
SOS 2005 Preliminary Version

The Rewriting Logic Semantics Project

José Meseguer and Grigore Roşu

{meseguer,grosu}@cs.uiuc.edu
Computer Science Department, University of Illinois at Urbana-Champaign,

Urbana, IL 61801, USA

Abstract

Rewriting logic is a flexible and expressive logical framework that unifies denota-
tional semantics and SOS in a novel way, avoiding their respective limitations and
allowing very succinct semantic definitions. The fact that a rewrite theory’s ax-
ioms include both equations and rewrite rules provides a very useful “abstraction
knob” to find the right balance between abstraction and observability in semantic
definitions. Such semantic definitions are directly executable as interpreters in a
rewriting logic language such as Maude, whose generic formal tools can be used to
endow those interpreters with powerful program analysis capabilities.

Keywords

Semantics of programming languages, rewriting logic, formal program analysis.

1 Introduction

The fact that rewriting logic specifications [36,9] provide an easy and expres-
sive way to develop executable formal definitions of languages, which can then
be subjected to different tool-supported formal analyses, is by now well estab-
lished [63,6,64,59,57,38,61,14,51,62,26,24,34,7,40,41,12,11,25,19,52,1,58,21]. In
fact, the just-mentioned papers by different authors are contributions to a
collective ongoing research project which we call the rewriting logic semantics
project. A first global snapshot of this project – emphasizing the fact that
one can obtain quite efficient interpreters and program analysis tools from
the semantic definitions essentially for free – was given in [41]. But this is a
fast-moving area, so that new developments and the opportunity of discussing
aspects less emphasized in [41] make it worthwhile for us to attempt giving
here a second snapshot.

In our view, what makes this project promising is the combination of three
interlocking facts:

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/4820337?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Meseguer and Roşu

(i) that, as explained in Sections 1.1 and 1.2, and further substantiated in
the rest of this paper, rewriting logic is a flexible and expressive logical
framework that unifies denotational semantics and SOS in a novel way,
avoiding their respective limitations and allowing very succinct semantic
definitions;

(ii) that rewriting logic semantic definitions are directly executable in a rewrit-
ing logic language such as Maude [16], and can thus become quite efficient
interpreters; and

(iii) that generic formal tools such as the Maude LTL model checker [23],
the Maude inductive theorem prover [17,18], and new tools under de-
velopment such as a language-generic partial order reduction tool [25],
allow us to amortize tool development cost across many programming
languages, that can thus be endowed with powerful program analysis ca-
pabilities; furthermore, genericity does not necessarily imply inefficiency :
in some cases the analyses so obtained outperform those of well-known
language-specific tools [26,24].

1.1 Semantics: Equational vs. SOS

Two well-known semantic frameworks for programming languages are: equa-
tional semantics and structural operational semantics (SOS).

In equational semantics, formal definitions take the form of semantic equa-
tions, typically satisfying the Church-Rosser property. Both higher-order and
first-order versions have been shown to be useful formalisms. There is a vast
literature in these two areas that we do not attempt to survey. However, we
can mention some early denotational semantics papers such as [54,55] and
the surveys [53,44]. Similarly, we can mention [66,31,8] for early algebraic
semantics papers, and [30] for a recent textbook.

We use the more neutral term equational semantics to emphasize the fact
that denotational and algebraic semantics have many common features and
can both be viewed as instances of a common equational framework. In fact,
there isn’t a rigid boundary between the two approaches, as illustrated, for
example, by the conversion of higher-order semantic equations into first-order
ones by means of explicit substitution calculi or combinators, the common use
of initiality in both initial algebras and in solutions of domain equations, and
a continuous version of algebraic semantics based on continuous algebras.

Strong points of equational semantics include:

• it has a model-theoretic, denotational semantics given by domains in the
higher-order case, and by initial algebras in the first-order case;

• it has also a proof-theoretic, operational semantics given by equational re-
duction with the semantic equations;

2

Meseguer and Roşu

• semantic definitions can be easily turned into efficient interpreters, thanks
to efficient higher-order functional languages (ML, Haskell, etc.) and first-
order equational languages (ACL2, OBJ, ASF+SDF, etc.);

• there is good higher-order and first-order theorem proving support.

However, equational semantics has the following drawbacks:

• it is well suited for deterministic languages such as conventional sequential
languages or purely functional languages, but it is quite poorly suited to
define the semantics of concurrent languages, unless the concurrency is that
of a purely deterministic computation;

• one can indirectly model 1 some concurrency aspects with devices such as a
scheduler, or lazy data structures, but a direct comprehensive modeling of
all concurrency aspects remains elusive within an equational framework;

• semantic equations are typically unmodular, i.e., adding new features to a
language often requires extensive redefinition of earlier semantic equations.

In SOS formal definitions take the form of semantic rules. SOS is a proof-
theoretic approach, focusing on giving a detailed step-by-step formal descrip-
tion of a program’s execution. The semantic rules are used as inference rules
to reason about what computation steps are possible. Typically, the rules
follow the syntactic structure of programs, defining the semantics of a lan-
guage construct in terms of that of its parts. The locus classicus is Plotkin’s
Aarhus lectures [49]; there is again a vast literature on the topic that we do
not attempt to survey; for a good textbook introduction see [33].

Strong points of SOS include:

• it is a general, yet quite intuitive formalism, allowing detailed step-by-step
modeling of program execution;

• it has a simple proof-theoretic semantics using semantic rules as inference
rules;

• it is fairly well suited to model concurrent languages, and can also deal well
with the detailed execution of deterministic languages;

• it allows mathematical reasoning and proof, by reasoning inductively or coin-
ductively about the inference steps.

However, SOS has the following drawbacks:

• although specific proposals have been made for categorical models for certain
SOS formats, such as, for example, Turi’s functorial SOS [60] and Gadducci

1 Two good examples of indirectly modeling concurrency within a purely functional frame-
work are the ACL2 semantics of the JVM using a scheduler [43], and the use of lazy data
structures in Haskell to analyze cryptographic protocols [2].

3

Meseguer and Roşu

and Montanari’s tile models [28], it seems however fair to say that, so far,
SOS has no commonly agreed upon model-theoretic semantics;

• in its standard formulation it imposes a centralized interleaving semantics
of concurrent computations, which may be unnatural in some cases (for
example for highly decentralized and asynchronous mobile computations);
this problem is avoided in “reduction semantics,” which is different from
SOS and is in fact a special case of rewriting semantics (see Section 2.5);

• standard SOS definitions are notoriously unmodular, unless one adopts
Mosses’ MSOS framework (see Section 4.4);

• although some tools have been built to execute SOS definitions (see for
example [20,32,48]), tool support for verifying properties is perhaps less
developed than for equational semantics.

1.2 Unifying SOS and Equational Semantics: the Abstraction Knob

For the most part, equational semantics and SOS have lived separate lives.
Pragmatic considerations and differences in taste tend to dictate which frame-
work is adopted in each particular case. For concurrent languages SOS is
clearly superior and tends to prevail as the formalism of choice, but for de-
terministic languages equational approaches are also widely used. Of course
there are also practical considerations of tool support for both execution and
formal reasoning.

In the end, equational semantics and SOS, although each very valuable
in its own way, are “single hammer” approaches. Would it be possible to
seamlessly unify them within a more flexible and general framework? Could
their respective limitations be overcome when they are thus unified? Our
proposal is that rewriting logic [36,9] does indeed provide one such unifying
framework. The key to this, indeed very simple, unification is what we call
rewriting logic’s abstraction knob. The point is that in equational semantics’
model-theoretic approach entities are identified by the semantic equations, and
have unique abstract denotations in the corresponding models. In our knob
metaphor this means that in equational semantics the abstraction knob is al-
ways turned all the way up to its maximum position. By contrast, one of the
key features of SOS is providing a very detailed, step-by-step formal descrip-
tion of a language’s evaluation mechanisms. As a consequence, most entities –
except perhaps for built-in data, stores, and environments, which are typically
treated on the side – are primarily syntactic, and computations are described
in full detail. In our metaphor this means that in SOS the abstraction knob
is always turned down to its minimum position.

How is the unification and corresponding availability of an abstraction
knob achieved? Roughly speaking, 2 a rewrite theory is a triple (Σ, E,R),

2 We postpone discussion of “equational reduction strategies” µ, and “frozen” argument

4

Meseguer and Roşu

with (Σ, E) an equational theory with Σ a signature of operations and sorts,
and E a set of (possibly conditional) equations, and with R a set of (possibly
conditional) rewrite rules. Equational semantics is obtained as the special case
in which R = ∅, so we only have the semantic equations E and the abstraction
knob is turned up to its maximum position. Roughly speaking, 3 SOS (with
unlabeled transitions) is obtained as the special case in which E = ∅, and
we only have (possibly conditional) rules R rewriting purely syntactic entities
(terms), so that the abstraction knob is turned down to the minimum position.

Rewriting logic’s “abstraction knob” is precisely its crucial distinction be-
tween equations E and rules R in a rewrite theory (Σ, E,R). States of the
computation are then E-equivalence classes, that is, abstract elements in the
initial algebra TΣ/E. Because of rewriting logic’s “Equality” inference rule (see
Section 2.2) a rewrite with a rule in R is understood as a transition [t] −→ [t′]
between such abstract states. The knob, however, can be turned up or down.
We can turn it all the way down to its minimum by converting all equations
into rules, transforming (Σ, E,R) into (Σ,∅, R ∪ E). This gives us the most
concrete, SOS-like semantic description possible. Can we turn the knob “all
the way up,” in the sense of converting all rules into equations? Only if the
system we are describing is deterministic (for example, the semantic definition
of a sequential language) is this a sound procedure. In that case, the equa-
tional theory (Σ, R ∪ E) should be Church-Rosser, and we do indeed obtain
a most-abstract-possible, purely equational semantics out of the less abstract
specification (Σ, E,R), or even out of the most concrete possible specification
(Σ,∅, R ∪ E).

What can we do in general to make a specification as abstract as possible?
We can identify a subset R0 ⊆ R such that: (1) R0 ∪E is Church-Rosser; and
(2) R0 is biggest possible with this property. In actual language specification
practice this is not hard to do. We illustrate this idea with a simple example
language in Section 3.1. Essentially, we can use semantic equations for most
of the sequential features of a programming language: only when interactions
with memory could lead to nondeterminism (particularly if the language has
threads, or they could later be added to the language in an extension) or
for intrinsically concurrent features are rules (as opposed to equations) really
needed. In our experience, it is often possible to specify most of the semantic
axioms with equations, with relatively few rules needed for truly concurrent or
nondeterministic features. For example, the semantics of the JVM described
in [26,24] has about 300 equations and 40 rules; and that of Java described in
[24] has about 600 equations but only 15 rules. A semantics for an ML-like

information φ to Sections 2.1 and 2.2. In more detail, a rewrite theory will be axiomatized
as a tuple (Σ, E, µ, R, φ).
3 We gloss over the technical difference that in SOS all computations are “one-step” com-
putations, even if the step is a big one, whereas in rewriting logic, because of its built-in
“Transitivity” inference rule (see Section 2.2) the rewriting relation is always transitive; we
give a more detailed comparison in Section 2.5.

5

Meseguer and Roşu

language with threads given in [41] has only two rules.

This distinction between equations and rules, besides giving to equational
semantics and SOS their due in a way not possible for the other alternative if
we were to remain within each of these formalisms, has also important practi-
cal consequences for program analysis ; because it affords a massive state space
reduction which can make formal analyses such as breadth-first search and
model checking enormously more efficient. Because of state-space explosion,
such analyses could easily become infeasible if we were to use an SOS-like
specification in which all computation steps are described with rules. This
capacity of dealing with abstract states is a crucial reason why our generic
tools, when instantiated to a given programming language definition, tend to
result in program analysis tools of competitive performance. Of course, the
price to pay in exchange for abstraction is a coarser level of granularity in
respect to what aspects of a computation are observable at that abstraction
level. For example, when analyzing a sequential program using a semantics in
which most sequential features have been specified with equations, all sequen-
tial subcomputations will be abstracted away, and the analysis will focus on
memory and thread interactions. If a finer analysis is needed, we can often ob-
tain it by “turning down the abstraction knob” to the right observability level
by converting some equations into rules. That is, we can regulate the knob
to find for each kind of analysis the best possible balance between abstraction
and observability.

1.3 About this Paper

The rest of the paper is organized as follows. Background on membership
equational logic and rewriting logic is given in Sections 2.1–2.4. The relation-
ship to denotational semantics and SOS is discussed in greater detail in Section
2.5. We then discuss different language specification styles possible within the
common rewriting logic framework in Section 3, illustrate one of these styles
by the specification of a simple programming language in Section 3.1, and
summarize other language specification case studies in Section 3.2. Program
analysis techniques and tools are discussed in Section 4, including search and
model checking analyses (4.1), abstract-semantics-based analyses (4.2), logics
of programs and semantics-based theorem proving (4.3), and modularity and
the MSOS tool (4.4). We end with some concluding remarks in Section 5.

2 Rewriting Logic Semantics

2.1 Membership Equational Logic

A membership equational logic (mel) [37] signature is a triple (K,Σ, S) (just Σ
in the following), with K a set of kinds, Σ = {Σw,k}(w,k)∈K∗×K a many-kinded

6

Meseguer and Roşu

signature, and S = {Sk}k∈K a K-kinded family of disjoint sets of sorts. The
kind of a sort s is denoted by [s]. A mel Σ-algebra A contains a set Ak

for each kind k ∈ K, a function Af : Ak1 × · · · × Akn → Ak for each operator
f ∈ Σk1···kn,k, and a subset As ⊆ Ak for each sort s ∈ Sk, with the meaning that
the elements in sorts are well-defined, while elements without a sort are errors.
We write TΣ,k and TΣ(X)k to denote, respectively, the set of ground Σ-terms
with kind k and of Σ-terms with kind k over variables in X, where X = {x1 :
k1, . . . , xn : kn} is a set of kinded variables. Given a mel signature Σ, atomic
formulae have either the form t = t′ (Σ-equation) or t : s (Σ-membership)
with t, t′ ∈ TΣ(X)k and s ∈ Sk; and Σ-sentences are conditional formulae of
the form “(∀X) ϕ if

∧
i pi = qi ∧

∧
j wj : sj”, where ϕ is either a Σ-equation

or a Σ-membership, and all the variables in ϕ, pi, qi, and wj are in X. A mel
theory is a pair (Σ, E) with Σ a mel signature and E a set of Σ-sentences.
We refer to [37] for the detailed presentation of (Σ, E)-algebras, sound and
complete deduction rules, and initial and free algebras. In particular, given
a mel theory (Σ, E), its initial algebra is denoted TΣ/E; its elements are E-
equivalence classes of ground terms in TΣ. Order-sorted notation s1 < s2 can
be used to abbreviate the conditional membership “(∀x : k) x : s2 if x : s1”.
Similarly, an operator declaration f : s1×· · ·×sn → s corresponds to declaring
f at the kind level and giving the membership axiom “(∀x1 : k1, . . . , xn :
kn) f(x1, . . . , xn) : s if

∧
1≤i≤n xi : si”. We write (∀x1 : s1, . . . , xn : sn) t = t′

in place of “(∀x1 : k1, . . . , xn : kn) t = t′ if
∧

1≤i≤n xi : si”.

For execution purposes we typically impose some requirements on a mel
theory. First of all, its sentences may be decomposed as a union E ∪ A, with
A a set of equations that we will reason modulo (for example, A may include
associativity, commutativity and/or identity axioms for some of the operators
in Σ). Second, the sentences E are typically required to be Church-Rosser 4

modulo A, so that we can use the conditional equations E as equational rewrite
rules modulo A. Third, for some applications it is useful to make the equa-
tional rewriting relation 5 context-sensitive. This can be accomplished by spec-
ifying a function µ : Σ −→ IN∗ assigning to each function symbol f ∈ Σ (with,
say, n arguments) a list µ(f) = i1 . . . ik of argument positions , with 1 ≤ ij ≤ n,
which must be fully evaluated (up to the context-sensitive equational reduc-
tion stategy specified by µ) in the order specified by the list i1 . . . ik before
applying any equations whose lefthand sides have f as their top symbol. For
example, for f = if then else fi we may give µ(f) = {1}, meaning that the
first argument must be fully evaluated before the equations for if then else fi

4 See [5] for a detailed study of equational rewriting concepts and proof techniques for mel
theories.
5 As we shall see, in a rewrite theory R rewriting can happen at two levels: (1) equational
rewriting with (possibly conditional) equations E; and (2) nonequational rewriting with
(possibly conditional) rewrite rules R. These two kinds of rewriting are different. Therefore,
to avoid confusion we will always qualify rewriting with equations as equational rewriting.

7

Meseguer and Roşu

are applied 6 . Therefore, for execution purposes we can specify a mel theory
as a triple (Σ, E ∪ A, µ), with A the axioms we rewrite modulo, and with µ
the map specifying the context-sensitive equational reduction strategy.

2.2 Rewrite Theories

A rewriting logic specification or theory is a tuple R = (Σ, E ∪ A, µ,R, φ),
with:

• (Σ, E ∪ A, µ) a mel theory with “modulo” axioms A and context-sensitive
equational reduction strategy µ.

• R a set of labeled conditional rewrite rules of the general form

r : (∀X) t −→ t′ if (
∧
i

ui = u′i) ∧ (
∧
j

vj : sj) ∧ (
∧

l

wl −→ w′
l) (1)

where the variables appearing in all terms are among those in X, terms in
each rewrite or equation have the same kind, and in each membership vj : sj

the term vj has kind [sj]; and

• φ : Σ −→ P(IN) a mapping assigning to each function symbol f ∈ Σ (with,
say, n arguments) a set φ(f) = {i1, . . . , ik}, 1 ≤ i1 < . . . < ik ≤ n of frozen
argument positions 7 under which it is forbidden to perform any rewrites.

Intuitively, R specifies a concurrent system, whose states are elements
of the initial algebra TΣ/E∪A specified by (Σ, E ∪ A), and whose concurrent
transitions are specified by the rules R, subject to the frozenness requirements
imposed by φ.

The frozenness information is important in practice to forbid certain rewrit-
ings. For example, when defining the rewriting semantics of a process calculus,
one may wish to require that in prefix expressions α.P the operator . is frozen
in the second argument, that is, φ(.) = {2}, so that P cannot be rewritten
under a prefix. The frozenness idea can be extended to variables in terms as
follows: given a Σ-term t ∈ TΣ(X), we call a variable x ∈ vars(t) frozen in t iff
there is a nonvariable position α ∈ IN∗ such that t/α = f(u1, . . . , ui, . . . , un),
with i ∈ φ(f), and x ∈ vars(ui). Otherwise, we call x ∈ X unfrozen. Similarly,
given Σ-terms t, t′ ∈ TΣ(X), we call a variable x ∈ X unfrozen in t and t′ iff
it is unfrozen in both t and t′.

6 Maude has a functional sublanguage whose modules are membership equational theories.
Maps µ specifying context-sensitive equational reduction strategies are called evaluation
strategies [16], and µ(f) = i1 . . . ik is specified with the strat keyword followed by the
string (i1 . . . ik 0), with the last 0 indicating evaluation at the top of the function symbol
f .
7 In Maude, φ(f) = {i1, . . . , ik} is specified by declaring f with the frozen attribute,
followed by the string (i1 . . . ik).

8

Meseguer and Roşu

Note that a rewrite theory R = (Σ, E ∪ A, µ, φ,R) specifies two kinds
of context-sensitive rewriting requirements: (1) equational rewriting with E
modulo A is made context-sensitive by µ; and (2) nonequational rewriting
with R is made context-sensitive by φ. But the maps µ and φ impose different
types of context-sensitive requirements: (1) µ(f) specifies a list of arguments
that must be fully evaluated with the equations E (up to the strategy µ)
before equations for f are applied; and (2) φ(f) specifies arguments that must
never be rewritten with the rules R under the operator f . The maps µ and
φ substantially increase the expressive power of rewriting logic for semantic
definition purposes, because various order-of-evaluation and context-sensitive
information, which would have to be specified by explicit rules in a formalism
like SOS, becomes implicit and is encapsulated in µ and φ.

2.3 Rewriting Logic Deduction

Given R = (Σ, E ∪ A, µ,R, φ), the sentences that R proves are universally
quantified rewrites of the form (∀X) t −→ t′, with t, t′ ∈ TΣ(X)k, for some kind
k, which are obtained by finite application of the following rules of deduction:

• Reflexivity. For each t ∈ TΣ(X),
(∀X) t −→ t

• Equality.
(∀X) u −→ v E ∪ A ` (∀X)u = u′ E ∪ A ` (∀X)v = v′

(∀X) u′ −→ v′

• Congruence. For each f : k1 . . . kn −→ k in Σ, with {1, . . . , n} − φ(f) =
{j1, . . . , jm}, with ti ∈ TΣ(X)ki

, 1 ≤ i ≤ n, and with t′jl
∈ TΣ(X)kjl

,
1 ≤ l ≤ m,

(∀X) tj1 −→ t′j1 . . . (∀X) tjm −→ t′jm

(∀X) f(t1, . . . , tj1 , . . . , tjm , . . . , tn) −→ f(t1, . . . , t
′
j1
, . . . , t′jm

, . . . , tn)

• Replacement. For each θ : X −→ TΣ(Y) with, say, X = {x1, . . . , xn}, and
θ(xl) = pl, 1 ≤ l ≤ n, and for each rule in R of the form,

q : (∀X) t −→ t′ if (
∧
i

ui = u′i) ∧ (
∧
j

vj : sj) ∧ (
∧
k

wk −→ w′
k)

with Z = {xj1 , . . . , xjm} the set of unfrozen variables in t and t′, then,

(
∧
r

(∀Y) pjr −→ p′jr
)

(
∧

i(∀Y) θ(ui) = θ(u′i)) ∧ (
∧

j(∀Y) θ(vj) : sj) ∧ (
∧

k(∀Y) θ(wk) −→ θ(w′
k))

(∀Y) θ(t) −→ θ′(t′)

where for x ∈ X−Z, θ′(x) = θ(x), and for xjr ∈ Z, θ′(xjr) = p′jr
, 1 ≤ r ≤ m.

9

Meseguer and Roşu

Reflexivity

�
�

��

@
@

@@
t -

�
�

��

@
@

@@
t

Equality
�

�
��

@
@

@@
u -

�
�

��

@
@

@@
v

‖
�

�
��

@
@

@@
u

′ -

‖
�

�
��

@
@

@@
v

′

Congruence f
�

��
�

�
A
A

Q
QQ.

�� AA �� AA �� AA �� AA

f
�

��
�

�
A
A

Q
QQ.

�� AA �� AA �� AA �� AA� ��*� ��3

-

Replacement
�

�
�

@
@
@

t

�� AA �� AA �� AA �� AA
.

�
�

�

@
@
@

t
′

�� AA �� AA �� AA �� AA
.� ��*� ��3

-

Transitivity

�
�

��

@
@

@@
t1

- �
�

��

@
@

@@
t3

�
�

��

@
@

@@
t2

@
@@R �

���

Fig. 1. Visual representation of rewriting logic deduction.

• Transitivity
(∀X) t1 −→ t2 (∀X) t2 −→ t3

(∀X) t1 −→ t3

We can visualize the above inference rules as in Figure 1.

The notation R ` t −→ t′ states that the sequent t −→ t′ is provable in the
theory R using the above inference rules. Intuitively, we should think of the
inference rules as different ways of constructing all the (finitary) concurrent
computations of the concurrent system specified by R. The “Reflexivity”
rule says that for any state t there is an idle transition in which nothing
changes. The “Equality” rule specifies that the states are in fact equivalence

10

Meseguer and Roşu

classes modulo the equations E. The “Congruence” rule is a very general form
of “sideways parallelism,” so that each operator f can be seen as a parallel
state constructor, allowing its nonfrozen arguments to evolve in parallel. The
“Replacement” rule supports a different form of parallelism, which could be
called “parallelism under one’s feet,” since besides rewriting an instance of
a rule’s lefthand side to the corresponding righthand side instance, the state
fragments in the substitution of the rule’s variables can also be rewritten,
provided the variables involved are not frozen. Finally, the “Transitivity”
rule allows us to build longer concurrent computations by composing them
sequentially.

For execution purposes a rewrite theory R = (Σ, E ∪ A, µ,R, φ) should
satisfy some basic requirements. These requirements are assumed to hold by a
rewriting logic language such as Maude. First, in the mel theory (Σ, E∪A, µ)
E should be ground Church-Rosser modulo A – for A a set of equational
axioms for which matching modulo A is decidable – and ground terminating
modulo A up to the context-sensitive strategy µ 8 . Second, the rules R should
be coherent with E modulo A [65]; intuitively, this means that, to get the
effect of rewriting in equivalence classes modulo E ∪ A, we can always first
simplify a term with the equations E to its canonical form modulo A, and
then rewrite with a rule in R. Finally, the rules in R should be admissible
[16], meaning that in a rule of the form (1) on page 8, besides the variables
appearing in t there can be extra variables in t′, provided that they also
appear in the condition and that they can all be incrementally instantiated by
either matching a pattern in a “matching equation” or performing breadth first
search in a rewrite condition (see [16] for a detailed description of admissible
equations and rules).

2.4 Operational and Denotational Semantics of Rewrite Theories

A rewrite theory R = (Σ, E ∪ A, µ,R, φ) has both a deduction-based opera-
tional semantics, and an initial model denotational semantics. Both semantics
are defined naturally out of the proof theory described in Section 2.3. The
deduction-based operational semantics ofR is defined as the collection of proof
terms [36,9] of the form α : t −→ t′. A proof term α is an algebraic descrip-
tion of a proof tree proving R ` t −→ t′ by means of the inference rules of

8 The µ-termination condition may be dropped for programming language specifications in
which some equationally defined language constructs may not terminate. Even the ground
Church-Rosser property modulo A may be relaxed, by restricting it to terms in some “ob-
servable kinds” of interest. The point is that there may be some “unobservable” kinds for
which several different but semantically equivalent terms can be derived by equational sim-
plification: all we need in practice is that the operations are ground Church-Rosser modulo
A for terms in an observable kind, such as that of values, so that a unique canonical form
is then reached for them if it exists.

11

Meseguer and Roşu

Section 2.3. As already mentioned, all such proof trees describe all the pos-
sible finitary concurrent computations of the concurrent system axiomatized
by R. When we specify R as a Maude module and rewrite a term t with the
rewrite or frewrite commands, obtaining a term t′ as a result, we can use
Maude’s trace mode to obtain what amounts to a proof term α : t −→ t′ of
the particular rewrite proof built by the Maude interpreter.

A rewrite theory R = (Σ, E ∪ A, µ,R, φ) has also a model theory. The
models of R are categories with a (Σ, E ∪ A)-algebra structure [36,9]. These
are “true concurrency” denotational models of the concurrent system axiom-
atized by R. That is, this model theory gives a precise mathematical answer
to the question: when do two descriptions of two concurrent computations
denote the same concurrent computation? It turns out that the class of mod-
els of a rewrite theory R = (Σ, E ∪ A, µ,R, φ) has an initial model TR [36,9].
The initial model semantics is obtained as a quotient of the just-mentioned
deduction-based operational semantics, precisely by axiomatizing algebraically
when two proof terms α : t −→ t′ and β : u −→ u′ denote the same concurrent
computation. Of course, α and β should have identical beginning states and
identical ending states. By the “Equality” rule this forces E ∪A ` t = u, and
E ∪ A ` t′ = u′. That, is, the category objects in TR are E ∪ A-equivalence
classes [t] of ground Σ-terms, which denote the states of our system. The
arrows or morphisms in TR are equivalence classes of proof terms, so that
[α] = [β] iff both proof terms denote the same concurrent computation ac-
cording to the “true concurrency” axioms. Such axioms are very natural.
They for example express that the “Transitivity” rule behaves as an arrow
composition, and is therefore associative. Similarly, the “Reflexivity” rules
provides an identity arrow for each object, satisfying the usual identity laws.

2.5 Rewriting Logic Semantics of Programming Languages

Rewriting logic’s operational and denotational semantics apply in particular
to the specification of programming languages. We define the semantics of a
(possibly concurrent) programming language, say L, by specifying a rewrite
theory RL = (ΣL, (E∪A)L, µL, RL, φL), where ΣL specifies L’s syntax and the
auxiliary operators (store, environment, etc.), (E∪A)L specifies the semantics
of all the deterministic features of L and of the auxiliary semantic operations,
the rewrite rules RL specify the semantics of all the concurrent features of L,
and µL and φL specify additional context-sensitive rewriting requirements for
the equations (E ∪ A)L and the rules RL. Section 3.1 gives a detailed case
study of a rewriting semantics RL for L a simple programming language.

The relationships with equational semantics and SOS can now be described
more precisely. First of all, note that when R = ∅, the only possible arrows
are identities, so that the initial model TR becomes isomorphic to the initial
algebra TΣ/E∪A. That is, traditional initial algebra semantics [29], which pro-

12

Meseguer and Roşu

vides the models for algebraic denotational semantics, appears as a special
case of rewriting logic’s initial model semantics.

As already mentioned, we can also obtain SOS as the special case in which
we “turn the abstraction knob” all the way down to the minimum position by
turning all equations into rules. Intuitively, an SOS rule of the form

P1 −→ P ′
1 . . . Pn −→ P ′

n

Q −→ Q′

corresponds to a rewrite rule with rewrites in its condition

Q −→ Q′ if P1 −→ P ′
1 ∧ . . . ∧ Pn −→ P ′

n

There are however some technical differences between the meaning of a
transition P −→ Q in SOS and a sequent P −→ Q in rewriting logic. In
SOS a transition P −→ Q is always a one-step transition. Instead, because
of “Reflexivity” and “Transitivity”, a rewriting logic sequent P −→ Q may
involve many rewrite steps; furthermore, because of “Congruence”, such steps
may correspond to rewriting subterms. These technical differences present no
real difficulty for expressing SOS within rewriting logic: as shown in detail
in [41], we can just “dumb down” the rewriting logic inference to force one-
step rewrites in conditions. This can be easily accomplished by adding two
auxiliary operators [] and 〈 〉, so that SOS rules of the form above can be
exactly simulated by conditional rewrite rules of the form

[Q] −→ 〈Q′〉 if [P1] −→ 〈P ′
1〉 ∧ . . . ∧ [Pn] −→ 〈P ′

n〉

In general, SOS rules may have labels, decorations, and side conditions. In
fact, there are many SOS rule variants and formats. For example, additional
semantic information about stores or environments can be used to decorate
an SOS rule. Therefore, showing in detail how SOS rules in each particular
variant or format can be faithfully represented by corresponding rewrite rules
would be a tedious business. Fortunately, Peter Mosses, in his modular struc-
tural operational semantics (MSOS) [45,46,47], has managed to neatly pack
all the various pieces of semantic information usually scattered throughout a
standard SOS rule inside labels on transitions, where now labels have a record
structure whose fields correspond to the different semantic components (the
store, the environment, action traces for processes, and so on) before and after
the transition thus labeled is taken. The paper [40] defines a faithful repre-
sentation of an MSOS specification S as a corresponding rewrite theory τ(S),
provided that the MSOS rules in S are in a suitable normal form.

A different approach, also subsumed by rewriting logic semantics, is some-
times described as reduction semantics. It goes back to Berry and Boudol’s

13

Meseguer and Roşu

Chemical Abstract Machine (Cham) [4], and has been used to give seman-
tics to different concurrent calculi and programming languages (see [4,42] for
two early references). Since the 1990 San Miniato Workshop on Concurrency,
where both the Cham and rewriting logic were presented [22], it has been
clearly understood that these are two closely related formalisms, so that each
Cham can be naturally seen as a rewrite theory (see [36] Section 5.3.3, and
[4]). In essence, a reduction semantics, either of the Cham type or with a
different choice of basic primitives, can be naturally seen as a special type of
rewrite theory R = (Σ, A,R, φ), where A consists of structural axioms, e.g.,
associativity and commutativity of multiset union for the Cham, and R is a
set of unconditional rewrite rules. The frozenness information φ is specified
by giving explicit inference rules, stating which kind of congruence is per-
mitted for each operator for rewriting purposes. This last point illustrates
why rewriting logic semantic definitions can be more succinct than SOS or
reduction semantics definitions, because rewriting logic’s “Congruence” rule,
together with the frozenness information φ, implicitly takes care of context-
sensitive information that has to be handled by explicit rules in both SOS and
reduction semantics definitions.

Evaluation context semantics [27] is a variant of reduction semantics in
which the applicability of reductions is controlled by requiring them to occur in
definable evaluation contexts. In rewriting logic one can obtain the same effect
again by making use of the frozenness information. However, the rewriting
logic specification style is slightly different, because operations are suppossed
congruent by dafault; one needs to explicitely state which operations are not
congruent (or frozen).

3 Specifying Programming Languages

In computer science there are typically many different ways to implement a
given problem or system, each with its own advantages and disadvantages.
Similarly, there can be many different styles to specify the same system or
design in rewriting logic, depending upon one’s goals, such as operational
efficiency, verification of properties, mathematical clarity, modularity, or just
one’s personal taste. It is therefore not surprising that different, semantically
equivalent rewriting logic definitional styles are possible for specifying a given
programming language L.

In what follows we briefly discuss three definitional styles that we have in-
vestigated, together with their advantages and disadvantages. A fourth defini-
tional style, providing a fully modular specification methodology, is described
in detail in [7,40], and is compared to the MSOS methodology in Section 4.4.
Yet another definitional style, called reduction-context semantics and yield-
ing a very direct connection between a partially executed program and the
machine state is proposed and illustrated in [58]. What is common to all

14

Meseguer and Roşu

these styles is the fact that there is a sort State together with appropriate
constructors to store state information necessary to define the various lan-
guage constructs, such as locations, values, environments, stores, etc., as well
as means to define the two important semantic aspects of each language con-
struct, namely: (1) the value it evaluates to in a given state; and (2) the
state resulting after its evaluation. We explain the three definitional styles
informally by means of two sample language constructs: a binary addition
operation and a conditional statement. All three language definitional styles
assume an expression-based syntax, that is, all language constructs generate
plain expressions (as opposed to generating arithmetic expressions, boolean
expressions, statements, etc.). We postpone the description of the state in-
frastructure until Section 3.1.

Separating Evaluation and State Update

Following a divide-and-concur philosophy, an intuitive definitional style for a
language is one focusing on evaluation and on state update as two different
operations. To achieve this, one needs to define two operations 9 as follows:

op eval : Exp State -> Value .
op state : Exp State -> State .

The first operation takes an expression in a state and evaluates it to a
value, while the second calculates the state obtained after evaluation. The
semantics of addition can then be defined as follows:

eq eval(E1 + E2, S) = add(eval(E1, S), eval(E2, state(E1, S))) .
eq add(int(I1), int(I2)) = int(I1 + I2) .

eq state(E1 + E2, S) = state(E2, state(E1, S)) .

The above equations reflect the fact that the expressions E1 and E2 are
evaluated in a left-to-right order. Indeed, E2 is evaluated in the state obtained
after the evaluation of E1. The evaluation order of subexpressions is very im-
portant, because in our language the evaluation of expressions can have side
effects; so different evaluation orders potentially lead to different results. To
keep the various “buil-in” theories/modules conceptually disconnected, the

9 In all our examples throughout the paper we use Maude syntax [16], which is so close
to the corresponding mathematical notation for defining rewrite theories as to be almost
self-explanatory. The general point to keep in mind is that each item: a sort, a subsort, an
operation, an equation, a rule, etc., is declared with an obvious keyword: sort, subsort,
op, eq (or ceq for conditional equations), rl (or crl for conditional rules), etc., with each
declaration ended by a space and a period. Another important point is the use of “mix-
fix” user-definable syntax, with the argument positions specified by underbars; for example:
if then else fi. As illustrated in Section 3.1, this is very useful for programming language
definitions, since a language’s concrete syntax (except perhaps for minor lexical details) can
be preserved in the Maude specification.

15

Meseguer and Roşu

different types of values (integers, booleans, etc.) are wrapped with appro-
priate constructors – as oppossed to declaring them all subsorts of a generic
expression supersort. Therefore, one needs to first “unwrap” them in order
to apply basic operations. For example, in the above we used an auxiliary
(semantic) binary operation add defined on (integer) values as expected.

The semantics of the conditional construct can be defined in a similar style:

eq eval(if E then E1 else E2, S)
= if true?(eval(E, S))
then eval(E1, state(E, S))
else eval(E2, state(E, S))
fi

eq true?(bool(true)) = true .
eq true?(bool(false)) = false .

eq state(if E then E1 else E2, S)
= if true?(eval(E, S))
then state(E1, state(E, S))
else state(E2, state(E, S))
fi

Note that a test operation, true?, was defined on boolean values to “un-
wrap” their truth value in the builtin (Maude) bool module. This could have
been avoided if we used conditional equations with matching in conditions.
It is becoming increasingly clear that code repetition is a major drawback of
this definitional style. This motivates the following, more compact definitional
style.

Merging Evaluation and State Update

By pairing values and states, one can define evaluation and state update to-
gether. Consider a new sort ValueStatePair and the constructor operation
for it:

op <_,_> : Value State -> ValueStatePair .

We can then define an operation

op eval : Exp State -> ValueStatePair .

on such pairs as follows:

ceq eval(E1 + E2, S) = < int(I1 + I2), S2 >
if < int(I1), S1 > := eval(E1, S)
/\ < int(I2), S2 > := eval(E2, S1) .

ceq eval(if E then E1 else E2, S) =
= eval(if B then E1 else E2 fi, Sb)
if < bool(B), Sb > := eval(E, S) .

16

Meseguer and Roşu

While this definitional style is clearly more compact than the previous one,
it makes heavy use of matching in conditions 10 . Note that, unlike Maude,
many equational/rewriting engines do not provide support for matching in
conditions.

The drawback of both definitions above is their lack of explicit support
for control information. Indeed, both of them focus on the manipulation of
data information in a language, relegating the control flow to the logical in-
frastructure (equations and/or conditional equations). This is not an issue for
the two simple statements defined above, but it may become quite problem-
atic for more control-sensitive statements, such as halt, break or continue

statements, not to mention exceptions. To see this, consider adding a halt

statement to the language:

op halt : -> Exp .

The semantics of halt is the expected one: it stops the evaluation of the
program. Note that halt can appear anywhere in the program, including
functions or loops, which means that the definition of each language construct
should be ready to stop immediately if any of its subexpressions evaluates to
halt. To achieve this, we add a special value for forced termination, say *, and
then modify the existing semantics of each language construct to propagate it
accordingly; for example:

ceq eval(E1 + E2, S) = < int(I1 + I2), S2 >
if < int(I1), S1 > := eval(E1, S)
/\ < int(I2), S2 > := eval(E2, S1) .

ceq eval(E1 + E2, S) = < *, S1 >
if < *, S1 > := eval(E1, S) .

ceq eval(E1 + E2, S) = < *, S2 >
if < int(I1), S1 > := eval(E1, S)
/\ < *, S2 > := eval(E2, S1) .

Clearly, this is very inconvenient for at least two reasons: (1) it violates the
spirit of modularity in language definitions; adding a new, apparently inno-
cent, language construct requires adding as many additional equations for each
language construct as subexpressions it involves; and (2) it does not entirely
model the intended meaning of halt, namely to abort the execution immedi-
ately ; it still needs to propagate the “halt signal” through all the expressions
already started for evaluation, which may be a serious issue if a language with
timing constraints is to be defined.

10 In Maude, conditions in conditional equations are joined together with a conjunction
operator /\ and can have extra variables in “matching conditions” of the form t := u,
which are equational conditions in which a constructor-based pattern t with new variables
is matched to the result of evaluating the corresponding instance of u (see [16] for a detailed
exposition).

17

Meseguer and Roşu

Continuation-Based Definitions

Many programming languages provide statements which are very control in-
tensive, in the sense that they allow one to “jump” through the code/behavior
of the program in ways that sometimes may look rather “unstructured”. Such
control statements include returns from functions, halt, break or continue of
loops, and exceptions. Some languages, such as Scheme, even allow their users
to “freeze” control contexts and then pass them around just like any other val-
ues in the language (call/cc), giving programmers a language construct that
is more powerful than exceptions or even arbitrary “goto” statements.

The above suggests that in order to naturally define such programming
language control-intensive features in rewriting logic, one may need to include
as part of the state, besides the data universe of the programming language,
also its control universe. In other words, one would like to capture “where the
execution of the program currently is” as part of some special state attribute
to ease the definition of the semantics of certain programming language fea-
tures. It turns out that, in most cases, a methodological use of continuations
can enormously ease the definition of the programming language under consid-
eration, at the same time increasing the efficiency of its execution. Note that,
unlike higher-order functional approaches, our continuations are first-order
structures, resembling quite closely stacks. A continuation-based definitional
style will be discussed in depth and illustrated with more examples in Section
3.1. Here we just show how the semantics of addition, conditional and halt
statements can be defined with continuations, assuming for now that all the
appropriate state infrastructure is already defined (it will be rigorously defined
shortly):

eq k(exp(E1 + E2) -> K) = k(exp(E1,E2) -> + -> K) .
eq k(val(int(I1),int(I2)) -> + -> K) = k(val(int(I1 + I2)) -> K) .

eq k(exp(if E then E1 else E2) -> K) = k(exp(E) -> if(E1,E2) -> K) .
eq k(val(bool(true)) -> if(E1,E2) -> K) = k(exp(E1) -> K) .
eq k(val(bool(false)) -> if(E1,E2) -> K) = k(exp(E2) -> K) .

eq k(exp(halt) -> K) = k(value(nothing) -> stop) .

In the above, the variable K ranges over continuations, and the operation
k(...) wraps a continuation. Continuations can be built by placing contin-
uation items on top of existing continuations using the “stacking” operation:

op _->_ : ContinuationItem Continuation -> Continuation .

The operations exp(...) and val(...) wrap lists of expressions and of
values, respectively, into continuation items. Appropriate equations evaluate
the list of expressions one by one into a list of values, propagating the side
effects correspondingly. The constant stop is the starting continuation item;
there are equations terminating the execution of the program whenever the

18

Meseguer and Roşu

continuation has the form in the last equation above, namely a value on top
of stop.

Section 3.1 below shows how a simple imperative language can be entirely
defined in rewriting logic using a continuation-based definitional style.

3.1 A Simple Example

In this section, we illustrate the continuation-based definitional style by means
of simple, a Simple IMPerative LanguagE. simple is a C-like language,
whose programs consist of function declarations. The execution of simple
programs starts by calling the function main(). Besides allowing (recursive)
functions and other common language features (loops, assignments, condition-
als, local and global variables, etc.), simple is a multithreaded programming
language, allowing its users to dynamically create, destroy and synchronize
threads.

Our language definitions are modular, in the sense that adding or drop-
ping a particular language feature does not affect the definitions of the other
features. Each language feature consists of two subparts, its syntax and its
semantics. We define each of the two subparts as separate Maude modules,
the latter importing the former. For clarity, we prefer to first define all the
syntactic components of the language features, then the necessary state in-
frastructure, and finally the semantic components.

SIMPLE Syntax

Since Maude provides a parser generator for user-defined, context-free 11 mix-
fix syntax, we can define the syntax of our programming languages in Maude
and use its parser generator to parse programs. We show below how to define
the syntax of simple using mix-fix notation. One should not underestimate
the importance and the difficulty of defining the syntax of a programming
language. In our experience defining programming languages, getting the
syntax of a programming language right may sometimes consume half or even
more of our efforts.

We start by defining names, or identifiers, which will be used as variable or
function names. Maude’s built-in QID module provides us with an unbounded
number of quoted identifiers, e.g., ’abc123, so we can import those and declare
Qid a subsort of Name. Besides the quoted identifiers, we can also define

11 A context-free grammar can be specified as an order-sorted signature Σ: the sorts exactly
correspond to nonterminals; and the mix-fix operator declarations and subsort declarations
exactly correspond to grammar productions. Since in Maude each module is either an mel
theory or a rewrite theory, its signature part Σ specifies a user-defined context-free grammar
for which Maude automatically generates a parser.

19

Meseguer and Roşu

several common names as constants, so we can omit the quotes to enhance
the readability of our programs:

fmod NAME is
including QID .
sort Name .
subsort Qid < Name .

--- the following can be used instead of Qids if desired
ops a b c d e f g h i j k l m n o p q r s t u v x y z w : -> Name .

endfm

simple is an expression language, meaning that everything parses to an
expression. As discussed in Section 4.2, complex type checkers can be easily
defined on top of the expression syntax if needed. By making use of sorts,
it would be straightforward to define different syntactic categories, such as
statements, arithmetic and boolean expressions, etc. However, we believe
that doing so would decrease the modularity of our definitions; indeed, there
are languages in which the assignment can be regarded as a statement, as well
as languages in which it can be regarded as an expression having the desired
side effect; such languages allow, for example, multiple assignments of the
form x = y = z = 0, etc. We prefer to keep the syntax of the language simple,
the role of discarding bad programs being passed to type checkers.

We first define expressions generically as terms of sort Exp extending names
and Maude’s built-in integers. At this moment we do not need/want to know
what other language constructs will be added later on:

fmod GENERIC-EXP-SYNTAX is
including NAME .
including INT .
sort Exp .
subsorts Int Name < Exp .

endfm

We are now ready to add language features to the syntax of simple. We
start by adding common arithmetic and boolean expressions:

fmod ARITHMETIC-EXP-SYNTAX is
including GENERIC-EXP-SYNTAX .
ops _+_ _-_ _*_ : Exp Exp -> Exp [ditto] .
ops _/_ _%_ : Exp Exp -> Exp [prec 31] .

endfm

fmod BOOLEAN-EXP-SYNTAX is
including GENERIC-EXP-SYNTAX .
ops true false : -> Exp .
ops _==’_ _!=’_ _<’_ _>’_ _<=’_ _>=’_ : Exp Exp -> Exp [prec 37] .
op _and_ : Exp Exp -> Exp [prec 55] .
op _or_ : Exp Exp -> Exp [prec 59] .
op not_ : Exp -> Exp [prec 53] .

endfm

20

Meseguer and Roşu

Note that we do not distinguish between arithmetic and boolean expres-
sions at this stage. This will be considered when we define the semantics of
simple. The attribute ditto associated to some of the arithmetic operators
says that they inherit the attributes of the previously defined operators with
the same name; these operators were imported toghether with the built-in INT

module. Built-in modules/features are, of course, not necessary in a language
definition. However, it is very convenient to reuse existing efficient libraries for
basic language features, such as integer arithmetic, instead of defining them
from scratch. Overloading built-in operators is practically useful, but it can
somtimes raise syntactic/parsing problems. For example, the built-in binary
relational operators on integers evaluate to sort Bool, which, for technical and
personal taste reasons, we do not want to define as a subsort of Exp. Con-
sequently, we cannot overload those operators in our simple language. That
is the reason for which we added a backquote to their names in the module
above.

Conditionals are indispensable to almost any programming language:

fmod IF-SYNTAX is
including GENERIC-EXP-SYNTAX .
op if_then_ : Exp Exp -> Exp .
op if_then_else_ : Exp Exp Exp -> Exp .

endfm

Assignments and sequential composition are core features of an imperative
language. Unlike in C, we prefer to use the less confusing := operator for
assignments (as opposed to just =, which many consider to be a poor notation):

fmod ASSIGNMENT-SYNTAX is
including GENERIC-EXP-SYNTAX .
op _:=_ : Name Exp -> Exp [prec 41] .

endfm

fmod SEQ-COMP-SYNTAX is
including GENERIC-EXP-SYNTAX .
op _;_ : Exp Exp -> Exp [assoc prec 100] .

endfm

The attribute 12 assoc above states that the operation is associative. This
is an essentially semantic property; however, we prefer to give it as part of
the syntax because Maude’s parser makes use of it to eliminate the need for
parentheses.

Lists are used several times in the definition of simple: lists of names are

12 In Maude the “modulo axioms” A in a mel theory (Σ, E ∪ A,µ) or a rewrite theory R
can include any combination of associativity, commutativity, and identity axioms. They are
declared as equational attributes of their corresponding operator with the assoc, comm, and
id: keywords. The Maude interpreter then supports rewriting modulo such axioms with
equations and rules.

21

Meseguer and Roşu

needed for variable and function declarations, lists of expressions are needed
for function calls, lists of values are needed for output as a result of the exe-
cution of a program. Since we have a natural subsort structure between the
element sorts of these different lists, we can define the corresponding list sorts
in a “subtype polymorphism” style. We first define the basic module for lists:

fmod LIST is
sort List .
op nil : -> List .
op _,_ : List List -> List [assoc id: nil prec 99] .

endfm

From now on, each time we need lists of a particular sort S, all we need
to do is to define a sort ListS extending the sort List above, together with
an overloaded comma operator. In particular, we can define lists of names as
follows:

fmod NAME-LIST is
including NAME .
including LIST .
sort NameList .
subsorts Name List < NameList .
op ‘(‘) : -> NameList .
op _,_ : NameList NameList -> NameList [ditto] .
eq () = nil .

endfm

As syntactic sugar, note that in the above module we defined an additional
empty list of names operator, (), with the same semantics as nil. This is
because we prefer to write f() instead of f(nil) when defining or calling
functions without arguments.

Blocks allow one to group several statements into just one statement. Ad-
ditionally, blocks can define local variables for temporary use:

fmod BLOCK-SYNTAX is
including GENERIC-EXP-SYNTAX .
including NAME-LIST .
op {} : -> Exp .
op {_} : Exp -> Exp .
op {local_;_} : NameList Exp -> Exp [prec 100 gather (e E)] .

endfm

The above general definition of blocks does not only provide the user with
a powerful construct allowing on-the-fly variable declarations; but it will also
ease later on the definition of functions: a function’s body is just an ordinary
expression; if one needs local variables then one just defines the body of the
function to be a block with local variables.

The syntax of loops is straightforward. We allow both for and while

loops:

22

Meseguer and Roşu

fmod LOOPS-SYNTAX is
including GENERIC-EXP-SYNTAX .
op for(_;_;_)_ : Exp Exp Exp Exp -> Exp .
op while__ : Exp Exp -> Exp .

endfm

The results of a computation need to be reported somehow. We introduce
a print statement for this purpose. The latest version of Maude has built-in
socket objects; one could use those and add output and interaction to our
interpreters in a declarative way with rewrite rules. However, the semantics
of print discussed here is one that collects the output in a list of values, which
are all reported at the end of the execution.

fmod PRINT-SYNTAX is
including GENERIC-EXP-SYNTAX .
op print_ : Exp -> Exp .

endfm

Lists of expressions will be needed shortly to define function calls:

fmod EXP-LIST is
including GENERIC-EXP-SYNTAX .
including NAME-LIST .
sort ExpList .
subsort Exp NameList < ExpList .
op _,_ : ExpList ExpList -> ExpList [ditto] .

endfm

We are now ready to define the syntax of functions. Each function has a
name, a list of parameters (given as a list of names), and a body expression.
A function call is a name followed by a list of expressions. Functions can be
enforced to return abruptly with a typical return statement. As explained
previously, programs should provide a function called main, which is where
the execution starts from:

fmod FUNCTION-SYNTAX is
including EXP-LIST .
sort Function .
op function___ : Name NameList Exp -> Function [prec 115] .
op __ : Name ExpList -> Exp [prec 0] .
op return : Exp -> Exp .
op main : -> Name .

endfm

A program can obviously need more functions, which can even be mutually
recursive. We define syntax for sets of functions. We use sets because their
order does not matter at all: each function can see all the other declared
functions in its environment. This language design decision simplifies the
syntax of simple:

fmod FUNCTION-SET is

23

Meseguer and Roşu

including FUNCTION-SYNTAX .
sort FunctionSet .
subsort Function < FunctionSet .
op empty : -> FunctionSet .
op __ : FunctionSet FunctionSet -> FunctionSet

[assoc comm id: empty prec 120] .
endfm

We want to allow dynamic thread creation in simple, together with some
appropriate synchronization mechanism. The spawn statement takes any ex-
pression and starts a new thread evaluating that expression. Following com-
mon sense in multithreading, the child thread inherits the environment of its
parent thread; thus, data-races start becoming possible. To avoid race con-
ditions and to allow synchronization in our language, we introduce a simple
lock-based policy, in which threads can acquire and release locks:

fmod THREAD-SYNTAX is
including GENERIC-EXP-SYNTAX .
ops spawn_ lock acquire_ release_ : Exp -> Exp .

endfm

We have defined the syntax of all the desired language features of simple.
All that is needed now to define the syntax of programs is to put all these
definitions together. A program consists of a set of global variable declarations
and of a set of function declarations:

fmod SIMPLE-SYNTAX is
including ARITHMETIC-EXP-SYNTAX .
including BOOLEAN-EXP-SYNTAX .
including IF-SYNTAX .
including ASSIGNMENT-SYNTAX .
including SEQ-COMP-SYNTAX .
including BLOCK-SYNTAX .
including LOOPS-SYNTAX .
including PRINT-SYNTAX .
including FUNCTION-SYNTAX .
including FUNCTION-SET .
including THREAD-SYNTAX .
sort Pgm .
subsort FunctionSet < Pgm .
op global_;_ : NameList FunctionSet -> Pgm [prec 122] .

endfm

To test the syntax one can parse several programs that one would like to
execute and analyze later on, when the semantics will also be defined. In our
experience, this is a good time to write tens or even hundreds of benchmark
programs. We typically spend significantly more time developing and exper-
imenting with such benchmark programs than with the actual definition of
the programming language. This is actually one of the big benefits of our
modular approach to defining languages: the definition of the language “per

24

Meseguer and Roşu

se” becomes relatively straightforward once one understands what one wants
for one’s language. We believe that this is precisely what a language designer
should look for when choosing a supporting tool. This way one can spend
most of the project’s efforts on the creative parts rather than on technical
low-level details.

The following towers of Hanoi program parses to a term of sort Pgm:

parse (
function h(x, y, z, n) {
if (n >=’ 1) then {
h(x, z, y, n - 1) ;
print(x) ;
print(z) ;
h(y, x, z, n - 1)

}
}

function main() {
local n ;
n := 5 ;
h(1, 2, 3, n)

}
) .

The following concurrent program is a simple version of a deadlock-prone
dining philosophers’ program. It parses as a well-formed program. Once
we define the semantics of simple, we will be able not only to execute this
multithreaded program but also to analyze it, thus detecting a deadlock au-
tomatically:

parse (
global n ;

function f(x) {
acquire lock(x) ;
acquire lock(x + 1) ;
--- eat

release lock(x + 1) ;
release lock(x)

}

function main() {
local i ;
n := 3 ;
for(i := 1 ; i <’ n ; i := i + 1) spawn(f(i)) ;
acquire lock(n) ;
acquire lock(1) ;
--- eat

release lock(1) ;
release lock(n)

}

25

Meseguer and Roşu

Store

(L1,V1)
(L2,V2)
…

7
Next free
location

2, 5, true, 91, …
Output

3, 5, 17, 14, …
Busy locks

(X1 , L1)
(X2 , L2)…Global

environment

Functions
function f(x) {…}
function g(x,y) {…}

thread 1

continuationcontinuation

locks held locks held

stackstack

…
environmentenvironment

thread 10

continuationcontinuation

locks held locks held

stackstack

environmentenvironment

Fig. 2. simple state infrastructure.

) .

SIMPLE’s State Infrastructure

Any practical programming language needs to invariably consider some notion
of state. The semantics of the various language constructs is defined in terms
of how they use or change an existing state. Consequently, before we can
proceed to define the semantics of simple we need to first define its entire
state infrastructure.

Figure 2 shows the state infrastructure that we are considering in this paper
for the simple language. All the state ingredients will be explained in detail
shortly. Here we just describe them informally. The state can be regarded
as a “nested soup”, its ingredients being formally called state attributes. By
“soup” we here mean a multiset with associative and commutative union, and
by “nested” we mean that certain attributes can themselves contain other
soups inside (for example the threads). Let us next informally describe each
of the soup ingredients:

• Store. The store is a mapping of locations into values. Each thread will
contain its own environment mapping names into locations. Two or more
threads can all have access in their environments to the same location in
the store, thus potentially causing data-races.

• Global environment. The global environment maps each global name
into a corresponding location. Locations for the global names will be allo-
cated once and for all at the beginning of the execution.

• Functions. To facilitate (mutually) recursive function definitions, each
function sees all the other functions defined in the program. An easy way

26

Meseguer and Roşu

to achieve this is to simply keep the set of functions as part of the state.

• Next free location. This is a natural number giving the next location
available to assign a value to in the store. This is needed in order to know
where to allocate space for local variables in blocks. Note that in this paper
we do not consider garbage collection (otherwise, a more complex schema
for the next free location would be needed).

• Output. The values printed with the print statement are collected in an
output list. This list will be the result of the evaluation of the program.

• Busy locks. Thread synchronization in simple is based on locks. Locks
can be acquired or released by threads. However, if a lock is already taken
by a thread, then any other thread acquiring the same lock is blocked until
the lock is released by the first thread. Consequently, we need to maintain
a list of locks that are already busy (taken by some threads); a thread can
acquire a lock only if that lock is not in the list of busy locks.

• Threads. Each thread needs to maintain its own state, because each thread
may execute its own code at any given moment and can have its own re-
sources (locations it can access, locks held, etc.). The state of each thread
will contain the following ingredients:
· Continuation. The tasks/code to be executed by each thread will be

encoded as a continuation structure. A continuation will always know,
given a value of a local computation step, how to contain the execution
of the entire computation that that thread is in charge of.

· Environment. A thread may allocate local variables during its execu-
tion. The thread can use these variables in addition to the global ones.
The local environment of a thread assigns to each variable that thread has
access to a unique location in the store.

· Locks held. A set of locks held by each thread needs to be maintained.
When a thread is terminated, all locks it holds must be released.

· Stack. The execution of a thread may naturally involve (recursive) func-
tion calls. To ease the semantic definition of the return statement, it
is convenient to “freeze” and stack the current control context (continua-
tion) whenever a function is called. Then return simply pops the previous
control context.

We next define the state infrastructure formally. Since locations are count-
able, we consider them indexed by natural numbers:

fmod LOCATION is
including INT .
sort Location .
op loc : Nat -> Location .

endfm

Lists of locations are handy in several places, so we define them here. An
operation that generates a list of new locations of a given length is also very

27

Meseguer and Roşu

useful later:

fmod LOCATION-LIST is
including LOCATION .
including LIST .
sort LocationList .
subsorts Location List < LocationList .
op _,_ : LocationList LocationList -> LocationList [ditto] .
op locs : Nat -> LocationList .
var N : Nat .
eq locs(N) = if N == 0 then nil else locs(N - 1), loc(N - 1) fi .

endfm

An environment is a mapping of names into locations. One elegant way
to encode such mappings is as sets of pairs. Below we define environments as
sets of pairs [name, location], together with appropriate operations for lookup
and for block update:

fmod ENVIRONMENT is
including NAME-LIST .
including LOCATION-LIST .
sort Env .
op empty : -> Env .
op [_,_] : Name Location -> Env .
op __ : Env Env -> Env [assoc comm id: empty] .
op _[_] : Env Name -> [Location] .
op _[_<-_] : Env NameList LocationList -> [Env] .
vars X X’ : Name . vars Env : Env . vars L L’ : Location .
var Xl : NameList . var Ll : LocationList .
eq ([X,L] Env)[X] = L .
eq ([X’,L’] Env)[X <- L]
= if X == X’ then [X’,L] Env else [X’,L’] (Env[X <- L]) fi .
eq empty[X <- L] = [X,L] .
eq Env[X,Xl <- L,Ll] = Env[X <- L][Xl <- Ll] .
eq Env[nil <- nil] = Env .

endfm

We next define values and lists of values:

fmod VALUE is
sort Value .
op nothing : -> Value .

endfm

fmod VALUE-LIST is
including VALUE .
sort ValueList .
subsort Value < ValueList .
op nil : -> ValueList .
op _,_ : ValueList ValueList -> ValueList [assoc id: nil] .

endfm

Like environments, a store is also a mapping, but one from locations into

28

Meseguer and Roşu

values 13 :

fmod STORE is
including LOCATION-LIST .
including VALUE-LIST .
sort Store .
op empty : -> Store .
op [_,_] : Location Value -> Store .
op __ : Store Store -> Store [assoc comm id: empty] .
op _[_] : Store Location -> [Value] .
op _[_<-_] : Store LocationList ValueList -> [Store] .
vars L L’ : Location . var Mem : Store . vars V V’ : Value .
var Ll : LocationList . var Vl : ValueList .
eq ([L,V] Mem)[L] = V .
eq ([L’,V’] Mem)[L <- V]
= if L == L’ then [L’,V] Mem else [L’,V’] (Mem[L <- V]) fi .
eq empty[L <- V] = [L,V] .
eq Mem[L,Ll <- V,Vl] = Mem[L <- V][Ll <- Vl] .
eq Mem[nil <- nil] = Mem .

endfm

A continuation is generally understood as a means to encode the remain-
ing part of the computation. We use the operation _->_ to place a new item
on top of an existing continuation. If K is some continuation and V is some
value, then the term val(V) -> K is read as “the value V is passed to the
continuation K, which hereby knows how to continue the computation”. Sev-
eral continuation items will be defined modularly as we give the semantics of
the various language features. For the time being, let us just define the main
continuation constructor:

fmod CONTINUATION is
sorts Continuation ContinuationItem .
op stop : -> Continuation .
op _->_ : ContinuationItem Continuation -> Continuation .

endfm

The following module defines lists of integers; these are needed for the
output:

fmod INT-LIST is
including EXP-LIST .
sort IntList .
subsorts Int List < IntList < ExpList .
op _,_ : IntList IntList -> IntList [ditto] .

endfm

Sets of integers are needed to define the “busy” state attribute, holding the
set of locks that are already acquired but not yet released by threads. Note

13 With the parametric capabilities of the latest version of Maude, we could have also used
a generic parametric module of mappings and instantiate it to obtain both environments
and stores.

29

Meseguer and Roşu

that, to avoid syntactic conflicts, we used a set constructor operator which is
different from comma:

fmod INT-SET is
including INT .
sort IntSet .
subsort Int < IntSet .
op empty : -> IntSet .
op _#_ : IntSet IntSet -> IntSet [assoc comm id: empty] .
op _in_ : Int IntSet -> Bool .
var I : Int . var Is : IntSet .
eq I in I # Is = true .
eq I in Is = false [owise] .

endfm

A tricky aspect of locks is that the same thread may attempt to acquire the
same lock multiple times. The usual semantics in such situations, including in
Java, is non-blocking, that is, the thread is allowed to acquire the same lock
as many times as it requests it. However, in order for the thread to release the
lock, it needs to actually release it as many times as it acquired it. In order
to define this semantics later on, we need infrastructure to count how many
times a lock has been acquired by a thread. Thus, each thread will need to
know not only the locks it holds, but also how many times it acquired them.
The following piece of infrastructure accounts for that:

fmod COUNTER-SET is
including INT-SET .
sorts Counter CounterSet .
subsort Counter < CounterSet .
op empty : -> CounterSet .
op [_,_] : Int Int -> Counter .
op __ : CounterSet CounterSet -> CounterSet [assoc comm id: empty] .
op _-_ : IntSet CounterSet -> IntSet .
var I : Int . var Is : IntSet . var N : Nat . var Cs : CounterSet .
eq (I # Is) - ([I,N] Cs) = Is - Cs .
eq Is - (empty).CounterSet = Is .

endfm

We are now ready to formalize the entire state infrastructure shown infor-
mally in Figure 2:

fmod SIMPLE-STATE is
sorts SimpleStateAttribute SimpleState

SimpleThreadStateAttribute SimpleThreadState .
subsort SimpleStateAttribute < SimpleState .
subsort SimpleThreadStateAttribute < SimpleThreadState .
including ENVIRONMENT .
including STORE .
including CONTINUATION .
including INT-LIST .
including FUNCTION-SET .
including COUNTER-SET .

30

Meseguer and Roşu

op empty : -> SimpleState .
op __ : SimpleState SimpleState -> SimpleState [assoc comm id: empty] .
op empty : -> SimpleThreadState .
op __ : SimpleThreadState SimpleThreadState -> SimpleThreadState

[assoc comm id: empty] .
op t : SimpleThreadState -> SimpleStateAttribute .
op k : Continuation -> SimpleThreadStateAttribute .
op stack : Continuation -> SimpleThreadStateAttribute .
op holds : CounterSet -> SimpleThreadStateAttribute .
op nextLoc : Nat -> SimpleStateAttribute .
op mem : Store -> SimpleStateAttribute .
op output_ : IntList -> SimpleStateAttribute .
op globalEnv : Env -> SimpleStateAttribute .
op busy : IntSet -> SimpleStateAttribute .
op functions_ : FunctionSet -> SimpleStateAttribute .

endfm

SIMPLE Semantics

We are now ready to start defining the semantics of simple. Several opera-
tions are used several places in what follows, so we prefer to define them once
and for all at the beginning. The continuation items exp and val below will
be used in the semantics of almost all the simple language constructs:

mod SIMPLE-HELPING-OPERATIONS is
including NAME-LIST .
including EXP-LIST .
including SIMPLE-STATE .

var X : Name . vars E E’ : Exp . var El : ExpList . var K :
Continuation . vars V : Value . var Vl : ValueList . var Xl :
NameList . var Env : Env . var Mem : Store . var N : Nat .
var L : Location . var TS : SimpleThreadState .

op exp : ExpList Env -> ContinuationItem .
op val_ : ValueList -> ContinuationItem .

The meaning of exp(E, Env) on top of a continuation K, that is, the
meaning of exp(E, Env) -> K, is that E is the very next “task” to evaluate,
in the environment Env. Once the expression E evaluates to some value V,
the continuation item val(V) is placed on top of the continuation K, which
will further process it. Note that in the discussion on the various definitional
styles preceeding Section 3.1, we have not packed the environment with the
expression in exp(...). That followed a slightly different continuation-based
definitional methodology, namely one in which the environment of a thread
leaves as a separate thread attribute. We have used both styles in our language
definitions. The advantage of the one with the environment as a separate
thread attribute is that the semantics of many language features tends to be
more compact and easier to read. However, one needs additional work to
ensure that environments are properly recovered after let bindings or function

31

Meseguer and Roşu

invocations (also, at least in the current release of Maude, languages defined
using this style are usually less efficient when executed).

It is actually going to be quite useful to extend the meaning above to lists
of (sequentially-evaluated) expressions and values, respectively:

eq k(exp(nil, Env) -> K) = k(val(nil) -> K) .
eq k(exp((E,E’,El), Env) -> K)
= k(exp(E, Env) -> exp((E’,El), Env) -> K) .
eq k(val(V) -> exp(El, Env) -> K)
= k(exp(El, Env) -> val(V) -> K) .
eq k(val(Vl) -> val(V) -> K) = k(val(V,Vl) -> K) .

There are typically several statements in a programming language that
write values to particular locations in the store (in our simple language, for
example, assignments write values at specific locations). Note that, in the
definition of a concurrent language, the operation of writing a value at a
location needs to be a rewrite rule, as opposed to an equation. This is because
different threads or processes may “compete” to write the same location at the
same time, with different choices potentially making a huge difference in the
overall behavior of the program. This is not a problem if one is interested in
just getting a correct interpreter for one’s language, that is, if one is interested
in just one possible execution of the definition, but is of crucial importance
when one’s goal is to analyze concurrent programs 14 , as will shortly be shown.

op writeTo_ : Location -> ContinuationItem .
rl t(k(val(V) -> writeTo(L) -> K) TS) mem(Mem)
=> t(k(K) TS) mem(Mem[L <- V]) .

Like writing values at known locations in the store, binding values to names
is also a crucial operation in a language definition. Defining this operation in-
volves several steps, such as creating new locations, binding the new names to
them in the current environment, and finally writing the values to the newly
created locations. It is interesting to note that, despite the fact that binding
involves writing the store, it can be completely accomplished using just equa-
tions (no rewrite rules). What makes this possible is the observation that the
behavior of a program does/should not depend upon which particular location
is allocated to a new name. The equations below destroy the confluence of
the rewrite system obtained by orienting all the equations into rewrite rules,
but what is important is that they do not affect the possible values to which
well-formed programs evaluate (in other words, the resulting rewrite system

14 This may seem like a break of modularity when one transits from a sequential to a con-
current language, because one would need to translate an equation into a rule. Indeed, there
should be no surprise that analysing a concurrent language, for example model-checking it,
leads to additional concerns and technical support. If one is just interested in obtaining
a dynamic semantics of the language then one can simply imagine that all statements are
rules and regard the “eq” and “rl” as annotations for program analysis tools.

32

Meseguer and Roşu

is confluent only on the important set of terms containing the well-formed
programs):

op bindTo : NameList Env -> ContinuationItem .
op env : Env -> ContinuationItem .
eq t(k(val(V,Vl) -> bindTo((X,Xl), Env) -> K) TS)

mem(Mem) nextLoc(N)
= t(k(val(Vl) -> bindTo(Xl, Env[X <- loc(N)]) -> K) TS)

mem(Mem [loc(N),V]) nextLoc(N + 1) .
eq k(val(nil) -> bindTo(Xl, Env) -> K)
= k(bindTo(Xl, Env) -> K) .
eq t(k(bindTo((X,Xl), Env) -> K) TS) nextLoc(N)
= t(k(bindTo(Xl, Env[X <- loc(N)]) -> K) TS) nextLoc(N + 1) .
eq k(bindTo(nil, Env) -> K) = k(env(Env) -> K) .

op exp* : Exp -> ContinuationItem .
eq env(Env) -> exp*(E) -> K = exp(E, Env) -> K .

endm

The above env operator allows one to temporarily “freeze” a certain en-
vironment in the continuation. The operation exp* applied to an expression
E grabs the environment frozen in the continuation and generates the task of
evaluating E in that environment.

The remaining modules define the continuation-based semantics of the var-
ious simple language constructs, in the same order in which we introduced
their syntax previously. The next module defines the semantics of generic
expressions, i.e., integers and names. An integer expression evaluates to its
integer value, while a name needs to first grab its location from the environ-
ment and then its value from the store. Note that the evaluation of a variable,
in other words its “read” action, needs to be a rewrite rule rather than an
equation. This is because for simple programs a read of a (shared) variable
may compete with writes of the same variable by other threads, with different
orderings leading to potentially different behaviors:

mod GENERIC-EXP-SEMANTICS is
including SIMPLE-HELPING-OPERATIONS .
op int : Int -> Value .
var I : Int . var X : Name . var K : Continuation .
var Env : Env . var Mem : Store . var TS : SimpleThreadState .
eq k(exp(I, Env) -> K) = k(val(int(I)) -> K) .
rl t(k(exp(X, Env) -> K) TS) mem(Mem)
=> t(k(val(Mem[Env[X]]) -> K) TS) mem(Mem) .

endm

The continuation-based semantics of arithmetic expressions is straightfor-
ward. For example, in the case of the expression E + E’ on top of the current
continuation, one generates the task (E,E’) on the continuation, followed by
the task “add them” (formally a continuation item constant +). Once the list
(E,E’) is processed (using other equations or rules), i.e., evaluated to a list

33

Meseguer and Roşu

of values, in our case of the form (int(I), int(I’)), then all that is left to
do is to combine these values into a result value for the original expression, in
our case int(I + I’), and place it on top of the continuation 15 :

mod ARITHMETIC-EXP-SEMANTICS is
including ARITHMETIC-EXP-SYNTAX .
including GENERIC-EXP-SEMANTICS .
vars E E’ : Exp . var K : Continuation .
vars I I’ : Int . var Env : Env .
ops + - * / % : -> ContinuationItem .
eq k(exp(E + E’, Env) -> K) = k(exp((E,E’),Env) -> + -> K) .
eq k(val(int(I),int(I’)) -> + -> K) = k(val(int(I + I’)) -> K) .
eq k(exp(E - E’, Env) -> K) = k(exp((E,E’), Env) -> - -> K) .
eq k(val(int(I),int(I’)) -> - -> K) = k(val(int(I - I’)) -> K) .
eq k(exp(E * E’, Env) -> K) = k(exp((E,E’), Env) -> * -> K) .
eq k(val(int(I),int(I’)) -> * -> K) = k(val(int(I * I’)) -> K) .
eq k(exp(E / E’, Env) -> K) = k(exp((E,E’), Env) -> / -> K) .
eq k(val(int(I),int(I’)) -> / -> K) = k(val(int(I quo I’)) -> K) .
eq k(exp(E % E’, Env) -> K) = k(exp((E,E’), Env) -> % -> K) .
eq k(val(int(I),int(I’)) -> % -> K) = k(val(int(I rem I’)) -> K) .

endm

The semantics of the boolean expressions follow precisely the same pattern
as that of arithmetic expressions above. Note that the second equation of the
semantic definition of each boolean operator can apply only if the evaluation
tasks initiated by the first equation yield values of appropriate types:

mod BOOLEAN-EXP-SEMANTICS is
including BOOLEAN-EXP-SYNTAX .
including GENERIC-EXP-SEMANTICS .
op bool : Bool -> Value .
ops == != < > <= >= and or not : -> ContinuationItem .
vars E E’ : Exp . var K : Continuation .
vars I I’ : Int . vars B B’ : Bool . var Env : Env .
eq k(exp(true, Env) -> K) = k(val(bool(true)) -> K) .
eq k(exp(false, Env) -> K) = k(val(bool(false)) -> K) .
eq k(exp(E ==’ E’, Env) -> K) = k(exp((E,E’), Env) -> == -> K) .
eq k(val(int(I),int(I’)) -> == -> K) = k(val(bool(I == I’)) -> K) .
eq k(exp(E !=’ E’, Env) -> K) = k(exp((E,E’), Env) -> != -> K) .
eq k(val(int(I),int(I’)) -> != -> K) = k(val(bool(I =/= I’)) -> K) .
eq k(exp(E <’ E’, Env) -> K) = k(exp((E,E’), Env) -> < -> K) .
eq k(val(int(I),int(I’)) -> < -> K) = k(val(bool(I < I’)) -> K) .
eq k(exp(E >’ E’, Env) -> K) = k(exp((E,E’), Env) -> > -> K) .
eq k(val(int(I),int(I’)) -> > -> K) = k(val(bool(I > I’)) -> K) .
eq k(exp(E <=’ E’, Env) -> K) = k(exp((E,E’), Env) -> <= -> K) .
eq k(val(int(I),int(I’)) -> <= -> K) = k(val(bool(I <= I’)) -> K) .
eq k(exp(E >=’ E’, Env) -> K) = k(exp((E,E’), Env) -> >= -> K) .
eq k(val(int(I),int(I’)) -> >= -> K) = k(val(bool(I >= I’)) -> K) .
eq k(exp(E and E’, Env) -> K) = k(exp((E,E’), Env) -> and -> K) .

15 Note the use of the builtin if-then-else-fi operator in the last equation. One
could easily eliminate it by replacing that equation with two different equations, one for
“val(bool(true))” and one for “val(bool(false))”

34

Meseguer and Roşu

eq k(val(bool(B),bool(B’)) -> and -> K) = k(val(bool(B and B’)) -> K) .
eq k(exp(E or E’, Env) -> K) = k(exp((E,E’), Env) -> or -> K) .
eq k(val(bool(B),bool(B’)) -> or -> K) = k(val(bool(B or B’)) -> K) .
eq k(exp(not E, Env) -> K) = k(exp(E, Env) -> not -> K) .
eq k(val(bool(B)) -> not -> K) = k(val(bool(not B)) -> K) .

endm

We next give the semantics of the conditional statement. The condition
is first evaluated, while the two branch expressions are frozen together with
the environment in which one of them will need to be evaluated. Once the
condition evaluates to a boolean value, the appropriate branch expression is
chosen and placed on top of the continuation:

mod IF-SEMANTICS is
including IF-SYNTAX .
including BLOCK-SYNTAX .
including BOOLEAN-EXP-SEMANTICS .
vars BE E E’ : Exp . var K : Continuation .
var B : Bool . var Env : Env .
op if : Exp Exp Env -> ContinuationItem .
eq if BE then E = if BE then E else {} .
eq k(exp(if BE then E else E’, Env) -> K)
= k(exp(BE,Env) -> if(E,E’,Env) -> K) .
eq k(val(bool(B)) -> if(E,E’,Env) -> K)
= k(exp(if B then E else E’ fi, Env) -> K) .

endm

The semantics of the assignment statement is now straightforward, because
in the module GENERIC-EXP-SEMANTICS we have already defined the semantics
of writeTo:

mod ASSIGNMENT-SEMANTICS is
including ASSIGNMENT-SYNTAX .
including GENERIC-EXP-SEMANTICS .
var X : Name . var E : Exp . var K : Continuation .
var Env : Env .
eq k(exp(X := E, Env) -> K)
= k(exp(E, Env) -> writeTo(Env[X]) -> val(nothing) -> K) .

endm

Sequential composition is a common language feature which is used for its
side effects. Thus, the semantics of E ; E’ is that E is first evaluated, then
its result value is discarded, then E’ is evaluated; the latter value is the result
of the evaluation of the entire sequential composition expression E ; E’:

mod SEQ-COMP-SEMANTICS is
including SEQ-COMP-SYNTAX .
including GENERIC-EXP-SEMANTICS .
op discard : -> ContinuationItem .
vars E E’ : Exp . var K : Continuation .
var V : Value . var Env : Env .
eq k(exp((E ; E’), Env) -> K)

35

Meseguer and Roşu

= k(exp(E, Env) -> discard -> exp(E’, Env) -> K) .
eq k(val(V) -> discard -> K) = k(K) .

endm

Recall that there are three kinds of blocks: an empty block {}, a block
without local variable declarations E, and a general block with local variable
declarations local Xl ; E. The first evaluates to the special value nothing.
The third is obviously more general than the second. We capture this “more
general” intuition by actually reducing the second to the third via an equation
(the second equation below). The semantics of general blocks with locals is
the expected one, that is, the local names are bound to new locations on
top of the current environment, and then the body expression of the block is
evaluated within the newly obtained environment:

mod BLOCK-SEMANTICS is
including BLOCK-SYNTAX .
including GENERIC-EXP-SEMANTICS .
var E : Exp . var K : Continuation .
var Env : Env . var Xl : NameList .
eq k(exp({}, Env) -> K) = k(val(nothing) -> K) .
eq {E} = {local nil ; E} .
eq k(exp(({local Xl ; E}), Env) -> K)
= k(bindTo(Xl,Env) -> exp*(E) -> K) .

endm

To simplify the semantic definition of loops, we first note that for loops
are a special case of while loops (captured by the first equation); and second
we note that a while loop is equivalent to a conditional statement having just
one branch which contains the while loop (captured by the second equation
below). Interestingly, this captures both the fixed-point semantics (if one
regards the language specification denotationally, in an initial model semantics
style) of loops and its operational semantics (if one attempts to execute the
specification):

mod LOOPS-SEMANTICS is
including LOOPS-SYNTAX .
including IF-SYNTAX .
including SEQ-COMP-SYNTAX .
including GENERIC-EXP-SEMANTICS .
vars Start Cond Step Body : Exp . var Env : Env .
eq for(Start ; Cond ; Step) Body
= Start ; while Cond (Body ; Step) .
eq exp(while Cond Body, Env)
= exp(if Cond then (Body ; while Cond Body), Env) .

endm

The semantics of printing is straightforward; the only thing worth men-
tioning is that the writing of the output “buffer” needs to be a rewrite rule,
not an equation. This is because the output is shared by the various threads,
so writing an output is similar to writing the store:

36

Meseguer and Roşu

mod PRINT-SEMANTICS is
including PRINT-SYNTAX .
including GENERIC-EXP-SEMANTICS .
op print : -> ContinuationItem .
var E : Exp . var Env : Env . var K : Continuation .
var I : Int . var Il : IntList . var TS : SimpleThreadState .
eq k(exp(print(E), Env) -> K) = k(exp(E, Env) -> print -> K) .
rl t(k(val(int(I)) -> print -> K) TS) output(Il)
=> t(k(val(nothing) -> K) TS) output(Il,I) .

endm

We next give the semantics of function calls. One can regard a function
call as an abrupt change of control: the current control context is frozen, then
the control is passed to the body of the function; if a return statement is
encountered, then the frozen control context in which the function call took
place is unfrozen and becomes the active one. Since function calls can be
nested, the frozen control context needs to be stacked appropriately. This is
the reason why we use the thread state attribute called stack. The module
below should now be self-explanatory:

mod FUNCTION-SEMANTICS is
including FUNCTION-SET .
including BLOCK-SYNTAX .
including GENERIC-EXP-SEMANTICS .
op apply : Name -> ContinuationItem .
op return : -> ContinuationItem .
op freeze : Continuation -> ContinuationItem .
var F : Name . vars Xl LXl : NameList . var E : Exp .
var El : ExpList . var Env : Env . var TS : SimpleThreadState .
vars K K’ Stack : Continuation . var V : Value .
var Vl : ValueList . var Fs : FunctionSet .

eq k(exp(F(El), Env) -> K) = k(exp(El, Env) -> apply(F) -> K) .
eq t(k(val(Vl) -> apply(F) -> K)

stack(Stack) TS)
globalEnv(Env) functions(Fs (function F(Xl) {local (LXl) ; E}))

= t(k(val(Vl) -> bindTo((Xl,LXl), Env) -> exp*(E) -> return -> stop)
stack(freeze(K) -> Stack) TS)
globalEnv(Env) functions(Fs (function F(Xl) {local (LXl) ; E})) .

eq k(exp(return(E), Env) -> K) = k(exp(E, Env) -> return -> K) .
eq k(val(V) -> return -> K) stack(freeze(K’) -> Stack)
= k(val(V) -> K’) stack(Stack) .

endm

Let us next define the last and most complex feature of simple: threads.
Creating a new thread is easy: all one needs to do is to add one more term of
the form t(...) to the top level soup. The newly created term should encap-
sulate all the corresponding thread attributes. Note that we use a different
“stopping” continuation for the newly created threads, called die. The mean-
ing of die is that threads simply die when they reach it. The reason for not

37

Meseguer and Roşu

using the previously defined stop continuation is that one sometimes needs to
distinguish the first thread from the others (to know when the multi-threaded
program terminates, for example):

mod THREAD-SEMANTICS is
including THREAD-SYNTAX .
including GENERIC-EXP-SEMANTICS .
op lockv : Int -> Value .
op die : -> Continuation .
ops lock acquire release : -> ContinuationItem .
var E : Exp . var K : Continuation . var Env : Env .
var TS : SimpleThreadState . var V : Value . var Cs : CounterSet .
var Is : IntSet . var N : Nat . var Nz : NzNat . var I : Int .

eq t(k(exp(spawn(E), Env) -> K) TS)
= t(k(val(nothing) -> K) TS)

t(k(exp(E, Env) -> die) stack(stop) holds(empty)) .

eq t(k(val(V) -> die) holds(Cs) TS) busy(Is) = busy(Is - Cs) .

Threads without some mechanism for synchronization are close to useless.
We chose one of the simplest for simple, namely one based on locks. Since
one would like to evaluate and possibly pass locks around just like any other
values in the language, we add a new type of value to the language with the
appropriate meaning:

eq k(exp(lock(E), Env) -> K) = k(exp(E, Env) -> lock -> K) .
eq k(val(int(I)) -> lock -> K) = k(val(lockv(I)) -> K) .

Acquiring and releasing locks is quite tricky, because one has to understand
very well how these operations interact with concurrency and with multiple
acquisitions of the same lock. Indeed, a thread may acquire the same lock
more than once; in practice, this situation typically appears when the state-
ment of acquiring a lock is part of a recursive function, in such a way that
each recursive function invocation results in acquiring the same lock. Before
physically releasing a lock to the runtime environment, one should make sure
that the thread requests releasing it as many times as it acquired that lock.
This is the semantics of locking in most multithreaded languages, including
Java. An important observation here is that, once a thread already holds a
given lock, subsequent acquisitions of the same lock are purely local operations
that cannot affect the execution of the other threads. Therefore, we can define
subsequent lock acquiring using an equation rather than a rule. However, note
that the first acquisition of the lock must be defined using a rule, whereas the
release can be defined entirely with equations:

eq k(exp(acquire(E), Env) -> K) = k(exp(E, Env) -> acquire -> K) .
eq k(val(lockv(I)) -> acquire -> K) holds([I, N] Cs)
= k(val(nothing) -> K) holds([I, N + 1] Cs) .

crl t(k(val(lockv(I)) -> acquire -> K) holds(Cs) TS) busy(Is)
=> t(k(val(nothing) -> K) holds([I, 0] Cs) TS) busy(I # Is)

38

Meseguer and Roşu

if not(I in Is) .

eq k(exp(release(E), Env) -> K) = k(exp(E, Env) -> release -> K) .
eq k(val(lockv(I)) -> release -> K) holds([I, Nz] Cs)
= k(val(nothing) -> K) holds([I, Nz - 1] Cs) .
eq t(k(val(lockv(I)) -> release -> K) holds([I, 0] Cs) TS) busy(I # Is)
= t(k(val(nothing) -> K) holds(Cs) TS) busy(Is) .

endm

We have defined all the features that we want to include in our language.
The only thing left to do is to put everything together. We do this by including
all the features and defining an eval operation on programs, whose result is
a list of integers (the output generated with the print command):

mod SIMPLE-SEMANTICS is
including SIMPLE-SYNTAX .
including ARITHMETIC-EXP-SEMANTICS .
including BOOLEAN-EXP-SEMANTICS .
including IF-SEMANTICS .
including ASSIGNMENT-SEMANTICS .
including SEQ-COMP-SEMANTICS .
including BLOCK-SEMANTICS .
including LOOPS-SEMANTICS .
including PRINT-SEMANTICS .
including FUNCTION-SEMANTICS .
including THREAD-SEMANTICS .

op eval_ : Pgm -> [IntList] .

Note that the eval operation above actually returns a kind. That is be-
cause a program may not always evaluate properly. For example, a program
may not be well-typed (a type-checker could remove this worry), may termi-
nate unexpectedly (division by zero), or may not terminate. We define the
semantics of eval using an auxiliary operation which creates the appropriate
initial state. The program terminates when its main thread terminates, that
is, when a value (most likely nothing) is passed to the starting continuation,
stop:

op [_] : SimpleState -> [IntList] .

var Fs : FunctionSet . var Xl : NameList . var S : SimpleState .
var V : Value . var Il : IntList . var TS : SimpleThreadState .

eq eval(Fs) = eval(global nil ; Fs) .
eq eval(global Xl ; Fs)
= [t(k(exp(main(), empty) -> stop) stack(stop) holds(empty))

globalEnv(empty[Xl <- locs(#(Xl))]) nextLoc(#(Xl))
mem(empty) output(nil) busy(empty) functions(Fs)] .

eq [t(k(val(V) -> stop) TS) output(Il) S] = Il .

In the above we used the length operation #. Since we only need it here,

39

Meseguer and Roşu

we define it also as part of the same module.

op #_ : ExpList -> Nat .
var X : Name .
eq #(X,Xl) = 1 + #(Xl) .
eq #(nil) = 0 .

endm

The semantics of simple is now complete. The first benefit one gets
from this definition is that one gets an interpreter for free. Indeed, all one
needs to do is to start a Maude rewrite session using the command “rew
eval(program)”, where program can be any program that parses; for exam-
ple, the towers of Hanoi or the dining philosophers programs parsed previously.
In Section 4.1 we show how one can use the exact same definition of simple
to formally analyze programs.

3.2 Other Language Case Studies

The simple language discussed in Section 3.1 illustrates a particular language
specification style; but this is just one example within a much broader language
specification methodology. A key point worth making is that this methodol-
ogy scales up quite well to real languages with many features, both in terms
of still allowing very readable and understandable specifications, and also in
being capable of providing high performance interpreters and competitive pro-
gram analysis tools. For example, large fragments of Java and the JVM have
been specified in Maude this way, with the Maude rewriting logic semantics
being used as the basis of Java and JVM program analysis tools that for some
examples outperform well-known Java analysis tools [26,24]. A similar Maude
specification of the semantics of Scheme at UIUC yields an interpreter with .75
the speed of the standard Scheme interpreter on average for the benchmarks
we have tested. In fact, the semantics of large fragments of conventional lan-
guages are routinely developed by UIUC graduate students as course projects
in a few weeks, including, besides Java, the JVM, and Scheme, languages
like (alphabetically), Beta, Haskell, Lisp, LLVM, Pict, Python, Ruby, and
Smalltalk. A semantics of a Caml-like language with threads was discussed
in detail in [41], and a modular rewriting logic semantics of a subset of CML
has been given by Chalub and Braga in [12]. Following a continuation-based
semantics similar to the one in this paper, d’Amorim and Roşu have given
a definition of the Scheme language in [21]. Other language case studies,
all specified in Maude, include BC [7], CCS [63,64,7], CIAO [58], Creol [34],
ELOTOS [61], MSR [10,56], PLAN [57,58], and the pi-calculus [59].

40

Meseguer and Roşu

4 Program Analysis Techniques and Tools

Specifying formally the rewriting logic semantics of a programming language
in Maude yields a prototype interpreter for free. Thanks to generic analysis
tools for rewriting logic specifications currently provided as part of the Maude
system, we additionally get the following analysis tools also for free:

(i) a semi-decision procedure to find failures of safety properties in a (possibly
infinite-state) concurrent program using Maude’s search command;

(ii) an LTL model checker for finite-state programs or program abstractions;

(iii) a theorem prover (Maude’s ITP [17,18]) that can be used to prove pro-
grams correct semi-automatically.

We discuss the first two items, and also a generic partial order reduction
tool under development [25], in Section 4.1, where we give some examples
illustrating this kind of automated analysis for programs in simple. Analyses
based on abstract semantics are discussed in Section 4.2. The relationship to
logics of programs and to semantics-based theorem proving, including uses of
the Maude ITP, is discussed in Section 4.3. Modularity and the MSOS Tool
are discussed in Section 4.4.

4.1 Search and Model Checking Analysis

In this section we illustrate the search and model checking analysis capabilities
that one obtains for free from a rewrite logic semantic definition of a program-
ming language. Let us consider again the definition of simple, together with
the dining philosophers program in Section 3.1. If one executes that program
using the command rew eval(program) then most likely one would see a
normal execution, that is, one which terminates and outputs nothing. That
is because there is a very small likelihood that the program will deadlock.
Nevertheless, the potential for deadlock is there, meaning that some other
executions of the same program may deadlock, with all the usual, undesired
consequences.

To analyze all the possible rewriting computations from an initial state
in a given rewriting logic specification, Maude provides a search command.
This command takes an initial state to analyze, a pattern to be reached, and
optionally a semantic condition to be satisfied by the reached pattern, and
searches through all the state space generated in a breadth-first manner, by
considering all the different rewrite rules that can be applied to each reachable
state. Once one defines a rewriting logic specification of a language in Maude,
one can simply use the built-in search capabilities of Maude to exhaustively
search for executions of interest through the state space of a given program.
The following search command generates all the states in which the dining
philosophers program can deadlock:

41

Meseguer and Roşu

search eval(
global n ;
function f(x) {
acquire lock(x) ;
acquire lock(x + 1) ;
--- eat

release lock(x + 1) ;
release lock(x)

}
function main() {
local i ;
n := 3 ;
for(i := 1 ; i <’ n ; i := i + 1) spawn(f(i)) ;
acquire lock(n) ;
acquire lock(1) ;
--- eat

release lock(1) ;
release lock(n)

}
) =>! Il:[IntList] .

The suffix ... =>! Il:[IntList] tells the search command to search
for all the normal forms of kind [IntList], that is, all the normal forms of
that program. As expected, the above returns two normal forms: one in which
the program terminates and one in which each thread acquired one lock and
is waiting, in a deadlock, for the other one to be released. Note that in both
this states the state attribute output contains an empty list of values.

When a deadlock is detected in a concurrent program, one is normally
expected to fix it. A common fix for the dining philosophers deadlock is to
force the philosophers to follow a certain discipline in acquiring the forks:
philosophers on odd positions acquire the left fork first and then the right
one, while philosophers on even positions take the right fork first followed by
the second. The following deadlock-free version of dining philosophers can be
verified as follows:

search eval(
global n ;
function f(x) {
if x % 2 ==’ 1
then {
acquire lock(x) ;
acquire lock(x + 1) ;
--- eat

release lock(x + 1) ;
release lock(x)

}
else {
acquire lock(x + 1) ;
acquire lock(x) ;
--- eat

release lock(x) ;

42

Meseguer and Roşu

release lock(x + 1)
}

}

function main() {
local i ;
n := 3 ;
for(i := 1 ; i <’ n ; i := i + 1) spawn(f(i)) ;
if n % 2 ==’ 1
then {
acquire lock(n) ;
acquire lock(1) ;
--- eat

release lock(1) ;
release lock(n)

}
else {
acquire lock(1) ;
acquire lock(n) ;
--- eat

release lock(n) ;
release lock(1)

}
}

) =>! Il:[IntList] .

As expected, the above search returns only one solution, the one stating
a normal termination of the concurrent program. That means that the fork-
grabbing strategy above indeed fixes the deadlock bug.

The above-mentioned deadlock is not the only flaw with the original din-
ing philosophers program. Consider the slightly modified version of dining
philosophers where each philosopher continues to alternatively think and eat
forever. Another property worth checking for this program is to see whether
a certain philosopher (say philosopher 3) starves or not. To check this, it suf-
fices to define a parametric predicate eaten(i) which holds in the state where
philosopher i is eating. Then, using Maude’s built-in LTL model checker, one
can simply check whether the LTL formula []<> eaten(i) holds or not as
follows:

red modelCheck(eval(
global n ;
function f(x) {
while(true) {
if x % 2 ==’ 1
then {
acquire lock(x) ;
acquire lock(x + 1) ;
--- eat

release lock(x + 1) ;
release lock(x)

}

43

Meseguer and Roşu

else {
acquire lock(x + 1) ;
acquire lock(x) ;
--- eat

release lock(x) ;
release lock(x + 1)

}
--- think

}
}

function main() {
local i ;
n := 3 ;
for(i := 1 ; i <’ n ; i := i + 1) spawn(f(i)) ;
while (true) {
if n % 2 ==’ 1
then {
acquire lock(n) ;
acquire lock(1) ;
--- eat

release lock(1) ;
release lock(n)

}
else {
acquire lock(1) ;
acquire lock(n) ;
--- eat

release lock(n) ;
release lock(1)

}
}
--- think

}
), []<> eaten(3)) .

which as one expects returns a counterexample in which philosophers 1 and 2
keep eating alternatively, and philosopher 3 never gets a chance to eat.

It is well-known that concurrency leads to massive increases in the state
space of a program, because there are very many equivalent interleavings of
the same computation that have to be checked by a standard model checker.
One way to avoid this state explosion is to use partial order reduction (POR)
techniques (see [15] and references there), in which many of these interleav-
ing computations are never explored. POR is complete, in the sense that an
LTL formula not involving the “next” operator © can be shown to hold using
POR model checking iff it can be shown to hold using standard model check-
ing [15]. The traditional way to provide a POR model checking capability for
a given programming language L is to modify the model checking algorithm of
a model checker for L. This is a substantial task, which furthermore has to be
performed for each different language. Since we are interested in amortizing

44

Meseguer and Roşu

the cost of all program analysis tools across many languages by making them
generic, A. Farzan and the first author are currently exploring a POR model
checking technique [25] that is generic in the language L, under very general as-
sumptions about L, such as having processes or threads endowed with unique
identities. An important advantage of this language-generic POR technique is
that it does not require any changes to an underlying model checker. In par-
ticular, it can be used together with the Maude LTL model checker to model
check with POR programs in any programming language L satisfying a few
general assumptions. The key idea is to perform a theory transformation of
the rewrite theory RL specifying the semantics of L to obtain a POR-enabled,
semantically equivalent rewrite theory Rpor

L . We can then use a standard LTL
model checker to model check programs in L with POR reduction by model
checking them in a standard way using Rpor

L . Initial experiments with se-
mantic definitions for the JVM and a Promela-like language suggest that the
ratios of state-space reduction obtained with this generic POR technique are
comparable to those reported using language-specific model checkers with a
built-in POR capability [25].

4.2 Analyses Based on Abstract Semantics

The three types of analyses discussed so far, namely interpretation/simulation,
search and model checking, make use of the semantic rewriting logic defini-
tion of a programming language as is. Therefore, a language designer obtains
all these analysis capabilities essentially for free. There are, however, cer-
tain kinds of analysis that require a slightly different, typically more abstract
semantics to be defined. One should not regard the need for a different se-
mantics as a break of modularity, but rather as defining a totally different
system, or “language”, namely one that “interprets” the syntax differently.
Interestingly, one can do this relatively easily, by just rewriting the existing
language semantics appropriately.

The already existing semantic definition of the language acts as a check-list
telling the analisys tool developer what needs to be defined and only partly
how to define it. The tool developer is responsible for filling in all the de-
tails. In the case of simple analysers, such as a type checker or an abstract
interpreter in which the abstract domain and its properties can be inferred
from the concrete domain in some straightforward manner, one can immagine
automatic generators of analysis tools, by providing some general rules stating
how the concrete semantics needs to be changed. While this is clearly an in-
teresting research subject, we do not pursue it here. We assume that the tool
developer is responsible for the entire definition of the analser, admitting that
defining some parts of it can be uninteresting or even boring. In this section
we briefly discuss two kinds of static analysis tools that we have experimented
with, namely type checkers and domain-specific certifiers.

45

Meseguer and Roşu

Let us first elaborate on some intuitions underlying the definition of a
type checker. To keep the discussion focused, let us assume a type checker
for simple. Since a type checker is not concerned with the concrete values
handled by a program, but instead with their types, we replace values in the
definition of simple by types. The continuation item val(...) becomes
type(...) and several constant types need to be added, such as int, bool,
etc. Recall the continuation-based definition of comparison:

eq k(exp(E >’ E’, Env) -> K) = k(exp((E,E’), Env) -> > -> K) .
eq k(val(int(I),int(I’)) -> > -> K) = k(val(bool(I > I’)) -> K) .

Viewed through the prism of types, the above says that E >’ E’ has the
type bool if E and E’ have the type int. It is then straightforward to modify
the above as follows:

eq k(exp(E >’ E’, Env) -> K) = k(exp((E,E’), Env) -> > -> K) .
eq k(type(int,int) -> > -> K) = k(type(bool) -> K) .

Of course, environments in the concrete semantics become type environ-
ments in the abstract semantics, assigning types to names. One can systemat-
ically modify the semantics of each language construct as above, thereby easily
obtaining a type checker. The abstract semantics of some language constructs
can be almost automatically derived from the concrete semantics, like in the
case above, but there may also be some language constructs whose abstract
semantics needs some thinking. This is because one may need to consider cer-
tain trade-offs in order to obtain an effective tool. For example, the concrete
semantics of a conditional did not care about the types of the two branches:

eq k(exp(if BE then E else E’, Env) -> K)
= k(exp(BE,Env) -> if(E,E’,Env) -> K) .
eq k(val(bool(B)) -> if(E,E’,Env) -> K)
= k(exp(if B then E else E’ fi, Env) -> K) .

Also, the way it was defined, the conditional can be used either as a state-
ment or as an expression, without any explicit definitional support. One can
even use it in contexts in which the type of some branch is int, while the type
of the other is bool. However, in order to be effective, a type checker imposes
restrictions on how the language constructs can be used. Whether a certain
set of restrictions is reasonable or not is a language design decision that we
are not concerned with here. Instead, our purpose is to show that one can
very easily experiment with such decisions in our framework. One quite rea-
sonable requirement in typing conditionals in a language like simple is that
the condition types to bool, while the two branches type to the same type.
Thus conditionals are still allowed to be “polymorphic”, but their use needs to
respect the reasonable restriction that the two branches have the same type.
This restriction allows one to assign a unique type to the entire conditional
statically, namely the type of its two branches. The type semantics of the
conditional would then be changed to:

46

Meseguer and Roşu

eq k(exp(if BE then E else E’, Env) -> K)
= k(exp((BE,E,E’),Env) -> K) .
eq k(type(bool,T,T) -> K) = k(type(T) -> K) .

We have defined several type checkers following this semantic abstraction
methodology as part of our programming language courses [50]. Students also
developed such type checkers as part of their homework assignments, including
ones based on type inference. In the case of type reconstruction, the result of
“evaluating” an expression is a set of equational type constraints. All these
type constraints are solved either at the end of the evaluation process or on
the fly.

Another category of analysis tools that we have investigated, also derived
from the semantics of a given programming language, is that of domain-specific
certifiers. Like in type checking, expressions evaluate to some abstract values.
However, unlike in type checking, these abstract values have no relationship
whatsoever with the concrete values. The abstract values make sense only in
the context of a specific domain of interest, which also needs to be formally
axiomatized or defined. Consider, for example, the domain of units of mea-
surement, which can be formalized as an abelian group generated by the basic
units (meter, second, foot, etc.) – suppose that multiplication of units is writ-
ten as concatenation. A program certifier for this domain would check that,
in a program written in an extended syntax allowing annotations specifying
the units of variables, all the operations performed by the given program are
consistent with the intuitions of the domain of units of measurement. For ex-
ample, only expressions which have the same unit can be added or compared,
while expressions of any units can be multiplied. The semantic definitions
of addition and multiplication in a domain-specific certifier for simple would
look something like:

eq k(exp(E + E’, Env) -> K) = k(exp((E,E’), Env) -> + -> K) .
eq k(unit(U,U) -> + -> K) = k(unit(U) -> K) .

eq k(exp(E * E’, Env) -> K) = k(exp((E,E’), Env) -> * -> K) .
eq k(unit(U,U’) -> * -> K) = k(unit(U U’) -> K) .

Formal definitions of domain specific certifiers built on semantic program-
ming language definitions have been investigated in depth in several places.
In [14,13] we discuss such certifiers for the domains of units of measurement
and a large fragment of C, in [35] we present a domain-specific certifier for the
domain of coordinate frames, and in [51] one for the domain of optimal state
estimation.

Each analysis tool has its particularities and may raise complex issues, from
difficulty in defining it to intractability. The main point we want to stress
in this section is that the original rewriting semantics of the programming
language gives us a very useful skeleton on which to develop potentially any
desired program analysis tool.

47

Meseguer and Roşu

4.3 Logics of Programs and Semantics-Based Theorem Proving

Given a programming language L, we are often interested in using a logic of
programs for L to reason about programs in L. For example, we may want
to use a Hoare logic with inference rules corresponding, say, to sequential
Java features to reason about sequential Java programs. Two important tasks
appear in this regard:

(i) the correctness of the chosen logic of programs for the given language L
has to be justified in term of a mathematical definition of L’s semantics;
and

(ii) mechanizing a logic of programs for L typically requires not only mecha-
nizing the logic’s inference rules, but also the discharging of verification
conditions (VCs) generated by the inference process; and for discharging
such VCs one often needs to use properties of L’s underlying semantics.

In our example of a Hoare logic for Java programs, the first task corre-
sponds to showing that the chosen Hoare rules are correct with respect to the
Java semantics; and the second to having a way to reason about the truth
of VCs, once the Hoare rules have done their job of decomposing the task of
proving a Hoare correctness assertion into proving the formulas generated as
VCs.

Having a mathematically precise semantics of a programming language L
as a rewrite theory RL can be very useful for tasks (i) and (ii). In some sense,
task (i) is the most crucial and fundamental. However, since mistakes in large
specifications are a fact of life, task (i) should really be understood as a mutual
debugging process : the chosen logic of programs can be debugged using the
semantics RL. And RL itself, which being a large specification may contain
some bugs, can be debugged not only by executing RL as an interpreter, but
also by using both the chosen logic of programs and L’s informal semantics to
ascertain which specification is wrong (that of the logic of programs, or RL,
or both) when discrepancies arise.

An important case study for task (i) , showing the usefulness of the speci-
fication RL when L is Java source code, has been recently carried out by W.
Ahrendt, A. Roth, and R. Sasse [52,1]. The goal was to validate automatically
the correctness of a substantial set (about 50 inference rules) of the JavaC-
ard Dynamic logic [3], a logic for JavaCard programs with diamond and box
modalities in which a sentence < p > φ with p a JavaCard program and φ
a formula is interpreted as: “p terminates in a state in which φ holds”. The
total correctness interpretation of a Hoare triple {ψ}p{φ} is expressed in this
logic as the formula ψ →< p > φ. The JavaCard Dynamic logic has inference
rules, implemented by so-called taclets, reducing the proof of a dynamic logic
formula to that of simpler such formulas. Of particular interest in this case
study were the code transformation taclets, which implement inference rules

48

Meseguer and Roşu

of the form
< p > φ

< p′ > φ

that is, code transformation taclets transform the program part into a simpler
equivalent form, leaving the formula φ unchanged. Of course, such taclets
are rewrite rules, in which the subexpressions p, p′ and φ typically are not
concrete JavaCard programs and a concrete formula; they are instead patterns,
symbolic expressions called program schemes in which part of the scheme is
concrete code and the rest – corresponding to additional schematic code –
consists of meta-variables which symbolically represent all their concrete code
instantiations. Similarly, φ may just be a meta-variable of type formula.

The goal of this research was to automatically validate a large set of code
transformation taclets by symbolically evaluating the program schemes p and
p′ usingRJava to check that they were semantically equivalent. This was a non-
trivial task, because RJava can be executed as an interpreter when p and p′ are
concrete Java programs. In the case of program schemes, although symbolic
execution is still possible, the axioms in RJava are insufficient to reason about
semantic equivalence. The elegant solution adopted in [52,1] is to lift RJava to
the symbolic level by specifying a more expressive semantics Rlift

Java . Two key
issues making such a lifting necessary are: (1) the need to localize semantic
equivalence to the program variables shared by p and p′, excluding fresh new
variables introduced in one of them; and (2) the need to describe symbolically
unknown side effects caused when symbolically executing the parts of a pro-
gram scheme described by meta-variables. Using the lifted semantics Rlift

Java ,
over 50 code transformation taclets have been automatically validated using
Maude. Furthermore, all axiomatic propositional logic taclets have also been
automatically validated in Maude [52,1]. One particularly valuable outcome of
this substantial case study has been the kind of mutual debugging mentioned
above: on the one hand, a bug was found in one of the taclets; on the other,
several bugs were also uncovered in the prototype Java semantics reported in
[24], which was used as a basis to develop the Rlift

Java specification in Maude.

Another substantial case study, this time involving both tasks (i) and (ii),
has centered on the Pascal-like language used in [30]. A Hoare logic for a
substantial fragment of this Pascal-like language has been given in [39], where
the correctness of the Hoare rules is mathematically justified on the basis of the
language’s formal semantics RL, thus addressing task (i). Task (ii) has been
addressed by M. Clavel and J. Santa-Cruz in [19] using the Maude inductive
theorem prover (ITP) as the underlying proof engine. Their ASIP+ITP tool
integrates the theory RL with the Maude ITP and directly supports some
Hoare rules. A user can state goals as Hoare triples; the Hoare rules are then
applied by the ASIP tool to generate VCs, which can be discharged using
the ITP [19]. The ASIP tool and its documentation can be downloaded from
http://maude.sip.ucm.es/itp/asip/.

49

http://maude.sip.ucm.es/itp/asip/

Meseguer and Roşu

A third relevant case study involves the Hennessy-Milner logic of programs
for CCS [64,61]. Since the justification of the Hennessy-Milner logic is well-
established, this work focuses on task (ii). A. Verdejo and N. Mart́ı-Oliet first
give a rewriting logic semantics for CCS as a rewrite theory RCCS in Maude.
Then, an inference system for the Hennessy-Milner modal logic of CCS is also
defined in Maude as another module at the meta-level that imports the module
specifying RCCS at the object level. In this way, the CCS interpreter obtained
by the Maude specification of RCCS is seamlessly extended into a program
reasoning tool for CCS, in which the satisfaction of a Hennessy Milner logic
formula φ by a finitary CCS process P can be automatically verified by the
Maude-based tool [64,61]. This work again demonstrates the usefulness of
integrating the inference rules of a language’s logic of programs with an exe-
cutable rewriting logic semantics of that language to generate a mechanization
of the given logic of programs in a relatively effortless way. As in the case of
the ASIP+ITP tool [19], this integration is achieved in its entirety within the
rewriting logic framework using reflective techniques. The executable CCS
semantics in Maude, and the Hennessy-Milner logic tool are both available in
http://www.ucm.es/sip/alberto/esf/.

4.4 Modularity and the MSOS Maude Tool

Modularity of semantic definitions, that is, the property that a feature’s se-
mantics does not have to be redefined when a language is extended, is no-
toriously hard to achieve. Lack of modularity has plagued both denotational
semantics and SOS. Without a suitable specification methodology it could also
plague rewriting logic semantics.

One important transfer of results between the SOS and rewriting logic ap-
proaches has been precisely on modularity issues. On the one hand, Mosses’
modular structural operational semantics (MSOS) methodology [47] has in-
spired Braga and the first author to develop a similar modular methodology
for rewriting logic semantics [40,7]. On the other hand, this has had the pleas-
ant side-effect of providing a Maude-based execution environment for MSOS
specifications, namely the Maude MSOS Tool developed at the Universidade
Federal Fluminense in Brazil by Chalub and Braga [11], which is available on
the web at http://mmt.ic.uff.br.

At the theoretical level, the point is that, as shown in [40], we can asso-
ciate to an MSOS specification S a semantically equivalent, and also modular,
rewrite theory τ(S). This translation τ is then the basis of the Maude MSOS
tool. In this way, MSOS specifications, besides being executable as language
interpreters, can be used to formally analyze programs in the language so
specified using the underlying Maude tools.

Modularity at the rewriting logic level opens up new possibilities not avail-
able at the SOS level. For example, as pointed out in [40], the modular

50

http://www.ucm.es/sip/alberto/esf/
http://mmt.ic.uff.br

Meseguer and Roşu

methodology is simultaneously available for both equations and rewrite rules.
As already pointed out, this useful “abstraction knob” that allows us to dis-
tinguish between deterministic and nondeterministic features by respectively
specifying their semantics with equations or with rules is important not only
conceptually, but also to make formal analyses such as search and model
checking much more scalable by drastically reducing the size of the associated
search spaces.

5 Conclusions and Future Directions

We have explained how rewriting logic can be used as a logical framework
to unify equational semantics and SOS; and how, using a language such as
Maude and its generic tools, efficient interpreters and program analysis tools
can be generated from language definitions. This paper is just a snapshot of
what we believe is a promising collective research project. Much work remains
ahead. We list below some future research directions that we find particularly
attractive:

• Modularity. As mentioned in Section 4.4, a fully modular definitional style
has already been developed in [40]. An interesting open question is: what
other definitional styles can likewise be endowed with a fully modular method-
ology? At the experimental level this should lead to a well-crafted library of
modular semantic definitions in the spirit of MSOS, so that new language
definitions can easily be developed by composing the semantic definitions of
their basic features, changing their generic abstract syntax to the concrete
syntax of the language in question.

• Semantic Equivalence and Compiler Generation. It would be highly desir-
able to develop general methods to show that two semantic definitions of
a programming language are equivalent. Meta-results of this kind could be
the basis of automated semantics-preserving translations between language
definitions given in different definitional styles. They could also be the ba-
sis of generic formal compiler techniques; and of compiler generators that,
taking a formal language definition as input, and are provably correct, in
the sense of preserving the language’s semantics.

• Generic Tools. Although some quite useful generic tools already exist, it
is clear that much more can be done. For example, it would be quite use-
ful to have a generic abstraction tool, so that an infinite-state program in
any language satisfying minimal requirements can be model checked by
model checking a finite-state abstraction. Similarly, a language-generic the-
orem proving tool allowing the kind of reasoning supported at present by
language-specific tools such as ASIP+ITP [19] for a large class of languages
would likewise be highly desirable.

51

Meseguer and Roşu

Acknowledgement

We cordially thank Wolfgang Ahrendt, Christiano Braga, Feng Chen, Manuel
Clavel, Marcelo D’Amorim, Santiago Escobar, Azadeh Farzan, Mark Hills,
Narciso Mart́ı-Oliet, Peter Mosses, Andreas Roth, Ralph Sasse, Mark-Oliver
Stehr, Traian Florin Şerbănuţă, Carolyn Talcott, Alberto Verdejo, and the
UIUC students attending the programming language design and semantics
courses [50], who defined many real programming languages, for their various
kinds of help with this paper, including examples, careful comments, and their
own intellectual contributions to the rewriting logic semantics program. This
work has been partially supported by the following grants: ONR N00014-02-
1-0715, NSF/NASA CCF-0234524, NSF CAREER CCF-0448501, and NSF
CNS-0509321.

References

[1] W. Ahrendt, A. Roth, and R. Sasse. Automatic validation of transformation
rules for Java verification against a rewriting semantics. Manuscript, June 2005.

[2] D. Basin and G. Denker. Maude versus Haskell: an experimental comparison
in security protocol analysis. In K. Futatsugi, editor, Proc. 3rd. Intl. Workshop
on Rewriting Logic and its Applications, volume 36. ENTCS, Elsevier, 2000.

[3] B. Beckert. A dynamic logic for the formal verification of Java Card programs.
In I. Attali and T. Jensen, editors, Java on Smart Cards: Programming and
Security. Revised Papers, Java Card 2000, International Workshop, Cannes,
France, LNCS 2041, pages 6–24. Springer, 2001.

[4] G. Berry and G. Boudol. The chemical abstract machine. Theoretical Computer
Science, 96(1):217–248, 1992.

[5] A. Bouhoula, J.-P. Jouannaud, and J. Meseguer. Specification and proof in
membership equational logic. Theoretical Computer Science, 236:35–132, 2000.

[6] C. Braga. Rewriting Logic as a Semantic Framework for Modular Structural
Operational Semantics. PhD thesis, Departamento de Informática, Pontificia
Universidade Católica de Rio de Janeiro, Brasil, 2001.

[7] C. Braga and J. Meseguer. Modular rewriting semantics in practice. In Proc.
WRLA’04, volume 117. ENTCS, Springer, 2004.

[8] M. Broy, M. Wirsing, and P. Pepper. On the algebraic definition of
programming languages. ACM Trans. on Prog. Lang. and Systems, 9(1):54–
99, Jan. 1987.

[9] R. Bruni and J. Meseguer. Generalized rewrite theories. In J. Baeten,
J. Lenstra, J. Parrow, and G. Woeginger, editors, Proceedings of ICALP 2003,
30th International Colloquium on Automata, Languages and Programming,
volume 2719 of Springer LNCS, pages 252–266, 2003.

52

Meseguer and Roşu

[10] I. Cervesato and M.-O. Stehr. Representing the MSR cryptoprotocol
specification language in an extension of rewriting logic with dependent
types. In P. Degano, editor, Proc. Fifth International Workshop on Rewriting
Logic and its Applications (WRLA’2004), volume 117. Elsevier ENTCS, 2004.
Barcelona, Spain, March 27 - 28, 2004.

[11] F. Chalub. An Implementation of Modular SOS in Maude. Master’s
thesis, Universidade Federal Fluminense, May 2005. http://www.ic.uff.br/
~frosario/dissertation.pdf.

[12] F. Chalub and C. Braga. A Modular Rewriting Semantics for CML. Journal
of Universal Computer Science, 10(7):789–807, July 2004. http://www.jucs.
org/jucs_10_7/a_modular_rewriting_semantics.

[13] F. Chen and G. Roşu. Certifying measurement unit safety policy. In
Proceedings, International Conference on Automated Software Engineering
(ASE’03). IEEE, 2003.

[14] F. Chen, G. Roşu, and R. P. Venkatesan. Rule-based analysis of dimensional
safety. In Rewriting Techniques and Applications (RTA’03), volume 2706 of
Springer LNCS, pages 197–207, 2003.

[15] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press,
2001.

[16] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Mart́ı-Oliet, J. Meseguer,
and J. Quesada. Maude: specification and programming in rewriting logic.
Theoretical Computer Science, 285:187–243, 2002.

[17] M. Clavel, F. Durán, S. Eker, and J. Meseguer. Building equational proving
tools by reflection in rewriting logic. In CAFE: An Industrial-Strength Algebraic
Formal Method. Elsevier, 2000. http://maude.cs.uiuc.edu.

[18] M. Clavel and M. Palomino. The ITP tool’s manual. Universidad Complutense,
Madrid, April 2005, http://maude.sip.ucm.es/itp/.

[19] M. Clavel and J. Santa-Cruz. ASIP + ITP: A verification tool
based on algebraic semantics. In Proc. PROLE’05, 2005. To appear,
http://maude.sip.ucm.es/~clavel/pubs/.

[20] D. Clément, J. Despeyroux, L. Hascoet, and G. Kahn. Natural semantics on
the computer. In K. Fuchi and M. Nivat, editors, Proceedings, France-Japan AI
and CS Symposium, pages 49–89. ICOT, 1986. Also, Information Processing
Society of Japan, Technical Memorandum PL-86-6.

[21] M. d’Amorim and G. Roşu. An Equational Specification for the Scheme
Language. Journal of Universal Computer Science, 11(7):1327–1348, 2005.
Selected papers from the 9th Brazilian Symposium on Programming Languages
(SBLP’05). Also Technical Report No. UIUCDCS-R-2005-2567, April 2005.

[22] R. DeNicola and U. Montanari. Selected papers of the 2nd workshop on
concurrency and compositionality, San Miniato, Italy, March 1990. Theoretical
Computer Science, 96(1), 1992.

53

http://maude.cs.uiuc.edu
http://maude.sip.ucm.es/itp/

Meseguer and Roşu

[23] S. Eker, J. Meseguer, and A. Sridharanarayanan. The Maude LTL model
checker. In F. Gadducci and U. Montanari, editors, Proc. 4th. Intl. Workshop
on Rewriting Logic and its Applications. ENTCS, Elsevier, 2002.

[24] A. Farzan, F. Cheng, J. Meseguer, and G. Roşu. Formal analysis of Java
programs in JavaFAN. In Proc. CAV’04, volume 3114 of Springer LNCS, 2004.

[25] A. Farzan and J. Meseguer. Partial order reduction for rewriting semantics of
programming languages. Technical Report UIUCDCS-R-2005-2598, CS Dept.,
University of Illinois at Urbana-Champaign, June 2005.

[26] A. Farzan, J. Meseguer, and G. Roşu. Formal JVM code analysis in JavaFAN.
in Proc. AMAST’04, Springer LNCS 3116, 132–147, 2004.

[27] M. Felleisen and D. P. Freidman. Control operators, the SECD machine, and the
λ-calculus. In Formal Description of Programming Concepts III, Proceedings
of IFIP TC2 Working Conference, pages 193–217. North Holland, 1987.

[28] F. Gadducci and U. Montanari. The tile model. In G. Plotkin, C. Stirling and
M. Tofte, eds., Proof, Language and Interaction: Essays in Honour of Robin
Milner, MIT Press, 133–166, 2000.

[29] J. Goguen, J. Thatcher, E. Wagner, and J. Wright. Initial algebra semantics
and continuous algebras. Journal of the Association for Computing Machinery,
24(1):68–95, January 1977.

[30] J. A. Goguen and G. Malcolm. Algebraic Semantics of Imperative Programs.
MIT Press, 1996.

[31] J. A. Goguen and K. Parsaye-Ghomi. Algebraic denotational semantics using
parameterized abstract modules. In J. Diaz and I. Ramos, editors, Formalizing
Programming Concepts, pages 292–309. Springer-Verlag, 1981. LNCS, Volume
107.

[32] P. H. Hartel. LETOS – a lightweight execution tool for operational semantics.
Software: Practice and Experience, 29:1379–1416, 1999.

[33] M. Hennessy. The Semantics of Programming Languages: An Elementary
Introduction Using Structural Operational Semantics. John Willey & Sons,
1990.

[34] E. B. Johnsen, O. Owe, and E. W. Axelsen. A runtime environment for
concurrent objects with asynchronous method calls. In N. Mart́ı-Oliet, editor,
Proc. 5th. Intl. Workshop on Rewriting Logic and its Applications, volume 117.
ENTCS, Elsevier, 2004.

[35] M. Lowry, T. Pressburger, and G. Roşu. Certifying domain-specific policies.
In Proceedings, International Conference on Automated Software Engineering
(ASE’01), pages 81–90. IEEE, 2001. Coronado Island, California.

[36] J. Meseguer. Conditional rewriting logic as a unified model of concurrency.
Theoretical Computer Science, 96(1):73–155, 1992.

54

Meseguer and Roşu

[37] J. Meseguer. Membership algebra as a logical framework for equational
specification. In F. Parisi-Presicce, editor, Proc. WADT’97, pages 18–61.
Springer LNCS 1376, 1998.

[38] J. Meseguer. Software specification and verification in rewriting logic. In
M. Broy and M. Pizka, editors, Models, Algebras, and Logic of Engineering
Software, NATO Advanced Study Institute, Marktoberdorf, Germany, July 30 –
August 11, 2002, pages 133–193. IOS Press, 2003.

[39] J. Meseguer. Lecture notes on program verification. CS 476, University of
Illinois, http://www-courses.cs.uiuc.edu/~cs476/, Spring 2005.

[40] J. Meseguer and C. Braga. Modular rewriting semantics of programming
languages. in Proc. AMAST’04, Springer LNCS 3116, 364–378, 2004.

[41] J. Meseguer and G. Roşu. Rewriting logic semantics: From language
specifications to formal analysis tools. In Proc. Intl. Joint Conf. on Automated
Reasoning IJCAR’04, Cork, Ireland, July 2004, pages 1–44. Springer LNAI
3097, 2004.

[42] R. Milner. Functions as processes. Mathematical Structures in Computer
Science, 2(2):119–141, 1992.

[43] J. Moore, R. Krug, H. Liu, and G. Porter. Formal models of Java at the JVM
level – a survey from the ACL2 perspective. In Proc. Workshop on Formal
Techniques for Java Programs, in association with ECOOP 2001, 2002.

[44] P. D. Mosses. Denotational semantics. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, Vol. B, Chapter 11. North-Holland, 1990.

[45] P. D. Mosses. Foundations of modular SOS. In Proceedings of MFCS’99, 24th
International Symposium on Mathematical Foundations of Computer Science,
pages 70–80. Springer LNCS 1672, 1999.

[46] P. D. Mosses. Pragmatics of modular SOS. In Proceedings of AMAST’02, 9th
Intl. Conf. on Algebraic Methodology and Software Technology, pages 21–40.
Springer LNCS 2422, 2002.

[47] P. D. Mosses. Modular structural operational semantics. J. Log. Algebr.
Program., 60–61:195–228, 2004.

[48] M. Pettersson. Compiling Natural Semantics. Springer Verlag, LNCS 1549,
1999.

[49] G. D. Plotkin. A structural approach to operational semantics. Journal of
Logic and Algebraic Programming, 60-61:17–139, 2004. Previously published
as technical report DAIMI FN-19, Computer Science Department, Aarhus
University, 1981.

[50] G. Roşu. Programming language classes. Department of Computer
Science, University of Illinois at Urbana-Champaign, http://fsl.cs.uiuc.
edu/~grosu/classes/.

55

http://fsl.cs.uiuc.edu/~grosu/classes/
http://fsl.cs.uiuc.edu/~grosu/classes/

Meseguer and Roşu

[51] G. Roşu, R. P. Venkatesan, J. Whittle, and L. Leustean. Certifying optimality
of state estimation programs. In Computer Aided Verification (CAV’03), pages
301–314. Springer, 2003. LNCS 2725.

[52] R. Sasse. Taclets vs. rewriting logic – relating semantics of Java. Master’s
thesis, Fakultät für Informatik, Universität Karlsruhe, Germany, May 2005.
Technical Report in Computing Science No. 2005-16, http://www.ubka.
uni-karlsruhe.de/cgi-bin/psview?document=ira/2005/16.

[53] D. A. Schmidt. Denotational Semantics – A Methodology for Language
Development. Allyn and Bacon, Boston, MA, 1986.

[54] D. Scott. Outline of a mathematical theory of computation. In Proceedings,
Fourth Annual Princeton Conference on Information Sciences and Systems,
pages 169–176. Princeton University, 1970. Also appeared as Technical
Monograph PRG 2, Oxford University, Programming Research Group.

[55] D. Scott and C. Strachey. Toward a mathematical semantics for computer
languages. In Microwave Research Institute Symposia Series, Vol. 21: Proc.
Symp. on Computers and Automata. Polytechnical Institute of Brooklyn, 1971.

[56] M.-O. Stehr, I. Cervesato, and S. Reich. An execution environment for the MSR
cryptoprotocol specification language. http://formal.cs.uiuc.edu/stehr/
msr.html.

[57] M.-O. Stehr and C. Talcott. PLAN in Maude: Specifying an active network
programming language. In F. Gadducci and U. Montanari, editors, Proc. 4th.
Intl. Workshop on Rewriting Logic and its Applications, volume 117. ENTCS,
Elsevier, 2002.

[58] M.-O. Stehr and C. L. Talcott. Practical techniques for language design and
prototyping. In J. L. Fiadeiro, U. Montanari, and M. Wirsing, editors, Abstracts
Collection of the Dagstuhl Seminar 05081 on Foundations of Global Computing.
February 20 – 25, 2005. Schloss Dagstuhl, Wadern, Germany., 2005.

[59] P. Thati, K. Sen, and N. Mart́ı-Oliet. An executable specification of
asynchronous Pi-Calculus semantics and may testing in Maude 2.0. In
F. Gadducci and U. Montanari, editors, Proc. 4th. Intl. Workshop on Rewriting
Logic and its Applications. ENTCS, Elsevier, 2002.

[60] D. Turi. Functorial Operational Semantics and its Denotational Dual. PhD
thesis, Free University, Amsterdam, 1996.

[61] A. Verdejo. Maude como marco semántico ejecutable. PhD thesis, Facultad de
Informática, Universidad Complutense, Madrid, Spain, 2003.

[62] A. Verdejo and N. Mart́ı-Oliet. Executable structural operational semantics in
Maude. Manuscript, Dto. Sistemas Informáticos y Programación, Universidad
Complutense, Madrid, August 2003.

[63] A. Verdejo and N. Mart́ı-Oliet. Implementing CCS in Maude. In Proc.
FORTE/PSTV 2000, pages 351–366. IFIP, vol. 183, 2000.

56

http://www.ubka.uni-karlsruhe.de/cgi-bin/psview?document=ira/2005/16
http://www.ubka.uni-karlsruhe.de/cgi-bin/psview?document=ira/2005/16
http://formal.cs.uiuc.edu/stehr/msr.html
http://formal.cs.uiuc.edu/stehr/msr.html

Meseguer and Roşu

[64] A. Verdejo and N. Mart́ı-Oliet. Implementing CCS in Maude 2. In F. Gadducci
and U. Montanari, editors, Proc. 4th. Intl. Workshop on Rewriting Logic and
its Applications. ENTCS, Elsevier, 2002.

[65] P. Viry. Equational rules for rewriting logic. Theoretical Computer Science,
285:487–517, 2002.

[66] M. Wand. First-order identities as a defining language. Acta Informatica,
14:337–357, 1980.

57

	Introduction
	Semantics: Equational vs. SOS
	Unifying SOS and Equational Semantics: the Abstraction Knob
	About this Paper

	Rewriting Logic Semantics
	Membership Equational Logic
	Rewrite Theories
	Rewriting Logic Deduction
	Operational and Denotational Semantics of Rewrite Theories
	Rewriting Logic Semantics of Programming Languages

	Specifying Programming Languages
	A Simple Example
	Other Language Case Studies

	Program Analysis Techniques and Tools
	Search and Model Checking Analysis
	Analyses Based on Abstract Semantics
	Logics of Programs and Semantics-Based Theorem Proving
	Modularity and the MSOS Maude Tool

	Conclusions and Future Directions
	Acknowledgement
	References

