
Enforcing Alias Analysis for Weakly Typed Languages

Dinakar Dhurjati Sumant Kowshik Vikram Adve
University of Illinois at Urbana-Champaign

{dhurjati,kowshik,vadve}@cs.uiuc.edu

Abstract
Static analysis of programs in weakly typed languages such as C
and C++ is generally not sound because of possible memory er-
rors due to dangling pointer references, uninitialized pointers, and
array bounds overflow. Optimizing compilers can produce unpre-
dictable results when such errors occur, but this is quite undesirable
for many tools that aim to analyze security and reliability properties
with guarantees of soundness. We describe a compilation strategy
for standard C programs that guarantees sound semantics for an
aggressive interprocedural pointer analysis (or simpler ones), a call
graph, and type information for a subset of memory. These provide
the foundation for sophisticated static analyses to be applied to such
programs with a guarantee of soundness. Our work builds on a pre-
viously published transformation called Automatic Pool Allocation
to ensure that hard-to-detect memory errors (dangling pointer ref-
erences and certain array bounds errors) cannot invalidate the call
graph, points-to information or type information. The key insights
behind our approach is that pool allocation can be used to create
a run-time partitioning of memory that matches the compile-time
memory partitioning in a points-to graph, and efficient checks can
be used to isolate the run-time partitions. Furthermore, we show
that the sound analysis information enables static checking tech-
niques that reliably eliminate many run-time checks. We formalize
our approach as a new type system with the necessary run-time
checks in operational semantics and prove the correctness of our
approach for a subset of C. Our approach requires no source code
changes, allows memory to be managed explicitly, and does not use
meta-data on pointers or individual tag bits for memory. Using sev-
eral benchmarks and system codes, we show experimentally that
the run-time overheads are low (less than 10% in nearly all cases
and 30% in the worst case we have seen). We also show the effec-
tiveness of reliable static analyses in eliminating run-time checks.

1. Introduction
Alias information, type information, and call graphs are the fun-
damental building blocks for many kinds of static analysis tools,
including model checkers and error checking tools. For programs
written in weakly typed languages, however, these fundamental
building blocks may not be valid if the program performs any il-
legal memory operations such as array bound violations, dangling
pointer dereferences, and references using uninitialized pointers,
because these unsafe operations can overwrite memory locations in
ways not predicted by the compiler. This means that even tools that
aim to provide sound results with no false negatives [15, 8] cannot
guarantee that they do so. In fact, software validation tools usually
assume that such memory corruption cannot occur, e.g. memory
allocations are assumed logically infinitely apart so that a buffer
overflow cannot trample any other allocation. This problem is po-
tentially important because many software validation tools today
are used to detect security vulnerabilities or identify logical errors
in important system software.

Unfortunately, it has proven extremely expensive to detect im-
portant classes of unsafe memory operations for a weakly typed
language using static analysis, run-time checks or a combination
of both [2, 30, 18, 25, 23]. All of these approaches have overheads
that are prohibitively high for production use (e.g., 2x-11x). Fur-
thermore most of these use heuristic techniques to detect certain
errors, especially dangling pointer errors, and do not guarantee that
all such errors will be detected.

An alternative approach is to use strongly typed systems that
closely match the C type system, e.g., CCured [24] or Cyclone [13,
16]. The strong safety guarantees of these systems are technically
attractive but they are obtained by disallowing explicit memory
deallocation in general ([16] allows explicit deallocation in some
restricted cases) and relying on automatic memory management.
The adoption of automatic memory management for existing C
software is likely to be slow for several reasons. First, it can take
significant effort to tune legacy C programs to reuse memory effec-
tively in a managed environment. Second, system and embedded
software often have stringent requirements for performance, mem-
ory consumption, real-time constraints, and even power constraints.
C has been widely used for such software partly because of the con-
trol it gives over performance and memory consumption. For these
reasons (and because of the possible manual effort required to port
programs to these languages), existing C and C++ applications may
be slow to adopt such languages and many may not do it at all.

1.1 Overview of our approach

In this paper, we describe a novel, automatic approach an ordinary
compiler can use to ensure three key analysis results — namely,
a points-to graph, a call graph, and available type information —
are sound, i.e., will not be invalidated by any possible memory er-
rors, even undetected errors such as dangling pointer dereferences.
Our solution builds on a previously published transformation we
call Automatic Pool Allocation [22]. Automatic Pool Allocation
uses the results of a pointer analysis to partition heap memory into
fine-grain pools while retaining explicit deallocation of individual
objects within pools, i.e., it partitions the heap but does not per-
form automatic memory management. The transformation was de-
veloped and used for optimizing memory hierarchy performance.
The transformation essentially provides a run-time partitioning of
the heap that corresponds directly to the partitioning of memory in
the points-to graph.

The primary contribution of this work is to show how Auto-
matic Pool Allocation can be used to enforce the validity of a given
points-to graph despite potential memory errors, and to do so effi-
ciently. This work is based on two key observations. First, by par-
titioning memory (at least) as finely as the points-to graph, we can
check efficiently that a pointer does not reference a memory object
that is not in its predicted points-to set. Second, many pools have
a type-homogeneity property that allows us to eliminate many or
most of these run-time checks. Furthermore, the type-homogeneity

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4820361?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

property also allows us to statically ensure that dangling pointer
errors will not cause any unexpected type violation.

There are four technical challenges that we solve in this work
in order to use Automatic Pool Allocation for guaranteeing that the
static analysis results are correct:

• We formalize the necessary properties of pool allocation as
a new type system and the necessary run-time checks in an
operational semantics so that we can prove the correctness
of the overall. We give a formal proof of correctness for a
subset of C that includes all important root causes of memory
errors: dangling pointers, arbitrary casts and type mismatches,
uninitialized variables, and array bounds violations.

• Second, pool allocation does not prevent dangling pointer ref-
erences to freed memory. We show how to exploit type homo-
geneous pools to ensure that such dangling references do not
cause any unexpected type violations in these pools. We have
used this insight in previous work on enforcing memory safety,
but only for a subset of C without pointer casts and we did not
prove its soundness [10].

• Non-type-safe constructs in C (e.g., many pointer casts, unions,
and varargs function calls) produce non-type-homogeneous
pools. We show how to use run-time checks to enforce isolation
of such pools from each other and from (statically checked)
type homogeneous pools. We need additional run-time checks
to detect other memory errors such as uninitialized references
and array bounds violations for all pools.

• Finally, we show that we can use sound static analyses that ex-
ploit the points-to graph and call graph to safely optimize away
many of the run-time checks and other run-time overheads. (We
also give an example to show how a different static analysis tool
(ESP [8]) could benefit from our approach.)

Our approach has several practical strengths and two key limita-
tions. We discuss these briefly in Section 9.

We have implemented our techniques in a system we call SAFE-
Code - Static Analysis For safe Execution of Code - using the
LLVM compiler infrastructure [21]. Our system handles nearly
the full generality of C, except programs with “manufactured ad-
dresses.” We show experimentally using three groups of programs
(Olden, Ptrdist, and three daemons) that the run-time overheads of
SAFECode are close to 0 for most programs and less than 30%
in all cases we have tested. We also show that the static analyses,
whose correctness relies on alias analysis guaranteed by SAFE-
Code, are important for achieving these low overheads.

The next section describes the language and analysis represen-
tations we assume as our inputs. Sections 3 describes our overall
approach, type system, and operational semantics for a subset of C.
The technical report gives a complete proof of soundness for this
subset. Section 4 discusses the extensions to the type system to han-
dle the full generality of C programs. Section 5 describes our imple-
mentation (SAFECode) of the type inference and run-time system.
Section 6 describes static analyses that benefit from SAFECode.
Section 7 presents our experimental evaluation of SAFECode. Sec-
tion 8 discusses related work and section 9 concludes with a dis-
cussion of the strengths and limitations of the work.

2. Assumptions and Background
The inputs to our approach are:

1. a program written in C;

2. The results of a flow-insensitive, field-sensitive, unification-
based pointer analysis on that program. As explained below, this
includes both points-to information and type information for

some subset of memory objects. The analysis may use various
forms of context-sensitivity (see below).

3. A call graph computed for the program.

Our goal is to enforce the correctness of these analyses for all ex-
ecutions of the program. We do not concern ourselves with how
these analysis results are actually computed; we only assume that
these are given in the format described below. In our implemen-
tation, we use an analysis called Data Structure Analysis [20],
a context-sensitive, field sensitive, unification based algorithm
to compute both the pointer-analysis and the call graph. DSA is
context-sensitive over entire acyclic call paths, both in its analysis
and in the naming scheme for heap objects.

We include type information as part of the points-to represen-
tation because, in a weakly typed language like C, pointer analysis
can still compute reliable type information for a subset of a pro-
gram. DSA attempts to compute type information for every “points-
to set” (defined more precisely below) in the program by inferring
the intended type based on the uses of pointers to a points-to set
object, and not based on the type declarations or cast operations
in the program. Here, the “uses” of a pointer include indexing op-
erations (&(x->Fldi) and &E[E]), loads, stores, and indirect calls.
If all pointers to a points-to set are used consistently as one type
τ∗ (or as the appropriate type for a field within τ), then DSA in-
fers the type of all objects in that set to be that type τ . Otherwise,
DSA marks the type of the object to be “Unknown,” explained be-
low. Note that this approach of ignoring casts and only considering
actual uses is able to infer types for heap objects allocated via the
malloc operation in C, which is untyped: the (usual) cast of the
returned pointer value is ignored, but any uses of the pointer are
correctly considered. Experimental results for over 40 programs
show that DSA can infer type information for the targets of 70%
of load and store operations in most C programs (on average), and
over 90% in many programs.

We will use a running example, shown in Figure 3, to illustrate
the steps of our approach in the next few sections. Figures 3(a),
3(c) and 5 show this program respectively in original source form,
after including the pointer analysis results as part of the program,
and after conversion to our type system respectively. The second
version (encoding the pointer analysis) is the input to our work in
this paper. The syntax, typing rules and operational semantics for
the final version are described in Sections 3.2, 3.3 and 3.4.

Although our implementation of SAFECode supports all of C,
we use a subset of C as the source language in this paper to sim-
plify the presentation. This language, shown in Figure 1, includes
all sources of potential memory errors including pointers, struc-
tures, array operations, function pointers, arbitrary casts, dynamic
memory allocation, and stack allocations. We only include 4-byte
and 1-byte integer types (int and char) as primitive data types,
and use distinct load and store operations for these types (load E
for loading ints and loadc E for loading chars). The cast oper-
ation is similar to the one in C. We use a new operation called
alloca (with arguments similar to malloc) to allocate memory on
the stack. Also, global variables can only be pointers pointing to
global memory that is allocated and initialized using a new oper-
ation called galloc, which takes a size parameter and an initial-
izer; this essentially is how globals in a C program operate. These
two features make it unnecessary to apply the & operator to get
the address of a stack variable or global object; & is only used for
indexing into structures, arrays and for function pointers.

2.1 Pointer Analysis Representation

Intuitively, the pointer analysis representation we assume can be
thought of as a storage-shape graph [27, 17] (also referred to as
a points-to graph) with the invariant that pointers pointing to two

vars x y
Function names f
Field names Fld
Pointer Type pt := τ∗
Function Type ft := τ −→ τ
Structure Type st := struct { Fld1 : τi, ..., Fldn : τn }
Types τ := int | char | pt | st | ft
declarations decl := ε|τ x; decl
Statements S := ε | S S | x = E; | store E, E; | storec E, E;

| free(E); | if (E) then { S } else { S }
| while (E) { S }

Functions F := τ ′f(x : τ) { decl ; S }
Expressions E := x | E op E | cast E to τ

| load E | loadc E | malloc(E) | &E[E]
| &(x->Fldi) | &f | alloca(E)
op ∈ {+,−, ∗, /, %,&&, ||, ,̂ <<,>>}

Definitions d := F | struct x {Fldi:τ1 , ..., Fldn:τn }
GlobalDecl gd := τ ∗ ρ x =galloc(E, E)
Programs p := d p|gd p|ε

Figure 1. C like Language

Node var ρ
new PointerType pt := τ ∗ ρ|τ ∗ (ρ, n)
Function Sets fs := f , fs |ε
FuncPtrType fpt := ft * fs
new StructType st := stprev |∀ρ.st |τ<ρ>
new Type τ := int | pt | st | ft | fpt | Unknown
new Expressions E := Eprev|&(x->Fldi) |&f
new Statements S := Sprev | associate(ρ, τ)
new Definitions d := dprev | FSET fs = f , fs

Figure 2. Syntactic extensions for representing pointer analysis
results. stprev , Eprev , Sprev and dprev are same as st, E, S and d
in Figure 1.

different nodes in the graph are not aliased. Effectively, each node
represents a set of memory objects created by the program and
two distinct nodes represent disjoint sets of memory objects. We
assume there is one points-to graph per function, since this allows
either context-sensitive or insensitive analyses. Figure 3 (a) shows
an example program in our language and Figure 3 (b) the associated
storage-shape graph.

We use a type system to encode the results of points-to analysis
(i.e., the storage shape graph) as type attributes within the program,
using a type system analogous to Steensgaard’s [27]. Each points-
to graph node is encoded as a distinct type (although we continue to
refer to nodes below). The input to our approach is a program in this
type system, shown in Figure 2. Each pointer in this type system has
a node attribute, ρ, describing the node it points to in the storage-
shape graph. For example, in Figure 3(c), the type of y is int*r2,
denoting that it points to objects of node r2 in the points-to graph.
Since a pointer can point into a structure at an offset i > 0, we use
τ ∗ (ρ, n) to denote the type of a pointer pointing to offset n (n is
a compile type constant), within a struct of type τ at node ρ.

The statement associate(ρ, τ) associates node ρ of the graph
with type τ , denoting that the node ρ contains objects of type τ .
These objects may be pointers, say, associate(r1, τ ′ *r2),
and this directly encodes a “points-to” edge from node r1 to node
r2. These attributes have redundant information. For example, we
do not need the full type in an associate statement. associate(r1,
r2) is sufficient to encode the edge between r1, r2; the full type
can be easily gotten by traversing these edges. We chose this type
system with redundancies as it simplifies the discussion in later
Sections, and it is straightforward to take pointer analysis results
from Steensgaard’s like type system and convert it in to ours. Note

that there can be only a single target node for each variable or field
of pointer type, which is necessary for a unification-based analysis.

Memory that is used in a type inconsistent manner, e.g., via
unions or casts in C, is assigned type Unknown, which is inter-
preted as an array of chars. In the running example, the target of
z (node r3) has type Unknown because this memory is accessed
both as an int and as an int**.

The representation captures field-sensitive points-to informa-
tion because each field (including pointer fields) is typed with dis-
tinct node attribute. This type system thus encodes a field sensitive
pointer analysis. A struct type (with a pointer field) in a program
can be used in different places with the field pointing to distinct
sets of objects (e.g., when two linked lists are created with the same
list node type). While it is possible to require a distinct struct type
declaration for each different use of the struct type, we found that
it is convenient to include polymorphic type constructors (similar
to those used in Cyclone [13]), allowing a single struct type dec-
laration that is instantiated it differently for different nodes in the
graph based on the pointer target. As an example, ∀ρ . struct S {
Fld : τ ∗ ρ }, is a polymorphic struct type that can be instantiated
to two different struct types with two different node attributes (e.g.,
struct S<ρ1>is the type for objects of type struct S in the original
program and whose field points to node ρ1 in the points-to graph
while struct S<ρ2>is the type for those with field pointing to node
ρ2).

We represent the call graph in the input type system by adding
a function set attribute called fs in Figure 2) to each function
pointer type, making explicit the set of possible targets for that
function pointer. The function set attribute can be initialized us-
ing the FSET definition. For example, the definition FSET fs =
func1, func2, func3 followed by a use (int -> int)*fs
fptr denotes a function pointer fptr whose targets are the func-
tions func1, func2, func3.

In the absence of frees and other memory errors, we can check
that this program encodes the correct aliasing information by using
typing rules similar to Steensgaard’s, with necessary extensions to
handle polymorphic struct types. We do not give those rules here as
our approach described in Section 3 is stronger and subsumes this
checking; we not only check that the static aliasing information is
correct but we also enforce it in the presence of memory errors.

2.2 Background on Automatic Pool Allocation

Given a program containing explicit malloc and free operations
and a points-to graph for the program equivalent to the description
above, Automatic Pool Allocation transforms the program to seg-
regate data into distinct pools on the heap [22]. By default, pool
allocation creates a distinct pool for each points-to graph node rep-
resenting heap objects in the program; this choice is necessary for
the current work as explained later. Pools are represented in the
code by pool descriptor variables. For a points-to graph node with
τ 6= Unknown, the pool created will only hold objects of type τ
(or arrays thereof), i.e., the pools will be type homogeneous with
a known type. We refer to these as TK (stands for type known)
pools and all others as TU (stands for type unknown) pools. Calls
to malloc and free are rewritten to call new functions poolalloc
and poolfree, passing in the appropriate pool descriptor (details
of the pool runtime library are omitted here for lack of space).

In order to minimize the lifetime of pool instances at run-
time, pool allocation examines each function and identifies points-
to graph nodes whose lifetime is contained within the function,
i.e., the objects are not reachable via pointers after the function
returns. This is a simple escape analysis on the points-to graph.
The pool descriptor for such a node is created on function entry
and destroyed on function exit so that a new pool instance is
created every time the function is called. For other nodes, the pool

int **x, *y, *z, ***w, u;
x = (int **) malloc(4);
y = (int *)malloc(4);
z = (int *) malloc(4);
...
store y, x // equivalent of *x = y
store 5 ,y
free(z) ; // creates a dangling pointer
store 10, z;
...
u = load z; // equivalent of u = *z;
...
w = cast z to (int ***);
store x, w;

w
z

r2, int

r1, int*y

x
r3, unknown

associate(r1, int * r2);
associate(r2, int) ;
associate(r3, Unknown) ;
int *r2 *r1 x; int *r2 y;
int *r3 z; *r2*r1*r3 w; int u;

x = malloc(4); y = malloc(4); z = malloc(4);

store y, x; store 5, y;
free(z); // dangling pointer still exists
store 10, z ;
....
u = load z ;

w = cast z to (int *r2*r1*r3);
store x, w ;

Figure 3. (a) Original program, (b) its points-to graph, and (c) program with points-to graph encoded as types

descriptor must outlive the current function so pool allocation adds
new arguments to the function to pass in the pool descriptor from
the caller. Finally, pool allocation rewrites each function call to pass
any pool descriptors needed by any of the potential callees.

In our previous work, we have used Automatic Pool Allocation
to improve memory hierarchy performance [22] and to enforce
memory safety without garbage collection in a type-safe subset of
C [10]. The current work is the first to consider how automatic
pool allocation can be used to enforce the correctness of a points-
to graph, call graph and type information. Achieving this goal
required solving several significant challenges, which were listed
in the Introduction and will be discussed in the next few sections.

3. Type system
3.1 Overview

We first give an informal overview of our approach, focusing on
four key insights we exploit in this work. The first two are new
in the current work while the other two are borrowed from our
previous work on memory safety for a type-safe subset of C [10].

The goal of our work is to ensure that memory errors (e.g.,
dangling pointer references after a free, array bounds violations,
etc.) do not invalidate the points-to information, call graph, or type
information computed by the compiler. The major challenge is
enforcing points-to information; type information follows directly
from this. The call graph is simply checked explicitly at each
indirect call site (See Section 4.4 for a discussion on eliminating
some of the run-time checks at indirect call sites).

Note that a node in a points-to graph (or the storage shape
graph) is just a static representation of a set of dynamic memory
objects. If these memory objects are scattered about in memory
(as is usually the case), it is prohibitively expensive to check that
a pointer actually points to a memory object corresponding to its
target node (i.e., has not been corrupted by some memory error). As
noted earlier, however, our transformation called Automatic Pool
Allocation partitions the heap into regions based on a points-to
graph [22]. That work focused on performance optimization and
did not attempt to provide soundness guarantees on alias analysis
or type information. That experience, however, led to the following
new insight that is the key to the current work:

[Insight1]: If memory objects corresponding to each node in
the points-to graph are located in a (compact) region of the heap,
we could check efficiently at run-time that the target of a pointer is
a valid member of the compile-time points-to set for that pointer,
i.e., that alias analysis is not invalidated.

Note that this insight relies on the property that unaliasable
memory objects are not allocated within the same region, which is
not usually guaranteed by previous region-based systems [29, 13].

Non-heap (i.e., global and stack) objects may be in the same or
different points-to sets as heap objects. We can simply include such
objects in the set of address ranges for the appropriate pool (but
many stack objects can be handled more efficiently as described in
Section 4). Overall, the operation poolcheck(ph, A, o) verifies
that the address, A, is contained within the set of memory ranges
assigned to pool, ph, and has the correct alignment for the pool’s
data type (or for the field at offset o if o 6= 0).

Even with the above partitioning of memory, checking every
pointer dereference (or every pointer definition) would be pro-
hibitively expensive. The second, relatively simple, insight allows
us to eliminate a large number of the run-time checks:

[Insight2]: Any initialized pointer obtained from a TK region
or from an allocation site, will hold a valid address for its target
region. All other pointers, i.e., pointers derived from indexing oper-
ations, and pointers obtained from TU regions (including function
pointers), need run-time checks before being used.

Intuitively, in the absence of dangling pointer errors and array
indexing errors, an initialized pointer obtained from a TK region
will always be valid; it cannot have been corrupted in an unpre-
dictable way e.g. via arbitrary casts and subsequent stores (it would
then be obtained from a TU region).

Uninitialized pointers, and array indexing errors are addressable
via run-time checks. Dangling pointer references, however, are
difficult to detect in general programs, and we do not attempt to
detect or prevent such errors. Instead, we ensure that such errors do
not invalidate the results of alias analysis, by exploiting two ideas
that we also used in previous work on enforcing memory safety for
a type-safe subset of C [9, 10]:

[Insight3]: In a TK (type-homogeneous) region, if a memory
block holding one or more objects were freed and then reallocated
to another request in the same region with the same alignment, then
dereferencing dangling pointers to the previous freed object cannot
cause either a type violation or an aliasing violation.

Essentially, we make sure that, if a dangling pointer to freed
memory points into a newly allocated object, the old and new
objects have the same static type and that any pointers they contain
have identical aliasing properties. Thus loads or stores using the
dangling pointers may give unexpected results but cannot trample
memory outside the expected pool.

This principle allows free memory to be reused within the same
region (unlike other region-based languages, which either disallow
such reuse [29] or allow it only in restricted cases [16, 28]). For

Int n, m, i, j, a
Region var ρ
var x y
PointerType PT ::= τ ∗ ρ
Types τ ::= int | Unknown | PT

|handle(ρ, τ)
Statements S ::= ε | S; S | x = E; | store E, E

| storeU x, E, E | storec E, E
| storecU E, E | poolfree(E, E)
| poolinit(ρ, τ) x { S };
| pool{S}pop(ρ)

Expressions E ::= var | V | E op E | load E | loadU x, E
| loadc E | loadcU E | cast E to τ
| castintpointer x, E to τ
| poolalloc (x, E) | (x,&E[E])

Value V ::= Uninit | Int | region(ρ)
VarEnv VEnv : Var −→ Value
Region R ::= { F ; RS }
RegionStore RS : Int −→ Value
FreeList F ::= φ | aF
LiveRegions L := RegionVar −→ RS
SystemHeap H

Figure 4. Abstract Syntax for Core language

reuse across regions, as we noted in our previous work [10], Auto-
matic Pool Allocation already provides us a solution:

[Insight4]: We can safely release the memory of a region when
there are no reachable pointers into that region.

Overall, memory in a region can be reused within the region
while the region is reachable and reused by any other region after
the region is no longer reachable. In contrast, other region based
systems only allow the latter reuse and not the former [29].

Finally, in order to prove the correctness of our approach, we
formalize the key properties of our regions by extending the previ-
ous type system encoding points-to information (described in Sec-
tion 2) in two ways: (1) to encode regions corresponding to points-
to sets with allocation and deallocation out of these regions; and
(2) to encode information about region lifetimes. The type system
is designed to be mostly statically checkable for the correctness of
encoded types (i.e. the points-to relations, lifetimes, and the call
graph). We borrow a key idea from Tofte and Talpin’s work on re-
gions for ML [29] to simplify the type system, namely, we restrict
region lifetimes to be lexically scoped (others have shown that this
is not strictly necessary [1, 13]).

3.2 Syntax

To better illustrate our main idea, we limit our discussion here to
a subset of the input language. This subset includes pointers, arbi-
trary casts, heap allocation and deallocation, array indexing and so
has all the common sources of memory errors like dangling pointer
dereferences, type cast errors, array bound overflow etc. Figure 4
gives the syntax for this subset along with new some constructs for
encoding lifetimes of regions, region allocations, region handles,
separating versions of load/store that require run-time check.
The associate statement from the previous language is replaced
by poolinit along with a lexical scope indicating where the asso-
ciation is valid, essentially creating a lifetime for the corresponding
region. So regions in our system are nested, can only be created us-
ing the poolinit statement, and more importantly, unlike regions
in Cyclone or TofteTalpin, a region can only contain objects of one
type. As an example, the statement poolinit(ρ, τ)xρ{ S } creates
a region named ρ that can hold objects of type τ , with the handle
xρ. Our typing rules, described in Section 3.3, make it illegal to
store an object of type other than τ in this region. The type of the
region handle xρ is handle(ρ, τ). The lexical scoping, along with
region attributes for pointers enable us to ensure that an object in

int *r2 *r1 x;
int *r2 y, u, tmp1;
int *r3 z; *r2*r1*r3 w;
poolinit(r2, int) r2handle {
poolinit(r1, int *r2) r1handle {
poolinit(r3, Unknown) r3handle {
x = poolalloc(r1handle, 1);
y = poolalloc(r2handle, 1);
z = poolalloc(r3handle, 1);
store y, x; store 5, y;
poolfree(r3handle,z);
storeU r3handle, 10, z ;
...
u = loadU r3handle, z ;
...
w = cast z to (int *r2*r1*r3);
storeU r3handle, x , w ; //type checks as region of r3
... //is Unknown
tmp1 = loadU r3handle, w;
v = castintpointer r2handle, tmp1 to int*r2 ;

} } }

Figure 5. Running example in our type system

a region can never escape the “scope” of the region. This is be-
cause the type for any pointer outside the scope of a region can not
have the region name as an attribute; it won’t type check as the the
region name is not in scope. This allows us to type check the cor-
rectness of the inferred lifetimes of regions. Though this seems to
disallow cycles in points-to graph, extensions for handling them are
straightforward; we support creating multiple regions at the same
lexical level (not present in the syntax here) and it can be used to
create regions for all the nodes in a cycle at once.

The malloc from C is replaced by poolalloc. Intuitively
poolalloc takes in a handle to the region as an argument and
allocates an object (or an array of objects depending on the sec-
ond argument) out of the region. The type of the allocated ob-
ject(s) in a region is the type associated with the region. A novel
feature in this language, not present in any other region based
type systems is the poolfree statement, the equivalent of free
from C. The poolfree statement frees a memory object and re-
leases the memory to the region for further allocations out of the
pool. Uninit essentially represents the NULL value in C. We also
have a new type of load instruction, loadU x, p that takes in a
region handle x, a pointer p and whose semantics as described
later require first checking if the pointer p points in to the region
for which x is the handle and loads only if the check is success-
ful. Similarly, we have loadcU, storeU, storecU versions of
the loadc, store, storec respectively that perform run-time
pool checks and only if successful peform the actual operations.
castintpointer x, e to τ ∗ ρ, is a version of cast, that allows
cast from int to pointer and requires a run-time pool check. The
&p[x, e] is the pointer arithmetic from earlier, but now a requires a
pool handle x as also as an argument as it needs to do a run-time
check. Except for null pointer checks, all the new operations that
take in a pool handle as an argument are the only operations that
require a run-time check in our system. For all the other operations
only checks performed are null-pointer checks.

Everything else in the syntax including pool{(S)}pop(ρ) ,
region(ρ) are not part of the source language but needed for op-
erational semantics and are described in Section 3.4.

The Figure 5 shows the running example in this new syntax.
The associate is now replaced by poolinit binding the life-
time of the pools. Some operations from the original example are
replaced to use versions of the instructions that require a run-time

(SS4)
C ` e : τ ∗ ρ C ` ρ : τ

C ` load e : τ
τ 6∈ {Unknown,char}

(SS5)
C ` e2 : τ ∗ ρ C ` ρ : Unknown C ` x :handle(ρ, Unknown)

C ` loadU x, e2 : int

(SS6)
C ` ρ : τ C ` x :handle(ρ, τ) C ` e2 : int

C ` poolalloc(x, e2) : τ ∗ ρ

(SS7)
C ` ρ : τ C ` x :handle(ρ, τ) C ` e : int

C ` castintpointer x, e to τ ∗ ρ : τ ∗ ρ

(SS8)
C ` τ ′ C ` e : τ ∗ ρ

C ` cast e to τ ′ ∗ ρ : τ ′ ∗ ρ

(SS14)
C ` ρ : τ C ` e1 : ρ ∗ τ C ` e2 : τ

C `store e2, e1
τ 6∈ {Unknown,char}

(SS15)
C ` ρ : Unknown C ` e1 : τ ∗ ρ
C ` e2 : τ C ` x :handle(ρ, Unknown)

C `storeU x, e2, e1

(SS16)
C ` ρ : τ C ` x :handle(ρ, τ) C ` e2 : τ ∗ ρ

C `poolfree(x, e2)

(SS17)
C ` τ Γ[x 7→handle(ρ, τ)], ∆[ρ 7→ τ] ` s

C(= Γ, ∆) `poolinit(ρ, τ)x{s}
x 6∈ Γ and ρ 6∈ ∆

Figure 6. Select Typing Judgments

check. The typing rules suggest which operations require run-time
checks. Informally any load or store via a pointer to an unknown
region requires a run-time check and need to be replaced by the
versions which perform the run-time check and so are casts from
int to pointers, array accesses. Intuitively, we can think of insert-
ing the appropriate run-time checks before those operations in the
program.

3.3 Typing Rules

The type system is expressed by the following three judgments:
C ` e : τ (for expression typing) , C ` S (for statement typing),
C ` τ (for type typing).

In these judgments C, the typing context, is a pair of typing
environments (Γ; ∆) where Γ is a map between variable names and
their types (built up using the variable declarations) and ∆ is a map
between region names and the type of objects stored in the region
(built up using poolinits). We present in Figure 6 the typing rules
that are unique to our approach. The full set of typing rules for the
language in Figure 4 are included in Section 10.

(SS4) and (SS14) type loads/stores using pointers to type con-
sistent memory (TK pools). They check that the type of the objects
in the pool matches the type of the pointer operand. (SS5) is for
loads using pointers to untyped Unknown memory (TU pools);
note that we get back an int. (SS7) allows a cast from int to pointer
type, As discussed later in the operational semantics, such a cast re-
quires a run-time check to make sure that the pointer is of the right
type in the right pool. This coupled with (SS5) above enables load-
ing pointers from TU pools safely. SS15) types stores to Unknown
memory. (SS8) types a cast from a pointer to region to another
pointer pointing to the same region. This helps in supporting ar-
bitrary casts of a pointer types as long as they have the same region
attribute, without requiring any run-time check ((SS4) and (SS14)
require that a pointer be cast back to the type of objects in the region
before use). (SS17) is for creating a region using poolinit; we add
the region variable and the handle to the typing environment before
checking the body of the poolinit statement. (SS6) gives a type
for the memory objects allocated in a pool. (SS16) frees objects
only when they belong to the appropriate pool.

3.4 Operational Semantics

There are several sources of “programming errors” in weakly
typed languages, including in the simple language described above,
which can invalidate the results of any conservative alias analysis
if we just rely on the the standard C semantics. For the language
here, we list all the possible error sources below:

P1 dangling pointers to freed memory

P2 array bound violations

P3 accesses via uninitialized pointers

P4 arbitrary cast from an int type to another pointer type and
subsequent use.

The one remaining source of memory errors in C, accessing a stack
variable after a function returns, is not possible in our simplified
language and is handled in Section 4.5.

In the case of P1, we have already explained how the type
homogeneity principle allows us to reuse memory within a region
while still making sure that dereferences to freed memory do not
invalidate the aliasing properties. To implement the principle we
need to maintain a list of freed memory objects within each region.
Consequently our regions are defined as a tuple { F ; RS }, where
F is a list of freed memory locations within the region, and RS is
the region store (see Figure 4). Objects in the free list will be first
used to satisfy allocation requests for the region. The region store,
RS, is a partial map between memory addresses and their values.

VEnv, the variable environment, is a partial map between local
variables and their values. We assume that region(ρ) is the handle
for a region named ρ. The set of live regions, L, is a partial map
between region names and the region store.

We present here only the operational semantic rules that are
either novel to our approach or those that require a run-time check
to solve the four problems above. See Figure 7 for the important
rules and a brief explanation of each of them. Complete set of rules
are available in Section 10.

The rules are described as a small-step operational semantics
(−→rhs for expressions and −→stmt for statements). Each pro-
gram state is represented by (VEnv, L, es) where VEnv is the
variable environment (holding the values of local variables), L is
the “stack” of regions that are live, and es is an expression or a
statement in the program. A program state (VEnv, L, es) becomes
(VEnv’, L’, es’) if any of the semantic rules allow for it. The expres-
sion in the box denotes a run-time check that needs to be successful
for the operation to be applicable.

Briefly, the four memory errors P1-P4 are solved as follows. P1
is solved using the type homogeneity principle, explained previ-
ously. This is implemented by rules R14, R34 and the static typing
rules that check operations on pointers to known-type pools. We
detect problem P2 using the run-time check on rule R40. To detect
P3, we initialize all newly created memory and all local variables
to Uninit and check Uninit pointers as shown in rules R6, R14.
Issue P4 is detected using R31.

More concretely, the rules shown in the figure work as follows:

R15,R17 Evaluating poolinit creates a new region, set the free list to
be empty, and evaluates the body inside the syntactic construct
pool{S}pop(ρ). This construct demarcates when the region is
to be deallocated, viz., when the body (S) becomes empty. This
is performed by rule R17.

R17 When all the statements within the pool construct are evaluated,
we can destroy the pool (remove it from the stack of live
regions.

R6 Performs a store via a type-consistent pointers, after checking
that v1 is not Uninit. update(L,v1, v2) just updates the mem-

ory location v1 with value v2 (formally defined in Section 10).
Loads via type consistent memory have a similar check for an
uninitialized pointer.

R10 Performs a store via a pointer to Unknown memory, after
checking that the pointer value legally allows storing of a 4-
byte value (an int).

R14 Frees an object from region, ρ, and adds it to the free list F of
the same region.

R34 Returns a previously freed location from the free list. Note that
this is where we rely on the type homogeneity principle to make
error P1 harmless.

R35 For a poolalloc, when the free list is empty, this requests fresh
memory from the system. This is true if the system memory
allocator is not buggy; i.e., the allocator falls within our trusted
code base.

R31 A cast from int to another pointer type is always checked at
run-time using a poolcheck, i.e., we check that the value is
a (properly aligned) address in the appropriate pool for the
pointer type, and if not, we abort. This solves problem P4. (Note
that for structure types, the resulting pointer type specifies the
field, i.e., τ ∗ (ρ, n), needed for the alignment check.)

R40 For array indexing, we check that the resultant pointer after the
arithmetic always points to the same pool as the source pointer.
These run-time checks are not exact array bounds checks but
a much coarser check for the pool bounds. This means some
array bound violations may go undetected.

The complete list of run-time checks in our system are the
checks in the boxes in Figure 7 along with checks on casts from
integer to function pointers.

All these run-time checks do not require any metadata on indi-
vidual pointer variables (usually required for precise array bounds
checks) or runtime tag bits on any memory locations (usually re-
quired for RTTI or to track legal pointer values). Most importantly,
we do not need to track the mapping of a pointer to its target pool
descriptor because this mapping is fixed and known at compile time
(because we use a unification-based pointer analysis, we have a 1-1
mapping of pool handles to points-to sets in each function). There
are no run-time tag bits on any memory locations because valid
pointer values are identified via poolchecks on castintpointer
operations, and non-trivial type information is checked at compile
time.

3.5 Soundness proof

Let C `env (V Env, L) denote the judgment for a well formed
environment, the invariants of which are included in the technical
report. Also assume that a run-time check failure leads to the Error
state in the operational semantics. Then we can prove the following
soundness theorem:

THEOREM 1. If Γ `S and Γ `env(VEnv, L) then either (VEnv,
L, S) −→∗

stmtError or (VEnv, L, S) −→∗
stmt (VEnv’, L’, ε) and

C `env (VEnv’, L’).

Proof: The proof for this theorem is by induction on the structure
of typing derivations (In Section 10).

The soundness result gives us with the following invariant –
“For a well typed program containing pointer variable p whose de-
clared type is τ ∗ ρ, in every execution state the value of p is guar-
anteed to be a pointer to an object in the region ρ”. This holds even
in the presence of undetected memory errors like dangling pointer
dereferences and array bound violations, and thus it guarantees cor-
rectness of the aliasing information induced by our type system.

FunctionType ft := τ → τ |τ → Unit|∀rho.τ.ft | ft<ρ>
new Types := τ | ft |Unit
Functions F := τ ′f(x : τ) { S } |<ρ, τ> F
Instantiation finst := f |x| finst <ρ>
new Statements := S
| poolinit(n, ρ1, ..., ρn, τ1, ..., τn)(x1, ..., xn) { S }
| call finst (x)

Figure 8. Syntactic extensions for remaining C constructs

3.6 Weaknesses

The key weakness of our system is that it permits dangling pointer
errors and array bounds violations to go undetected (but confined
within a pool). As explained in Section 1, the only solution to
the former (for obtaining soundness guarantees) is via the use
of automatic memory management. For the latter, although we
could implement more precise array bounds checks, doing this
efficiently would require some metadata on pointer variables. This
introduces compatibility problems with external libraries, often can
requiring manual changes by programmers. Our goal in this work
is to provide a sound compiler approach that is transparent to
programmers.

A second issue is that in some cases, our system might require
more memory than the original C program (since we cannot free
memory to the system until a region goes out of scope). In our
previous work, we have evaluated the increase in the context of
programs with no type casts and found that the increase is minimal
in practice [10]. We believe this issue is unlikely to be significant in
practice because we allow reuse within regions (which we believe
is quite common for data structures that shrink and grow).

Finally, if the pointer analysis can not infer an allocation site
and consequently a region, for a pointer (e.g. if the address is
“manufactured” or read off the disk), we simply insert an abort
before every use of such a pointer variable. This could reject a legal
C program (other systems like CCured share the same limitation).

4. Extensions for full C
Several constructs of C were omitted in the previous section to
explain our core ideas. Our type system and semantics correctly
handle all constructs in C and so does our implementation. In this
Section, we informally discuss how we handle the remaining con-
structs including function calls, function pointers and support for
region polymorphic functions. Some of the ideas for implementing
region polymorphism in functions and structs are directly borrowed
from Cyclone [13]. However it is worth noting that our universal
types are quantified only over region type variables (and not arbi-
trary type variables). This is sufficient in our domain of trying to
retrofit polymorphic region types for otherwise non-polymorphic
existing C code.

4.1 Structure types

The only extra safety implications of structure types are that (a)
the poolcheck must use the offset o in checking alignment, and
(b) structure indexing operations for pointers to TU regions need
a poolcheck (similar to array indexing).A notational issue is that
it is convenient to include polymorphic type constructors (simi-
lar to those used in Cyclone [13]) because a struct type with a
pointer field can be used in different places with the field point-
ing to distinct sets of objects (e.g., when two distinct linked lists
are created with the same list node type) The region-polymorphic
structs for defining families of struct types. are exactly same as
the “node” polymorphic structs described in Section 2. For exam-
ple struct S<rho> Field0 : int, Field1 : int * rho
defines a universal struct type parameterized over region variable

R6 (VEnv, L, store/storec v2, v1) −→stmt (VEnv, update(L, v1, v2), ε) (v1)! = Uninit

R10 (VEnv, L, storeU region(ρ), v2, v1) −→stmt (VEnv, update(L, v1, v2, 4) }], ε) (v1, v1 + 3] ∈ Dom(L[ρ].RS)

R14 (VEnv, L ∪ { (ρ, {F ;RS}) }, poolfree(region(ρ), v)) −→stmt (VEnv, L ∪ { (ρ, {vF ; RS}) }, ε) v! = Uninit

R15 (VEnv, L, poolinit(ρ,τ)x{ S }) −→stmt (VEnv ∪ {(x,region(ρ))}, L ∪ {(ρ, {φ; φ})}, pool{S}pop(ρ)) if (ρ 6∈ Dom(L))

R17 (VEnv ∪ {(x,region(ρ))} , L ∪ {(ρ,R)} , pool{ε}pop(ρ)) −→stmt (VEnv, L, ε)

R31 (VEnv, L, castintpointer (region(ρ), v to τ) −→expr (VEnv, L, v) v ∈Dom(L[ρ].RS)

R34 (VEnv, L ∪ { (ρ, {a F ;RS}) }, poolalloc(region(ρ), 1)) −→expr (VEnv, L ∪ { (ρ, {F ;RS}) }, a)

R35 (VEnv, L ∪ { (ρ, {φ;RS}) }, poolalloc(region(ρ), 1)) −→expr (VEnv, L[ρ 7→ {φ; RS[a 7→ Uninit]}], a)
where a is a new address obtained from system allocator.

R40 (VEnv, L, (region(ρ), &v1[v2])) −→expr (VEnv, L, v1 + v2 ∗ sizeof(τ)) (v1 + v2 ∗ sizeof(τ)) ∈Dom(L[ρ].RS)
where τ is the “static” type of the individual element of the array, available from the declaration.

Figure 7. Select Operational Semantic Rules. Run-time checks are shown in boxes.

<rho, int> int function func (handle<rho, int> ph,
int*rho p) {

int q,z;
int*rho r;
r = poolalloc(ph, 1);
q = load p;
...
return z;

}
main() {

poolinit(rho1, int) ph1 {
poolinit(rho2, int*rho1) ph 2 {
int *rho’ p = poolalloc(ph1, 1) ;
l1: call func<rho1>(ph1,p); //type correct
l2: call func<rho2>(ph1,p); //type incorrect
...

}
}

}

Figure 9. Region Polymorphic functions

rho and whose Field1 points to region rho. This universal type
can instantiated with any region variable to get a new type.

4.2 Region-polymorphism for functions

We also support region polymorphic functions, parametrized via
region names. An example is shown in Figure 9. Here the func-
tion func is declared as a region polymorphic function, which can
be instantiated using a region variable whose type matches the ex-
pected type. The instantiation at l2 is incorrect since the type of the
objects that can be allocated in the region do not match. Region
polymorphism is necessary if we don’t want to duplicate function
definitions for each context in which they are used. Inferring this re-
gion polymorphism automatically for C programs based on points-
to analysis has already been reported [22]. We leverage that work
and only type check that the inferred polymorphism and its instan-
tiation is correct.

4.3 Cycles in Points-to graphs

SafeRegionUse principle described earlier does not allow express-
ing mutually recursive types in our languages. This is clearly not
acceptable for supporting general C programs. We solve this by re-
quiring that the regions for mutually recursive data structures be
created at the same lexical level. For this reason, we add a new
construct to our language that enables creating multiple regions at
the same lexical level. An example is shown in Figure 10. Here
poolinit creates two regions rho1, rho2, such that rho1 con-

struct Y<rho1, rho2>; //forward declaration
struct X<rho1, rho2> {
Fld1 : struct Y<rho2, rho1>*rho2

}
struct Y<rho2, rho1> {
Fld1 : struct X<rho1, rho2>*rho1 ;

}
...
poolinit(2, rho1, rho2,

struct X<rho1, rho2>, struct Y<rho1, rho2>) (ph1, ph2)
{
....
}

Figure 10. Cycles in Points-to graph

tains objects of type struct X¡rho2¿ and viceversa. Note that we
only require that the region initialization (via poolinit) for these
data structures to be done at the same lexical level, actual mem-
ory allocation with in a region is done at the same place as in the
original program.

4.4 Function pointers

In the discussion in the previous section, we have assumed that we
could enforce the correctness of the input call graph by performing
run-time checks at every indirect call site. A number of these run-
time checks are unnecessary and can be eliminated using static
analysis.

First, note that the input pointer analysis itself contains a conser-
vative call graph obtained using a flow-insensitive unification based
algorithm. However, the input call graph we must enforce could be
more precise (at some call sites) than the call graph contained in
the pointer analysis. Here, we first present simple typing rules that
can statically check the call graph contained in the pointer analysis
in most cases and add a few run-time checks where static checking
is not possible. We then enforce the more precise input call graph
by adding extra run-time checks only at call sites where more pre-
cision is required.

Recall that a function pointer has an extra type attribute called
the function set attribute (see Figure 2) that identifies the set of
functions that can be called via that function pointer 1 If two
function pointers have the same fset attribute then they potentially

1 This appears to limit the input call graph to be flow-insensitive for the
input language described in Figure 1. Our implementation, however, first
converts the program to single assignment form and with such a represen-

call the same set of functions. To differentiate between the input
call graph and the call graph given by the pointer analysis, we use
the attribute PAFSET to identify the function pointer targets given
by pointer analysis.

Consider the code fragment below:

PAFSET fs1 = func1, func2, func3;
(int -> int)*fs1 f, g;
f = g; //type-checks since fset attributes are the same

Here fs1 represents the set of functions { func1, func2,
func3 } . Our type checker checks that func1, func2, func3
are compatible, that they have same number of arguments, compat-
ible argument types and are alpha equivalent with respect to region
type variables. For an array of function pointers, the PAFSET at-
tribute should include all the functions that ever get stored to any
location in the array. Assignments to function pointers require type
equality. In the example program, f = g type checks because they
have the same type attribute. Any casts from int type to a function
pointer type, essentially function pointers that point to a TU pool
or obtained from a TU pool, require a run-time check: we check at
run-time if the function pointer actually points to one of the func-
tions in the PAFSET attribute.

If the input call graph is more precise than the one given by
the pointer analysis, then we need to add more run-time checks to
account for the imprecision. As an example consider the case where
the input call graph for the above code fragment, has a more precise
FSET attribute for g, namely { func1, func2 } . To enforce the
more precise call graph we add run-time checks before any indirect
call through g, to check that g points to one of { func1, func2
} . Formally, if the FSET attribute of a function pointer in the input
call graph and the PAFSET attribute of that function pointer (in the
call graph obtained from points-to analysis) are different, then we
insert a run-time check for the indirect calls through such function
pointers.

4.5 Stack and Global Allocations

We have explained briefly in Section 2 how the the alloca expres-
sion in our input language can model stack objects and eliminate
the & operator for taking address of stack objects in C. Pointers to
stack locations are a possible source of memory errors; they can
escape the function in which they are created, potentially allowing
a dangling pointer dereference in a caller. To prevent this, we first
pretend that all allocas are actually mallocs and infer the life
times of regions using automatic pool allocation just like before. If
a stack object escapes a function, then the region for that stack ob-
ject is created within all the callers and an argument is passed in. In
this case, we have to allocate that stack object on the heap to avoid
dangling pointers.

However, for those stack objects for which the regions are still
created within the same function (i.e., not moved up to a parent
function because they don’t escape), if no run-time checks are
needed for any pointer accesses pointing to these regions, our im-
plementation allocates them on stack just like the original program
since there are no frees in such regions. In practice we found that
most stack allocations in original program do not escape, do not
need run-time checks and can actually be allocated on the stack.

We support global allocations by pretending that they are heap
allocations in the entry function, main, before any operation of the
original program. Note that any pool corresponding to the global
has to be a global pool and will be initialized in main. Since globals
are never deallocated, our implementation, instead of allocating
them from the heap area corresponding to the pool, allocates them

tation, the function set attributes are sufficient to encode a flow-sensitive
version of the call graph.

in global data space just like the original program and only stores
the range of addresses with the pool. A run-time pool check, which
checks whether an address belongs to the pool, needs to compare
with these global address ranges in addition to the heap allocations
out of the pool.

4.6 Control flow

Finally, ordinary control does not require any additional safety
checks. Adding typing rules and semantic rules for control flow to
our language is fairly straightforward and we omit the discussion
here.

5. Implementation
Our compiler system, SAFECode (Static Analysis For safe Execution
of Code), is implemented using the LLVM infrastructure [21]. In
principle, SAFECode supports any source language translated into
the LLVM IR, but most of our experience has been with C pro-
grams so far. SAFECode uses a context-sensitive pointer analysis
algorithm called Data Structure Analysis (DSA) to compute the
points-to graph, call graph, and type information [20].

Conceptually, analysis validation in SAFECode consists of a
non-standard “type-inference” step using Automatic Pool Alloca-
tion, a standard type checking step, and insertion of the necessary
run-time checks. These phases are described next, followed by a
brief summary of the SAFECode run-time system.

5.1 Type Inference and Type Checking

The “type inference” phase of SAFECode takes the input program
and the points-to graph computed by DSA and transforms the pro-
gram to add the region type attributes and region parameters of
our extended type system. This type inference is simply a direct
application of Automatic Pool Allocation, described briefly in Sec-
tion 2.2. The pools inserted by pool allocation correspond directly
to the region types in our type system.

Because Automatic Pool Allocation is not a standard type in-
ference algorithm, we use a separate (and standard) type check-
ing phase to check its output. Because our type rules include the
region types, region lifetimes, and lexical scoping of region pa-
rameters, our type checker effectively ensures the correctness of
this region inference (including region lifetimes, region parame-
ters, etc.). This takes Automatic Pool Allocation outside the trusted
code base required in SAFECode. Effectively, our extended type
rules are stronger than what is required to guarantee just the points-
to information, call graph and source program type information.

Finally, the full list of run-time checks and operations required
by the operational semantics include (i) ”pool bounds” checks for
all references using a pointer to or from an Unknown-type pool; (ii)
pool bounds and alignment checks for array references to known-
type pools (we also use an interprocedural static array bounds
checking algorithm described in Section 6 to eliminate some of
these checks); (iii) checks at an indirect call site if the function
pointer value is obtained from an Unknown-type pool, checking that
the target is a member of the callee set predicted by the call graph;
and (iv) initialization of potential pointer fields within memory
objects to Uninit. When a reserved address range is available (e.g.,
the high GB within a 4GB address space for Linux), we set Uninit
to the base of this range so that the check is performed “for free”
by the memory management hardware.

5.2 The SAFECode runtime system

The key new aspects of the run-time (and some relevant implemen-
tation details needed to understand them) are as follows.

A pool in our implementation is organized as a linked list of
(large) blocks. The pool handle stores the header to this list. If

there is insufficient space for a new allocation, the pool requests
more blocks from the underlying system heap using malloc. An
allocation request is satisfied by returning a free chunk within one
block (or spanning multiple blocks if needed). One key change in
the pool implementation is that heap metadata such as the object
header describing the size of an allocated block and the free list
cannot be interleaved with live objects in a pool since our approach
allows some memory errors to overwrite arbitrary data within a
pool. Allowing the metadata to be corrupted would potentially lead
to arbitrary safety violations. We maintain metadata for the free list
at the start of each free block and ensure (as part of the poolchecks
below) that this data cannot be corrupted. To record the size of an
allocated block so that it can be found efficiently, we take advantage
of type homogeneity (which we have empirically found is available
for most pools even in C programs, as explained in Section 2.1). We
use a bit vector (with one bit per data element of the pool type)
to track the start of each allocated object (or the start of a free
chunk immediately after an allocated object). Because searching
this bit vector would be very inefficient for large arrays, we allocate
each large array in a (contiguous) set of new blocks and perform a
poolfree for the array simply by freeing all the blocks. (The hash
table used for poolchecks below allows us to identify quickly when
a particular address is a large array.)

By far the most important operations (in terms of performance
impact) are the pool bounds checks, which are used either during
the array indexing or during cast operations. Given a memory
address, this check verifies that the address is contained within the
memory of the pool and has the correct alignment for the pool’s
data type. To make the check efficient, we request memory from the
system in blocks of size of 2k bytes for some fixed k. We maintain
a hash set holding the starting addresses of all current blocks. Given
an address to check, we compute the block holding the address by
masking the low k bits and check if the block is in the hash set. If
it is, then we check for the alignment criterion. A check, therefore,
involves a mask, two loads, a hash lookup, and an alignment check.

We can eliminate many hash lookups by exploiting the high
spatial locality exhibited by many memory references, especially
array references. We use a one-element cache to remember the
block address of the last successful hash lookup and alignment
check. On each check, we first compare with this cached value;
if successful, we can avoid the hash lookup. For example, for an
array accessed sequentially, we only need a hash look up for one in
every 2k/(element-size) array accesses.

For uninitialized pointers, we are able to avoid a software check
in many cases. Modern operating systems reserve a set of addresses
for the kernel, e.g., Linux reserves the high GB of each process
on a 32-bit machine. A user-level program accessing that address
range would cause a hardware trap. We therefore set the Uninit
value to the base of reserved addresses, (and replace the constant
’0’ in any pointer-type expression with the same value), so that the
hardware does the run-time check for us for free. This technique is
unusable for kernel modules and also for references that may access
a structure type with size greater than the reserved range (which
is extremely rare). For these, we have to retain explicit software
checks at run-time.

6. Sound Static Analyses Enabled By SAFECode
The semantic guarantees provided by our system can be used to
write sound static analyses based on the points-to graph, call graph,
and type information. In this section we first show that a static
array bounds checking technique developed in our previous work,
which relies on a call graph, can now be used soundly for non-
type-safe programs in our environment. We also illustrate how our
soundness guarantees about alias analysis can benefit other static

void KernelEntryPoint(int **o) {
int **q, *r;
char arr[15];

1: r = malloc(....);
2: ... //some computation using r
3: free(r);
if (o != NULL)
4: q = o;

else {
5: q = malloc(..);
6: *q = ... /* *q is initialized with some safe value */

}
7: *r = ... /* dangling pointer error, this can overwrite *q */
8: if (o != NULL)

Probe(o); /* checks that *o is a valid pointer */
9: **q = data1; /* Dereference arbitrary pointer */
}

Figure 11. Example – Value flow analysis with memory errors

analysis tools, using an existing software verification tool as an
example.

6.1 Static array bounds checking in SAFECode

We can use an interprocedural array bounds checking algorithm
that we developed previously (for type-safe subset of C) to elim-
inate some runtime array bounds checks. The algorithm uses the
call graph but not points-to-graph because it does not track val-
ues through loads/stores. It propagates affine constraints on integer
variables from callers to callees (for incoming integer arguments
and global scalars) and from callees to callers (for integer return
values and global scalars). We then perform a symbolic bounds
check for each index expression using integer programming (our
compiler uses the Omega Library from Maryland [19]). We retain
the run-time checks for all the array references that could not be
proved to be safe using our static analysis. Since SAFECode se-
mantics guarantee the correctness of the call graph, this optimiza-
tion is safe (just like it would be safe for a type-safe language).
To our knowledge, SAFECode is the first system for ordinary C
programs (including explicit memory deallocation) where such an
optimization can be performed safely.

Two other aspects of our system described earlier are actually
also optimizations because they are not strictly necessary for cor-
rectness. These two are the use of bounded lifetimes for regions
in Section 3 (which reduces memory consumption) and using stack
allocations for non-escaping stack objects in Section 4.5 (which im-
proves performance directly). These optimizations depend on alias
analysis as well as the call graph, both of which are guaranteed
sound.

6.2 Static Analyses in ESP

As final example, we briefly describe one software validation tool,
ESP [8], that relies on alias analysis to give guarantees about
programs and could benefit from the guarantees provided by our
system. Although we explain this interms of ESP, other software
validation tools could make use of our guarantees in a similar
fashion.

ESP relies on value flow analysis [11], a static analysis used
to identify the set of pointer expressions that refer to the memory
locations that hold a certain value of interest, such as a lock.
These sets are called value alias sets and computed by a data-flow
analysis (value flow simulation) and transfer functions using May
alias information provided by a flow-insensitive, unification-based
context sensitive pointer analysis. This approach has been used
to verify various properties in software, e.g., the Probe security
property [11], which requires that any pointer passed into the kernel

from user space is checked (“probed”) before being dereferenced
by the kernel.

Consider applying ESP to verify the code fragment in Figure 11,
which is a version of the kernel code fragment used in [11] mod-
ified to introduce a dangling pointer reference. In the function,
KernelEntryPoint, the pointer o is passed in from a user rou-
tine and its target needs to be probed before being dereferenced by
the kernel. Because of line 4, ESP tracks q and o as value aliases
if o != NULL. The newly allocated memory when o == NULL is
initialized to be safe. Lines 7 contains a memory error (a dangling
pointer dereference). Since the system memory allocation could al-
locate previously freed memory of r for the allocation of q, this
dangling pointer dereference could actually overwrite *q. This vi-
olates the results of the May-alias analysis that q and r are not
aliased to each other. In line 8, the target of pointer o is probed.
ESP thus transitions both the value aliases, o and q, to the safe
state. Dereferencing *q is hence detected as safe by ESP. However,
in reality, *q could now point to any location in memory and can
be dereferenced by the program, violating the Probe security prop-
erty. Enforcing the assumed aliasing properties is essential for the
soundness of the tool.

In our system, the same example would allocate q and r in
two different pools as they are not aliased. This makes sure that
dangling pointer error in r is not allowed to trample the memory of
q. While we do not detect the actual error, we make sure that the
aliasing property is not invalidated.

The above is an example of a flow-sensitive program analysis
that uses an external flow-insensitive alias analysis and can be
easily made sound using our approach. For a more general flow-
sensitive analysis that reasons about loads/stores, we must modify
the semantics of malloc (and free) in the analysis so that the address
returned by malloc may be “aliased” to any previously freed objects
in the same alias set. This is a straightforward (and local) change
within the implementation of a dataflow analysis.

7. Results
We present an experimental evaluation of SAFECode for several
ordinary C programs and a few operating system daemons. These
experiments have three goals:

• To measure the net overhead and different components of over-
head incurred by our safety checking techniques;

• To evaluate the benefit of using sound static analyses enabled
by SAFECode to eliminate various kinds of runtime checks.

• To compare the overhead of our approach to that of the CCured
system.

7.1 Run-time Overheads

We evaluated our system using 10 programs from the Olden suite of
benchmarks [6], 3 programs from PtrDist, and three system codes
– bsd-fingerd-0.17, ftpd-BSD-0.3.2, and netkit-telnet-0.17 daemon.
The benchmarks and their characteristics are listed in Table 1.
We compiled each program to the LLVM compiler IR, perform
our analyses and transformations, then compile LLVM back to C
and compile the resulting code using GCC 3.4.2 at -O3 level of
optimization. For the benchmarks we used a large problem size
to obtain reliable measurements. For ftpd and fingerd, we ran
the server and the client on the same machine to avoid network
overhead, and measured their response times for client requests.
We are successfully applied SAFECode to netkit-telnetd but
this is an interactive program and we did not notice any perceptible
difference in the response times. We do not report detailed timings
for this code here.

The “native” and “LLVM (base)” columns in the table rep-
resents execution times when compiled directly with GCC -O3
and with the base LLVM compiler (without pool allocation or any
SAFECode steps) again using the LLVM C back-end. Use LLVM
(base) times as our baseline allows us to isolate the affect of the
overheads added by SAFECode. The “native” column shows that
the LLVM (base) code quality is comparable to GCC and reason-
able enough to use as a baseline.

The “PA” column shows the time when we only run the pool
allocator and do not insert any run-time checks, i.e., it shows the
effect of pool allocation on execution time. The “PA + checks
(except array)” column shows the execution time with all load/store
checks are inserted except the checks for arrays. The “SAFECode”
column shows the time with all run-time checks. The two ratios,
SAFECode/LLVM and SAFECode/PA, show the net overhead of
SAFECode relative to the base LLVM code without and with pool
allocation.

The column “SAFECode/PA” shows that the run-time safety
checks added by SAFECode have a relatively small impact on
performance (over and above pool allocation): less than 10% in all
cases except ks and yacr2, which have 11% and 18% overhead.
The latter two overheads are entirely due to pool checks for array
references, as seen by comparing the “PA+non-array checks” vs.
the “SAFECode” columns.

Comparing the columns “SAFECode/LLVM” with “SAFE-
Code/PA,” we see that the pool allocation transformation has a sig-
nificantly bigger impact on performance than the run-time checks.
Four of the programs show significant slowdowns due to PA: em3d,
anagram, ks and yacr2. We believe that these slowdowns are be-
cause our modified pool run-time library has not been tuned at all
and, in fact, uses an inefficient bit-vector implementation of free
lists. A more recent version of the pool runtime library used in [22]
shows no slowdown for these four programs (and much more sig-
nificant speedups for many other codes). We aim to merge our
extensions with this version in the near future.

The voronoi benchmark fails at run-time due to the derefer-
encing of a pointer casted from an integer resulting in a pointer to
an unknown memory object. We discovered that the program casts
a pointer to an integer, performs complex arithmetic on the inte-
ger and then casts it back to a pointer. Our pointer analysis (DSA)
tracks integers derived from pointers heuristically and did not cap-
ture this case, but can be extended to do so.

7.2 CCured Comparison

The last three columns in Table 1 compare the overhead of SAFE-
Code with that of CCured, for the Olden benchmarks rewritten by
the CCured team. We have not tried to compare our results on other
system codes as it involved significant porting effort in writing the
CCured wrappers. In all these programs SAFECode has signifi-
cantly less overhead than CCured, even though SAFECode’s pool
checks are more expensive than the run-time checks inserted by
CCured. The lower overhead can be attributed to the broad range
of static analysis techniques employed by SAFECode for elimi-
nating garbage collection (GC) overhead, stack safety checks, and
many array bounds checks, and the run-time techniques that elimi-
nate null pointer checks and metadata maintenance overhead. Note,
however, that several of our static and run-time techniques for re-
ducing overhead (except GC overhead) could be used with CCured
as well. We believe that for end-users, any differences in the over-
heads of the systems is likely to be less important than the choice
between automatic and explicit memory management.

7.3 Effectiveness of Static Analysis

Table 2 shows the effectiveness of our static checks and of seg-
regating memory objects into TK and TU pools. Columns 2 and

Benchmark Lines execution times (secs) Slowdown Ratios
of native LLVM PA PA + SAFECode CCured SAFECode SAFECode SAFECode CCured

code (base) non array /LLVM /PA /native /native
checks

Olden
bh 2053 1.449 1.357 1.338 1.361 1.403 1.923 1.03 1.05 0.97 1.31
bisort 707 11.740 11.530 11.531 11.531 11.531 11.358 1.00 1.02 0.98 0.97
em3d 557 13.960 11.29 14.245 14.245 14.248 20.812 1.27 1.00 1.02 1.49
health 725 1.909 1.936 1.296 1.296 1.299 1.710 0.67 1.00 0.68 .90
mst 617 11.259 12.920 12.837 12.837 12.96 16.956 1.00 1.01 1.15 1.51
perimeter 395 2.033 0.048 0.051 .051 0.051 2.544 1.04 1.00 .025 1.25
power 763 1.253 0.887 0.934 0.934 0.918 1.408 1.03 0.98 0.73 1.12
treeadd 385 5.426 5.457 5.425 5.425 5.425 14.784 0.99 1.00 1.00 2.72
tsp 561 1.277 1.270 1.250 1.250 1.250 1.578 0.98 1.00 0.98 1.23
voronoi 111 Rejected because of cast from integer to pointer
System
fingerd 338 6.410 6.555 6.617 6.617 6.753 1.03 1.02 1.05
ftpd 26653 1.210 1.185 1.160 1.160 1.190 1.00 1.03 0.98
PtrDist
anagram 647 12.778 16.084 16.915 17.953 19.742 1.23 1.05 1.54
ks 782 3.554 4.429 4.501 4.501 4.981 1.12 1.11 1.40
yacr2 3982 3.795 3.991 4.398 4.398 5.204 1.30 1.18 1.37

Table 1. Benchmarks (telnetd in text) - Runtime Overheads

3 show the total number of static array accesses and the number
that must be checked at run time. The next two columns show the
total number of static loads and stores and the number that need
to be checked at run time. The last two columns show the static
number of TU and TK pools. We found that our static array safety
checks were successful in eliminating some run-time array bounds
checks in most programs. Our static pointer safety techniques elim-
inates the need for run-time load/store checks in all but 3 of the
programs. In the remaining three, we have checks for loads/stores
using a pointer to a TU node).

Benchmark Static Counts
Total Checked Total Non-array TU TK
array array loads/ pointer

accesses accesses stores checks
bh 80 45 708 96 1 3
bisort 2 0 103 0 0 1
em3d 17 14 80 0 0 10
health 3 0 221 0 0 2
mst 4 3 53 0 0 5
perimeter 4 4 233 0 0 1
power 4 4 229 0 0 4
treeadd 2 0 31 0 0 1
tsp 0 0 176 0 0 1
fingerd 13 8 32 11 0 3
ftpd 362 209 1949 285 2 22
telnetd 432 363 1602 0 0 15
anagram 63 47 164 4 1 5
ks 58 52 326 0 0 3
yacr2 302 302 856 0 0 26

Table 2. Benchmarks - Effectiveness of Static Checks

8. Related Work
For weakly typed languages like C and C++, there are broadly
two kinds of techniques addressing memory errors: memory safety
techniques that try to detect or prevent some or all memory errors,
and stronger approaches that provide soundness guarantees.

There have been a large number of systems for detecting mem-
ory access errors by adding run time checks and meta-data [14, 26,
2, 18, 25, 23, 30] (the work by Loginov at el. also detects type er-
rors [23]). Except the Patil work [25], these systems use heuristic

techniques that do not detect or eliminate all possible errors, es-
pecially dangling pointer errors which are quite difficult to detect
reliably. Therefore, these systems do not provide a sound basis for
static analysis techniques. The tool by Patil and Fisher [25] can re-
liably detect memory reference errors, including dangling pointer
errors but at the cost of very high overheads (2x-6x in many pro-
grams). Furthermore, even this tool does not prevent type viola-
tions on references to legal memory addresses (though it might be
extended to do so). Overall, none of these tools provide a sound
semantics despite their high-overhead run-time checks.

Two systems, CCured [24] and Cyclone [13], both enable type-
safe execution of C or modified C programs, which enables sound
analysis of these programs. CCured ensures type-safe execution for
standard C programs, with some source changes required for com-
patibility with external libraries. It uses a conservative garbage col-
lector instead of explicit deallocation of heap memory. Compared
with our approach, the major advantage of CCured is that it guar-
antees the absence of dangling pointer references. In contrast, a key
contribution of our work has been to enable sound analysis while
still retaining explicit memory management A second difference
is that CCured introduces significant metadata for runtime checks.
This metadata is the primary cause of the porting effort required
for using CCured on C programs because it can require wrappers
around some library functions. SAFECode uses no metadata on in-
dividual pointer values as explained in Section 3, and doesn’t re-
quire complex wrappers.

There are also minor technical differences between the systems.
Our classification of memory into type-consistent and Unknown
is analogous to the WILD and non-WILD types of CCured, except
that we use a context-sensitive pointer analysis to infer the types
of memory objects. We allow Unknown memory to point to type
consistent memory by performing a run-time check as explained
in Section 3.1. CCured uses physical subtyping and RTTI to elim-
inate some run time overhead on pointer casts. Our type inference
supports limited forms of physical subtyping (only for upcasts and
casts from void* to other pointer types) but we plan to investigate
a more sophisticated version in the future.

Cyclone [13, 16] uses a region-based type system to enforce
strict type safety, and consequently enforces alias analysis, for a
subset of C programs. Unlike SAFECode and CCured, Cyclone dis-
allows non-type-safe memory accesses (e.g., operations that would

produce the equivalent of Unknown type or WILD pointers). Cy-
clone and other region-based languages [4, 12, 5, 7, 28]) have two
disadvantages relative to our work: (a) they can require significant
programmer annotations to identify regions; and (b) either they pro-
vide no mechanism to free or reuse memory within a region (e.g.,
RTJava) or they allow deallocation of memory within a region only
in special cases (e.g., uniqueness annotations to Cyclone [16] or re-
set region in ML kit for regions [28]). In all the above systems, data
structures that must shrink and grow (with non-nested object life-
times) should either be put into a separate garbage-collected heap or
in regions when they use a restricted form of aliasing. In contrast,
we infer the pool partitioning automatically with no annotations,
and we permit explicit deallocation of individual data items within
regions without aliasing restrictions or extra annotations. Reaps [3]
provides regions without any soundness guarantees.

9. Concluding Discussion
This paper has described an approach to provide a semantic founda-
tion (a points-to graph, call graph, and type information) for build-
ing sound static analyses for nearly arbitrary C programs. The ap-
proach can be added to any C compiler containing a pointer analy-
sis that meets the specified properties (flow-insensitive, unification-
based). The Automatic Pool Allocation transformation used in our
work is quite straightforward — in fact, it is much simpler than
a typical interprocedural pointer analysis — and (we believe) has
significant value as an optimization in its own right [22]. The only
additional effort required is to implement simple type-checking and
check insertion, and some changes to the pool run-time system.
Overall, we believe the strategy described here is relatively simple
to add to a standard C compiler.

The approach also has some other practical strengths. First, it
is fully automatic and requires no modifications to existing C pro-
grams. Second, it allocates and frees memory objects at exactly the
same points as the original program, minimizing the need to tune
memory consumption. Third, it supports nearly the full generality
of the C language, except for programs that access “manufactured
addresses” (which could also be supported via pragmas or compile-
time options). Fourth, our experiments show that the run-time over-
heads of our approach are quite small, generally less than a few per-
cent relative to code with pool allocation alone. We believe these
overheads are low enough to be used in production code, especially
when reliability or security is a significant concern.

The two major restrictions in this work so far are the require-
ments that the pointer analysis be flow-insensitive and unification-
based. Our approach could be extended to a non-unification-based
pointer analysis, mainly by extending Automatic Pool Allocation.
The primary change would be to track at run-time which pool a
pointer points to at any point in the execution. This requires some
metadata for any pointer that may target multiple pools. With this
extension, we believe that the semantic checking techniques (the
type homogeneity principle, the pool runtime checks, and the opti-
mizations of run-time checks) would apply directly.

Extending the techniques for a flow-sensitive alias analysis is
more difficult but there are two reasons why this may not be a sig-
nificant limitation in many situations. First, interprocedural pointer
analysis algorithms used in practice are generally flow-insensitive
because of the high cost of flow-sensitive whole program analy-
sis [17]. Second, as discussed in Section 6.2, flow-sensitive tech-
niques can be implemented (on top of flow-insensitive points-to
results) in a sound manner using our approach.

References
[1] A. Aiken, M. Fahndrich, and R. Levien. Better static memory

management: Improving region-based analysis of higher-order

languages. In PLDI, June 1995.

[2] T. M. Austin, S. E. Breach, and G. S. Sohi. Efficient detection of all
pointer and array access errors. In PLDI, Orlando, FL, June 1994.

[3] E. Berger, B. Zorn, and K. McKinley. Reconsidering custom memory
allocation. In Proc. Conference on Object-Oriented Programming:
Systems, Languages, and Applications, 2002.

[4] G. Bollella and J. Gosling. The real-time specification for Java. IEEE
Computer, 33(6):47–54, 2000.

[5] C. Boyapati, A. Salcianu, W. Beebee, and M. Rinard. Ownership
types for safe region-based memory management in real-time java. In
ACM Conf. on Prog. Lang. Design and Implementation, 2003.

[6] M. C. Carlisle. Olden: parallelizing programs with dynamic data
structures on distributed-memory machines. PhD thesis, 1996.

[7] W.-N. Chin, F. Craciun, S. Qin, and M. Rinard. Region inference for
an object-oriented language. In PLDI, June 2004.

[8] M. Das, S. Lerner, and M. Siegle. Esp: Path-sensitive program
verification in polynomial time. In PLDI, Berlin, Germany, Jun 2002.

[9] D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner. Memory safety
without runtime checks or garbage collection. In Conf. on Language,
Compiler, and Tool Support for Embedded Systems, Jun 2003.

[10] D. Dhurjati, S. Kowshik, V. Adve, and C. Lattner. Memory
safety without garbage collection for embedded applications. ACM
Transactions on Embedded Computing Systems, Feb. 2005.

[11] N. Dor, S. Adams, M. Das, and Z. Yang. Software validation via
scalable path-sensitive value flow analysis. In Proc. of ACM SIGSOFT
international symposium on Software testing and analysis, 2004.

[12] D. Gay and A. Aiken. Memory management with explicit regions. In
PLDI, pages 313–323, Montreal, Canada, 1998.

[13] D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney.
Region-based memory management in cyclone. In PLDI, June 2002.

[14] R. Hastings and B. Joyce. Purify: Fast detection of memory leaks and
access errors. In Winter USENIX, 1992.

[15] T. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software
verification with blast. In Tenth International Workshop on Model
Checking of Software (SPIN), pages 235–239, 2003.

[16] M. Hicks, G. Morrisett, D. Grossman, and T. Jim. Experience with
safe manual memory-management in cyclone. In Proc. of the 4th
international symposium on Memory management (ISMM), 2004.

[17] M. Hind. Pointer analysis: Haven’t we solved this problem yet? In
Proc. 2001 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering (PASTE), pages 54–61, 2001.

[18] R. W. M. Jones and P. H. J. Kelly. Backwards-compatible bounds
checking for arrays and pointers in c programs. In Automated and
Algorithmic Debugging, pages 13–26, 1997.

[19] W. Kelly, V. Maslov, W. Pugh, E. Rosser, T. Shpeisman, and
D. Wonnacott. The Omega Library Interface Guide. Technical report,
Computer Science Dept., U. Maryland, College Park, Apr. 1996.

[20] C. Lattner. Macroscopic Data Structure Analysis and Optimization.
PhD thesis, Computer Science Dept., University of Illinois at Urbana-
Champaign, Urbana, IL, May 2005.

[21] C. Lattner and V. Adve. LLVM: A Compilation Framework for
Lifelong Program Analysis and Transformation. In Proc. Int’l Symp.
on Code Generation and Optimization (CGO), San Jose, Mar 2004.

[22] C. Lattner and V. Adve. Automatic pool allocation: Improving
performance by controlling data structure layout in the heap. In
PLDI, Chicago, IL, Jun 2005.

[23] A. Loginov, S. H. Yong, S. Horwitz, and T. Reps. Debugging via
run-time type checking. Lecture Notes in Computer Science, 2001.

[24] G. C. Necula, J. Condit, M. Harren, S. McPeak, and W. Weimer.
Ccured: type-safe retrofitting of legacy software. ACM Trans.
Program. Lang. Syst., 27(3):477–526, 2005.

[25] H. Patil and C. N. Fischer. Efficient run-time monitoring using

shadow processing. In Automated and Algorithmic Debugging, pages
119–132, 1995.

[26] J. Seward. Valgrind, an open-source memory debugger for x86-
gnu/linux.

[27] B. Steensgaard. Points-to analysis in almost linear time. In ACM
symposium on Principles of programming languages (POPL), 1996.

[28] M. Tofte, L. Birkedal, M. Elsman, N. Hallenberg, T. H. Olesen,
P. Sestoft, and P. Bertelsen. Programming with Regions in the ML
Kit. Technical Report DIKU-TR-97/12, 1997.

[29] M. Tofte and J.-P. Talpin. Region-based memory management.
Information and Computation, pages 132(2):109–176, Feb. 1997.

[30] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient
software-based fault isolation. ACM SIGOPS Operating Systems
Review, 27(5):203–216, December 1993.

10. Full list of static and dynamic semantics rules
This section gives the complete list of static and dynamic semantic
rules for the language shown in Figure 4.

10.1 Typing Rules

We first give the typing rules for the language. As noted in Sec-
tion 3.3, the type system is expressed by the following judgments:

Expression typing: C ` e : τ
Stmt typing: C ` s
Type typing: C ` τ

In these judgments C represents the typing context and is com-
posed of two type environments, denoted by C = Γ; ∆. Here Γ is the
value type environment, essentially a map between variable name
and the type of the variable and ∆ is the region type variable envi-
ronment, a map between region type variables and the type of the
objects stored in the region.

Figures 11-13 show all the typing rules for our language. SS0-2
are similar to standard C typing rules. SS3 says that Uninit can
be any type. SS4 is similar to the standard C load via pointers not
pointing to Unknown region2. Note that SS4 ensures that the type
of the pointer and the region to which a pointer points to are com-
patible. SS5 states that from a pointer to an Unknown node, we
can load only an intor a char but not a pointer. Since all casts from
intto pointers require a run-time check, this ensures that pointers
loaded out of TU memory are checked before usage at the time of
the cast. SS6 gives a type for the memory objects allocated in a
pool. SS7 allows a cast from an intto a pointer type. As discussed
later in operational semantics, such a cast requires a run-time check
to make sure that the pointer is of the right type in the right pool.
SS8 types a cast from a pointer to region to another pointer point-
ing to the same region. This helps in supporting arbitrary casts of a
pointer type to any other pointer type so long as they have the same
region attribute. The use of a pointer in a load or a store or a call,
however requires that such a pointer be cast back to the right type
(see typing rules SS4, SS14). C programs often cast a pointer to
a void * and then cast it back before using it. We avoid doing any
run-time checks on these casts, while other approaches like CCured
require extra run-time checks on these cast operations. SS9 is for
array indexing. SS10 allows you to cast any type to an int.

SS11-13 are similar to standard C type rules. SS14 is for storing
to a typed memory, SS15 is for storing to an Unknown memory.
SS16 is for type checking the free operation on an object from a
pool– we can free an object from the pool only if the object belongs
to the pool. SS17 is for creating a region using poolinit; we add the
region variable and the handle to the typing environment before
checking the body of the poolinit statement. SS18-21 are for
judging whether a type is well formed.

Ignoring memory errors and the free operations, these typing
rules actually check for the correctness of the input pointer analysis.
This allows us to detect bugs or malicious pointer analysis inputs.

We now state a small lemma on our static type system that is
used later in the soundness proof.

LEMMA 1. (Well Formed Type lemma)

If C ` e : τ then C ` τ .

Proof: The proof of this lemma is straightforward induction on the
structure of typing derivation. The only rules that introduce terms
with new types into the system are (SS0, SS3, SS8, SS17) and all
of them check that the new types are well formed i.e., C ` τ .

2 For our extended language that includes structs, these typing rules may
need to be modified slightly since we can load only primitive types (either
an int or a char or a pointer) via load instruction. Loading an entire struct in
a single load instruction is disallowed.

(SS0)
C ` τ Γ(x) = τ
C(= Γ, ∆) ` x : τ

(SS1)
C ` n : int

(SS2)
C ` e1 : int C ` e2 : int

C ` e1 op e2 : int

(SS3)
C ` τ

C ` Uninit : τ
τ 6=handle(ρ′ , τ ′)

(SS4)
C ` e : τ ∗ ρ C ` ρ : τ

C ` load e : τ
τ 6∈ {Unknown,char}

(SS4char)
C ` e : char ∗ ρ C ` ρ : char

C ` loadc e : char

(SS5)
C ` e2 : τ ∗ ρ C ` ρ : Unknown C ` x :handle(ρ, Unknown)

C ` loadU x, e2 : int

(SS5char)
C ` e2 : τ ∗ ρ C ` ρ : Unknown C ` x :handle(ρ, Unknown)

C ` loadcU x, e2 : char

(SS6)
C ` ρ : τ C ` x :handle(ρ, τ) C ` e2 : int

C ` poolalloc(x, e2) : τ ∗ ρ

(SS7)
C ` ρ : τ C ` x :handle(ρ, τ) C ` e : int

C ` castintpointer x, e to τ ∗ ρ : τ ∗ ρ

(SS8)
C ` τ ′ C ` e : τ ∗ ρ

C ` cast e to τ ′ ∗ ρ : τ ′ ∗ ρ

(SS9)
C ` ρ : τ C ` x :handle(ρ, τ) C ` e2 : τ ∗ ρ C ` e3 : int

C ` x,&e2[e3] : τ ∗ ρ

(SS10)
C ` e : τ

C ` cast e to int : int
τ 6=handle(ρ, τ ′)

Figure 12. Expression typing judgments

10.2 Assumptions

To keep our formalism tractable, we made several simplifications.
We list some of them below.

• sizeof(int) = sizeof(τ ∗ ρ) = 4 bytes
We assume that the size of int and size of a pointer are same
and is 4 bytes. This is not true on a 64-bit system, and the for-
malism and our run-time checks needed to be adjusted accord-
ingly for such systems.

• The memory management algorithm used in the formalism is
naive (does not do any compaction, on freeing an array object
frees only the first element potentially leaking memory). We
believe these issues are orthogonal to the main problem that we
are trying to solve.

10.3 Operational Semantics

Figure 16 and Figure 15 contains all the operational semantic rules
for the language in Figure 4. This expands on the select rules listed
in Figure 7. The rules are split into two kinds of rules, one for
expressions of the program (Figure 16) and another for statements
of the program (Figure 15).

As noted in Section 3.4, the rules are described as a small-
step operational semantics (−→rhs for expressions and −→stmt

for statements). Each program state is represented by (VEnv, L, H,
es) where VEnv is the variable environment (holding the values
of local variables), L is the “stack” of regions that are live, H is
the system heap (essentially the set of free addresses that are not
used by any region in the program), and es is an expression or a

(SS11)
C ` ε

(SS12)
C ` s1 C ` s2

C ` s1; s2

(SS13)
C ` x : τ C ` e : τ

C ` x = e

(SS14)
C ` ρ : τ C ` e1 : ρ ∗ τ C ` e2 : τ

C `store e2, e1
τ 6∈ {Unknown,char}

(SS14char)
C ` ρ : char C ` e1 : ρ ∗ char C ` e2 : char

C `storec e2, e1

(SS15)
C ` ρ : Unknown C ` e1 : τ ∗ ρ
C ` e2 : τ C ` x :handle(ρ, Unknown)

C `storeU x, e2, e1

(SS15char)
C ` ρ : Unknown C ` e1 : τ ∗ ρ
C ` e2 : char C ` x :handle(ρ, Unknown)

C `storecU x, e2, e1

(SS16)
C ` ρ : τ C ` x :handle(ρ, τ) C ` e2 : τ ∗ ρ

C `poolfree(x, e2)

(SS17)
C ` τ Γ[x 7→handle(ρ, τ)], ∆[ρ 7→ τ] ` s

C(= Γ, ∆) `poolinit(ρ, τ)x{s}
x 6∈ Γ and ρ 6∈ ∆

Figure 13. Statement typing judgments

(SS18)
C ` int

(SS19)
C ` Unknown

(SS20)
∆(ρ) = τ
C ` ρ : τ

(SS21)
` ρ : τ

C ` τ ∗ ρ

(SS22)
∆(ρ) = Unknown
C(= Γ, ∆) ` τ ∗ ρ

(SS23)
C ` ρ : τ

C `handle(ρ, τ)

(SS24)
C ` char

Figure 14. Well formed types

statement in the program. For notational convenience, we drop H
from the program state as it is unchanged except for poolinit and
poolalloc. A program state (VEnv, L, es) becomes (VEnv’, L’,
es’) if any of the semantic rules allow for it. The expression in the
box denotes a run-time check that needs to be successful for the
operation to be applicable.

A brief explanation of each of the rules is given below:

R1 For supporting sequential composition.

R2, R3 For assignment statements in the program.

R4, R5, R6 Performs a store via a type-consistent pointers, after checking
that v1 is not Uninit. update(L, v1, v2) just updates the mem-
ory location v1 with value v2.

R7, R8, R9 For progress on the operands of storeU/storecU instructions

R10 Stores a 4 byte value (integer or a pointer) via a pointer
to Unknown memory, after checking that the pointer value
legally allows storing of a 4-byte value. The Unknown mem-
ory objects are organized as an untyped array of bytes. We will
later show that v1 always points to a valid address in the region

because of run-time checks on casts and pointer arithmetic.
However, since we are storing a 4-byte value, we need to make
sure that a store is aborted, if v1 points to last 3 bytes of some
memory object and the bytes exceeding the object allocation
are not a part of this region 3 .

R11 Stores a char via a pointer to Unknown memory. Note that
no-rune time check is needed since we later prove that v1 points
to a valid address in the region.

R12, 13, 14 Frees an object from region, ρ, and adds it to the free list F
of the same region. The memory is retained in the pool for
future allocations out of the pool and not released to the system.
Note that the region store RS does not change, so any dangling
pointer access continues to be valid.

R15 Evaluating poolinit creates a new region, set the free list to
be empty, and evaluates the body inside the syntactic construct
pool{S}pop(ρ). This construct demarcates when the region is
to be deallocated, which is done when the body (S) becomes
empty. Deallocating a region ρ releases all of RS back to the
system heap.

R16 For progress within the syntactic pool construct.

R17 When all the statements within the syntactic pool construct are
evaluated, we can destroy the pool (remove it from the stack of
live regions).

R18 Evaluates a variable; gets the value of the variable previously
stored in the VarEnv map.

R19, 20, 21 For C like arithmetic operations

R22, 23 Performs a load via type-consistent pointers, after checking that
those pointers are not Uninit . getvalue(L, v) gets the value
stored in address location v (This does not change the stack of
regions in any way).

R24, 25 For progress on operands of loadU/loadcU instructions.

R26 Loads a 4-byte value via a pointer to Unknown memory, after
checking that the pointer value legally allows loading of a 4-
byte value (an int) (similar to rule R10).

R27 Loads a char via a pointer to Unknown memory. Note that
this does not require a run-time check.

R28 Normal casts don’t require any run-time check.

R29, R30 For progression operands of castintptr instruction.

R31 A cast from intto another pointer type is always checked at
run-time. This solves problem P4 in Section 3.4. In particular
we check that the value is an address in the appropriate pool, if
not, we abort.

R32, 33 For progress on the operands of poolalloc instruction.

R34 Returns a previously freed location from the free list. Note that
this is where we rely on the type homogeneity principle to make
a dangling pointer error harmless.

R35 For a poolalloc, when the free list is empty, this requests fresh
memory from the system. The new address a must satisfy the
invariant ∀ρ a 6∈ Dom(L[ρ].RS), which says that the address a
is not already used by any other region store.

R36 In case of array allocations, to keep the formalism tractable, we
make a simplifying assumption that array allocations are always
allocated using the system allocator. In our implementation,
however, we compact our free lists where possible and allocate

3 One way to avoid this run-time check is to pad each memory page of
Unknown region by three extra bytes and ensure that the result of a pointer
arithmetic or cast never points to the the three extra bytes.

out of the free lists if we find a contiguous free space that can
hold the array. Similarly in rule R14 we make a simplifying
assumption that poolfree frees only one object (in case of arrays
only one element of the array) and adds it to the free list. To
support freeing of entire arrays, we just need to include the
meta-data for storing allocation sizes in our formalism.

R37...40 Array accesses are checked at run-time; we check that the
resultant pointer after pointer arithmetic always points to the
same pool as the source pointer. Note that sizeof(τ) is a compile
time constant, calculated from the declarations. No run-time
types (or RTTI) is used in our approach

11. Soundness proof
We now give the proof of soundness for our type system. Sec-
tion 11.1 discusses the invariants that we maintain in our system.
Section 11.2 states the soundness theorem and gives its proof.

11.1 Invariants for well formed environments

In the rest of this discussion by environment we mean the pair
(VEnv, L), the variable environment and the live region map in the
heap. For an environment (VEnv, L), we define ||τ ||(V Env,L) to be
as follows:
||int||(V Env,L) := Int32
||τ ∗ ρ||(V Env,L) := {Uninit}∪ Dom(L[ρ].RS)
||handle(ρ, τ)||(V Env,L) := { region(ρ)}
||Unknown||(V Env,L) := Int8
||char||(V Env,L) := Int8

From our earlier assumptions, sizeof(int) and sizeof(τ ∗ ρ) is
same: four bytes. This means that Dom(L[ρ].RS) ⊆ Int32.

Intuitively for a well-formed type τ , ||τ ||(V Env,L) represents
the set of values that a variable (or object) of that type can hold
under that context and environment. We assume that Uninit ∈ Int.
We treat it as zero in our operations. For a pointer variable (or a
memory location of pointer type), the values it can hold depend
on the already allocated values in the region to which the pointer
points to. For a pointer to region ρ only addresses in region ρ (or
the uninitialized value) are legal values.

The judgement `env stands for a well formed environment.
An environment (VEnv, L) is well formed under a typing context
C (denoted by C(= Γ; ∆) `env (VEnv, L)) if and only if the
following invariants hold.

Inv1 Dom(Γ) = Dom(VEnv)

All variables in the typing environment are present in the vari-
able environments and vice versa.

Inv2 Dom(∆) = Dom(L)

All region names in the region type environment are already
present in the domain of region maps and vice versa.

Inv3 ∀x ∈ Dom(VEnv), if C ` x : τ then VEnv[x] ∈ ||τ ||(V Env,L)

If a variable has type τ , then it must contain only valid values
of type τ . In particular, a pointer variable with region attribute
ρ, must always point to an object in that region or it is not
initialized.

Inv4 ∀ρ ∈ Dom(L), if C ` ρ : τ then ∀v ∈ Dom(L[ρ].RS),
L[ρ].RS[v] ∈ ||τ ||(V Env,L) .

If region ρ is associated with type τ then each memory location
in the region store will only contain values of the correct type.

Inv5 ∀ρ ∈ Dom(L), L[ρ].F ⊆ Dom(L[ρ].RS)

This invariant states that the memory addresses in the free list
are a subset of the addresses of the region

Inv6 ∀ρ1ρ2 ∈ Dom(L), if ρ1 6= ρ2 then Dom((L[ρ1]).RS) ∩
Dom((L[ρ2]).RS) = φ and ∀ρ ∈ Dom(L), Dom(L[ρ].RS) ∩
H = φ.

A memory address cannot be part of two live regions. Also a
memory address cannot be a part of system heap (i.e., unused
by a program) and also a part of live region.

11.2 Proof

The proof of soundness is composed of two “invariant preserva-
tion” theorems — one for expressions and one for statements of the
program. Since we have not included control flow in our formaliza-
tion, all evaluations of expressions and statements terminate.

Notation: In the rest of this section,−→∗
expr represents the usual

reflexive transitive closure of −→expr and −→∗
stmt represents the

usual reflexive transitive closure of −→stmt.
In order to prove the “invariant preservation” theorems, we

make use of the lemmas listed in Figure 17, which are essentially
big-step extensions of some of the small step rules given in Fig-
ures 15 and 16. The proof of each of the lemmas is by straight-
forward induction on the number of steps in the derivation of the
hypothesis in that lemma. In the figure 17, we give the complete
proof for the first lemma, proofs for the rest are similar and straight-
forward.

We now present three more lemmas, that are useful in proving
the invariant preservation theorems.

LEMMA 2. Update Lemma1

If C `env (VEnv, L), and C ` ρ : τ and if v1 ∈ Dom(L[ρ].RS),
and v2 ∈ ||τ ||(V Env,L) then C `env (VEnv, update(L, v1, v2)).

This lemma states that given a well formed environment, if we
update a memory location in a region of the environment with the
appropriate type then the resulting environment continues to be
well formed.

Proof: From Inv2 and C ` ρ : τ , we have ρ ∈ Dom(L).
So L = L’ ∪ {(ρ,R)}
We also have v1 ∈ Dom(R.RS).
From the definition of update, we have update(L, v1, v2) = L’ ∪

{(ρ, { R.F ;R.(RS[v1 7→ v2]) }) }
Now all the invariants except Inv4 trivially hold. Inv4 holds

since v2 ∈ ||τ ||(V Env,L). q.e.d.

LEMMA 3. Update Lemma2

If C `env (VEnv, L), and C ` ρ : Unknown and if [v1, v1 +
3] ∈ Dom(L[ρ].RS), and v2 ∈ ||Int||(V Env,L) then C `env (VEnv,
update(L, v1, v2, 4)).

Proof: The proof is straightforward extension of above; we just
need to prove that byte function on Int32 gives an integer in Int8,
which is true from the arithmetic properties of integers.

LEMMA 4. Getvalue Lemma1
If C `env (VEnv, L), C ` ρ : τ and if v1 ∈ Dom(L[ρ].RS), then
getvalue(L, v1) ∈ ||τ ||(V Env,L).

Informally, this lemma states that given a well formed environment,
if we load from a memory address in a region, the resulting value
should have the type of the objects stored in that region.

Proof: We have ρ in Dom(L) from Inv2.
So L ≡ L’ ∪ {(ρ, R)}
From the definition of getvalue, we have getvalue(L, v1) =

L[ρ].RS[v1]. Now from Inv4 we have getvalue(L,v1) ∈ ||τ ||(V Env,L).
q.e.d.

R1
(VEnv, L, S1) −→stmt (VEnv’, L’, S1’)
(VEnv, L, S1 ; S2) −→stmt (VEnv’, L’, S1’ ; S2)

R2
(VEnv, L, E) −→expr (VEnv’, L’, E’)
(VEnv, L, x = E) −→stmt (VEnv’, L’, x = E’)

R3 (VEnv, L, x = v1) −→stmt (VEnv[x 7→ v1], L, ε)

R4
(VEnv, L, E) −→expr (VEnv’, L’, E’)
(VEnv, L, store/storec E, E2) −→stmt (VEnv’, L’, store E’, E2)

R5
(VEnv, L, E) −→expr (VEnv’, L’, E’)
(VEnv, L, store/storec v,E) −→stmt (VEnv’, L’, store v, E’)

R6 (VEnv, L, store/storec v2, v1) −→stmt (VEnv, update(L, v1, v2), ε) (v1)! = Uninit
where

update(L, v1, v2) := L’ ∪ {(ρ, { R.F ;R.(RS[v1 7→ v2]) }) } if ∃ρ ∈ Dom(L) s.t. L = L’ ∪ {(ρ,R)} and v1 ∈ Dom(R.RS)
L else

R7
(VEnv, L, E) −→expr (VEnv’, L’, E’)
(VEnv, L, storeU/storecU E, E2, E3) −→stmt (VEnv’, L’, storeU/storecU E’, E2, E3)

R8
(VEnv, L, E) −→expr (VEnv’, L’, E’)
(VEnv, L, storeU/storecU v1, E, E3) −→stmt (VEnv’, L’, storeU/storecU v1, E’, E3)

R9
(VEnv, L, E) −→expr (VEnv’, L’, E’)
(VEnv, L, storeU/storecU v1, v2, E) −→stmt (VEnv’, L’, storeU/storecU v1, v2, E’)

R10 (VEnv, L, storeU region(ρ), v2, v1) −→stmt (VEnv, update(L, v1, v2, 4) }], ε) (v1, v1 + 3] ∈ Dom(L[ρ].RS)
where

update(L, v1, v2, 4) := L’ ∪ {(ρ, { R.F ;R.(RS[v1 7→byte(v2 , 3)][(v1+1) 7→byte(v2 , 2)][(v1 + 3) 7→byte(v2 , 1)][(v1 + 4) 7→byte(v2 , 0)])
if ∃ρ ∈ Dom(L) s.t. L = L’ ∪ {(ρ,R)} and [v1, v1 + 3] ∈ Dom(R.RS)

L else
and byte(n, k) := (n << (8 * (3 - k))) >> 24 .

R11 (VEnv, L, storecU region(ρ), v2, v1) −→stmt (VEnv, update(L, v1, v2) }], ε)

R12
(VEnv, L, E) −→expr (VEnv’, L’, E’)
(VEnv, L, poolfree(E, E2) −→stmt (VEnv’, L’, poolfree(E’, E2)

R13
(VEnv, L, E) −→expr (VEnv’, L’, E’)
(VEnv, L, poolfree(v, E) −→stmt (VEnv’, L’, poolfree(v, E’)

R14 (VEnv, L ∪ { (ρ, {F ;RS}) }, poolfree(region(ρ), v)) −→stmt (VEnv, L ∪ { (ρ, {vF ; RS}) }, ε) v! = Uninit

R15 (VEnv, L, poolinit(ρ,τ)x{ S }) −→stmt (VEnv ∪ {(x,region(ρ))}, L ∪ {(ρ, {φ; φ})}, pool{S}pop(ρ)) if (ρ 6∈ Dom(L)).

R16
(VEnv, L, S) −→stmt (VEnv’, L’, S’)
(VEnv, L, pool{S}pop(ρ)) −→stmt (VEnv’, L’, pool{S′}pop(ρ))

R17 (VEnv ∪ {(x,region(ρ))} , L ∪ {(ρ,R)} , pool{ε}pop(ρ)) −→stmt (VEnv, L, ε)
Note that H the set of addresses in the system heap and not used by the program gets updated by H ∪ Dom(R.RS)

Figure 15. Operational Semantic Rules for Statements

LEMMA 5. Getvalue Lemma2
If C `env (VEnv, L), C ` ρ : Unknown and if v1 ∈Dom(L[ρ].RS),
then getvalue(L, v1,4) ∈ ||Int||(V Env,L).

Proof: Proof is straightforward extension of above; we just need
to prove that the combine function on Int8 gives an Int32, which is
true from the arithmetic properties of integers.

LEMMA 6. (Safe region deallocate Lemma)

If (Γ; ∆) ` τ , and x 6∈Dom(Γ), and
ρ 6∈Dom(∆), and (Γ[x 7→handle(ρ, τ ′)]; ∆[ρ 7→ τ ′]) `env (VEnv
∪ {(x,region(ρ))}, L ∪ {(ρ,R)}) then
||τ ||(V Env∪{(x,region(ρ))},L∪{(ρ,R)}) = ||τ ||(V Env,L).

This lemma states that the set of legal values corresponding to
a “well formed type” τ , is independent of a region on which this
type is not dependent. Hence that region can be safely deallocated
if necessary.

Proof: If τ is of the form int or Unknown then it is trivially true.
If τ is of the form handle(ρ′′, τ ′′) then C ` τ only if C `

ρ′′ : τ ′′ (from SS23) and in turn ρ′′ ∈Dom(∆) from SS20. Since
ρ 6∈Dom(∆), ρ′′ 6= ρ. Therefore, ||τ ||(V Env∪{(x,region(ρ))},L∪{(ρ,τ ′)})

= region(ρ′′) = ||τ ||(V Env,L).

The most important case is when τ is a pointer type, i.e. τ is
of the form τ ′′ ∗ ρ′′. In this case, using SS20 and (SS22 or SS21),
we get ρ′′ 6= ρ and hence ||τ ||(V Env∪{(x,region(ρ))},L∪{(ρ,τ ′)}) =
{Uninit}∪Dom(L[ρ′′].RS) = ||τ ||(V Env,L).

We now state and prove the invariant preservation theorem for
expressions.

THEOREM 1. If C ` e : τ and C `env(VEnv, L) then either (VEnv,
L, e) −→∗

exprError or (VEnv, L, e) −→∗
expr (VEnv’, L’, v) such

that v ∈ ||τ ||(V Env′,L′) and C `env (VEnv’, L’)

This theorem states that given a typing context C, if e is a well
typed expression typing to τ then evaluation of e in a well formed
environment either fails because of a run-time check failure or gives

R18 (VEnv ∪ {(x, v)}, L, x) −→expr (VEnv ∪ {(x, v)}, L, v)

R19
(VEnv, L, E) −→expr (VEnv’, L’, E’)
(VEnv, L, E op E2) −→expr (VEnv’, L’, E’ op E2)

R20
(VEnv, L, E) −→expr (VEnv’, L’, E’)
(VEnv, L, v op E) −→expr (VEnv’, L’, v op E’)

R21 (VEnv, L, m op n) −→expr (VEnv, L, m opInt n))

R22
(VEnv, L, E) −→expr (VEnv’, L’, E’)
(VEnv, L, load/loadc E) −→expr (VEnv’, L’, load E’)

R23 (VEnv, L, load/loadc v1) −→expr (VEnv, L, getvalue(L, v1)) (v1)! = Uninit
where

getvalue(L, v1) := L[ρ].RS[v1] if ∃ρ ∈ Dom(L) s.t. v1 ∈ L[ρ].Dom(RS)
Uninit else

R24
(VEnv, L, E) −→expr (VEnv’, L’, E’)
(VEnv, L, loadU/loadcU E, E2) −→expr (VEnv’, L’, loadU/loadcU E’, E2)

R25
(VEnv, L, E) −→expr (VEnv’, L’, E’)
(VEnv, L, loadU/loadcU v1, E) −→expr (VEnv’, L’, loadU/loadcU v1, E’)

R26 (VEnv, L, loadU region(ρ), v1) −→expr (VEnv, L, getvalue(L, v1, 4) }]) (v1 , v1 + 4] ∈ Dom(L[ρ].RS)
where

getvalue(L, v1, 4) := combine(L[ρ].(RS[v1]),L[ρ].(RS[v1 + 1]),L[ρ].(RS[v1 + 2]),L[ρ].(RS[v1 + 3]))
if ∃ρ ∈ Dom(L) s.t. [v1, v1 + 3] ∈ L[ρ].Dom(RS)

Uninit else
and combine(b1, b2, b3, b4) := (b1 << 24) || (b2 << 16) || (b3 << 8) || (b4).

R27 (VEnv, L, loadcU region(ρ), v1) −→expr (VEnv, L, getvalue(L, v1) }])

R28 (VEnv, L, cast E to τ) −→expr (VEnv, L, E)

R29
(VEnv, L, E) −→expr (VEnv’, L’, E’)
(VEnv, L, castintpointer E, E2 to τ) −→expr (VEnv’, L’, castintpointer E’, E2 to τ)

R30
(VEnv, L, E) −→expr (VEnv’, L’, E’)
(VEnv, L, castintpointer v, E to τ) −→expr (VEnv’, L’, castintpointer v, E’ to τ)

R31 (VEnv, L, castintpointer (region(ρ), v to τ) −→expr (VEnv, L, v) v ∈Dom(L[ρ].RS)

R32
(VEnv, L, E) −→expr (VEnv’, L’, E’)
(VEnv, L, poolalloc(E, E2)) −→expr (VEnv’, L’, poolalloc(E’, E2))

R33
(VEnv, L, E) −→expr (VEnv’, L’, E’)
(VEnv, L, poolalloc(v, E)) −→expr (VEnv’, L’, poolalloc(v, E’))

R34 (VEnv, L ∪ { (ρ, {a F ;RS}) }, poolalloc(region(ρ), 1)) −→expr (VEnv, L ∪ { (ρ, {F ;RS}) }, a)

R35 (VEnv, L ∪ { (ρ, {φ;RS}) }, poolalloc(region(ρ), 1)) −→expr (VEnv, L[ρ 7→ {φ; RS[a 7→ Uninit]}], a)
where a is a new address obtained from system allocator, i.e. a ∈ H. H becomes H - { a }.

R36 (VEnv, L ∪ { (ρ, {F ;RS}) }, poolalloc(region(ρ), m)) −→expr (VEnv, Initialize(L ∪ { (ρ, {F ;RS}) }, Uninit, a,m), a) if (m != 1)
where a is a new address for the array obtained from system allocator and Initialize initializes each element of the array with Uninit. H becomes H - { a
, a + 1, ... , a + m-1 }

R37
(VEnv, L, E) −→expr (VEnv’, L’, E’)
(VEnv, L, (E, &(E1)[E2])) −→expr (VEnv’, L’, E’, &(E1)[E2]))

R38
(VEnv, L, E) −→expr (VEnv’, L’, E’)
(VEnv, L, (v, &(E)[E2])) −→expr (VEnv’, L’, v, &(E’)[E2]))

R39
(VEnv, L, E) −→expr (VEnv’, L’, E’)
(VEnv, L, (v, &(v1)[E])) −→expr (VEnv’, L’, (v, &(v1)[E’]))

R40 (VEnv, L, (region(ρ), &v1[v2])) −→expr (VEnv, L, v1 + v2 ∗ sizeof(τ)) (v1 + v2 ∗ sizeof(τ)) ∈Dom(L[ρ].RS)
where τ is the “static” type of the individual element of the array, available from the declaration.
Note that sizeof(τ) is a compile time constant.

Figure 16. Operational Semantic Rules for expressions

Lemma R2* If (VEnv, L, E) −→∗
expr (VEnv’, L’, E’) then (VEnv, L, x = E) −→∗

stmt (VEnv’, L’, x = E’).

Proof: By induction on the number of steps in the derivation of (VEnv, L, E) −→∗
expr (VEnv’, L’, E’).

Base case: zero steps. Trivially true.
Induction Hypothesis : True for ’k’ steps in derivation.
For ’k+1’ steps, we have
(VEnv, L, E) −→expr ... −→expr (k steps) (VEnv”, L”, E”) −→expr (VEnv’, L’, E’).

Using induction hypothesis, we have (VEnv, L, x = E) −→∗
stmt (VEnv”, L”, x = E”).

We also have (VEnv”, L”, E”) −→expr (VEnv’, L’, E’)

Using R2, we have (VEnv”, L”, X = E”) −→stmt (VEnv’, L’, x = E’). q.e.d.

Lemma R1* If (VEnv, L, S1) −→∗
stmt (VEnv’, L’, S1’) then (VEnv, L, S1 ; S2) −→∗

stmt (VEnv’, L’, S1’ ; S2)

Lemma R4* If (VEnv, L, E) −→∗
expr (VEnv’, L’, E’) then (VEnv, L, store/storec E, E2) −→∗

stmt (VEnv’, L’, store E’, E2).

Lemma R5* If (VEnv, L, E) −→∗
expr (VEnv’, L’, E’) then (VEnv, L, store/storec v,E) −→∗

stmt (VEnv’, L’, store v, E’) .

If (VEnv, L, E) −→∗
expr (VEnv’, L’, E’) then (VEnv, L, storeU/storecU E, E2, E3) −→∗

stmt (VEnv’, L’, storeU/storecU E’, E2, E3) .

Lemma R8* If (VEnv, L, E) −→∗
expr (VEnv’, L’, E’) then (VEnv, L, storeU/storecU v1, E, E3) −→∗

stmt (VEnv’, L’, storeU/storecU v1, E’, E3) .

Lemma R9* If (VEnv, L, E) −→∗
expr (VEnv’, L’, E’) then (VEnv, L, storeU/storecU v1, v2, E) −→∗

stmt (VEnv’, L’, storeU/storecU v1, v2, E’) .

Lemma R12* If (VEnv, L, E) −→∗
expr (VEnv’, L’, E’) then (VEnv, L, poolfree(E, E2) −→∗

stmt (VEnv’, L’, poolfree(E’, E2) .

Lemma R13* If (VEnv, L, E) −→∗
expr (VEnv’, L’, E’) then (VEnv, L, poolfree(v, E) −→∗

stmt (VEnv’, L’, poolfree(v, E’) .

Lemma R16* If (VEnv, L, S) −→∗
stmt (VEnv’, L’, S’) then (VEnv, L, pool{S}pop(ρ) −→∗

stmt (VEnv’, L’, pool{S′}pop(ρ)) .

Lemma R19* If (VEnv, L, E) −→∗
expr (VEnv’, L’, E’) then (VEnv, L, E op E2) −→∗

expr (VEnv’, L’, E’ op E2) .

Lemma R20* If (VEnv, L, E) −→∗
expr (VEnv’, L’, E’) then (VEnv, L, v op E) −→∗

expr (VEnv’, L’, v op E’) .

Lemma R22* If (VEnv, L, E) −→∗
expr (VEnv’, L’, E’) then (VEnv, L, load/loadc E) −→∗

expr (VEnv’, L’, load E’) .

Lemma R24* If (VEnv, L, E) −→∗
expr (VEnv’, L’, E’) then (VEnv, L, loadU/loadcU E, E2) −→∗

expr (VEnv’, L’, loadU/loadcU E’, E2) .

Lemma R25* If (VEnv, L, E) −→∗
expr (VEnv’, L’, E’) then (VEnv, L, loadU/loadcU v1, E) −→∗

expr (VEnv’, L’, loadU/loadcU v1, E’) .

Lemma R29* If (VEnv, L, E) −→∗
expr (VEnv’, L’, E’) then (VEnv, L, castintpointer E, E2 to τ) −→∗

expr (VEnv’, L’, castintpointer E’, E2 to τ) .

Lemma R30* If (VEnv, L, E) −→∗
expr (VEnv’, L’, E’) then (VEnv, L, castintpointer v, E to τ) −→∗

expr (VEnv’, L’, castintpointer v, E’ to τ) .

Lemma R32* If (VEnv, L, E) −→∗
expr (VEnv’, L’, E’) then (VEnv, L, poolalloc(E, E2)) −→∗

expr (VEnv’, L’, poolalloc(E’, E2)) .

Lemma R33* If (VEnv, L, E) −→∗
expr (VEnv’, L’, E’) then (VEnv, L, poolalloc(v, E)) −→∗

expr (VEnv’, L’, poolalloc(v, E’)) .

Lemma R37* If (VEnv, L, E) −→expr (VEnv’, L’, E’) then (VEnv, L, &(E, E1)[E2])) −→expr (VEnv’, L’, &(E’, E1)[E2])) .

Lemma R38* If (VEnv, L, E) −→expr (VEnv’, L’, E’) then (VEnv, L, &(v, E)[E2])) −→expr (VEnv’, L’, &(v, E’)[E2])) .

Lemma R39* If (VEnv, L, E) −→expr (VEnv’, L’, E’) then (VEnv, L, v, &(v1)[E])) −→expr (VEnv’, L’, &(v, v1)[E’])) .

Figure 17. Lemmas for operational semantics

a value of the appropriate type along with another well formed
environment.

Proof: The proof of this theorem is by induction on the structure
of typing derivation of C ` e : τ .

Based on the last rule used in the typing derivation of e, we have
the following (exhaustive) list of cases:

• SS0
e must be of the form x and x ∈ Dom(Γ).
Since C `env (VEnv, L), from Inv1 we get x ∈ Dom(VEnv).
Now consider (VEnv, L, x) with x ∈ Dom(VEnv). Rule R18
applies. Hence, (VEnv, L, x) −→expr (VEnv, L, v) where v is
the image of x in VEnv. q.e.d.

• SS1
e must be of the form n.
Trivially, (VEnv, L, e) −→∗

expr (VEnv, L, n). q.e.d.
• SS2

e must be of the form e1 op e2 with C ` e1 : int and
C ` e2 : int.

Using induction hypothesis, we have (VEnv, L, e1) −→∗
expr

Error or (VEnv”, L”, v1) with v1 ∈ ||int||(V Env′′,L′′) and
C `env(VEnv”, L”).
If (VEnv, L, e1) −→∗

expr Error then q.e.d.
If not, using induction hypothesis again, we have (VEnv”, L”,
e2)−→expr Error or (VEnv’, L’, v2) with v2 ∈ ||int||(V Env′,L′)

and C `env(VEnv’, L’).
If (VEnv, L, e2) −→∗

expr Error then q.e.d.
If not,

Using lemma R19*, we have (VEnv, L, e1 op e2) −→∗
expr

(VEnv”, L”, v1 op e2)
Using lemma R20*, we have (VEnv”, L”, v1 op e2) −→∗

expr

(VEnv’, L’, v1 op v2)
Since v1, v2 ∈ Int, using R21 we have (VEnv’, L’, v1 opInt

v2). with v1 opInt v2 ∈ Int and (C `env(VEnv’, L’). q.e.d.
• SS3

e must be of the form Uninit.
Trivially (VEnv, L, Uninit) −→∗

expr (VEnv, L, Uninit) and
since Uninit ∈ ||τ ||(V Env,L) where τ 6=handle(ρ′, τ ′) , q.e.d.

• SS4
e must be of the form load e′ and there exists ρ such that
C ` ρ : τ and C ` e′ : τ ∗ ρ and τ 6∈ {Unknown, char}.
Now using induction hypothesis we have either (VEnv, L,
e′) −→∗

expr Error or (VEnv”, L”, v′) such that v′ ∈ ({Uninit}∪Dom(L”[ρ].RS)
) and (VEnv”, L”) is well formed environment.
If v′ = Uninit then by R23, (VEnv”, L”, load v′) −→expr

Error and q.e.d.
If v′ ∈ Dom(L”[ρ].RS) then from the load rule R23, we get
(VEnv”, L”, load v′) −→expr (VEnv”, L”, getvalue(L”, v′)).
From the “getvalue” lemma we get getvalue(L”, v′) ∈ ||τ ||(V Env′′,L′′).
Now using R22* we have the result. q.e.d.
Informally, the proof step says that in case of load from type
consistent memory, the address points to a correct object in the
region or its uninitialized value, hence it progresses to an error
or gives a value of the correct type.

• SS4char
Similar to above.

• SS5
e must be of the form loadU x, e2, τ must be int with
C ` e2 : τ ′ ∗ ρ and C ` τ : Unknown and C `
x :handle(ρ, Unknown).
Using induction hypothesis, we have either (VEnv, L, x)
−→∗

expr Error or (VEnv”, L”, v1) with v1 = region(ρ) and
C `env (VEnv”, L”).
If not Error, using lemma R24*, we get (VEnv, L, loadU e1, e2)
−→∗

expr (VEnv” , L”, loadU region(ρ), e2).
Again from induction hypothesis on e2 we have (VEnv”, L”,
e2) −→∗

expr Error or (VEnv’, L’, v2) with v2 ∈ {Uninit}∪
Dom(L[ρ].RS) and C `env (VEnv’, L’).
If (VEnv”, L”, e2) −→∗

expr Error then q.e.d.
If not, using lemma R25*, we get (VEnv”, L”, load region(ρ),
e2)−→∗

expr (VEnv’, L’, load region(ρ), v2) and v2 ∈ {Uninit}∪
Dom(L[ρ].RS). Now R26 applies and since we check that v2 +
3 ∈ Dom(L[ρ].RS), we get Error or (VEnv’, L’, getvalue(L, v1,
4).
From “Getvalue” lemma2, getvalue just retrieves the value
from the location, and doesn’t change any of the invariants of
(VEnv’, L’). q.e.d.

• SS5char
Similar to SS4char.

• SS6
e has to be of form poolalloc(x, e2) and τ of the form τ ′ ∗ρ and
C ` ρ : τ ′ and C ` x :handle(ρ, τ ′) and C ` e2 : int
Using induction hypothesis, (VEnv, L, x) −→expr Error or
(VEnv”, L”, v) s.t. v =region(ρ). If not error, (VEnv”, L”’, e2)
−→expr (VEnv”’, L”, n). If n is one then either rule (R34 or
rule R35 applies.
If rule R34 applies, then the value returned is a value from the
free list, and from invariant 4 for well-formed environments, we
get that the value returned is of the correct type. Since we just
removed an element from the freelist, the Inv5 still holds and
we continue to have a well formed environment.
If R35 applies, then we add an element to the set of addresses
of this region and since the new address is from system heap
H, Inv6 continues to hold. Inv4 holds in the new environment
since we have initialized it with Uninit value. Inv5 holds since
the free list has not changed. Hence the well formedness of the
environment remains intact.
The case where n is not one is similar by using the array
allocation rule. q.e.d.

• SS7
e has to be of the form castintpointer x, e′′ to τ ′ ∗ ρ with τ of

the form τ ′ ∗ ρ with C ` ρ : τ ′, C ` x :handle(ρ, τ ′) and
C ` e′′ : int
Using induction hypothesis, (VEnv, L, x) −→∗

expr Error or
(VEnv”, L”, v′) such that v′ = region(ρ).
If not error, using lemma R30* we have (VEnv, L, castint-
pointer e’, e” to τ ′ ∗ ρ) −→∗

expr (VEnv”, L”, castintpointer
region(ρ), e′′ to τ ′ ∗ ρ).
Using induction hypothesis again (VEnv”, L”, e′′) −→∗

expr

Error or (VEnv’, L’, v′′) such that v′′ ∈ Int. If not error, using
lemma R31* we have (VEnv”, L”, castintpointer region(ρ), e′′

to τ ′ ∗ ρ) −→∗
expr (VEnv”, L”, castintpointer region(ρ), v2 to

τ ′ ∗ ρ) with v2 ∈ Int.
From rule R31 from the operational semantics, we get (VEnv”,
L”, castintpointer region(ρ), v2 to τ ′ ∗ ρ) −→expr Error or
(VEnv”, L”, v2) s.t. v2 ∈ Dom(L”[ρ].RS) or in otherwords
v2 ∈ ||τ ′ ∗ ρ||(V Env′′,L′′). q.e.d.

• SS8
This is straightforward application of the induction hypothesis
and rule R28. None of the invariants change since the invari-
ants for pointer types depend on the region attribute and not
the actual type (See the discussion of SS8 in Section 10.1 to
undestand how we can support casts between arbitrary pointer
types).

• SS9
All array accesses are checked for the pool boundaries and
alignment. e is of the form x, &e2[e3] with C ` ρ : τ ,
C ` x :handle(ρ, τ), C ` e2 : τ ∗ ρ, C ` e3 : int.
Using induction hypothesis we get, (VEnv, L, x) −→∗

expr Error
or (VEnv”, L”, region(ρ)) with C `env (VEnv”, L”).
If not error, then using lemma R37* we get (VEnv, L, x,&e2[e3])
−→∗

expr (VEnv”, L”, region(ρ), &e2[e3]).
Using induction hypothesis again we get, (VEnv”, L”, e2)
−→∗

expr Error or (VEnv”’, L”’, v2) with v2 ∈ ||τ∗ρ||(V Env′′′,L′′′)

and C `env (VEnv”’, L”’).
If not error, then using lemma R38* we get (VEnv”, L”,
region(ρ), &e2[e3])−→∗

expr (VEnv”’, L”’, region(ρ), &v2[e3]).
Using induction hypothesis again we get, (VEnv”’, L”’, e3)
−→∗

expr Error or (VEnv’, L’, n) with C `env (VEnv’, L’).
If not error, then using lemma R39* we get (VEnv”’, L”’,
region(ρ), &v2[e3]) −→∗

expr (VEnv’, L’, region(ρ), &v2[m]).
Now R40 applies. If (v2 +m∗sizeof(τ)) 6∈ Dom(L’[ρ]) then Er-
ror else (VEnv’, L’, v2 +m∗sizeof(τ)) with (v2 +m∗sizeof(τ))
∈ ||τ ∗ ρ||(V Env′,L′) and C `env (VEnv’,L’). q.e.d.

• SS10
This is straightforward application of the induction hypothesis
and rule R28.

THEOREM 2. If C `S and C `env(VEnv, L) then either (VEnv,
L, S) −→∗

stmtError or (VEnv, L, S) −→∗
stmt (VEnv’, L’, ε) and

C `env (VEnv’, L’).

Here −→∗
stmt represents reflexive transitive closure of −→stmt.

This theorem states that given a typing environment C, if statement
S is well typed in that typing environment then evaluation of S
either fails because of a run-time check failure or terminates along
with another well formed environment. To put it differently, it does
not get stuck because of type violation (e.g. trying to access non-
existent memory location).

Proof: The proof of this theorem is by induction on the structure
of typing derivation of C ` S.

Based on the last rule used in the typing derivation of S, we
have the following (exhaustive) list of cases:

• SS11
S is of the form ε.
Trivial case.

• SS12
S is of the form S1; S2 with C ` S1 and C ` S2.
Using induction hypothesis, (VEnv, L, S1) −→∗

stmt Error or
(VEnv”, L”, ε).
If not Error, Using R1* (VEnv, L, S1 ; S2) −→∗

stmt (VEnv”,
L”, S2)
Using induction hypothesis again, we have (VEnv”, L”, S2)
−→∗

stmt Error or (VEnv”, L”, ε). Using transitivity of −→∗
stmt

q.e.d.
• SS13

S is of the form x = e with C ` x : τ and C ` e : τ .
Using Theorem 1 on C ` e : τ , we have (VEnv, L, e) −→∗

expr

Error or (VEnv”, L”, v) with v ∈ ||τ ∗ ρ||(V Env′′,L′′) and
C `env (VEnv”, L”).
Using lemma R2*, we get (VEnv, L, x = e) −→∗

stmt (VEnv”,
L”, x = v). with v ∈ ||τ ||(V Env′′,L′′).
Using R3 we get (VEnv”, L”, x = v) −→∗

stmt (VEnv”[x 7→ v],
L”, ε).
Let VEnv’ = VEnv”[x 7→ v]. Now we need to prove that C `env

(VEnv’, L”). Inv1, Inv2, Inv4, Inv5, Inv6 can be trivially
proved from C `env (VEnv”, L”).
We have C ` x : τ and v ∈ ||τ ||(V Env′′,L′′). So v ∈
||τ ||(V Env′,L′) since VEnv’ differs from VEnv” differs only
in the mapping of x. We also have VEnv’[x] = v. So Inv3
continues to hold. Hence C `env (VEnv’, L”).

• SS14
S if of the form C ` store e2, e1, with C ` ρ : τ , C ` e1 : τ ∗ρ,
and C ` e2 : τ .
Using Theorem 1, we have (VEnv, L, e2) −→∗

expr Error or
(VEnv”, L”, v2) with v2 ∈ ||τ ||(V Env′′,L′′) and C `env

(VEnv”, L”).
If not error, Using R4*, we have (VEnv, L, store e2, e1)
−→∗

stmt (VEnv”, L”, store v2, e1).
First from Inv2 we have ρ ∈ Dom(L).
Now using theorem 1, we have (VEnv”, L”, e1) −→∗

expr Error
or (VEnv’, L’, v1) with v1 ∈ ||τ ∗ ρ||(V Env′,L′) and C `env

(VEnv’, L’).
If not error, Using R5*, we have (VEnv”, L”, store v2, e1)
−→∗

stmt (VEnv’, L’, store v2, v1).
If v1 is Uninit then using R6 we get (VEnv’, L’, store v2, v1)
−→stmt Error and q.e.d.
If not,(VEnv’, L’, store v2, v1) −→stmt (VEnv’, update(L’, v1,
v2), ε from R6.
Using the Update lemma1, C `env (VEnv’, update(L’, v1, v2).
Similarly we can prove for the SS14char case.

• SS15 and SS15char
same as above

• SS16
S is of the form poolfree(x, e2) and C ` ρ : τ and C ` x :
handle(ρ, τ) and C ` e2 : τ ∗ ρ.
Using Theorem1, we get (VEnv, L, x) (VEnv”, L”, v1) s.t. v1

∈ ||handle(ρ, τ)||(V Env′′,L′′) and C `env (VEnv”, L”).
Now using Theorem 1 again, we get (VEnv”, L”, e2) −→∗

expr

Error or (VEnv’, L’, v2) with v2 ∈ ||τ ∗ ρ||(V Env′,L′) and
C `env (VEnv’, L’).
Using R12* and R13*, we get (VEnv, L, poolfree(x, e2))
−→∗

stmt (VEnv’, L’, poolfree(v1, v2)).
From the definition of ||τ ||, v1 = region(ρ) and
v2 ∈ {Uninit}∪Dom(L’[ρ].RS).
If (v2 == Uninit) then from R14, (VEnv’, L’, poolfree(v1 , v2))
−→∗

stmt Error.
If not, from Inv2 ρ ∈ Dom(L’) and R14 applies. Let L’
= L” ∪ {(ρ, {F ; RS})}, ρ 6∈Dom(L”). So (VEnv’, L” ∪
{(ρ, {F ; RS})}, poolfree(region(ρ), v2)) −→stmt (VEnv’, L”

∪ {(ρ, {v2F ; RS})}, ε). We just need to prove that C `env

(VEnv’, L” ∪ {(ρ, {v2F ; RS})}).
We already have C `env (VEnv’, L’). So for (VEnv’, L” ∪
{(ρ, {v2F ; RS})}) Inv1, Inv2, Inv3 trivially hold as they are
the same for (VEnv’, L’). Inv4 holds since ∀ρ L’[ρ].RS is
unmodified. Inv5 holds since v2 ∈ Dom(L’[ρ].RS). Inv6 holds
since ∀ρ L’[ρ].RS and H is unmodified. Hence C `env (VEnv’,
L” ∪ {(ρ, {v2F ; RS})}). q.e.d.

• SS17
S is of the form poolinit(ρ, τ) x { S’ } with C(= Γ, ∆) ` τ
and Γ[x 7→handle(ρ, τ)],∆[ρ 7→ τ] ` S′ with x 6∈Dom(Γ)
and ρ 6∈Dom(∆).
Rule R15 applies if ρ 6∈ Dom(L). We already have ρ 6∈
Dom(∆) and from Inv2 we have ρ 6∈ Dom(L). So R15 ap-
plies. Hence, (VEnv, L, poolinit(ρ, τ)x { S’ }) −→stmt (VEnv
∪ {(x,region(ρ))}, L ∪ {(ρ, {φ; φ})}, pool { S’ }pop(ρ)).
Let VEnv” = VEnv∪ {(x,region(ρ))} and L” = L∪ {(ρ, {φ; φ})}.
Let C’ (Γ′, ∆′) = Γ[x 7→handle(ρ, τ)], ∆[ρ 7→ τ]. We first
need to prove that C′ `env (VEnv”, L”).

Inv1
From Inv1 of (VEnv, L), we get Dom(Γ) = Dom(VEnv).

Dom(Γ′) = Dom(Γ) ∪ { x }
= Dom(VEnv) ∪ { x }
= Dom(VEnv”)

So Inv1 holds.
Inv2
From Inv2 of (VEnv, L), we get Dom(∆) = Dom(L).

Dom(∆′) = Dom(∆) ∪ { ρ }
= Dom(L) ∪ { ρ }
= Dom(L”)

So Inv2 holds.
Inv3
From Inv3 of (VEnv, L) we get ∀y ∈ Dom(VEnv), if
C ` y : τ ′ then VEnv[y] ∈ ||τ ′||(V Env,L)

Since Dom(V Env′) = Dom(VEnv) ∪ { x }. We just need to
prove the invariant for x. We have C ′ ` x : handle(ρ, τ) and
VEnv”[x] = region(ρ), and so the invariant Inv3 continues
to hold.
Inv4
From Inv4 of (VEnv, L) we get ∀ρ′ ∈ Dom(L), if C ` ρ′ :
τ ′ then ∀v ∈ Dom((L[ρ′]).RS), L[ρ′].RS[v]∈ ||τ ′||(V Env,L)

.
∀ρ′ ∈ Dom(L”),
− if ρ′ ∈Dom(L), then Inv4 continues to hold because

none of the previous regions changed.
− if ρ′ = ρ, then since Dom(L”[ρ].RS) = φ the invariant

holds trivially.
Hence Inv4 holds.
Inv5
From Inv5 of (VEnv, L) we get ∀ρ′ ∈ Dom(L), Dom((L[ρ′]).F)
⊆ Dom((L[ρ′]).RS).
∀ρ′ ∈ Dom(L”),
− if ρ′ ∈Dom(L), then Inv5 continues to hold because

none of the regions in L are changed.
− if ρ′ = ρ, then since Dom(L”[ρ].RS) = Dom(L”[ρ].F) =

φ, the invariant holds trivially.
Hence Inv5 holds.
Inv6
From Inv6 of (VEnv, L) we get ∀ρ1ρ2 ∈ Dom(L), if ρ1 6=
ρ2 then Dom((L[ρ1]).RS) ∩ Dom((L[ρ2]).RS) = φ.
∀ρ1ρ2 ∈ Dom(L”),
− if ρ1, ρ2 ∈Dom(L), then Inv6 continues to hold because

none of the regions in L changed.

− if either of ρ1 or ρ2 = ρ, then since Dom(L”[ρ].RS) = φ,
the invariant holds trivially.

Moreover, H does not change so the Inv6 holds.
Hence C′ `env (VEnv”, L”).
Now using induction hypothesis, we get (VEnv”, L”, S)−→∗

stmt

(VEnv”’, L”’, ε) and C ′ `env (VEnv”’, L”’).
Using lemma R16* we get (VEnv”, L”, pool { S }pop(ρ))
−→∗

stmt (VEnv”’, L”’, pool { ε }pop(ρ)).
Now C′ `env (VEnv”’, L”’).
So from Inv1 we have x ∈Dom(VEnv”’).
From Inv3 we have VEnv”’[x] =region(ρ).
From Inv2 we have ρ in Dom(L”’).

Let VEnv”’ = VEnv’ ∪ {(x,region(ρ))} and L”’ = L’ ∪ {(ρ,R)}.

Now rule R17 applies.
(VEnv”’, L”’, pool { ε }pop(ρ)) −→stmt (VEnv’, L’, ε).
Let H”’ be the set of unused system addresses before this
operation. and H’ be the set of unsed system addresses after.
Then H’ = H”’ ∪ Dom(L”’[ρ].RS).
We need to prove that C `env (VEnv’, L’).

Note that Dom(VEnv”’) = Dom(VEnv’) ∪ {x} where x 6∈
Dom(VEnv’).

Inv1
From Inv1 of (VEnv”’, L”’), we get Dom(Γ′) = Dom(VEnv”’).
So Dom(Γ) ∪{x} =Dom(VEnv’) ∪ {x}. but x 6∈Dom(Γ)
and x 6∈Dom(VEnv’). So Dom(Γ) = Dom(VEnv’) . q.e.d.
Inv2
From Inv2 of (VEnv”’, L”’), we get Dom(∆′) = Dom(L”’).
So Dom(∆) ∪{ρ} =Dom(L’) ∪ {ρ}. but ρ 6∈Dom(∆) and
ρ 6∈Dom(L’). So Dom(∆) = Dom(L’) . q.e.d.
Inv3
From Inv3 of (VEnv”’, L”’), we get ∀y ∈Dom(VEnv”’), if
C′ ` y : τ then VEnv”’[y] ∈ ||τ ||(V Env′′′,L′′′).
∀y ∈Dom(VEnv’), if C ` y : τ then we have y 6= x and
y ∈Dom(VEnv”’).
VEnv”’[y] ∈ ||τ ||(V Env′′′,L′′′). Since y 6= x, VEnv”’[y]
= VEnv’[y]. From Well formed type lemma and Safe
region deallocate lemma we have ||τ ||(V Env′′′,L′′′) =
||τ ||(V Env′,L′).
q.e.d.
Inv4
From Inv4 of (VEnv”’, L”’) we get ∀ρ′ ∈ Dom(L”’), if
C′ ` ρ′ : τ ′ then ∀v ∈ Dom((L”’[ρ′]).RS), L”’[ρ′].RS[v]
∈ ||τ ′||(V Env′′′,L′′′) .
∀ρ′ ∈ Dom(L’), if C ` ρ′ : τ ′ then we know that
ρ′ 6= ρ and ρ′ ∈Dom(L”’).
So we have, ∀v ∈ Dom((L”’[ρ′]).RS), L”’[ρ′].RS[v] ∈
||τ ′||(V Env′′′,L′′′) .
But ρ′ 6= ρ so ∀v ∈ Dom((L’[ρ′]).RS), L’[ρ′].RS[v]
∈ ||τ ′||(V Env′′′,L′′′′) .
Now using Well formed type lemma and Safe region deal-
locate lemma we have ||τ ′||(V Env′′′,L′′′) = ||τ ||(V Env′,L′).
q.e.d.
Inv5
From Inv5 of (VEnv”’, L”’) we get ∀ρ′ ∈ Dom(L”’),
Dom((L”’[ρ′]).F) ⊆ Dom((L”’[ρ′]).RS).
This trivially holds for (VEnv’, L’) since we have just taken
element out of the map for L”’.
Inv6
From Inv6 of (VEnv”’, L”’) we get ∀ρ1ρ2 ∈ Dom(L”’), if
ρ1 6= ρ2 then Dom((L”’[ρ1]).RS) ∩ Dom(L”’[ρ2].RS) = φ.

This trivially holds for (VEnv’, L’) since we have just taken
an element out of the map for L”’.
Also, ∀ρ′ ∈ Dom(L’), ρ′ 6= ρ and Dom(L’[ρ′].RS) =
Dom(L”’[ρ′].RS). From Inv6 of (VEnv”’,L”’) Dom(L”’[ρ′].RS)
∩ H”’ = φ and Dom(L”’[ρ′].RS)∩ Dom(L”’[ρ].RS) = φ. So,
Dom(L’[ρ′].RS) ∩ (H”’ ∪ Dom(L”’[ρ].RS)) = φ.
Hence Inv6 holds.

q.e.d.

