
A Semantic Approach to Interpolation

Andrei Popescu? and Traian Florin Şerbănuţă?? and Grigore Roşu

Department of Computer Science,
University of Illinois at Urbana-Champaign.
{popescu2,tserban2,grosu}@cs.uiuc.edu

Abstract. Interpolation results are investigated for various types of for-
mulae. By shifting the focus from syntactic to semantic interpolation, we
generate, prove and classify more than twenty interpolation results for
first-order logic and some for richer logics. A few of these results non-
trivially generalize known interpolation results. All the others are new.

1 Introduction

Craig interpolation is a landmark result in first-order logic [8]. In its original
formulation, it says that given sentences Γ1 and Γ2 such that Γ1 ` Γ2, there is
some sentence Γ whose non-logical symbols occur in both Γ1 and Γ2, called an
interpolant, such that Γ1 ` Γ and Γ ` Γ2. This well-known result can also be
rephrased as follows: given first-order signatures Σ1 and Σ2, a Σ1-sentence Γ1

and a Σ2-sentence Γ2 such that Γ1 |=Σ1∪Σ2 Γ2, there is some (Σ1∩Σ2)-sentence
Γ such that Γ1 |=Σ1 Γ and Γ |=Σ2 Γ2.

One naturally looks for this property in logical systems others than first-order
logic. The conclusion of studying various extensions of first-order logic was that
”interpolation is indeed [a] rare [property in logical systems]” ([2], page 68).
We are going to show in this paper that the situation is totally different when
one looks in the opposite direction, at restrictions of first-order logic. There are
simple logics, such as equational logic, where the interpolation result does not
hold for sentences, but it holds for sets of sentences [29]. For this reason, as well
as for reasons coming from theoretical software engineering, in particular from
specification theory and modularization [3, 14, 16, 10], it is quite common today
to state interpolation more generally, in terms of sets of sentences Γ1, Γ2, and
Γ . This is also the approach that we follow in this paper.

We call our approach to interpolation “semantic” because we shift the prob-
lem of finding syntactic interpolants Γ to a problem of finding appropriate classes
of models, which we call semantic interpolants. We present a precise character-
ization for all the semantic interpolants of a given instance Γ1 |=Σ1∪Σ2 Γ2, as

? Also: Institute of Mathematics “Simion Stoilow” of the Romanian Academy,
Bucharest; and Fundamentals of Computer Science, Faculty of Mathematics, Uni-
versity of Bucharest.

?? Also: Fundamentals of Computer Science, Faculty of Mathematics, University of
Bucharest.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4820349?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

well as a general theorem ensuring the existence of semantic interpolants closed
under generic closure operators. Not all semantic interpolants correspond to sets
of sentences. However, when semantic interpolants are closed under certain oper-
ators, they become axiomatizable, thus corresponding to some sets of sentences.
Following the nice idea of using Birkhoff-like axiomatizability to prove the Craig
interpolation for equational logics in [29], a similar semantic approach was inves-
tigated in [28], but it was only applied there to obtain Craig interpolation results
for categorical generalizations of equational logics. A similar idea is exploited in
[10], where interpolation results are presented in an institutional [19] setting.
While the institution-independent interpolation results in [10] can potentially
be applied to various particular logics, their instances still refer to just one type
of sentence: the one the particular logic comes with.

The conceptual novelty of our semantic approach to interpolation in this
paper is to keep the restrictions on Γ1, Γ2, and Γ , or more precisely the ones
on their corresponding classes of models, independent. This way, surprising and
interesting results can be obtained with respect to the three types of sentences
involved. By considering several combinations of closure operators allowed by
our parametric semantic interpolation theorem, we provide more than twenty
different interpolation results; some of them generalize known results, but most
of them are new. For example, we show that if the sentences in Γ1 are first-order
while the ones in Γ2 are universally quantified Horn clauses (UHC’s), then those
in the interpolant Γ can be chosen to be UHC’s too. Surprisingly, sometimes the
interpolant is strictly simpler than Γ1 and Γ2. For example, we show that the
following choices of the type of sentences in the interpolant Γ are possible (see
also table 1):
- Γ1-UHC’s and Γ2-positive (i.e., contains only fromulae without negations) im-
ply that Γ consists only of universally quantified atoms;
- Γ1-universal and Γ2-positive imply Γ consists only of universally quantified
disjunction of atoms;
- Γ1- finitary formulae and Γ2- infinitary UHC’s imply Γ - (finitary) UHC’s.

Some Motivation. Craig interpolation has applications in various areas of
computer science. In automatic reasoning, putting theories together while still
taking advantage, inside their union language, of their available decision proce-
dures [25, 27], relies on interpolation in a crucial way. Moreover, interpolation
provides a heuristic to “divide and conquer” a proving task: in order to show
Γ1 |=Σ1∪Σ2 Γ2, find some Γ over the syntax Σ1∩Σ2 and prove the two “simpler”
tasks Γ1 |=Σ1 Γ and Γ |=Σ2 Γ2. For some simpler sub-logics of first-order logic,
such as propositional calculus, where there is a finite set of semantically different
sentences over any given signature, one can use interpolation also as a disproof
technique: if for each (Σ1 ∩ Σ2)-sentence Γ (there is only a finite number of
them) at least one of Γ1 |=Σ1 Γ or Γ |=Σ2 Γ2 fails, then Γ1 |=Σ1∪Σ2 Γ2 fails. The
results of the present paper, although not effectively constructing interpolants,
provide information about the existence of interpolants of a certain type, helping
reducing the space of search. For instance, according to one of the cases of our

2

main result, Theorem 2, the existence of a positive interpolant Γ is ensured by
the fact that either one of Γ1 or Γ2 is positive.

Formal specification theory is another area where interpolation is important
[22, 16] and where our results contribute. For structured specifications [4, 31], in-
terpolation ensures a good, compositional, behavior of their semantics [4, 6, 28].
In choosing a logical framework for specifications, one has to find the right bal-
ance between expressive power and amenable computational aspects. Therefore,
an intermediate choice between the “extremes”, full first-order logic and equa-
tional logic, might be desirable. We enable (at least partially) such intermediate
logics (e.g., the positive- or (∀∨)- logic) as specification frameworks, by showing
that they have the interpolation property. Moreover, the very general nature of
our results w.r.t. signature morphisms sometimes allows one to enrich the class of
morphisms used for renaming usually up to arbitrary morphisms, freeing spec-
ifications from unnatural constraints, like injectivity of renaming/translation.
Some technical details about the applications of our results to formal specifica-
tions may be found in Section 5.

Technical Preliminaries. For simplifying the exposition, set-theoretical foun-
dational issues are ignored in this paper.1 Given a class D, let P(D) denote the
collection of all subclasses of D. For any C ∈ P(D), let C denote D \ C, that is,
the class of all elements in D which are not in C. Anytime we use the notation
C, the containing class will be clear from the context. Given C1, C2 ∈ P(D), let
[C1, C2] denote the collection of all classes including C1 and included in C2, that
is, [C1, C2] = {C ∈ P(D) | C1 ⊆ C ⊆ C2}.

An operator on D is a mapping F : P(D) → P(D). Let IdD denote the
identity operator. For any operator F on D, let Fixed(F) denote the collection
of all fixed points of F , that is, C ∈ Fixed(F) iff F (C) = C. An operator F on
D is a closure operator iff it is extensive (C ⊆ F (C)), monotone (if C1 ⊆ C2 then
F (C1) ⊆ F (C2)) and idempotent (F (F (C)) = F (C)).

Given a relation R on D, let R also denote the operator on D associated
with R, assigning to each C ∈ P(D) the class of all elements in D which are in
relation with elements in C, that is, R(C) = {c′ ∈ D | (∃c ∈ C) c R c′}.

Proposition 1. If a relation R on D is reflexive and transitive then the operator
associated with R is a closure operator.

Proof. Extensivity comes from reflexivity, idempotency comes from transitivity
and extensivity, and monotony holds trivially, by the definition of the associated
operator. ut

Given two classes C and D and a mapping U : C → D, we let U also denote
the mapping U : P(C) → P(D) defined by U(C′) = {U(c) | c ∈ C′} for any
C′ ∈ P(C). Also, we let U−1 : P(D) → P(C) denote the mapping defined by
U−1(D′) = {c ∈ C | U(c) ∈ D′} for any D′ ∈ P(D). Given two mappings

1 Yet, it is easy to see that references to collections of classes could be easily avoided.

3

U, V : P(C) → P(D), we say that U is included in V , written U v V , iff
U(C′) ⊆ V (C′) for any C′ ∈ P(C).

We write the composition of mappings in “diagrammatic order”: if f : A→ B
and g : B → C then f ; g denotes their composition, regardless of whether f and
g are mappings between sets, classes, or collections of classes.

Proposition 2. Let A,B, C,D be classes and consider the following diagram:

P(A) V // P(B)
U ,,

U ′
22 P(C) V ′ // P(D)

such that U v U ′. Then:
1. V ;U v V ;U ′;
2. V ′ monotone implies that U ;V ′ v U ′ ; V ′.

Proof. Both properties are obvious. ut
Proposition 3. Let F and G be operators on the same class D such that F is
a closure operator. The following hold:
1. If G ; F v F ; G then F ; G ; F = F ; G;
2. If G is also a closure operator, then F ; G is a closure operator iff G ; F v
F ; G.

Proof. 1. We use Proposition 2, together with the idempotency and extensivity
of F : F ; (G ;F) v F ; (F ; G) = (F ; F) ; G = F ; G v (F ; G) ; F .
2. Suppose that G is also a closure operator. First notice that monotony and
extensivity are preserved by operator composition. Furthermore, since G ;F v
F ; G, we get F ; G ;F ;G v F ; F ; G ; G = F ;G, so, using also extensivity, we
obtain F ; G idempotent. It follows that F ; G is a closure operator. Conversely,
by extensivity of F we have 1P(D) v F . Now, since G ; F is monotone, it follows
from Proposition 2 that G ;F v F ;G ; F . But since G is extensive and F ; G is
idempotent, we further have F ; G ;F v F ;G ; F ; G = F ; G. ut

A>>U
||

| `` V
AAA

A

B ``

V′
AA

A C>>
U ′}}
}

A′

Definition 1. We say mappings (between classes) U , V, U ′, V ′
(see diagram) form a commutative square iff V ′ ;U = U ′ ;V.
A commutative square is a weak amalgamation square iff for
any b ∈ B and c ∈ C such that U(b) = V(c), there exists some
a′ ∈ A′ such that V ′(a′) = b and U ′(a′) = c.

We call this amalgamation square “weak” because a′ is not required to be unique.

2 First-Order Logic and Classical Interpolation Revisited

First-Order Logic. A first-order signature is a triple Σ = (S, F, P), where S
is a set of sorts, (Fw→s)w∈S∗,s∈S an S∗×S-ranked set of operation symbols, and
P = (Pw)w∈S∗ an S∗-ranked set of relation symbols. By language abuse, we also

4

write P and F for the sets
⋃

w∈S∗ Pw and
⋃

w∈S∗,s∈S Fw→s respectively. The Σ-
models are structures consisting of a non-empty carrier set for each sort,2 and of
an operation/relation of appropriate arity for each symbol of operation/relation.
Formally, models are triples

A = ((As)s∈S , (Aw→s(σ))(w,s)∈S∗×S,σ∈Fw→s
, (Aw(π))w∈S∗,π∈Pw

),

where Aw→s(σ) : Aw → As if σ ∈ Fw→s and Aw(π) ⊆ Aw if π ∈ Pw. (Aw denotes
As1 × . . . × Asn whenever w = s1 . . . sn ∈ S∗.) We sometimes write Aσ and Aπ

instead of Aw→s(σ) and Aw(π). We let Mod(Σ) denote the class of Σ-models.
The set of (first-order) Σ-sentences is obtained starting with atomic formulae,
that is, relational atoms π(t1, . . . , tn) and equational atoms t1 = t2 (t1, . . . , tn are
terms over some component-wise infinite S-sorted set of variables and operations
in F), and using negation, conjunction, disjunction, universal and existential
quantification, such that each variable gets to be bounded by some quantifier. Let
Sen(Σ) denote the set of Σ-sentences. The satisfaction relation A |= γ between
models and sentences is defined as usual, by interpreting the syntactic items in
γ as the corresponding items in A. The satisfaction relation can be extended
to a relation |= between classes of models M ⊆ Mod(Σ) and sets of sentences
Γ ⊆ Sen(Σ): M |= Γ iff A |= γ for all A ∈ M and γ ∈ Γ . This further induces
two operators ∗ : P(Sen(Σ))→ P(Mod(Σ)) and ∗ : P(Mod(Σ))→ P(Sen(Σ)),
defined by Γ ∗ = {A | {A} |= Γ} andM∗ = {γ | M |= {γ}} for each Γ ⊆ Sen(Σ)
and M ⊆ Mod(Σ). The two operators ∗ form a Galois connection between
(P(Sen(Σ)),⊆) and (P(Mod(Σ)),⊆). The two composition operators ∗ ; ∗ are
denoted • and are called deduction closure (the one on sets of sentences) and
axiomatizable hull (the one on classes of models). The classes of models closed
under • are called elementary classes and the sets of sentences closed under •

are called theories. If Γ, Γ ′ ⊆ Sen(Σ), we say that Γ semantically deduces Γ ′,
written Γ |= Γ ′, iff Γ ∗ ⊆ Γ ′∗.

Signature morphisms are mappings on sorts, together with rank-preserving
mappings on operation and relation symbols. More precisely, given two signa-
tures Σ = (S, F, P) and Σ′ = (S′, F ′, P ′), a signature morphism φ : Σ → Σ′ is a
triple (φst, φop, φrl), where φst : S → S′, φop = (φop

w→s)w∈S∗,s∈S , φrl = (φrl
w)w∈S∗

such that for each w and s, φop
w→s : Fw→s → F ′φst(w)→φst(s) and φrl

w : Pw →
P ′φst(w). We may write φ for each one of φst, φop and φrl. The morphism φ nat-
urally induces a mapping φ : Sen(Σ) → Sen(Σ′), where for each Σ-sentence γ,
φ(γ) is obtained from γ by appropriately renaming via φ all the sorts, operation-
and relation- symbols. For each Σ′-model A′, its φ-reduct is a model A, usu-
ally written as A′ ¹φ, where As = A′φ(s), Aw→s(σ) = A′φ(w)→φ(s)(φ(σ)), and
Aw(π) = A′φ(w)(φ(π)). Let Mod(φ) : Mod(Σ′) → Mod(Σ) denote the mapping
A′ 7→ A′¹φ. Satisfaction relation has the important property that it is “invariant
under change of notation” [19], i.e., for each γ ∈ Sen(Σ) and A′ ∈ Mod(Σ′),
A′ |= φ(γ) iff A′¹φ|= γ.

2 Birkhoff-style axiomatizability, which will be used intensively in this paper, depends
on the non-emptiness of carriers [29].

5

Interpolation. The original formulation of interpolation [8] is in terms of
signature intersections and unions, that is, w.r.t. squares which are pushouts
of signature inclusions. However, subsequent advances in modularization the-
ory [3, 14, 16, 10, 5] showed the need of arbitrary pushout squares or even weak
amalgamation squares. A general formulation of interpolation is the following:

Σφ1
||zz

z φ2
""DD

D

Σ1

φ′2
!!DDD

Σ2

φ′1
}}zzz

Σ′

Definition 2. Assume a commutative square of signature mor-
phisms (see diagram) and two sets of sentences Γ1 ⊆ Sen(Σ1),
Γ2 ⊆ Sen(Σ2) such that φ′2(Γ1) |=Σ′ φ′1(Γ2) (i.e., Γ1 implies Γ2

on the “union language” Σ′). An interpolant for Γ1 and Γ2 is
a set Γ ⊆ Sen(Σ) such that Γ1 |=Σ1 φ1(Γ) and φ2(Γ) |=Σ2 Γ2.

The following three examples show that, without further restrictions on sig-
nature morphisms, an interpolant Γ may not be found with the same type of
sentences as Γ1 and Γ2, but with more general ones. In other words, there are
sub-first-order logics which do not admit Craig Interpolation within themselves
but in a larger (sub-)logic. The first example below shows a square in uncon-
ditional equational logic which does not admit unconditional interpolants, but
admits a conditional one:

Example 1. Consider the following pushout of algebraic signatures, as in [28]:
Σ = ({s}, {d1, d2 : s → s}), Σ1 = ({s}, {d1, d2, c : s → s}), Σ2 = ({s}, {d : s →
s}), Σ′ = ({s}, {d, c : s → s}), all morphisms mapping the sort s into itself, φ1

and φ2 mapping d1 and d2 into themselves and into d, respectively, φ′2 mapping
d1 and d2 into d and c into itself, and φ′1 mapping d into itself.

Take Γ1 = {(∀x)d2(x) = c(d1(x)), (∀x)d1(d2(x)) = c(d2(x))} and Γ2 =
{(∀x)d(d(x)) = d(x)} to be sets of Σ1-equations and of Σ2-equations, respec-
tively. It is easy to see that Γ1 implies Γ2 in the “union language”, i.e., φ′2(Γ1) |=
φ′1(Γ2). But Γ1 and Γ2 have no equational Σ-interpolant, because the only
equational Σ-consequences of Γ1 are the trivial ones, of the form (∀X)t = t
with t a Σ-term (since all the nontrivial Σ1-consequences of Γ1 contain the
symbol c). Yet, Γ1 and Γ2 have a conditional-equational interpolant, namely
{(∀x)d1(x) = d2(x)⇒ d1(x) = d1(d1(x))}.

The following example shows a situation in which the interpolant cannot
even be conditional-equational; it can be a first-order, though:

Example 2. Consider the same pushout of signatures as in previous example
and take now Γ1 = {(∀x)d2(x) = d1(c(x)), (∀x)d1(d2(x)) = d2(c(x))} and
Γ2 = {(∀x)d(d(x)) = d(x)}. Again, φ′2(Γ1) |= φ′1(Γ2). But now Γ1 and Γ2 have
no conditional-equational Σ-interpolant either, because all nontrivial conditional
equations we can infer from Γ1 contain the symbol c (to see this, think in terms of
the syntactic deduction system for conditional equational logic). Nevertheless, Γ1

and Γ2 have a first-order interpolant, namely {(∀x)d1(x) = d2(x)⇒ (∀y)d1(y) =
d1(d1(y))}.

An obstacle to interpolation inside the desired type of sentences in the ex-
amples above is the lack of injectivity of φ2 on operation symbols; injectivity

6

on both sorts and operation symbols implies conditional equational interpola-
tion [29]. The following example, taken over form [5] shows that first-order logic
does not admit interpolation either without making additional requirements on
the square morphisms. We shall shortly prove that for a pushout square to have
first-order interpolation, it is sufficient that it has one of the morphisms injective
on sorts. This is, up to our knowledge, the most general known effective criterion
for a pushout to have first-order interpolation (see also [21] for the same result
obtained by taking a totally different route, via Robinson consistency).

Example 3. Let Σ = ({s1, s2}, {d1 :→ s1, d2 :→ s2}), Σ1 = ({s}, {d1, d2 :→ s}),
Σ2 = ({s}, {d :→ s}), Σ′ = ({s}, {d :→ s}), all the morphisms mapping all
sorts into s, φ1 mapping d1 and d2 into themselves, and all the other morphisms
mapping all operation symbols into d. In [5], it is shown that first-order inter-
polation does not hold in this context. For instance, let Γ1 = {¬(d1 = d2)} and
Γ2 = {¬(d = d)}. Then obviously φ′2(Γ1) |= φ′1(Γ2), but Γ1 and Γ2 have no (first-
order) Σ-interpolant. Indeed, assume by contradiction that there exists a set Γ
of Σ-sentences such that Γ1 |= φ1(Γ) and φ2(Γ) |= Γ2; let A be the Σ1-model
with As = {0, 1}, such that Ad1 = 0 and Ad2 = 1. Let B denote A¹φ1 . We have
that Bs1 = Bs2 = {0, 1}, Bd1 = 0, Bd2 = 1. Because A |= Γ1 and Γ1 |= φ1(Γ),
it holds that B |= Γ . Define the Σ-model C to be the same as B, just that
one takes Cd1 = Cd2 = 0. Now, C and B are isomorphic (notice that a and b
are constants of different sorts in Σ), so C |= Γ ; but C admits a φ2-extension
D, and, because φ2(Γ) |= Γ2, we get D |= Γ2, which is a contradiction, since
no Σ2-model can satisfy ¬(d = d). What one would need here in order to “fix”
interpolation is some extension of many-sorted first-order formulae which would
allow one to equate terms of different sorts, in the form t1.s1 = t2.s2; alterna-
tively, an order-sorted second-order extension, allowing quantification over sorts,
a special symbol < which is to be interpreted as inclusion between sort carriers,
and membership assertions t : s, meaning “t is of sort s” (in the spirit of [23]),
would do, because we could formally state in Σ that there exists a common
subsort s′ of s1 and s2 such that d1 : s′ and ¬(d2 : s′).

Therefore, the interpolation property seems to be very sensitive to the limits
of expression of the given logic. Analyzing interpolation w.r.t. these limits in
diverse sub-first-order logics is one of the main concerns of this paper.

The semantic view to interpolation. The interpolation problem, despite its
syntactic nature, can be regarded semantically, on classes of models. Indeed, by
the sentence-model duality and the satisfaction condition, we have that:
- φ′2(Γ1) |= φ′1(Γ2) iff φ′2(Γ1)∗ ⊆ φ′1(Γ2)∗ iff Mod(φ′2)

−1(Γ ∗1) ⊆ Mod(φ′1)
−1(Γ ∗2);

- Γ1 |= φ1(Γ) iff Γ ∗1 ⊆ φ1(Γ)∗ iff Γ ∗1 ⊆ Mod(φ1)−1(Γ ∗);
- φ2(Γ) |= Γ2 iff φ2(Γ)∗ ⊆ Γ ∗2 iff Mod(φ2)−1(Γ ∗) ⊆ Γ ∗2 .
These suggest defining the following notion of “semantic interpolation”:

Definition 3. GivenM1 ⊆ Mod(Σ1) andM2 ⊆ Mod(Σ2) with Mod(φ′2)
−1(M1) ⊆

Mod(φ′1)
−1(M2), a semantic interpolant of M1 and M2 is a class M ⊆

Mod(Σ) such that M1 ⊆ Mod(φ1)−1(M) and Mod(φ2)−1(M) ⊆M2.

7

Therefore, if Γ1 ⊆ Sen(Σ1), Γ2 ⊆ Sen(Σ2), and Γ ⊆ Sen(Σ), then Γ is
an interpolant of Γ1 and Γ2 iff Γ ∗ is a semantic interpolant of Γ ∗1 and Γ ∗2 .
The connection between semantic interpolation and classical logical interpolation
holds only when one considers classes which are elementary, i.e., specified by sets
of sentences, and the interpolant is also elementary. Rephrasing the interpolation
problem semantically allows us to adopt the following “divide and conquer”
approach, already sketched in [28]:

1. Find as many semantic interpolants as possible without caring whether they
are axiomatizable or not (note that “axiomatizable” will mean “elementary”
only within first-order logic, but we shall consider other logics as well);

2. Then, by imposing diverse axiomatizability closures on the two starting
classes of models, try to obtain a closed interpolant.

The two starting classes need not fulfill the same type of axiomatizability. And
in the most fortunate cases, as we shall see below, the interpolant is able to
capture and even strengthen the properties of both classes. Though quite non-
constructive because of the appeal to classes of models, our results will give
plenty of information about the interpolant. The next two sections deal with the
two parts of the just divided interpolation problem.

3 Semantic Interpolation

In this section we generalize the notion of semantic interpolant from Definition 3
to arbitrary classes and give a characterization of semantic interpolants together
with a theorem stating generic conditions under which such semantic interpolants
are closed under certain closure operators.

Definition 4. Consider a commutative square like in Definition 1, together with
some M ∈ P(B) and N ∈ P(C) such that V ′−1(M) ⊆ U ′−1(N). We say that
K ∈ P(A) is a semantic interpolant of M and N iff M ⊆ U−1(K) and
V−1(K) ⊆ N . Let I(M,N) denote the collection of all semantic interpolants of
M and N .

The following gives a precise characterization of semantic interpolants to-
gether with a general condition under which they exist.

Proposition 4. Under the hypothesis of Definition 4:
1. I(M,N) = [U(M),V(N)];
2. If the square is a weak amalgamation square then I(M,N) 6= ∅.
Proof. 1: For any K ∈ A, we have thatM⊆ U−1(K) is equivalent to U(M) ⊆ K;
moreover, one can see that V−1(K) ⊆ N is equivalent to K ⊆ V(N). Therefore,
K is a semantic interpolant for M and N iff U(M) ⊆ K ⊆ V(N).
2: All we need to show is that U(M) ⊆ V(N), i.e., that for any a ∈ U(M), a is
not an element of V(N). Suppose it were and consider b ∈ M and c ∈ N such

8

that U(b) = a = V(c). From the weak amalgamation property we deduce that
there exists some a′ ∈ A′ such that V ′(a′) = b and U ′(a′) = c. Since b ∈ M, it
follows that a′ ∈ V ′−1(M); since V ′−1(M) ⊆ U ′−1(N), it further follows that
a′ ∈ U ′−1(N), i.e., that U ′(a′) ∈ N . However, this is in contradiction with the
fact that c = U ′(a′) was chosen from N . ut

In the remainder of this section, when we use pairs of operators/relations, we
will annotate each component of the pair by the class on which it is defined.

Definition 5. Given two classes C and D, a mapping U : C → D and a pair of
operators F = (FC , FD), we say that

– U preserves fixed points of F if U(Fixed(FC)) ⊆ Fixed(FD), that is, for
any fixed point of FC we obtain through U a fixed point of FD;

– U lifts F if FD ;U−1 v U−1 ; FC, that is, for any D′ ∈ P(D) and any c ∈ C,
if U(c) ∈ FD(D′) then c ∈ FC(U−1(D′)).

The intuition for the word “lifts” in the above definition comes from the case
of the operators FC and FD being given by binary relations (see Proposition 5
below).

The following theorem is at the heart of all our subsequent results. It gives
general criteria under which a weak amalgamation square admits semantic in-
terpolants closed under certain generic operators.

Theorem 1. Consider a weak amalgamation square as in Definition 1 and pairs
of operators F = (FB, FA) and G = (GC , GA) such that:

1. FA ;GA ;FA = FA ; GA;
2. GC and GA are closure operators;
3. U preserves fixed points of F ;
4. V lifts G.

Then for each M ∈ Fixed(FB) and N ∈ Fixed(GC) such that V ′−1(M) ⊆
U ′−1(N),M and N have a semantic interpolant K in Fixed(FA)∩Fixed(GA).

Proof. TakeK = GA(U(M)). Let us first show thatK ∈ Fixed(FA)∩Fixed(GA).
We have that K ∈ Fixed(GA), since GA is idempotent. Also, since M ∈
Fixed(FB) and U preserves fixed points of F , we have that U(M) ∈ Fixed(FA).
Therefore FA(K) = FA(GA(U(M))) = FA(GA(FA(U(M)))) = GA(FA(U(M))) =
GA(U(M)) = K, that is, K ∈ Fixed(FA).

Let us next show that K is a semantic interpolant ofM and N . Since GA is
extensive, U(M) ⊆ GA(U(M)), whence M⊆ U−1(K). Using that V lifts G, we
obtain that V−1(K) = V−1(GA(U(M))) ⊆ GC(V−1(U(M))). From Proposition 4
we know that U(M) is a semantic interpolant ofM and N , so V−1(U(M)) ⊆ N .
Using that GC is monotone, we get that GC(V−1(U(M))) ⊆ GC(N) = N . Thus
V−1(K) ⊆ N . We obtained that K is also a semantic interpolant ofM and N .

ut

9

The operators above will be conveniently chosen in the next section to be
closure operators characterizing axiomatizable classes of models.

Because in the following sections many of the used operators are associated
to (reflexive and transitive) relations, let us next give an easy criterion for a
mapping to lift/[preserve fixed points of] such an operator.

Proposition 5. Consider two classes C and D, a mapping U : C → D and a
pair of relations R = (RC , RD).3 Then the following hold:
1. U lifts R if and only if for any elements c ∈ C and d ∈ D such that dRDU(c),
there exists c′ ∈ C such that U(c′) = d and c′RCc.
2. Suppose RC is reflexive and transitive. Then U preserves fixed points of R if
and only if for any elements c ∈ C and d ∈ D such that U(c)RDd, there exists
c′ ∈ C such that U(c′) = d and cRCc′;
3. Suppose RC is reflexive and transitive. Then U preserves fixed points of R if
and only if U lifts (R−1

C , R−1
D).

Proof. 1: Assume that U lifts R and let c ∈ C and d ∈ D be two elements
such that dRDU(c). Then U(c) ∈ RD({d}), thus c ∈ RC(U−1({d})), i.e., there
exists c′ ∈ C such that U(c′) ∈ {d} and c ∈ RC({c′}). But the latter just
mean U(c′) = d and c′RCc. Conversely, let D′ ∈ P(D) and c ∈ C such that
U(c) ∈ RD(D′). Then there exists d ∈ D′ such that dRDU(c). Thus, there exists
c′ ∈ C such that U(c′) = d and c′RCc. But this implies c′ ∈ U−1(D′), and
furthermore c ∈ RC(U−1(D′)).

2: Suppose U preserves fixed points of R and let c ∈ C and d ∈ D be two
elements such that U(c)RDd. Since RC is reflexive and transitive we have that
RC({c}) is a fixed point of RC , so U(RC({c})) must be a fixed point of RD. Since
U(c) ∈ U(RC({c})) and U(c)RDd, it follows that d ∈ U(RC({c})), whence there
exist c′ ∈ RC({c}) such that U(c′) = d. But c′ ∈ RC({c}) means exactly that
cRCc′. Conversely, let C′ be a fixed point of RC . We want to show that U(C′) is
a fixed point of RD. Let d ∈ RD(U(C′)). There exists c ∈ C′ such that U(c)RDd
whence there exists c′ ∈ C such that U(c′) = d and cRCc′. Since c ∈ C′ and C′ is
a fixed point of RC , it follows that c′ ∈ C′, whence d ∈ U(C′).

3: Obvious from points 1 and 2. ut

Since our closure operators will be in general compositions of other closure
operators, the following result allows us to treat them separately.

Proposition 6. Consider two classes C and D, a mapping U : C → D and two
pairs of operators F = (FC , FD) and G = (GC , GD). Then the following hold:
1. If GC is monotone and U lifts F and G, then U also lifts (FC ;GC , FD ;GD);
2. If FC ; GC ; FC = FC ;GC and U preserves fixed points of F and G, then U
also preserves fixed points of (FC ; GC , FD ; GD).
3. If FC and GC are closure operators and FC ; GC is idempotent, then FC ; GC ;FC =
FC ; GC.

3 Recall that RC and RD also denote the induced operators.

10

Proof. 1: We use Proposition 2. First take V to be FD and U , U ′ to be GD ;U−1

and U−1 ;GC respectively, to obtain FD ;GD ;U−1 v FD ;U−1 ; GC . Next take
V ′ to be GC (which is monotone) and U , U ′ to be FD ;U−1 and U−1 ;FC
respectively, to obtain FD ;U−1 ;GC v U−1 ; FC ; GC . Thus FD ;GD ;U−1 v
U−1 ; FC ;GC .
2: Let C′ be a fixed point of FC ; GC , i.e., such that GC(FC(C′)) = C′ . ¿From
FC ; GC ;FC = FC ; GC , we get FC(C′) = FC(GC(FC(C′))) = GC(FC(C′)) = C′.
Therefore, it is also the case that GC(C′) = GC(FC(C′)) = C′. Hence, C′ is a fixed
point of both FC and GC . Since U preserves fixed points of F and G, it follows
that U(C′) is a fixed point of both FD and GD, therefore GD(FD(U(C′))) =
GD(U(C′)) = U(C′), that is, U(C′) is a fixed point of FD; GD.
3: FC ; GC v FC ;GC ;FC follows from FC being extensive and FC ; GC monotone.
On the other hand, since GC is extensive and FC ; GC is idempotent, we get
FC ; GC ; FC v FC ;GC ; FC ; GC = FC ;GC . ut

4 New Interpolation Results

In this section, we shall give a series of interpolation results for various types of
first-order sentences. As mentioned, our semantic approach allows us to exploit
axiomatizability results; since these results use model (homo)morphisms, we first
briefly recall some definitions related to this notion. Given two Σ-models A and
B, a morphism h : A → B is an S-sorted function h = (hs : As → Bs)s∈S

that commutes with operations and preserves relations: for each w = s1 . . . sn ∈
S∗, s ∈ S, σ ∈ Fw→s, π ∈ Pw, and (a1, . . . , an) ∈ Aw, it is the case that
hs(Aσ(a1, . . . an)) = Bσ(hs1(a1), . . . hsn(an)) and [(a1, . . . , an) ∈ Aπ implies
(hs1(a1), . . . , hsn(an)) ∈ Bπ]. Models and model morphisms form a category
denoted Mod(Σ) too (just like the class of models), with composition defined as
sort-wise function composition. By a surjective (injective) morphism we mean
a morphism which is surjective (injective) on each sort. Because of the weak
form of commutation imposed on morphisms w.r.t. the relational part of mod-
els, relations and functions do not behave similarly along arbitrary morphisms,
but only along closed ones: a morphism h : A → B is called closed if the re-
lation preservation condition holds in the “iff” form, that is, (a1, . . . , an) ∈ Aπ

iff (hs1(a1), . . . , hsn(an)) ∈ Bπ. A morphism h : A → B is called strong if the
target relations are covered through h by the source relation, that is, for each
π ∈ Pw with w = s1 . . . sn and (b1, . . . , bn) ∈ Bπ, there exists (a1, . . . , an) ∈ Aπ

such that (hs1(a1), . . . , hsn(an)) = (b1, . . . , bn). Closed injective morphisms and
strong surjective morphisms naturally capture the notions of embedding and
homomorphic image respectively. Note that for surjective morphisms, “closed”
is equivalent to “strong”, but we shall keep the standard terminology using the
phrase ”strong surjective morphism”.

If φ : (S, F, P)→ (S′, F ′, P ′) is a signature morphism, for each Σ-morphism
h′ : A′ → B′, its φ-reduct is the Σ-morphism h′ ¹φ: A′ ¹φ→ B′ ¹φ defined by
(h¹φ)s = hφ(s) for each s ∈ S. The mapping h′ 7→ h′¹φ extends Mod(φ) to a
functor between the categories of Σ′-models and Σ-models.

11

For a fixed first-order signature Σ = (S, F, P), we next define some sets of,
possibly infinitary (in the sense of admitting conjunctions and/or disjunctions on
arbitrary sets of sentences), first-order sentences. Whenever we do not explicitly
state otherwise, the sentences are considered finitary:
- FO, the set of first-order sentences;
- Pos, the set of positive sentences, that is, constructed inductively from atomic
formulae by means of any first-order constructs, except negation;
- ∀, the set of sentences of the form (∀x1, x2, . . . , xk)e, where k ∈ N and e is a
quantifier free formula;
- ∃, the set of sentences of the form (∃x1, x2, . . . , xk)e, where k ∈ N and e is a
quantifier free formula;
- UH, the set of universal Horn clauses, that is, sentences of the form
(∀x1, x2, . . . , xk)(e1 ∧ e2 . . . ∧ ep)⇒ e, with k, p ∈ N and ei, e atomic formulae;
- UA, the set of universal atoms, that is, sentences of the form (∀x1, x2, . . . xk)e,
where k ∈ N and e is an atomic formula;
- ¤, the set of sentences of the form
(∃x1)(∀y1

1 , y2
1 , . . . , yp1

1) . . . (∃xk)(∀y1
k, y2

k, . . . , ypk

k)
∧r

u=1

∨su

v=1 eu,v,
where k, r, pi, su ∈ N, and each eu,v is either atomic, or of the form
¬σ(y1

i , . . . , ypi−1
i) = yi

pi
, or of the form ¬π(y1

i , . . . , ypi

i) (this strange looking set
of sentences is closely related to the class of strong surjective morphisms - see
Proposition 7);
- ∀∨, the set of universally quantified disjunctions of atoms, i.e., sentences of the
form (∀x1, x2, . . . , xk)(e1 ∨ e2 . . . ∨ ep) where p ∈ N and ei are atomic formulae;
- FO∞, UH∞, ∀∨∞, the infinitary extensions of FO, UH, ∀∨, respectively; in
the former case, infinite conjunction and disjunction is allowed as a new rule of
constructing sentences; in the latter two cases, e1 ∧ e2 . . . ∧ ep and e1 ∨ e2 . . . ∨
ep are replaced by any possibly infinite sentence- conjunction and disjunction
respectively.

Let us next consider the binary relations S,Ext,H,Hs,Ech,Upw,Ur on Σ-
models:
- A S B iff there exists a strong injective morphism between B and A (in other
words, iff B is isomorphic to a submodel of A);
- A Ext B iff B S A, that is, iff B is isomorphic to an extension of A;
- A H B iff there exists a surjective morphism between A and B;
- A Hs B iff there exists a strong surjective morphism between A and B;
- A Ech B iff A is elementary equivalent to B;
- A Upw B iff B is isomorphic to an ultrapower of A;
- A Ur B iff B is an ultraradical of a model isomorphic to A (note that Ur =
Upw−1).

Recall that any binary relation on Mod(Σ), in particular the ones above, has
an associated operator (bearing the same name) on Mod(Σ). Besides these, we
shall also consider the operators P, Fp, Up and Ur on Mod(Σ) defined below:
- P(M) =M∪ {all direct products of models in M};
- Fp(M) =M∪ {all filtered products of models in M};
- Up(M) =M∪ {all ultraproducts of models inM};

12

All these constructions are considered up to isomorphism; for instance, the oper-
ator Up “grabs” into the class not only the ultraproducts standardly constructed
as quotients of direct products, but all models isomorphic to them.

We are not going to recall filtered products and powers here - the reader is
referred to [7, 24]. As a matter of notation, if F ⊆ P(I) is a filter, A a model, and
(Ai)i∈I a family of models, then

∏
F Ai and AI/F denote the filtered product of

(Ai)i over F and the filtered power of A over F , respectively. If F is an ultrafilter
then

∏
F Ai is called an ultraproduct of (Ai)i, AI/F is called an ultrapower of

A, and A is called an ultraradical of AI/F .
The next proposition lists some known axiomatizability results. For details,

the reader is referred to [7] (Section 5.2), [24] (Sections 25 and 26), [1], [26], and
[10].

Proposition 7. Let Σ = (S, F, P) be a signature and M⊆Mod(Σ) be a class
of models. If the pair (T, Ops), consisting of a type T of Σ-sentences and a
set Ops of operators on Mod(Σ), is one of: (FO, {Up,Ur}), (Pos, {Up,Ur,H}),
(∀, {S,Up}), (∃, {Ext,Up,Ur}), (UH, {S,Fp}), (UA, {S,H,P}), (∀∨, {Hs,S,Up}),
(¤, {Hs,Up}), (UH∞, {S,P}), (∀∨∞, {Hs,S})

then the following are equivalent:
1. M is of the form Γ ∗, with Γ ⊆ T ,
2. M is a fixed point of all the operators in the set Ops.

Consider the following properties for a morphism φ : (S, F, P) → (S′, F ′, P ′).
(IS) φ is injective on sorts, i.e., φst is injective;
(IR) φ is injective on relation symbols, i.e., φrl is injective;
(I) φ is injective on sorts, operation- and relation- symbols, i.e., φst, φop, and

φrl are injective;
(RS) there are no operation symbols in F ′ \ φ(F), having the result sort in φ(S).

Proposition 8. For each morphism φ : Σ = (S, F, P)→ Σ′ = (S′, F ′, P ′),

1. Mod(φ) preserves fixed points of P, Fp, Up;
2. (I) implies that Mod(φ) lifts S, H, Hs and preserves fixed points of Ext.
3. (IS) and (RS) imply that Mod(φ) preserves fixed points of S, Hs, and lifts

Ext;
4. (IS), (IR) and (RS) imply that Mod(φ) preserves fixed points of H;
5. (IS) implies that Mod(φ) lifts Ur;

Proof. Throughout this proof, for any signature Σ, Σ-morphism h : A → B,
and w = s1 . . . sn ∈ S∗, hw : Aw → Bw denotes the mapping defined by
hw(a1, . . . , an) = (hs1(a1), . . . , hsn(an)).
1: Follows from the well-known facts that Mod(φ) preserves direct products and
filtered colimits and that filtered products are filtered colimits of direct products.
2: Proven in [10], Proposition 1. Note that for a binary relation R, Mod(φ) lifts
R iff φ lifts R−1 according to the terminology in [10]; also, our relations S, H

and Hs coincide with the inverses of the relations Sc→, Hr← and Hs← defined in [10],
respectively.

13

3 and 4: Let A′ be a Σ′-model and B a Σ-model.
Preservation of fixed points of S and lifting of Ext: Suppose there exists a

strong injective morphism i : B → A′¹φ. Let B′ be the following Σ′-model:
- For each s′ ∈ S′, let B′

s′ = Bs if s′ has the form φst(s) and B′
s′ = A′s′ otherwise.

Since φst is injective, the definition is not ambiguous. We can now define for each
s′ ∈ S′, i′s′ : B′

s′ → A′s′ to be is if s′ has the form φst(s) and 1A′
s′

otherwise;
- For each σ′ ∈ F ′w′→s′ , let B′

σ′ = Bσ if σ′ has the form φop
w→s(σ) and B′

σ′(b′) =
A′σ′(i

′
w′(b′)) for each b′ ∈ B′w′ otherwise. (Note that, because of (RS), in the

latter case of the definition s′ 6∈ φst(S), thus A′σ′(i
′
w′(b′)) ∈ Bs′ .) Let us show

that the definition above is not ambiguous. Consider σ1, σ2 ∈ Fw→s such that
φop

w→s(σ1) = φop
w→s(σ2). Then (A′ ¹φ)σ1 = (A′ ¹φ)σ2 and since i is injective it

follows that Bσ1 = Bσ2 .
- For each π′ ∈ P ′w′ , let B′

π′ = (i′w′)
−1(A′π′).

Thus, B′ is a Σ′-model and i′ is an injective morphism. Furthermore, i′ is
strong from the way the relations B′

π′ were defined on B′. Also, the models B′¹φ

and B have the same sort carriers and operations by the definition of B′. Finally,
for any π ∈ Pw, we have that Bπ = (iw)−1((A′¹φ)π) = (i′φst(w))

−1(A′φrl(π)) =
B′

φrl(π) = (B′¹φ)π, hence B′¹φ and B coincide on the relational part too.
Preservation of fixed points of H and Hs: Suppose there exists a surjection

h : A′¹φ→ B. Let B′ be the following Σ′-model:
- For each s′ ∈ S′, let B′

s′ = Bs if s′ has the form φst(s) and B′
s′ = {?} (a

singleton) otherwise. Since φst is injective, the definition is not ambiguous. We
now define for each s′ ∈ S′, h′s′ : A′s′ → B′

s′ to be hs if s′ has the form φst(s)
and the only possible mapping otherwise;
- For each σ′ ∈ F ′w′→s′ , let B′

σ′ = Bσ if σ′ has the form φop
w→s(σ) and B′

σ′(b′) = ?
for each b′ ∈ B′

w′ otherwise. (Note that, because of (RS), in the latter case
of the definition s′ does not have the form φst(s), thus B′

s′ = {?}.) Let us
show the definition above is not ambiguous. Consider σ1, σ2 ∈ Fw→s such that
φop

w→s(σ1) = φop
w→s(σ2). Then (A′¹φ)σ1 = (A′¹φ)σ2 and, since h is surjective, it

follows that Bσ1 = Bσ2 .
- Let π′ ∈ P ′w′ . If h is strong, let B′

π′ = h′w′(A
′
π′). If h is not strong (thus we

work under the hypothesis that φrl is injective), let B′
π′ = Bπ if π′ has the form

φrl(π) and B′
π′ = B′w′ otherwise.

Thus, B′ is a Σ′-model and h′ is a surjective morphism. Furthermore, the
models B′¹φ and B have the same sort carriers and operations by the definition
of B′. If h is not strong, then B′¹φ and B coincide on the relational part too,
by the definition of B′. On the other hand, if h is strong, then for any π ∈ Pw

we have that B′
π′ = hw′(A′π′), hence Bπ = hw((A′ ¹φ)π) = h′φst(w)(A

′
φrl(π)) =

B′
φrl(π) = (B′¹φ)π. Note that in case h is strong, h′ is strong too.

5: Let A′ be a Σ′-model and let B be a Σ-model isomorphic to an ultrapower of
A′¹φ, say A′¹φ

I
/F . Let C ′ = A′I/F . It is known [7] that C ′¹φ is equal to A′¹φ

I
/F ,

hence is isomorphic to B. Since φ has (IS), it is easy to define a Σ′-model B′

such that B′¹φ= B and B′ is isomorphic to C ′, whence B′Ur A′. ut
The table below states interpolation results for diverse types of sentences.

It should be read as: given a weak amalgamation square of signatures as in

14

Definition 2 and Γ1 ⊆ Mod(Σ1), Γ2 ⊆ Mod(Σ2), if Γ1 and Γ2 are sentences of
the indicated types such that φ′2(Γ1) |= φ′1(Γ2), then there exists an interpolant
Γ for them, of the indicated type; the semantic conditions under which this
situation holds are given in the Mod(φ1)- and Mod(φ2)- columns of the table,
with the meaning that Mod(φ1) preserves fixed points of the indicated operator
and Mod(φ2) lifts the indicated operator; Id stands for the identity operator.
These semantic conditions are implied by the concrete syntactic conditions listed
in the φ1- and φ2- columns of the table; “any” means that no restriction is posed
on the signature morphism.

Γ1 Γ2 Γ Mod(φ1) Mod(φ2) φ1 φ2

1 FO FO FO Up Ur any (IS)
2 FO Pos Pos Up H ;Ur any (I)
3 Pos FO Pos Up ;H Ur (IS), (IR), (RS) (IS)
4 FO ∀ ∀ Up S any (I)
5 ∀ FO ∀ Up ;S Id (IS), (RS) any
6 ∀ Pos ∀∨ Up ;S Hs (IS), (RS) (I)
7 FO ∃ ∃ Up Ext;Ur any (IS), (RS)
8 ∃ FO ∃ Up ;Ext Ur (I) (IS)
9 FO UH UH Fp S any (I)
10 UH FO UH Fp ;S Id (IS), (RS) any
11 UH UA UA P S ;H any (I)
12 UA FO UA P ;S ;H Id (IS), (IR), (RS) any
13 UH Pos UA P ;S H (IS),(RS) (I)
14 FO ∀∨ ∀∨ Up S ;Hs any (I)
15 ∀∨ FO ∀∨ Up ;S ;Hs Id (IS), (RS) any
16 FO ¤ ¤ Up Hs any (I)
17 ¤ FO ¤ Up ;Hs Id (IS), (RS) any
18 UH∞ UA UA P S ;H any (I)
19 UH∞ FO∞ UH∞ P ;S Id (IS), (RS) any
20 FO∞ ∀∨∞ ∀∨∞ Id S ;Hs any (I)
21 ∀∨∞ FO∞ ∀∨∞ S ;Hs Id (IS), (RS) any
22 FO ∀∨∞ ∀∨ Up S ;Hs any (I)

Theorem 2. The results stated in the above table hold, i.e., in each of the 22
cases, if φ1 and φ2 satisfy the indicated properties, Γ1 and Γ2 have the indicated
types and φ′2(Γ1) |= φ′1(Γ2), then there exists an interpolant Γ of the indicated
type.

Proof. Let F and G be the operators in the Mod(φ1)- and Mod(φ2)- column
respectively.

We are going to apply Theorem 1. First, we check hypotheses 3 and 4 of this
theorem, i.e., prove that if φ1 and φ2 are as indicated then Mod(φ1) preserves
fixed points of F and Mod(φ2) lifts G. By Proposition 8, we get that Mod(φ1)
preserves fixed points of, and Mod(φ2) lifts, all the atomic components of F and
G respectively. (For instance, in line 12, Mod(φ2) lifts all the atomic components

15

of P ;S ;H, i.e., P , S, and H.) Moreover, since all the involved operators
are monotone, we can apply Proposition 6.1 to obtain that Mod(φ2) lifts G.
In order to apply Proposition 6.2 for Mod(φ1), we further need that, if F0,
F1 and F2 are operators such that F is listed as F1 ; F2 or as F0 ; F1 ; F2 in
the Mod(φ1)-column, then F1 ; F2 ;F1 = F1 ; F2 or [F1 ; F2 ; F1 = F1 ; F2

and F0 ; (F1 ; F2) ;F0 = F0 ; (F1 ;F2)] respectively. According to Proposition
6.3, it would suffice that each of F0, F1, F2, F1 ; F2, F0 ; F1 ;F2 be closure
operators. We are going to show even more: that both F and G, as well all their
components, are closure operators. (The components need not be atomic: for
instance, the components of P ; S ; H in the table cell of line 12 and column
Mod(φ1) are P , S, H, P ;S, S ; H, and P ; S ;H itself.) Well-known closure
operators are P , S, H, Hs (obviously), Up, Ur (see [7]), P ; H ;S, Fp ; S, P ; S
(the famous closure operators of Birkhoff and Malçev, the latter for both finitary
and infinitary Horn clauses - see [1]), Up ;S ;Hs (see [1, 10]). Moreover, Up ;H,
Up ;Hs, Up ; S, Up ; Ext , H ;Ur, S ;Ur, Ext ;Ur, S ; H, and S ;Hs are
closure operators because their components are closure operators and because
H ;Up v Up ; H, Hs ;Up v Up ;Hs, S ;Up v Up ; S, Ext ;Up v Up ; Ext,
Ur ; H v H ;Ur, Ur ; S v S ;Ur, Ur ; Ext v Ext ;Ur, H ;S v S ;H,
and Hs ; S v S ;Hs. Indeed, most of these inclusions are easily seen to hold.
We only check H ;Up v Up ;H, Hs ;Up v Up ;Hs, H ;S v S ; H, and
Hs ; S v S ;Hs. The first two equalities follow from the fact that, for any family
(strong) surjective morphisms (hi : Ai → Bi)i∈I and any ultrafilter F on I, the
induced mapping h : AI/F → BI/F (defined by h((ai)i/F) = (hi(ai)i)/F) is
also a (strong) surjective morphism. The last two equalities follow from the fact
that if h : B → C is a (strong) surjective morphism and A is a submodel of C,
then h−1(A), which is a submodel of B with induced operations and relations,
yields a restriction-corestriction of h to h−1(A) → A which is also a (strong)
surjective morphism.

Note that we also checked hypothesis 2, since we proved all the involved
operators to be closure operators. We now check hypothesis 1. Because both F
and G are closure operators, in order that F ;G ;F = F ; G, it suffices that
G ; F v F ;G. So we check G ; F v F ; G. Most of the needed inclusions were
already discussed. We mention only the non-obvious ones that are left.

– Ur ;Up v Up ;Ur follows from the Keisler-Shelah theorem [24], which says
that Ech v Upw ;Ur, together with the easy fact that Ech ;Up v Up ;Ech;
indeed, we have that Ur ;Up v Ech ;Up v Up ;Ech v Up ;Upw ;Ur v
Up ;Up ;Ur = Up ;Ur;

– (Ext ;Ur) ;Up v Up ; (Ext ;Ur) follows from Ur ;Up v Up ;Ur and
Ext;Up v Up ;Ext;

– Ur ; (Up ; Ext) v (Up ; Ext) ;Ur follows from Ur ;Up v Up ;Ur and
Ur ;Ext v Ext;Ur.

Thus the hypotheses of Theorem 1 are fulfilled. We obtained that Γ is closed
under both F and G.4 In order to be able to apply Proposition 7 to Γ , it still
4 Strictly speaking, F and G for Γ are different to the operators F for Γ1 and G for

Γ2; however, there is no danger in overlapping the notations here.

16

remains to prove that any class of models which is a fixed point of F (of G) is
also a fixed point of all the operators that compose F (that compose G). This
easily follows from the pointed fact that both F , G, and all their components
are closure operators. Indeed, for instance assume that F is listed in the table
as F0 ; F1 ;F2, and let M be a fixed point of F ; then F1(M) = F1(F (M)) ⊆
F (F (M)) = F (M), hence M is a fixed point of F1 too. ut

Let us analyze the results listed in the table above. A first thing to notice are
the syntactic conditions on signature morphisms, in many cases weaker than, or
equal to, full injectivity. In fact, if we consider only relational languages, i.e.,
without operation symbols, all the conditions are so. As for operation symbols,
condition (RS), requiring that no new operations be added on old sorts, ex-
presses precisely the principle of data encapsulation in algebraic terms [18]. It
is interesting (at least for the authors) that this condition, stated in the table
on the signature morphism φ1 because of purely technical reasons, turns out to
be related to information hiding, and furthermore to the fact that in algebraic
specifications interpolation is used with φ1 as the hiding morphism - see Section
5. As pointed out by the examples in Section 2, it seems that the degree of gen-
erality that one can allow on signature morphism increasses with the expressive
power of a logic. For instance, line 1 says that first-order interpolation holds
whenever the righthand morphism is injective on sorts (and, in fact, since in full
first-order logic Craig interpolation is equivalent to the symmetrical property
of Robinson consistency,5 either one of the morphisms being injective on sorts
would do.). On the other hand, universal Horn clauses (lines 9 and 10), and then
universal atoms (lines 11, 12, 13) require stronger and stronger assumptions on
the signature morphisms. Second, all the results say more than interpolation
within a certain type T of sentences, ensuring that the interpolant has type T
provided one of the starting sets has type T . Particularly interesting results are
listed in lines 6, 13, and 22. Here, the interpolant inherits properties from both
sides, strictly “improving” the type of both sides. Finally, note that the case of
existential sentences (lines 7 and 8), is neither dual, nor reducible, to the case
of universal sentences (lines 5 and 6); in fact, one could see that the results
differ and are not mutually symmetric. Indeed, while within previously asumed
elementary classes, the correspondances ∀-submodels and ∃-extensions are dual,
the symmetry is broken when one invokes ultraradicals, which are particular
cases of submodels, but of course not of extensions.

Regarding finiteness of Γ , as noted in [10], it is easy to see that if Γ2 is
finite, by compactness of first-order logic, Γ can be chosen to be finite too in
our cases of finitary sub-first-order logics. On the other hand, the finiteness of
Γ1 does not necessarily imply the finite axiomatizability of Γ ∗. Indeed, assume
that Σ = Σ2 ⊆ Σ1, φ1 is the inclusion of signatures, and φ2 the identity. Then
Σ′ = Σ1, φ′1 = φ1, and φ′2 = φ2. Thus the finite interpolation problem comes
to the following: assuming Γ1 |= Γ2 in Σ1, find a finite Γ ⊆ Sen(Σ) such that
Γ1 |= Γ |= Γ2; in other words, prove that there exists a finite subset ∆1 of Γ •1

5 This is not true however for our examples of sub-first-order logic.

17

consisting of Σ-sentences such that ∆1 |= Γ2 in Σ. But this cannot be always
achieved, as shown by the case where Γ2 is a Σ-theory (•-closed set of sentences),
finitely axiomatizable over the extended signature Σ1 by Γ1, but not finitely
axiomatizable over Σ. (Such a theory is known to exist by a famous theorem
of Kleene.) In our model-theoretical approach, the impossibility of relating the
finiteness of Γ1 to that of Γ is illustrated by the fact that the operator of taking
ultraproduct components (classically related to finite axiomatizability [7]) is not
preserved by reduct functors, but lifted by them.

Interpolation in second-order and higher-order logic

We shall next apply Theorem 1 to prove interpolation for the unsorted versions of
second-order and higher-order logics. Interpolation is of course known to hold for
these logics, in case of inclusions of signatures. Our generalizations to arbitrary
signature morphisms emphasize once more how easy does interpolation follow in
sufficiently expressive logics; recall that expression power was the main obstacle
to interpolation in our examples in Section 2.

In second-order logic, signatures and models are the same as in unsorted
first-order logic,6 but the sentences are extended by allowing quantification not
only over variables denoting elements on sorts, but also over variables denoting
operations and relations of arbitrary arity. Given a morphism of signatures φ :
Σ → Σ′, a Σ′-sentence e and a Σ-model A, we define A |= (∀φ)e′ by: for each
Σ′-model A′ such that A′¹φ= A, it holds that A′ |= e′.

Proposition 9. Consider a weak amalgamation square of signatures as in Def-
inition 2, such that the signatures are finite (in the sense that their components
F and P are finite). Let Γ1 and Γ2 be two sets of second-order Σ1- and Σ2- sen-
tences respectively. Then there exists a set Γ of second-order Σ-sentences which
is an interpolant for Γ1 and Γ2.

Proof. The key point in the proof is to notice that second-order logic admits
universal quantification over φ2, in the sense that, for each Σ2-sentence e2, there
exists a Σ-sentence e such that e is semantically equivalent to (∀φ2)e2. Indeed,
given a Σ2-sentence e2, (∀φ2)e2 is equivalent to the Σ-sentence (∀X)(d1 ∧ . . . ∧
dn) ⇒ e, where X contains all the Σ2-symbols (i.e., relation- and operation-
symbols) that are not φ-images of Σ-symbols, and d1, . . . dn are all the equations
of the form u1 = u2, where u1 and u2 are Σ-symbols such that φ2(u1) = φ2(u2).
Thus we can refer to such sentences quantified over φ2 as belonging to Sen(Σ).

Now, using Theorem 1 for U = Id and V = Mod(φ2), it suffices to show that
Mod(φ2) lifts the second-order axiomatizability hull operator • : P(Mod(Σ))→
P(Mod(Σ)). Let M ⊆ Mod(Σ). We need to show that Mod(φ2)−1(M•) ⊆
Mod(φ2)−1(M)•. For this, let A2 ∈ Mod(φ2)−1(M•). Then A2 ¹φ2∈ M•. In
order to prove A2 ∈Mod(φ2)−1(M)•, let e2 be a second-order Σ-sentence such
that Mod(φ2)−1(M) |= e2. Then, for any B2 ∈Mod(Σ2) such that B2¹φ2∈ M,

6 That is, signatures have only one sort, hence we can omit it and regard the signatures
as pairs (F, P).

18

it is the case that B2 |= e2; but this precisely means that M |= (∀φ2)e2, hence
A2 ¹φ2 |= (∀φ2)e2. From this latter fact and the definition of φ2-quantification,
one can deduce A2 |= e2, which is what we needed. ut

Let us now sketch the formal setting of unsorted higher-order logic. Let b
be a fixed symbol, which will stand for the basic type. The set T of types is
defined recursively by the following rules: 1) b ∈ T ; 2) if t1, t2 ∈ T , then t1 → t2
and t1 × t2 ∈ T . A higher-order signature is a T -indexed set Σ = (Σt)t∈T .
A morphism between Σ and Σ′ is a T -indexed mapping φ = (φt)t∈T , where
φt : Σt → Σ′

t for all t ∈ T . To each set D, one can naturally associate the
T -indexed set (Dt)t∈T as follows: Db = D, Dt1→t2 = [Dt1 → Dt2] (the set of
functions between Dt1 and Dt2), Dt1×t2 = Dt1 ×Dt2 . A Σ-model is structure of
the form (A, (At(σ))t∈T,σ∈Σt

), where At(σ) ∈ At for each t ∈ T and σ ∈ Σt. The
Σ-sentences are just the first-order sentences associated with the many-sorted
first-order signature (T, F, ∅), where Fw,t = ∅ if w 6= λ and Fλ,t = Σt for each
t ∈ T . The satisfaction relation, as well as the mappings on sentences and models
associated with signature morphisms are the obvious ones.

Proposition 10. Consider a weak amalgamation square of signatures as in Def-
inition 2, just that the signatures and signature morphisms are assumed to be
higher-order ones. Assume that all the signatures are finite, in the sense that
all their components Σt are finite. Let Γ1 and Γ2 be two sets of Σ1- and Σ2-
sentences respectively. Then there exists a set Γ of Σ-sentences which is an
interpolant for Γ1 and Γ2.

Proof. Similar to the proof of 9, using Theorem 1 together with the fact that
higher-order logic admits quantification over φ2. ut

As a general rule, it seems that in any “reasonable” logical system (such as the
ones formalizable as institutions [19]), the Craig interpolation property7 holds
for each weak amalgamation square for which the logic admits quantification
over the righthand morphism φ2.

5 Applications to Formal Specification

Next we consider some applications of our results to formal specification and
module algebra. We shall provide enough technical details in order to ensure the
clear understanding of these (rather technical) applications.

A flat module in specification languages can be viewed as a pair consisting of
a signature Σ and a finite set of sentences Γ describing the class of admissible
Σ-models/implementations, Γ ∗. One is usually interested in the set Γ • of all
properties satisfied by the admissible models. Thus one initially starts with flat
theories, i.e., pairs (Σ, Γ), where Γ is a •-closed set of Σ-sentences. In practice,
one might additionally require that Γ be finitely or recursively presented. Ac-
cording to [4], the semantics of modules by their theories is a strong candidate
for becoming the standard module algebra semantics.
7 See also [32, 10] for for more about institutional Craig Interpolation.

19

Diverse operations are used to build up structured theories out of flat ones,
among which the export and combination operators [4], ¤ and +.8 They are
defined as follows, for each signature Σ′ and theory (Σ, Γ), let Σ′¤(Σ, Γ) be
(Σ′ ∩Σ, ι−1(Γ)), where Σ′ ∩Σ

ι
↪→ Σ and for theories (Σ1, Γ1) and (Σ2, Γ2), let

(Σ1, Γ1) + (Σ2, Γ2) be (Σ1 ∪ Σ2, (Γ1 ∪ Γ2)•), where intersections and unions of
signatures are defined standardly in a component-wise fashion.

¤ restricts the interface of the theory (Σ, Γ) to common symbols of Σ′ and Σ,
while + just puts together two theories in their union signature. A very desirable
property of specification frameworks is the following restricted distributivity law:

Σ′¤((Σ1, Γ1) + (Σ2, ∅•)) = (Σ′¤(Σ1, Γ1)) + (Σ′ ∩Σ2, ∅•)

As discussed in [4, 15], one could not usually count on full distributivity. It is
shown in [4] that, if one works within first-order logic, restricted distributivity
holds, being implied by common union-intersection interpolation. Their proof, as
many others in the mentioned paper, is rather logic-independent, so it works for
any logic that has first-order signatures and satisfies interpolation. In particular,
it works for all the sublogics of (finitary or infinitary) first-order logic appearing
in the table that precedes Theorem 2. For completeness, we restate the proof
here, translated into our language.

The two members of the desired equality are, by the definition of ¤ and +,
(Σ′∩(Σ1∪Σ2), j−1(k(Γ1)•)), and ((Σ′∩Σ1)∪(Σ′∩Σ2), p(i−1(Γ1))•) respectively,
where i, j, k, p are the signature inclusions Σ′ ∩ Σ1 ↪→ Σ1, Σ′ ∩ (Σ1 ∪ Σ2) ↪→
Σ1∪Σ2, Σ1 ↪→ Σ1∪Σ2, Σ′∩Σ1 ↪→ Σ′∩(Σ1∪Σ2) respectively. (These signature
inclusions needed to be explicitly denoted in order to make clear each time within
which signature the bullet operator is applied.) Since Σ′∩(Σ1∪Σ2) = (Σ′∩Σ1)∪
(Σ′ ∩ Σ2), it remains to prove j−1(k(Γ1)•) = p(i−1(Γ1))•. So let γ ∈ Sen(Σ′ ∩
(Σ1 ∪ Σ2)). If γ ∈ p(i−1(Γ1))•, then p(i−1(Γ1)) |= γ, hence j(p(i−1(Γ1))) |=
j(γ), and furthermore, since j(p(i−1(Γ1))) = k(i(i−1(Γ1))) ⊆ k(Γ1), we get
k(Γ1) |= j(γ), i.e., γ ∈ j−1(k(Γ1)•). Conversely, assume γ ∈ j−1(k(Γ1)•); then
k(Γ1) |= j(γ); while this entailment holds within Σ1 ∪Σ2, it nevertheless holds
within the “minimal” signature Σ1 ∪ (Σ′ ∩ (Σ1 ∪Σ2)) = (Σ1 ∪Σ′) ∩ (Σ1 ∪Σ2)
too; by interpolation, we can find a set Γ of Σ1 ∩ (Σ′ ∩ (Σ1 ∪ Σ2))-sentences,
i.e., of Σ′ ∩Σ1-sentences, such that Γ1 |= i(Γ) and p(Γ) |= γ, hence, since Γ1 is
•-closed, γ ∈ p(Γ)• ⊆ p(i−1(Γ1))•, and the proof is done.

Thus our interpolation results show that the restricted distributivity law
holds in module algebra developed within many logical frameworks intermediate
between full first-order logic and equational logic. Note that a property weaker
than restricted distributivity, obtained by taking as further hypothesis that Σ′

is included in both Σ1 and Σ2, was called weak distributivity in [14] and showed
to hold regardless of interpolation; however, this extra hypothesis is rather re-
strictive because it asks that Σ1 and Σ2 interact with Σ in the same way.

8 These operators are called sum and information hiding in [14].

20

Another application to formal specifications relies on the fact that interpo-
lation entails a compositional behavior of the semantics of structured specifica-
tions, by ensuring that the two alternative semantics, the flat and the structured
ones, coincide. This is crucial for keeping the semantics simple and amenable.

Let (Σ, Γ) be a theory and Σ′ a subsignature of Σ. Sometimes one might
prefer to keep the structure of, rather than flatten, the expression, Σ′¤(Σ,Γ) and
consider Γ not as a theory, but as a presentation of a theory, Γ • (this approach
is taken for instance in [31, 6, 20]). Generally, the couple (Σ′ ↪→ Σ, Γ)) provides
more information than (Σ′, Γ • ∩ Sen(Σ′)), for at least two reasons: 1) Γ might
be finite, showing that Γ •, maybe unlike Γ • ∩ Sen(Σ′), is finitely presented; 2)
while the theory of all Σ′-reducts of (Σ, Γ) (i.e., all visible parts of the possible
implementations of the theory) is indeed Γ •∩Sen(Σ′), usually not any model of
Γ • ∩ Sen(Σ′) is a Σ-reduct of (Σ, Γ), unless a strong conservativity assumption
is taken; hence the theory does not perfectly describe the intended semantics on
classes of models. As mentioned, Σ′ is to be regarded as the interface, or the
visible signature, of the (hidden) theory (Σ,Γ).

Let us call, like in [20], a module the couple (Σ′ ↪→ Σ, Γ). Assume now that
one needs to import this module. A first step to take is to extend the visible sig-
nature, perhaps renaming some syntactic items to avoid undesired overlapping.
This process is performed by the renaming operator ?, via a signature morphism
j : Σ′ → Σ′′. Subsequently to renaming, one will add further sentences to the
extended module, but let us concentrate on renaming.

Thus what should (Σ′ ↪→ Σ, Γ) ? j mean? If, for reasons mentioned above,
one prefers to keep the modular structure, (Σ′ ↪→ Σ,Γ) ? j should mean (Σ′ ↪→
Σ, Γ) ? j and nothing else!, with natural semantics, consisting of all Σ′′-models
whose j-reducts have a Σ-expansion satisfying Γ ; the Σ′′-theory of such models
is obviously j(Γ • ∩ Sen(Σ′))•. On the other hand, the translated module itself
might be regarded as a “simple” module, having Σ′′ as the visible signature and
importing the hidden structure of the module (Σ′ ↪→ Σ, Γ); this is achieved by
taking the pushout (Σ′′ ↪→ Σ0, j0 :Σ → Σ0) of (Σ′ ↪→ Σ, j :Σ′ → Σ′′), yielding
the new module (Σ′′ ↪→ Σ0, j0(Γ)).

There is the question whether these two approaches, the modular and the
“flat” one, are equivalent. And indeed, thanks to interpolation they are so, at
least w.r.t. the visible properties: j(Γ • ∩ Sen(Σ′))• = j0(Γ)• ∩ Sen(Σ′′).

Again, this desirable semantical equivalence is shown by our results to hold
for several first-order sublogics, qualifying them as suitable specification frame-
works.

More precisely, lines 3,5,15 in the table preceding Theorem 2 show that the
framework may be restricted to positive-, universal-, or [universal quantification
of atom disjunction]- logics. Moreover, line 21 shows the same thing for [universal
quantification of possibly infinite atom disjunction]-logic. According to these
results, the renaming morphism j can be allowed to be injective on sorts in the
case of positive logic and any morphism in the other three cases.

Note that lines 2,4,14,20 list results complementary to the above, and general-
ize those in [10]. These latter results relax the requirements not on the renaming

21

morphism, but on the hiding morphism (allowing one to replace the inclusion
Σ′ ↪→ Σ with an arbitrary signature morphism).

Within a specification framework, one should not commit herself to a particu-
lar kind of first-order sub-logic, but rather use the available power of expression
on a by-need basis, keeping flexible the border between expressive power and
effective/efficient decision or computation. The issue of coexistence of different
logical systems brings up a third application of our results.

Practice in formal specification has shown that the various logical systems
that one would like to use should not be simply “swallowed” by a richer univer-
sal logic that encompasses them all, but rather integrated using logic transla-
tions. This methodology, which is the meta-logical counterpart of keeping struc-
tured (i.e., unflattened) the specifications themselves, is followed for instance in
CafeObj [12, 13].

The underlying logical structure of this system can be formalized as a Grothendieck
institution [9], which provides a means of building specifications inside the mini-
mal needed logical system between the available ones. The framework is initially
presented as an indexed institution, i.e., a family of logical systems (institutions)
with translations (morphisms or comorphisms) between them, and than flattened
by a Grothendieck construction.

The interpolation property was of course a natural test which had to be ap-
plied to this construction. Lifting interpolation from the component institutions
to the Grothendieck institution was studied in [11]; a criterion is given there for
lifting interpolation, consisting mainly of three conditions: (1) that the compo-
nent institutions have interpolation (for some designated pushouts of signatures);
(2) that the involved institution comorphisms have interpolation; (3) that each
pullback in the index category yields an interpolating square of comorphisms.
There is no space here for entering many details, but the interested reader is
referred to [11].

We give just one example showing that, via the above conditions, some of our
interpolation results can be used for putting together in a consistent way two
very interesting logical systems: (finitary) first-order logic (FO) and the logic
of universally quantified possibly infinite conjunctions of atoms (∀∨∞). While
the former is a well-established logic in formal specifications, the latter has the
ability of expressing some important properties, not expressible in the former,
such as accessibility of models, e.g., (∀x)(x = 0 ∨ x = s(0) ∨ x = s(s(0)) ∨
. . .) for natural numbers. If one combines these two logics, initiality conditions
are also available, e.g., the above accessibility condition (“no junk”) can be
complemented with the “no confusion” statement ¬∨

i,j∈N,i<j si(0) = sj(0).
Since the two logical systems have the same signatures, condition (2) above is
trivially satisfied. Moreover, our results stated in lines 1 and 21 of the table
preceding Theorem 2 ensure condition (1) for some very wide class of signature
pushouts. Finally, condition (3) is fulfilled by the result in line 22, which states
that formulae from the two logics have interpolants in their intersection logic,
that of universally quantified (finite) conjunctions of atoms.

22

6 Related work and concluding remarks

The idea of using axiomatizability properties for proving Craig interpolation first
appeared, up to our knowledge, in [29] in the case of many-sorted equational
logic. Then [28] generalized this to an arbitrary pullback of categories, by con-
sidering some Birkhoff-like operators on those categories, with results applicable
to different versions of equational logic. An institution-independent relationship
between Birkhoff-like axiomatizability and Craig interpolation was depicted in
[10], using a concept of Birkhoff institution. If we disregard combination of logics
and flatten to the least logic, the results in lines 2,4,14,20 of the table preceding
Theorem 2 can be also found in [10].

Our Theorem 1 generalized the previous “semantic” results, bringing the
technique of semantic interpolation, we might say, up to its limit. The merit
of Theorem 1 is that, by analysing the clearly identified “semantic field” where
an interpolant has a chance to be, provided general conditions under which a
semantic interpolant has a syntactic counterpart (i.e., it is axiomatizable). But
this theorem solved only half of the interpolation problem; concrete lifting and
preserving conditions, as well as certain inclusions between operators, then had
to be proved. Thus in this paper, we provided a general methodology for proving
interpolation results, but also followed this methodology, by working out many
concrete examples. The list of sub-first-order-logics that fit our framework is of
course open for other suitably axiomatizable logics; and so are the possible com-
binations between these logics, which might guarantee interpolants even simpler
than the types of formulae of both logics, as shown by some of our results.

Regarding our combined interpolation results, it is worth pointing out (and
in fact the discussion at the end of Section 5 already hinted) that they are not
overlapped with, but rather complementary to, the ones in [11] for Grothendieck
institutions. There, some combined interpolation properties are previously as-
sumed, in order to ensure interpolation in the resulted larger logical system.

An interesting fact to investigate would be to which extent can syntactically-
obtained interpolation results “compete” with our semantic results. While it
is true that the syntactic proofs are usually constructive, they do not seem to
provide information on the type of the interpolant comparable to what we gave
here. In particular, since the diverse Gentzen systems for first-order logic with
equality have only partial cut elimination [17], an appeal to the non-equality
version of the language, by adding appropriate axioms for equality in the theory,
is needed; moreover, dealing with function symbols requires a further appeal to
an encoding of functions as relations, again with the cost of adding some axioms.
All these transformations make even some presumably very careful syntactic
proofs rather indirect and obliterating, and sometimes place the interpolant way
outside the given subtheory - this is the reason why an interpolation theorem
for equational logic was not known until a separate, specific proof was given in
[30]. Yet, comparing and paralleling (present or future) semantic and syntactic
proofs seems fruitful for deepening our understanding of Craig interpolation,
this extremely complex and resourceful, purely syntactic and yet surprisingly
semantic, property of logical systems.

23

References

1. H. Andréka and I. Németi. A general axiomatizability theorem formulated in terms
of cone-injective subcategories. In Universal Algebra, pages 13–36. North Holland,
1982. Colloquia Mathematica Societatis János Bolyai, 29.

2. J. Barwise and J. Feferman. Model-Theoretic Logics. Springer, 1985.
3. J. Bergstra, J. Heering, and P. Klint. Module algebra. Journal of the ACM,

37(2):335–372, 1990.
4. J. Bergstra, J. Heering, and P. Klint. Module algebra. JACM, 37(2):335–372, 1990.
5. T. Borzyszkowski. Generalized interpolation in CASL. Inf. Process. Lett., 76(1-

2):19–24, 2000.
6. T. Borzyszkowski. Logical systems for structured specifications. Theor. Comput.

Sci., 286(2):197–245, 2002.
7. C. C. Chang and H. J. Keisler. Model Theory. North Holland, Amsterdam, 1973.
8. W. Craig. Linear reasoning. A new form of the Herbrand-Gentzen Theorem. Jour-

nal of Symbolic Logic, 22:250–268, 1957.
9. R. Diaconescu. Grothedieck institutions. Appl. Categorical Struct., 10(4):383–402,

2002.
10. R. Diaconescu. An institution-independent proof of Craig interpolation theorem.

Studia Logica, 77(1):59–79, 2004.
11. R. Diaconescu. Interpolation in Grothendieck institutions. Theor. Comput. Sci.,

311:439–461, 2004.
12. R. Diaconescu and K. Futatsugi. CafeOBJ Report. World Scientific, 1998. AMAST

Series in Computing, volume 6.
13. R. Diaconescu and K. Futatsugi. Logical foundations of CafeOBJ. Theoretical

Computer Science, 285:289–318, 2002.
14. R. Diaconescu, J. Goguen, and P. Stefaneas. Logical support for modularization.

In Logical Environments, pages 83–130. Cambridge, 1993.
15. R. Diaconescu, J. Goguen, and P. Stefaneas. Logical support for modularization. In

G. Huet and G. Plotkin, editors, Logical Environments, pages 83–130. Cambridge,
1993.

16. T. Dimitrakos and T. Maibaum. On a generalized modularization theorem. Infor-
mation Processing Letters, 74(1–2):65–71, 2000.

17. J. H. Gallier. Logic for computer science. Foundations of automatic theorem prov-
ing. Harper & Row, 1986.

18. J. Goguen. Types as theories. In Topology and Category Theory in Computer
Science, pages 357–390. Oxford, 1991.

19. J. Goguen and R. Burstall. Institutions: Abstract model theory for specification
and programming. Journal of the ACM, 39(1):95–146, January 1992.

20. J. Goguen and G. Roşu. Composing hidden information modules over inclusive
institutions. In From Object Orientation to Formal Methods: Dedicated to the
memory of Ole-Johan Dahl, volume 2635 of LNCS, pages 96–123. Springer, 2004.

21. D. Găină and A. Popescu. An institution-independent proof of Robinson con-
sistency theorem. Studia Logica, to appear. Ask authors for current draft at
popescu2@cs.uiuc.edu.

22. D. G. J. Bicarregui, T. Dimitrakos and T. Maibaum. Interpolation in practical
formal development. Logic Journal of the IGPL, 9(1):231–243, 2001.

23. J. Meseguer. Membership algebra as a logical framework for equational specifica-
tion. In Proc. of WADT’97, volume 1376 of LNCS, pages 18–61. Springer, 1998.

24. J. D. Monk. Mathematical Logic. Springer-Verlag, 1976.

24

25. G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures.
ACM Trans. Program. Lang. Syst., 1(2):245–257, 1979.

26. I. Németi and I. Sain. Cone-implicational subcategories and some Birkhoff-type
theorems. In Universal Algebra, pages 535–578. North Holland, 1982. Colloquia
Mathematica Societatis János Bolyai, 29.

27. D. C. Oppen. Complexity, convexity and combinations of theories. Theoretical
Computer Science, 12:291–302, 1980.

28. G. Roşu and J. Goguen. On equational Craig interpolation. Journal of Universal
Computer Science, 6:194–200, 2000.

29. P. H. Rodenburg. A simple algebraic proof of the equational interpolation theorem.
Algebra Universalis, 28:48–51, 1991.

30. P. H. Rodenburg and R. van Glabbeek. An interpolation theorem in equational
logic. Technical Report CS-R8838, CWI, 1988.

31. D. Sannella and A. Tarlecki. Specifications in an arbitrary institution. Information
and Control, 76:165–210, 1988.

32. A. Tarlecki. Bits and pieces of the theory of institutions. In Proc. Summer Work-
shop on Category Theory and Computer Programming, volume 240 of LNCS, pages
334–360. Springer, 1986.

25

