Roberts. PhD thesis, University of lllinois at Urbana+@paign, 1999.

[TBO1] Lance Tokuda and Don Batory. Evolving object-oriented desigith refactorings.
Automated Software Eng@(1):89-120, January 2001.

[ThoO5] D. Thomas. Refactoring as meta programmidg@rnal of Object Technologp005.

[TKBO3] Frank Tip, Adam Kiezun, and Dirk Bauemer. Refactoring f@meralization using
type constraints. IOOPSLA '03: Proceedings of the 18th annual ACM SIGPLAN
conference on Object-oriented programing, systems, languageapgtidations vol-
ume 38, pages 13-26, New York, NY, USA, November 2003. ACMs®re

24

[vDDO04] Daniel von Dincklage and Amer Diwan. Converting java clageasse generics. In
OOPSLA '04: Proceedings of the 19th annual ACM SIGPLAN conferend®bject-
oriented programming, systems, languages, and applicatimames 1-14, New York,
NY, USA, 2004. ACM Press.

25

