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• We assessed three pressures on littoral
biological indicators in 6 Balkan lakes.

• Six littoral transects in each lake varied
in water quality and surrounding land
use.

• Abundance and diversity of macro-
phytes, diatoms and invertebrates
were used.

• Most important pressures were water
level fluctuation and eutrophication
due to urbanization.

• Shoreline alteration was less important
in explaining indicator variability.
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Along six transects in each of six lakes across the Western Balkans, we collected data for three groups of littoral
biological water quality indicators: epilithic diatoms, macrophytes, and benthic invertebrates. We assessed the
relationships between them and three environmental pressures: nutrient load (eutrophication), hydro-
morphological alteration of the shoreline, and water level variation, separating the effect of individual lakes
. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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and continuous explanatory variables. Lake water total phosphorus concentration (TP) showed substantial
variation but was not related to any of the tested biological indicators, nor to any of the tested pressures. We
suggest that this may be due to feedback processes such as P removal in the lake littoral zone. Instead, we
found that a gradient in surrounding land-use towards increasing urbanization, and a land-use-based
estimate of P run-off, served as a better descriptor of eutrophication. Overall, eutrophication and water
level fluctuation were most important for explaining variation in the assessed indicators, whereas shoreline
hydro-morphological alteration was less important. Diatom indicators were most responsive to all three
pressures, whereas macrophyte biomass and species number responded only to water level fluctuation.
The Trophic Diatom Index for Lakes (TDIL) was negatively related to urbanization and wave exposure.
This indicates that it is a suitable indicator for pressures related to urbanization, although a confounding
effect of wave exposure is possible. Invertebrate abundance responded strongly to eutrophication, but
the indicator based on taxonomic composition (Average Score Per Taxon) did not. Our results suggest
that our metrics can be applied in Western Balkan lakes, despite the high number of endemic species pres-
ent in some of these lakes. We argue that local water management should focus on abating the causes of
eutrophication and water level fluctuation, whilst preserving sufficient lengths of undeveloped shoreline
to ensure good water quality in the long run.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The implementation of the Water Framework Directive across the
EuropeanUnion is amajor effort to harmonize and improvewater qual-
ity assessment (a.o. Birk et al., 2012, Poikane et al., 2014). Poikane et al.
(2015) reported that both data and methodological harmonization ef-
forts from eastern continental Europe and the Mediterranean are few,
and that, in particular, overall assessments of combined pressures are
lacking. Poikane et al. (2015) suggested that for the Mediterranean
thismay be partly related to the small absolute number of lakes present,
their unique character and often small size. Since then, also for these
areas assessment methods have been developed and intercalibrated
(e.g. Ntislidou et al., 2018; Zervas et al., 2018), but gaps remain. Our con-
sortium collected amulti-indicator data set from the littoral zones of six
lakes in the Western Balkans, a region adjacent to the Mediterranean
and eastern continental Europe.We usedmethods that are broadly con-
sistent with the methodological requirements for these specific indica-
tors as set out in the European Water Framework Directive (Schneider
et al., 2020a). Our aim was to address the information gap for the
Western Balkans and determine whether generalized conclusions can
be drawn, or if each lake needs to be considered as a unique feature in
the landscape.

We started from the DPSIR framework (Drivers – Pressures - State
Change - (societal) Impact - (policy) Response, e.g. Cooper, 2013) to
structure our thinking about potentially interacting pressures that affect
the different biological aspects of the lake ecosystem. We identified a
priori the following three pressures as being potentially important
(Poikane et al., 2014; Pilotto et al., 2015) and often independent
(Johnson et al., 2018), being caused by different underlying societal
drivers: increased nutrient-load leading to eutrophication, hydro-
morphological change in the littoral zone due the construction of hard
or sandy shores, and hydrological changes leading to altered seasonal
water level fluctuation and wave erosion regimes. The latter two pres-
sures have a direct impact on littoral communities, hence our focus on
the littoral zone. The effects of these pressures on the ecosystem can
sometimes be similar or even synergistic (e.g. both eutrophication and
hard surfaces can increase the biomass of filamentous algae), but in
other circumstances two effects may work against each other (e.g. eu-
trophication can increase plant biomass, while water level variation
can decrease it). Together, these changes may have different ultimate
consequences for societal use (summarized in Fig. 1). The six lakes -
Sava, Prespa, Ohrid, Crno, Biogradsko and Lura - were selected to reflect
a gradient in anthropogenic pressures based on variation in the propor-
tion of agricultural and urban land cover in their surrounding area (cf
Table 1 in Schneider et al., 2020a). Indeed, Schneider et al. (2020a) ob-
served a threefold range in the mean concentration of total phosporus
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(P) and an eightfold range in estimated external P-load, but did not ex-
amine other pressures.

Here we chose three littoral indicator groups (epilithic diatoms,
macrophytes, and benthic invertebrates) which are part of the
mandatory quality elements in the Water Framework Directive sup-
ported by a substantial literature (e.g. Birk et al., 2012; Poikane et al.,
2015). Our consortium had the methodological competence to per-
form comparable analyses across four different countries in the
Western Balkans.

Against the background of a naturally variable littoral geomorphol-
ogy and nearshore land cover, we expected that, together, the three
pressures would affect species assemblages and lead to a reduced
diversity in all three biological indicator groups. The magnitude of the
impact of each pressure and their interactive effects (e.g. Pilotto et al.,
2015) were difficult to predict more specifically, however, because
individual pressure-species richness relations are not necessarily linear
(e.g. Astorga et al., 2011).We therefore asked the following exploratory
questions:

(1) How much of the observed variance in diatom, macrophyte and
macroinvertebrate indicators is explained by the different pres-
sures? Which is more important, eutrophication, hydro-
morphological change, or water level fluctuation?

(2) How strong is the covariance among the three indicator groups?
Do they show the same patterns, or do they respond differently
to the different pressures?

(3) How important is the unique character of the individual lakes rel-
ative to the effect of the three pressures?

(4) Can we draw any general conclusions for lake management in
the Western Balkans?
2. Materials and methods

2.1. Studied lakes

We selected six lakes ranging greatly in size, geological origin and
history, and adjacent human land use. The lakes Ohrid (693 m asl)
and Prespa (849 m asl) are both large, comparatively old and have a
complex geological origin. Both are fairly well studied (e.g. Stankovic,
1960; Spirkovski et al., 2001; Matzinger et al., 2006; Popovska and
Bonacci, 2007; Schneider et al., 2014; Vermaat et al., 2020). Lake Sava
(73 m asl) is a former arm of the river Sava within the city of Belgrade
and intensively used for recreation (Jovanovic et al., 2017). The remain-
ing three are comparatively small mountain lakes. The lakes Lura
(1722 m asl) and Crno (1419 m asl) are likely to be cirques from the
last glaciation (Radulevic et al. 2010, Vidakovic et al., 2020) and
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Drivers Pressures Lake ecosystem
State change

societal
(policy) 
Response

societal
Impact

(eutrophication) 
increased nutrient
load

eutrophication: 
incr. totP, incr frequency hypoxia, decr. 
transparency, incr chlor a, incr % 
cyanobacteria, incr filamentous algae, 
altered diatom and macrophyte
communities, altered macroinvertebrates,
altered fish community, fish kills  

hydro-
morphological
change:
Increased hard and 
sandy shores, 
constructions

hydrological
regulation:
Increased
seasonal water 
level fluctuation, 
altered wave
erosion

incr. human 
population, 
intensity
agriculture

incr. human 
occupation of
the shore for 
recreation
and tourism

incr. irrigation, 
hydropower, 
drainage

altered diatom, macrophyte and 
macroinvertebrate communities, increased
filamentous algae on hard substrata, 
reduced reed beds, altered fish and bird
communities

reduced abundance and species richness
of diatoms, macrophytes and 
macroinvertebrates in drawdown zone, 
colonization by ‘flexible’ emergents; altered
fish and bird communities

water less 
suitable for 
drinking
water 
production, 
recreation, 
angling, 
fishing

reduced
scenic
beauty: lake 
less attractive
for residents 
(reduced
house 
prices), 
recreation
and visitors; 
reduced
biodiversity
‘value’

package of
measures, 
directed at 
drivers and 
pressures, 
sometimes at 
state

climate
change

Fig. 1. Generalized a priori DPSIR framework combining three environmental pressures onWestern Balkan lakes. A policy response can feed back to any of the other four elements.
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Biogradsko (1094m asl) is thought to be an infilling depression behind
a moraine (Government of the Republic Montenegro, 1997). All three
are in areas with a nature protection designation, although that does
not mean there is no human activity. For example, Vidakovic et al.
(2020) documented large-scale deforestation of the slopes surrounding
Lake Lura. The Crno andBiogradsko Lakes receive large numbers of tour-
ist visitors, as we personally witnessed during our field work.

2.2. Variables included

The field collection campaigns in 2016, 2017 and 2018 and the sub-
sequent processing and analysis of the data followed standard proto-
cols. This has been described exhaustively in Schneider et al. (2020a).
A brief summary of themethods is given in Table S1. Variables included
in this study are briefly described in Table 1. We included water total P,
sediment total P and sediment organic matter from the original set of
variables in Schneider et al. (2020a), because total P is commonly
viewed as reflecting eutrophication, and sediment may be used as a
source of P by aquaticmacrophytes. Habitat characteristics of the littoral
zone were also quantified. These were: the presence of gravel beaches;
shoreline modification for anthropogenic use; presence of emergent
reed (Phragmites australis) stands in the foreshore; fetch (as a measure
of wave exposure); and an index of annual water level fluctuation
(Table 1, see also below). Sediment organic matter may also respond
to changes in water level, and to increased hard shorelines (harnessing)
as these lead to increased wave turbulence.

We estimated the extent of seasonal water level fluctuation from
literature (Popovska and Bonacci, 2007; Radulovic et al., 2010;
Vidakovic et al., 2020) and our own field experience. A simple indica-
tor of fetch, or wave exposure, of a littoral station to wind-induced
wave action was estimated from the length of a perpendicular line
from the shore towards the opposite shore. This is equivalent to
the ‘maximum fetch’ of Rowan et al. (1992). We refrained from
more elaborate indices because we only needed a comparative indi-
cator for our six lakes of very different sizes. Rowan et al. (1992) sug-
gested that the maximum fetch had very similar explanatory power
in predicting mud deposition depth when compared to a more elab-
orate indicator of exposure (both equations include littoral slope, 89
3

vs 93% explained variance). We abstained from a further condensa-
tion of these environmental variables into one compound, common
indicator, such as the Lake Habitat Modification Score (e.g. McGoff
et al., 2013a; Pilotto et al., 2015), since wewere interested in the pos-
sible effects of the individual components.

We included the following macrophyte variables for the following
reasons: species richness, because large seasonal fluctuations in water
level compresses the habitat available for submerged macrophytes
and hence the likely number of species (e.g. Rørslett, 1984); the lower
vegetation limit, as it responds to eutrophication-related increases in
turbidity (e.g. Middelboe and Markager, 1997); abundance estimates
for Cladophora, because this may increase with eutrophication (Depew
et al., 2011)); the abundance of charophytes, because this generally de-
clines with eutrophication (Blindow, 1992); and the overall biomass of
macrophytes, because this has been shown to increase with P runoff
from the adjacent land; Schneider et al., 2020a). We also looked at
a transition in species composition with increasing nutrient load
(cf. Poikane et al., 2018; Hilt et al., 2018) and at growth form spectra
(Radomski and Goeman, 2001) but experienced limited resolution for
lakes with few species, so we do not report on the latter. Similarly, we
could not include a composite macrophyte index, such as the Balkan
Macrophyte Index BMI (Schneider et al., 2020b), because a reliable cal-
culation of the index was not possible in three of our six lakes due to a
limited number of species and/or abundances.

For diatomswe included an overall taxon richness index, because in-
creases in macrophyte diversity are likely to increase the richness in
habitats available for diatoms (Blindow, 1987) and this may also affect
epilithic species richness indirectly. Shoreline harnessing, however,
may mainly favor prostate epilithic taxa that can cope with heavier
wave turbulence caused by reflection, and thus reduce species richness.
Increased water level fluctuation may reduce the time window for col-
onization and thus favor small, rapidly dispersing and fast-growing dia-
tom taxa, hence reducing species richness.We also included the Trophic
Diatom Index for Lakes (TDIL; Stenger-Kovács et al., 2007), as it is de-
signed to indicate eutrophication and has been specifically developed
for lakes. TDIL was chosen from several alternative composite diatom
indicators as it correlated most closely to nutrient run-off in Schneider
et al. (2020a).



Table 1
Variables included in this study. Total number of observations is 36with 6 stations sampled at 6 lakes, unless otherwise stated. Medians (where relevant), means (where greatly different
from medians) and ranges are reported.

Variable name Description Median (mean),
range, units

pc1_urbanization Principal component summarizing a gradient from rural to urban in land cover pooled from the three land cover zones
(0-20 m, 20–100 m, 500 m trapezoids), see methods for further explanation

−1.1–2.5, scaled,
unitless

pc2_deciduous to coniferous Principal component summarizing a gradient from deciduous to coniferous woodland, marshes in the 0-20 m band
covaried strongly.

−1.9-2.5, scaled,
unitless

P run-off Estimate combined from CORINE land use in the 500 m trapezoids and export coefficients from Smith et al. (2005),
expressed per unit area land.

0.4; 0.2–4.8 kg P
ha−1 y−1

Shoreline harnessinga Hard hydromorphological alteration. Assessed in the field, percentage cover of the shore by all concrete, riprap, stones
and other artificial embankment structures; Table S3.

0 (mean 0.6); 0–4

Gravel beacha As shoreline harnessing 0.5 (mean 1.8); 0–4
Water reed before the shorea As shoreline harnessing 0 (mean 0.6); 0–4
Fetch Length of a perpendicular line to the opposite shore (see methods), indicator of wind-induced wave exposure 0.5 (mean 4.1);

0.1–29.4 km
Seasonal water level
fluctuation

Estimated annual range (see methods) 1; 0.5–3 m

Water total P Total P content of unfiltered littoral water sample taken at 0.5 m depth; mean of spring and autumn sampling; means
from spring and autumn sampling are used.

13; 4.9–29.1 μg L−1

Sediment organic matter Sediment organic matter from a sediment grab sample taken at 1 m depth, measured from weight loss on ignition;
means from spring and autumn sampling are used.

3.6; 1.2–28.6%

Sediment total P Sediment total P content taken from the same grab; means from spring and autumn sampling are used. 396;
134–3210 mg kg−1

Macrophyte mass Estimated a s the summed cube of all macrophyte abundance estimates in the transect down to 2 m
(see Schneider et al., 2020)

103; 0–786

Cladophora mass Same for Cladophora 0 (mean 50); 0–383
Sum Chara Summed abundance of all Chara taxa in the transect down to 2 m; five point scale: 1 = very rare, 2 = infrequent,

3 = common, 4 = frequent, 5 = abundant, predominant
0 (mean 0.7); 0–4.5

Macrophyte species richness Total number of species encountered at a transect down to 2 m. 3; 0–13
Lower vegetation limit Lower vegetation limit at each transect assessed by snorkeling or grab sampling at greater depths 4; 0–16 m
Diatom number of species See method in Schneider et al. (2020) 68; 23–102 per 5

stones
Diatom TDIL index Index based on diatom species niche characteristics in calculated from the OMNIDIA data base, see Schneider et al.

(2020). Low values indicate nutrient enriched.
14; 9.0–15.3

Invertebrate abundance at
2 m depth

Total number of individuals estimated from subsampling (n = 33); means from spring and autumn and 2 m depth are
used.

425; 0–2950 ind. m−2

Invertebrate taxon richness at
2 m depth

Taxon richness, oligochaeta and chironomidae to family level, others to species (n = 33); spring values from 2 m depth
are used.

5; 0–19

Invertebrate ASPT index Average Score Per Taxon, indicator of organic pollution estimated with the ASTERICS tool, see Schneider et al. (2020,
n = 27); low values indicate high organic loading; spring values from 2 m depth are used.

3.0; 1.5–8.5

a These variables were scored on the protocol in Supplementary table S3. All use a five point scale: 0, 1 ≤ 25%, 2 ≤ 50%, 3 ≤ 75%, 4 ≥75–100%.
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For benthic invertebrates we selected overall abundance, because
eutrophication may lead to increases in overall invertebrate abundance
due to increases in certain groups (e.g. Sandin and Johnson, 2000). We
also selected taxon richness because macrophyte-rich littoral zones
with bands of emergent plants and trees along the shore were shown
to be particularly species rich (Jurca et al., 2012), while wave-exposed
gravel or hard substrates have less species rich but specialized assem-
blages (Brauns et al., 2011). Also, anthropogenic shoreline alteration re-
portedly leads to reduced macroinvertebrate richness (Brauns et al.,
2007; McGoff et al., 2013b; Miler et al., 2015) as does increased water
level fluctuation (Palomäki, 1994). In addition, we selected the Average
Score Per Taxon index (ASPT), as ameasure of changes tomacroinverte-
brate assemblages, because eutrophicationmay lead to shifts in inverte-
brate species composition through increased productivity (Johnson
et al., 2018) and changes to macrophyte communities (Rasmussen,
1988), possibly in a non-linear manner, depending on the severity of
the nutrient loading gradient (Jurca et al., 2012). The ASPT was
originally designed to indicate organic pollution in running waters
(Armitage et al., 1983) but has also been used in lakes (Poikane et al.,
2015) and as an effective indicator of eutrophication (Sandin and
Johnson, 2000).We also chose it because its taxonomic level (family) al-
lows cross-country comparisons. Indicator scores were estimated from
existing databases: OMNIDIA (https://omnidia.fr) for diatoms and
ASTERICS (https://www.gewaesser-bewertung-berechnung.de/index.
php/home.html) for invertebrates as in e.g. Miler et al. (2013).

Land use was quantified in two ways. Firstly, in the field we visu-
ally estimated cover of CORINE land use classes (EEA (European
4

Environment Agency), 2014), both in the immediate nearshore litto-
ral fringe (0–20m inland) and in the adjacent band from 20 to 100m
for each station using a standard protocol (supplementary material
Table S3). In addition, we quantified the presence of water reed
(i.e. Phragmites australis rooting under water), rocks, gravel or
sandy beaches, concrete walls and pipe outlets on the shoreline. Sec-
ondly, the wider near-shore land use was quantified from the latest
CORINE land use map for a trapezoid of 10 ha area that stretched
500 m inland from the shore of the lake, with a width of 100 m at
the shore and 300 m at the other end. Phosphorus run-off from the
adjacent land in these trapezoids was estimated by summing the
multiplier of the CORINE land use class area with specific export co-
efficients from Smith et al. (2005). The substantial covariance of land
use across the 0–20m and 20–100m bands as well as the 500m trap-
ezoids has been accommodated by data reduction with principal
component analysis (PCA). We included all individual cover vari-
ables from the three zones in one common PCA.

2.3. Data analysis

Datawere analyzedwith univariate GLM in SPSS version 26with the
different biological indicators as dependent variables, land use, lake
morphology and chemistry as explanatory covariates and lake as a ran-
dom factor, ensuring simultaneous assessment of both lake-specificity
and general explanatory variables. For each indicator group, we in-
cluded all covariates in the GLMmodel that could possibly be of mean-
ingful influence. Hence, the GLM forwater total P, for example, included

https://omnidia.fr
https://www.gewaesser-bewertung-berechnung.de/index.php/home.html
https://www.gewaesser-bewertung-berechnung.de/index.php/home.html
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only the two land use principal components, P run-off and the shoreline
indicators, whereas for invertebrates we also included fetch, water total
P, sediment organic matter, sediment P, and macrophyte mass. GLMs
were run with type III sums of squares, whereas relative contribution
to explained variance was subsequently estimated with additive type I
sums of squares. For error equality Levene's test was used, and we
found p>0.02 for all GLM runs done, sowe decided that no transforma-
tions were necessary. We also ran multiple regressions with the same
independent variables, but without the random factor ‘lake’, so that
we could includewater level fluctuation as an explanatory factor, a var-
iable without within-lake replication. A comparison of the explained
variance of the full GLMmodel and the multiple regression gives an in-
dication of the strength of the factor ‘lake’, and of the continuous ex-
planatory variables that may contribute to a between-lake effect.

3. Results

Pressure-gradients across the six lakes were considerable (Table 1).
Together, exported P-load from the adjacent land (0.2–5 kgP ha−1 y−1),
water total P (5–30 μg P L−1) and sediment total P (0.1–3.2 g kg−1)
reflected a substantial part of the ranges reported in the literature:
exported P-load 0.2–4.9 kg P ha−1 y−1 (Smith et al., 2005); water
total P concentration 7–690 μg P L−1, median 34 μg P L−1 (European
overview in Poikane et al., 2014, similar range in Donohue et al.,
2009); Sediment total P 0.3–1.5 g kg−1 (Randall et al., 2019). Also,
water level fluctuation (Fig. S1) and shoreline harnessing varied sub-
stantially across sites (Table 1).

Land-cover showed a similar pattern in the inner and outer littoral
bands as in the larger trapezoids taken from CORINE. These patterns
could be condensed into two synthetic principal components (Fig. 2):
one reflecting a rural-urban gradient (more built-up area, roads,
parks), and the other corresponding to a transition from deciduous to
coniferous forests with a parallel increase in marshland in the inner
0–20 m band. The stations of the three mountain lakes form individual
clusters that are spread along the second axis, whereas the stations in
lakes Ohrid, Prespa and Sava vary most strongly along the first axis,
but also along the second (Fig. 2 right). Interestingly, gravel beaches
co-vary strongly and negatively with increased urbanization (Fig. 2,
left).

Variation in water and sediment total P was explained best by the
factor lake (Table 2, Table S2), rather than by P-load, or urbanization.
The latter two co-varied significantly (r2 = 0.45, p < 0.001, not
shown). Lake Prespa had the highest water total P, whereas Biogradsko
and Crno were highest in sediment P. Additional significant covariance
with water total P was found with water level fluctuation, the presence
of inshore reed beds and gravel shores. In themultiple regression with-
out the factor lake, only the presence of water reed was significant for
water total P, and only shoreline harnessing was significant for sedi-
ment total P (and correlated positively, Table 2, Table S2).

The different macrophyte indicators responded differently in the
GLMs (Table 2, Table S2). Overall, variation in macrophyte mass, the
lower vegetation limit, species richness and Chara abundance were
strongly governed by the factor lake. This is likely due to the rich and
abundant macrophyte beds in Lake Ohrid. The hypothesized change in
predominant growth form among macrophytes with eutrophication
was not clearly supported. We found mainly scatter versus PC1
(Fig. 3a) and no effect of P-load. When data were pooled into quartiles
for PC1, quartile 3 had a maximum mean number of species and per-
centage of potamids, and a minimum percentage for elodeids, whereas
the mean percentage of charophytes did not change (data not shown).
Macrophyte species richness responded strongly to water level fluctua-
tion and PC2 in themultiple regression without the factor lake (Table 2,
Table S2, cf. Fig. 3b). Macrophyte mass also covaried positively with the
presence of gravel beaches, water reed, and negatively with fetch. In the
multiple regression, PC2, gravel beaches andwater levelfluctuation cor-
related with high biomass. For Cladophoramass a range of other factors
5

together were more important than the difference between lakes
(Table 2, Table S2): fetch, PC2 (increased conifer and marshland),
shore harnessing and gravel beaches, all covaried positively with
Cladophora in the GLM, andwater total P andwater level fluctuation re-
placed the factor lake in themultiple regression. Also, Chara abundance
corresponded significantly and negativelywithwater total P in themul-
tiple regression, a pattern that disappeared with inclusion of the factor
lake (Table 2, Table S2).

The diatom indicators - species richness and TDIL - were signifi-
cantly different between lakes, but here other variables were also im-
portant (Table 2, Table S2). Interestingly, species richness increased
significantly with urbanization (PC1, Fig. 3c), P run-off, fetch and
water level fluctuation, but declined with PC2. The multiple regression
produced largely the same results. TDIL covaried negatively with PC1
and with fetch both in the GLM and the multiple regression, whereas
the factor lake was not significant.

Variation in benthic invertebrate abundance did show a significant
between-lake difference. Abundance increased strongly with PC1 (ur-
banization, Fig. 3d), and with fetch. In contrast, fetch and water level
fluctuation were significant in the multiple regression. Taxon richness
differed between lakes and declined with PC1 (Table 2, Table S2). PC2
and water level fluctuation were significant in the multiple regression.
We found that ASPT correlated negativelywith sediment total P and dif-
fered between lakes, whereas water total P and water level fluctuation
were significant in the multiple regression.

For some of our indicator variables the factor lake contributed sub-
stantially, whereas for others it contributed little to nothing (Table 2).
The former was especially the case for water total P, sediment total P
and ASPT, and less substantial but still sizeable for the lower vegetation
limit, macrophyte richness, and the sum of Chara abundance. The factor
lakewas not significant for TDIL and invertebrate abundance. GLMs and
multiple regressions overall included the same significant explanatory
variables for diatom species richness, TDIL and Cladophoramass, whilst
different sets of variables were significant in GLMs andmultiple regres-
sions for the other four macrophyte indicators and the three macroin-
vertebrate indicators (Table 2, Table S2). The predominant influence
of the factor lake on concentrations of P in water and sediment makes
these indicators of little use to describe a eutrophication gradient de-
spite the gradient in loading, which corresponds with the finding of
Schneider et al. (2020a). TDIL was related consistently and negatively
to PC1, the urbanization gradient, and to fetch (Table 2, Table S2). This
implies that fetch is a confounding factor in our data set for an assess-
ment of the adverse combination of pressures related to increased ur-
banization along the shoreline. Fetch had a consistently positive effect
on invertebrate abundance (Table 2, Table S2).

Since water level fluctuation did not vary within lakes, it could not
be used to show any significant effect over and above the factor lake,
but it was often significant in the multiple regressions. Its effects were
negative for all macrophyte and invertebrate indicators, but positive
for diatom species richness (Table 2, Table S2). The latter appeared to
be most responsive to different explanatory variables, together with
Cladophora mass (Table 2).

In overview, we see that variation in water and sediment P was
mainly driven by differences between the lakes that were not picked
up by our land use and shoreline indicators. For the diatom indicators,
between-lake differences are important only for species richness but
not for the eutrophication indicator TDIL, which was found to respond
to increased urbanization (explains 26%, Table S2), and can be con-
founded by fetch (29%). The different macrophyte indicators show con-
trasting responses (Table 2), with different shoreline factors together
being most important for Cladophora, but between-lake differences
being most important for macrophyte mass, macrophyte species rich-
ness, Chara abundance and lower vegetation limit. Also, for the inverte-
brate ASPT the factor lake explained most (Table 2). For invertebrate
abundance and taxonomic richness, however, the pattern is different,
land use explained most variance (Table S2).
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Table 2
Overall comparison of the results from the GLM (with lake as a random factor) and the multiple regression (without lake) summarized from Table S2. Explained variance and significant
(p < 0.10) explanatory variables are reported, the latter with the sign of the relation (−, +).

indicator GLM
r2

GLM explanatory variables Regression
r2

Regression explanatory variables

Water total P 0.83 Lake (69%), water reed (+), water level fluctuation (+), gravel,
beach (+)

(0.28) Whole model not significant (p = 0.49),

Sediment total P 0.50 Lake (60%) (0.20) Whole model not significant (p = 0.46)
Diatom species
richness

0.87 Lake (27%), pc1 (+), pc2 (-), P runoff (+), water level
fluctuation (+), fetch (+), shoreline harnessing (-)

0.80 pc1 (+), pc2 (-), P runoff (+), water level fluctuation (+), fetch
(+), sediment total P (+)

TDIL 0.84 pc1 (-), fetch (-) 0.83 pc1 (-), fetch (-)
Macrophyte mass 0.78 Lake (13%), fetch (-), water reed (+) 0.74 pc2 (+), water level fluctuation (-), gravel beach (+)
Lower vegetation
limit

0.78 Lake (18%) 0.63 pc2 (+), fetch (+)

Macrophyte species
richness

0.92 Lake (11%), water reed (+), gravel beach (+) 0.82 pc2 (+), water level fluctuation (-)

Cladophora mass 0.94 Lake (3%), pc2 (+), shoreline harnessing (+), gravel beach
(+), fetch (+)

0.92 pc2 (+), shoreline harnessing (+), gravel beach (+), fetch (+),
water level fluctuation (-), water total P (-)

Sum Chara abundance 0.83 Lake (19%), sediment organic matter (+) 0.63 pc2 (+), water level fluctuation (-), fetch (+)
Mean invertebrate
abundance at 2 m

0.86 pc1 (+), fetch (+) 0.82 Water level fluctuation (-), fetch (+)

Invertebrate taxon
richness at 2 m

0.91 Lake (10%), pc1 (-) 0.85 pc2 (+), water level fluctuation (-)

ASPT 0.73 Lake (27%), sediment total P (-) 0.54 Water level fluctuation (-), water total P (+)

J.E. Vermaat, V. Biberdžić, V. Braho et al. Science of the Total Environment 804 (2022) 150160
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4. Discussion

We observed substantial gradients across the six lakes in the indica-
tors we used to reflect the three environmental pressures: eutrophica-
tion (P -load), hydro-morphological shoreline change, and altered
water level fluctuation regimes. Also, our GLMmodels explained a sub-
stantial part of the variance in the biological response variables
(73–94%, Table 2), which allows us to draw conclusions about the im-
portance of the three different pressures. Importantly, since the land-
use urbanization gradient (PC1) correlated with P-load, and especially
since it correlated with TDIL, macroinvertebrate abundance and taxon
richness, we can interpret this urbanization gradient to also reflect eu-
trophication.

For ourmacrophyte indicators, we found no direct relationship with
eutrophication, but ratherwith hydro-morphological change indicators,
and the factor lake was generally more important. This is likely because
Lake Ohrid stood out with respect to macrophytes: it had the highest
biomass, species richness, abundance of Chara and also Cladophora,
and the deepest vegetation limit. Therefore, our six lakes did not pro-
vide a uniform gradient in macrophyte abundance or diversity (cf.
Fig. 3b). With a much higher spatial and functional resolution or a
very different analysis, Schneider et al. (2014) and Vermaat et al.
(2020) show that the dense and extensive littoral macrophyte beds of
Lake Ohrid protect the oligotrophic, ‘inner’ pelagic zone, from a substan-
tial external nutrient load, which is reflected in the abundant presence
of Cladophora in the upper littoral zonewherever the habitat is suitable,
i.e. where there is hard substrate for attachment.

Diatom taxon richness increased with PC1 and P-run-off, whereas
the eutrophication indicator TDIL decreased with PC1, though not
with P-run-off (Table 3). This appears in contrast to the findings of
Schneider et al. (2020a) but is likely partly due to the urbanization gra-
dient replacing P-run-off, and partly to the multivariate nature of the
current analysis. An increase in taxonomic richness of cobble-
inhabiting diatoms with increasing urbanization may at first seem
counter-intuitive but can be seen as an indication that our study lakes
are not subject to very high nutrient loading. At low nutrient concentra-
tions, diatom species richness has been shown to increase with increas-
ing nutrient concentrations (Schneider et al., 2013), while at higher
nutrient concentrations, diatom species richness declines with increas-
ing nutrient concentrations (Weckstrom et al., 2007). This corresponds
with the observation that the ranges of nutrient load and total P concen-
tration in our study lakes are about half that reported in the literature
(Smith et al., 2005; Poikane et al., 2014; Donohue et al., 2009). TDIL
respondednegatively to fetch. This couldmean that fetch is a potentially
confounding factor if TDIL is used without further consideration as an
indicator of eutrophication, i.e. that wave-exposed sites could have a
Table 3
Relative importance of the three different pressures eutrophication, hydromorphological shorel
multiple regressions (Table 2, Table S2). The urbanization gradient reflected in PC1 is interpre

Indicator Eutrophication Hydromorphol

diatom species richness pc1 + (10%)
P-runoff + (26%)

Shoreline harn

TDIL pc1 – (26%) -
macrophyte mass - Water reed +

Gravel beach +
lower vegetation limit - -
macrophyte species richness - Water reed +
Cladophora mass - Shoreline harn

Gravel beach +
sum Chara abundance Sediment organic matter + (0%) -
invertebrate abundance pc1 + (57%) -
invertebrate taxon richness at 2 m pc1 – (18%) -
ASPT Sediment tot P – (0%) -

a Water level fluctuation in ‘()’ if only significant in the multiple regression, in the GLM its e
approximate as it is based on type I sums of squares.
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lower TDIL than sites which are less wave-exposed (see also Kelly
et al., 2018).

For benthic invertebrates, an increase in abundance and a decrease
in taxon richness along the urbanization gradient is interpreted as
coupled with increased productivity, a trend which is consistent with
the literature (e.g. Donohue et al., 2009; Pilotto et al., 2015; Johnson
et al., 2018). We found no effect of hydro-morphological shoreline
change on benthic invertebrate indicators in our study lakes, despite
the considerable variation observed in shoreline change (Table 1).
This is surprising and in contrast to the findings of, among others,
Brauns et al. (2007), and Pilotto et al. (2015), but also of Jurca et al.
(2021) who suggest that the negative effect of shoreline alteration on
macroinvertebrate species richness could be stronger in oligo- and me-
sotrophic than in eutrophic sites. We speculate that the persistence of
macrophyte beds across the observed range in shoreline alteration
may contribute to the lack of responsiveness inmacroinvertebrate indi-
cators, because macrophyte beds are species-rich habitats for inverte-
brates (e.g. Rasmussen, 1988; Pilotto et al., 2015) and may act as
refuges (Brauns et al., 2008), therebymasking potential effects of shore-
line alteration. Remarkably, we found that the invertebrate index ASPT,
which is considered to reflect a response to eutrophication or organic
loading, responded negatively to water level fluctuation. With other
words, a low score, indicating organic loading, could also be brought
about by highwater level fluctuation and an emerging littoral zone. Pre-
vious studies on benthic invertebrates and water level fluctuation
(Rasmussen, 1988; Palomäki, 1994; Brauns et al., 2008) have not re-
ported lower ASPT scores with higher water level fluctuations. Conse-
quently, a potentially confounding effect of water level fluctuations on
macroinvertebrate indicators must be considered in future assessments
of lake ecological status, just as the possibly confounding effect of fetch
on TDIL, the diatom indicator of eutrophication.

Due to the overlap of the factor lake and water level fluctuation, we
could not formally separate these two. However, in ourmultiple regres-
sions without the factor lake water level fluctuation was often signifi-
cant and had a negative effect on macrophyte and Cladophoramass, as
well as on all invertebrate indicators. This corresponds to results of
Rørslett (1984), who found that large seasonal fluctuations in water
level would compress the habitat available for submergedmacrophytes.
This direct effect on macrophytes as habitat may indirectly strengthen
the effect on invertebrates (cf. Rasmussen, 1988). Contrary to all other
effects (Tables 3, 4), water level fluctuation had a positive effect on dia-
tom taxon richness. Possibly, a more complex interplay of colonization,
duration of habitat availability and maybe grazing pressure on these
epilithic diatom communities underlies this observed pattern
(cf. Mason and Bryant, 1975; Vermaat, 2005). It may be, for example,
that the shallow water cobbles we sampled had been submerged
ine change andwater level fluctuation based on the explained variance in the GLM and the
ted to correspond with eutrophication.

ogical variation Water level fluctuationa Other

essing – (1%) + 36% Lake (27%), fetch + (21%)

- Fetch – (29%)
(8%)
(0%)

(-, 16%) Lake (13%)

- Lake (18%)
(4%) - Lake (11%)
essing + (6%)
(5%)

(-, 19%) Fetch + (15%), pc2 + (6%), Lake (3%)

- Lake (18%)
(-, 19%) –
(-, 53%) Lake (10%)
(-, 19%) Lake (27%)

ffect is covered by the factor lake; the explained variance estimate is to be interpreted as



Table 4
Hypothesized indicator responses to pressures and observed patterns.

Indicator group Pressure Hypothesized responses Observed pattern confirmed?

Macrophyte eutrophication Less charophytes, more elodeids and potamids,
Increased abundance of Cladophora

No, trend is not apparent
No, not more Cladophora

Shoreline harnessing Increased abundance of Cladophora
Change in relative abundance growth forms, less shallow-water species

Yes, more Cladophora
Change in growth forms not seen

Water level fluctuation Compressed habitat, so less species, more small short-lived annuals, so less biomass Yes, significantly less biomass
diatoms eutrophication TDIL score decreases Yes, TDIL decreased with PC1

Shoreline harnessing Less, but specialized species Yes, species richness declined
Water level fluctuation Less, but specialized species No, species richness in fact increased

Benthic invertebrates eutrophication Increased abundance in response to productivity
Shift in species composition: reduced richness
ASPT score decreases

Yes, abundance increased
Yes, taxon richness declined
No, ASPT did not respond

Shoreline harnessing Reduced taxon richness No response
Water level fluctuation Reduced richness Yes, richness declined, but also

abundance, and ASPT declined
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sufficiently long for a rich diatom community to develop but not yet
long enough for competitive species to become dominant (e.g. Passy,
2008).

Fetch interacted negatively with TDIL, and positively with diatom
species richness, Cladophora mass, and invertebrate abundance,
supporting the notion that it is important to address fetch separately
in similar comparative analyses, both within and between lakes. Near-
shore wave climate is an important factor structuring littoral habitats
and benthic communities (Rasmussen, 1988).

Consistent covariance among the three indicator groupswas limited.
The specific answer to our second question (how strong is the covaria-
tion among the indicator groups?) is that only two pairs covaried
clearly: the first pair is diatom taxon richness and invertebrate abun-
dance, which both responded positively to the urbanization gradient
reflected in PC1, but the former responded to several other factors, in-
cluding shoreline harnessing, fetch and the factor lake (or water level
fluctuation). The second pair is TDIL, the diatom-based index of nutrient
load, and invertebrate taxon richness, which both responded negatively
to PC1. A plausible explanation for this covariance is that the eutrophi-
cation gradient does not extend as far as elsewhere in Europe due to
the observed moderate external loading and still functional retention
mechanisms (Vermaat et al., 2020). Thus, increased nutrient availability
may increase the available niche width for diatoms, and lead to in-
creased productivity (Fairchild and Everett, 1988, Snyder et al., 2002,
Vermaat,2005) and consequent increased invertebrate abundance
(Mason and Bryant, 1975). However, the latter favors fewer, competi-
tive invertebrate taxa, and the diatom community becomes dominated
by indicators of higher nutrient availability (Hillebrand and Sommer,
2000), hence a lower TDIL (Stenger-Kovacs et al. 2007). This corre-
sponds with earlier findings from Lake Ohrid (Schneider et al., 2014),
and underlines that the use of different indicator groupswill strengthen
our understanding of the state of the lake and the underlying
mechanisms.

The explanatory power of the factor lake varied among the different
biological indicators. Hence, answering our third question (how impor-
tant is the “unique” character of the individual lakes?), we argue that
these lakes are ‘unique to a degree.’ This proportion never amounted
to more than a third of the variance (Tables 2 and 3). This is notably
so for four indicators: diatom species richness (27%), invertebrate
ASPT (27%), the lower vegetation limit (19%) and the summed Chara
abundance (19%). Similar breakdowns of variance have been published
for littoral invertebrates: the contribution of the factor lake, due to nat-
ural spatial or morphological variation, varies widely (14–40%; Pilotto
et al., 2015, Johnson et al., 2018). Our observations are within that
range. Based on the significantly explained variance, we return to our
first question (how much of the observed variance is explained by the
different pressures?) and conclude that eutrophication,whichwe inter-
pret from both the urbanization gradient and P-load, is likely more im-
portant in these lakes than direct hydro-morphological shoreline
9

change for diatoms and invertebrates, but that this is not apparent for
the macrophyte indicators.

We now turn to our last question on generic inferences for lake
water quality management in the Western Balkans. Our findings sug-
gest that a gradient of increased urbanization of the shores corresponds
to increased eutrophication. This likely includes other forms of pollution
that we have not quantified, such as loading with easily degradable or-
ganic matter from domestic sewage, heavy metals and other persistent
pollutants and microplastics (e.g. McGrane, 2016; Müller et al., 2020).
This urbanization pressure had a strong effect on the relevant diatom in-
dicator TDIL and on invertebrate abundance (Table 4). The effect was
not so clear for macrophytes, where we did not find a trend towards a
change in growth form from charophytes towards elodeids and
potamids (cf Hilt et al., 2018; Poikane et al., 2018) or a change in species
richness. This suggests that overall, whole-lake nutrient loads in these
Western Balkan lakes may not have surpassed critical loads for the
onset of algal blooms, because littoral vegetation is still functional as a
buffer (cf Vermaat et al., 2020). Water transparency across four of the
six studied lakes was not that low (spring median Secchi depth 3.9,
range 2.4–15.2) allowing for the development of macrophyte beds,
and likely also maintained by these (Vermaat et al., 2000, 2020). An al-
ternative explanation may be that water level fluctuation overrules the
potential effect of nutrient load: time to colonize frequently exposed lit-
toral sitesmay be too short for the development of amore slowly grow-
ing macrophyte or macroinvertebrate community, while the smaller,
fast growing (cf. Damuth, 2001) diatoms indeed react.

Based on our regression analyses, we suggest thatwater level fluctu-
ation is likely to be equally important as eutrophication, but we could
not formally separate it from the factor lake. Baumgärtner et al.
(2008) suggest that natural water level fluctuation is highly important
for the structuring of littoral invertebrate communities in large
Lake Constance. One can argue based on island biogeography theory
(MacArthur and Wilson, 1967) that it should have the strongest effect
in smaller lakes,whereas in larger lakes the total size aswell as variation
in littoral morphology may allow for a buffering of habitat and
thus eventual species loss in any of the indicator groups. Hydro-
morphological change in these lakes appeared to have the least effect,
contrary to findings by others (Pilotto et al., 2015; Miler and Brauns,
2020). This is likely due to the relativelymodest proportion of shoreline
that is modified in the studied lakes (cf. Table 1), but a direct compari-
son is complicated by the different ways in which shoreline modifica-
tion is quantified (e.g. Brauns et al., 2007; Pilotto et al., 2015; Miler
and Brauns, 2020; Jurca et al., 2021).

5. Conclusions

We suggest that eutrophication related to urbanization and water
level fluctuation have more distinct adverse effects in these lakes than
hydro-morphological shoreline change. We found that the indicators
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based on diatom taxonomy were particularly responsive in a way that
corresponds to earlier findings (Schneider et al., 2020a), whereas the
observed patterns in benthic invertebrate indicators or macrophytes
were less clear (contrary to e.g. Pilotto et al., 2015, Poikane et al.,
2018). Finally, although lakes in theWestern Balkans are comparatively
rare, and someare to be considered unique based on their geological age
and endemic biodiversity (notably Lake Ohrid), this did not prevent us
from drawing general conclusions about pressures and their effects
across these lakes. Our results suggest that our metrics can be applied
in Western Balkan lakes, despite the high number of endemic species
present in some of these lakes. We could indeed assess the relative im-
portance of the pressures thought to cause changes in the different bio-
logical response parameters. We suggest that societal measures should
focus on reducing nutrient load by addressing the drivers and sources of
eutrophication, and on the causes of hydrological change that increase
water level fluctuation, whilst preserving sufficient lengths of undevel-
oped littoral shoreline, in order to ensure goodwater quality in the long
run.
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