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 Invasive species cause catastrophic changes to environments they are introduced into.  Early 

detection offers the best chance at controlling the spread and mitigating any potential damages caused by 

the invaders.  Environmental DNA (eDNA) has emerged as a more sensitive and cost effective alternative 

to traditional survey approaches to detection.  In this study, I designed primer-probe sets for use in 

quantitative PCR detection of three invasive Centrarchid species, Largemouth Bass (Micropterus 

salmoides), Smallmouth Bass (Micropterus dolomieu) and Black Crappie (Pomoxis nigromaculatus).  I 

surveyed 21 water bodies in Maine during two seasons (winter and spring).  I designed and validated a 

sampling device and protocol for through-ice water sampling for eDNA.  I detected target species in all 

lakes where they were known to be present as well as five previously unconfirmed lakes.  Through 

hierarchical occupancy modeling I estimated the cumulative probabilities of presence, collection and 

detection of eDNA at three levels of the surveys (sites, samples, qPCR replicates).  Although my toolsets 

were effective during both seasons, spring samples contained much higher concentrations of eDNA and 

hierarchical occupancy models showed this season to have much higher average power to detect target 

species than winter.  Winter is still a viable season for sampling, providing fewer contamination concerns, 

and with a more robust sampling protocol, would be able to provide a high level of confidence of 



 

 

detection.  Based on my dataset, and in order to have >95% confidence of detection at each level of the 

survey for simple detection of presence/absence, I recommend sampling from a minimum of four sites per 

lake, taking three samples per site and conducting five qPCR replicates in spring and sampling from a 

minimum of seven sites per lake, taking five samples per site and conducting seven qPCR replicates in 

winter. 
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CHAPTER 1 

INVASIVE CENTRARCHID SPECIES IN MAINE AND ENVIRONMENTAL DNA 

 

Early detection offers the best chance of eradicating or suppressing invasive species, of 

implementing timely measures to mitigate their impacts on indigenous species, and of controlling their 

spread (Lodge et al., 2006; Vander Zanden et al., 2010).  However, detection of invasive species is often 

very costly and time consuming, limiting the number of sites that can be regularly surveyed to detect 

invaders.  This is a particularly large problem for detection of many aquatic invasive species, where small 

numbers of individuals of an invasive species are easily concealed by aquatic environment or the 

challenges of sampling in water.  Most state and federal agencies charged with documenting and 

managing fish invasions rely heavily on anecdotal reports from anglers, or other members of the public, 

that can be difficult to confirm, even with extensive netting, angling or electrofishing. Such sampling can 

also present risks to species of conservation concern.  Hence, there is great need for early detection tools 

for invasive species that can be more widely and cost-effectively deployed than traditional approaches, 

and with less effects on non-target species. 

Environmental DNA (eDNA) is DNA present within the environment, such as in soil or water.  

Its primary sources from animals are epidermal cells, feces and urine.  This DNA is often present at very 

low concentrations within water, and is often degraded.  Researchers aiming to detect eDNA have 

employed several different DNA amplification technologies, including standard two-primer PCR, 

quantitative PCR (qPCR) and next generation sequencing, however, qPCR provides the greatest 

specificity and sensitivity with low concentration DNA (Shokralla et al., 2012).  Using species-specific 

primers many aquatic taxa have been detected using environmental DNA, including invertebrates, fish, 

amphibians, reptiles, birds and mammals (Ficetola et al., 2008; Jerde et al., 2011; Thomsen et al., 2012a; 

Thomsen et al., 2012b; Wilcox et al., 2013; Hunter et al., 2015). However, the specificity and sensitivity 

of this tool generally depend upon custom PCR approaches for any given species and such custom assays 

are not yet widely available for most taxa.  Likewise, a sensitive and specific lab assay represents only 
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part of an integrated eDNA detection system, the other part being a statistically robust field and lab design 

with adequate replication to account for spatial heterogeneity in fish and eDNA concentrations. 

Of particular concern in Maine are introductions and range expansions of multiple species of the 

Centrarchidae, or ‘sunfish’ family.  In this study, I developed qPCR primer-probe sets for use in 

detecting eDNA of three non-native Centrarchid species, Largemouth Bass (Micropterus salmoides), 

Smallmouth Bass (Micropterus dolomieu) and Black Crappie (Pomoxis nigromaculatus), all three are 

considered invasive in Maine.  All three species pose serious threats to Maine’s native fish and 

understanding their seasonal behavior and habitat preferences guided my further development and 

assessment of a field survey design to assess angler reports of illegal introductions of these species.  I also 

developed and field tested a joint primer-probe set for two widely-distributed sunfishes native to Maine, 

the Redbreast Sunfish (Lepomis auritus) and the Pumpkinseed Sunfish (Lepomis gibbosus), to serve as a 

positive eDNA control to confirm the presence and amplification of eDNA in sites where eDNA might 

not detect the target exotic species.  Chapter 2 of this thesis considers the development of the actual qPCR 

assays and validation of their specificity and sensitivity to detect my target species in lab and field 

samples.  In that chapter I also describe the development of a novel technique to sample water for eDNA 

detection under the winter ice conditions that often persist for more than a third of the year in Maine.  

Following that initial chapter on eDNA tools, my subsequent chapter describes a proof of concept 

deployment of my assays for both winter and spring lake surveys to validate 21 confirmed or unconfirmed 

angler reports of illegal Centrarchid introductions in Maine.  I further analyzed the data from those 

surveys with hierarchical occupancy models to assess the detection power of my surveys and to inform 

future survey strategies. 

Because both of my core data chapters are written largely in the format of either a molecular 

methods or survey report, they focus foremost on the molecular methods, sampling approaches and 

survey comparisons.  The information in those chapters should be understandable to a reader with some 

basic understanding of PCR approaches and statistics.  However, this focus on the molecular and survey 

approaches comes at a tradeoff in the form of less details of the specific introduction histories and biology 
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of each of my target species.  Hence, to provide more context for readers less familiar with these species 

in Maine, I provide some additional background here. 

Largemouth Bass is a predatory fish native to the central and southeastern US.  They are 

voracious fish predators, switching to piscivory as early as their first summer (Post, 2003).  Largemouth 

Bass are one of the most popular game fishes in the United State and have been introduced to waters well 

outside their native range causing major damages in US states where they are not native as well the 

collapse of native fish populations in Japan, Guatemala and Africa (Zaret & Paine, 1973; ; Yonekura et 

al., 2004; Ellender et al., 2011). In environments with ample woody cover such as logs and fallen tree 

limbs, Largemouth Bass have particularly small ranges, employing sit and wait hunting strategies; in 

more open habitat they range further, actively seeking prey (Mesing et al.,1986; Annett, 1998; 

Ahrenstorff et al., 2009; Huchzermeyer et al., 2013).  Their location and activity is related to season and 

their preference is for warmer waters than many salmonids (Hanson et al, 2007).  In most Maine waters 

Largemouth Bass range near shore through much of the spring, summer and fall, but larger and older 

individuals will forage offshore and the majority of individuals retreat to deeper waters in winter. 

Spawning tends to take place in relatively shallow areas protected from wind and waves, with the 

resulting fry and young of year schooling extensively for several months before adopting a more solitary 

habit.   

Largemouth Bass were first introduced to Maine waters more than 100 years ago, and have since 

become well established in many warm water lakes and ponds in southern and central regions of the state 

(Figure 1.1).  They have become an immensely popular sportfish for local and visiting anglers, and 

Maine’s Department of Inland Fisheries and Wildlife (MDIFW) now manages the catch with size and bag 

limits to protect the populations, particularly in waters deemed marginal for salmonids (Jordan, 2001).  

However, the popularity of the species has fostered a crisis of unplanned and illegal introductions into 

waterways managed for other game species.  Largemouth Bass are confirmed in over 372 bodies of water, 

mostly in the southern and central portions of the state but reaching as far north as central Penobscot 

county.  Given the devastating community and ecosystem effects of this species (Zaret & Paine, 1973; 
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Yonekura et al., 2004; Ellender et al., 2011) including impacts on other fisheries in Maine, the state seeks 

to monitor and halt this uncontrolled spread (Jordan, 2001). 

 

 

Figure 1.1:  Known distribution of Largemouth Bass in Maine.  
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The Smallmouth Bass is a piscivorous fish native to the central and southeastern US, sharing 

much of its range with the Largemouth Bass but extending further north.  Although the bass species share 

some habitat similarities, the Smallmouth Bass prefers waters with somewhat cooler average temperatures 

between 13-260 C (Lasenby & Kerr, 2000; Vander Zanden et al, 2004) and are often associated with 

coarse bottomed or rocky habitats. Like Largemouth, Smallmouth Bass may be found in lakes and ponds, 

but they are also common in flowing rivers and streams (Dauwalter et al., 2015).  Smallmouth Bass 

follow a similar pattern of seasonal movements to Largemouth Bass, but spend less of their year in very 

shallow habitats.  Smallmouth often live in intermediate depth waters, but may also be found near shore, 

particularly where Largemouth are absent (Dewaulter et al., 2007; Brewer et al., 2011).  Smallmouth Bass 

maintain home ranges as small as 3000 m2 in productive ponds, but occupy larger ranges in less 

productive rivers (Minns, 1995).  They are strongly connected to home territories, returning to them after 

capture and release kilometers away (Ridgway & Shuter, 1996).   

Smallmouth Bass were introduced to Maine at the same time as Largemouth Bass and their early 

range expansion was actively promoted by the state.  They are now wide spread throughout the state of 

Maine, inhabiting at least 471 water bodies, particularly within the southern and eastern regions of the 

state, but are confirmed in waterbodies as far north as Aroostook county (Figure 1.2).  Roughly 231 lakes 

and ponds are co-inhabited by the two bass species, however data suggest that each species also exists as 

the sole bass within its habitat in many locations (Smallmouth = 240; Largemouth = 141).  There is 

anecdotal belief that Smallmouth are often outcompeted by Largemouth in Maine, with concerns that 

some valued Smallmouth fisheries might be lost.  Due to their popularity as sportfish, Smallmouth Bass 

are managed under similar catch regulations as Largemouth and, like Largemouth, their range in Maine 

has expanded in recent decades due to illegal introductions (Jordan, 2001).  
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Figure 1.2: Known distribution of Smallmouth Bass in Maine. 

 

 

Black Crappie are an extremely popular ‘pan fish’ native to the central US, with a growing 

following among Maine anglers.  Crappie often co-occur in systems with Largemouth Bass, preferring 

lakes and ponds with still and warm waters, where they can be found along weedy shorelines (Pope 

&Willis, 1997; Phelps et al., 2009).  They are prolific breeders, grow quickly and mature at a young age 

(Arslan et al., 2004).  They live in habitats with variable dissolved oxygen and temperatures within their 

native range (Phelps et al., 2009); this adaptability and high reproductive rate make them highly capable 
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colonists of new systems. Seasonally, Black Crappie move into shallows to spawn in the spring, but spend 

much of the rest of the year at moderate depths along deep weed lines and over structure in open water.  

Black Crappie choose sheltered shoreline locations for nesting, preferring areas with overhanging 

branches rather than vegetation for cover during spawning (Reed & Perriera, 2009).  Black Crappie were 

first stocked into Virginia Lake, in southwestern Maine in 1921.  They have spread extensively through 

subsequent illegal introductions and colonization through river networks.  It is largely managed as a 

nuisance species, that can compete with native fishes, including the traditionally harvested white perch 

(Morone americana), and prey on the fry of native fish species.  Black Crappie were introduced in 1921, 

but have already spread to at least 64 lakes and ponds (Figure 1.3); (Lucas, 2002).  Given the threat these 

species pose to native fish, Maine’s Department of Inland Fisheries and Wildlife is working to keep them 

from moving into new waters. 
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Figure 1.3: Known distribution of Black Crappie in Maine. 
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CHAPTER 2 

DEVELOPMENT OF ENVIRONMENTAL DNA DETECTION TOOLS FOR FIVE 

CENTRARCHID SPECIES IN MAINE 

  

Introduction 

Detection of exotic species is often very costly and time consuming, and is a particularly large 

problem in aquatic environments, where small numbers of individuals are easily concealed by the 

limitation of direct observations in water.  Traditional detection methods often begin with anecdotal 

reports from the public, followed by some form of capture such as angling, electrofishing or netting.  

These techniques are time consuming, expensive and may not be reliable when faced with new invaders 

at low abundance or juvenile fish (Magnusson et al., 1994; Gu & Swihart, 2004).     

Largemouth Bass (Micropterus salmoides) and Smallmouth Bass (Micropterus dolomieu) were 

introduced to Maine waters more than 100 years ago.  In that time, they have spread, or been introduced, 

to more than 372 and 471 waters statewide, respectively (Jordan, 2001).  Both species are voracious 

predators and have been introduced across the globe where they’ve often caused immense damage to 

native ecosystems (Zaret & Paine, 1973; Yonekura et al., 2004; Ellender et al., 2011).  In Maine, there is 

concern that these predators could harm sensitive native salmonid populations, including economically 

valuable Brook Trout (Salvelinus fontinalis) fisheries and federally endangered Atlantic Salmon (Salmo 

salar) in freshwater streams and rivers.  Black Crappie (Pomoxis nigromaculatus) were introduced 

illegally to Maine in 1921 and has since spread to over 64 waters (Lucas, 2002).  Although smaller than 

the basses, Black Crappie still pose a substantial threat to Maine fish by competing with native species 

and feeding on native fry.  Alarmingly, despite strict state laws against live transport and introductions of 

these species, Maine continues to experience rampant illegal introductions of these species at a rate of 

roughly 25 new documented populations per decade (Jordan, 2001).  Given limited resources, the primary 

agency responsible for monitoring and mitigating the spread of these exotic species, the Maine 

Department of Inland Fisheries and Wildlife (MDIFW), currently relies heavily on angler reports of these 
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species that are often poorly documented, difficult to confirm without extensive field time, or occur only 

after the species is well established.  A cost-effective eDNA detection system could thus permit more 

comprehensive monitoring or quick and accurate confirmation of angler reports.  

Recently, the use of environmental DNA (eDNA) for species detection has emerged as a more 

sensitive and inexpensive alternative to traditional sampling approaches.  However, eDNA detection tools 

are not yet widely available and vetted for most species.  In this chapter I describe the design and lab 

validation of quantitative PCR (qPCR) primer-probe sets for eDNA detection of three Centrarchid fish 

species that are exotic invasive in Maine, as well as for two widespread native Centrarchid species that 

can serve as positive detection controls.   

Environmental DNA detection has employed several different DNA amplification technologies, 

including standard two-primer PCR, quantitative PCR (qPCR) and next generation sequencing.  The first 

two of these provide the greatest sensitivities for detecting rare species, while the last affords the capacity 

to survey more taxa simultaneously but with less sensitivity and more assignment error (Shokralla et al., 

2012).  qPCR requires more initial cost due to addition of a specialized fluorescent probe, but the addition 

of this probe eliminates additional imaging steps of standard PCR and increases assay specificity (Piggot, 

2016). In addition, qPCR provides a quantifiable signal at very low DNA concentrations that can be used 

to estimate the concentration of eDNA in field samples (Wilcox et al., 2013).  Mitochondrial genes are 

generally targeted for markers in eDNA detection due to their ample among-species sequence variation 

and greater copy number than nuclear DNA.  High copy number increases the effective eDNA signal 

coming from the same amount of cellular material sloughed into surrounding waters, which can be 

important when seeking to detect new populations at low abundances (Mills et al., 2000).  To increase 

specificity in assays, intra-specific base pair mismatches are targeted for the 3’ end of the primers (Kwok 

et al., 1990; Stadhouders et al., 2010).  However target sequences must be chosen carefully so that they 

provide sufficient specificity without sacrificing PCR efficiency.   

Beyond these basic lab methodology considerations, any given eDNA detection system must also 

ultimately be designed to facilitate detection in environmental samples, which comes with an additional 



 

11 

 

set of considerations.  Like any other field detection system, eDNA monitoring systems depend on a valid 

field sampling scheme that is specific to the particular detection context, including the location, timing 

and extent of sampling. I consider many of these factors in the next chapter, but one is particularly 

relevant to the initial develop of eDNA tools, the specific process for collecting and successfully 

amplifying eDNA from a water sample.  How samples are collected has a potentially large influence on 

the accuracy of eDNA detection.  False positive eDNA detections can arise from actual presence of the 

target species eDNA due to unaccounted transport mechanisms, such as movements between waterways 

by predatory birds or dumping of ballast, bilge or live-well water from boats that travel between systems 

(Willerslev et al., 2003; Thomsen et al., 2012a), as well as by accidental contamination of sampling or 

laboratory equipment.  These risks are managed in eDNA surveys by carefully planning when and where 

eDNA is collected to avoid transported eDNA and via development of appropriate controls to limit 

contamination or at least signal when and where samples are affected.  False negatives, meaning cases 

where a species is present but its eDNA is not detected, are also a concern for a tool like eDNA where 

detection is dependent on successful collection, preservation, extraction and amplification of low 

concentration DNA.   Positive controls can provide some protection against these types of process 

failures.  One such positive control might be successful amplification a common native species known to 

be present in all test sites. 

Maine’s cold winters afford a constraint and potential opportunity for eDNA surveying that has 

not been explored in other eDNA studies.  Essentially all currently published eDNA projects sample 

during the spring and summer when open water is easily accessible and presumably fish are more active 

(Shuter et al., 2012).  However, Maine’s lakes experience ice cover for as much as a third of the year, 

limiting the potential to survey lakes and ponds with the same methods used in other seasons. At the same 

time, sampling during winter ice season may provide several potential benefits, including slower 

breakdown of eDNA, foot or vehicle access to sampling sites, and potentially lower risk of DNA 

contamination from outside sources, such as boats or bird feces.  Indeed, even river inflows are generally 

lower in winter (Kirillin et al., 2012).  Currently, there is no established technique for through-ice 
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sampling.  Additional factors to consider in winter versus open-water sampling, are the potential that the 

fish and their eDNA are present in different locations between seasons, the temperature challenges for 

field sampling gear, and the added contamination risk that might come from gear used to cut ice. 

Given the needs of the State of Maine to monitor introductions or spread of exotic Centrarchids, 

and the potential for eDNA detection to provide a sensitive and cost effective approach to assist such 

monitoring, I developed eDNA primer-probe tools for a suite of Centrarchids as well as a novel field 

sampling system for winter eDNA surveys.  Hence, the specific objectives of this study were to: 

 

1) Engineer species-specific qPCR primer-probe sets for Largemouth Bass, Smallmouth Bass and 

Black Crappie, using mitochondrial gene sequence data for target and non-target species. 

2) Engineer a species-pair-specific qPCR primer-probe set for Maine’s native sunfishes (Redbreast 

and Pumpkinseed) to serve as a potential positive field eDNA control during surveys for the 

target exotics. 

3) Optimize the qPCR conditions for amplifying this suite of qPCR tools and verify their efficiency 

and specificity. 

4) Demonstrate the capacity of these lab tools to amplify target species eDNA in real-world water 

samples from sites with known species presence. 

5) Develop a winter water sampling system to enable eDNA monitoring of the target species during 

a period when conventional eDNA sampling methods may be ineffective. 
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Methods 

Primer-probe set development 

For this study, I focused on mitochondrial DNA sequence variation for designing species-specific 

qPCR primers and probes.  Using publicly available sequence data (Genbank, www.ncbi.nlm.nih.gov), I 

used the browser-based software Benchling (Benchling, benchling.com) to align sequence data for 

multiple candidate mitochondrial gene regions of my candidate species against one another and against 

other related species in Maine, including Green Sunfish (Lepomis cyanellus), Bluegill (Lepomis 

macrochirus) and Rock Bass (Amblopletes rupestris).  From these initial alignments I selected two 

commonly employed target genes for subsequent primer-probe design, cytochrome b (cytb) (Minamoto et 

al., 2012; Takahara et al., 2013) and cytochrome c oxidase subunit 1 (co1) (Thomsen et al., 2012a).  The 

cytb gene was chosen for initial qPCR development, with the intent that co1 could serve as a backup in 

the event that an effective cytb primer-probe set could not be generated. The choice of these two gene 

regions was based on initial evidence that they contained sufficient sequence variation between target 

species and other related species in Maine to be used for species-specific (or species-pair) eDNA 

detection.   

Although mitochondrial sequence data were publicly available for my study species, most of 

these data were for populations well outside of Maine or New England, and one of the mitochondrial gene 

regions I selected (cytb) showed evidence of intra-species variability in the Genbank sequences across 

regions. Intra-specific sequence variability is a particular concern for my target species given their large 

native geographic ranges and because local sequence differences could in principle reduce the sensitivity 

of eDNA primer-probe sets designed using sequence variation from other regions.   Hence, to ensure the 

greatest amount of regional sensitivity of my eDNA primer-probe sets, I collected a minimum of 3 

individuals of each target species from southern and central Maine (Figure 2.1), and harvested muscle 

tissue samples for sequencing. I used universal fish primers from Sevilla (2007) for sequencing local 

tissues.  Local sample sequence data were again aligned for the target species and compared with one 
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another and sequences of related non-target species in Maine.  Sequence alignments are provided in 

Appendix A. 

 

Figure 2.1: Centrarchid tissue collection locations 

  

 I designed eDNA primer-probe sets using Benchling’s primer and probe development tool 

(Benchling, www.benchling.com).  Each eDNA primer-probe set included forward and reverse primers, 

http://www.benchling.com/
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creating amplicons of between 95-150 bases in length, with a Taqman minor groove binding (MGB) 

probe seated in the sequence between the primers. The Taqman MGB probe has a moiety on the 3’ end 

which folds into the minor groove of the DNA duplex.  This creates a strong and stable hybridization, and 

a high melting temperature.  MGB probes can thus be designed with shorter sequences, creating greater 

specificity in the probe (Kutyavin et al., 2000).  In addition, probes were designed with a non-fluorescent 

quencher (NFQ).  Taqman MGB-NFQ probes have extremely low background fluorescence, of particular 

importance when amplifying environmental samples with low DNA concentrations (Kutyavin et al., 

2000; Josefsen et al., 2009).  To maximize species-specificity, intra-species mismatches were targeted for 

the 3’ end of the probe, keeping in mind Taq polymerase’s lack of 3’ to 5’ exonuclease activity (Kwok et 

al., 1990; Stadhouders et al., 2010).  I cross-checked all primers against the NCBI database for all 

organisms using PrimerBLAST. 

  

Lab validation and qPCR protocol design 

 Using DNA extracted from known tissue, I first tested the amplification and specificity of my 

designed forward and reverse primer sets against all five target species, plus one newly reported non-

native Centrarchid (Bluegill, Lepomis macrochirus), using standard PCR and ethidium bromide gel 

staining for visualization of presence or absence of an amplification fragment.  These initial PCRs were 

conducted at 560 C annealing temperature, based on the predicted thermal melting points of the primers 

(addition of a probe raises the annealing temperature for qPCR). Once I was sure all primer sets 

effectively amplified their target species, and only their target species, via standard PCR, I proceeded to 

optimize amplification conditions for qPCR.  All qPCR reactions were amplified and quantified using a 

Bio-Rad CFX96 Real-Time System thermal cycler on 96-well qPCR plates.  Reactions were run in 20 l 

volumes using a fixed 10 l of Taqman Environmental Master Mix 2.0 (Applied Biosystems) per 

reaction. 
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Use of lower annealing temperatures for primers and probes often favors more sensitive 

amplification of low concentration DNA but comes with a tradeoff of lower specificity of the DNA 

sequence that is amplified.  Likewise, primer concentration may affect mis-priming and primer-dimer 

formation.  To determine optimal primer-probe concentrations and annealing temperatures, I ran a six-

part, five-fold dilution series of synthetic gene fragments (31250, 6250, 1250, 250, 50, 10 copies/l) 

(Mikeksa & Dobrovic, 2009; Taylor et al., 2010) and conducted standard curve analyses to estimate 

qPCR efficiencies.  First, I ran all primer-probe sets at the same concentration (M M along a 

thermal gradient between 56-630 C with 4 technical replicates, as shown in Table 2.2.  During qPCR, the 

exonuclease activity of Taq polymerase cleaves the fluorescent tagged probe, separating the dye from 

quencher (Holland et al., 1991).  Fluorescent signal is created each time target DNA is amplified, and it 

can be measured, creating a way to quantify the amount of DNA amplification that has occurred during 

the PCR reaction (Livak et al., 1995).  As the PCR reaction runs, amplification increases as does the 

fluorescent signal, creating a rapidly growing fluorescence curve, until reagents are consumed below 

effective levels.  The point in the cycle at which the total fluorescence moves beyond a baseline threshold 

to observable levels is the quantitation cycle or Cq.  Since the fluorescence is directly linked to 

amplification, the more initial DNA template available, the earlier the fluorescence reaches observable 

levels (Heid et al., 1996).   I defined a universally optimal annealing temperature for all assays as the 

temperature associated with the lowest average Cq per dilution still not showing cross-species 

amplification for any of the eDNA assays as described by Taylor (2010).  I then ran all primer-probe sets 

at a range of concentrations (20 M/10 MMMMMMM(Table 2.3).  

Each primer concentration had four technical replicates per primer-probe set concentration.  I determined 

the most efficient concentration via standard curve analysis (Mikeksa & Dobrovic, 2009). I then re-ran 

the most optimal primer-probe concentrations at the universal optimal temperature (600 C), with 4 

technical replicates, as an additional confirmation and quantification of overall assay efficiency.  All 
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dilution series for standard curve analyses included six five-fold dilutions (31250, 6250, 1250, 250, 50, 10 

copies/l).   

Once I established effective lab eDNA amplification conditions, I further tested my assays for 

their ability to amplify eDNA in 1L field-collected water samples from sites with known target species 

presence (or absence).  These water samples were filtered in a DNA decontaminated lab via vacuum 

filtration through glass fiber filters (Whatman 1.5-micron pore, 5.5 cm diameter).  Potential eDNA on the 

filters was extracted with a Qiagen blood and tissue kit (Qiagen, Valencia, CA) and eluted to a volume of 

100 l in nuclease free water.  All qPCR amplifications of field samples were run with Taqman 

Environmental Master Mix 2.0 (Applied Biosystems) to reduce the potential for inhibition in field water 

samples and to ensure uniformity from lab optimization to field use (Jane et al., 2015).  Reactions were 20 

l in total volume, 10 l of Taqman Environmental Master Mix 2.0 (Applied Biosystems), 2.625 l of 

primer-probe at M M concentrations, 4.375 l of nuclease free water and 3 l of template.  

Primer-probe concentrations were 10 M - 5 M for all assays.  The thermal cycle protocol was initial 

denaturation at 950 C for 10 minutes followed by 50 cycles of denaturation at 950 C for 10 seconds, 

annealing and extension at 600 C for 30 seconds.   

 During a large field sampling survey (Chapter 3) I ran a series of six 5-fold dilutions of synthetic 

gene fragments corresponding to the target species DNA fragment set being tested.  This dilution series 

was run on all survey plates and served as both a positive amplification control and as a standard 

calibration curve relating the Cq of sample amplification to eDNA copy number.  However, the resulting 

57 standard curves also provide a means to verify eDNA assay consistency and qPCR efficiency.  I 

plotted the Cq values for each dilution against the log of the gene fragment concentration for each dilution 

series on each plate.  Since DNA template ideally doubles each cycle during amplification, the Cq values 

of known concentrations of template should vary by a known amount.  The slope of the linear regression 

of Cq versus the log of the gene fragment concentration, if the efficiency of the primer-probe set is 100%, 

should be -3.332.  The formula for calculating the efficiency is: -1+10(-1/slope). 
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Winter sampling device 

 During pilot testing, I failed to detect eDNA of one target species in 1L water samples from two 

waterbodies where the target is known to be present.  These initial tests consisted of cutting through ice to 

sample water at the lake surface.  I determined that the probable basis for these initial detection failures is 

the winter behavior of our focal species and the greatly reduced mixing of lake water during the winter ice 

period.  The Centrarchids I targeted primarily move to deep water habitats during winter and take up 

residence in patchily distributed high concentration areas.  Lakes with ice cover are protected from 

mixing by wind and experience a pattern of reverse stratification 40 C on bottom and colder temperatures 

at top), that could trap target species eDNA in deeper waters.  Hence, in line with prior recommendations 

that eDNA water sampling target probable habitats where species and their eDNA are concentrated 

(Eichmiller et al., 2014), I sought to employ a field sampling approach that would facilitate targeted 

sampling of deeper lake waters during the winter ice period.  However, no published eDNA studies exist 

outlining methods for sampling fish eDNA through winter ice, or at depths beyond a few meters, 

necessitating development of a novel winter sampling tool and protocol. 

 From a logistics standpoint, an effective tool for winter eDNA sampling must be portable, be 

deployable through ice, target water at designated depths, be resistant to malfunction under potentially 

freezing conditions, and present low risks of eDNA sample contamination.  Optimally, such a tool would 

also be widely available or inexpensive so as to facilitate future monitoring by agencies, NGOs or citizens 

groups with limited resources or technical capacity.  Currently, the most common alternative to direct 

bottle sampling of surface waters for eDNA analysis is use of a portable peristaltic water pump and tubing 

to draw a known volume of subsurface water through a filter apparatus in the field.  However, portable 

peristaltic pumps are not widely available and the combination of freezing conditions and long lengths of 

tubing (6 to 20 meters) would likely make such an approach mechanically unreliable.  Van Dorn bottles 

are commonly used in limnology to sample water at depth, but these devices are expensive and not widely 

available.  Likewise, deployment of a Van Dorn bottle in winter requires drilling a large hole in the ice 

(e.g., 20 cm diameter), necessitating use of a large diameter manual, gas or electric ice auger.  Long 
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lengths of tubing, Van Dorn bottles, and large mechanical ice augers were all further deemed to present 

challenges for efficient DNA decontamination when sampling multiple sites. I thus sought to develop a 

new sampling apparatus that could be constructed from inexpensive and widely available hardware and 

that can be deployed through holes in ice created with tools small enough to efficiently decontaminate.   

 

Figure 2.2: Winter sampling device 
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Results 

Primers, probes and assay conditions  

 The eDNA assays for Largemouth Bass (LMB), Black Crappie (BC), and the sunfish pair (SUN) 

utilize the mitochondrial gene cytb, while the Smallmouth Bass (SMB) assay uses the mitochondrial gene 

co1 (Table 2.1).  Initially I planned to design all assays using the cytb gene, which is the most commonly 

used gene for eDNA marker sets, but I had difficulty designing the SMB set on the cytb gene with desired 

Tm while still ensuring enough cross-species mismatches and maximum mismatches on the 3’ ends.  

Thus, I switched to the co1 gene for the SMB assay, which provided ample variation among related 

Centrarchids.  Subsequent lab testing validated the specificity of the final assays for all the target exotic 

Centrarchids when run under the specific qPCR conditions described below.  The sunfish assay 

effectively amplified DNA from both native sunfish species, but not the DNA of the other Centrarchid 

species in Maine, consistent with my goal of designing a universal native sunfish assay. 

 

Table 2.1:  Primer-Probe sets.  Forward and reverse primers and MGB probes for three target species, 

Black Crappie (BC), Largemouth Bass (LMB) and Smallmouth Bass (SMB).  Redbreast Sunfish and 

Pumpkinseed Sunfish DNA both amplified by SUN assay. 

Assay Forward Primer (5’-3’) MGB Probe (5’-3’) Reverse Primer (5’-3’) 

BC GCCTCTGCTTGGCCACCCAAAT GCAACTGCCTTCTCCTCCGTAGCA CCGCAACATTCATGCCAATCGG 

LMB CGCTGCCGCCACAGTAATCCAT CCCCCTGGGACTAAACTCTGACGC

CG 

TCGCAGCTCTCCTCATTGCCCT 

SMB GGGTGTCTCCTCCATCCTAGGGGCC TCAGACACCCCTGTTTGTTTGGTCC
GTCTT 

TTATCGCTCCCAGTCCTCGCTGC 

SUN CTCCTACAAGGACCTCCTCGGCTTT GCCCTCCTTATTGCCCTGACTTCCC

TGGCAC 

TGCTCGGGGACCCAGACAACTT 

 

 The universal annealing temperature identified for all assays was 600 C, and the overall thermal 

cycle protocol for further lab and field validation tests was: initial denaturation at 950 C for 10 minutes 

followed by 50 cycles of denaturation at 950 C for 10 seconds, annealing and extension at 600 C for 30 

seconds, following the Taqman Environmental Master Mix 2.0 suggested protocol and optimal annealing 

temperature determined through testing (Table 2.2).  I considered a positive amplification a curve 

beginning before cycle 45 (Wilcox et al., 2013). Although there was some evidence of variability among 

assays in optimal primer-probe concentrations, I found that all assays were at or near optimum efficiency 

with primer-probe concentrations of 10 M and 5 M, respectively.  The one exception to this were the 
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sunfishes, for which optimal primer-probe concentrations were somewhat higher (15 M and 5 M).  

However, given that the sunfish assay was develop for use as a positive field eDNA control for two 

common, and frequently abundant, species I opted to set the primer-primer probe concentrations of all 

species at the same 10 M and 5 M level, recognizing that doing so may make the sunfish positive 

control assay somewhat conservative. 

Table 2.2:  Annealing temperature optimization: Lowest Cq and average Cq from highest gene fragment 

dilution, Cross species amplification considered positive at any dilution.  Ideal temperature would be that 

with lowest Cq with no cross-species amplification. 

Assay Temp of 

lowest Cq / Cq 

Temp with 

species cross 

amplification 

Average Cq at 

60 

BC 57/26.12 <56/no amp 26.81 

LMB 56/22.54 58.4 23.13 

SMB 56/25.28 56 26.12 

SUN 56/21.11 56 21.70 

 

Table 2.3:  qPCR assay optimization:  Slope of linear regression of Cq versus log of gene fragment 

dilution, qPCR efficiency calculated via : -1+10(-1/slope).  Ideal primer-probe concentration selected as 

efficiency closest to 100% with r2 of 0.99. 

Assay [Primer M 

/Probe M] 

slope Efficiency % r2 

BC 20/10 -3.578 90.3 .98 

BC 20/5 -3.268 102.6 .99 

BC 15/5 -3.448 94.9 .99 

BC 10/5 -3.254 102.9 .99 

LMB 20/10 -3.539 91.7 .99 

LMB 20/5 -3.448 94.9 .99 

LMB 15/5 -3.257 102.8 .93 

LMB 10/5 -3.318 100.2 .99 

SMB 20/10 -3.597 89.7 .96 

SMB 20/5 -3.176 106.5 .99 

SMB 15/5 -3.447 95.0 .98 

SMB 10/5 -3.278 101.6 .99 

SUN 20/10 -3.209 104.8 .99 

SUN 20/5 -3.390 97.1 .99 

SUN 15/5 -3.249 102.9 .99 

SUN 10/5 -3.257 98.4 .99 

 

 I tested assay sensitivity by running six 5-fold serial dilutions of synthetic gene fragments (31250, 

6250, 1250, 250, 50, 10 copies/ul).  With this information, I ran standard curve analysis (Table 2.3), 

establishing ideal annealing temperature across species.  Utilizing the synthetic gene fragments, I 
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determined that the assays are all able to detect down to 10 copies of DNA per reaction (1/2 copy/l 

reaction).  I did not test lower concentrations of DNA due to accuracy of the pipettes used for dilutions.   

Table 2.4:  Field validation of primer-probe sets: Water samples collected from sites of known target 

presence. Expected results/actual result. +=positive result, -= negative result, NT=not tested. 

Assay Penobscot 

River 

Pushaw Lake Hermon Pond Mud Pond Floods Pond 

BC NT -/- +/+ -/- -/- 

LMB NT +/+ +/+ +/+ -/- 

SMB +/+ +/+ +/- +/- -/- 

SUN +/+ +/+ +/+ +/+ +/+ 

 

Winter sampling device and protocol 

In order to access the bottom water through a 2.54 cm diameter hole in the ice, I constructed a 

simple whole-water collection device (Figure 2.2) from PVC pipe, a conical rubber stopper and fishing 

gear.  The device consisted, from bottom to top, of a 57-gram lead torpedo sinker, a 2.2 cm diameter 

rubber stopper equipped with top and bottom steel eyelets, a 2.2 cm diameter PVC pipe which was .45 m 

in length, a 57 gram lead egg sinker, and 50m of 13.5 kg fishing line.  Between the bottom sinker and the 

rubber stopper I strung 1m of fishing line.  Remaining fishing line was attached to the top eyelet on the 

rubber stopper and threaded through the PVC pipe and egg sinker.  The end of the line with the torpedo 

sinker and stopper was then lowered down the ice hole until the sinker contacted the lake bottom at which 

time the PVC pipe was deployed down the hole on a taught line.  Once the PVC pipe was detected to seat 

itself on the stopper, by the sensation of impact on the line, the egg sinker was then dropped down the line 

to both seal the top of the tube and further seat the PVC pipe on the stopper.  Deployed in this fashion, the 

water in the sampler effectively represented a coring of the water column from approximately 1.0 to 1.5 

m from the lake bottom. The sample apparatus was then retrieved to the surface with the fishing line and 

emptied into a sterile collection bottle by lifting the top egg sinker and upending the contents.  Optionally, 

a simple spool/reel can be added to the apparatus to assist with line retrieval and management. All parts of 

this sampling system, including both the water sampler and auger bits used to drill ice, are readily DNA 

decontaminated by immersion in a 10% sodium hypochlorite (Chlorox bleach) bath in the field or lab, 

although the inexpensive nature of the sampler can also facilitate disposable use. 
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This sampling apparatus and protocol was subsequently confirmed to effectively collect 1 L water 

samples containing eDNA for the target species in sites with their known presence.  Moreover, while 

there is no a priori reason to expect water samples collected at a given depth with this apparatus should 

contain higher or lower concentrations of eDNA than water samples collected with other approaches, I 

conducted a paired sampling study to confirm this assumption (Appendix B). 

 

Standard curves 

 Synthetic gene fragments amplified generally as expected on all plates, though 6 wells out of 342 

failed to amplify.  Figure 2.3 shows the 57 individual standard curves, composed of 6 points each, as well 

as the mean standard curve in red.  The overall PCR efficiency across plates, based on the slope of the 

mean curve (-3.23), was estimated at 103.9%, with a 95% CI of 99.6-106.8% efficiency based on the 

variability among plates. 

 

Figure 2.3: Standard curves: All 57 standard curves from field sample plates. Log of gene fragment 

concentration on x-axis, Cq values in y-axis.  Amplification points in blue, mean standard curve in red. 
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Discussion 

 During the first phase of the project I successfully designed three qPCR primer-probe sets for 

single Centrarchid species and one set which amplifies eDNA from two native sunfish species.  All sets 

amplify short (96-150 bp) sequences of mitochondrial DNA from one of two genes, cytb or co1.  I 

assessed the primer-probe concentrations and thermal conditions of the PCR protocol for maximum 

efficiency of the target exotic species assays.  When I designed the primer-probe sets I targeted the same 

specific melting temperature for all assays.  Although some of the assays proved specific enough to be run 

at lower temperatures, I standardized the temperature across assays so they could be run on the same 

plate, leaving open the possibility for multiplexing.  The temperature standardization resulted in 

acceptable qPCR efficiencies.  I confirmed the efficacy of the assays and protocol with known tissue 

samples and environmental samples of known presence/absence.  Finally, I designed and tested 

equipment and a procedure for eDNA water sampling through ice.  In the rest of the discussion I will 

consider how my assays compare to assays available for other species and the utility of my winter 

sampling system for Centrarchid surveys in Maine. 

 Amplicon size affects qPCR efficiency; smaller amplicons are one of the factors that lead to more 

efficient qPCR reaction.  Given that qPCR requires a probe to sit between the forward and reverse 

primers, the amplicons for qPCR assays are often longer than those for standard PCR assays.  My assays 

produced amplicons between 96 and 150 base pairs in length.  These size ranges are comparable to 

amplicons produced from other qPCR based eDNA assays, which are generally 140-150 base pairs in 

length (Wilcox et al., 2013; Eichmiller et al., 2014; Hunter et al., 2015).  My assays in initial lab tests had 

efficiencies between 98.4% and 102.9% in the lab (Table 2.3) and 103.9% in the field, compared to other 

eDNA assays for other species which have published efficiencies between 86 and 99%, which include 

field tests (Eichmiller et al., 2013; Wilcox et al., 2013; Hunter et al., 2015; Lacoursière-Roussel et al., 

2015).  My assays were also able to detect DNA concentrations as low as 2 copies of DNA per reaction, 

which was the lowest detectable concentration reported by Wilcox (2013) and which approaches the 
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theoretical lower limits of detection.  Hence, even prior to field implementation, the assays designed in 

this study hold up well against others already tested in the field. 

 Although one of the main benefits of using the qPCR assays is the sensitivity and ability to detect 

very low concentrations of DNA, this can also be one of its greater risks.  Even a very small amount of 

contamination can lead to false positives. Field and lab controls are typically employed to detect any 

potential contamination, and careful selection of survey sites can also limit the likelihood of sampling 

eDNA introduced to the water body by outside means, rather than produced by fish present.  Winter 

sampling could in principle be one way to reduce the chance of outside contamination given that ice 

limits the amount of DNA introduced by animals, boats or angling gear as well as reducing inputs off the 

surrounding landscape.  I conducted basic validation of the ability of my assays to amplify fish eDNA in 

winter.  These winter sampling approaches were predominantly successful, but notably they were most 

successful when species movements and water conditions were taken into account.  Specifically, the SMB 

assay failed to amplify the target in two locations where I expected to find this species, Hermon Pond and 

Mud Pond. At the same time, my pilot field testing of my sunfish eDNA primer-probe set (and of other 

species assays), was successful at these same sites, suggesting that SMB eDNA would likely have been 

detected had it been present in samples.  This not only demonstrated the value of including positive field 

eDNA controls to rule out sample degradation, it led me to test Penobscot River water samples that were 

taken in the early fall of the preceding year when there was no ice and the fish were presumably more 

active and water better mixed. These samples yielded excellent results, proving the efficacy of the assay, 

but leading to some concern over how sampling should be conducted in winter to maximize the likelihood 

of encountering target species’ eDNA.   

My initial winter samples for winter testing were taken from the surface through holes cut in the 

ice, but the lack of water movement, deep water migration of Centrarchids in winter, and reverse 

stratification of lakes in winter, could easily limit the amount of eDNA that is encountered for SMB and 

other species in surface samples (Kirrilin et al., 2012; Peat et al., 2016).  Hence, I altered my sampling 

protocol to sample water near the bottom in 6-20 meters of water, where I believed SMB and other 
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Centrarchids are most likely to reside in winter (Peat et al., 2016).  The improved sampling scheme 

proved successful in follow-up tests (Pushaw Lake, Table 2.4).  Hence, it looks promising that the winter 

sampling tool and procedures developed here could open up the opportunity for effective winter eDNA 

water sampling for many other species and study systems, again provided the tool is deployed in a fashion 

that matches the biology of the species and hydrological processes operating during the sampling period. 

In Chapter 3, I actually quantify my level of success in sampling eDNA under these revised protocol 

conditions compared to typical surface water sampling in other seasons.   

Notably, although I designed my winter sampling device with through-ice sampling in mind, the 

need to sometimes sample deeper waters is not unique to winter and the tool itself could also be utilized 

for at-depth sampling in any season.  Most eDNA samples collected during open water periods are taken 

at the surface during periods when target species are expected to use that habitat or lake processes 

promote mixing, but that can be a narrow window of time for some species, such as the Lake Trout 

studied by Lacoursière-Roussel (2015). During the open-water season lakes frequently experience strong 

thermal stratification, and many species that make use of cooler hypolimnetic waters.  Such species could 

again be difficult or impossible to detect in surface samples during those periods. Although there are other 

water collection devices designed for sampling at specific depths, like Van Dorn bottles, the sampling 

device from this study has several advantages in that it is constructed from items easily purchased at a 

hardware store (<$10), can reliably sample at any desired depth, and it can be easily and fully 

decontaminated (or even disposed). 

Although the assays developed here have shown to be very efficient and able to amplify low 

concentrations of DNA, and I succeeded in developing a winter water sampling system, the utility of 

these tools for field surveys will depend on pairing them with an effective field survey scheme.  

Currently, there is no such thing as a standardized sampling scheme in eDNA studies.  Previous studies 

have taken as few as one and as many as twenty-four water samples per water body (Takahara et al., 

2013; Eichmiller et al., 2014).  Sample volumes are commonly 1 L, like my own, though some studies 

have used volumes as small as 15 ml while still being able to detect eDNA (Thomsen et al., 2012a; 
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Takahara et al., 2013; Eichmiller et al., 2014; Hunter et al., 2015; Lacoursière-Roussel et al., 2015).  

Beyond sample volumes, Hunter (2015) suggests that sample number is more important for detection of 

rare species than is qPCR replicate number.  They used hierarchical occupancy models to determine that 

increasing the number of samples increases the probability of getting a positive detection more than 

increasing the number of qPCR replicates based on their ability to detect radio-tagged Burmese Python 

(Python molurus bivittatus).  Considering the power of the assays to detect DNA concentrations as low 2 

DNA copies per reaction, and a lack of independence of qPCR replicates from a given sample extraction, 

many qPCR replicates may generally not be as useful as multiple samples.  However, Ficetola (2015), 

through simulation, found that increasing PCR replicates decreases the both false positive and negative 

amplifications, especially at very low concentration of DNA.  Eichmiller (2014) also found that eDNA of 

the common carp (Cyprinus carpio) was not homogenous throughout water bodies or the water column, 

but rather concentrated where fish were located.  In contrast, Lacoursière-Roussel (2015) sampled soon 

after ice out in the early spring, when the water column is well mixed and not yet thermally stratified and 

found that although Lake Trout (Salvelinus namaycush) eDNA was more concentrated where the fish 

were more abundant, it was found widely throughout any given lake.  These various results of prior 

studies emphasize that where, when and how many water samples are taken can be important to the odds 

of species detections, particularly with respect to where target species are likely to be located and the 

hydrology of systems during the sampling period.  Hence, while the results I present in this chapter 

describe the essential ground work of tool development necessary for future eDNA surveys, these 

findings are not sufficient in themselves to assess the full effectiveness of such tools. 

 In closing, my preliminary field tests showed that all designed assays are effective and selective 

at detecting their target species in real water samples and did not amplify in samples where the targets 

were known to be absent.  The winter sampling device allowed me to collect eDNA from target habitats 

near the bottom, when I was unable to detect it near the surface.  However, this basic survey consisted of 

only a few samples from five field locations.  As I have noted, a comprehensive eDNA sampling system 

requires more than just effective eDNA and water sampling tools, it requires a field sampling design with 
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the spatio-temporal statistical power to assure detection of target species at a specific confidence level.  In 

the next chapter I use an expansive field survey of lakes with reported populations of my target 

Centrarchids to demonstrate the real-world efficacy of my eDNA tools for exotic species monitoring and 

to provide quantitative recommendations of a field survey design with a desired statistical power. 
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CHAPTER 3 

A MULTI-LAKE AND MULTI-SEASON SURVEY OF EXOTIC CENTRARCHID 

ENVIRONMENTAL DNA IN MAINE 

 

 

Introduction 

Invasive fish species alter aquatic communities in many ways, such as causing changes to trophic 

interactions and nutrient cycling (Strayer, 2010; Strayer, 2012) and even eliminating native competing or 

prey species (Zaret & Paine, 1973; Pimentel et al., 2005).  The freshwaters of the state of Maine are 

widely regarded for their comparatively pristine conditions compared to waters throughout much of the 

remaining eastern United States.  A relatively large number of lakes and rivers support fisheries for 

regionally indigenous salmonids, including Brook Trout (Salvelinus fontinalis), Landlocked Salmon 

(Salmo salar), Lake Trout (Salvelinus namaycush) and Arctic Charr (Salvelinus alpinus) (Frost, 2001; 

Johnson, 2001; Boucher, 2004; Bonney, 2009).  These same waterways often support other fishes that are 

broadly considered representative of northern ‘coldwater’ fish assemblages, such as cusk (Lota lota) and 

rainbow smelt (Osmerus mordax).  In Maine, aquatic invaders have the potential to have strong negative 

effects on these sensitive and regionally significant fish communities, and the Maine Department of 

Inland Fisheries and Wildlife (MDIFW) considers invasive species introductions to be a top threat to the 

sustainability of existing fisheries (MDIFW, 2015).  Of particular concern in Maine are illegal 

introductions and range expansions of multiple species of the Centrarchidae, or the ‘sunfish’ family.  In 

this study, I conducted proof of concept eDNA surveys for three high-priority species of exotic 

Centrarchids, in two different sampling seasons (winter and spring), and used the resulting data to 

estimate eDNA detection probabilities and recommend robust field sampling designs for future eDNA 

surveys.  

Unchecked spread of Largemouth Bass (Micropterus salmoides), Smallmouth Bass (Micropterus 

dolomieu) and Black Crappie (Pomoxis nigromaculatus) poses serious threats to Maine’s native fishes.  



 

30 

 

Moreover, there are concerns that spread of these species creates conflicts with important fisheries.   For 

example, Largemouth Bass appear able to negatively impact valued Smallmouth Bass fisheries and Black 

Crappie may negatively compete with White Perch (Morone americana) and Yellow Perch (Perca 

flavescens);(Lucas, 2002).  These three species have been legally or illegally introduced to new waters in 

Maine at a faster rate than any other gamefishes.  Between 1868 and 2001 the state of Maine documented 

840 new introductions of the two bass species alone.  Continued high rates of illegal establishment of new 

populations of these species place a significant strain on MDIFW’s resources and capacity for early 

detection. 

Detection is the first critical step in managing the problems of invasive species.  In Maine, as with 

most places, detection most often begins with anecdotal accounts from the angling public.  Current 

approaches for confirming exotic species usually take the form of visual or capture surveys, including 

snorkeling, netting, angling or electrofishing.  These methods often require many person hours, promote 

avoidance behaviors in fish, and some cause harm or death to non-target fishes of recreational or 

conservation value.  These techniques can miss juvenile fish and can completely miss species with very 

low populations, such as those of recent invaders (Magnusson et al., 1994; Gu & Swihart, 2004).  

Because of the cost and low efficiency of these approaches, confirmation surveys themselves are often not 

conducted for less-credible reports.  Arguably, these major limitations of invasive species reporting and 

confirmation could be overcome by a much cheaper, sensitive and reliable detection system.   Indeed, a 

sufficiently inexpensive but effective tool might not only facilitate more effective confirmation of 

anecdotal reports of new introductions, but even permit a fundamental shift in strategy from reliance on 

incidental detections and confirmation, to one of widespread and consistent monitoring.  Environmental 

DNA (eDNA) is emerging as a species detection tool that could make this transition a reality.  

Environmental DNA detection has employed several different DNA amplification technologies, 

including standard two-primer PCR, quantitative PCR (qPCR) and next generation sequencing.  qPCR is 

the most sensitive, able to detect DNA down to only 2 copies of template DNA in a reaction, and requires 

fewer steps than standard PCR due to absence of gel visualization (Shokralla et al., 2012; Wilcox et al., 
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2013).  Regardless of the particular amplification technology, it is important that putative eDNA detection 

assays must be designed and evaluated for sensitivity and specificity. I described and conducted this 

design and evaluation processes in the preceding chapter.  However, like any other detection system, a 

fully integrated eDNA detection system depends on much more than just the sensitivity and specificity of 

the technological instrument itself.  All monitoring systems depend on a valid field sampling scheme that 

specifies the location, timing and extent of sampling needed to provide robust detection for a given 

species and environmental context.  This chapter focuses foremost on demonstrating, analyzing and 

refining such a field sampling scheme for non-native Centrarchids in Maine lakes.  

Once shed, eDNA has a limited period of availability for detection that depends upon the 

environment.  This window is influenced by physical, chemical and biological processes that degrade the 

DNA below fragment sizes that are identifiable, or that transport it into or out of the detection 

environment.  In standing water, like lakes and ponds, DNA leaves the water column relatively quickly, 

14-35 days, through degradation (e.g., UV light) and sedimentation (Dejean et al., 2011; Dunker et al., 

2016).  Water samples from surface and sub-surface waters of lakes and ponds thus generally contain 

eDNA of animals that were present within the past few weeks (Dejean et al., 2011; Eichmiller et al., 

2014).  Spatially, the concentration of eDNA likely depends primarily on where the target species are 

located, but also where the water moves it.  Differences in wind, currents and seasonal mixing may affect 

where eDNA will be encountered (Takahara et al., 2012; Takahara et al., 2013; Eichmiller et al., 2014; 

Turner et al., 2015).  Notably, prior studies of eDNA in aquatic systems have focused on relatively warm 

periods of the year when open water is easily accessible and fish are often most metabolically and 

behaviorally active. As such it is unknown how much eDNA is produced and how long it persists under 

colder winter conditions in regions with ice cover.  However, lakes and ponds in Maine are typically 

under ice cover for more than a third of the year and sampling during winter ice season might be 

hypothesized to provide several benefits, including slower breakdown of eDNA, foot access to sampling 

sites in large bodies of water, and potentially less risk of false positive detections. 
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False positive eDNA detections arise where the DNA of a target species is detected, but the 

species is not truly present at the time of testing.  One of the easier forms of false positives to control are 

those arising from accidental contamination of sampling or laboratory equipment with the target species’ 

DNA.  Risks of such contamination can be greatly reduced through rigorous decontamination procedures 

and use of procedural control samples that are able to signal when and where field samples are potentially 

affected (Willerslev & Cooper, 2005).  A more challenging form of false positive to control can arise 

from actual presence of the target species eDNA due to unaccounted transport mechanisms, such as 

movements between waterways by predatory birds or dumping of ballast, bilge or live-well water from 

boats that travel between waterbodies (Willerslev et al., 2003; Thomsen et al., 2012a). There are no 

procedural control samples that can be performed to signal such false positives, leaving only decisions of 

when and where eDNA is sampled as a means to limit these false detections. Sampling of water during 

winter ice conditions could be effective in this respect given the absence of boats and fish-eating birds 

during this period of the year.  However, this potential benefit must be weighed against associated factors 

that could increase risks of false negatives.  

All monitoring technologies must be concerned with false negatives, or the probability that a 

species is present but not detected with the sampling process.  Although the DNA amplification tools 

available for eDNA detection are very sensitive, they are not infallible. One form of false negative occurs 

from procedural errors in analyzing a water sample that actually did contain the target species eDNA, 

upon initial sampling.  This could arise from physical and chemical processes that degrade the eDNA or 

inhibit its amplification (Willerslev & Cooper, 2005; Herder et al., 2014), or from processing errors 

during filtering, extraction or amplification of the sample.  These false negatives can again be controlled 

by following rigorous sampling and processing procedures, using amplification chemistries that are robust 

to potential PCR inhibition, and by including positive controls that can signal such problems.  Most 

positive controls for eDNA have been limited to inclusion of known positive samples of the target 

species, or surrogate DNA sequences, at the amplification stage.  However, this does not fully account for 

potential failures at earlier stages of processing. One way to offset those earlier risks is to demonstrate 
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that it is possible to amplify the eDNA of other ‘non-target’ species from the same sample.  This is the 

basis for development of the sunfish eDNA assay I described in the preceding chapter.   

The other basis for false negatives relates to insufficient statistical power of a given field 

sampling design.  eDNA of rare or common species can be at extremely low concentrations and patchy in 

space and time (Thomsen et al., 2012a; Deiner & Altermatt, 2014; Erickson et al., 2016).  It is 

theoretically possible that eDNA of a species might be present at a given site at one point in time and not 

at another, be present at a given site and missed by a given water sample, or be present in a given sample 

but be missed during a given DNA extraction and amplification. These hierarchical error processes will 

determine the odds of detecting a given species when it is actually present in a waterbody, and thus 

determine the number of sites, samples and technical replicates required to attain a desired confidence in 

the absence of target species.  Ideally, such a statistical assessment of sampling intensity is determined 

using data from a field assessment that corresponds to the intended future management uses of the tool. 

Hierarchical occupancy models use observed cases of detection or non-detection of target species to 

estimate parameters associated with both the presence of a species and the probabilistic sampling process 

used to detect it (Mackenzie et al., 2002; Royle et al., 2006). Although used most often with traditional 

observation surveys, these models have recently been applied to eDNA detection (Schmidt et al., 2013; 

Hunter et al., 2015).  The resulting estimated probabilities of detection at the levels of sites within 

waterbodies, samples within sites, and qPCR replicates within samples can in turn be used to reduce risk 

of false negatives by establishing the amount and allocation of sampling effort needed to attain an overall 

probability of detecting a species when it is actually present. 

 Having developed lab assays and field sampling tools for detection of eDNA from three exotic 

Centrarchids (Chapter 2), my primary goal in this study was to provide a multi-season proof of utility for 

verifying previously confirmed or unconfirmed reports of illegal species introductions.  My secondary 

goal was to use the data gathered from these field surveys to assess their statistical power and provide 

quantitative recommendations for future field survey designs.  To meet these goals, I: 

 



 

34 

 

1) Conducted a field survey of 21 sites in Maine for eDNA detection of three Centrarchid species in 

winter (through the ice). 

2) Conducted a field survey of the same 21 sites in Maine for eDNA detection of three Centrarchid 

species during the period in and around spring spawning (open water). 

3) Compared detection patterns across seasons and MDIFW reports of different confidence of 

species presence.  

4) Used hierarchical occupancy models to estimate the actual power of my surveys and project the 

power of alternative sampling schemes. 

 

Methods 

Study area 

 This study included eDNA sampling for 21 reported Centrarchid introductions in 16 Maine lakes 

(Figure 3.4).  The lakes were chosen from a MDIFW database of confirmed and unconfirmed reports of 

exotic fish introductions.  Based on this database, and local biologist knowledge, reports were selected to 

represent one of three confidence categories: strong populations (species is abundant and often a targeted 

fishery), newly confirmed populations (report confirmed by MDIFW staff), and unconfirmed angler 

reports.  Each lake was sampled for at least one target species, though several were tested for multiple 

species in different categories, accounting for the difference between the number of lakes and number of 

reports for eDNA sampling (Table 3.1). 
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Table 3.1: Centrarchid eDNA survey sampling locations by lake, species and report category.  Midas 

number refers to numeric system of lake designations used in Maine.  Category corresponds to the 

category designated by MDIFW personnel or angler report status; ‘Strong’ being the target species is 

dominant within lake, ‘New’ being a newly confirmed target species (within 5 years) and ‘Unconfirmed’ 

being an angler report that has yet to be confirmed by IFW personnel.  Species are Smallmouth Bass 

(SMB), Largemouth Bass (LMB) and Black Crappie (BC). 

 

Lake Abbreviation Midas Area 

(km2) 

Mean 

depth (m) 

Deepest 

point 

Category Species 

Bog BOG 1258 3.4 5.2 14.0 Strong SMB 

Fields FIE 4282 2.1 4.0 9.5 Strong BC 

Eskutassis ESK 2250 3.6 3.4 12.2 Strong SMB 

Spectacle SPE 5410 0.6 9.5 30.5 Strong LMB 

Webber WEB 4857 5.0 5.5 12.5 Strong LMB 

Brewer BRE 4284 3.9 7.9 14.6 New SMB 

Bog BOG 1258 3.4 5.2 14.0 New LMB 

Chemo CHE 4278 5.0 4.0 7.3 New BC 

Eskutassis ESK 2250 3.6 3.4 12.2 New LMB 

Kimball KIM 5330 0.2 3.0 5.8 New SMB 

Mattanawcook MAT 2226 3.4 2.7 6.7 New BC 

Sabattus SAB 3796 8.0 4.2 5.8 New BC 

Webber WEB 4857 5.0 5.5 12.5 New BC 

China CHI 5448 16.0 8.5 26.0 Unconfirmed BC 

Davis DAV 4276 2.0 3.0 4.2 Unconfirmed BC 

Graham GRA 4350 38.0 5.2 14.3 Unconfirmed BC 

Graham GRA 4350 38.0 5.2 14.3 Unconfirmed LMB 

Pleasant PLE 1590 1.4 5.2 11.0 Unconfirmed LMB 

Scraggly SCR 9649 6.6 6.7 12.8 Unconfirmed LMB 

Spectacle SPE 5410 0.6 9.5 30.5 Unconfirmed BC 

Sysladobsis SYS 4730 22.0 7.6 20.1 Unconfirmed LMB 
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Figure 3.1: Centrarchid eDNA survey sampling locations by category.  Table 3.1 lists location names. 

 

 

 

eDNA water sampling and pre-processing 

Each lake was sampled from three sites.  The sites were distributed across multiple regions of 

each lake where possible, targeting species-preferred habitats during the season sampled.  Bass and Black 

Crappie inhabit deep water regions of lakes (e.g., 6-10 m) in the winter but spawn and feed in shallower 
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areas during spring/summer, and thus winter and spring/summer sampling sites rarely overlapped.  Using 

depth maps I selected the locations I believed the target species would be present during winter and 

spring. During field surveys, I confirmed depths at those locations or adjusted my sampling location to 

account for map inaccuracies.  At each site three 1 L water samples were taken 10-20m apart.  Hence, 9 L 

of water were sampled from each lake during each sampling session.  The specific manner of water 

collection was season dependent, as outlined below.   

Each 1 L water sample was collected into two 500 ml commercial drinking water bottles (Nestle 

PureLife), which were disposed of and never reused following extraction in order to avoid the potential 

for contamination.  Samples were kept on ice until filtering.  All samples were filtered the same day 

through 1.5 micron Whatman glass fiber filters (5.5 cm diameter) using a vacuum pump.  The filters were 

stored at -200 C until extraction, which occurred within 5 days of sampling.  DNA was extracted from the 

filters using Qiagen blood/tissue kits (Qiagen, Valencia, CA).  Extracted DNA was stored at -200 C until 

testing with the species-specific eDNA assays, which occurred within six weeks of the initial collection. 

 

Winter sampling 

 Winter sampling employed the deep-water sampling system described in Chapter 2.  Briefly, ice 

was cut with a standard battery powered hand drill and 2.54 cm diameter wood auger drill bit.  The deep-

water sampler, constructed from PVC tubing, was rigged to sample water from 1-1.5 meters off the lake 

bottom and deployed down these holes.  Water retrieved with the sampler was then poured into the 

collection bottles.  The volume of the water sampler was approximately 650 ml, so the sampler was 

repeatedly deployed to obtain a full sample.  The drill bit and sampler were in turn sterilized between 

lakes by fully submerging them in 10% bleach solution for a minimum of 10 minutes, then rinsing 

thoroughly with sterile bottled water. 

 Sampling locations were targeted as locations with depths between 6 and 10 m, where possible, 

using MDIFW lake depth maps, and depths were subsequently confirmed on site.  However, late season 

ice conditions constrained site selection in some cases, and some lakes had maximum depths of less than 
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6 m.  All sampling was conducted between 11 February and 4 March 2016, a period when all lakes were 

ice locked and safe to travel on and before full ice out in late winter. 

 

Spring sampling 

 All three target species begin spawning in the spring when water temperatures reach at least 15.50 

C (Jordan, 2001; Lucas, 2002).  Spring sampling locations were selected to target near shore habitats that 

fish occupy during the pre-spawn, spawning and post-spawning window.  These habitats are typified by 

relatively shallow water (0.5-3.0 meters), early season macrophyte growth, overhanging trees and fallen 

limbs.  Sampling sites were again distributed in multiple regions of a given lake to increase odds of 

detection of species that might not be fully established in all preferred habitats.  Sampling was conducted 

when the near shore water had reached 18.5-210 C and was conducted between 24 May and 11 June 2016.  

Surface water samples were collected directly into new commercial drinking water bottles (Nestle 

PureLife) by dipping each empty bottle into the lake.  All field equipment, including footwear and 

transport coolers were sterilized between lakes by washing with 10% bleach solution and then rinsing 

with DI water.  

In order to test any effect the winter sampling device may have made on DNA collection, I 

conducted duplicate spring sampling with the winter and spring sampling procedures at four lakes 

(Chemo Pond, Davis Pond, Fields Pond and Webber Pond).  Unlike my actual winter sampling that 

occurred at depth, however, the winter water sampler was deployed at the surface at the exact same 

location and date where I sampled surface water directly into bottles for my standard spring sampling. 

The resulting paired samples were then compared for eDNA concentrations (Appendix C). 

 

Summer sampling 

 Two lakes with low and inconsistent levels of target species detection in winter or spring were 

resampled in the summer to provide further potential confirmation.  The two lakes re-sampled were China 

Lake and Sysladobsis Lake.  These lakes were sampled on 1 and 2 July 2016.  The lakes were sampled 
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from three near-shore locations.  I selected new sites for their distance from boat launches (minimum 3.5 

km) as well as from the previous collection sites in an attempt to limit potential contamination from off-

site sources, as well as achieve a wider survey of the lake.  Water was collected as in the spring, directly 

into sample bottles from water surface. 

 

qPCR 

 Each lake’s extracted samples were run on a single 96-well qPCR plate on a Bio-Rad CFX96 

Real-Time System thermal cycler using the optimized primer and thermal conditions described in the 

preceding chapter.  Each extracted water sample (1 L volume) was run with four technical replicates per 

plate.  Reactions were 20 l in total volume, 10 l of Taqman Environmental Master Mix 2.0 (Applied 

Biosystems), 2.6 l of primer-probe, 4.4 l of nuclease free water and 3 l of template.  Primer-probe 

concentrations were 10 M/5 M for all assays.  The thermal cycle protocol was an initial denaturation at 

950 C for 10 minutes followed by 50 cycles of denaturation at 950 C for 10 seconds, annealing and 

extension at 600 C for 30 seconds.  Any well with Cq value prior to cycle 45 was considered a positive 

amplification of target DNA (Wilcox et al., 2013).  The baseline threshold was automatically calculated 

by the thermal cycler software between cycles 2 and 20.  Any lake-species combination that had no 

amplification on the first qPCR was run on a second identical plate.  Following qPCR, all plates were 

archived at 40 C in case of a need for follow-up analyses, including sequencing (see below). 

 

Controls 

 At each lake, three 1 L cooler blank samples, 1 per sampling location, were collected during field 

sampling by opening the bottle into the air and then recapping.  The cooler blanks were transported and 

processed alongside the field water.  A filtering control was created for each site by filtering 500 ml of 

deionized lab water through the same filter and apparatus used for field samples prior to filtering samples 

from a given site.  No-template controls were run on each plate by preparing wells with all necessary 
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qPCR chemistry but substituting DNA free water in place of an extracted sample. The above listed 

controls were all run with four technical replicates. 

In addition to the assays for the target species, one water sample from each site was run with four 

technical replicates using a sunfish primer-probe set that joint amplifies Redbreast Sunfish (Lepomis 

auritus) and Pumpkinseed Sunfish (Lepomis gibbosus) DNA as a positive field water control (see Chapter 

2).  In addition, Taqman Internal Exogenous Control (Applied Biosystems) was used in these same wells 

as an additional internal positive control (IPC) in order to test for PCR inhibition.  This multiplexing was 

made possible because the Sunfish and IPC probes were labelled with different fluorophores, 6-FAM and 

VIC, respectively, and because the IPC control is designed by the manufacturer to not compete with target 

DNA during amplification.  Each 20 l reaction had 2 l of 10x IPC mix and 0.4 l of 50x IPC DNA. 

Synthetic gene fragments were run with six five-fold dilutions (31250, 6250, 1250, 250, 50, 10 copies/l) 

on every plate to ensure all reagents and protocol were functioning optimally and were used to estimate 

qPCR efficiency via standard curve analysis.  

 

Sequencing 

 In order to confirm positive detections of the target species in lakes where the species was 

previously unconfirmed by MDIFW, I selected two positive samples (PCR plate wells) for DNA 

sequencing.  I purified the PCR products using Purelink PCR purification kit (ThermoFisher Scientific) 

and the samples were sequenced at the University of Maine DNA sequencing facility.  I used BLAST 

(Basic Local Alignment Search Tool; Genbank, www.ncbi.nlm.nih.gov/blast) to confirm the identity of 

the sequences against online databases. 

 

Analysis 

 I viewed qPCR results using Bio-Rad CFX Manager 3.1 (Bio-Rad Laboratories).  I checked each 

amplification curve for appropriate shape and reasonable cycle start point (23-45).  I exported the Cq 

http://www.ncbi.nlm.nih.gov/blast
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values, the estimated cycle number where fluorescence climbs above the baseline threshold, from the 

software, disregarding Cq values that were likely to represent analytical error on the basis of being 

unrealistic (i.e. those not between 23-45 cycles) or showing inappropriately shaped curves (e.g. spiked, 

multiple curves in a single well). 

 

Occupancy Models 

 I estimated the probability of detection for each lake with positive eDNA amplification using 3-

tiered hierarchical occupancy models.  The models I used are top-down models, where each level’s 

occupancy is dependent on the next higher level’s and are described in Mordecai (2011) and Kery & 

Royle (2016) as: 

 

Site presence/absence:   zi: zi ~ Bernoulli () 

Sample presence/absence: aij: aij|zi ~ Bernoulli (zi*) 

Replicate presence/absence: yijk: aijk|aij ~ Bernoulli (aij*p) 

  

 zi and aij are random variables of presence/absence for site i and sample j.  yijk is the 

detection/non-detection for replicate k, sample j and site i. is the unit level occupancy probability 

(site), which is the probability that target eDNA was present at a given site in the lake. is the next lower 

level occupancy probability (sample), the probability that eDNA was collected in a sample taken at site i.  

p is the detection level occupancy probability (qPCR replicate), the probability, that DNA was amplified 

in qPCR replicate k, given that eDNA was present at the site and collected in a sample.  Utilizing p, I 

calculated the cumulative probability (p*) that I amplified target DNA in K replicates, p* = 1-(1-p)K.  In 

this way I determined the power of my lab analysis design to detect eDNA in a given sample and to 

project how changing the number of technical replicates would influence this power. Similarly, I 

calculated the cumulative probability that eDNA was collected in J samples (J, in order 

to determine the power of my actual sample replication, and to project how changes in sample replication 

would influence the probability of detecting target eDNA at a given site.  Finally, I calculated the 



 

42 

 

cumulative probability of collecting eDNA in a given lake when sampling I sites, = 1-(1-)I.  The models 

were run through WinBUGS 1.4.3 software (Lunn et al., 2000) via R software program version 3.3.1 

(www.r-project.org). Code adapted from Kery & Royle (2016) available in Appendix D. 
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Results 

Table 3.2: Exotic Centrarchid eDNA survey detections summarized by number of positive sampling sites.  

Lake and species are categorized by MDIFW report confidence:  Strong = well established 

population/fishery, New = species presence recently confirmed by MDIFW staff, Unconfirmed = angler 

report that was not yet confirmed by MDIFW staff at the time of sampling.  Positive (Y) or Negative (N) 

detection outcomes are tabulated along with the number of lake sites (out of a maximum three per season) 

showing at least one positive amplification of the target species. 

   

 
 

Lake Midas Category Species Winter 

(Positives) 

Spring 

(Positives) 

Summer 

(Positives) 

Bog 1258 Strong SMB Y (1) Y (3)  

Fields 4282 Strong BC Y (3) Y (3)  

Eskutassis 2250 Strong SMB Y (2) Y (3)  

Spectacle 5410 Strong LMB Y (3) Y (3)  

Webber 4857 Strong LMB Y (2) Y (3)  

Brewer 4284 New SMB Y (3) Y (3)  

Bog 1258 New LMB N (0) Y (2)  

Chemo 4278 New BC Y (1) Y (3)  

Eskutassis 2250 New LMB Y (1) Y (3)  

Kimball 5330 New SMB N (0) N (0)  

Mattanawcook 2226 New BC Y (3) Y (2)  

Sabattus 3796 New BC Y (2) Y (3)  

Webber 4857 New BC Y (2) Y (3)  

China 5448 Unconfirmed BC N (0) Y (1) N (0) 

Davis 4276 Unconfirmed BC Y (1) Y (3)  

Graham 4350 Unconfirmed BC Y (1) Y (2)  

Graham 4350 Unconfirmed LMB Y (2) Y (3)  

Pleasant 1590 Unconfirmed LMB Y (1) Y (2)  

Scraggly 9649 Unconfirmed LMB N (0) N (0)  

Spectacle 5410 Unconfirmed BC N (0) N (0)  

Sysladobsis 4730 Unconfirmed LMB Y (1) Y (2) Y (2) 
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Winter sampling 

 Detections from all waterbodies and seasons of sampling are enumerated with respect to number 

of positive sampling sites in Table 3.2.  Samples from all introductions within the strong/well established 

category produced positive amplifications of target species DNA in at least a subset of sites, samples and 

qPCR replicates.  Six of eight newly confirmed introductions had positive amplifications.  Four of eight 

unconfirmed reports had clear positive amplifications. One unconfirmed site, Sysladobsis Lake, had a 

questionable amplification at the sampling site near the boat launch in winter.  There was an amplification 

curve, but it plateaued very early, and appeared similar to the IPC curves, resulting in an extremely high 

estimated eDNA copy number.  Based on these observations, I considered this amplification suspect.  Of 

the 21 lakes, 10 had no amplification on the initial plate and were run on a second identical plate.  Four of 

those resulted in positive amplifications on the second plate, Chemo Pond, Davis Pond, Graham Lake 

(BC) and Pleasant Lake. 

 

Spring sampling 

 All putative introductions within the strong/well established category showed positive 

amplification of target species DNA.  All but one newly confirmed introduction showed positive 

amplification for target species, one more than had in winter.  A single reported introduction in the newly 

confirmed introduction was negative in spring and winter, Kimball Pond, Vienna, Maine. Five of eight 

unconfirmed reports had clear positive amplifications, including Sysladobsis Lake. One unconfirmed site, 

China Lake, was negative in winter, but had a single positive amplification in spring, representing a single 

positive qPCR reaction out of 72 tested, however that positive amplification was from a sample collected  

near (>100 m) the public boat launch.   
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Summer sampling 

 I resurveyed the two lakes with different or questionable detections in winter and spring, during 

summer.  Sysladobsis Lake was resampled at three new independent locations.  Two of the three locations 

had positive amplification of target species DNA.  China Lake was similarly resampled, but none of the 

summer samples provided positive amplification of target species DNA. 

  

Standard curves and starting copy number 

Using the synthetic gene calibration curves relating gene copy numbers and fluorescence, I 

estimated the eDNA concentrations in my reactions and in turn the eDNA copy number in my positive, 1 

L field samples.  The average estimated starting copy number for winter samples was 355 copies / L 

sampled water.  The winter top and bottom ten estimated copy numbers in qPCR reactions for positive 

samples are summarized in Table 3.3, and covered a range from approximately 12.3 to 2901.8 copies per 

sample. 

Table 3.3: Winter top and bottom ten estimated starting copy number / 1 L sample.  Estimates made via 

standard curve analysis. 

Lake Content Category 

Estimated copy 

number 

Bog SMB Strong 2902 

Sabattus BC Newly Confirmed 2444 

Bog SMB Strong 719 

Chemo BC Newly Confirmed 515 

Webber LMB Strong 423 

Brewer SMB Newly Confirmed 394 

Eskutassis SMB Strong 348 

Eskutassis LMB Newly Confirmed 304 

Webber BC Newly Confirmed 281 

Mattanawcook BC Newly Confirmed 279 
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Table 3.3: Continued 

Graham LMB Newly Confirmed 44 

Brewer SMB Unconfirmed 41 

Graham LMB Newly Confirmed 38 

Mattanawcook BC Strong 37 

Fields BC Strong 36 

Spectacle LMB Unconfirmed 34 

Pleasant LMB Unconfirmed 34 

Graham LMB Strong 33 

Fields BC Strong 16 

Fields BC Unconfirmed 12 

 

The average estimated starting copy number for spring samples was 4598 copies/ L of sampled 

water.  The spring top and bottom ten estimated starting copy numbers are summarized in Table 2.4 and 

ranged from 12 to 96,620 copies/L.  Comparing the mean estimated copy numbers in positive samples by 

lake, there was support for significantly higher starting copy number in the spring compared to winter 

(paired two sample t-test: T = 15.327, d.f. = 935, p-value = <0.001).     

Table 3.4: Spring top and bottom ten estimated starting amplifiable eDNA copy number / 1 L sample. 

Estimates made via standard curve analysis. 

Lake Content Category 

Estimated copy 

number 

Webber BC New 96620 

Webber BC New 44294 

Webber LMB Strong 38132 

Webber LMB Strong 21701 

Webber LMB Strong 20685 

Webber BC New 19500 

Webber LMB Strong 17886 

Webber LMB Strong 16525 



 

47 

 

Table 3.4: Continued 

Webber BC New 14489 

Webber BC New 11954 

Pleasant LMB Unconfirmed 47 

Sysladobsis LMB Unconfirmed 47 

Eskutassis SMB Strong 39 

Eskutassis LMB Newly Confirmed 35 

Chemo BC Newly Confirmed 27 

Chemo BC Newly Confirmed 22 

Graham BC Unconfirmed 20 

Bog LMB Newly Confirmed 13 

Graham BC Unconfirmed 13 

Graham BC Unconfirmed 12 
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Figure 3.2:  Estimated starting amplifiable eDNA copy number / 1L water sample by lake and season.  

Boxes represent 25th and 75th quartiles, black band represents 50th quartile.  Whiskers represent full 

range of values excluding outliers.  Green boxes are spring estimates, blue boxes are winter estimates. 

 

Sequencing 

 Two positive wells from each unconfirmed introduction were sequenced at the UMaine DNA 

sequencing facility.  BLAST results matched 99-100% for target species in all but one plate.  The initial 
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Sysladobsis Lake positive from winter was a poor match (66%) for the Largemouth Bass target species, 

however the top returns were all Centrarchid species with Largemouth being the best fit, suggesting this 

could have been due to a poor sequencing run associated with low DNA concentration. 

 

Table 3.5: Sequencing results from unconfirmed sites.  Sequences of PCR products from two wells per 

previously unconfirmed site.  All sequences high percent match for target species except Sysladobsis 

spring (WA12). 

Lake/Well Species Targeted Species Match Percent Match 

Davis/A1 Black Crappie Black Crappie 99 

Davis/B4 Black Crappie Black Crappie 99 

Graham/B10 Black Crappie Black Crappie 99 

Graham/C1 Black Crappie Black Crappie 99 

Graham/B6 Largemouth Bass Largemouth Bass 99 

Graham/A2 Largemouth Bass Largemouth Bass 100 

Pleasant/A5 Largemouth Bass Largemouth Bass 99 

Pleasant/C6 Largemouth Bass Largemouth Bass 100 

Sysladobsis/A9 Largemouth Bass Largemouth Bass 99 

Sysladobsis/B8 Largemouth Bass Largemouth Bass 99 

Sysladobsis/WA12 Largemouth Bass Largemouth Bass 66 

 

 

Controls 

 No field, equipment or non-template controls showed any amplification.  Synthetic gene 

fragments amplified generally as expected along standard curves, though there were 6 wells in total (out 

of 342) with no amplification.  Sunfish positive controls amplified at least one sample in all sites except 

Sabattus Lake during winter.  Means of the winter and spring IPC Cq values were 27.1 and 27.2, and 

standard deviations were 1.78 and 1.92, respectively.  A paired t-test comparing IPC Cq values across 

seasons was non-significant (T = -0.7056, d.f. = 596.35, p = 0.48), indicating that there was not a 

difference between the two seasons.  Tukey’s tests across surveys within seasons indicated that two 

surveys had higher Cq values than the remainder in winter and the same two had higher values in spring 

(Fields Pond and Graham Lake).  These larger Cq values suggest potential PCR inhibition in these waters, 

but this did not appear to influence detection in those cases as they were both positive for their reported 

target species. 
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Occupancy Models 

 

Table 3.6: Winter occupancy model probability estimates. Posterior mean and 95 % confidence intervals 

(95% CI) for all lakes with positive amplification of target eDNA. is the average probability of eDNA 

presence at site within lake. is the average probability of collecting eDNA in a single sample.  p is the 

average probability estimate of detecting eDNA in a qPCR replicate. 

 

Lake Species  95% CI  95% CI p 95% CI 

BOG  SMB 0.448 .077-.907 0.534 .013-.985 0.426 .008-.990 

BRE  SMB 0.801 .398-.994 0.801 .390-.994 0.61 .192-.936 

CHE  BC 0.472 .081-.921 0.409 .011-.983 0.413 .012-.988 

DAV BC 0.235 .006-.750 0.472 .002-.973 0.498 .024-.977 

ESK  LMB 0.684 .224-.985 0.456 .009-.967 0.313 .007-.868 

ESK  SMB 0.657 .206-.981 0.498 .009-.989 0.422 .059-.924 

FIE  BC 0.801 .397-.994 0.491 .007-.994 0.395 .047-.936 

GRA  BC 0.474 .076-.936 0.41 .010-.982 0.37 .011-.987 

GRA LMB 0.647 .205-.977 0.598 .102-.990 0.348 .005-.933 

MAT  BC 0.797 .407-.993 0.8 .407-.993 0.385 .120-.817 

PLE  LMB 0.481 .078-.940 0.41 .012-.983 0.369 .011-.986 

SAB  BC 0.668 .223-.982 0.53 .095-.960 0.35 .006-.905 

SPE LMB 0.802 .402-.994 0.631 .071-.994 0.387 .037-.956 

WEB  BC 0.664 .221-.982 0.502 .089-.942 0.47 .062-.918 

WEB  LMB 0.634 .207-.969 0.669 .105-.992 0.343 .004-.952 

 

 

 

Table 3.7: Spring occupancy model probability estimates. Posterior mean and 95 % confidence intervals 

(95% CI) for all lakes with positive amplification of target eDNA. is the average probability of eDNA 

presence at site within lake. is the average probability of collecting eDNA in a single sample.  p is the 

average probability estimate of detecting eDNA in a qPCR replicate. 

 

Lake Species  95% CI  95% CI p 95% CI 

BOG  LMB 0.631 .204-.967 0.569 .086-.991 0.704 .281-.995 

BOG  SMB 0.803 .393-.995 0.802 .397-.994 0.908 .685-.998 

BRE  SMB 0.801 .413-.994 0.803 .409-.994 0.864 .559-.998 

CHE  BC 0.804 .409-.994 0.802 .393-.994 0.795 .343-.998 

DAV  BC 0.611 .190-.951 0.656 .095-.991 0.858 .540-.996 

ESK  LMB 0.802 .398-.994 0.563 .071-.969 0.47 .195-.857 

ESK  SMB 0.798 .402-.994 0.8 .388-.994 0.749 .440-.975 

FIE BC 0.798 .401-.994 0.802 .400-.995 0.865 .438-.998 

GRA  BC 0.659 .227-.980 0.519 .095-.958 0.407 .053-.913 

GRA  LMB 0.8 .390-.994 0.8 .162-.994 0.819 .442-.997 

MAT  BC 0.652 .211-.979 0.493 .008-.989 0.481 .064-.929 
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Table 3.7: Continued 

PLE  LMB 0.802 .402-.993 0.428 .071-.967 0.469 .058-.920 

SAB  BC 0.795 .380-.994 0.802 .396-.994 0.864 .452-.998 

SPE  LMB 0.803 .393-.995 0.802 .395-.994 0.908 .685-.998 

SYS  LMB 0.655 .214-.978 0.491 .087-.927 0.312 .006-.798 

SYS  LMB 0.469 .081-.925 0.542 .011-.986 0.353 .088-.899 

WEB  BC 0.8 .401-.994 0.734 .204-.993 0.851 .089-.998 

WEB  LMB 0.803 .393-.995 0.802 .395-.994 0.908 .084-.998 

 

 

 

 

Figure 3.3: Estimated cumulative probability of target eDNA presence at sites in a lake.  Each point 

represents a survey (lake and species) specific estimate for a positive detection within the original 

confirmed or unconfirmed categories.  The left panel is for surveys performed in winter and the right 

panel is for surveys conducted in spring.  The fit lines are the mean probabilities across surveys and the 

gray shaded area is the 95% confidence bound for all surveys.  In winter two lines are fit, one for the 

samples where only 4 qPCR replicates were required for detection and one where 8 qPCR replicates 

were performed (rerun of plate).  The black horizontal line represents a 95% probability of eDNA at the 

site. 
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Figure 3.4: Estimated cumulative probability of collecting target eDNA in samples.  Each point 

represents a survey (lake and species) specific estimate for a positive detection within the original 

confirmed or unconfirmed categories.  The left panel is for surveys performed in winter and the right 

panel is for surveys conducted in spring.  The fit lines are the mean probabilities across surveys and the 

gray shaded area is the 95% confidence bound for all surveys.  In winter two lines are fit, one for the 

samples where only 4 qPCR replicates were required for detection and one where 8 qPCR replicates 

were performed (rerun of plate).  The black horizontal line represents a 95% probability of eDNA at the 

site. 

 

 

Figure 3.5: Estimated cumulative probability of detecting target eDNA in a qPCR replicates.  Each point 

represents a survey (lake and species) specific estimate for a positive detection within the original 

confirmed or unconfirmed categories.  The left panel is for surveys performed in winter and the right 

panel is for surveys conducted in spring.  The fit lines are the mean probabilities across surveys and the 

gray shaded area is the 95% confidence bound for all surveys.  In winter two lines are fit, one for the 

samples where only 4 qPCR replicates were required for detection and one where 8 qPCR replicates 

were performed (rerun of plate).  The black horizontal line represents a 95% probability of eDNA at the 

site. 
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 Plotting the cumulative probability curves for all positive surveys at the site, sample and qPCR 

level showed that I had reasonably high cumulative probability (>75% to >97%) of collecting eDNA 

when sampling three sites per lake, collecting eDNA in a sample when taking three samples at a site, and 

of amplifying eDNA with four qPCR replicates per sample.  However, there were some surveys with 

lower estimated detection probabilities, including those surveys in which the target species was only 

detected with a second qPCR plate that brought the total replicates to eight instead of four.  However, 

even in these cases cumulative probabilities were estimated in the range of 54% to >67% suggesting 

detection was still in my favor.  Ultimately, the lower ranges on detection probabilities were similar 

across seasons for a given number of samples or qPCR replicates, consistent with functional limits of 

detection for low concentration eDNA samples regardless of season.  However, mean detection 

probabilities were generally higher in spring than winter at all levels (by 10-30%), and the lower range of 

detections was markedly higher (by 25%) at the site level in spring than winter indicating fewer sites may 

need to be surveyed in spring than in winter for the same level of confidence. 

Discussion 

In this study I surveyed 16 Maine lakes during two seasons for 21 reported introductions of non-

native Centrarchids using newly developed eDNA assays.  The qPCR assays were highly effective at 

detecting my target Centrarchid species, Largemouth Bass, Smallmouth Bass and Black Crappie.  I 

further put to full use my winter sampling protocol and device for through-ice collections and proved its 

efficacy at collecting eDNA.  I identified the presence of exotic species in all lakes where they were 

reported to be abundant, in most lakes where they were newly confirmed, and in five lakes where they 

were only suspected from unverified angler reports.  Although there was a significant difference in eDNA 

concentrations, and number of positive samples collected between winter and spring seasons, this 

translated into only modest differences in overall presence detection with the particular sampling design I 

employed.  I ran occupancy models for three levels of sampling detection using my data and determined 

that this modest difference between seasons was due to my having fairly high odds of species detection 
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overall, except in sites with the lowest eDNA and presumptive species abundance. In the remaining of the 

discussion I consider the relative utility and efficacy of winter and spring sampling, how my sampling 

design compares to others used for eDNA detection, and make recommendations for future eDNA 

sampling designs based on my quantitative estimates of detection probabilities and the need to control 

overall rates of false negatives. 

When considering that a single positive amplification constituted detection of target species DNA, 

there was relatively little difference between the two seasons in overall inferred presence or absence at 

each location. Given that spring and summer sampling are the norm, this is perhaps made clearest by 

examining how winter sampling results differed.  There was a much higher estimated starting DNA copy 

number in spring than in winter, suggesting that the fish are more active or that the DNA is more 

available to sample; however, the higher concentration of DNA didn’t make an overall difference for 

detection at the lake level.  All surveys that were negative in spring were also negative in winter.  

Likewise, the vast majority of surveys that were positive in spring were also positive in winter, suggesting 

real presence of the species. Nominally, exceptions to this included Largemouth Bass in Bog lake, Black 

Crappie in China Lake, and Largemouth Bass in Sysladobsis.  However, a subsequent negative summer 

survey makes it uncertain that the single spring positive detection in China Lake was real, and the 

assumption of a negative detection in winter for Sysladobsis only holds if the one very questionable 

winter positive there is discounted.  Even the case of negative Largemouth Bass detection in Bog Lake, a 

newly confirmed introduction, may have more to do with field sampling constraints than reduced winter 

detection capabilities.   

When sampling for eDNA, targeting where the fish are located within water bodies increases the 

likelihood of positive detection (Eichmiller et al., 2014), particularly if there is little water movement to 

redistribute eDNA elsewhere.  This may be particularly important in the winter, when my target species 

are much less active and widespread under the ice. The ice conditions on Bog Lake did not allow for foot 

access across the whole lake and several roads that access the lake were unplowed when I was sampling, 

restricting my sampling to only a single basin.  During the spring, I was able to sample the lake more 
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broadly and amplified both LMB and SMB as well as SUN, as expected.   This result emphasizes that 

foot access over ice to sampling sites can be both an advantage and constraint on winter sampling. 

However, spring and summer surveys are not without their own logistical constraints.  China Lake, is 

a large lake near a relatively developed area in Southern Maine.  It is a very popular lake with boaters and 

anglers.  I found no amplification of the target species, Black Crappie, in winter.  However, in the spring I 

amplified target eDNA in one sample, from a location near one of the public boat launches.  I resampled 

the lake at three new locations, careful to choose spots as far from public access points as possible, and 

had no further amplification.  Hence, the single amplification could have been a false positive associated 

boat traffic carrying eDNA from another location with BC.  Surveying in winter likely greatly reduces the 

risk of this sort of potential contamination.   However, I cannot conclude that this single detection was a 

false positive due to boats.  Given there was a prior, unconfirmed, angler report for Black Crappie in this 

lake, and that the Lake is quite large, at 1.6 km2 in area with a maximum depth of 26 m, there is certainly 

potential for a small population of Black Crappie and further eDNA surveys are recommended here.  

Nonetheless, this does not undermine the key point that the open water season is associated with greater 

uncertainty of potential false positives from eDNA transport due to anglers, birds, runoff, or other 

sources, than winter sampling. 

Although winter and spring sampling provide fairly consistent species detections at the overall lake 

level, there were clear differences between the two with respect to numbers of sites where the species 

were detected. Winter surveys frequently resulted in one or two (out of three total) fewer sites with 

detections than spring surveys.  Again, this might be anticipated on the grounds that my target species 

tend to concentrate in specific deep water locations in the winter but are more widely ranging in spring 

and summer (Peat et al., 2016).  Likewise, lake waters are much more extensively mixed by wind and 

other processes in the spring than during the winter ice period.  This difference in number of sites where 

eDNA is likely to be detected could be considered a plus or minus for confirming angler reports of fish 

introductions.  On the one hand this patchy distribution of the fish and their eDNA can reduce the odds of 

encountering the target species if too few sites are sampled in a survey without any additional 
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information.  On the other hand, if an angler reports a capture of a species from a particular part of a lake 

in winter, there are good odds that subsequent water sampling at that site will turn up that species’ eDNA.  

In contrast, there are greater odds in spring and summer that a few individuals of a target species might 

have since moved elsewhere or their eDNA diluted by water mixing reducing detection success.  If the 

goal, however, is to apply eDNA for pro-active detection in waters without reports, rather than to confirm 

angler reports, there may be a general detection advantage to spring surveys, given the relative ease of 

surface water sampling at more sites, including samples taken from shore.  That said, if personnel time is 

at a greater premium in the spring or summer, winter surveying can be effective, particularly if sites are 

selected carefully and more sites are targeted with more samples and replication to offset lower detection 

probabilities. 

This brings us to the question of how much sampling effort should be invested for a robust eDNA 

survey and how best to allocate that effort between sites, samples at sites and or qPCR replication.  One 

starting place for this consideration is to use other published surveys as models of what has or has not 

been effective in various contexts.  This is the approach I used to establish the surveys described in this 

study.  There is no standardized sampling scheme for eDNA surveys in general and previous studies have 

varied widely in every level of sampling and testing.  Some variation is related to hydrology or biology of 

the species.  Sampling in rivers, for example, should follow a different plan than sampling in lakes or 

swamps (Pilliod et al., 2013; USFWS, 2013), and sampling sedentary resident species presents different 

spatiotemporal considerations than sampling migratory species.  Since I sampled resident species in lakes, 

I concentrated on published studies of species inhabiting standing waters, although even within that group 

sampling has varied substantially.  The number of sites sampled by various investigators ranges from as 

few as one to as many as 24 (Thomsen et al., 2012a; Takahara et al., 2013; Eichmiller et al., 2014; 

Lacoursière-Roussel et al., 2015).  However, studies with a large number of sites often had a goal of 

mapping fish densities (Eichmiller et al., 2014; Ericson et al., 2016) or inferring abundances (Lacoursière-

Roussel et al., 2015), rather than just species detection.  



 

57 

 

Since my goal was to confirm prior species reports, I hypothesized that fewer sites would be 

sufficient.  Likewise, from MDIFW’s perspective, the cost effectiveness and value of eDNA surveys, as 

an alternative to other survey methods to confirm exotic species reports, would be much less if it required 

large field sampling efforts.  Notably, some of the water bodies I sampled were very small (0.2-0.6 km2), 

whereas others were very large (over 36 km2) and three samples may be less adequate for larger 

waterbodies than smaller ones, particularly during the early phases of population establishment.  

However, given that a major goal of my study was also to estimate detection probabilities from 

hierarchical occupancy models, I opted to set my site sampling effort at a fixed number of sites across all 

the waterbodies I tested.   

As with numbers of sampling sites, there is considerable variation among published studies in the 

number of samples taken per site.  Indeed, many studies have sampled only once per site in a water body 

(Takahara et al., 2013; Eichmiller et al., 2014; Erickson et al., 2016; Lacoursière-Roussel et al., 2015).  

However, single samples per site would be a risky prospect when surveying only three sites per 

waterbody.  Moreover, I a priori suspected that eDNA might be very low in some sites with unconfirmed 

reports, was uncertain about the amount of eDNA that might be encountered in winter, and wanted to 

apply hierarchical occupancy models that depend on replication at all sampling levels, so I chose to 

sample thrice per site, following Hunter (2015) and Thomsen (2012a).  Sample volumes are somewhat 

more standard across studies, with 1 L samples being the most common for studies using filtering of 

whole water (Takahara et al., 2013; Eichmiller et al., 2014; Hunter et al., 2015; Lacoursière-Roussel et al., 

2015), although some studies have taken as little as 50 ml or 15 ml of water (Thomsen et al., 2012a ; 

Erickson et al., 2016).   

Finally, at the level of number of qPCR replicates per field sample, I ran four replicates per water 

sample initially, and then ran another four samples for a given lake-species combination if no replicates 

were positive across all sites and samples.  This iterative approach to qPCR replication reflects my study 

goal of confirming prior angler reports and represented a cost effective means to allocate lab resources 

where they were needed most, namely reports where the species and its eDNA are likely least abundant 
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and most difficult to amplify.   For comparison, many of the qPCR studies that served as a model for my 

surveys ran three technical replicates per water sample (Takahara et al., 2012; Thomsen et al., 2012a; 

Eichmiller et al., 2014; Hunter et al., 2015), but some studies have run as many as twelve replicates, 

particularly those using standard PCR instead of qPCR (Herder et al., 2014; Jerde et al., 2011). 

 While prior studies can serve as models for initial survey design, and my surveys compare favorably 

in terms of replication, the most informative way to evaluate the sufficiency of a survey is to estimate its 

actual statistical power using the empirical data.  In my study I used three-tiered hierarchical occupancy 

models to estimate detection probabilities at the three levels of sampling: the probability that eDNA is 

present a site within a lake where the species occurs, that eDNA is collected in a sample at that site, and 

the probability that eDNA is detected in a qPCR replicate of positive sample.  Many traditional field 

surveys and early eDNA surveys failed to consider imperfect detection (Gu & Swihart, 2004; Willoughby 

et al., 2016).  Mordecai (2011) described the 3-tiered hierarchical Bayes occupancy model used to model 

not only base occupancy, but temporal occupancy (at the time of survey) and detection for the Louisiana 

waterthrush (Parkesia motecilla).  Although this study relied on sight and sound observations of target 

birds, the same model is easily relatable to eDNA detection data.  The first application of such a 

hierarchical model using eDNA was by Schmidt (2013) to reanalyzed data from a set of twenty ponds 

surveyed genetically for the chytrid fungus Batrochochytrium dendrobatidis.  However, more analogous 

to my study, Hunter (2015) conducted an eDNA survey in southern Florida for the invasive Burmese 

Python (Python molurus bivittatus), and used these occupancy models to make estimate detection 

probabilities at each level of the sampling process. They concluded that although they often failed to find 

eDNA of their target species in a single sample, they nearly always found it in at least one of the three 

samples taken per site, suggesting that multiple samples greatly increased the probability of detection and 

that, in their case, was the level with the most influence on overall detection.  

 I employed an occupancy model framework very similar to Hunter (2015) and to Kery and Royle 

(2016) to estimate the above detection probabilities for each lake-species survey where I had at least one 

positive qPCR result.  Because of the substantial number of lakes and multiple target species, I had a large 
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number of independent survey estimates of these probabilities compared to prior studies, and presumably 

even greater ability to capture the range of likely detection conditions than these prior studies.  I modeled 

the seasons separately and found there was a gap in detection probability on all levels that might not be 

fully apparent from the overall patterns of lake-level detections. Specifically, mean detection probabilities 

tended to be overall lower in winter than spring.  Indeed, examining my own field survey design against 

the cumulative probability curves estimated by my occupancy models, it appears that my spring sampling 

had very high power to detect my target species, whereas my winter sampling may not have.  In spring, 

my mean probability of amplifying eDNA in at least one of four qPCR replicates was 98.7%, my mean 

probability of eDNA being present in at least one of three samples per site was 93.0%, and my mean 

probability that eDNA was present at a minimum of one of my three sites was 90.0%.  By comparison, 

four qPCR replicates would on average only provide 86.0% probability of amplification in winter.  Even 

with the eight qPCR replicates I employed for a subset of sites without initial detections, my detection 

probability only increased to 88.0%.  At the sample level, three samples per site only provided a mean 

cumulative probability of about 92.2% for sites where eDNA concentrations had been high enough to 

employ just four replicates, and this dropped under 80.1% at sites where eight qPCR replicates proved 

necessary.  Finally, at the effort level of three sites per lake, those surveys where 4 qPCR replicates had 

been adequate proved to have a cumulative amplification probability of 95.0%, suggesting three sites was 

on average suitable for detection.However, for those surveys requiring eight qPCR replicates, the mean 

cumulative probability for three sites was only 78.0% odds of detecting the target species.  Hence, while 

detections were still generally in my favor for winter samples, there were non-insignificant odds that I 

would have missed the species in some sites.  The fact that I increased my qPCR replicates to eight for 

sites without initial detections may have helped offset some of this loss of power, but the fact that some 

surveys were positive in spring/summer when they were not, or were questionable, in winter fits this 

outcome as does the larger number of sites per waterbody with positive detections in spring/summer than 

in winter. 
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With this in mind, failure to detect Black Crappie in Spectacle Pond, Largemouth Bass in Scraggly 

Pond and Smallmouth Bass in Kimball Pond during both winter and spring surveys could reflect false 

negatives due to limited power, but those failures could also represent real conditions in those 

waterbodies.  Both Spectacle and Scraggly Ponds represent unconfirmed angler reports and such reports 

are prone to a reasonably high degree of uncertainty due to identification errors. In contrast, Kimball Pond 

is a location where MDIFW did previously confirm presence of Smallmouth Bass by capturing a single 

large adult fish after during spring trap-netting in 2013.  No other bass were caught in subsequent years 

by MDIFW personnel, nor did they receive any further reports from the public.  Given the small size of 

Kimball Pond, at just 0.22 km2, MDIFW concluded that removal of that one fish had likely eradicated 

Smallmouth from the system.  Consistent with this, the very small size of Kimball Pond makes it 

somewhat unlikely I would have missed sampling Smallmouth eDNA in two distinct seasons were it 

actually present.  In this respect, my failure to detect Smallmouth Bass eDNA in Kimball Pond could be 

considered a confirmation of that eradication effort. Indeed, other studies have recently shown that eDNA 

can be used to confirm successful species eradications (Dunker et al., 2016). 

Nonetheless what might a more optimal survey design look like based on the findings from my 

occupancy models.  To answer that question, it may be informative to look at the range of detection 

probabilities when considering conservative survey designs.  The logic for this is simply the high 

inferential priority often placed on having high confidence of detection under even suboptimal conditions. 

Hence, while the probabilities of a positive qPCR replicate were often much higher in spring than winter 

samples, the lower ranges of these estimated detection probabilities were actually very similar.  Using 

these lower bounds, a conservative study design would include between seven to eight qPCR replicates.  

The same lower bound similarity was seen across seasons for the probabilities of presence of eDNA in a 

given sample at a site, with between about five and six samples providing greater than 95% probability of 

collecting eDNA.  Finally, at the level of sites, the probability of encountering eDNA was similar for high 

detection probability sites, but ranged much lower for winter detections.  This finding is consistent with 

fish, and their eDNA, being more patchily distributed and localized in lakes during winter.  However, 
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estimates from the lowest detection probability survey in winter suggest that at least ten sites would be 

needed to have greater than 95% probability of sampling eDNA in that system.  All that said, it should be 

kept in mind that these levels of replication are based on worst case estimates of detection probabilities 

from our data and might be excessive given that the lower bound estimates we obtained were often 

associated with much larger estimation error.  A pragmatically better empirical recommendation for 

sampling might come from using the mean cumulative probability curve from just the subset of 

occupancy model fits from actual surveys of unconfirmed angler reports, as those are likely to be typical 

of the types of situations MDIFW will face in the future.  Based on this subset of surveys, a 

recommendable design for >95% confidence at the qPCR replicate, sample and site levels would be 4, 3 

and 4-5 in spring/summer, respectively, versus 7, 5 and 7 for winter. 

Through this study I demonstrated the efficacy of my qPCR assays and winter sampling technique at 

detecting Centrarchids in Maine waters, including positively detecting them in five previously unknown 

locations.  Although there are logistical challenges with winter sampling, including extra gear that 

requires full sterilization, potentially lower mean eDNA abundance with greater eDNA spatial 

heterogeneity, and limitations due to weather conditions, the technique also offers a viable alternative to 

summer/spring sampling that reduces potential risks of false positives from outside sources.  My 

occupancy models have shown that, although I was successful at detecting targets in most waterbodies, 

and that my sampling had relatively high power to detect my target species in many of my surveys, 

particularly in spring, the design I employed could in principle be improved upon by modestly increasing 

the number of sites sampled and samples per site, and by using an adaptive qPCR replication approach 

that increases the number of replicates when initial assays are negative.  These modifications are likely to 

be most beneficial for winter sampling.  

Additional cost savings could come from applying further adaptive sampling and processing 

approaches.  For example, while more water samples might be collected at more sites per lake, that does 

not imply they must all be analyzed at the same time.  A subset could be run initially, with the remainder 

added if and when initial sample processing fails to detect a target. Again, such an approach would 
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effectively reallocate costly lab resources away from sites where detection is easy and toward sites where 

detection is more challenging.  Another possible approach could even be to pool water samples across 

multiple sites within a waterbody for extraction or amplification to effectively sample more geographic 

space with fewer lab replicates.  However, this pooling approach would come at a cost of knowing where 

target eDNA was sampled in a waterbody, and, unlike the above adaptive approach, my estimates of 

detection probabilities cannot be applied to assess the power of this pooling method.   

 Importantly, while I have field trialed one study design, and provided some recommendations on 

others, the results of the present study provide data that can be used to customize eDNA sampling to meet 

whatever detection criteria are requested by MDIFW or other stakeholders.  In this way, managers can 

allocate their eDNA resources among surveying more sites, the same sites in more years, or fewer sites 

and years but with greater confidence per survey.  This is important given that not all exotic introductions 

present the same risks due to differences in exotic species attributes, waterbody attributes, community 

vulnerabilities, risks of spread, and local management objectives.  However, even when very high 

confidence of presence or absence is required, the total cost in personnel time, gear and assay expenses 

associated with eDNA are likely to be a fraction of the expenses of many traditional fisheries survey 

approaches.  In addition, the sampling techniques, particularly in spring/summer, are simple to implement 

that with minimal training and might be conducted by non-scientist personnel such as lake associations, 

school groups or citizen scientists, further reducing the time burden of government personnel.  eDNA is a 

powerful tool in exotic and rare species detection, and when used in conjunction with a biologically and 

statistically informed sampling scheme, can provide agencies, NGOs and citizens groups with 

unprecedented capacity to track and potentially mitigate the costs of emerging species invasions.  

 Future work will likely provide even more primer-probe toolsets, allowing for a wider picture of both 

non-native and native species presence within Maine and surrounding areas.  Additionally, since the 

current toolsets utilize qPCR, there is the potential to relate estimated starting DNA copy numbers in 

water samples to target species abundance.  This might be done at the scale of whole waterbodies or in a 

more localized fashion to map spatio-temporal dynamics of species within waterbodies (Takahara et al., 
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2012; Pilliod et al., 2013; Lacoursière-Roussel et al., 2015; Erickson et al., 2016).  Both of these 

approaches could further refine management of exotic and native species.  However, the field design and 

analyses I explored in this study are very specific to sensitive presence versus absence detection of 

species and may not be optimal for these other objectives. Indeed, these abundance approaches will 

require additional data and surveys to calibrate, including independent estimates of relative or absolute 

abundances from traditional survey approaches (Lacoursière-Roussel et al., 2015). However, once 

established these eDNA tools might again provide substantial cost and time savings to allow monitoring 

in more waterways while preserving critical field resources for targeted management interventions that 

cannot be addressed with eDNA, such as those that deal with fish size, fish health, control of unwanted 

species and enhancement of valued fisheries. 
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APPENDICES 

 

Appendix A:  

Table A.1: Alignments of target species primer-probe vs. related species 

Assay Forward Primer (5’-3’) MGB Probe (5’-3’) Reverse Primer (5’-3’) 

BC GCCTCTGCTTGGCCACCCAAAT GCAACTGCCTTCTCCTCCGTAGCA CCGCAACATTCATGCCAATCGG 

LMB GCCTCTGCCTGGCAACCCAGAT GCAACCGCCTTCTCATCCGTTGCC TCGAAACATTCATGCTAAACGG 

SMB GCCTCTGCCTGGCAACTCAAAT GCAACCGCCTTCTCATCCGTCGCC CCGAAACATTCATGCTAATTGG 

RBS GCTTATGCCTCGCCACCCAAAT GCAACCGCTTTCTCTTCAGTCGCA CCGCAACATTCACGCCAACGGC 

PSS GCCTATGCCTAGCCACCCAAAT GCAACCGCTTTCTCCTCAGTTGCA TCGTAACATTCACGCCAACGGC 

BG GCCTCTGCCTAGCAACCCAAAT GCAACCGCCTTCTCTTCAGTAGCC CCGTAACATCCACGCCAACGGG 

LMB CGCTGCCGCCACAGTAATCCAT CCCCCTGGGACTAAACTCTGACGC
CG 

TCGCAGCTCTCCTCATTGCCCT 

BC CGCTGCCGTCACAGTCATTCAT TCCCCTGGGCCTAAATTCAGACGC

GG 

TTGCCGTTCTCCTCATTGCCCT 

SMB CGCTGCTGCCACAGTAATTCAC CCCCTTAGGATTGAACTCTGACGC
TG 

TCGCAGCCCTCCTCATTGCCCC 

RBS TGCGGCCGCCACTGTAATTCAC TCCCCTGGGCCTAAACTCAGATGC

AG 

TTGCAGCCCTCCTTATTGCCCT 

PSS TGCAGCCGCCACTGTAATTCAC CCCATTAGGCTTAAACTCGGACGC

AG 

TTGCAGCCCTACTCATTGCCCT 

BG TGCCGCCGCAACCGTAATCCAC CCCCCTAGGCCTTAACTCAAACGC

AG 

TTGTAGCACTACTCATTGCCCT 

SMB GGGTGTCTCCTCCATCCTAGGGGCC TCAGACACCCCTGTTTGTTTGGTCC

GTCTT 

TTATCGCTCCCAGTCCTCGCTGC

T 

BC CGGAGTCTCTTCCATTCTCGGGGCT TCAGACGCCTTTATTTGTCTGATCC

GTCCT 

CTTTCACTACCAGTTCTTGCTGC

G 

LMB TGGTGTCTCCTCTATTCTAGGGGCA CCAAACACCCCTCTTTGTCTGATC

CGTCCT 

CTGTCACTTCCAGTCCTCGCTGC

G 

RBS AGGGGTCTCTTCAATTCTAGGGGCT CCAAACACCGCTGTTTGTATGATC

AGTCCT 

CTTTCTCTCCCGGTCCTTGCTGC

A 

PSS AGGGGTTTCTTCAATTTTAGGGGCA CCAGACACCACTGTTTGTCTGGTC

CGTATT 

CTCTCTCTCCCAGTCCTTGCTGC

A 

BG AGGGGTCTCTTCAATCCTGGGAGCT CCAGACCCCTTTATTTGTCTGATCA

GTCCT 

CTTTCCCTTCCAGTCCTTGCTGC

A 

SUN CTCCTACAAGGACCTCCTCGGCTTT GCCCTCCTTATTGCCCTGACTTCCC

TGGCAC 

TGCTCGGGGACCCAGACAACTT 

BC TTCCTACAAGGACCTACTCGGTTTC GTTCTCCTCATTGCCCTTACTTCCC

TAGCAT 

TCTTAGGAGACCCGGACAACTT 

LMB CTCCTATAAAGACTTGCTTGGGTTC GCTCTCCTCATTGCCCTCACCTCAT

TAGCCT 

TTCTAGGGGACCCCGACAACTT 

SMB CTCCTACAAAGACCTACTTGGATTC GCCCTCCTCATTGCCCTCACCTCAT
TAGCCT 

TCCTGGGAGATCCAGACAACTT 

BG CTCCTATAAAGACCTACTTGGTTTC GCACTACTCATTGCCCTAACTTCTC

TAGCAT 

TGCTAGGAGACCCGGACAACTT 
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Appendix B: Winter sampler effect 

Comparison of spring results with sampler vs. without sampler using paired two sample t-test showed no 

significant differences in Cq value (p = 0.4637) or number of positive amplifications (p = 0.7539) between 

use or non-use of sampling device. 

 

 

Figure B.1: Cq values by sampler use in spring.   Whiskers represent full range excluding outliers.  Box represents 75th and 25th 

quartile, horizontal band represents 50th quartile. 

 

 

Figure B.2: Positive amplification by sampler use.  Total number of target species DNA amplifications by lake and with/without 
sampler use. 
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Appendix C: R code for hierarchical occupancy models 

R code for 3-tiered hierarchical model for WinBUGS. 

#load required packages 

library(AHMbook) 

library(car) 

library(R2WinBUGS) 

#import data for lake 1  

pcr1 <- read.csv("C:/occu/spring/BOG_LS_pcr1.csv", header=FALSE) 

pcr2 <- read.csv("C:/occu/spring/BOG_LS_pcr2.csv", header=FALSE) 

pcr3 <- read.csv("C:/occu/spring/BOG_LS_pcr3.csv", header=FALSE) 

pcr4 <- read.csv("C:/occu/spring/BOG_LS_pcr4.csv", header=FALSE) 

 

A <- array(as.numeric(NA), dim = c(3,3,4))  #create empty array 

A[,,1]<-as.matrix(pcr1)  #data into array 

A[,,2]<-as.matrix(pcr2) 

A[,,3]<-as.matrix(pcr3) 

A[,,4]<-as.matrix(pcr4) 

y <- A 

str( win.data <- list(y = y, n.pond = dim(y)[1], n.samples = dim(y)[2], n.pcr = dim(y)[3] )) 

 

# Define model in BUGS language 

###Without Covariates 

 

sink("model.txt")  

cat("  

    model { 

    # Priors and model for params 

    int.psi ~ dunif(0,1)         # Intercept of occupancy probability (sites) 

    for(t in 1:n.samples){ 

    int.theta[t] ~ dunif(0,1) # Intercepts availability probability (samples) 

    } 
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    for(t in 1:n.pcr){ 

    int.p[t] ~ dunif(0,1)     # Intercepts detection probability (1-PCR error)  

    } 

      

    # 'Likelihood' (or basic model structure) 

    for (i in 1:n.site){  

    # Occurrence in site i 

    z[i] ~ dbern(psi[i])  

    logit(psi[i]) <- logit(int.psi)   

    for (j in 1:n.samples){ 

    # Occurrence in sample j 

    a[i,j] ~ dbern(mu.a[i,j]) 

    mu.a[i,j] <- z[i] * theta[i,j] 

    logit(theta[i,j]) <- logit(int.theta[j])  

    for (k in 1:n.pcr){ 

    # PCR detection error process in sample k 

    y[i,j,k] ~ dbern(mu.y[i,j,k]) 

    mu.y[i,j,k] <- a[i,j] * p[i,j,k] 

    logit(p[i,j,k]) <- logit(int.p[k])  

    } 

    } 

    tmp[i] <- step(sum(a[i,])-0.1) 

    } 

     

    # Derived quantities 

    sum.z <- sum(z[])   # Total # of occupied sites in lake 

    sum.a <- sum(tmp[]) # Total # of samples with presence  

    m.pcr<- mean(int.p[]) #mean p (across qPCR replicates) 

    m.sample<- mean(int.theta[])  # mean theta (across samples) 

    } # end model  

    ",fill=TRUE)  
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sink()  

# Initial values  

zst <- apply(y, 1, max)        # inits for presence (z) 

ast <- apply(y, c(1,2), max)   # inits for availability (a) 

inits <- function() list(z = zst, a = ast, int.psi = 0.5)  

# parameters  

params <- c("int.psi", "int.theta", "int.p", "sum.z", "sum.a", "m.pcr","m.sample")  

# MCMC setting 

ni <- 5000   ;   nt <- 2   ;   nb <- 1000   ;   nc <- 3  

# Call WinBUGS and summarize posterior 

out <- bugs(win.data, inits, params, "model.txt", n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb, 

debug = TRUE, bugs.dir = "c:/Program Files (x86)/WinBUGS14") ####bugs.dir=”Location of 

WinBUGS”  put location of winbugs 

print(out, 3) 
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