
Automated Detection of Refactorings in Evolving
Components

Danny Dig, Can Comertoglu, Darko Marinov, and Ralph Johnson

Department of Computer Science
University of Illinois at Urbana-Champaign

201 N. Goodwin Ave.
Urbana, IL 61801, USA

{dig,comertog,marinov,johnson}@cs.uiuc.edu

Abstract. One of the costs of reusing software components is migrating appli-
cations to use the new version of the components. Migrating an application can
be error-prone, tedious, and disruptive of the development process. Our previous
work shows that more than 80% of the disruptive changes in four different com-
ponents were caused by refactorings. If the refactorings that happened between
two versions of a component could be automatically detected, a refactoring tool
could replay them on applications. We present an algorithm that detects refactor-
ings performed during component evolution. Our algorithm uses a combination
of a fast syntactic analysis to detect refactoring candidates and a more expensive
semantic analysis to refine the results. The experiments on codebases ranging
from 17 KLOC to 350 KLOC show that our algorithm detects refactorings in
real-world components with accuracy over 85%.

1 Introduction

Part of maintaining a software system is updating it to use the latest version of its com-
ponents. Developers like to reuse software components to quickly build a system, but
reuse makes the system dependent on the components. Ideally, the interface of a com-
ponent never changes. In practice, however, new versions ofcomponents often change
their interfaces and require the developers to change the system to use the new versions
of the components.

An important kind of change in object-oriented software is arefactoring. Refac-
torings [FBB+99] are program transformations that change the structure of a program
but not its behavior. Example refactorings include changing the names of classes and
methods, moving methods and fields from one class to another,and splitting methods
or classes. An automated tool, calledrefactoring engine, can apply the refactorings to
change the source code of a component. However, a refactoring engine can change only
the source code that it has access to. Component developers often do not have access to
the source code of all the applications that reuse the components. Therefore, refactor-
ings that component developers perform preserve the behavior of the component but not
of the applications that use the component; although the change is a refactoring from
the component developers’ point of view, it is not a refactoring from the application
developers’ point of view.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4820372?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

One approach to automate the update of applications when their components change
is to extend the refactoring engine to record refactorings on the component and then to
replay them on the applications. Record-and-replay of refactorings was recently demon-
strated in CatchUp [HD05] and JBuilder2005 and is planned tobe a standard part of
Eclipse 3.2 Milestone 4. As component developers refactor their code, the refactoring
engine creates a log of refactorings. The developers ship this log along with the new
version of the component. An application developer can thenupgrade the application to
the new version by using the refactoring engine to play back the log of refactorings.

While replay of refactorings shows great promise, it relies on the existence of refac-
toring logs. However, logs are not available for the existing versions of components.
Also, logs will not be available for all future versions; some developers will not use
refactoring engines with recording, and some developers will perform refactorings man-
ually. To exploit the full potential of replay of refactorings, it is therefore important to
be able to automatically detect the refactorings used to create a new version of a com-
ponent.

We propose a novel algorithm that detects a log of refactorings between two ver-
sions of a component. Our algorithm assumes the open-world development where com-
ponents are reused outside the organization, and thereforethe changes do not happen
overnight but follow a long deprecate-replace-remove lifecycle. Obsolete entities will
coexist with their newer counterparts until they are no longer supported. Also, multiple
refactorings can happen to the same entity or related entities. This lifecycle introduces
enough noise that existing algorithms for detection of refactorings [APM04, DDN00,
GW05,GZ05,RD03] cannot accurately detect the refactorings. Existing algorithms as-
sumed closed-world development, where codebases are used only in-house and changes
happen abruptly (e.g., one entity dies in a version and a new refactored entity starts from
the next version).

We aim for our algorithm to detect refactorings for replay, with the minimal in-
volvement from developers. Therefore, the algorithm needsto detect refactorings with
a high accuracy: if the algorithm adds to a log a change that isnot actually a refactor-
ing (false positive), the developer needs to remove it from the log or the replay could
potentially introduce bugs; if the algorithm does not add toa log an actual refactoring
(false negative), the developer needs to manually find it andadd it to the log. Existing
algorithms [APM04, DDN00, GW05, GZ05, RD03] aimed at detection of refactorings
for the purpose of program comprehension. Therefore, they can tolerate lower accuracy
as long as they focus the developer’s attention on the relevant parts of the software.

Our algorithm combines a fast syntactic analysis to detect refactoring candidates
and a more expensive semantic analysis to refine the results.Our syntactic analysis is
based on Shingles encoding [Bro97], a technique from Information Retrieval. Shingles
are a fast technique for finding similar fragments in text files; our algorithm applies
shingles to source files. Most refactorings involve repartitioning of the source files that
results in similar fragments of source text between different versions of a component.
Our semantic analysis is based on thereference graphsthat represent references among
source-level entities, e.g., calls among methods. This analysis analyzes the semantic re-
lationship between candidate entities to determine whether they represent a refactoring.

2

Fig. 1. An excerpt from Eclipse versions 2.1 and 3.0 showing two refactorings, rename method
and changed method signature, applied to the same method.

We have implemented our algorithm in an Eclipse plugin, called RefactoringCrawler,
that detects refactorings in Java components. The ideas in the algorithm can be applied
to other programming languages. RefactoringCrawler currently detects seven types of
refactorings, focusing on the most common rename and move refactorings [DJ05]. We
have evaluated RefactoringCrawler on three components ranging in size from 17 KLOC
to 350 KLOC. The results show that RefactoringCrawler scales to real-world compo-
nents, and its accuracy in detecting refactorings is over 85%.

The RefactoringCrawler tool and our evaluation results areavailable at
http://netfiles.uiuc.edu/dig/RefactoringCrawler.

2 Example

We next illustrate some refactorings that our algorithm detects between two versions of
a component. We use an example from the EclipseUI component of the Eclipse devel-
opment platform. We consider two versions of EclipseUI, from Eclipse versions 2.1.3
and 3.0. Each of these versions of EclipseUI has over 1,000 classes and 10,000 methods
in the public API (of non-internal packages). Our algorithmfirst uses a fast syntactic
analysis to find similar methods, classes, and packages between the two versions of the
component. (Section 4 presents the details of our syntacticanalysis.) For EclipseUI,
our algorithm finds 231,453 pairs of methods with similar bodies, 487 pairs of similar
classes, and 22 pairs of similar packages. (Section 8 presents more details of this case
study.) These similar entities are candidates for refactorings. Our example focuses on
two pairs of similar methods.

Figure 1 shows two pairs of similar methods from the two versions of the
class AbtstractTextEditor from Eclipse 2.1 and 3.0. The syntactic analysis
finds that the methoddoRevertToSaved in version 2.1 is similar to (although
not identical with) the methoddoRevertToSaved in version 3.0, and the method

3

performRevertOperation is similar to the methodperformRevert. Our algorithm
then uses a semantic analysis to detect the refactorings that were performed on these
pairs. As the result, our algorithm detects that the methodperformRevertOperation

was renamed toperformOperation, and its signature changed from having two ar-
guments in the first version to no argument in the second version. Our previous manual
inspection [DJ05] of the Eclipse documentation and code indeed found that these two
refactorings, renamed method and changed method signature, were performed.

Our semantic analysis applies a series of detection strategies that find whether can-
didate pairs of similar entities are indeed results of refactorings. The key informa-
tion that the strategies consider is thereferencesbetween the entities in each version.1

For methods, the references correspond to call edges. For our example methods, both
performRevertOperation and performRevert have only one call in the entire
EclipseUI: they are both called exactly once fromdoRevertToSaved. Our analysis
represents this information with an edge, labeled with the number of calls, between
these methods. We present how the two strategies for renamedmethods and changed
method signature proceed in our running example.

The strategy that detects renamed methods discards the pairof doRevertToSaved
methods since they have the same name. This strategy, however, investigates further
whetherperformRevert is a renaming ofperformRevertOperation. The strategy
(lazily) finds the calls to these two methods and realizes that they are called (the same
number of times) from the correspondingdoRevertToSaved methods in both ver-
sions. Therefore, methodsperformRevertOperation andperformRevert (i) are
both in classAbtstractTextEditor, (ii) have similar method bodies, (iii) have sim-
ilar incoming call edges, but (iv) differ in the name. The strategy thus concludes that
performRevert is a renaming ofperformRevertOperation.

The strategy that detects changed method signatures also considers all pairs
of similar methods. This strategy discards the pair ofdoRevertToSaved meth-
ods since they have the same signature. This strategy, however, investigates further
performRevertOperation andperformRevert methods, because they represent
the same method but renamed. It is important to point out herethat strategiesshare
detected refactorings: althoughperformRevertOperation and performRevert

seemingly have different names, the RenameMethod strategyhas already found
that these two methods correspond. The ChangedMethodSignature thus finds that
performRevertOperation and performOperation have similar bodies, “same”
name, similar call edges, but different signatures. The strategy thus correctly concludes
that a changed method signature refactoring was applied toperformOperation.

3 Algorithm Overview

This section presents a high-level overview of our algorithm for detection of refactor-
ings. Figure 2 shows the pseudo-code of the algorithm. The input are two versions of
a component, and the output is a log of refactorings applied on c1 to producec2. The

1 Thesereferencesdo not refer to pointers between objects but to references among the source-
code entities in each version of the component.

4

Refactorings detectRefactorings(Component c1, Component c2) {
// syntactic analysis
Graph g1 = parseLightweight(c1);
Graph g2 = parseLightweight(c2);
Shingles s1 = computeShingles(g1);
Shingles s2 = computeShingles(g2);
Pairs pairs = findSimilarEntities(g1, g2, s1, s2);
// semantic analysis
Refactorings log = emptyRefactorings();
foreach (DetectionStrategy strategy) {

do {
Refactorings log’ = log.copy();
foreach (Pair <e1, e2> from pairs relevant to strategy) {

if (strategy.isLikelyRefactoring(e1, e2, g1, g2, log)) {
log.add(<e1, e2>, strategy);

}
}

} while (!log’.equals(log)); // fixed point
}
return log;

}

Fig. 2. Pseudo-code of the conceptual algorithm for detection of refactorings.

algorithm consists of two analyses: a fastsyntactic analysisthat finds candidates for
refactorings and a precisesemantic analysisthat finds the actual refactorings.

Our syntactic analysis starts by parsing the source files of the two versions of the
component into thelightweightASTs, where the parsing stops at the declaration of the
methods and fields in classes. For each component, the parsing produces a graph (more
precisely, a tree to which analysis later adds more edges). Each node of the graphs
represents a source-level entity, namely a package, a class, a method, or a field. Each
node stores a fully qualified name for the entity, and each method node also stores the
fully qualified names of method arguments to distinguish overloaded methods. Nodes
are arranged hierarchically in the tree, based on their fully qualified names: the node
p.n is a child of the nodep.

The heart of our syntactic analysis is the use of theShingles encodingto find similar
pairs of entities (methods, classes, and packages) in the two versions of the component.
Shingles are “fingerprints” for strings with the following property: if a string changes
slightly, then its shingles also change slightly. Therefore, shingles enable detection of
strings with similar fragments much more robustly than the traditional string matching
techniques that are not immune to small perturbations like renamings or small edits.
Section 4 presents the computation of shingles in detail.

The result of our syntactic analysis is a set of pairs of entities that have similar
shingles encodings in the two versions of the component. Each pair consists of an entity
from the first version and an entity of the same kind from the second version; there are

5

separate pairs for methods, classes, and packages. These pairs of similar entities are
candidates for refactorings.

Our semantic analysis detects from the candidate pairs those where the second en-
tity is a likely refactoring of the first entity. The analysisapplies seven strategies for
detecting specific refactorings, for example RenameMethodor ChangeMethodSigna-
ture. Section 5 presents the strategies in detail. The analysis applies each strategy until
it finds all possible refactorings of its type. Each strategyconsiders all pairs of entities
〈e1, e2〉 of the appropriate type, e.g., RenameMethod considers onlypairs of methods.
For each pair, the strategy computes how likely is thate1 was refactored intoe2; if
the likelihood is above a user-specified threshold, the strategy adds the pair to the log
of refactorings that the subsequent strategies can use during further analysis. Note that
each strategy takes into account already detected refactorings; sharing detected refac-
torings among strategies is a key for accurate detection of refactorings when multiple
types of refactorings applied to the same entity (e.g., a method was renamed and has
a different signature) or related entities (e.g., a method was renamed and also its class
was renamed).

4 Syntactic Analysis

To identify possible candidates for refactorings, our algorithm first determines pairs
of similar methods, classes, and packages. Our algorithm uses the Shingles encod-
ing [Bro97] to compute a fingerprint for each method and determines two methods
to be similar if and only if they have similar fingerprints. Unlike the traditional hashing
functions that map even the smallest change in the input to a completely different hash
value, the Shingles algorithm maps small changes in the input to small changes in the
fingerprint encoding.

4.1 Computing Shingles for Methods

The Shingles algorithm takes as input a sequence of tokens and computes a multi-
set of integers called shingles. The tokens represent the method body or the Javadoc
comments for the method (as interface methods and abstract methods have no body).
The tokens do not include method name and signature because refactorings affect these
parts. The algorithm takes two parameters, the length of thesliding window,W , and the
maximum size of the resulting multiset,S. Given a sequence of tokens, the algorithm
uses the sliding window to find all subsequences of lengthW , computes the shingle for
each subsequence, and selects theS minimum shingles for the resulting multiset. Our
implementation uses the Rabin’s hash function [Rab81] to compute the shingles.

If there are less thanS shingles for some method, then the multiset has all those less
thanS integers. This is the case with many setters and getters and some constructors
and other initializers. The parameterS acts as the upper bound for the space needed to
represent shingles: a larger value ofS makes calculations more expensive, and a smaller
value makes it harder to distinguish strings. Our implementation sets the number of
shingles proportional to the length of the method body/comments.

6

Fig. 3. Shingles encoding for two similar strings. Notice that small changes (underlined) in the
input strings produce small changes (underlined) in the Shingles encoding.

Figure 3 shows the result of calculating the shingles for twomethod bodies with
W = 2 andS = 10. The differences in the bodies and the shingle values are underlined.
Notice that the small changes in the tokens produce only small changes in the shingle
representation, enabling the algorithm to find the similarities between methods.

4.2 Computing Shingles for Classes and Packages

Our analysis uses the shingles for methods to compute shingles for classes and pack-
ages. Our analysis computes the shingles of a class by takingthe union of the shingles
of the methods in that class and selecting the minimumSclass values. Analogously, our
analysis computes the shingles of a package by taking the union of the shingles of the
classes in that package and selecting the minimumSpackage values.

4.3 Finding Candidates

Our analysis uses the shingles to find candidates for refactorings. Each candidate is
a pair of similar entities from the two versions of the component. This analysis is an
effective way of eliminating a large number of pairs of entities, so that the expensive
operation of computing the call graphs is only done for a small subset of all possible
pairs. More specifically, letM1 andM2 be the multisets of shingles for a pair of meth-
ods, classes, or packages. The analysis computes the similarity as the average overlap
of these two multisets:

|M1∩M2|
|M1|

+ |M2∩M1|
|M2|

2
.

If this similarity value is above the user-specified threshold, the pair is deemed similar
and passed to the semantic analysis.

5 Semantic Analysis

We present the semantic analysis that our algorithm uses to detect refactorings. Recall
from Figure 2 that the algorithm applies each detection strategy until it reaches a fixed

7

point and that all strategies share the same log of detected refactorings,log. This shar-
ing is crucial for successful detection of refactorings when multiple types of refactorings
happened to the same entity (e.g., a method was renamed and has a different signature)
or related entities (e.g., a method was renamed and also its class was renamed). We first
describe how the strategies use the shared log of refactorings. We then describerefer-
encesthat several strategies use to compute the likelihood of refactoring. We also define
the multiplicity of references and the similarity that our algorithm computes between
references. We finally presents details of each strategy. Due to the sharing of the log,
our algorithm imposes an order on the types of refactorings it detects first. Specifically,
the algorithm applies the strategies in the following order:

1. RenamePackage (RP)
2. RenameClass (RC)
3. RenameMethod (RM)
4. PullUpMethod (PUM)
5. PushDownMethod (PDM)
6. MoveMethod (MM)
7. ChangeMethodSignature (CMS)

5.1 Shared Log

The strategies compare whether an entity in one graph corresponds to an entity in an-
other graphwith respect to the already detected refactorings, in particular with renam-
ing refactorings. Suppose that the log of refactoringslog already contains several re-
namings that map fully qualified names from versionc1 to versionc2. These renamings
map package names to package names, class names to class names, or method names to
method names. We define a renaming functionρ that maps a fully qualified namefqn
from c1 with respect to the renamings inlog:

ρ(fqn, log) = if (definedlog(fqn)) thenlog(fqn)

elseρ(pre(fqn), log) + "." + suf(fqn)

ρ("", log) = "",

where suf and pre are functions that take a fully qualified name and return its simple
name (suffix) and the entire name but the simple name (prefix), respectively. The func-
tion ρ recursively checks whether a renaming of some part of the fully qualified name
is already inlog.

5.2 References

The strategies compute the likelihood of refactoring basedon referencesamong the
source-code entities in each of the two versions of the component. In each graph that
represents a version of the component, our algorithm (lazily) adds an edge from a node
n′ to a noden if the source entity represented byn′ has a reference to a source entity
represented byn. (The graph also contains the edges from the parse tree.) We define
references for each kind of nodes/entities in the followingway:

8

– There is a reference from a node/methodm′ to a node/methodm iff m′ callsm.
Effectively, references between methods correspond to theedges in call graphs.

– There is a reference from a noden′ to a node/classC iff:
• n′ is a method that has (i) an argument or return of typeC, or (ii) an instantia-

tion of classC, or (iii) a local variable of classC.
• n′ is a class that (i) has a field whose type isC or (ii) is a subclass ofC.

– There is a reference from a noden′ to a node/packagep iff n′ is a class that imports
some class from the packagep.

There can be several references from one entity to another. For example, one method
can have several calls to another method or one class can haveseveral fields whose type
is another class. Our algorithm assigns to each edge amultiplicity that is the number
of references. For example, if a methodm′ has two calls to a methodm, then the edge
from the noden′ that representsm′ to the noden that representsm has multiplicity two.
Conceptually, we consider that there is an edge between any two nodes, potentially with
multiplicity zero. We writeµ(n′, n) for the multiplicity from the noden′ to the noden.

5.3 Similarity of References

Our algorithm uses a metric to determine the similarity of references to entities in the
two versions of the component, with respect to a given log of refactorings. We write
n ∈ g for a noden that belongs to a graphg. Consider two nodesn1 ∈ g1 andn2 ∈ g2.
We define the similarity of their incoming edges as follows. We first define thedirected
similarity between two nodes with respect to the refactorings. We then take the overall
similarity betweenn1 andn2 as the average of directed similarities betweenn1 andn2

and betweenn2 andn1.
We define the directed similarity between two nodesn andn′ as the overlap of

multiplicities of theircorrespondingincoming edges. More precisely, for each incom-
ing edge from a nodeni to n, the directed similarity finds a noden′

i = ρ(ni, log)
that corresponds toni (with respect to refactorings) and then computes the overlap of
multiplicities between the edges fromni to n and fromn′

i to n′. The number of over-
lapping incoming edges is divided by the total number of incoming edges. The formula
for directed similarity is:

δ(n, n′, log) =

∑
ni

min(m(ni, n),m(ρ(ni, log), n
′))

∑
ni

m(ni, n)

The overall similarity is the average of directed similarities:

σ(n1, n2, log) =
δ(n1, n2, log) + δ(n2, n1, log

−1)

2

We describe informally an equivalent definition of directedsimilarity based on the
view of graphs with multiplicities as multigraphs that can have several edges between
two same nodes. The set of edges between two nodes can be viewed as a multiset, and
finding the overlap corresponds to finding the intersection of one multiset of edges with
the other multiset of edges (for nodes corresponding with respect to the refactorings).
In this view, similarity between edges in the graph is conceptually analogous to the
similarity of multisets of shingles.

9

Refactoring Syntactic Checks Semantic Checks

RP(p1, p2) p2 6∈ g1 σ(p1, p2,log) ≥ T
ρ(pre(p1),log) = pre(p2)

suf(p1) 6= suf(p2)

RC(C1, C2) C2 6∈ g1 σ(C1, C2,log) ≥ T
ρ(pre(C1),log) = pre(C2)

suf(C1) 6= suf(C2)

RM(m1, m2) m2 6∈ g1 σ(m1, m2,log) ≥ T
ρ(pre(m1),log) = pre(m2)

suf(m1) 6= suf(m2)

PUM(m1, m2) m2 6∈ g1 σ(m1, m2,log) ≥ T
ρ(pre(m1),log) 6= pre(m2) ρ(pre(m1),log) descendant-of pre(m2)

suf(m1) = suf(m2)

PDM(m1, m2) m2 6∈ g1 σ(m1, m2,log) ≥ T
ρ(pre(m1),log) 6= pre(m2) ρ(pre(m1),log) ancestor-of pre(m2)

suf(m1) = suf(m2)

MM(m1, m2) m2 6∈ g1 σ(m1, m2,log) ≥ T
ρ(pre(m1),log) 6= pre(m2) ¬ρ(pre(m1),log) anc.-or-desc. pre(m2)

suf(m1) = suf(m2) references-properly-updated
CMS(m1, m2) ρ(fqn(m1),log) = fqn(m2) σ(m1, m2,log) ≥ T

signature(m1) 6= signature(m2)

Fig. 4. Syntactic and semantic checks performed by different detection strategies for refac-
torings: RP=RenamePackage, RC=RenameClass, RM=RenameMethod, PUM=PullUpMethod,
PDM=PushDownMethod, MM=MoveMethod, and CMS=ChangeMethodSignature.

5.4 Detection Strategies

We next precisely describe all detection strategies for refactorings. Each strategy checks
appropriate pairs of entities and has access to the graphsg1 andg2 and thelog of
refactorings. (See the call toisLikelyRefactoring in Figure 2.) Figure 4 shows
the seven strategies currently implemented in RefactoringCrawler. For each pair, the
strategy first performs a fast syntactic check that determines whether the pair is relevant
for the refactoring and then performs a semantic check that determines the likelihood of
the refactoring. The semantic checks compare the similarity of references to the user-
specified threshold valueT .

RenamePackage (RP), RenameClass (RC), and RenameMethod (RM) strategies are
similar. The first syntactic check requires the entity fromg2 not to be ing1; otherwise,
the entity is not new. The second check requires the two entities to have the same name
prefix, modulo the renamings inlog; otherwise, the refactoring is a potential move but
not a rename. The third check requires the two entities to have different simple names.

PullUpMethod (PUM) and PushDownMethod (PDM) are the opposite of each other.
Figure 5 illustrates a PUM that pulls up the declaration of a method from a subclass into
the superclass such that the method can be reused by other subclasses. Figure 6 illus-
trates a PDM that pushes down the declaration of a method froma superclass into a
subclass that uses the method because the method is no longerreused by other sub-
classes. In general, the PUM and PDM can be between several classes related by in-

10

Fig. 5. PullUpMethod: methodm2 is pulled up from the subclassC2 into the superclassC1.

heritance, not just between the immediate subclass and superclass; therefore, PUM and
PDM check that the original class is adescendantand anancestor, respectively, of the
target class. These inheritance checks are done on the graphg2.

MoveMethod (MM) has the second syntactic check that requires the parent classes
of the two methods to be different. Without this check, MM would incorrectly classify
all methods of a renamed class as moved methods. The second semantic check requires
that the declaration classes of the methods not be related byinheritance; otherwise, the
refactorings would be incorrectly classified as MM as opposed to a PUM/PDM. The
third check requires that all references to the target classbe removed in the second
version and that all calls to methods from the initial class be replaced with sending a
message to an instance of the initial class. We illustrate this check on the sample code
in Figure 7. In the first version, methodC1.m1 calls a methodC1.xyz of the same class
C1 and also calls a methodC2.m2. After m1 is moved to the classC2, m1 can call any
method inC2 directly (e.g.,m2), but any calls to methods residing inC1 need to be
executed through an instance ofC1.

ChangeMethodSignature (CMS) looks for methods that have the same fully qual-
ified name (modulo renamings) but different signatures. Thesignature of the method
can change by gaining/loosing arguments, by changing the type of the arguments, by
changing the order of the arguments, or by changing the return type.

6 Discussion of the Algorithm

Our example from Section 2 illustrates some of the challenges in automatic detection
of refactorings that happened in reusable components. We next explicitly discuss three
main challenges and present how our algorithm addresses them.

The first challenge is the size of the code to be analyzed. An expensive semantic
analysis—for example finding similar subgraphs in call graphs (more generally, in the
entire reference graphs)—might detect refactorings but does not scale up to the size of

11

Fig. 6.PushDown: methodm2 is pushed down from the superclassC1 into the subclassC2.

Fig. 7.Methodm1moves from classC1 in one version to classC2 in the next version. The method
body changes to reflect that the local methods (e.g.,m2) are called directly, while methods from
the previous class (e.g.,xyz) are called indirectly through an instance ofC1.

real-world components with tens of thousands of entities, including methods, classes,
and packages. A cheap syntactic analysis, in contrast, might find many similar entities
but is fallible to renamings. Also, an analysis that would not take into account the se-
mantics of entity relationships would produce a large number of false positives. Our
algorithm uses a hybrid of syntactic and semantic analyses:a fast syntactic analysis
creates pairs of candidate entities that are suspected of refactoring, and a more precise
semantic analysis on these candidates detects whether theyare indeed refactorings.

The second challenge is the noise introduced by preserving backward compatibility
in the components. Consider for example the following change in the Struts framework
from version 1.1 to version 1.2.4: the methodperform in the classController was
renamed toexecute, butperform still exists in the later version. However,perform
is deprecated, all the internal references to it were replaced with references toexecute,
and the users are warned to useexecute instead ofperform. Since it is not feasible to
perform an expensive analysis on all possible pairs of entities across two versions of a

12

Fig. 8.Class and Method Rename

component, any detection algorithm has to consider only a subset of pairs. Some previ-
ous work [APM04, DDN00, GZ05] considers only the outdated entities that die in one
version and then searches for refactored counterparts thatare created in the next version.
The assumption that entities change in this fashion indeed holds in the closed-world de-
velopment (where the only users of components are the component developers) but
does not hold in the open-world development where outdated entities coexist with their
refactored counterparts. For example, previous algorithmcannot detect thatperform
was renamed toexecute sinceperform still exists in the subsequent version. Our al-
gorithm detects thatperform in the first version andexecute in the second version
have the same shingles and their call sites are the same, and therefore our algorithm
correctly classifies the change as a method rename.

The third challenge is the noise introduced by multiple refactorings happening to
the same entity or related entities. Our example from Section 2, for instance, shows two
refactorings, rename method and change method signature, applied to the same method.
An example of refactorings happening to related entities isrenaming a method along
with renaming the method’s class. Figure 8 illustrates thisscenario. Across the two
versions of a component, classC1 was renamed toC1REN, and one of its methods,m2,
was renamed tom2REN. During component evolution, regardless of whether the class
or method rename was executed first, the end result is the same. In Figure 8, the upper
part shows the case when the class rename was executed first, and the lower part shows
the case when the method rename was executed first.

Our algorithm addresses the third challenge by imposing an order on the detection
strategies and sharing the information about detected refactorings among the detection
strategies. Any algorithm that detects refactorings conceptually reconstructs the log of
refactorings and thus not only the start and the end state of acomponent but also the

13

intermediate states. Our algorithm detects the two refactorings in Figure 8 by following
the upper path. When detecting a class rename, the algorithm takes into account only the
shingles for class methods and not the method names. Therefore, our algorithm detects
classC1REN as a rename of classC1 although one of its methods was renamed. This
information is fed back into the loop; it conceptually reconstructs the state 2a, and the
analysis continues. The subsequent analysis for the renamemethod checks whether the
new-name method belongs to the same class as the old-name method; since the previous
detection discovered thatC1 is equivalent modulo rename withC1REN, m2REN can be
detected as a rename ofm2.

The order in which an algorithm detects the two refactoringsmatters. We described
how our algorithm detects a class rename followed by a methodrename. Consider, in
contrast, what would happen to an algorithm that attempts tofollow the bottom path.
When analyzing what happened between the methodsm2 andm2REN, the algorithm
would need the intermediate state 2b (wherem2REN belongs toC1) to detect thatm2
was renamed tom2REN. However, that state is not given, and in the end statem2REN

belongs toC1REN, so the algorithm would mistakenly conclude thatm2REN was moved
to another class (C1REN). The subsequent analysis of what happened between classes
C1 andC1REN would presumably find that they are a rename and would then need to
backtrack to correct the previously misqualified move method as a rename method.
For this reason, our algorithm imposes an order on the detection strategies and runs
detection of renamings top-down, from packages to classes to methods.

To achieve a high levels of accuracy, our algorithm uses a fixed-point computation
in addition to the ordering of detection strategies. The algorithm runs each strategy re-
peatedly until it finds no new refactorings. This loop is necessary because entities are in-
tertwined with other entities, and a strategy cannot detecta refactoring in one entity un-
til it detects a refactoring in the dependent entities. For instance, consider this example
change that happened in the Struts framework between the versions 1.1 and 1.2.4: in the
classActionController, the methodperformwas renamed toexecute. The imple-
mentation ofperform in ActionController is a utility class that merely delegates
to different subclasses ofAction by sending them aperform message. For 11 of these
Action classes, their callers consist mostly of theActionController.perform.
Therefore, unless a tool detects first thatperform was renamed toexecute, it can-
not detect correctly the similarity of the incoming call edges for the other 11 methods.
After the first run of the RenameMethod detection, our RefactoringCrawler tool misses
the 11 other method renames. However, the feedback loop addsthe information about
the rename ofperform, and the second run of the RenameMethod detection correctly
finds another 11 renamed methods.

7 Implementation

We have implemented our algorithm for detecting refactorings in RefactoringCrawler,
a plugin for the Eclipse development environment. The user loads the two versions of
the component to be compared as projects inside the Eclipse workspace and selects the
two projects for which RefactoringCrawler detects refactorings. To experiments with
the accuracy and performance of the analysis, the user can set the values for different

14

Fig. 9.Refactoring view.

Fig. 10.XML sample output that can be loaded into a replay refactorings tool.

parameters, such as the size of the sliding window for the Shingles encoding (Section
4); the number of shingles to represent the digital fingerprint of methods, classes and
package; and the thresholds used in computing the similarity of shingles encoding or
the reference graphs. RefactoringCrawler provides a set ofdefault parameter values that
should work fine for most Java components.

RefactoringCrawler provides an efficient implementation of the algorithm shown in
Figure 2. RefactoringCrawler lazily runs the expensive computation (such as finding
references) and caches the intermediate results.

RefactoringCrawler performs the analysis and returns backthe results inside an
Eclipse view as illustrated in the example in Figure 9. RefactoringCrawler presents
only the refactorings that happened to the public API level of the component since
only these can affect the component users. RefactoringCrawler groups the results in
categories corresponding to each refactoring strategy. Double clicking on any leaf Java
element opens an editor having selected the declaration of that particular Java element.

RefactoringCrawler also allows the user to export the results into an XML format
compatible with the format that CatchUp [HD05] uses to load alog of refactorings.
A similar format is planned for the Eclipse 3.2 Milestone 4. Additionally, the XML
format allows the developer to further analyze and edit the log, removing false positives
or adding missed refactorings. Figure 10 gives a sample of the output produced after
detecting refactorings in Struts.

8 Evaluation

We have evaluated RefactoringCrawler on three real-world components. We chose the
components that had good release notes describing the API changes; these notes helped
us to manually check the correctness of the logs of refactorings produces by Refactor-
ingCrawler. In general, it is easier to spot the false positives (refactorings erroneously

15

reported by RefactoringCrawler) by comparing the refactoring against the source code
than it is to detect the false negatives (refactorings that RefactoringCrawler missed).
Sometimes the description of the change in release notes would map 1-to-1 with refac-
torings defined in refactoring catalogs [FBB+99]. Other times, the release notes would
be vague like “we eliminated duplication in class X”. For these cases, we had to look
in the source code to find out what the exact type of change was.This extensive manual
analysis allowed us to build a repository of refactorings that happened between the two
versions. We compare these manually found refactorings against the refactorings that
were found by Refactoring Crawler to determine the false negatives.

For each component we chose for comparison two major releases that span large
architectural changes. There are two benefits to choosing major releases as comparison
points. First, it is likely that there will be lots of changesbetween the two versions.
Second, it is likely that those changes will be documented thus providing some starting
point for a detailed analysis of the changes.

The case study benchmarks along with the tool and the detected refactorings can be
found online athttp://netfiles.uiuc.edu/dig/RefactoringCrawler.

8.1 Case Study Components

Table 1 shows the size of the case study components. ReleaseNotes give the size (in
pages) of the documents describing the API changes. These notes were provided by the
component developers.

Size PackagesClassesMethodsRelease Notes
KLOC [Pages]

Eclipse.UI 2.1.3 222 105 1151 10285 -
Eclipse.UI 3.0 352 192 1735 15894 8

Struts 1.1 114 88 460 5916 -
Struts 1.2.4 97 78 469 6044 16

JHotDraw 5.2 17 19 160 1458 -
JHotDraw 5.3 27 19 195 2038 3

Table 1.Size of the studied components.

Eclipse Platform [eclipse.org] was initially developed by IBM and later released to the
open source community. The Eclipse Platform provides many APIs and many different
smaller frameworks. The key framework in Eclipse is a plug-in based framework that
can be used to develop and integrate software tools. This framework is often used to
develop Integrated Development Environments (IDEs). Out of all the plugins that make
up the framework, we focus on the UI subcomponent (Eclipse.UI) that contains 13
plugins.

We chose two major releases of Eclipse, namely 2.1 (March 2003) and 3.0 (June
2004). Eclipse 3.0 came with some major themes that affectedthe APIs. Therespon-
sivenesstheme ensured that more operations run in the background without blocking the

16

user. New APIs allow long-running operations like builds and searches to be performed
in the background while the user continues to work.

Another major theme in 3.0 isrich-client platforms. Eclipse was designed as a uni-
versal IDE. However many components of Eclipse are not particularly specific to IDEs
and can be reused in other rich-client applications (e.g. plug-ins, help system, update
manager, window-based GUIs). This architectural theme involved factoring out IDE-
specific elements. APIs heavily affected by this change are those that made use of the
filesystem resources. For instanceIWorkbenchPage is an interface used to open an
editor for a file input. All methods that were resource specific (those that dealt with
opening editors over files) were removed from the interface.A client who opens an
editor for a file should convert it first to a generic editor input. Now the interface can
be used by both non-IDE clients (e.g. an electronic mail client that edits the message
body) as well as IDE clients.

Struts [struts.apache.org] is an open source framework for building Java web appli-
cations. The framework is a variation of the Model-View-Controller (MVC) design
paradigm. Struts provides its own Controller component andintegrates with other tech-
nologies to provide the Model and the View.

For the Model, Struts can interact with standard data accesstechnologies, like JDBC
and EJB, as well as most any third-party packages, like Hibernate, iBATIS, or Object
Relational Bridge. For the View, Struts works well with JavaServer Pages, as well as
Velocity Templates, XSLT, and other presentation systems.Because of this separation
of concerns, Struts can help control change in a Web project and promote job special-
ization.

We chose for comparison version 1.1(June 2003), a major pastrelease, and 1.2.4
(September 2004). All the API changes reveal consolidationwork that was done in
between the two releases. The framework developers eliminated duplicated code and
removed unmaintained or buggy code.

JHotDraw [http://www.jhotdraw.org/] is a two-dimensional graphics framework for
structured drawing editors. It was originally developed inSmalltalk by Kent Beck and
Ward Cunningham. Erich Gamma and Thomas Eggenschwiler developed the Java ver-
sion, then it became an open-source project. The original HotDraw was one of the first
projects specifically designed for reuse and labeled as a framework. It was also one of
the first systems documented in terms of design patterns.

In contrast to the Swing graphics library, JHotDraw defines abasic skeleton for a
GUI-based editor with tools in a tool palette, different views, user-defined graphical
figures, and support for saving, loading, and printing drawings. The framework has
been used to create many different editors from CASE tools toa Pert diagram editor
[http://www.jhotdraw.org/survey/applications.html].

We chose for comparison version 5.2 (February 2001) and 5.3 (January 2002). The
purpose of 5.3 release was to clean up the APIs and fix bugs.

17

RM RC RP MM PUM PDM CMS PrecisionRecall

EclipseUI 2.1.3 - 3.0 2,1,0 0,0,00,0,0 8,2,4 11,0,00,0,0 6,0,0 90% 86%
Struts 1.2.1 - 1.2.4 20,0,11,0,10,0,020,0,7 1,0,0 0,0,0 24,0,1 100% 86%
JHotDraw 5.2 - 5.3 5,0,0 0,0,00,0,0 0,0,0 0,0,0 0,0,0 19,0,0 100% 100%

Table 2.Triplets of (GoodResults, FalsePositives, FalseNegatives) for RenameMethod(RM), Re-
nameClass(RC), RenamePackage(RP), MoveMethod(MM), PullUpMethod(PUM), PushDown-
Method(PDM), ChangeMethodSignature(CMS)

8.2 Measuring the Recall and Precision

To measure the accuracy of our tool when detecting refactorings, we use two standard
metrics from the Information Retrieval field.Recall is the ratio of the number of
relevant refactorings found by the tool (good results) to the total number of actual
refactorings in the component. It is expressed as the percentage:
RECALL = GoodResults

GoodResults+FalseNegatives

Precisionis the ratio of the number of relevant refactorings found by the tool to the
total number of irrelevant and relevant refactorings foundby the tool. It is expressed as
the percentage:
PRECISION = GoodResults

GoodResults+FalsePositives

Ideally, the recall and precision should be 100%. If that wasthe case, the refactor-
ings found could be fed into a tool that replays the refactorings to automatically upgrade
component-based applications. However, due to the intricacies introduced in order to
maintain backwards compatibility of open-world components, it is hard to have 100%
precision and recall.

Table 2 shows how many instances of each refactoring were found for the three com-
ponents. These results use the default values for the parameters in RefactoringCrawler.
For each refactoring type, we show in a triplet how many good results Refactor-
ingCrawler found, how many false positives RefactoringCrawler found, and how many
false negatives (according to the release notes) RefactoringCrawler found. We compute
the recall and precision for each case study by taking into account all the refactorings.

RefactoringCrawler ran on a Fujitsu laptop with a 1.73GHz Pentium 4M CPU and
1.25GB of RAM. It took 4 min and 55 sec for detecting the refactorings in Struts, 37
sec for JHotDraw, and 16 min 38 sec for EclipseUI.

Manual analysis revealed the reason why RefactoringCrawler missed a few refac-
torings. In Struts, for instance, methodRequestUtils.computeParameters
is moved to TagUtils.computeParameters and method
RequestUtils.pageURL is moved to TagUtils.pageURL. There are
quite a few calls to these methods from a test class. It appears that the test code was not
refactored, and therefore it still calls the old method (that is deprecated). This results in
quite different call sites between the old and the refactored method.

18

Fig. 11.Recall and Precision vary with the value of threshold

8.3 The Impact of Parameters’ Value

Next we want to determine how the recall and precision changewhen using different
values for the user specified parameters (size of the window,number of shingles per
method, similarity thresholds). Since the accuracy of the tool depends on the values of
the parameters, we wanted to offer the user the range where the recall and precision are
at their peak. Figure 11 shows how different values for the threshold parameter affects
the accuracy of the tool for the Struts component. Very low values for thresholds for
computing the similarity of the method bodies and referencegraphs produce a large
number of candidates to be analyzed. This results in large numbers of false positives,
but increases the chance that all the relevant refactoringsare found among the results.
High values for thresholds mean that only those candidates that have almost perfect
body resemblance are taken into account. This reduces the number of false positives
but can miss some refactorings. Figure 12 shows how the running time varies for the
JHotDraw case study. For low thresholds, the number of candidates passed to semantic
analysis is large, resulting in longer analysis time. For high thresholds, fewer candidates
pass the syntactic test into semantic analysis, resulting in lower running times.

8.4 Strengths and Limitations

This subsection reports on the strengths of the methodologyproposed for detecting
refactorings and our tool. We conclude with the main limitations and propose new ex-
tensions to overcome the weaknesses.

Strengths

– Good Precision and Recall.The evaluation on the case studies revealed that both
precision and recall of RefactoringCrawler are over 85%. These high accuracy lev-
els are due to the combination of syntactic and semantic analyses. Compared to

19

Fig. 12. Running time for JHotDraw case study decreases exponentially with higherthreshold
values

other approaches [APM04, DDN00, GW05, GZ05, RD03] that use only syntactic
analysis and produce large amounts of false positives, our tool requires little hu-
man intervention to validate the refactorings. The resultsare good enough to be fed
to a replay tool that can automatically upgrade component-based applications by
incorporating the refactorings into applications.

– Robust.Our tool succeeds to detect refactorings in the presence of noise introduced
because of maintaining backwards compatibility, the noiseof multiple refactorings
and the noise of renamings. Renamings create huge problems for other approaches
but do not impede our tool. Since our tool identifies code entities (methods, classes,
packages) based on their body resemblance and not on their names, our tool can
successfully track the same entity across different versions, even when its name
changes. For previous approaches, a rename is equivalent with an entity disappear-
ing and a brand new entity appearing in the subsequent version. Another problem
for previous approaches is the application of multiple refactorings to the same en-
tity. Our tool takes this into account by sharing the log of refactorings between
the detection strategies and repeating each strategy untilit reaches a fixed point.
Lastly, our tool detects refactorings in an open-world development where, due to
backwards compatibility, obsolete entities coexist with their refactored counterparts
until the former are removed. We can detect refactorings in such an environment
because most of refactorings involve repartitioning the source code. This results in
parts of the code from a release being spread in different places in the next release.
Our algorithm starts by detecting the similarities betweentwo versions.

– Scalable.Running expensive semantic analysis (like identifying similar subgraphs
in the entire reference graph) on large code bases comprising of tens of thousands
of nodes (methods, classes, packages) is not feasible. To avoid this, we run first an
inexpensive syntactic analysis that reduces the whole input domain to a relatively
small number of candidates to be analyzed semantically. It took RefactoringCrawler
around 16 min to do the analysis for the org.eclipse.ui (350 KLOC) subcomponent
of the Eclipse framework.

20

Limitations

– Poor support for interfaces and fields.Since our method tracks the identity of
methods, classes and packages based on their textual bodiesand not on their names,
it does not fit for those entities that lack a body. Both class fields and interface meth-
ods do not contain any body other than their declaration name. After the syntactic
analysis, only entities that have a body resemblance are passed to semantic analy-
sis. Therefore, refactorings that happened to fields or interface methods cannot be
detected. This was the case with org.eclipse.ui where between version 2.1.3 and
3.0 lots of static fields were moved to other classes and lots of interface methods
were moved to abstract classes. To counteract the lack of textual bodies for inter-
face methods or fields, we treated their associated javadoc comments as their text
bodies. This seems to work for some cases, but not all.

– Requires Experimentation.As with any heuristics approach, coming up with the
right values for the detection algorithms might take a few trials. Selecting thresh-
olds too high reduces the false positives toward zero, but can miss some refactorings
due to the fact that only those candidates that have perfect resemblance are selected.
Selecting threshold too low produces large number of false positives, but increases
the chances that all relevant refactorings are found among the results. We learned
that threshold between 0.5 and 0.7 produce good results.

9 Related Work

We provide an overview of related work on refactorings, automated detection of refac-
torings, and the use of Shingles encoding.

9.1 Refactoring

Programmers have been cleaning up their code for decades, though the termrefactoring
was coined much later [OJ90]. Opdyke [Opd92] wrote the first catalog of refactorings
while Roberts and Brant [Rob99] were the first to implement a refactoring engine. The
refactoring field gained much popularity with the catalog ofrefactorings written by
Fowler et al. [FBB+99]. Soon after this, IDEs began to incorporate refactoringengines,
Eclipse being the one with the richest set of refactorings. Tokuda and Batory [TB01]
describe the large architectural changes in two frameworksas a large sequence of small
refactorings. They estimate that automated refactorings are 10 times quicker to perform
than manual ones. More recent research on refactorings extends the analysis for auto-
mated refactorings with more powerful techniques. Tip et al. [TKB03], for example,
use type constraints to support the analysis for refactorings that introduce generaliza-
tion. Donovan et al. [DKTE04] use a pointer analysis and a set-constraint-based anal-
ysis to support refactorings that replace the instantiation of raw classes with generic
classes. Dinklage and Diwan [vDD04] use different heuristics to convert from non-
generic classes to generic classes. Balaban et al. [BTF05] aim to automatically replace
obsolete library classes with their newer counterparts. Component developers have to
provide mappings between legacy classes and their replacements and an analysis based

21

on type constraints determines where the replacement can bedone. Thomas [Tho05]
acknowledges that refactorings in the components result into integration problems and
advocates the need for languages that would allow one to specify refactorings. This
would allow users to create customizable refactorings.

9.2 Detection of refactorings

Researchers have already developed some tool support for detecting and classifying
structural evolution, mostly spawned from the reengineering community. Detection
of class splitting and merging was the main target of the current tools. Demeyer et
al. [DDN00] use a set of object-oriented change metrics and heuristics to detect refac-
torings that will serve as markers for the reverse engineer.Antonio et al. [APM04] use
a technique inspired from the Information Retrieval to detect discontinuities in classes
(e.g., a class was replaced with another one, a class was split into two, or two classes
merge into one). Based on Vector Space cosine similarity, they compare the class identi-
fiers found in two subsequent releases. Therefore, if a class, sayResolver, was present
in versionn but disappears in versionn + 1 and a new classSimpleResolver ap-
pears in versionn + 1, they conclude that a class replacement happened. Godfrey and
Zou [GZ05] are the closest to the way how we envision detecting structural changes.
They implemented a tool that can detect for procedural code some refactorings like
renaming, move method, split, and merge. Whereas we start from shingles analysis,
they employ origin analysis along with a more expensive analysis on call graphs to de-
tect and classify these changes. Rysselberghe and Demeyer [RD03] use a clone finding
tool (Duploc) to detect methods that were moved across the classes. Gorg and Weisger-
ber [GW05] analyze subsequent versions of a component in configuration management
repositories to detect refactorings.

Existing work on automatic detection of refactorings addresses some of the needs
of reverse engineers who must understand at a high level how and why components
evolved. For this reason, most of the current work focuses ondetecting merging and
splitting of classes. However, in order to automatically migrate component-based ap-
plications we need to know the changes to the API. Our work complements existing
work because we must look also for lower level refactorings that affect the signatures
of methods. We also address the limitations of existing workwith respect to renamings
and noise introduced by multiple refactorings on the same entity or the noise introduced
by the deprecate-replace-remove cycle in the open-world components.

9.3 Shingles encoding

Clone detection based on Shingles encoding is a research interest in other fields like
internet content management and file storage. Ramaswamy et al. [RILD04] worked
on automatic detection of duplicated fragments in dynamically generated web pages.
Dynamic web pages cannot be cached, but performance can be improved by caching
fragments of web pages. They used Shingles encoding to detect fragments of web pages
that did not change. Manber [Man93] and Kulkarni [KDLT04] employ shingles-based
algorithms to detect redundancy in the file system. They propose more efficient storage
after eliminating redundancy. Li et al. [LLMZ04] use shingles to detect clones of text

22

in the source code of operating systems. They further analyze the clones to detect bugs
due to negligent copy and paste.

10 Conclusions

Syntactic analyses are too unreliable, and semantic analyses are too slow. Combining
syntactic and semantic analyses can give good results. By combining Shingles encoding
with traditional semantic analyses, and by iterating the analyses until a fixed point was
discovered, we could detect over 85% of the refactorings while producing less than 10%
false positives.

The algorithm would work on any two versions of a system. It does not assume that
the later version was produced by any particular tool. If a new version is produced by a
refactoring tool that records the refactorings that are made, then the log of refactorings
will be 100% accurate. Nevertheless, there may not be the discipline or the opportunity
to use a refactoring tool, and it is good to know that refactorings can be detected nearly
as accurately without it.

There are several applications of automated detection of refactorings. First, a log
of refactorings helps in the automated migration of component-based applications. As
our previous study [DJ05] shows, more than 80% of the API changes that break com-
patibility with existing applications are refactorings. Atool like Eclipse can replay the
log of refactorings. The replay is done at the application site where both the component
and the application reside in the same workspace. In this case, the refactoring engine
finds and correctly updates all the references to the refactored entities, thus migrating
the application to the new API of the component.

Second, a log of refactorings can improve how current configuration management
systems deal with renaming. A tool like CVS looses all the change history for a source
file whose main class gets renamed, since this appears as if the old source file was
removed and a source file with a new name was added. A log of refactorings can help
the configuration management system to correlate the old files/folders with the new
files/folders when the main class or package was renamed.

Third, a log of refactoring can help a developer understand how an object-oriented
system has evolved from one version to another. For example,an explicit list of re-
namings tells how the semantics of the refactored entity changed, while a list of moved
methods tells how the class responsibilities shifted.

The tool and the evaluation results are available at
http://netfiles.uiuc.edu/dig/RefactoringCrawler.

References

[APM04] G. Antoniol, M. Di Penta, and E. Merlo. An automatic approach toidentify class evo-
lution discontinuities.in Proceedings of the 7th International Workshop on Principles
of Software Evolution, 2004.

[Bro97] A. Broder. On resemblance and containment of documents.in Proceedings of SE-
QUENCES, 1997.

23

[BTF05] Ittai Balaban, Frank Tip, and Robert Fuhrer. Refactoring support for class library mi-
gration. InOOPSLA ’05: Proceedings of the 20th annual ACM SIGPLAN conference
on Object oriented programming systems languages and applications, pages 265–279,
New York, NY, USA, 2005. ACM Press.

[DDN00] S. Demeyer, S. Ducasse, and O. Nierstrasz. Finding refactorings via change metrics.
in Proceedings of OOPSLA, 2000.

[DJ05] D. Dig and R. Johnson. The role of refactoring in api evolution.ICSM, 2005.
[DKTE04] Alan Donovan, Adam Kiezun, Matthew S. Tschantz, and Michael D. Ernst. Con-

verting java programs to use generic libraries. InOOPSLA ’04: Proceedings of the
19th annual ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, volume 39, pages 15–34, New York, NY, USA, October
2004. ACM Press.

[FBB+99] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts.Refactoring: Improving
the Design of Existing Code. Adison-Wesley, 1999.

[GW05] Carsten Gorg and Peter Weisgerber. Detecting and visualizing refactorings from soft-
ware archives. InIWPC ’05: Proceedings of the 13th International Workshop on Pro-
gram Comprehension, pages 205–214, Washington, DC, USA, 2005. IEEE Computer
Society.

[GZ05] M. Godfrey and L. Zou. Using origin analysis to detect merging and splitting of source
code entities.IEEE Transactions on Software Engineering, 2005.

[HD05] J. Henkel and A. Diwan. Catchup! capturing and replaying refactorings to support api
evolution. ICSE, 2005.

[KDLT04] P. Kulkarni, F. Douglis, J. LaVoie, and J. Tracey. Redundancy elimination within
large collections of files.USENIX, 2004.

[LLMZ04] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. CP-Miner: A tool for
finding copy-paste and related bugs in operating system code. InProceedings of the
Sixth Symposium on Operating System Design and Implementation (OSDI’04), pages
289–302, 2004.

[Man93] Udi Manber. Finding similar files in a large file system.Tech Report 93-33, University
of Arizona, 1993.

[OJ90] Bill Opdyke and Ralph Johnson. An aid in designing application frameworks and
evolving object-oriented systems. InProceedings of 1990 Symposium on Object-
Oriented Programming Emphasizing Practical Applications (SOOPPA ’90), 1990.

[Opd92] Bill Opdyke. PhD thesis, University of Illinois at Urbana-Champaign, 1992.
[Rab81] M. O. Rabin. Fingerprinting by random polynomials.Technical report, Center for

Research in Computing Technology, 1981.
[RD03] F. Van Rysselberghe and S. Demeyer. Reconstruction of successful software evolution

using clone detection.Proceedings of the International Workshop on Principles of
Software Evolution, 2003.

[RILD04] L. Ramaswany, A. Iyengar, L. Liu, and F. Douglis. Automatic detection of fragments
in dynamically generated web pages.WWW, 2004.

[Rob99] Don Roberts. PhD thesis, University of Illinois at Urbana-Champaign, 1999.
[TB01] Lance Tokuda and Don Batory. Evolving object-oriented designs with refactorings.

Automated Software Engg., 8(1):89–120, January 2001.
[Tho05] D. Thomas. Refactoring as meta programming?Journal of Object Technology, 2005.
[TKB03] Frank Tip, Adam Kiezun, and Dirk Bauemer. Refactoring forgeneralization using

type constraints. InOOPSLA ’03: Proceedings of the 18th annual ACM SIGPLAN
conference on Object-oriented programing, systems, languages, andapplications, vol-
ume 38, pages 13–26, New York, NY, USA, November 2003. ACM Press.

24

[vDD04] Daniel von Dincklage and Amer Diwan. Converting java classesto use generics. In
OOPSLA ’04: Proceedings of the 19th annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, pages 1–14, New York,
NY, USA, 2004. ACM Press.

25

