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Abstract

A rewrite logic semantic definitional framework for programming languages is in-
troduced, called K, together with partially automated translations of K language
definitions into rewriting logic and into C. The framework is exemplified by defining
SILF, a simple imperative language with functions. The translation of K definitions
into rewriting logic enables the use of the various analysis tools developed for rewrite
logic specifications, while the translation into C allows for very efficient interpreters.
A suite of tests show the performance of interpreters compiled from K definitions.
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1 Introduction

The K language definition framework [1] is a rewrite logic based framework
for specifying programming languages. It includes both a notation, the K-
notation, consisting of a series of domain-specific syntactic-sugar conventions
aiming at simplifying and enhancing readability of language definitions, and
a language definition technique, the K-technique, based on a first-order repre-
sentation of continuations. As part of our ongoing research, we are developing
a number of tools around K to assist in defining and analyzing programming
languages.
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Here, we show two pieces of this work. First, we show the semantics of a
simple programming language with functions defined using K. This language
includes standard imperative features, including a controlled jump in the form
of a function return. Second, we provide some details of a translation from our
notation in K to an interpreter for the language, written in C. We are actively
working on providing for the automated construction of interpreters from K
definitions of languages, and currently have a semi-automated translation.

In Section 2, we present an overview of the K notation together with details of
how it can be translated into rewrite logic. In Section 3 we show K at work by
defining the Simple Imperative Language with Functions, or SILF. In Section
4 we provide details of our translation from K to C, including some initial
performance figures of comparisons with equivalent programs written in other
languages. Section 5 discusses future work and concludes the paper.

Related work. There are a number of different methods for specifying the
semantics of programming languages, including operational methods such as
Plotkin’s SOS [2], denotational methods such as those from Scott and Strachey
[3], Mosses’s action semantics [4] and MSOS [5], and Meseguer and Roşu’s
rewriting logic semantics [6], among many others. There is also significant
work on executable definitions of language semantics. An interesting example
is Centaur [7], which includes a Prolog engine for executing formal language
specifications. Another is ASF+SDF [8], which also uses term rewriting to de-
fine programming languages, but our contextual, continuation-based method-
ology, involving explicit access to the control state, appears quite different.
One appealing aspect of rewriting logic semantics is that precisely the same
rewrite logic definition of a language gives both an algebraic denotational se-
mantics (an initial model semantics) and an operational semantics (the initial
model is executable). Of the above, our work is most similar to rewrite logic
semantics; more precisely, our framework can be regarded as a domain-specific
syntactically sugared rewriting logic semantical framework.

2 The K Language Definition Framework

Here we briefly recall the K-framework [1], useful to compactly, modularly
and intuitively define languages in rewrite logic. It consists of the K-notation,
i.e., a series of notational conventions for matching modulo axioms, for elid-
ing unnecessary variables, for sort inference, and for c(K)ontext transformers,
and of the K-technique, which is a c(K)ontinuation-based technique to define
languages algebraically. The K-framework is described in detail in [1].

Matching Modulo. Despite its general intractability [9], matching mod-
ulo Associativity, Commutativity, and Identity, or ACI-matching, tends to be
relatively efficient in practice. Many rewrite engines support it in its full gen-
erality. ACI-matching leads to compact and elegant, yet efficiently executable
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specifications. Different languages have different ways to state that binary op-
erations are associative and/or commutative and/or have identities; to keep
the discussion generic, we assume that all ACI operations are written using the
mixfix concatenation notation “ ” and have identity “·”, while all but one 1

of the AI operations use the comma notation “ , ” and have identity written
also “·”. In particular implementations of K specifications, to avoid confusion
one may want to use different names for the different ACI or AI operations.
ACI operations correspond to multi-sets, while the AI operations correspond
to lists. Therefore, for any sort Sort, we tacitly add supersorts “SortSet”,
“SortNeSet”, “SortList”, and “SortNeList” of Sort (with the “Ne” versions
being non-empty), constant operations “· : → SortSet” and “· : → SortList”,
and ACI operation “ : SortSet × SortSet → SortSet” and AI operation
“ , : SortList × SortList → SortList” both with identities “·”.

ACI operations will be used to define states as “soups” of attributes; e.g., the
state of a language can be a “soup” containing a store, locks which are busy,
input/output buffers, etc., as well as a set of threads. Soups can be nested; for
example, a thread may contain itself a soup of thread attributes, such as an
environment, a set of locks that it holds, several stacks (for functions, excep-
tions, loops, etc.); an environment is further a soup of pairs (name,location),
etc. Lists will be used to specify structures where the order of the attributes
matters, such as buffers (for input/output), parameters of functions, etc.

For example, let us define an operation update : Environment × Name ×
Location → Environment, where Environment is the set sort NameLocationSet
associated to a pairing sort NameLocation with one constructor pairing op-
eration ( , ) : Name × Location → NameLocation. update(Env, X, L) is the
same as Env except in the location of X, which should be replaced by L:

(∀X :Name; L, L′ :Location; Env :Environment)
update((X, L′) Env, X, L) = (X, L) Env.

The ACI-matching algorithm “knows” that the first argument of update has an
ACI constructor, so it will be able to match the lhs of this equation even though
the pair (X, L′) does not appear on the first position in the environment.

Sort Inference. Surprisingly, the variable declarations part of the equation
of update takes almost half the size of the equation. It is often the case in our
experiments with defining languages in Maude that variable declarations take
a significant amount of space, sometimes more than half the entire language
specification. However, in most cases the sorts of variables can be automatically
inferred from the context. To simplify this process, we assume that all variable
names start with a capital letter. Consider, e.g., the two terms of the equation
above, update((X, L′) Env, X, L) and (X, L) Env. Since the arity of update

1 The exception to the comma notation for AI operations will be the “continuation”;
defined later, it will follow, just for ease of reading, the notation � .

3



is Environment× Name × Location → Environment, one can immediately in-
fer that the sorts of X and L are Name and Location, respectively. Further,
since the first argument of update has the sort Environment and since environ-
ments are constructed using the operation :Environment×Environment →
Environment, one can infer that the sort of Env is Environment.

Because of subsorting, a variable occurring on a position in a term may have
multiple sorts. For example, the variable Env above can have both the sort
Environment (which aliases NameLocationSet) and the sort NameLocation.
The report [1] discusses in more depth the subtleties of sort inference in the
presence of subsorting. Here we only recall that if an occurrence of a vari-
able can have multiple sorts, we assume by default, or by convention, that
that variable occurrence has the largest sort among those that it can have;
this convention corresponds to the intuition that we assume the “least” in-
formation about each variable occurrence. If the same variable appears on
multiple positions then we infer for that variable the “most concrete” sort
that it can have among them. Technically, this is the intersection of all the
largest sorts inferred for that variable on the different positions where it ap-
pears. If the variable sort-inference process is ambiguous, or if one is not
sure, or if one really wants a different sort than the inferred one, or even
simply for clarity, one is given the possibility to sort variables “on-the-fly”:
we append the sort to the variable using “:”, e.g., X : Sort. For example,
from the term update(Env, X, L) one can only infer that the sort of Env is
Environment, the most general possible under the circumstances. If for any
reason one wants to refer to a “special” environment of just one pair, then one
can write update(Env :NameLocation, X, L).

Underscore Variables and Tuples. With the sort inference conventions,
the equation defining the operation update can be therefore written as

update((X, L′) Env, X, L) = (X, L) Env.

Note that the location L′ that occurs in the lhs is not needed; it is only used for
“structural” purposes, i.e., it is there only to say that the name X is allocated
at some location, but we do not care what that location is (we change it
anyway). Since this will be a common phenomenon in our language definitions,
we take the liberty to replace unnecessary letter variables by underscores, like
in Prolog. Therefore, the equation above can be written

update((X, ) Env, X, L) = (X, L) Env.

Like we need to pair names and locations to create environments, we will
often need to tuple two or more terms in order to “save” current informa-
tion for later processing. In K, by convention we allow all tupling operations
without defining them explicitly. Like the sorts of variables, their arities can
also be inferred from the context. Concretely, if the term (X1 : Sort1, X2 :
Sort2, . . . , Xn :Sortn) appears in some context (the variable sorts may be in-
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ferred), then we implicitly add to the signature the sort Sort1Sort2...Sortn and
the operation ( , , . . . , ) : Sort1× Sort2× · · · × Sortn → Sort1Sort2...Sortn.

Contextual Notation for Rewrite Rules. All the subsequent rewrite
rules will apply on just one (large) term, encoding the state of the program.
Specifically, most of them will apply on subterms selected via matching, but
only if the structure of the state permits it. In other words, most of our rules
will be of the form C[t1] · · · [tn] → C[t′1] · · · [t′n], where C is some context term
with n ≥ 0 “holes” and t1, ..., tn are subterms that need to be replaced by
t′1, ..., t′n in that context. C needs not match the entire state, but nevertheless
sometimes it can be quite large. To simplify notation and ease reading, in K

we write rules as C[ t1

t′1

] · · · [ tn
t′n

]. This notation follows a natural intuition: first

write the state context in which the transformation is intended to take place,
then underline what needs to change, then write the changes under the line.
Our contextual notation above proves to be particularly useful when combined
with the “ ” variables: if “ ” appears in a context C, then it means that we
do not care what is there but that we do not change it either.

Matching Prefixes, Suffixes and Fragments. We here introduce one
more piece of notation that will help us further compact our language defi-
nitions by eliminating the need to mention unnecessary underscore variables.
Many state attribute “soups” will be wrapped with specific operators to keep
them distinct from other soups. For example, environments will be wrapped
with an operation env : Environment → Attribute before they are placed in
their threads’ state attribute soup. Thus, if we want to find the location of a
name X in the environment, then we match the environment attribute against
the “pattern” term env((X, L) ) and thus find the desired location L; the un-
derscore variable matches the rest of the environment. The underscores make
pattern terms look heavier and harder to read than needed, especially when
the state is defined using deeply nested soups of attributes (not the case in
this paper). What one really wants to say above is that one is interested in
the pair (X, L) that appears somewhere in the environment. In our particu-
lar domain of language definitions, we believe, subjectively, that the notation
env〈(X, L)〉 for the same pattern term is better than the one using the under-
scores. By convention, whenever “ ◦ ” is an ACI or AI operator wrapped by
some attribute operator, say att, we write

att(T 〉 (i.e., left parenthesis right angle) as syntactic sugar for att(T ◦ ),
att〈T ) (i.e., left angle right parenthesis) as syntactic sugar for att( ◦ T ),
att〈T 〉 (i.e., left and right angles) as syntactic sugar for att( ◦ T ◦ ).

If “ ◦ ” is an ACI operator then the three notations above have the same effect,
namely that of matching T inside the soup wrapped by att; for simplicity, in
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this case we just use the third notation, att〈T 〉. The intuition for this notation
comes from the fact that the left and the right angles can be regarded as some
hybrid between corresponding “directions” and parentheses. For example, if
“ ◦ ” is AI (not C) then (T 〉 can be thought of as a list starting with T
(the left parenthesis) and continuing however it wishes (the right angle); in
other words, it says that T is the prefix of the list wrapped by the attribute
att. Similarly, 〈T ) says that T is a suffix and 〈T 〉 says that T is a contiguous
fragment within the list wrapped by att. If “ ◦ ” is also commutative, i.e., an
ACI operator, then the notions of prefix, suffix and fragment are equivalent,
all saying that T is a subset of the set wrapped by att.

This notational convention will be particularly useful in combination with
other conventions part of the K notation. For example, the input and output
of the programming language defined in the sequel will be modeled as comma
separated lists of integers, using an AI binary operation “ , ” of identity “·”;
then in order to read (consume) the next two integers N1, N2 from the input
buffer, or to output (produce) integers N1, N2 to the output buffer, all one
needs to do (as part of a larger context that we do not mention here) is:

in( N1, N2

·
〉 and, respectively, out〈 ·

N1, N2

)

The first matches the first two integers in the buffer and removes them (the “·”
underneath the line), while the second matches the end of the buffer (the “·”
above the line) and appends the two integers there. Note that the later works
because of the matching modulo identity: out〈·) is a shorthand for out( , ·),
where the underscore matches the entire list; replacing “·” by the list N1, N2

is nothing but appending the two integers to the end of the list wrapped
by out. As another interesting example, this time using an ACI operator,
consider changing the location of an identifier I in the environment to another
location, say L; this could be necessary in the definition of a language allowing
declarations of local variables, when a variable with the same identifier, I, is
declared locally and thus “shadows” a previously declared variable with the

same name. This can be done as follows (part of a larger context): env〈(I,

L

)〉.

Context Transformers are the most subtle aspect of the K notation, based
on the observation that, in programming language definitions, it is always
the case that the state of the program does not change its significant struc-
ture during the execution of the program. For example, the store will always
stay at the same level in the state structure, typically at the top level. If cer-
tain state infrastructure is known to stay unchanged during the evaluation of
any program, and if one is interested in certain attributes that can be un-
ambiguously located in that state infrastructure, then we only mention those
attributes as part of the context assuming that the remaining part of the con-
text can be generated automatically (statically). Since SILF does not have
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Integer Numbers N ::= (+|-)?(0..9)+

Declarations D ::= var I | var I[N ]

Expressions E ::= N | E + E | E - E | E * E | E / E | E % E | - E |
E < E | E <= E | E > E | E >= E | E = E | E != E |
E and E | E or E | not E | N | I(El) | I[E] | I | read

Expression Lists El ::= E (, E)∗ | nil

Statements S ::= I := E | I[E] := E | if E then S fi | if E then S else S fi |
for I := E to E do S od | while E do S od | S; S | D |
I(El) | return E | write E

Function Declarations FD ::= function I(Il) begin S end

Identifiers I ::= (a − zA − Z)(a − zA − Z0 − 9)∗

Identifier Lists Il ::= I (, I)∗ | void

Programs Pgm ::= S? FD+

Fig. 1. Syntax for SILF

threads, exceptions or other complex control sensitive language features, con-
text transformers do not make a difference in this paper, so we do not discuss
them in more detail. The reader interested in the role of context transformers
in compactness and modularity of language definitions is referred to [1].

3 SILF: A Simple Imperative Language with Functions

Using the K notation, we now define a simple imperative language with func-
tions, which we will herein refer to as SILF. The BNF syntax for SILF is
shown in Figure 1. Note that a program is made up of an optional state-
ment, which is assumed to be global variable declarations (not just any ar-
bitrary statement), followed by one or more functions, one of which should
be called main. We assume below that programs are well formed and type
correct, and that we do not need to worry about issues such as precedence.
We adopt the mix-fix notation for syntax in algebraic notation, with the stan-
dard conversion, adding a new sort for each non-terminal, and a new opera-
tion for each production. For instance, the declaration of a function will be:
function ( ) begin end : Id × IdList × Stmt −→ FunDecl.

State Infrastructure. Since the

3,8,2,5,6,9,0
in

3,6,7,8,9,1
out

17

nextLoc

(L1, V1)

(L2, V2)

(Ln, Vn)

…

store

…

k fstack
(X1, L1)
(X2, L2)…

env
(X1, L1)
(X2, L2)…

genv

(F1, K1)
(F2, K2)…

fenv

Fig. 2. SILF state infrastructure

rules in the semantics given be-
low act on the SILF state, it is
important to understand the state
structure. The state of the pro-
gram is made up of a number
of “ingredients” in the state “soup”,
in this case all at the top level.
The continuation, indicated by k,
keeps track of the current control
context. The fstack is the func-
tion stack, and holds information about the computation to resume on return
– this is similar to a stack frame. The env and genv hold name to location
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mappings for the local and global environment, while the fenv holds map-
pings from function names to continuations for the bodies. The store holds
location to value mappings. Input and output are represented by in and out,
respectively. Finally, the next location in the store to allocate is tracked with
nextLoc. This is represented graphically in Figure 2.

Formally, one declares the state structure by means of an algebraic signature,
where each “ingredient” is wrapped by an appropriate operation that we call
“attribute”, and where ingredients are in the “soup” via an AC concatenation
operation. Some of the soup ingredients are lists (e.g., I/O “buffers”, function
stacks, continuations), others are sets (e.g., environments, stores), while others
are just plain numbers (e.g., the next location). Like the mix-fix algebraic sig-
nature associated to the BNF in Figure 1, we do not define the state signature
here either, because it is straightforward.

When a program is executed, we need to construct its initial state. We do this
using an eval operation. For SILF, this operation would take a program, Pgm,
and an input list of integers, Nl, and “insert” them into a starting state:

eval(Pgm,Nl)

k(Pgm) fstack(·) env(·) genv(·) fenv(·) input(Nl) output(·) store(·) nextLoc(0)

The continuation structure wrapped by k keeps an ordered list of tasks to be
performed to continue the computation. We add additional sorts to represent
the abstract syntax, including values (V ), environments (Env), continuations
(K ), locations (L), and stores (Mem), with appropriate lists and sets for each.

Programs. A program is made up of a number of global variable declarations,
followed by a number of functions. There is no inherent order to the functions
– all functions can see all other functions. To execute a program, we need to
process all global variable declarations, create the global environment, process
all function declarations, and then invoke the main function:

k( pgm(S FDs)

stmt(S) � mkGenv � fdecl(FDs) � stmt(main())

)

How stmt(S) is processed is described later in this section. One can view
stmt and exp as “compiling” the statement or expression, turning it into a
continuation. As seen shortly, when S contains only variable declarations,
stmt(S) at the top of the continuation eventually produces a corresponding
environment in the attribute env. Then, mkGenv only needs to move that
environment into genv(this will allow us to easily refer to the global variable
environment later):

k( mkGenv

·
〉 env(Env) genv(

Env

)
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Function declarations are processed one by one:

fdecl(FD:FunDecl FDs:FunDeclNeSet)

fdecl(FD) � fdecl(FDs)

Functions. Function semantics cover three main constructs: function decla-
ration, function invocation, and function return. We cover each below in turn.
We first need to add the declared functions into the function environment. We
do assume that function names are distinct and that declarations all occur at
the start of the function. We add the necessary structure to the function body
to bind the input values to the formal parameters, so we do not need to add
this in the invocation semantics (the semantics of bind will be given shortly):

k( fdecl(function I(Is) begin S end)

·
〉 fenv〈 ·

(I, bind(Is) � stmt(S))

〉

Functions can be used as either expressions or statements:

exp(I(El))

exp(El) � apply(I)

stmt(I(El))

exp(El) � apply(I) � discard

The continuation item exp(El), when at the top of the continuation, evaluates
the list of expressions El sequentially and produces their corresponding values,
a term of the form val(Vl). When used as a statement, we put a discard
continuation item into the continuation to throw away the return value (this
will be defined shortly). Once the arguments have been evaluated, we can
apply the function. Since functions are stored just as identifier/continuation
pairs, we can just grab out the continuation for the function. Also, we save the
current continuation and environment so we can quickly recover these when
we exit the function on a return:

k(val( ) � apply(I) � K

K ′
) fstack( ·

(Env,K)

〉 env( Env

GEnv

) fenv〈(I,K ′)〉 genv(GEnv)

When we encounter a return, first we need to evaluate the expression whose
value we are returning. Once the value has been calculated, we can then switch
context back to the caller, which we do by replacing the current environment
and continuation with those saved at the top of the function stack:

stmt(return E)

exp(E) � return

) k(val( ) � return �

K

) fstack( (Env,K)

·
〉 env(

Env

)

State Helper Operations. Many of the rules in the SILF semantics perform
similar changes to the state. We have abstracted these changes into a number
of rules which can then be used across different parts of the semantics. The
operation bind creates new bindings in the environment. This operation binds
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a list of values to a list of identifiers, adding the identifier to the environment
and the value to the store, linked by a shared location. To create a new binding
in the environment without a value, we use a variant of the bind operation,
which binds a list of identifiers to a list of locations but does not alter the
store (| | is the usual length operation on lists and Ll is the location list
(L, L + 1, . . . , L + |Il| − 1)):

k( val(Vl) � bind(Il)

·
〉 env( Env

Env[Il ← Ll]

) store( Mem

Mem[Ll ← Vl]

) nextLoc( L

L + |Il|
)

k( bind(Is)

·
〉 env( Env

Env[Is ← locs(L, len(Is))]

) nextLoc( L

L + len(Is)

)

The [ ← ] operation will properly update the set, using the list on the left
as a list of “keys” to either add a new key/value pair to the set or replace an
existing key/value pair with a new pair. The definition is straightforward, and
is not shown here.

We can also bind blocks of storage. This will just bind the first location to the
identifier and then advance the next location an arbitrary amount. This can
be used to represent allocating a block of memory for an array.

k( val(int(N)) � bindBlock(I)

·
〉 env( Env

Env[I ← L]

) nextLoc( L

L + N

)

For assignment, assignTo assigns a value to the store in two steps, first con-
verting identifier assignment(assignTo) to location assignment (assignToLoc)
then carrying out the assignment:

k(val(V ) � assignTo(I)

assignToLoc(L)

〉 env〈(I, L)〉

k( val(V ) � assignToLoc(L)

·
〉 store( Mem

Mem[L ← V ]

)

We also have a similar version for arrays, which will assign at an offset.

k( val(int(N), V ) � arrayAssign(I)

val(V ) � assignToLoc(L + N)

〉 env〈(I, L)〉

Similarly we have two lookup operations:

k( lookupLoc(L)

val(V )

〉 store〈(L, V )〉 k( val(int(N)) � lookupOffset(I)

lookupLoc(L + N)

〉 env〈(I, L)〉
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Occasionally we will want to discard a value from the continuation. To do so,

we use discard with the following semantics: k( val(V ) � discard

·
〉

Variable Declarations. In SILF we have two different types of variable
declarations – integers and integer arrays. Arrays can only be declared of
a fixed (positive integer) size. In both cases, the declaration does not set
an initial value – this corresponds to a concept of “junk” in the memory
before assignment, and any read attempts of “junk” will fail. We treat arrays
identically to C (arrays are 0 indexed, so an array of 10 elements is indexed
from 0 to 9) with the location of the array name the same as location 0:

stmt(var I)

bind(I)

stmt(var I[N ])

val(int(N)) � bindBlock(I)

Lookups and Simple Expressions. Some of SILF’s most basic expressions
are lookups of name and indexed array values, as well as literal expressions.
For a literal integer, we just return a value with the integer encapsulated in

a value wrapper: exp(N)

val(int(N))

. For both identifiers and arrays, we return the

current value, either assigned to the identifier or to the given element of the
array. We will process this in two steps, first retrieving the value’s location,
then retrieving the value:

k( exp(I)

lookupLoc(L)

〉 env〈(I, L)〉 exp(I[E])

exp(E) � lookupOffset(I)

Arithmetic, Relational, and Logical Operations. All three operation
types follow the same general pattern. When we encounter an addition ex-
pression, e.g., we first need to evaluate both operands. We also need to keep
track of what operation we are performing. So, we will replace an expression
such as E + E ′ with one were we evaluate E and E ′ and put + on the contin-
uation to remind ourselves what we need to do with the results. Once we get
back the values from evaluating the two expressions (here, expected to both
be integers) on top of a +, we return their sum (using integer addition):

exp(E + E′)

exp(E,E′) � +

val(int(N), int(N ′)) � +

val(int(N +int N ′))

Relational operators work identically to arithmetic operators, except we apply
relational operations on the results and return boolean values:

exp(E < E′)

exp(E,E′) � <

val(int(N), int(N ′)) �<

val(bool(N <int N ′))

Logical operations are handled almost exactly the same:
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exp(E and E′)

exp(E,E′) � and

val(bool(B), bool(B′)) � and

val(bool(B andbool B′))

All the arithmetic, relational, and logical operations are defined in Appendix A.

Assignment Statements. SILF has two types of assignment:

stmt(I := E)

exp(E) � assignTo(I)

stmt(I[E] := E′)

exp(E,E′) � arrayAssign(I)

Conditional Statements. SILF has two conditionals, one with just a true
branch, one with true and false branches. We convert the first into the second:

if E then St fi

if E then St else skip fi

where skip has the usual semantics: k( stmt(skip)

·
〉

For the general conditional, we first evaluate the condition, “compiling” the
two branches and storing them in the continuation, wrapped by if( , ):

stmt(if E then St else Sf fi)

exp(E) � if(stmt(St), stmt(Sf))

If the result is true, then we will evaluate the first branch (which we have
already converted into a continuation), and if false we will evaluate the second:

val(bool(true)) � if(Kt,Kf)

Kt

val(bool(false)) � if(Kt,Kf)

Kf

Loop Statements. We transform “for” loops into “while” loops:

for I := E1 to E2 do S od

I := E1;while I ≤ E2 do S ; I :=I + 1 od

We give semantics to “while” loops by changing the while statement into a
while continuation that contains the (“compiled”) guard expression and the
while body, at the same time evaluating the guard:

stmt(while E do S od)

exp(E) � while(exp(E), stmt(S))

Next, based on whether the guard evaluates to true or false, we do or do not
need to evaluate the body of the while:

val(bool(true)) � while(Ke,Ks)

Ks � Ke � while(Ke,Ks)

val(bool(false)) � while(Ke,Ks)

·
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I/O Statements. SILF allows for rudimentary I/O, with the ability to read
and write integers. For input, we take the next available integer:

k( exp(read)

val(int(N))

〉 input( N

·
〉

For output, we evaluate the expression, then add it to the end of the output:

stmt(write E)

exp(E) � write

k( val(int(N)) � write

·
〉 output〈 ·

N

)

Sequential Composition is straightforward: stmt(S;S′)

stmt(S) � stmt(S′)

4 Towards Automatic Synthesis of Language Interpreters

An important goal which we set for the K framework is that it should allow
us to automatically generate efficient interpreters from language definitions.
While this goal is still ahead of us, here we briefly present the semi-automatic
generation of an interpretor for SILF.

Preprocessing. We currently assume as input a well-formed, type-checked
program, which is then preprocessed to yield a simpler yet semantically equiv-
alent program. During preprocessing, identifiers are replaced by numbers and
variable declarations by memory allocation commands. Integers are wrapped
(e.g., i(0) for 0), and functions are named with indices and parameter list sizes
to aid with allocation (e.g., f(3)(5) for function number 3 with 5 parameters).
This essentially eliminates the environment, which is now just an index into
the store, similar to a frame pointer. We can best illustrate this with an ex-
ample. In Figure 3, we have a program in SILF. In Figure 4, we have the
equivalent program after translation. Note that translation can be performed
statically and automatically.

Precompilation and instruction generation. We chose to clearly divide
the semantic rules into precompilation and execution rules. The precompilation
phase reduces the program to a continuation, which the execution phase then
runs to modify the state. In our case, we can divide the semantic rules into
two groups: those in which the left-hand-side is a state and those in which
it is a continuation. We precompile only the latter, dividing each language
task (e.g., assignment, function call) into a series of smaller tasks. Bytecode
is then generated from a precompiled form of the program by a process of
flattening, translating the graph-like structure of the continuation into an
array. The bytecode “instructions” are given by the continuation items. This
process is mostly automatic, with our instructions determining the structure
of the virtual machine.

13



function writeBinary(x) begin

var i;

var b[32];

var j;

i := 0;

while x > 0 do

b[i] := x % 2;

x := x / 2;

i := i + 1

od

j := i - 1;

while j >= 0 do

write b[j];

j := j - 1

od

end

function main(void) begin

writeBinary(read)

end

Fig. 3. Source Language Program

globals(0) ;

function f(1)(1) {

alloc(1) ;

alloc(32) ;

alloc(1) ;

l(i(1)) := i(0) ;

while l(i(0)) > i(0) do {

l(l(i(1)) + i(1)) := l(i(0)) % i(2) ;

l(i(0)) := l(i(0)) / i(2) ;

l(i(1)) := l(i(1)) + i(1)

} ;

l(i(34)) := l(i(1)) - i(1) ;

while l(i(34)) >= i(0) do {

writeInt(l(l(i(34)) + i(1)));

l(i(34)) := l(i(34)) - i(1)

}

}

function f(0)(0) {

f(1)(readInt)

}

Fig. 4. Translated Program

Execution. The execution rules act on a modified version of the state, with
a separate stack for values and a control stack for continuations. This requires
a change in some of the rules, which we believe can be automated. This then
aligns with the interpreted view of the rules, with stores and stacks represented
as arrays, and stack operations represented as array index manipulation. The
interpreter executes program by referencing the item on top of the continuation
and the values on top of the stacks, which uniquely determine the rule to apply
(with the continuation item alone determining most of the rules). The virtual
machine then executes an infinite loop which selects the next continuation
item and runs the code for the selected rule.

Evaluation. For evaluation we have chosen several programs, each exercising
different execution tasks. perm is an all-permutations generation algorithm us-
ing recursive backtracking with globals and returns. binary computes the base
two representation for all numbers up to the input number by successive divi-
sions by 2, and exercises iterative function calls with local array declarations.
sieve is the Eratosthenes’ sieve algorithm for computing primes up to the input

Program K to Maude K to C BC C Java

perm(6) 80.840 0.048 0.155 0.003 0.174

perm(9) * 45.560 154.016 1.615 11.342

binary(1,000) 17.037 0.019 0.100 0.004 0.190

binary(1,000,000) * 32.631 209.949 4.955 55.782

sieve(10,000,000) * 27.671 - 1.199 3.591

hanoi(23) * 18.140 86.432 4.394 57.761

Execution times in seconds. − indicates test not performed, ∗ indicates test timed out. Evaluation per-

formed on Intel r© Pentium r© 4 CPU 2.00GHz with 1GB RAM, gcc version 3.3.6, compilation flags: -O3

-march=pentium4 -pipe -fomit-frame-pointer

Fig. 5. Evaluation Results
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number, which exercises addressing large arrays. Finally, hanoi is the standard
recursive solution for the Hanoi towers problem, exercising recursive functions.
Results are shown in Figure 5. We don’t have results for BC on sieve, since
BC only allows 16 bit array indexes. The C interpreter for SILF outperforms
BC and is competitive with C, and occasionally outperforms Java (additional
work is needed to determine under what circumstances). Maude’s times are
higher because of extensive ACI-matching, reducing speeds from millions of
rewrites to around tens of thousands of rewrites per second. Because of this,
we do not have figures for Maude for the larger test cases.

5 Conclusions

In this paper we introduced the K language definition framework and used
it to define a simple imperative language with functions. We also showed an
example of translating this definition into an interpreter in C. Based on current
encouraging results, we believe this is a promising strategy for automatically
deriving interpreters from definitions of language semantics.
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A Additional Semantics Rules

Here we include the additional rules in the semantics for SILF which were not
included above. These rules are similar to those shown in Section 3.

A.1 Arithmetic Operations

exp(E + E′)

exp(E,E′) � +

val(int(N), int(N ′)) � +

val(int(N +int N ′))

exp(E − E′)

exp(E,E′) � −

val(int(N), int(N ′)) � −
val(int(N −int N ′))

exp(E ∗ E′)

exp(E,E′) � ∗

val(int(N), int(N ′)) � ∗
val(int(N ∗int N ′))

exp(E/E′)

exp(E,E′) � /

val(int(N), int(N ′)) � /

val(int(N/intN
′))
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exp(E%E′)

exp(E,E′) � %

val(int(N), int(N ′)) � %

val(int(N%intN
′))

exp(−E)

exp(E) � u−

val(int(N)) � u−
val(int(−intN))

A.2 Relational Operations

exp(E < E′)

exp(E,E′) �<

val(int(N), int(N ′)) �<

val(bool(N <int N ′))

exp(E <= E′)

exp(E,E′) �<=

val(int(N), int(N ′)) �<=

val(bool(N <=int N ′))

exp(E > E′)

exp(E,E′) �>

val(int(N), int(N ′)) �>

val(bool(N >int N ′))
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exp(E >= E′)

exp(E,E′) �>=

val(int(N), int(N ′)) �>=

val(bool(N >=int N ′))

exp(E = E′)

exp(E,E′) �=

val(int(N), int(N ′)) �=

val(bool(N =int N ′))

exp(E! = E′)

exp(E,E′) �! =

val(int(N), int(N ′)) �! =

val(bool(N ! =int N ′))

A.3 Logical Operations

Note that these operations are not short-circuit, since we evaluate both operands
to and and or at once. We could make them short-circuit by instead evaluating
only the first operand, and storing the second with the continuation for the
operator. Based on the result of evaluating the first operand, we could then
either return the proper value or evaluate the second operand to give us the
value of the operation.

exp(E and E′)

exp(E,E′) � and

val(bool(B), bool(B′)) � and

val(bool(B andbool B′))
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exp(E or E ′)

exp(E, E ′) � or

val(bool(B), bool(B′)) � or

val(bool(B orbool B′))

exp(not E)

exp(E) � not

val(bool(B)) � not

val(bool(notbool B))
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