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With the amount of data collected everyday ever expanding, techniques which allow computers

to semantically understand data are growing in importance. Ontologies are a tool to describe the

relationships connecting data so that computers can correctly interpret and combine data from

many sources. An ontology about water needs to describe what the term "river" may refer to:

An arbitrary river or one usable for navigation; a single tributary or an entire river network; the

riverbed or the water itself? Well-designed ontologies can be shared, reused, and extended across

multiple applications and facilitate betters integration of different data collections.

Common Logic (CL) and the Web Ontology Language (OWL) are two logic based languages

of popular interest. However, ontologies developed in either of these languages are not easily

consumed by users of the other language. By utilizing the first order properties of Common Logic,

an automated approximation routine between CL and OWL is provided. OWL, being less expressive

than CL, is capable of being totally represented by logically equivalent CL axioms. Leveraging the

logical equivalence, we provide a method of axiom normalization and extraction in order to construct

robust OWL ontologies from existing CL sources. This increases CL ontology intelligibility, and

allows the automatic construction of OWL versions of existing reference ontologies. Further, the

benefits of such a translation are demonstrated by applying previously exclusive OWL tooling and

analysis techniques to evaluate the translated ontologies.
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CHAPTER 1

INTRODUCTION

The goals of the Semantic Web [BLHL01] and related projects, such as SAPPHIRE [Fei+07], outline

the growing need to enable semantic understanding of information for software agents. Coupled

with the growing amount of data generated and cataloged each day, efficient methods to enable

software systems to leverage that data are growing in importance. Ontologies and the related field of

ontology engineering are an established and growing area that can offer solutions to these demands.

Through a standardized vocabulary and axioms, ontologies describe relationships betweens objects

within a domain of interest. When these relationships are coupled with data and automated

inference systems additional conclusions can be derived and a level of semantic understanding of

data can be achieved. As the need for ontologies has grown in recognition, languages such as the

web ontology language (OWL) and first order logic (FOL) have been utilized, each bringing its own

level of expressivity and other benefits to the ontology engineering community.

This thesis is motivated by the observation that there already exists a large number of FOL

ontologies available that are otherwise inaccessible to the broader community. This disuse of FOL

ontologies is caused in part by the formalized nature of FOL which requires a understaning in

logics to robustly utilize, and in part to the undeciablility of FOL as a whole which curbs its

adoption in many application settings. Rather than let these rigorous FOL ontologies go unused, a

mechanism is needed to allow the general community of ontology creators and consumers to benefit

from previous efforts spent on developing FOL ontologies.

Our objective is to advance the work that has been put into the development of densely ax-

iomatized, ontologically rigorous, FOL ontologies by devising a mechanism to automatically create

lightweight approximations of FOL ontologies using OWL. Such approximations would allow for ef-

ficient reasoning and be more accessible to the larger community of ontology engineers, in particular

those who would otherwise avoid FOL for the reasons given above. By creating the lightweight ap-

proximations we enable the reuse of existing FOL ontologies with the idea that the approximations

could serve as a foundation to build additional ontologies using OWL. Existing OWL software would

also add to the scarce set of development tooling currently available to FOL ontology engineers by

allowing them to interface with their ontology using OWL specific tools.

1



2

Our approach is based on the observation that most natively developed OWL ontologies use

only a restricted subset of the language. In particular, the number of synatctic constructs used in

OWL ontologies is relatively small, thus the number of constructs needed to automatically produce

“native looking” approximations of FOL ontologies is also small. In our approach, we specifically

target 20 OWL constructs to use in the approximation of FOL ontologies.

For those 20 OWL constructs, we created a new normal form to enable filtering and comparison

of FOL ontology sentences to efficiently search for patterns that indicate the presence of OWL

constructs. Our normal form was created by altering the existing prenex and conjunctive normal

forms to maintain properties useful for comparing FOL sentences. We identify patterns by manually

translating 20 common OWL constructs to FOL which we then normalize using our new normal

form. Once a FOL sentence is matched against a pattern, it is inspected further to see if we can

automatically produce an approximation using an axiom schema of an OWL construct. If an axiom

schema can be applied, then the axiom schema is used to create a corresponding OWL axiom.

This thesis contributes to the field of ontology development by way of an approach and im-

plementation for the automated approximation of existing FOL ontologies. We implement the

approach with an extension to the FOL development framework Macleod 1 to provide the following

new features: 1) a new object-oriented representation of FOL sentences, 2) a syntactically aware

common logic (CL) parser, 3) a method to convert FOL sentences to FF-PCNF, and 4) a method

to generate OWL approximations of existing FOL ontologies. The underlying approach with the

new normal form and implementation provides FOL developers another tool for the development

and reuse of FOL ontologies.

Related works have targeted the generation of OWL axioms using specialized inputs, such as

from rule-based languages, and other subsets of the FOL language [PB10; SK] or have examined the

relationships between different axiomatizations within the same language [DMQ05]. The presented

thesis work not only implements the approximation approach to generate OWL ontologies from

FOL, but also tests it on a number of FOL ontologies from the COLORE ontology repository

[Grü+10].

The approximation method was applied to FOL ontologies from COLORE and nine different

ontologies were inspected as the basis for evaluating efficacy. All generated approximations were
1Source code is maintained and freely available at https://github.com/thahmann/macleod
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logically consistent with no unintended effects observed when inspected using the OWL Protege ed-

itor. The approximations captured class and property hierarchies well with OWL SubclassOf and

SubObjectPropertyOf constructs. These kinds of constructs appeared most often in the approx-

imations. OWL axioms ObjectPropertyDomain and ObjectPropertyRange were often produced

in ontologies that also produced approximations with many SubObjectProperty axioms. FOL

ontologies that use more complex axioms, especially those with multiple nested quantifiers, yielded

fewer axioms in the approximated ontology. The inability to produce many axioms from complex

FOL ontologies was expected due to OWL’s lack of expressivity when compared to FOL. With our

approach, axioms containing predicates with an arity greater than 3 do not yield approximations

outside of Class and ObjectProperty definitions. While it may be possible to work around this

limitation by aggressively altering the FOL ontology with operations to remove higher arity pred-

icates, the resulting approximation would likely be unrecognizable against the original ontology.

In addition, of the many ontologies available in the COLORE repository, only a few make use of

ternary predicates which further limits the impact of this restriction.

The remainder of this thesis is organized as follows. Background and related works provides

necessary context into the kinds of ontologies and the languages used to specify them. Afterwards

in Section 3, we detail the approach taken to satisfy the objective and provide reasoning for the

implementation. The implementation is then explained in Section 4, highlighting interesting details

for the specific ontologies, languages, and libraries presented and how they were used. In section

5 we detail our findings on the selected ontologies and the efficacy of the approach. Finally, we

discuss the key findings and present areas of potential future work in Section 6.



CHAPTER 2

BACKGROUND AND RELATED WORK

To date, the term “ontology” does not have a single shared meaning, rather it encompasses a

broad array of differing artifacts. The philosophical study of Ontologies (with a capital “O”),

has played a role in this confusion [Hoe15]. Throughout this thesis ontologies will be presented

pragmatically, focusing on intention and implementation rather than idealization. For this purpose

we view ontologies as artifacts that structure knowledge and that have been captured and formatted

in such a way that makes them accessible to computer systems.

By far the most commonly referenced definition of an ontology belongs to Gruber [Gru93] who

defined an ontology as, "a specification of a shared conceptualization’. A specification requires

a language in order to capture the conceptualization. In practice, these ontology languages are

typically formal languages which are mathematically grounded. Just like programming languages,

formal ontology languages are geared towards a specific type of problem which determines the kind

of constructs they provide [Hen11]. But unlike most programming languages, ontology languages

differ in their expressivity.

A key observation is that all ontology languages struggle with a fundamental trade-off between

expressivity and tractability. The seminal literature by Levesque and Brachman [LB85] demon-

strates that minor changes between languages can have far-reaching consequences on the practical

utilization of a particular language. For example, first-order logic is a very expressive language

with the caveat that it is undecidable [Bor96; Hod01]. Meanwhile, the relational algebra used by

database systems is much less expressive, but possesses the benefits of being impressively efficient

[Cod82].

Conceptualization is the harder term to unambiguously define in regards to Gruber’s definition.

A conceptualization can be described as a specific view of some observation. It could be the

observation of a particular business or the whole domain of some scientific field of study. From an

implementation perspective, this conceptualization is the collection of concepts of the domain in

that observation and how they relate to one another from within that view. The concept of a “seat”

might be observed as being, “something to sit on.” Then depending on your view, a large rock or

stump may qualify as a “seat” whereas another view may strictly limit “seats” as being parts of

4
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chairs. Yet another conceptualization might view “seats” more abstractly as places in a venue that

can be sold for event tickets. The important part is that the conceptualization of a “seat” is largely

defined via its relationships (“sits”, “has”, and “is made out of”, “available”) with other concepts

such as (“people”, “chairs”, “wood”, and etc). If two systems share a conceptualization of a seat

they can exchange information about that conceptualization [CJB; GS98]. The point of ontologies

is to enable such information exchange.

2.1 Kinds of Ontologies

Through their development and growth, different kinds of ontologies have emerged. A key difference

amongst these ontologies is their expressivity. Certain kinds of ontologies utilize very expressive

languages while others use more restrictive languages. The two ontology languages of interest to

this thesis, first-order logic and OWL2, are covered in Section 2.5. Differences in expressivity are

often rooted in and tied to the purpose of an ontology. By purpose, the literature distinguishes

three types of ontologies: application, domain, and reference.

2.2 Application Ontologies

As their name suggests, application ontologies (AO) are developed for use within a specific applica-

tion or application area. Within the literature, AOs have sometimes gone by the name knowledge

representation (KR) ontologies [LB85]. By developing AOs, an ontologist aims at utilizing nar-

rower semantics for use on a particular problem. Additionally, because AOs are used by some

application they must be formalized, that is, specified in a machine-readable language. AOs are

typically formalized in rather inexpressive ontology languages, such as RDF-S, and seldom use the

whole expressivity of OWL or first-order logic. This restriction allows AOs to be computationally

efficient and more responsive to different reasoning and inferencing programs [LB85; Men03]. In

many cases, applications contain implicit ontologies that have been “baked” into the “business

logic” rather than being a standalone artifact.

An AO is the least reusable type of ontology in terms of its scope. Unlike other kinds of

ontologies, AOs are not developed to be reused multiple times across or even within some domain.

A good example of an implicit AO can be found in most application board games, such as chess,
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that offer an AI opponent to play against. Obviously the game is programmed with the rules of

chess otherwise it wouldn’t be a very good game. However, while the application can judge what’s

a valid move or not it’s probably not within its scope to be able to relate what a pawn chess

piece is versus a rook. Further, the business logic of knowing how to play the game is probably so

tightly coupled with the application itself that it can’t be easily extracted and expanded. From a

different perspective, even if you were to refactor the application into some form of query interface

the queries you could make would be limited. Queries such as, “Is white 1.e4 a valid move?” or

“What is white’s current set of valid moves?” might be expected. In more advanced versions of the

game one could make queries such as, “What is black’s next best move?” or “What next sequence

of moves would end the game quickest?” However for all variants of the game the queries, “How

many players does chess require?” or, “How does chess relate to the other game called Go?” would

very likely fall out of scope. The AO is focused on the “how” of playing chess and not necessarily

the remaining, “who, what, when, where, and why?”

2.3 Domain Ontologies

In most respects, domain ontologies (DO) are similar to AOs except that they are more general,

though in practice rarely cover an entire domain. Instead, they are mostly used to integrate two

or more specific applications. Building on the chess example from Section 2.2 a DO would be

able to encapsulate generalized information about chess the board game rather than chess the

application. Imagine now that instead of just having a single chess application there were multiple

game applications available and a catalog was needed that could be queried by players. Queries

such as, “Number of players required”, “Duration of game play”, and possibly even “What are

the rules to play. . . ” all could fit within the scope of a domain ontology. A goal here would be a

certain level of interoperability between the DO and the AO where generalized terms like “Player”

or “Game play rules” could be shared to enable information exchange and reuse of the DO across

multiple AOs.
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2.4 Reference Ontologies

Reference ontologies (RO) sit at the opposite end of AOs in terms of expressivity, scope, and

sometimes even formalization [CJB; Men03]. A RO, as the name suggests, is developed to be used

as a kind of reference; thus ROs have a broader scope than AOs and DOs. Unlike the chess game

example, an RO would ideally be applicable across many different domains. To be useful, ROs

require a greater degree of expressivity so that abstract concepts can be captured in a generic

enough form for reuse.

Unlike AOs, the term RO has often been used interchangeably to denote several kinds of on-

tologies within the literature [Hah14; Men03]. Using scope as a metric it is possible to further

break down the term RO into sub-categories: Upper and domain reference ontologies. An upper

ontology (UO), also called a foundational ontology, is how the term reference ontology has most

often been used in the existing literature [Fal+13; GS98]. Upper ontologies focus on capturing truly

domain independent knowledge. Thus, they focus on generic terms that span many or virtually

all domains and include concepts such as: space, time, mathematics, social constructs, and etc.

Examples of upper ontologies are the Descriptive Ontology for Linguistic and Cognitive Engineer-

ing (DOLCE) [Mas+03], the Basic Formal Ontology (BFO) [GS04], the General Formal Ontology

(GFO) [Her+06], and the Unified Foundational Ontology (UFO) [Gui05].

Domain reference ontologies (DRO) have a more restricted scope than upper ontologies, but

still encompass broader concepts than that of AOs or even DOs [Hah14; HSB16]. DROs solve the

problem of providing concepts that are not pervasive across domains but are central to a particular

domain and all its subdomains and that help connect knowledge about that domain to other, closely

related domains. An example is HyFO from [HSB16] which encompasses hydrological knowledge.

The concepts within HyFO are central to hydrology-related domains, but may still be of use in

marine biology, oceanography, or even fisheries stock assessment. In terms of expressivity, DROs

tend to utilize the same highly expressive languages used for ROs [Fal+13; Grü+10].

Two kinds of reference ontologies can be distinguished based on how they are specified: formal-

ized ROs and informal ROs. A formalized RO is one that has been expressed using a formalized

logic such as first-order logic or other higher-order logic. DOLCE is an example of a formalized

upper ontology. Conceptual reference ontologies are those that have not been specified using a
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formal language. An example of a conceptual upper ontology would be the UFO project which

provides a conceptual model that could be used to create a formalized ontology but does not go

so far as to be formalized itself. A conceptual DRO is possible, however at the time of writing no

relevant examples exist to the best of our knowledge.

2.5 Ontology Languages

As we have seen in the previous section, differences in the purpose and scope of an ontology are

also reflected in the level of formalization needed and thus the choice of specification language used.

Informal ROs, sometimes referred to as conceptual ontologies, often use a graphical notation geared

towards human consumption such as mind maps or UML diagrams over machine readable specifi-

cations. For formalized ontologies, the two logic-based languages first-order logic and description

logic have emerged as the most common ontology specification languages. First-order logic is more

widely used for ROs whereas OWL and other description logic based languages are the standard

for AOs and DOs. Both FOL and OWL are covered in detail in sections 2.5.1 and 2.5.2.

2.5.1 First-order Logic

First-order logic (FOL) is a highly expressive language that is widely used for the specification of

most formalized ROs [Men03]. The significant expressive capabilities of FOL are often required in

RO ontologies, but come at the cost of increased computational complexity. Unrestricted usage of

FOL results in an undecidable ontology [LB85]. Undecidability within an ontology effectively curbs

its utilization in any system where tractable reasoning is required. Though work has been done to

address this limitation with extensive examination of different syntactic forms of FOL, it remains as

a defining limitation [GKV97]. Despite this, the expressive capabilities of FOL, and its established

formal underpinnings, solidify its position as the language of choice for the formalization of ROs.

FOL as a language is comprised of an infinite set of variables and a fixed set of logical sym-

bols which include quantifiers (∀, ∃) and a set of logical connectives including: and (∧), or (∨),

negation (¬), and implications (→, ↔). A set of non-logical symbols (x..y), predicates (Pn), func-

tions (fx), and constants (C) construct terms and formulae (e.g. ∀x[Pn(x) ∧ (Pn(fx(x)) ∨ Pn(C))]).

Syntactically, FOL defines a set of well-formed formulas (WF) recursively as follows:
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1. Any single predicate over arbitrary variables, constants, or terms (which can involve function

symbols as well) is WF

2. If φ is WF then ¬φ is also WF

3. If φ and ϵ are WF then φ ∧ ϵ, φ ∨ ϵ, φ → ϵ, and φ ↔ ϵ are also WF

4. If φ is WF and x is a variable then ∃xφ and ∀xφ are also WF

A formula that contains no free variables, that is a variable not bounded by any quantifier, is

said to be a first order sentence. The semantics of FOL are defined using an interpretation I which

is a structure consisting of:

1. Domain of discourse D

2. Set of functions F : Dn → D mapping each function symbol fn ∈ Σ such that fn(a1, . . . , ak) =

b iff I(Fn(I(a1), . . . , I(ak))) = I(b) where b ∈ D

3. Set of relations p which map each predicate pn(an, . . . , ak) to a truth value {true, false}

Truth value of sentences are then evaluated given the following rules:

1. An atom pn(a1, . . . , ak) is true if (v1, . . . , vn) ∈ I(Pn) and false if (v1, . . . , vn) /∈ I(Pn) where

(v1, . . . vn) are the mapped terms (a1, . . . , ak) under the interpretation

2. Logical connectives (→, ↔, ∨, ∧) and negation (¬) over terms are evaluated according to their

associated truth tables

a. If φ is true then ¬φ is false and vice-versa

b. If φ = true and ϵ = false then only φ ∧ φ is true whilst φ ∧ ϵ and ϵ ∧ ϵ are false

c. Similarly if φ = true and ϵ = false then φ ∨ ϵ is true whereas only ϵ ∨ ϵ is false

d. Implication is evaluated following the above rules where φ → ϵ is equivalent to ¬φ ∨ ϵ

e. Biconditionals are evaluated following the rules above where φ ↔ ϵ is equivalent to

(φ → ϵ) ∧ (ϵ → φ)
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∀x, y, z︸ ︷︷ ︸
Prenex

[R(x, y) → [R(x, z) → y = z]︸ ︷︷ ︸
Matrix

] (2.1)

Figure 2.1: A simple example of PNF formatted FOL sentence.

3. Existential quantifications (∃xφ(x))) is true if and only if there is some element d ∈ D such

that I(φ(d)) is true

4. Universal quantifications (∀φ(x)) is true if and only if for all individuals y ∈ D it holds that

I(φ(y)) is true

A sentence ϕ is said to be satisfiable if there exists some interpretation M (often called the

model) under which it evaluates to true. In this instance is it said that M satisfies ϕ denoted

as M |= ϕ. A set of sentences (e.g. an ontology) for which there exists a model is said to be

consistent. For sentences that contain free variables (e.g. variables not bound by a quantifier),

an interpretation I is not sufficient to assign a truth value. Free variables in a sentence must be

mapped by a variable assignment µ to obtain some individual within the domain of discourse. After

a mapping has been made, sentences with free values are evaluated to true under M and µ given

the rules above [Men97].

Normal Forms Normals forms within FOL are well documented and studied structures of sen-

tences. Representation of a sentence in a particular form is usually done for some utility. The

utilities of normal forms range from simplification in certain reasoning tasks to easier examination

of certain properties. Prenex normal forms are sentences of the form (Q1y1, ...Qnyn)φ where each

Qiyi is either ∀yi or ∃yi and yi ̸= yj when i ̸= j and φ contains no quantifiers. The chain of

Q1y1, ...Qnyn is called the prenex while φ is called the matrix [Hin05]. Note that the notational

form ∀x, y, z∃a, b is a syntactic shortcut and represents the prenex ∀x∀z∀y∃a∃b. Any sentence can

be expressed in an equivalent prenex normal form as shown in [Men97]. A benefit of working with

prenex normal form in this thesis comes from the relocation and clear ordering of the quantifiers

in the prenex of each sentence. In the more general sense, prenex normalized sentences are often

simpler to work with and analyze since the quantifiers are separated from the matrix as show in

Figure 2.1.
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∀x, y, z︸ ︷︷ ︸
Prenex

[A(x) ∧ B(y) ∧
Term︷ ︸︸ ︷

(C(z) ∨D(z)︸ ︷︷ ︸
Conjunction

] (2.2)

Figure 2.2: An example of a CNF formatted FOL sentence.

Conjunctive normal form (CNF) is another well-studied normal form which is a specialized

prenex normal form (see Figure 2.2). A CNF sentence is denoted by a prenex comprised of only

universal quantifiers and whose matrix is a strict conjunction over disjunctive terms such as (A ∧

(B ∨ C) ∧ D). Unlike generic prenex normal form, CNF does not maintain logical equivalence

because of skolemization that occurs to remove existential quantifiers. Sentences that have been

converted to CNF do maintain satisfiability [Rus+]. While prenex normal form gives structure to

a sentence in the form of a prenex, CNF gives structure to the remaining matrix. CNF is popular

for a number of applications including automated theorem proving where first-order resolution

techniques are needed and depend on the matrix having a certain structure.

2.5.2 Web Ontology Language

The web ontology language (OWL) is a standard for ontologies on the web [Hit+09]. Created as

part of the semantic web project, it has become the preferred language for explicit AOs and DOs.

OWL is based on description logics (DL), which generally are restricted versions of first-order logic

[BHS04; Hit+09]. By restricting what can be expressed, DLs tackle the undecidability problem

of FOL by providing different complexity guarantees depending on how, and how much of, the

language is used. In the latest version of the OWL specification, OWL2, the creators provide

different profiles of the language. Each profile combines the different semantic constructs of the

OWL2 specification in such a way that controls the tractability of reasoning within the language.

The result is a flexible specification that can be adapted according to developers’ computational

requirements. OWL is specified using well documented constructs which address specific modeling

needs and are more readily accessible to developers who may be unfamiliar with formal logics.

OWL comes in a variety of syntaxes including extensible markup language (XML), functional,

Manchester, and Turtle as given in the OWL specification [Hit+09].
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1 Class: Father
2 SubClassOf: Man and Parent
3

4 Class: Parent
5 EquivalentTo: hasChild some Person
6

7 DisjointClasses: Mother, Father
8

9 ObjectProperty: hasUncle
10 SubPropertyChain: hasFather o hasBrother
11

12 Individual: Bill
13 Facts: not hasDaughter Susan

Figure 2.3: Excerpt of the OWL2 Manchester syntax from the OWL2 Language Primer [Hit+09].
Entities Father and Parent are denoted by class expression axioms. The individual Bill is de-
scribed through usage of an assertion.

Ontologies specified in OWL are built from entities, expressions, and axioms. Entities denote

classes, properties, and individuals and make up the non-logical part of the language much like

non-logicals symbols in FOL. Individuals represent literal objects within the domain where classes

are sets of individuals and properties connect pairs of individuals. Expressions are a inductively

defined as part of OWL2’s syntax used to describe classes, properties, and individuals. OWL

expressions are broadly categorized into object property expressions, data property expressions,

and class expressions. Object property expressions are the simpler category and consist of either

object properties or inverse object properties. Data properties are a bit of a syntactic shortcut to

relate individuals to well defined datatypes like integers, strings, and etc. Class expressions are

more varied and offer a larger set of primitives to construct complex expressions. Finally, axioms

are those expressions which are interpreted as statements of truth about the domain.

Axioms are typically either assertions about individuals (e.g. axioms that are only about specific

individuals and not about classes of individuals), object property axioms (e.g. axioms that constrain

the interpretation of one or a set of object properties), or class expression axioms (e.g. axioms

that constrain the interpretation of one or multiple classes). Class expression axioms establish

relationships between classes within the domain and include expressions for declaring subclasses,

equivalency, or disjointness between classes.
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1 <SubClassOf>
2 <Class IRI="Father"/>
3 <ObjectIntersectionOf>
4 <Class IRI="Man"/>
5 <Class IRI="Parent"/>
6 </ObjectIntersectionOf>
7 </SubClassOf>
8

9 <EquivalentClasses>
10 <Class IRI="Parent"/>
11 <ObjectSomeValuesFrom>
12 <ObjectProperty IRI="hasChild"/>
13 <Class IRI="Person"/>
14 </ObjectSomeValuesFrom>
15 </EquivalentClasses>
16

17 <DisjointClasses>
18 <Class IRI="Father"/>
19 <Class IRI="Mother"/>
20 </DisjointClasses>
21

22 <SubObjectPropertyOf>
23 <ObjectPropertyChain>
24 <ObjectProperty IRI="hasFather"/>
25 <ObjectProperty IRI="hasBrother"/>
26 </ObjectPropertyChain>
27 <ObjectProperty IRI="hasUncle"/>
28 </SubObjectPropertyOf>
29

30 <NegativeObjectPropertyAssertion>
31 <ObjectProperty IRI="hasDaughter"/>
32 <NamedIndividual IRI="Bill"/>
33 <NamedIndividual IRI="Susan"/>
34 </NegativeObjectPropertyAssertion>

Figure 2.4: Ontology snippet from Figure 1 specified in the OWL/XML syntax.
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Object property axioms establish and describe relationships between object property expres-

sions. Object property axioms include sub-properties, equivalency, disjointness, and inversions

much like the available class expression axioms. Object property axioms also include more complex

characterizations of the interaction of object properties and classes, such as restrictions on the do-

main or range of a property as well as declaring property traits such as being functional, reflexive,

symmetric, and transitive.

Unlike axioms, assertions make truth statements about individuals within the domain much like

a database of facts. The available assertions in OWL include assertions for individual equivalency,

distinctness, class membership, and relational assertions via an object property. It is important to

note that OWL does not make the unique name assumption so explicitly declaring individuals to

be different is regularly needed.

2.6 Related Works

Within the field of ontology engineering much work has been done examining the relationships

between different ontology languages and the underlying logics they are based upon. Largely the

work can be partitioned into two areas: (1) works concerned with examining the relation between

ontologies specified in the same language [DMQ05; Grü+12], but with different semantics, and

(2) works concerned with relating or converting between ontologies specified in different languages

[Bor96; Mos17; MK11]. This thesis focuses on the latter and specifically looks at a more pragmatic

approach to produce a working approximation of a FOL ontology in OWL2.

The collective works of Hendler [Hen11], Borgida [Bor96], and Baader [BHS04] form the basis

of much of the current literature on works bridging ontologies specified in different languages.

Respectively each piece of literature provides the formal comparison of the underlying formal logics

(propositional logic, description logic, and first-order logic) and their variants and provides the

foundations on which further analysis is based. In particular, [Bor96] provides formal translations

to FOL for the syntactic constructs found in DL which is the formal underpinning of OWL. Many

of the translations are still applicable to OWL and were leveraged in this thesis to create FOL

patterns for approximation which will be discussed in Chapter 3.
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The ongoing work in the definition of the distributed ontology language (DOL) from [Mos17;

MK11] aims to provide a meta-language solution for specifying relationships between ontologies

in different logical languages. Similar to this thesis, Mossakowski [MK11] recognizes the widening

gap between the available ontology languages and the benefit that could be acquired by providing

a mechanism that could bridge the languages to aid ontology engineers and avoid redundancies

in developing ontologies. But unlike this thesis, which provides a direct approximation method

between FOL and OWL2, the DOL provides a formal method to connect ontologies specified in dif-

ferent ontology languages. However, this comes at the price of expensive reasoning (which involves

meta-reasoning over multiple logics) and not being able to reuse the many available reasoners for

FOL and OWL. At the time of writing, the heterogeneous toolset (HETS) [MML07] is the only tool

that supports a set of the DOL language and is leveraged by the Ontohub (see http://ontohub.org)

project.

Other works are more focused on supporting the development of OWL ontologies for domain

experts not formally trained in logic. Sarker [SK] provides a Protege [Mus15] plugin to enable entry

of axioms into an OWL ontology using the FOL-alike rule based language SWRL. A difference

between Sarker’s work and this thesis is that their approach in [SK] is focused on helping experts

formulate new axioms. This thesis supports reusing existing axiomatizations, currently in the form

of FOL ontologies, to create entire OWL2 ontologies on the fly without much user input.



CHAPTER 3

APPROACH

Approximating first order logic (FOL) sentences into web ontology language (OWL) expressions

presents multiple issues to be solved. The overarching challenge is that some highly expressive

FOL statements are inexpressible using OWL. A second but closely related challenge is the ability

to encode the same logical theory using multiple different FOL axiomatizations. A final challenge

is how to identify FOL axioms that correspond to available OWL expressions. In this chapter,

we present our developed approach (see Figure 3.1) for addressing these challenges in order to

automatically produce an OWL ontology that approximates a given FOL ontology.

16
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Figure 3.1: Overview of the approach to approximate a FOL sentence using OWL. Sentences are
read from a FOL ontology (1) and then converted to yield function-free prenex normal form (FF-
PCNF) sentences (3a). Once converted the sentences are examined using generalized metrics and
compared (5) against a set of already generated patterns (A). Patterns that match (7) are then
applied to a sentence using an axiom schema (B) to produce an OWL axiom (9).
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3.1 OWL constructs in FOL

FOL provides a small and generic set of logical connectives to capture the semantics of a domain

but it does not constrain or guide how to express it logically [Hod01]. OWL axioms are built using

a larger fixed set of constructs that are much closer to the kind of knowledge that people want to

capture. These OWL constructs capture specific semantic intuitions of a domain and thus limit

the kind of axioms people can write. Because of this difference in syntax, it is more appropriate to

create templates of common OWL axioms and express them as FOL statements rather than build

an inventory of the possible ways people could write FOL axioms.

Using the OWL ontology in Figure 2.3 as an example we can see the difference in difficulty

working backwards from OWL versus trying to enumerate all the possibilities. The class Father

can be defined succinctly as ∀x[Father(x) ↔ Man(x) ∧ Parent(x)]. Parent can be defined as

∀x[Parent(x) ↔ ∃y[hasChild(x, y) ∧ Person(y)]]. And the final assertion, “Susan is not Bill’s

daughter” is also straightforward as ¬hasDaughter(Bill, Susan). However, if we tried to enumerate

all the possible ways we could define Father in FOL it is clear that FOL expressiveness starts to

get in the way: ∀x[¬Father(x) ∨ Man(x) ∧ Parent(x)], ∀x[¬Father(x) ∨ Man(x) ∧ ¬Father(x) ∨

Parent(x)], ¬∃x[Father(x) ∧ ¬Man(x) ∨ ¬Parent(x)], are all correct FOL sentences with even

more complex FOL manipulations becoming possible. By starting with a fixed set of OWL axioms,

and clear FOL approximations of those axioms, we can identify templates of what is needed for a

good approximation.

By leveraging these templates we can work backwards to identify common expressions in OWL

that we want to be able to extract from FOL sentences. By doing so we ensure that the OWL

approximation of the FOL ontology is comprised of the kinds of axioms that developers would

expect from a “native OWL ontology” (e.g. one that was originally written in OWL). While greater

attention can be paid to capturing as much of the domain as possible in the approximation, a goal

of our work is to produce OWL ontologies that are readily accessible to developers to be utilized

further. To this end, we captured the “developer expected” OWL constructs (e.g. axioms like those

found in Figures 2.3 and 2.4) and left the more complex or expert oriented expressions (such as the

hasUncle assertion in Figure 2.3) for future extensions. Table 3.1 lists the OWL constructs that we

cover in our study with an accompanying FOL representation for reference.
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As illustrated by the Father concept it is important to note that the FOL sentences shown in

Table 3.1 are not the only ways to express the OWL constructs. Because of the small and generic

set of logical connectives in FOL, it is possible to express the same OWL construct in multiple

ways with no loss of equivalency. As another example, the DisjointClass(C D) construct can also

be axiomatized as ∀x[¬C(x) ∨ ¬D(x)] or ¬∃x[C(x) ∧ D(x)]. A good algorithm for approximation

should be able to cope with such syntactic variations and deal more directly with the intended

semantic meaning. To achieve this a suitable normalization needs to be identified and adapted to

catch a wider range of semantically equivalent but syntactically different FOL axiomatizations.

3.2 Function-Free Prenex Normal Form

Normal forms exist to constrain the structure of an expression for better fitness in a particular

application. In our work, we adapted conjunctive normal form (CNF) to make it easier to compare

FOL sentences with the FOL form of the OWL constructs we wanted to appear in the approxi-

mations. Specifically, we needed the normal form to fulfill three key requirements: 1) to minimize

syntactic variability of expressions, 2) to maintain satisfiability, and 3) to maintain both universal

and existential quantifiers.

The requirements were chosen to enable efficient comparison between the FOL specified OWL

constructs and FOL ontology sentences. By minimizing syntactic variation we reduce the likeli-

hood that equivalent sentences appear with different structures which may make them difficult to

compare. For the second requirement, the normal form needs to maintain satisfiability so that

any OWL constructs that are found equivalent to the FOL sentence would, by the equivalency,

also maintain satisfiability. Finally, by preserving both the universal and existential quantifiers it

becomes easier to compare sentences with the OWL constructs which may contain either type of

quantifier.

CNF is a well studied normal form that structures a FOL expression as a universally quantified

sentence comprised of a single conjunction over several disjunctive terms. CNF does not maintain

logical equivalence but does maintain the satisfiability of the pre-CNF FOL sentence. A key com-

ponent of CNF that was not well suited to our goals was the removal of existential quantifiers. A

common OWL construct, SomeValuesFrom, utilizes existential quantification so it was desirable to



21

∀x, y[A(x, y) → ∃z[B(f(y), z) ∧ D(z)]] (3.1a)
≡ ∀x, y[¬A(x, y) ∨ ∃z[B(f(y), z) ∧ D(z)]] (3.1b)
≡ ∀x, y∃z[¬A(x, y) ∨ (B(f(y), z) ∧ D(z))] (3.1c)
≡ ∀x, y[¬A(x, y) ∨ (B(f(y), fz(x, y)) ∧ D(fz(x, y))] (3.1d)
≡ ¬A(x, y) ∨ (B(f(y), fz(x, y)) ∧ D(fz(x, y)) (3.1e)
≡ (¬A(x, y) ∨ B(f(y), fz(x, y))) ∧ (¬A(x, y) ∨ D(fz(x, y))) (3.1f)

Figure 3.2: Conversion of the FOL sentence ∀x, y[A(x, y) → ∃z[B(f(y), z) ∧ D(z)]] to CNF. Note
that the intermediate sentence 3.1c has already been put into PNF where the existential is still
present and the prenex has been formed. Sentence 3.1d is where the existentially quantified variable
z is skolemized and replaced by the skolem function fz, it is at this step where only satisfiability
to the original FOL sentence is maintained. Sentences 3.1e and 3.1f drop the existential quantifier
and distribute terms until the sentence has been put into CNF.

keep it in the normalized form for easier identification (see removal of the existential quantifier in

Figure 3.2).

CNF is a specialization of another normal form called prenex normal form (PNF). PNF is a

well studied normal form that, unlike CNF, maintains logical equivalence with the original FOL

sentence. For a sentence to be in PNF, all quantifiers must exist in the very front of a sentence

(maximally scoped), in a portion called the prenex, whereas the rest of the terms preside in a

quantifier free portion called the matrix (see sentence 3.1c of Figure 3.2). Unlike CNF, PNF

doesn’t impose any additional restrictions on the structure of the matrix so it by itself didn’t meet

our first requirement to try and minimize variance in the structure of the sentence.

Having reviewed the existing PNF and CNF, we present a new modified normal form, function-

free prenex conjunctive normal form (FF-PCNF), to enable the task of efficient filtering and com-

parison of sentences for approximating FOL ontologies using OWL. FF-PCNF is an altered CNF

where existential quantifiers are retained and function symbols are replaced with functional predi-

cates. FF-PCNF has the same matrix structure of regular CNF sentence where the sentence matrix

consists of a single conjunction over several disjunctive terms. However, unlike regular CNF, the

prenex may contain existential quantifiers. FF-PCNF also differs from CNF in that function sym-

bols are replaced with a new predicate within a universally quantified FOL formula which maintains

satisfiability with the original FOL sentence. In addition, in cases where the new FOL formula in-
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∀x, y[A(y, x) → B(x, d(x))] (3.2a)
≡ ∀x, y[A(y, x) → ∀a[B(x, a) ∧ d′(x, a)] ∧ ∀x, y, z[d′(x, y) ∧ d′(x, z) → y = z] (3.2b)
≡ ∀x, y, a[A(y, x) → B(x, a) ∧ d′(x, a)] ∧ ∀x, y, z[d′(x, y) ∧ d′(x, z) → y = z] (3.2c)

Figure 3.3: An example of function substitution in FF-PCNF. In 3.2a d is the unary function which
will be replaced in 3.2b with a new FOL binary predicate d′ in ∀x[eq(x, z) ∧d′(x, a)]. Sentence 3.2b
also shows the addition of a new FOL sentence to define d′ as being functional which is critical to
maintaining satisfiability. Sentence 3.2c shows quantifier promotion to simplify the sentence. = is
used to represent the equality operator.

troduces a binary predicate, another FOL sentence is added which defines the new predicate as

being functional as shown in Figure 3.3. The addition of a new axiom where applicable ensures the

introduced predicate better approximates the replaced function symbol. Like CNF, FF-PCNF is a

specialization of PNF.

Converting into FF-PCNF closely resembles the procedure to convert to CNF [Men97]:

1. Convert all implications into disjunctions within the sentence

2. Any instance of negation needs to be distributed such that it applies to predicates only

3. All functions must be replaced with a new predicate and an additional sentence must be

introduced to maintain equivalence for each replaced function

4. All variables must be standardized to be uniquely identified.

5. The prenex must be created by promoting quantifiers to maximize their scope

6. Disjunctions must be distributed inwards over conjunctions until the sentence is in FF-PCNF

Note, like with conversion to CNF, the final distribution step (6) in the conversion to FF-PCNF

has the potential to exponentially increase in the number of terms in the sentence.

Quantifier Coalescing Unlike with CNF, FF-PCNF retains existential quantifiers and requires

additional care when crafting the sentence prenex in step 5 of the conversion. In particular it’s

possible to create a sentence prenex with a lesser number of quantified variables than in the orig-

inal sentence through the application of quantifier coalescence. Quantifier coalescing leverages
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∀x, y[A(x, y) → ∃z[B(f(y), z) ∧ D(z)]] (3.3a)
= ∀x, y[¬A(x, y) ∨ ∃z[B(f(y), z) ∧ D(z)]] (3.3b)
= ∀x, y[¬A(x, y) ∨ ∃z[∀a[B(a, z) ∧ fy(y, a)] ∧ D(z)]] (3.3c)
= ∀x, y[¬A(x, y) ∨ ∃z∀a[B(a, z) ∧ fy(y, a)] ∧ D(z)] (3.3d)
= ∀a, b[¬A(a, b) ∨ ∃c∀d[B(d, c) ∧ fy(b, d)] ∧ D(c)] (3.3e)
= ∀a, b∃c∀d[¬A(a, b) ∨ (B(d, c) ∧ fy(b, d) ∧ D(c))] (3.3f)
= ∀a, b∃c∀d[(¬A(a, b) ∨ B(d, c)) ∧ (¬A(a, b) ∨ fy(b, d)) ∧ (¬A(a, b) ∨ D(c))] (3.3g)

Figure 3.4: Conversion of the FOL sentence from Figure 3.2 into FF-PCNF. Note that final FOL
sentence is very different from the result of both the CNF and PNF sentences from Figure 3.2.
Sentence 3.3c is where function substitution occurs where the term B(f(y), z) is replaced by the new
clause B(a, z)∧fy(y, a). Note that the additional FOL sentence which restricts fy to being functional
is omitted for brevity (see Figure 3.3 for example). Sentence 3.3f is where the PNF quantifier
promotion occurs and finally 3.3g is the result of distribution of disjunctions over conjunctive
terms.

∀x[A(x)] ∧ ∀y[B(y)] ⇐⇒ ∀z[A(z) ∧ B(z)] (3.4)
∃x[A(x)] ∨ ∃y[B(y)] ⇐⇒ ∃z[A(z) ∨ B(z)] (3.5)

Figure 3.5: Logical equivalences used to coalesce like quantifiers. Universal quantifiers coalesce over
conjunctions (3.4) whereas existential quantifiers coalesce over disjunction (3.5).

the logical equivalences shown in Figure 3.5 to combine variables of like-quantifiers under certain

conditions.

As is covered in more detail in Section 3.3, sentences with a lesser number of quantified variables

have a better chance of producing an approximation. While not a specific step in the general

conversion to FF-PCNF, we leverage this observation to implement a greedy heuristic while creating

the sentence prenex to minimize the number of quantified variables.

The greedy heuristic uses a single lookahead to decide what quantifier to promote in cases where

there are more than a single option available. As shown in sentences 3.6a and 3.6d there is a choice

available as to which quantifier to place first in the prenex. In this case, we would look to see

if sentence 3.6a is actually a term in another connective and then promote the quantifier which

has the potential to be coalesced under that connective. In the case where there are no parent

connectives we promote the ∀ quantifier as that matches more patterns as shown in Section 3.3.
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∀x[φ] ∧ ∃y[ϵ] (3.6a)
≡ ∀x∃y[φ ∧ ϵ] (3.6b)
≡ ∃y∀x[φ ∧ ϵ] (3.6c)

∀x[φ] ∨ ∃y[ϵ] (3.6d)
≡ ∀x∃y[φ ∨ ϵ] (3.6e)
≡ ∃y∀x[φ ∨ ϵ] (3.6f)

Figure 3.6: Ambiguous cases where the greedy heuristic can be used to decide which quantifier to
promote when forming the FF-PCNF prenex. Note that this is only valid when x does not appear
free in ϵ and y does not appear free in φ. ∀x∃y[A(x, y)] is not equivalent to ∃y∀x[A(x, y)]. In cases
where differently quantified variables appear in a function or predicate then the ordering of the
quantifiers is fixed and cannot be altered as shown in the example above.

3.3 Approximating FOL in OWL

FF-PCNF provides the foundation to represent FOL statements in a standardized format to identify

the presence of OWL constructs. Using FF-PCNF we manually converted each OWL construct

from Table 3.1 into a FF-PCNF sentence, which are shown in Table 3.2. One might suspect this is

sufficient to enable the approximation of FOL ontologies using OWL. However, given that a FOL

ontology may contain many sentences, and the conversion to FF-PCNF can exponentially grow the

number of terms in the sentence, an efficient mechanism is needed to filter the number of OWL

constructs we attempt to approximate from each sentence.

In general, a FOL ontology may contain only a few sentences or several hundred. During

conversion to FF-PCNF those FOL sentences have the potential to exponentially grow in the

number of terms present. This growth in sentence size, along with the chance of a more expressive

FOL sentence not yielding a single OWL approximation, leaves open the possibility for many wasted

comparisons and attempts at approximation. To optimize the approximation of FOL ontologies

using OWL we introduce a method of filtering FOL sentences to minimize the number of attempts

at approximation.

By inspecting the sentences in Table 3.2 it is possible to create a filtering method based on

simple metrics found in each FF-PCNF sentence. In order, these metrics are: type and order

of quantifiers, the number of quantified variables, the presence and sign of unary predicates, and
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∀x, y[¬R(x, y) ∨ C(x)] (3.7)
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Figure 3.7: A decision tree showing how filtering occurs on the OWL ObjectPropertyDomain
FF-PCNF construct. By following the metrics we see that it matches: Two univesally quantified
variables, presence of a positive unary predicate, and finally presence of a negated binary predicate.
Filtering of this FF-PCNF sentence places it in filter group 9 (see Table 3.3).

finally the presence and sign of binary predicates. Using these simple metrics we create fourteen

“filter” groups as shown in Table 3.3. Better still, nine of the fourteen groups consist of a single

OWL construct. By filtering FF-PCNF sentences from a FOL ontology using the metrics from

Table 3.3 to determine what group they correspond with we reduce the number of OWL constructs

we try to approximate from a single sentence from twenty down to at most three.

The four identified metrics partition the OWL constructs into the fourteen groups as shown in

Table 3.3. Each group has no more than three possible patterns, and more than half contain only a

single pattern. Further, it becomes possible to filter FOL sentences in a tree like manner as shown

in Figure 3.7. By using the filter tree we short-circuit and stop comparison for FF-PCNF sentences

that are no longer able to be filtered into a group. In cases of complex FOL ontologies this has

the potential to save many comparisons on sentences that will not yield any OWL approximation.

Once a FF-PCNF sentence has been filtered it is then possible to inspect the sentence more closely

to determine if it matches an OWL construct.
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3.4 Pattern application

Once a FF-PCNF sentence has been filtered and its filter group identified it’s time to test if it’s

possible to generate OWL approximations. Testing whether or not a sentence will yield an OWL

approximation most often involves counting predicates, locating variables within those predicates,

and then correlating those locations across predicates. In sentences with a large number of pred-

icates this can be computationally expensive, which is why filtering out the number of applicable

OWL constructs is useful. Not every OWL pattern within a filter group will yield a successful

approximation, in some cases it is possible for none of the OWL patterns to produce an approxi-

mation.

Continuing the example of the OWL construct ObjectPropertyDomain from Figure 3.7, we

see that there are two applicable OWL constructs in group 9. From Table 3.3 we see that

ObjectPropertyDomain (∀x, y[¬R(x, y)∨C(x)]) and ObjectPropertyRange (∀x, y[¬R(x, y)∨C(y)])

have very similiar FF-PCNF sentences. Testing for a match to either of those constructs involves

checking whether the variable in the domain or range of the binary predicate, R, is being used in

the unary predicate C. In our case, we can see that the variable used in C is in the domain of R,

thus this FF-PCNF sentence yields an OWL ObjectPropertyDomain.

Another complication that arises while testing if a sentence can yield an approximation is

the variance in the number of predicates within a FF-PCNF sentence. The filter metrics used

in Table 3.3 only account for the presence of unary and binary predicates, not the total count

of each. If we are trying to generate OWL approximations for a FF-PCNF sentence such as

∀x, y[¬R(x, y) ∨ C1(x) ∨ C2(x) ∨ C3(x)] and strictly interpret the OWL ObjectPropertyDomain

construct (∀x, y[¬R(x, y)∨C(x)]) then we will not yield an OWL approximation. This is inefficient

because within the original FF-PCNF there does exist an approximable construct, though it re-

quires the introduction of the OWL class expression operator "ObjectUnionOf" to be appropriately

expressed. In this case the correct approximation can be seen in Figure 3.8.

Binary predicate inverses are another complication that require special attention when trying to

match OWL constructs to FF-PCNF sentences. Comparing the FF-PCNF sentence ∀x, y[¬R(x, y)∨

S(y, x)] against Table 3.2 shows it is similar to the OWL constructs SubObjectProperty and

InverseObjectProperty. In this case, it is approximated by SubObjectProperty(R InverseOf(S))
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1 <ObjectPropertyDomain>
2 <ObjectProperty IRI="R"/>
3 <ObjectUnionOf>
4 <Class IRI="C1"/>
5 <Class IRI="C2"/>
6 <Class IRI="C3"/>
7 </ObjectUnionOf>
8 </ObjectPropertyDomain>

Figure 3.8: Example of how the FOL sentence ∀x, y[¬R(x, y) ∨ C1(x) ∨ C2(x) ∨ C3(x)] can be
expressed using the OWL ObjectionUnionOf construct.

1 <SubObjectProperty>
2 <ObjectProperty IRI="R"/>
3 <ObjectInverseOf>
4 <ObjectProperty IRI="S"/>
5 </ObjectInverseOf>
6 </SubObjectProperty>

Figure 3.9: Example showing the approximation of the FF-PCNF sentence ∀x, y[¬R(x, y)∨S(y, x)]
using the OWL InverseOf construct.

as shown in Figure 3.9. Unlike the ObjectPropertyDomain and ObjectPropertyRange constructs,

where the placement of variables determines which construct will be approximated; other constructs

handle the different placement of variables across predicates by introducing the ObjectInverseOf

construct. Overall this adds to the complexity needed to correctly approximate a FOL sentence

and reinforces the need to minimize the number of attempted approximations.

Matching the OWL constructs from the filter groups to sentences requires a more general

approach than strict matching against the FF-PCNF sentences given in Table 3.2. The approach

taken in this thesis is to generalize the structure of the FF-PCNF sentences given in Table 3.2

based on their structure. After inspecting each OWL FF-PCNF sentence we define a pattern such

that each OWL construct has a more flexible definition to implement against. A full listing of the

Pattern descriptions can be found in the Appendix.



CHAPTER 4

IMPLEMENTATION

Our approach was implemented as a refactor and extension to the Macleod ontology framework.1

It features an object oriented design (OOD) that provides a semantically intuitive application pro-

gramming interface (API) to manipulate FOL sentences. Python was chosen as the implementation

language because of its community support, rich third-party libraries, and because Macleod is writ-

ten in Python already. All implementation details can be found online in the GitHub repository

[HS18] under the GPL v3+ license.

4.1 Macleod

Macleod consists of a set of scripts designed to support key reasoning tasks frequently encountered

during ontology design and verification. Currently it focuses on automating tasks that can be

accomplished independent of the semantics of concepts and relations. These tasks are consistency

checking of ontologies and their modules as well as checking whether competency questions, pro-

vided as “lemmas”, are entailed through the use of various theorem provers and model finders.

Our extension to the Macleod framework brings a new parsing methodology and an object-oriented

(OO) representation of FOL ontologies [HS18].

Originally Macleod leveraged an internal string representations of the Common Logic Inter-

change Format (CLIF) [ISO18] FOL syntax. The string representations were primarily used to

convert CLIF ontologies to different formats accepted by automated theorem provers and model

finders like Vampire and Paradox [CS03; RV02]. In addition, the string representations were ex-

tremely slow to manipulate once ontologies got larger or data was added. For Macleod’s original

use-case, the string representations were sufficient for the limited programmatic interaction that

was originally needed. However, our approach requires the conversion to FF-PCNF and the in-

spection of FOL sentences to test for matches against OWL constructs and thus needed a more

robust API to manipulate and inspect FOL sentences. To achieve this we designed, implemented,

and integrated an object oriented (OO) representation of FOL ontologies into Macleod.
1https://github.com/thahmann/macleod

30



31

Figure 4.1: Lightweight UML diagram of the macleod.logical Python module.

4.2 Object-Oriented Representation

The OO implementation provides a semantically intuitive interface to programmatically operate on

parsed FOL ontologies. In our design an Ontology, which is composed of many Axioms, represents

the top-most object in our hierarchy. An Axiom possesses a single Logical which represents a

basic FOL expression and itself contains a list of terms that are of type Logical. A Logical is a

abstract base class which is extended by the following derived classes: Connective, Quantifier,

Predicate, Function, and Negation. Connectives are further extended by Disjunctions and

Conjunctions. Quantifiers are extended by Universals and Existentials. A complete class

hierarchy can be found in Figure 4.1. By structuring the FOL representation in this way we provide

a rich API to interact with parsed FOL ontologies.

Our OO structure was based on the natural tree-like structure that FOL sentences exhibit when

specified in prefix form (e.g. (and P1 P2 P3) rather than (P1 and P2 and P3)). Using a tree-

like structure made implementing several of the algorithms straight-forward as they could use the

existing structure of well known tree traverals like depth-first and breadth-first search. This also

made maintaining one of Macleod’s original functions, conversion to automated theorem prover

specific formats, easier because it could be succinctly expressed in a single recursive traversal 2.
2https://github.com/thahmann/macleod/blob/DL/src/macleod/logical/axiom.py
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1 f = Function(’f’, [’x’])
2 a = Predicate(’A’, [f, ’x’, ’y’])
3 b = Predicate(’B’, [’x’, ’y’])
4 disjunction = a | b
5 Existential([’x’,’y’], disjunction)

Figure 4.2: Construction of FOL sentence ∃x, y[A(f(x), x, y ∨ B(x, y))] in Python using the OO
API.

1 Universal([’x’,’y’], (a | b) & (a | (b & ~b)))

Figure 4.3: Python snippet which shows the construction of a FOL sentence.

We implemented several logical manipulations required by our approach using the OO represen-

tation. With the OO API it is relatively simple, and more concise, to abstract away the formation

and logical operations on FOL expressions. For example, the FOL sentence ∃xy[A(f(x), x, y)∨B(x)]

could be written using the Python snippet shown in Figure 4.2. While the more complicated ex-

pression ∀xy[(A(f(x), x, y) ∨ B(y)) ∧ (A(f(x), x, y) ∨ (B(x) ∧ ¬B(x))] would similarly be expressed

as shown in Figure 4.3.

Note that the OO implementation makes use of operator overloading to simplify the creation

of FOL sentences. In Figure 4.2, (a | b) is shorthand for creating a disjunction by overloading

the pipe (|) operator on the base Logical class. Operator overloading for Negation (~) and

Conjunction (&) are also implemented to simplify the creation of more complex features such as

the conversion to FF-PCNF, quantifier coalesence, and inspection of sentences to match an OWL

pattern.

By providing an OO representation of common FOL structures and operations we were able to

implement our approach in a way that would be accessible for future expansion. Other areas of

Macleod, such as the conversion of CLIF ontologies to formats required by various other automated

theorem provers and model finders also benefited from the new approach. With the OO format

implemented, we then needed a method to parse existing CLIF ontologies to create the new OO

structures.



33

4.3 Parsing Common Logic

The ontologies used in our research are written in the Common Logic Interchange Format (CLIF)

defined by an ISO standard [ISO18]. The CLIF ontologies are publicly available as part of the

COLORE project [Grü+10]. To leverage the COLORE repository an efficient method was needed

to create the Python OO structure out of the CLIF ontologies. OO structures were created via

a left-right (LR) parser written using the Python Lex-Yacc (PLY3) library against a subset of the

CLIF standard. In particular, we focused on the portion of the CLIF grammar dealing with what

the standard calls “sentences”. Our implemented parser does not deal with the more flexibile CLIF

constructs such as restricted imports, axiom schemas, or domain restrictions.

Tokenization with the Python PLY library works based on regular expressions. As streams of

text are read into the parser a series of regular expressions are applied, and if matched, a token is

produced. The full list of tokenization rules is found in Figure 4.4.

⟨not⟩ ::= not

⟨and⟩ ::= and

⟨or⟩ ::= or

⟨exists⟩ ::= exists

⟨forall⟩ ::= forall

⟨iff ⟩ ::= iff

⟨if ⟩ ::= if

⟨clcomment⟩ ::= cl-comment

⟨start⟩ ::= cl-text

⟨import⟩ ::= cl-imports

⟨lparen⟩ ::= (

⟨rparen⟩ ::= )

⟨newline⟩ ::= \n

⟨nonlogical⟩ ::= [<>=\w\-=]+

⟨string⟩ ::= [’\"](.+)[’\"]

Figure 4.4: List of tokenization rules applied to character streams of CLIF ontologies. A tokeniza-
tion is applied if the supplied regular expression matches a portion of the character stream.

3https://www.dabeaz.com/ply/ply.html
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Likewise our BNF grammar is easily represented in Python via the PLY library. Given a stream

of tokens obtained as the output of applying the above tokenization rules PLY will attempt to match

rules from the BNF grammar and then execute custom code. In our implementation when parsing

rules are matched we construct the relevant Python object from our OO design. A snippet of the

PLY implementation is found in Figure 4.5. A complete list of grammar rules are found in Figure

4.6.

1 def p_conditional(p):
2 """
3 conditional : LPAREN IF axiom axiom RPAREN
4 """
5

6 p[0] = Disjunction([Negation(p[3]), p[4]])
7

8 def p_existential(p):
9 """

10 existential : LPAREN EXISTS LPAREN nonlogicals RPAREN axiom RPAREN
11 """
12

13 p[0] = Existential(p[4], p[6])
14

15 def p_universal(p):
16 """
17 universal : LPAREN FORALL LPAREN nonlogicals RPAREN axiom RPAREN
18 """
19

20 p[0] = Universal(p[4], p[6])
21

22 def p_predicate(p):
23 """
24 predicate : LPAREN NONLOGICAL parameter RPAREN
25 """
26

27 p[0] = Predicate(p[2], p[3])

Figure 4.5: PLY implementation of the abbreviated CLIF BNF grammar. When a parsing rule has
been applied to executes the code contained in the Python function.

It is important to note that the application of the parsing rules in Figure 4.5 are recursive

in their production. Universal(p[4], p[6]) will supply in p[6] whatever Python object is the

result of further application of parsing rules. In this way, the end result is a fully constructed OO
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representation of a parsed CLIF file that is ready to be manipulated. With this object it becomes

possible to automate analysis and manipulation of CLIF ontologies that were otherwise inaccessible.
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⟨clif ⟩ ::= ⟨comment⟩ ⟨ontology⟩ | ⟨ontology⟩

⟨ontology⟩ ::= ( cl-text ⟨uri⟩ ⟨statement⟩ ) | ⟨statement⟩

⟨statement⟩ ::= ⟨axiom⟩ ⟨statement⟩
| ⟨import⟩ ⟨statement⟩
| ⟨comment⟩ ⟨statement⟩
| ⟨axiom⟩
| ⟨import⟩
| ⟨comment⟩

⟨comment⟩ ::= ( cl-comment ⟨string⟩ )

⟨import⟩ ::= ( cl-imports ⟨uri⟩ )

⟨axiom⟩ ::= ⟨negation⟩
| ⟨universal⟩
| ⟨existential⟩
| ⟨conjunction⟩
| ⟨disjunction⟩
| ⟨conditional⟩
| ⟨biconditional⟩
| ⟨predicate⟩

⟨negation⟩ ::= ( not ⟨axiom⟩ )

⟨conjunction⟩ ::= ( and ⟨axiomList⟩ )

⟨disjunction⟩ ::= ( or ⟨axiomList⟩ )

⟨axiomList⟩ ::= ⟨axiom⟩ ⟨axiom⟩ | ⟨axiom⟩ ⟨axiom⟩ ⟨axioms⟩

⟨axioms⟩ ::= ⟨axiom⟩ ⟨axioms⟩ | ⟨axiom⟩

⟨conditional⟩ ::= ( if ⟨axiom⟩ ⟨axiom⟩ )

⟨biconditional⟩ ::= ( iff ⟨axiom⟩ ⟨axiom⟩ )

⟨existential⟩ ::= ( exists ( ⟨nonlogicals⟩ ) ⟨axiom⟩ )

⟨universal⟩ ::= ( forall ( ⟨nonlogicals⟩ ) ⟨axiom⟩ )

⟨predicate⟩ ::= ( ⟨nonlogical⟩ ⟨parameter⟩ )

⟨parameter⟩ ::= ⟨function⟩ ⟨parameter⟩
| ⟨nonlogicals⟩ parameter
| ⟨function⟩
| ⟨nonlogicals⟩

⟨function⟩ ::= ( ⟨nonlogical⟩ ⟨parameter⟩ )

Figure 4.6: BNF grammar describing a subset of the CLIF syntax. The URI production rule is
omitted for brevity. The NONLOGICAL and STRING production rules are tokenization regular
expressions used to denote the respective tokens.
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4.4 Conversion to FF-PCNF

Once a FOL ontology has been parsed and the OO representation has been created the next step is

converting each sentence to FF-PCNF. Leveraging the tree-like structure of the OO representation

the 6 steps in the conversion to FF-PCNF are implemented as methods on the different Python

classes to simplify the code. The entrypoint to the FF-PCNF conversion on a FOL sentence is

implemented on the Python Axiom class and is shown in Figure 4.7.
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1 def ff_pcnf(self):
2 """
3 Apply logical operations to translate the axiom into a function free
4 prenex conjunctive normal form.
5 """
6

7 # Don’t modify structure in place!
8 copied = copy.deepcopy(self)
9

10 function_free, declaration = copied.substitute_functions()
11 unique_variables = function_free.standardize_variables()
12 distributed_negation = unique_variables.push_negation()
13 prenex_form = distributed_negation.create_prenex()
14 cnf = prenex_form.distribute_disjunctions()
15

16 #Add additional function declarations if they exist
17 if declaration is not None:
18 cnf.extra_sentences = declaration
19

20 return cnf

Figure 4.7: Code snippet showing the FF-PCNF conversion in the Python Axiom class. Note that
the method starts out by creating a deep copy. Operations that change the structure of an Axiom
prefer to return a new copy of the object rather than modify it in place.
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4.5 Filtering FF-PCNF Sentences

Filtering of FF-PCNF sentences to place them into a pattern group is implemented using Python’s

efficient set intersection operation. At the root of the filter “tree”, the set of applicable patterns

includes each pattern listed in Table 3.3. From there, each comparison is associated with it’s own

set of patterns (e.g. the set of patterns which have a single quantifier) and if the comparison

evaluates to true then an intersection is done between the currently applicable patterns and those

from the comparison. With each comparison the set of currently applicable patterns is reduced.

At the end of the four filtering comparisons the remainder are the applicable patterns ready for

extraction as covered in Section 4.6.

4.6 Pattern Extraction

After a FOL sentence has been converted to FF-PCNF and filtered to produce a list of applicable

patterns we now need to attempt to apply those patterns to produce approximations. By using the

pattern definitions given in the Annex, we implemented a set of specialized functions which examine

a FOL sentence to dicern if it contains an approximable axiom. Of the whole approximation process,

this is the most tedious and expensive operation. Each applicable pattern requires additional checks

to be conducted to see if a pattern can successfully be applied to extract an OWL approximation. In

most cases this involves checking the placement of variables within binary predicates and ensuring

their ordering matches a pattern. Figure 4.8 shows a snippet of the function which applies the

transitive property pattern to a FOL sentence.
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1 # Ensure at least two of them are negated
2 negated = [p for p in axiom.negated()]
3 if len(negated) != 2:
4 return None
5

6 # Ensure the three binary predicates are all the same name
7 name = properties[0].name
8 if not all([x.name == name for x in properties]):
9 return None

10

11 # Compare placement of the variables for transitive chain
12 x_one, y_one = negated[0].variables
13 x_two, y_two = negated[1].variables
14

15 if y_one == x_two:
16 x = x_one
17 z = y_two
18 elif x_two == y_one:
19 x = x_two
20 z = y_one
21 else:
22 return None
23

24 # Ensure transitive predicate matches first and last vars
25 positive_x, positive_z = axiom.positive()[0].variables
26 if positive_x != x or positive_z != z:
27 return None
28

29 return (’transitive’, [axiom.positive()[0]])

Figure 4.8: Code snippet of the Macleod extension code that applies the transitive relation pattern
to a parsed FOL sentence. If the pattern is successfully applied the function returns a tuple
indicating that a particular binary predicate should be marked as transitive in OWL.



CHAPTER 5

EVALUATION AND DISCUSSION

We applied our approximation method to nine ontologies from the COLORE repository. The

resulting approximated OWL ontologies were then inspected using the Protege ontology editor.

Efficacy of the approximation was evaluated qualitatively by manual inspection of how well the

approximated ontology matched the source ontology and included details such as ability to capture

class or property hierarchies. Additional metrics for each ontology were gathered using Protege’s

inspection utilities to aid with the comparison. Metrics collected included the number of axioms

and types of axioms that were present in the approximated ontology.

5.1 Materials: Ontologies Used for Evaluation

Early on it was recognized that specific ontologies would be better suited to approximation than

others. In particular, FOL ontologies that model highly complex mathematical constructs which

often leverage predicates with an arity greater than two were expected to approximate poorly.

This was expected because of the limitation of OWL which can only directly express unary and

binary predicates. In order to observe the overall efficacy of our approach a subset of the COLORE

ontology repository was examined which tended towards using binary predicates and taxonomic

hierarchies. The selected ontologies are listed in Table 5.1 with the ontology name and the name of

the top-level file of the ontology. Basic metrics such as number of FOL sentences and total number

of unary, binary, and n-ary predicates are listed in Table 5.2.

41



42

Ontology Filename Description

dolce_taxonomy dolce_taxonomy Upper ontology

inch inch_calculus_extended_full
Various spatial ontologies, multidim specif-
ically combines spatial representations to
DOLCE’s taxonomy.

mapsee mapsee
multidim ped multidim_space_ped
multidim physcont fullphycont_full
multidim voids void_def

owltime owltime Temporal ontologies, where SUMO is another
upper ontology like DOLCE.sumo sumo_temporalPart

sumo sumo_time

Table 5.1: Ontologies selected for analysis after approximation. All ontologies can be found in the
COLORE repository on Github.

Ontology
FOL

sentences
# Unary

predicates
# Binary
predicates

# N-Ary
predicates Constants

dolce_taxonomy 48 37 0 0 0

inch 25 1 3 0 0
mapsee 39 13 12 0 0
multidim ped 14 7 1 0 0
multidim physcont 382 25 68 5 1
multidim voids 318 25 37 5 1

owltime 37 5 10 1 0
sumo_temporalPart 43 3 11 2 1
sumo_time 72 4 13 4 3

Table 5.2: Basic ontology metrics including the number of FOL sentences and number of unary,
binary, and n-ary (3+) predicates found. Metrics for each ontology were obtained using the Macleod
framework.

5.2 Approximation Example

The selected ontologies were approximated using our approach implemented as an extension to

Macleod. Figure 5.1 shows an excerpt from the approximated multidim_space_voids ontology. The

excerpt shows two example axioms in CLIF syntax comprised of only unary and binary predicates.

Sentence V-A1, as called out by the comment in the snippet, features a function r of arity 1. In

Figure 5.2 the logging output of the Macleod extension is shown.1 From the two sentences a total of
1For full approximations see colore/link/here
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1 (cl-comment ’V-D: void’)
2 (forall (x)
3 (iff
4 (V x)
5 (or
6 (SimpleV x)
7 (ComplexV x)
8 )
9 )

10 )
11 (cl-comment ’V-A1:’)
12 (forall (x y)
13 (if
14 (hostsv x y)
15 (and
16 (hosts x y)
17 (VS x (r y))
18 (StrongC (r x) (r y))
19 )
20 )
21 )

Figure 5.1: Snippet of the multidim_space_voids ontology from the COLORE project. Note
that sentence V-A1 contains a function “r” of arity 1 that needs to be substituted during the
approximation. Both sentences V-D and V-A1 use only unary or binary predicates and are relatively
short as written.

11 OWL axioms are successfully extracted and include the following types: Class, ObjectProperty,

SubClassOf, SubObjectPropertyOf, and FunctionObjectProperty.

In the second sentence (V-A1) of figure 5.2 a clause ∀a, b, c[(¬r(a, b) ∨ ¬r(a, c)∨ = (c, b))] ap-

pears that is absent from the original sentence. This additional clause is injected as part of the

transformation to FF-PCNF where the function r is substituted with a binary predicate r and a

new sentence declaring r to be functional is added. This transformation is done for all present

functions however, only functions of arity 1 result in a usable approximation because of OWL’s

restriction to unary and binary relations.



44

1 Axiom: (x)[((~V(x) | SimpleV(x) | ComplexV(x))
2 & (~(SimpleV(x) | ComplexV(x)) | V(x)))]
3

4 FF-PCNF: (z)[((V(z) | ~SimpleV(z))
5 & (V(z) | ~ComplexV(z))
6 & (~V(z) | SimpleV(z) | ComplexV(z)))]
7

8 + yielded: (z)[(V(z) | ~SimpleV(z))]
9 - pattern subclass

10 + yielded: (z)[(V(z) | ~ComplexV(z))]
11 - pattern subclass
12 + yielded: (z)[(~V(z) | SimpleV(z) | ComplexV(z))]
13 - pattern subclass
14

15 Axiom: (x,y)[(~hostsv(x,y) | (hosts(x,y)
16 & VS(x,r(y)) & StrongC(r(x),r(y))))]
17

18 FF-PCNF: (z,y,w,v)[((~hostsv(z,y) | VS(z,w) | ~r(y,w))
19 & (~hostsv(z,y) | StrongC(w,v) | ~r(z,w) | ~r(y,v))
20 & (~hostsv(z,y) | hosts(z,y)))]
21

22 + yielded: (z,w,y)[(~hostsv(z,y) | VS(z,w) | ~r(y,w))]
23 + yielded: (z,v,w,y)[(~hostsv(z,y) | StrongC(w,v)
24 | ~r(z,w) | ~r(y,v))]
25 + yielded: (z,y)[(~hostsv(z,y) | hosts(z,y))]
26 - pattern subproperty
27 + yielded: (a,b,c)[(~r(a,b) | ~r(a,c) | =(c,b))]
28 - (extra) pattern functional

Figure 5.2: Excerpt of output produced by running our automated approximation approach on the
multidim_space_voids ontology from COLORE. The sentences are first printed in infix notation
after being parsed then the FF-PCNF is shown. Applicable patterns are displayed along which
top-level clause they are found in.
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5.3 Performance Evaluation

We attempted to approximate 1984 ontologies from the COLORE project to benchmark our imple-

mentation. Of the 1984 ontologies, 986 were converted to FF-PCNF and approximated in OWL.

Runtime metrics were collected on a Fedora 32 workstation equipped with an AMD Ryzen 7 3700x

processor (3.6 GHz) and 32 gigabytes of RAM. Although the workstation had multiple cores avail-

able, metrics were collected using a single core for consistency. Memory usage of the implementation

was negligible beyond what is normally required by the Python interpretor and was not recorded.

For each FOL ontology the average time to convert to FF-PCNF was 0.117 seconds. The

standard deviation after removal of a single outlier was 0.07 seconds. The single outlier was peri-

ods_over_rationals ontology, where the conversion to FF-PCNF took 109 seconds. This appears

to be caused by the deep nesting and structure of the sentences in the ontology which impressively

demonstrates the O(N2) complexity of the FF-PCNF distribution step.

Conversion from a FOL ontology to OWL (including the conversion to FF-PCNF) took on

average 0.21 seconds with a standard deviation of 0.3 seconds. The outlier periods_over_rationals

took a total time of 114 seconds which showed the additional OWL approximation had a negligible

effect on the runtime and was not affected by the O(N2) complexity of the FF-PCNF conversion.

With the exception of the periods_over_rationals ontology the approach scaled well to handle

the range of different ontologies within COLORE. In ontology engineering as a whole, that the

worst case conversion took 114 seconds is not much of an issue. Approximation does not happen

frequently, and it is not accompanied by any type of time constraint.

The 998 ontologies which did not approximate successfully were caused by a myriad of reasons.

The most prominent reason was that the underlying ontology used an unsupported syntax of

our OWL parser. Following behind unsupported syntax it was found that the ontologies had

unsupported character sets (e.g. Unicode characters) embedded in the ontology. Finally, there were

several cases where ontologies were found to have simple syntax errors such as missing parenthesis

or malformed sentences.
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5.4 Efficacy Evaluation

Metrics to evaluate approximated FOL ontologies included the number and kind of OWL con-

structs, DL complexity rating, and logical correctness. After approximation and correction of errors

found in the FOL ontologies (see Section 5.5 on syntax checking), every approximation was found

consistent after a logical evaluation using Protege. Unsurprisingly, Class and ObjectProperty

declarations were the most commonly extracted OWL construct followed by SubClassOf and

SubObjectPropertyOf. The number and kind of extracted OWL axioms are summarized in Tables

5.3 and 5.4.

All of the ontologies were able to produce at least an approximation consisting of classes, proper-

ties, and either class hierarchies or object property hierarchies. The most commonly recognized pat-

terns were SubClassOf, SubObjectPropertyOf, ObjectPropertyDomain, and ObjectPropertyRange.

Ontologies containing more properties, such as FullPhysCont, approximated more specialized ob-

ject properties such as DisjointObjectProperties and FunctionalObjectProperties. Only the

SUMO Time approximation successfully captured ClassAssertion and Individuals. This is ex-

pected because of the ontologies selected only the SUMO Time ontology actually had instance data

which is uncommon for FOL ontologies.
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5.5 Additional Benefits of OWL Approximation

Syntax Checking While implementing our approach we noted several latent problems in various

FOL ontologies in the COLORE repository. In some cases the problems found were caused by

incorrect CLIF syntax in the original ontologies. In part, these errors may stem from a lack

of available tooling when developing using CLIF. With our contribution of a CLIF syntactically

aware parser, we were able to identify and fix these problems when they occurred.

Where previous iterations of Macleod utilized raw string manipulation to translate to model

and prover friendly formats, our implemented approach was CLIF syntax aware. Effectively when

attempting to parse a CLIF specified ontology we were able to produce useful error output when

an ontology failed to parse with a syntax error. In most cases it was trivial to find and fix the

errors because the parser reports the line on which the error was found and what about the line

it thinks is causing the error (e.g. unmatched parenthesis while parsing). This was quite useful in

increasing the general usability of the ontologies in the COLORE repository.

Availability of OWL Tools Protege is a development environment for working with OWL

ontologies. It features a streamlined interface and rich functionality to identify and expand various

parts of an ontology. FOL ontology development does not have an equivalent tool and misses out

on many of the benefits offered by Protege. One such benefit, which we overlooked, was the simple

visualization that Protege offers when inspecting classes and their relations.

After approximating a FOL ontology in OWL it was trivial to inspect the class and property

hierarchies using Protege. It turned out that some existing FOL ontologies had unintended infer-

ences that resulted in incorrect axiomatizations. With the robustness of the OWL provers Fact++

and Pellet, coupled with Proteges’ GUI, these types of errors were easily identified. Identifying

these issues directly from the CLIF source in some cases was non-trivial because they were the

result of axioms being combined across multiple CLIF sources.

Further still, the inference engines of the Fact++ and Pellet OWL provers provide a breakdown

for each inferred axiom they create. This can, and was, used in several instances to trace back an

implicit assertion made in the approximated OWL ontology to the originating explicit axiomatiza-
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tions in FOL. This feedback loop for ontology verification was a much welcomed addition to the

scope of benefits introduced by this research.



CHAPTER 6

SUMMARY

There exists a set of densely axiomatized FOL ontologies that are the result of countless hours of

ontology development and verification, such as those in the COLORE project, which are inaccessible

to knowledge engineers unfamiliar with FOL. Further, there is currently a dearth of stable free

and open source or commercial off the shelf products which enable development, extension, or

adoption of FOL ontologies. We widen the accessibility of those FOL ontologies and make them

more usable with existing tools by a new approach to approximate FOL ontologies using OWL.

The lightweight OWL approximations of the FOL ontologies can be inspected, extended, and used

as the foundation for future work with the available OWL tooling which includes provers, model

finders, and development environments. This helps to verify, evolve, and reuse the FOL ontology

and avoid redundant ontology engineering efforts or maintaining copies of the ontologies in two

languages with different expressivity (FOL and OWL).

By using FF-PCNF to constrain the free-form structure of FOL sentences, recognizable patterns

were identified to be used in the approximation. With an efficient search structure the patterns

were applied to FOL sentences which yielded OWL approximations. The approximations were

then aggregated into a functional OWL approximation of the original FOL ontology. When tested

our approach on a set of 9 suitable ontologies from the COLORE repository, the approximations

captured class and property hierarchies where present in FOL ontologies as well as additional OWL

axioms.

Our implementation was applied to the COLORE set of ontologies to benchmark the practical

usability and scalability of the approach. On average it was possible to create an OWL approxi-

mation of a FOl ontology in under a second. With exception of a single outlier it was possible to

create an approximations of 1,332 ontologies in a total time of under 5 seconds per ontology using

a single core of a modern CPU and a negligible amount of memory.

Future Work Having seen the promising outcomes of approximating FOL ontologies in OWL

additional work can be undertaken to leverage this in order to provide even greater benefit to

knowledge engineers. During the debugging efforts, it became clear that it was possible to use
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the Pellet and Fact++ OWL provers backfeed implicit axiomatizations to a source ontology. This

effort would aim to make explicit any axiomatizations derived automatically and translate those

axioms back to FOL. Doing so would reduce future runtime of the provers and provide knowledge

engineers another method to inspect the corpus of knowledge contained in their ontology.

Currently there are limited development environments available to work with FOL ontologies

in CLIF or other formats. With the new OO implementation and the LR parser Macleod as a

framework could also be further extended. For example, leveraging the OO libraries and LR parser

a visualization and editing environment could be incorporated to benefit ontology engineers.

An expanded evaluation could also be conducted on approximated OWL ontologies. In partic-

ular, a larger set of approximations could be compared against natively developed OWL ontologies

using the metrics used in Section 5.4. Doing so would give further insight in how OWL ontologies

can be developed and what, if anything, could be done to better approximate FOL ontologies using

OWL. This extended evaluation may also identify common ontology types that are better suited

to be developed natively in FOL vs. OWL.

Another type of evaluation of the approximated ontologies could be conducted by converting

the approximated ontologies back to FOL. Once the approximated ontology has been returned to

it’s original format, it could be more readily compared against the original ontology. In particular,

there is the possibility to apply native FOL competency questions as shown by [GF95] against the

approximation to measure what may have been lost during approximation.

Additional effort could also be devoted to extending the range of approximated OWL constructs.

This thesis targeted the most commonly used constructs and left some of the more complex con-

structs such as property chains and numeric support for future work. By applying more effort to

these areas it may be possible to capture better approximations of FOL ontologies in OWL.



APPENDIX

Pattern A.1 (SubclassOf) A universally quantified sentence with a single variable that consists

of only unary predicates where at least one of them is negated. Negated unary predicates represent

the subclass whereas the non-negated predicates represent the superclass. If there exist more than a

single predicate in either category, then all members of that category must be joined together in a

union in the generated approximation.

Pattern A.2 (DisjointClass) A universally quantified sentence with a single variable that con-

sists of only two negated unary predicates.

Pattern A.3 (SubObjectPropertyOf) A universally quantified sentence with a two variables

that consists of only binary predicates where at least one of them is negated. Negated binary pred-

icates represent the subproperty whereas the non-negated predicates represent the superproperty. If

there exist more than a single predicate in either category, then all members of that category must be

joined together in a union in the generated approximation. Placement of variables in each predicate

will determine if the InverseOf construct should be applied.

Pattern A.4 (DisjointObjectPropertyOf) A universally quantified sentence with a two vari-

ables that consists of only two negated binary unary predicates. Placement of variables in each

predicate will determine if the InverseOf construct should be applied.

Pattern A.5 (ObjectPropertyDomain) A universally quantified sentence with two variables

that consists of a single negated binary predicate and one or more unary predicates. Unary predicates

that use the variable from the domain of the binary predicate corre- spond to this pattern. For

variables covering the range of the binary predicate see the Pattern A.6. If there exists more than

a single unary predicate then they must be joined in a union in the generated approximation.

Pattern A.6 (ObjectPropertyRange) A universally quantified sentence with two variables that

consists of a single negated binary predicate and one or more unary predicates. Unary predicates

that use the variable from the range of the binary predicate correspond to this pattern. For variables

covering the domain of the binary predicate see Pattern A.5. If there exists more than a single unary

predicate then they must be joined in a union in the generated approximation.

53
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Pattern A.7 (InverseObjectProperty) This pattern is indicated by two instances of inverted

Pattern A.3 occuring.

Pattern A.8 (ReflexiveObjectProperty) A universally quantified sentence with a single vari-

able and a single positive binary predicate. The single universally quantified variable must appear

in both the domain and range of the binary predicate.

Pattern A.9 (IrreflexiveObjectProperty) A universally quantified sentence with a single vari-

able and a single negated binary predicate. The single universally quantified variable must appear

in both the domain and range of the binary predicate.

Pattern A.10 (SymmetricObjectProperty) A universally quantified sentence with two vari-

ables and a single binary predicate that appears twice, both positive and negated. The variables

between negated and positive predicates must reverse their positions.

Pattern A.11 (AsymmetricObjectProperty) Similiar to Pattern A.10 only both binary pred-

icates must be negated.

Pattern A.12 (TransitiveObjectProperty) A universally quantified sentence with three vari-

ables in which a single predicate appears three times, negated twice and positive once. The two

negated predicates must share the same variable for one of their domains and one of their ranges.

The single positive binary predicate’s domain must match the domain of one of the negated predi-

cates and the range must match the range of one of the other negated predicate.

Pattern A.13 (FunctionalObjectProperty) A universally quantified sentence with three vari-

ables and three predicates in which a single predicate appears negated twice. The other predicate

must be the equality relation =. The negated predicates must share the same variable for one their

domain and must cover a different variable for their range. The equality relation’s domain must

match the range of one of the negated predicates and the equality relations range must match the

range of one of the other negated predicate.

Pattern A.14 (InverseFunctionalObjectProperty) A universally quantified sentence with three

variables and three predicates in which a single predicate appears negated twice. The other predicate



55

must be the equality relation =. A negated predicate must share the same variable for its domain

as the equality relation but each should have different ranges. The other negated predicate must

have a domain that matches the other negated predicate or the equality relation. The other negated

predicate must have a range that matches the other negated predicate or the equality relation.

Pattern A.15 (SubClassOf ObjectSomeValuesFrom) A sentence ∀x∃y which contains two

conjunctive terms of disjunctions. One term will consist of a conjunction over two different unary

predicates where one of them is negated. The negated unary predicate will be covering the universally

quantified variable and the positive predicate will cover the existentially quantified variable. The

other term will have the same negated unary predicate covering the universal variable and a positive

binary predicate. The binary predicate will have the universally quantified variable in it’s domain

and the existentially quantified variable in its range.

Pattern A.16 (ObjectSomeValuesFrom SubClassOf) A sentence ∀x∃y which contains three

predicates. A positive unary predicate covering the existentially quantified variable. A negated unary

predicate covering the universally quantified variable. A negated binary predicate who domain is

the universally quantified variable and whose range is the existentially quantified variable.

Pattern A.17 (SubClassOf ObjectAllValuesFrom) A universally quantified sentence with two

variables and three predicates. A negated unary predicate, a positive unary predicate, and a negated

binary predicate. The domain of the binary predicate must be the same variable as the negated

unary predicate. The range of the binary predicate must be the same variable as the positive unary

predicate.

Pattern A.18 (ObjectAllValuesFrom SubClassOf) A universally quantified conjunction of

two disjunctions with two variables having three predicates. In one disjunction are two differ-

ent unary predicates of different variables where one predicate is negated. The other disjunction

must have the same positive predicate over the same variable and a positive binary predicate. The

domain of the binary predicate must match the positive unary predicate. The range of the binary

predicate must match the variable of the negated unary predicate in the other disjunction.

Pattern A.19 (SubClassOf ObjectHasSelf) A universally quantified sentence with a single

variable and both a positive binary predicate and negated unary predicate.
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Pattern A.20 (ObjectHasSelf SubclassOf) A universally quantified sentence with a single vari-

able and both a negated binary predicate and positive unary predicate.
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