
The University of Maine The University of Maine 

DigitalCommons@UMaine DigitalCommons@UMaine 

Electronic Theses and Dissertations Fogler Library 

Spring 5-7-2021 

A Bioeconomic Analysis of Sea Scallop (Placopecten A Bioeconomic Analysis of Sea Scallop (Placopecten 

Magellanicus) Aquaculture in the Gulf of Maine Magellanicus) Aquaculture in the Gulf of Maine 

Struan Coleman 
University of Maine, struan.coleman@maine.edu 

Follow this and additional works at: https://digitalcommons.library.umaine.edu/etd 

 Part of the Aquaculture and Fisheries Commons 

Recommended Citation Recommended Citation 
Coleman, Struan, "A Bioeconomic Analysis of Sea Scallop (Placopecten Magellanicus) Aquaculture in the 
Gulf of Maine" (2021). Electronic Theses and Dissertations. 3474. 
https://digitalcommons.library.umaine.edu/etd/3474 

This Open-Access Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been 
accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of 
DigitalCommons@UMaine. For more information, please contact um.library.technical.services@maine.edu. 

https://digitalcommons.library.umaine.edu/
https://digitalcommons.library.umaine.edu/etd
https://digitalcommons.library.umaine.edu/fogler
https://digitalcommons.library.umaine.edu/etd?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F3474&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/78?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F3474&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.library.umaine.edu/etd/3474?utm_source=digitalcommons.library.umaine.edu%2Fetd%2F3474&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:um.library.technical.services@maine.edu


 
 

A BIOECONOMIC ANALYSIS OF SEA SCALLOP (PLACOPECTEN 

MAGELLANICUS) AQUACULTURE IN THE GULF OF MAINE 

 

By 

Struan Coleman 

B.A. Dartmouth College, 2019 

 

 

A THESIS 

Submitted in Partial Fulfillment of the 

Requirements for the Degree of 

Master of Science 

(in Marine Policy) 

 

The Graduate School 

The University of Maine 

May 2021 

 

Advisory Committee: 

Damian Brady, Associate Professor of Oceanography, Advisor 

Dana Morse, Marine Extension Associate 

Joshua Stoll, Assistant Professor of Marine Policy 

 



ii 
 

 

 

 

 

 

 

 

© 2018 Struan Coleman 

All Rights Reserved 

 



 
 

A BIOECONOMIC ANALYSIS OF SEA SCALLOP (PLACOPECTEN 

MAGELLANICUS) AQUACULTURE IN THE GULF OF MAINE 

By Struan Coleman 

Thesis Advisor: Dr. Damian Brady 

 
An Abstract of the Thesis Presented 

in Partial Fulfillment of the Requirements for the 
Degree of Master of Science 

(in Marine Policy) 
May 2021 

 

Aquaculture is the fastest growing food production sector in the world. In the Northwest 

Atlantic, interest in Sea Scallop (Placopecten magellanicus) (hereafter scallop) aquaculture has 

grown rapidly in the last decade. In the U.S., scallops support a ~$1 billion USD industry with 

nearly $500 million coming from imports. By comparison, the U.S. exports only ~$139 million 

USD of scallops annually. This substantial trade imbalance and strong domestic demand has 

created an opportunity for a farmed product to capture a share of the market. However, technical, 

regulatory, and, perhaps most importantly, economic challenges have stifled the growth of 

scallop aquaculture in the Northwest Atlantic. We performed semi-structured interviews (n = 7) 

with the majority of scallop farmers in Maine, USA to parameterize a scallop aquaculture 

bioeconomic model. To identify production bottlenecks and assess the influence of various 

biological and market variables on farm-scale success, we conducted financial simulations for 

farms of various sizes targeting either live "whole" scallops or the traditionally consumed 

shucked adductor muscle "meat".  

The end product (“whole” or “meat”) had a large influence on the profitability of farms. 

For example, farms selling > 200,000 whole scallops year-1 were profitable. However, all farms 



 
 

selling shucked meats generated negative returns. Labor made up the greatest portion of costs in 

all model simulations and increased linearly with farm size, representing a significant bottleneck. 

Farm value was most sensitive to changes in market price, time to market, and annual sales. 

Businesses selling whole scallops can potentially be successful, but regulatory or labor 

mechanization issues could hinder further expansion of the industry. Our analysis suggests four 

strategies to increase farmed scallop production in the Northwest Atlantic: (1) develop methods 

to mechanize low density net culture, (2) optimize net stocking densities, (3) build site selection 

tools that decrease time to market, and (4) invest in end-markets and biotoxin testing for whole 

scallops. Diversifying the shellfish aquaculture sector by increasing the viability of scallop 

aquaculture has the potential to play a key role in increasing the economic resilience of coastal 

communities. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background and rationale  

Despite boasting the world's largest Exclusive Economic Zone (EEZ), the United States is 

the global leader in seafood imports (FAO, 2020). The U.S. is home to well managed and 

lucrative wild fisheries that generate substantial economic value (National Marine Fisheries 

Service, 2020) and support ~1.7 million jobs (National Marine Fisheries Service, 2018). Yet over 

70% of the seafood consumed domestically, including the ~20% made up by reimports (Gephart 

et al., 2019), is imported. Approximately 60% of this volume is farmed (National Marine 

Fisheries Service, 2020). Aquaculture is the fastest growing food production sector in the world 

(FAO, 2020) and has been heralded as a means to sustainably increase domestic production of 

fish and shellfish without further exacerbating wild stocks (Gunning et al., 2016; Lester et al., 

2018). For example, the U.S. wild Atlantic Sea Scallop (Placopecten magellanicus) (hereafter 

scallop) fishery is the nation's fourth most valuable species (National Marine Fisheries Service, 

2020). Demand for scallops far outstrips supply and the U.S. imports an almost equal value of 

various farmed scallop products from Asia and South America (Hale Group, Ltd, 2016; OECD, 

2020). In total, the scallop market is a nearly $1 billion USD industry in the United States (FAO, 

2020) and the existence of a substantial trade imbalance represents significant opportunities for a 

domestically farmed product to capture a portion of this share.  

Efforts to establish a scallop aquaculture industry in the Northwest Atlantic (i.e., the U.S. and 

Canada) began in the 1970's, but in the last four decades development has been stifled by 

technical barriers. Employing techniques mainly borrowed from Japan, growers and researchers 

have explored the feasibility of wild spat collection (Cyr et al., 2007; Morse, 2015), suspended 
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lantern net culture (Coleman et al., 2021; Grecian et al., 2000; Parsons & Dadswell, 1992), and 

"ear-hanging" (Dadswell & Bradford, 1991; Grant et al., 2003). These trials demonstrated 

baseline feasibility of the techniques from a biological standpoint, but there are still significant 

economic barriers to the industry (Claereboudt et al., 1994; Penney & Mills, 2000; S. E. 

Shumway & Parsons, 2016).  

Low density net stocking, slow growth, biofouling, and biotoxins are the primary inhibitors 

of profitability. Scallops are particularly sensitive to stocking density, and overstocking can 

decrease growth and lead to product loss (Coleman et al., 2021; Parsons & Dadswell, 1992; 

Penney, 1996). The demands of low density net stocking, and prolonged (3+ year) time to 

market, generate high labor and equipment costs for growers (Parsons & Dadswell, 1994). In an 

analysis of sea scallop aquaculture in Newfoundland, Penney and Mills (2000) observed that 

labor made up ~30% of annual costs for farms selling 500,000 - 1,000,000 scallops year-1 

(Penney & Mills, 2000). Gilbert and Cantin (1987) conducted a similar financial analysis and 

noted that consistently increasing lines of credit to fund nets and mooring systems proved 

insurmountable for growers (Gilbert & Cantin, 1987). While Gilbert and Cantin (1987) 

concluded that selling the traditionally consumed shucked adductor "meat" alone would generate 

negative returns, Penney and Mills (2000) observed that farms selling whole live scallops could 

be profitable. Shucked meats comprise the vast majority of scallop products consumed in North 

America. The meat, however, only makes up ~10% of the mass of each landed scallop (National 

Marine Fisheries Service, 2020). Bringing whole scallops to market significantly increases the 

yield from each individual, but poses considerable challenges for growers. Frequent, and often 

costly, testing for the presence of the biotoxins Amnesic Shellfish Poisoning (ASP) and Paralytic 

Shellfish Poisoning (PSP) within the viscera and roe is required (Shumway et al., 1988). The 
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combined effects of these hurdles have limited the industry to a handful of operational farms in 

the U.S. and Canada. Currently, farmed scallops represent <1% of annual scallop sales in North 

America (Shumway & Parsons, 2016). 

1.2 Research Questions  

In the last decade, close collaboration between researchers, governmental agencies, and 

growers in the United States has led to technical and regulatory breakthroughs and a renewed 

interest in scallop aquaculture (Maine Department of Marine Resources, 2017; Morse, 2017). 

Delegations of Maine fishermen, farmers, and extension agents have traveled to Japan and 

returned with expertise and equipment specifically designed to manage biofouling and increase 

scallop growth, leading to potential reductions in labor costs (Beal et al., 1999; Coastal 

Enterprises, Inc., 2019). Similarly, an agreement between growers and the state agency charged 

with regulating shellfish with respect to public health, the Maine Department of Marine 

Resources (DMR), has resulted in a biotoxin testing policy that allows for the sale of whole live 

scallops (Maine Department of Marine Resources, 2017). As a result of these successes, the first 

U.S. sales of live farmed scallops were completed in 2019 (Dana Morse, pers comm). Despite the 

early success of a handful of farms, considerable questions remain about the economic viability 

of suspended net culture, the value of whole scallops in a competitive U.S. seafood market, the 

ability of growers to profitability target "meats" alone, and the effect of various biological, 

technical, and market variables on farm level success (Coastal Enterprises, Inc., 2019). 

Bioeconomic models are a useful tool for untangling the complex human-ecosystem 

relationships that often dictate the profitability of aquaculture operations (Choi et al., 2006; 

Fuentes-Santos et al., 2017). We conducted semi-structured interviews with growers in Maine to 

inform a bioeconomic model. Our primary goal was to analyze the feasibility of, and potential 
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bottlenecks to, the emerging scallop aquaculture industry. We compared the success of farms 

operating at various production scales and targeting different end products (whole scallops vs. 

meats) under a variety of market and production scenarios. Scallops appear to be a prime 

candidate to expand and diversify the rapidly growing bivalve aquaculture sector in the 

Northwest Atlantic. The results of this work will help growers make informed husbandry and 

business decisions and identify future research priorities. 
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CHAPTER 2 

METHODS 

2.1 Semi-structured interviews 

We conducted semi-structured interviews (n = 7) with the majority of scallop farmers in 

Maine, USA. Interviews lasted between 1 and 2 hours and were carried out with two primary 

goals: (1) to collect quantitative production data to accurately parameterize a bioeconomic 

scallop aquaculture model and (2) to catalog the most pressing Research & Development (R&D) 

challenges facing this nascent industry in the Northwest Atlantic. For example, to collect data 

relevant to goal (1) growers were asked to describe their production process as well as all fixed 

and operating costs relevant to the business. Labor expenses were calculated from the time 

required to complete production tasks and the quantity of scallops brought to market annually. 

The more qualitative R&D cataloging within goal (2) was used to select relevant parameters for 

sensitivity analyses conducted with the bioeconomic model and inform future research priorities. 

The interview script is available in Appendix A. 

Decisions about which farmers to interview ran as follows. Currently, there are 167 

active standard aquaculture leases and 676 active limited purpose aquaculture licenses (LPA) in 

Maine (DMR, 2021). Of these 843 leases and licenses, 193 list scallops as an approved species 

(DMR, 2021). The vast majority of these scallop growers are primarily focused on other species 

(i.e., oysters, mussels, or kelp), experimenting, or not growing scallops at any scale. We 

therefore chose participants that were operating at a commercial scale (at least 2 years of 

experience or actively selling scallop products) for interviews. The average number of years 

growing scallops ranged from 2 to 8 among participants (mean = 4 years). Growers were 

distributed between southern Maine and the "Downeast" region, with farms located in both the 
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warmer Western Maine Coastal Current and the colder Eastern Maine Coastal Current (Pettigrew 

et al., 2005). One farmer we spoke with was not actively growing scallops, but had dedicated a 

considerable amount of time to the industry and had only recently transitioned to a different 

species.  

2.2 Production model parameter selection 

Based on the semi-structured interviews with industry leaders, we built a scallop 

aquaculture bioeconomic model to examine four distinct production scenarios: (1) a business 

targeting a whole 75 mm scallop with all costs included, (2) the same business in scenario (1) but 

with the cost of the boat and work truck removed (representative of fishermen who have 

transitioned to scallop aquaculture and already own equipment), (3) a business exclusively 

targeting the traditionally consumed shucked adductor "meat", and (4) the same business as 

scenario (3) with the cost of the boat and truck removed. For scenarios 2 and 4, we also assume 

that the upfront costs of two pieces of specialized equipment, a scallop washer and grader, are 

distributed evenly between nine other growers. This cooperative model of equipment sharing has 

been demonstrated successfully in Maine by interview participants.  

The schedule of each scenario closely follows the practices described by the growers. 

Production tasks can be divided into three distinct stages: spat collection, juvenile culture, and 

final grow-out. Spat collectors are deployed in the fall, checked monthly over the course of the 

winter, and then retrieved the following spring. Spat is then sorted and stocked into lantern nets, 

indicating the start of juvenile culture. Stocking densities are then reduced in the fall for 

overwintering and bio-fouled nets are swapped out for clean nets. At the start of the grow-out 

stage the following spring, scallops are washed, size graded, and stocking densities reduced a 

second time. For production scenarios 1 and 2 (whole scallops), first harvest is carried out during 
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the fall of the third year when scallops reach 75 mm (19 months post initial stocking into 6 mm 

mesh lantern nets). However, for scenarios 3 and 4 ("meats" only), an additional reduction in 

stocking densities in the fall followed by another full year of grow-out is required due to the size 

demands of the adductor market. For these farms, the first harvest is carried out in the summer of 

the following year, 30 months post initial stocking into 6 mm mesh lantern nets, when scallops 

are > 110 mm. At this size, 15 - 20 scallop meats will make up a pound, commonly referred to as 

a '15 - 20 count' meat. The 'count' system is used in the Northwest Atlantic wild scallop fishery 

as a means of size grading. 

The growth rates, time to market projections, and mortality rates used in all scenarios are 

dependent upon low density net stocking. Based on conversations with growers, we used a 

stocking schedule of 250 individuals tier-1 in the first spring during juvenile culture (6 mm 

diameter mesh nets), 50 individuals tier-1 in the first fall during juvenile culture (12 mm diameter 

mesh nets), and then ultimately 15 individuals tier-1 in the second spring during grow-out (12 

mm diameter mesh nets). For scenarios 3 and 4, there is an additional thinning down to 5 

individuals tier-1 in the fall of the second year during grow-out. Based on this stocking and 

handling schedule, growers relayed that an annual mortality rate of 12.5% can be expected. 

Therefore, we use this value for all scenarios. 

There are a few major assumptions in the production model that impact our economic 

simulations for scenarios 1 and 2. The farmed scallop market in the U.S. is very small and the 

sale of in-shell products is predicated on testing for the presence of biotoxins (Maine Department 

of Marine Resources, 2017). While we account for the cost of regulatory biotoxin testing to 

satisfy public health requirements in Maine, USA, we also assume consistent year round sales in 
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all four production scenarios (i.e., no closures). Closures or restrictions within scenarios 1 and 2 

could significantly lower revenues and alter model outputs.  

2.3 Economic model parameter selection  

We constructed cash flow models with 10-year timelines that include all relevant fixed 

and operating expenses for each of the four production scenarios (Appendix B). Equipment costs 

were sourced directly from suppliers when not provided during interviews. The lifespan of 

depreciable capital items was informed by the relevant experience of growers. We then used a 

straight-line depreciation schedule with no salvage value to calculate depreciation costs. All 

scenarios assume the use of 244 m (800 ft.) longlines spaced 30 m (100 ft.) apart. All lease 

application fees and ongoing lease rent fees are included and unique to the state of Maine, USA. 

A 50:50 split between owner equity and debt was used to calculate the present value and 

repayment schedule for a ten-year term loan with a 7.5% coupon for depreciable assets. 

Given the size of the farmed Sea Scallop market, < 1% of total annual U.S. Sea Scallop 

sales (Shumway & Parsons, 2016), ex-farm market prices will most likely be subject to future 

increases in supply and competition from the wild Bay and Sea Scallop fisheries. Therefore, we 

used a conservative price estimate of $1.00 for a whole 75 mm scallop, a value well below the 

historic sale prices relayed by growers. For scenarios 3 and 4, we used a market price of $10.50 

lb.-1 of shucked scallop meats provided by the Maine DMR for 2019 (ME DMR, 2020).  

2.4 Bioeconomic model simulations 

We primarily tracked two model outputs: cost of production (COP; $ scallop-1) and net 

present value (NPV; $). COP is formulated as 

!"# =%!&!
'!

!

"#$
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where t is the number of time periods, CFn is the net cash flow during a single period n, and Sn is 

the quantity of scallops produced during a single period n. This analysis does not include a 

market price, and provides a generalizable evaluation of startup performance over a 5 (COP5) or 

10 (COP10) year timeline. NPV is the discounted sum of all future cash flows over a period of 

time, and is a method commonly used, through discounting, to evaluate a project based on a next 

best alternative. NPV is calculated as  

(#) = 	% +"
(1 + 	/)"

!

"#$
 

Where Rt is the net cash inflow minus outflows during a single period t, i is the interest rate used 

to discount future cash flows, and t is the number of time periods. We used a 7.5% discount rate 

to calculate NPV over 5 (NPV5) and 10 (NPV10) year timelines. 

To quantify the effects of farm size on COP5, we iteratively increased annual sales by 

10,000 scallops year-1 from 200,000 to 1,000,000 scallops year-1 and calculated a corresponding 

COP5 for each scenario. Within each of our four production scenarios, we then assumed farms of 

three different sizes: 200,000 (200K), 600,000 (600K), and 1,000,000 scallops year-1 (1M). For 

each farm, we projected cash flows and calculated corresponding COP and NPV over 5 and 10 

year time periods. We then cataloged the cost structure of the 200K, 600K, and 1M farms in 

scenarios 1 and 3. We also calculated the market price needed to "break-even" (NPV5 > 0) for 

each of the three farm sizes (200K, 600K, 1M) in each scenario. 

We performed sensitivity analyses on the 600K farms in scenarios 1 and 3 (costs of boat 

and truck included) only. We first analyzed the effects of changing key labor input parameters on 

COP5. In +/- 5% increments, we iteratively changed the time required to complete three tasks: 1) 

sort seed, 2) reduce stocking densities and clean nets in the fall of juvenile culture, and 3) reduce 

stocking densities while washing and grading scallops in the spring of grow-out. We then 
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calculated a corresponding COP5 under each condition. For the 600K farm in scenario 3, we 

included a 4th task, the time required to reduce stocking densities and clean nets for 

overwintering in the fall of grow-out, in our analysis. We then tracked the effects of iteratively 

changing, in +/- 5% increments, farm size, mortality rate, spat collection success, labor inputs, 

market price, and scallop growth rate on NPV5. 

2.5 Stochastic Monte Carlo analysis 

Finally, we performed a Monte Carlo analysis to assess risk as a function of potentially 

random key variables (Chen et al., 2017; Valderrama et al., 2016). We ran 500 iterations of four 

separate simulations using the 600K farm in scenario 1. We assumed that market price, annual 

mortality rate, spat collection success, and a combination of the three variables were triangularly 

distributed random variables. For each analysis we assumed a best, worst, and most likely value 

for each parameter. Market price was bound between $0.70 - $1.30 with a most likely value of 

$1.00, annual mortality was bound between 2.5 - 24.5% with a most likely value of 12.5%, and 

spat collection success was bound between 300 - 2,700 spat collector-1, with a most likely value 

of 1,500 spat collector-1. Best and worst case scenarios represent the range of values provided by 

interview participants for mortality and spat collection. However, the range of market prices is 

based on a reasonable estimation of the upper and lower bounds for a commercial operation. 
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CHAPTER 3 

RESULTS 

3.1 R&D priority cataloging 

During the semi-structured interviews, growers consistently referenced seven main 

themes: site selection, spat supply, biofouling, optimization and mechanization, biotoxins, end 

market uncertainty, and scale. Notably, there was an even distribution of references to each 

theme across all of our interviews (Figure 1). These data were used as the basis for selecting 

farm size, mortality rate, spat collection success, labor inputs, market price, and scallop growth 

rate as relevant sensitivity analysis parameters.  

3.2 Production scenario results 

We observed clear economies of scale for farms in all four scenarios. Annual sales were 

inversely proportional to COP5 (Figure 2). As we forced the model from 200,000 to 600,000 

scallops year-1 in scenario 1, COP5 fell from $1.12 to $0.68 (Figure 2). However, as we 

continued to increase sales from 600,000 to 1,000,000 scallops year-1, COP5 only fell from $0.68 

to $0.59. Production costs ($ scallop-1) were substantially higher for farms targeting shucked 

scallop meats (ranging from $1.73 - $2.77) than those for farms targeting whole scallops (Figure 

2). Removing the cost of the boat and truck led to comparatively lower COP5 values for both the 

whole scallop and shucked meats ventures. 

There were notable differences between the performance of farms targeting whole 

scallops and those bringing shucked meats to market. For whole scallop farms, an initial capital 

outlay was followed by two years of net negative cash flows before positive returns were 

realized in year three (Figure 3a). However, for farms in scenarios 3 and 4 (shucked meats), cash 

flows were negative over the entire 10-year model timeline (Figure 3b). The upfront costs for 
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shucked meats farms were significantly higher than those for whole scallop ventures, driven by 

the lantern net and longline demands of low density (5 individuals tier-1) stocking. For example, 

the initial outlay for a 600K whole scallop farm, in which the cost of the boat and work truck are 

included, totals $209,902 (Figure 3a). A comparable farm targeting shucked meats would require 

an initial investment of $411,921 (Figure 3b). All farms in scenarios 3 and 4 generated negative 

NPV5 and NPV10 (Table 1).  

Labor made up the greatest portion of total costs for all farms in scenarios 1 and 3 (Figure 

4). For the 200K farm in scenario 1, labor made up 40% of total costs. However, as farm size 

increased to 1M, labor costs increased to 61% of the total share (Figure 4a). Equipment 

depreciation costs were consistently higher in scenario 3 (meats) than in scenario 1 (whole 

scallops). A detailed look at the cost subcategories for the 600K farms in both scenarios 1 and 3 

underscored the impacts of low density net stocking. Lantern nets accounted for 42.2% and 

55.8% of depreciation costs, while stocking density reductions and net cleanings accounted for 

75.4% and 87.6% of labor expenses, for the 600K farms in scenarios 1 and 3, respectively. 

Regulatory testing for the sale of whole scallops accounted for just over 4% of costs for a 600K 

farm in scenario 1. This value does not include any associated transportation expenses (fuel, 

time, etc.) to a certified testing center as the value would be too difficult to generalize between 

farms. 

Additional benefits of scale were identified by tracking the effects of market price on 

NPV5. All farms in scenarios 1 and 2 "broke-even" (NPV5 > 0) with whole scallop market 

prices between $0.58 and $1.29 (Figure 5a). Break-even was achieved first for the 1M scallops 

year-1 farm in scenario 2, indicating substantial benefits of a pre-owned boat and truck. 

Conversely, break-even was never achieved across the full range of market prices ($0.10 - 
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$25.10 lb.-1) for any of the farms in scenarios 3 and 4 (Figure 5b). Only at a sale price of $43.75 

lb.-1 was NPV5 > 0 for a 600K farm in scenario 3.  

3.3 Sensitivity analyses 

Changing the time required to handle nets before grow-out, compared to seed sorting or 

handling nets during juvenile culture, led to the biggest change in COP5 for the 600K farms in 

both scenarios 1 and 3. For example, for a whole scallop farm, a 25% increase in the time 

required to reduce stocking densities in the spring of grow-out resulted in a $0.05 increase in 

COP5 (Figure 6a). For the 600K meats only farm, a 25% increase in the time required to reduce 

stocking densities to 5 individuals tier-1 for an additional year of grow-out resulted in a $0.17 

increase in COP5 (Figure 6b).  

Whole scallop farm NPV5 was most sensitive to market price and growth rate (Figure 

7a). A 25% increase in market price ($1.00 - $1.28) or the amount of time required for scallops 

to reach 75 mm (19 - 24 months) resulted in a ~$300,000 increase and a ~$200,000 decrease in 

NPV5, respectively (Figure 7a). Increases in farm size exerted the most influence on NPV5 for 

the 600K meats only farm, but the effects were strongly negative. A 25% increase in farm size 

generated a $282,000 decrease in NPV5 for the 600K farm in scenario 3 (Figure 7b).  

3.4 Monte Carlo risk assessment  

We performed a Monte Carlo analysis only using the 600K farm in scenario 1. Random 

price, spat collection success, and a combination of all three parameters resulted in 2.8%, 3.8%, 

and 5.2% chances of negative returns, respectively (Figure 8). Notably, the "worst-case" spat 

collection condition (300 spat collector-1) produced the lowest NPV5 (-$310,045) compared to 

the other three scenarios, indicating that variable spat collection is a potential source of risk 

(Table 2). While the probability of generating negative returns was low (2.8%) in the random 
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price simulations, whole scallop price fluctuations could hinder profitability particularly in the 

startup phase (< 5 years). 

 

 

Figure 1. Number of references to emerging themes from semi-structured interviews (n=7) with 

scallop aquaculture industry leaders in the state of Maine. A reference indicates mention to a 

particular R&D challenge that falls under one of these 7 categories related to scallop production. 
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Figure 2. 5-year aggregated cost of production ($ scallop-1) for scenarios 1 (a, red line), 2 (a, blue 

line), 3 (b, red line), and 4 (b, blue line) as a function of farm size (annual scallop sales). 
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Figure 3. Net annual cashflows for farms of varying sizes in scenarios 1 (a, solid bars), 2 (a, 

striped bars), 3 (b, solid bars), and 4 (b, striped bars). Year 0 represents the initial capital outlay. 
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Table 1. Summary of NPV and COP results for 200K, 600K, and 1M farms in scenarios 1 – 4 

over 5 and 10 year timelines. Negative NPV values are displayed in red. 

Farm scenario Farm size 
(annual sales) 

NPV5 NPV10 COP5 COP10 

1: Whole scallop, 
total investment 

200K -$106,559 $177,473 $1.12 $0.70 

600K $255,209 $1,369,913 $0.68 $0.45 

1M $617,652 $2,562,985 $0.59 $0.40 

2: Whole scallop, 
pre-owned boat and 
truck 

200K $66,552 $395,264 $0.74 $0.53 

600K $428,291 $1,587,703 $0.55 $0.39 

1M $790,733 $2,780,775 $0.52 $0.37 

3: Shucked meats, 
total investment 

200K -$598,257 -$809,552 $2.77 $1.40 

600K -$1,275,488 -$1,706,285 $2.15 $1.16 

1M -$1,958,856 -$2,613,113 $2.03 $1.12 

4: Shucked meats, 
pre-owned boat and 
truck 

200K -$397,650 -$529,461 $2.05 $1.12 

600K -$974,962 -$1,256,677 $1.78 $1.01 

1M -$1,557,598 -$1,992,697 $1.73 0.98 
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Figure 4. Cost breakdown for 200K, 600K, and 1M farms in scenarios 1 (a) and 3 (b). 
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Figure 5. Net present value (NPV5) for farm of three different sizes in scenarios 1 (a), 2 (a), 3 

(b), and 4 (b). The dashed horizontal line denotes NPV5=0. 
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Figure 6. Effects of changes in key labor input parameters for a 600K scallops year-1 farm in 

scenarios 1 (a) and 3 (b) on cost of production ($ scallop-1). 
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Figure 7. Effects of changes in key model parameters on NPV5 ($) for 600K scallops year-1 

farms in scenarios 1 (a) and 3 (b).  
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Table 2. Summary of stochastic Monte Carlo simulation results in which price ($ scallop-1), 

mortality (% year-1), and spat collection success (spat collector-1) were all modeled as random 

variables with triangular distributions over 500 runs. A simulation in which all three variables 

were randomized was also performed. The mean, standard deviation, minimum, maximum, and 

probability of negative returns are listed. Negative values are displayed in red. 

NPV5 (USD): 
Random price 
($0.7 - $1.30) 

Random 
mortality (2.5% - 

24.5%) 

Random spat 
collector-1 (300 - 

2,700) 

Random price, 
mortality, and 

spat 

Mean $246,044 $251,655 $247,009 $239,263 

Sd $135,890.46 $14,516 $141,177 $143,780 

Minimum -$65,196 $216,767 -$310,045 -$172,800 

Maximum $568,227 $284,107 $586,608 $569,605 

Risk of loss 
(NPV5<0) 2.8% 0% 3.8% 5.2% 
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Figure 8. Cumulative probability distribution curves for the results of stochastic Monte Carlo 

analyses. Market price (top-left), mortality (top-right), spat collection success (bottom-left), and 

a combination of the three (bottom-right) were modeled as random variables with triangular 

distributions over 500 runs. 
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CHAPTER 4 

DISCUSSION 

Our analysis overwhelmingly points towards the conclusion that increasing cultured 

scallop production in the Gulf of Maine will require farms to sell whole scallops at scale 

(>200,000 scallops year-1) while keeping labor costs at a minimum. End product type was the 

most important determinant of farm-level success. The vast majority of farms bringing whole 

scallops to market were successful while those targeting shucked meats alone generated negative 

returns. Regardless of end-product type, we observed labor and mechanizations issues associated 

with lantern nets. Despite the fact that COP was inversely proportional to farm size, labor costs 

increased linearly with production volume, a function of low density net stocking. Sensitivity 

analyses, however, shed light on opportunities to overcome many of these challenges. Both time 

to market and market price exerted the most influence on the NPV5 of whole scallop farms. 

Increasing scallop growth rates and developing markets for whole scallop products could 

substantially increase farm values. Similarly, relatively small (5 - 10%) decreases in the time 

required to handle nets could lead to substantial decreases in production costs. These results, in 

aggregate, argue for future investment in four primary areas of research: (1) develop methods to 

mechanize or circumvent lantern net culture, (2) identify "optimal" stocking densities that 

balance growth and expenses, (3) build site selection tools to optimize scallop growth, and (4) 

strengthen end markets for whole scallop products while increasing biotoxin testing capacity. 

The combination of clear economies of scale and labor bottlenecks likely means that 

reducing the time required to handle lantern nets is one of the more pressing needs of this 

burgeoning industry. Our semi-structured interviews corroborate this hypothesis, as all seven 

participants referenced mechanization, and six referenced biofouling, as a current challenge on 
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their farms (Figure 1). Growers and researchers have made considerable investments in lantern 

net and scallop washing technology (Morse, 2017) and this equipment is at least partially 

responsible for the success of our model farms. Improvements to washing equipment or 

workflow could further reduce labor costs and increase profitability. Yet even with the added 

benefits of this equipment, we still observed mechanization issues associated with net culture. 

For example, in all four scenarios labor made up between 30 - 70% of total expenses and this 

portion increased with farm size. Similarly, small increases in net handling time requirements led 

to disproportionately large increases in production costs.  

One potential solution to mitigate these issues would be to circumvent lantern nets almost 

entirely. Ear-hanging is an alternative grow-out method that increases growth rates compared to 

lantern nets or bottom cages and eliminates the costly need to handle heavily fouled equipment 

after the first year of juvenile culture (Dadswell & Bradford, 1991; Grant et al., 2003; Morse, 

2017). Despite the growth benefits, there is still considerable uncertainty surrounding ear-

hanging cost requirements. Ear-hanging supports a ~$500 million USD Patinopecten yessoensis 

industry in Japan (OECD, 2020), allowing small family operations to bring a significant quantity 

of scallops to market each year (Beal et al., 1999; Imai, 1977; Ventilla, 1982). While the 

specialized drill and pinning machine required for ear-hanging would substantially increase a 

grower's upfront investment (Coastal Enterprises, Inc., 2019; Morse, 2017), we demonstrate that 

significantly scaling up production volume with lantern nets has limitations. Future scallop 

bioeconomic analyses should weigh cost estimates of ear-hung scallops against the estimates 

generated here. Specifically, under what conditions do the long-term decreases in labor expenses 

outweigh the initial increase in labor and equipment costs for ear-hung scallops. Until ear-
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hanging technology has been tested and becomes more available in the Northwest Atlantic, we 

expect growers will primarily be using lantern nets.  

Optimizing lantern net stocking density from both a growth and cost perspective, i.e., 

balancing time to market with labor and equipment expenses, can potentially maximize farm 

value. Scallops are particularly sensitive to the effects of space limitation and food depletion 

within nets, and small increases in the number of individuals per net tier can significantly 

increase time to market (Coleman et al., 2021; Parsons & Dadswell, 1992). Farm expenses are a 

function of stocking densities as well, as the number of nets a grower must manage dictates 

labor, capital, and equipment costs. Handling-related mortality can be a significant issue for 

cultured scallops compared with other species of bivalves (Dadswell, 1989; Grecian et al., 2000, 

Coleman et al., under review). As opposed to the more efficient "batch processing" method for 

grading and cleaning oysters or mussels, growers must move from net to net and minimize the 

time scallops spend out of the water. We observed that increasing production volume (and thus 

the number of nets a grower must handle) resulted in mounting labor costs. Additionally, lantern 

net depreciation made up nearly 10% of all costs for the 600K farm in scenario 1. The stocking 

density values we assumed in our model are based on the requirements to bring scallops to 

market size in 19 months. If we artificially increase the grow-out density from 15 to 25 

individuals tier-1 for the 600K farm in scenario 1, and still assume 19 months to market, NPV5 

increases from $255,210 to $395,344. Just as decreasing the time required to handle a single net 

during grow-out by 5 mins resulted in a $0.04, or ~6%, reduction in cost of production, small 

reductions in stocking density can have similar effects. Others have explored the nested effects 

of farm (Pilditch et al., 2001) and individual net (Parsons & Dadswell, 1992) stocking densities 

on growth, but our results argue for explicitly analyzing density within the framework of a cost 
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benefit analysis. Identifying the specific densities at which growth is maximized and costs are 

minimized is one strategy for growers to reduce production costs.  

Careful site selection is another method of improving farm value by increasing growth 

rates without needing to further reduce net stocking densities. Increasing the time required to 

bring whole scallops to market size by 25% (~5 months) decreased farm value by nearly 

$200,000 for the 600K farm in scenario 1. It is clear that optimal scallop site selection will 

require a multivariate approach. Temperature exerts a nonlinear influence on scallop growth with 

an optimum between 10 - 15 °C (Coleman et al., 2021; Davidson & Niles, 2014; Stewart & 

Arnold, 1994) and food availability and quality ultimately facilitate increases in scallop biomass 

(MacDonald & Thompson, 1985; Pilditch & Grant, 1999). Food conditions also have stocking 

density implications, as high food environments could potentially allow growers to increase the 

number of scallops in each net tier and still achieve marketable growth (Côté et al., 1994). 

Identifying lease sites within optimal environmental ranges is only one criterion that prospective 

growers of any aquacultured species must consider (Johnson et al., 2019). Specifically, we 

demonstrate that operating a profitable farm scallop will require significant space to account for 

low density net stocking. Interview participants repeatedly stressed the importance of holding 

longlines below high wave energy levels (Khandekar & Swail, 1995) to avoid mortality or 

decreased growth (Freites et al., 1999), underscoring the need for adequate depth. Siting farms in 

areas with optimal environmental conditions as well as adequate depth and space for net culture 

can have significant economic benefits. Developing site selection tools that take into account 

multiple social and biophysical parameters, particularly any potential multi-use conflicts 

(Radiarta et al., 2008), will be critical to effectively grow the industry.  
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The most important determinant of profitability was ultimately end product type. Even 

with the added benefit of an owned vessel and equipment sharing (scenario 4), selling shucked 

meats alone generated negative returns. For these businesses, the period between initial capital 

outlays and cash inflows was long (4+ years) and holding scallops at 5 individuals tier-1 in 

lantern nets led to insurmountable labor and capital costs. Under current production conditions, 

farms will likely be required to sell at least a portion of their inventory into the live market. 

However, selling whole scallops poses considerable challenges. Growers and researchers in 

Maine have worked diligently with the Maine Department of Marine Resources (DMR) to sell 

live products (Maine Department of Marine Resources, 2017), but the testing costs are 

considerable for small operations in the pre-revenue period and biotoxin closures could 

significantly impact revenues. ASP and PSP abundance varies spatially and temporally in the 

Gulf of Maine (Cembella et al., 1994; Keafer et al., 2005; Luerssen et al., 2005), making 

proactive site selection an unlikely strategy to completely avoid issues with toxins. However, as 

whole scallop sales continue to increase, managers and researchers should incorporate historical 

in-situ scallop biotoxin data into site selection tools. Lending prospective growers insight into the 

potential timing and extent of closures in a given area will allow them to better plan for 

disruptions to whole scallop sales, a critical component to farm-level success.  

Increasing the value of novel whole scallop products within a competitive seafood market 

will require investing in both the necessary testing to satisfy public health requirements in 

parallel with the consumer education and distribution networks. Market prices exerted the most 

influence on the profitability of farms selling whole scallops, indicating that future changes in 

supply or demand could have adverse effects. A market analysis of farm raised scallops indicated 

that live products from Maine could be well received by chefs, retailers, and distributors (Coastal 
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Enterprises, Inc., 2019). Recent research also demonstrates that consumers may be less averse to 

consuming farmed shellfish compared with farmed finfish (i.e., salmon, tilapia, etc.) resulting in 

higher willingness to pay (Brayden et al., 2018). Scallop adductor muscles form the basis of a 

~$1 billion industry in the U.S. (National Marine Fisheries Service, 2020) with nearly half the 

value coming from imports (Hale Group, Ltd, 2016). Our analysis suggests that unless 

production methods substantially change (i.e., ear-hanging or improvements to net culture) and a 

subsequent reduction in production costs is realized, businesses will be unable to cost effectively 

target the adductor market using lantern nets alone. Investing in end markets, consumer 

education, and testing capacity for whole scallops in the near term is the most readily available 

strategy to increase farmed scallop production in the Northwest Atlantic.  

Production costs for farms in scenarios 2 and 4 were substantially lower than those for 

farms in scenarios 1 and 3, indicating that transitioning to scallop aquaculture from a fishing 

background or co-oping with other growers offers large advantages. A recent analysis of Maine's 

aquaculture lease holders concluded that, as of 2017, only 0.58% of commercial fishing license 

holders also held an aquaculture lease (Stoll et al., 2019). The gear requirements for scallop 

aquaculture (i.e., offshore spat collection, hydraulic lifting capabilities, and adequate deck space 

for handling lantern nets) included in our model overlap with those of lobster fishing. In fact, two 

of the seven interview participants hold commercial lobstering licenses and two had previously 

worked on lobster boats. While we observed high upfront costs required to start a scallop farm, 

we also note that scallop farming in particular may offer a pathway to realize the coastal 

diversification potential of aquaculture heralded by policy makers (Mamauag et al., 2013; DMR, 

2004). Removing the cost of the vessel and truck generated a significant (~$175,000) reduction 

in upfront costs during the challenging pre-revenue period. Similarly, equipment sharing through 
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a farmer cooperative not only spreads the cost of specialized equipment across other businesses, 

but also offers opportunities for sharing labor and expertise. In Japan, scallop aquaculture 

cooperatives are an integral part of the nation's ~$500 million USD industry (Beal et al., 1999; 

Ventilla, 1982). Effective transition to aquaculture requires explicit benefits to local communities 

and limited disruption to existing social patterns (Rubino & Stoffle, 1990). Individuals who have 

experience working on the water and adopt scallop aquaculture may have both economic 

advantages and may be able to overcome the social, environmental, and regulatory challenges 

that are hindering aquaculture-based fisheries diversification in the Northwest Atlantic (Cleaver 

et al., 2018).  

Scallop aquaculture represents a potentially profitable opportunity to sustainably increase 

U.S. seafood production, offset a substantial trade imbalance, and provide employment 

opportunities for coastal communities most at risk from climate change. Ensuring that increased 

scallop aquaculture output realizes not only the economic, but also the societal goals, of 

equitable coastal development will be critical in effectively increasing the resilience of coastal 

communities (Krause et al., 2015). Identifying the regulatory conditions under which the 

economic benefits of scallop farming can be realized in the regions in which farms are sited 

should be a research priority that accompanies technical and biological R&D. Domestic seafood 

production is predicted to lag well behind demand in the coming years (Shamshak et al., 2019). 

As the Gulf of Maine warmed faster than 99% of other marine water bodies on Earth between 

2004 and 2013 and continues to warm (Pershing et al., 2015), increasing the production capacity 

and diversity of the aquaculture sector will play a key role in fostering coastal resilience 

(Bricknell et al., 2020). Our analysis suggests that scallops could be a potentially lucrative 

farmed species, but unique collaboration between regulatory agencies, researchers, and industry 
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members will be needed to overcome a diversity of challenges before these goals can be 

realized.  

4.1 Conclusion 

Using a bioeconomic modeling approach, we analyzed the performance of scallop farms 

in the Northwest Atlantic under a variety of technical, biological, and economic constraints. In 

all scenarios, cost of production was inversely proportional to farm size and businesses selling 

more than 200,000 whole scallops year-1 were profitable. Alternatively, farms selling only 

shucked meats generated consistently negative returns. We also identified numerous constraints 

that may hinder further expansion in the Northwest Atlantic, as well as strategies to mitigate 

these issues. Based on economies of scale, labor bottlenecks, and the influence of end product 

characteristics, growers will most likely be required to sell at least a portion of their inventory 

into the "whole" scallop market and increase production volume to account for high overhead 

costs. Developing multi-criteria site selection tools that take into account biophysical 

(temperature, food, salinity, depth etc.) and social (space, conflicting uses, etc.) variables can 

have large positive economic effects on future farms as adequate space for low density net 

stocking will be required. Industry members will also have to work with regulatory agencies to 

increase biotoxin testing capacity and ensure the continued safe sale of live products. There are 

limits to net based scallop aquaculture that could potentially be mitigated through improved 

mechanization or alternative techniques such as ear-hanging. Major reductions in cost of 

production would allow growers to potentially target the nearly $1 billion USD adductor muscle 

market. Scallop aquaculture represents a potentially profitable opportunity to sustainably offset a 

large domestic seafood trade imbalance and provide benefits for coastal communities if the 

necessary technical and regulatory challenges can be overcome.  
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APPENDIX A: Interview script 

R&D Requirements  

1. What are the biggest challenges facing sea scallop aquaculture in the Gulf of Maine today?  

2. How can the research resources in the state best help to answer these questions and solve 

these problems?  

Participant characteristics  

1. What type of aquaculture lease or license do you currently possess (if multiple, include all)? 

2. For how many years have you been farming scallops?  

3. Do you farm any other species?  

4. If so, are these other species grown on the same lease as your scallops?  

5. Please specify the number of additional laborers you employ and specify their characteristics 

(i.e., full time, part time, volunteer, etc.)  

6. Where is your home dock or pier?  

End Market and Product Specifications  

1. Do you sell whole scallops and/or shucked adductor muscle?  

2. What type of end markets do you sell to (direct to consumer, wholesale, etc.)? 

If shucked meats:  

3. What is the size range of scallops that you harvest for the adductor muscle market? 

4. Do you shuck these scallops yourself?  

5. If not, how do you shuck these scallops?  

6. What is the expected unit price for this product?  

7. How does this price vary across size classes?  

8. What is the expected annual sale (in pounds, pieces, etc.) of shucked meats?  
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If whole scallops: 

9. What is the size range of scallops that you harvest for the whole scallop market? 

10. What is the expected price per scallop for each size class?  

11. What is the expected total sales of each size class? Please feel free to estimate these numbers 

in any way that you would like (individuals / year, dollars per season, etc.).  

12. How long is the sale period for each year class of scallops? That is, for how many months are 

you able to sell scallops within a specific size range before they get too large?  

Biotoxin testing:  

13. How many times per month do you test products for the presence of ASP and PSP?  

14. How often are you prevented from selling whole products due to either ASP or PSP levels 

above the legal limit?  

15. What is the price you pay per test?  

16. How do you transfer your samples to the appropriate testing site?  

Lease Configuration  

1. How deep is your site?  

2. What is the acreage?  

3. What is the configuration of your lease: longline, bottom culture, bottom seeding, etc.? 

If longline:  

4. How many longlines do you currently have in the water?  

5. How long is (are) your line(s) in the horizontal direction?  

6. If you have multiple lines, how far apart is each line?  

7. How much scope do you use to anchor each line?  

8. How much chain do you use at the bottom of each mooring line?  
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If bottom culture / cages:  

9. How many bottom cages do you currently have on your site?  

10. How far apart do you space each cage? 

11. How do you mark each cage?  

Capital expenses  

1. Please refer to table 1. We will now go through the list of capital expenditures and decide 

whether or not you have purchased the item for your farm (Y/N). If yes, please provide some 

more information on the specifications of the item (i.e., weight and type of anchor, diameter 

mooring line, lantern net mesh diameter, type of vessel, type of longline floatation buoys, etc.), 

and the unit cost of the item. Then, please try to estimate the lifespan of the item in years, and, if 

multiple items, the percentage of the lot that is replaced at that time. Lastly, if the item is used 

for other purposes (other species, other business, etc.) please estimate the percentage of time 

dedicated scallop aquaculture.  

2. Are there any items missing from table 1? If so, please refer to table 2 and include all the 

relevant information.  

Production schedule: spat collection, grading, stocking, thinning, cleaning  

The following interview sections are organized chronologically. The goal is to understand the 

process of bringing a single year class of scallops to market size. I'm going to start by asking you 

about your spat collection methods, then your nursery culture (Y1 of grow-out), then your grow-

out methods for the following 2 years.  

1. With what method do you obtain new spat?  

If spat collection:  

2. How many spat lines do you deploy per year?  
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3. How many bags do you deploy on each line?  

4. What is the depth, roughly, of the water in which you deploy bags?  

5. How far apart do you space bags on each line?  

6. In what months do you start deploying spat bags?  

7. In what months do you start retrieving spat bags? Do you remove spat from the bags at this 

time? If not, are the bags held on your lease?  

8. What is your expected total spat yield per bag (individuals)?  

9. What is, roughly, the average size of the collected spat?  

10. For clarity, what is your total estimated spat yield per year? 

11. Is all of this spat grown out on your farm?  

12. If not, do you sell spat?  

If spat purchase:  

13. What time of year do you purchase spat?  

14. How much spat do you purchase each year?  

15. What is the cost of spat?  

16. From whom do you purchase spat?  

17. What is the estimated size of the spat you purchase each year?  

Juvenile culture Y1: Y1 refers to the 12 months following initial stocking of scallops into 

enclosures from spat collector bags.  

18. In what months do you initially stock nets or cages with spat on your site?  

19. What gear type (nets, cages, etc.) do you use for juvenile culture in year 1 (Y1)? 

20. With how many individuals / level (cage) do you initially stock your nets (cages) in Y1? 

21. How far apart do you space these enclosures on your line (for nets) or lease (cages)?  
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22. What is the stocking, grading, and cleaning schedule for Y1 scallops?  

23. Do you change nets types at any time over the course of this 12 month period?  

24. Do you use any equipment to help with grading, cleaning, or thinning in Y1?  

25. What is the expected total loss, percentage wise, over the 12 months from initial stocking in 

juvenile culture enclosures to stocking into Y2 enclosures?  

26. Is there a seasonality to this loss? Are there processes specific to Y1 that cause mortality?  

Grow-out Y2: Y2 refers to the period beginning 12 months from initial stocking of spat into 

nets or cages and ending 12 months after that time.  

27. In Y2 of grow-out, do you ear-hang or use enclosures (nets, cages, etc.)?  

If enclosures: 

28. Are the enclosures you use in Y2 different from those in Y1 in size, type, mesh, etc.?  

29. If so, in what months do you begin to transfer scallops into these new nets?  

30. With how many individuals / level (cage) do you initially stock these new enclosures in Y2? 

31. How far apart do you space these enclosures on your line (for nets) or lease (cages)?  

32. What is the stocking, grading, and cleaning schedule for Y2 scallops?  

33. Do you change net or cage types at any point during Y2?  

34. Do you use any equipment to help with grading, cleaning, or thinning in Y2? 

35. What is the expected total product loss, percentage wise, over Y2?  

36. Is there a seasonality to this loss? Are there processes specific to Y2 that cause mortality? 

If ear hanging:  

37. In what months do you start ear-hanging in Y2?  

38. How large are your scallops typically once you begin ear-hanging?  

39. How many scallops / ear-hanging line do you typically fit?  
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40. Do you clean scallops before the process?  

41. Do you grade scallops before the process?  

42. What, if any, special equipment do you use to ear-hang?  

43. How far apart on the longline do you space ear-hanging lines?  

44. Do you weigh down the bottom of your ear-hanging lines?  

45. How often do you clean ear-hung scallops during the course of Y2? 

46. Do you use any equipment or machinery to clean ear hung 

scallops?  

47. What is the expected total loss, percentage wise, at the end of Y2?  

48. Is there a seasonality to this loss? Are there processes specific to Y2 that cause mortality? 

Grow-out Y3: 

If enclosures in Y3:  

49. Are the enclosures you use in Y3 different from those in Y2 in size, type, mesh, etc.?  

50. If so, in what months do you begin to transfer scallops into these new nets / cages?  

51. With how many individuals / level (cage) do you initially stock these new enclosures in Y3? 

52. How far apart do you space these enclosures on your line (for nets) or lease (cages)?  

53. What is the stocking, grading, and cleaning schedule for Y2 scallops?  

54. Do you change net or cage types at any point during Y2?  

55. Do you use any equipment to help with grading, cleaning, or thinning in Y2?  

56. Do you change net or cage types at any point after thinning during Y3?  

57. What is the expected total loss, percentage wise, over the 12 months after Y3 stocking? 

58. Is there a seasonality to this loss? Are there processes specific to Y3 that cause mortality?  
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If ear hanging in Y3:  

a. If enclosures in Y2:  

59. In what months do you start ear-hanging in Y3?  

60. How large are your scallops typically once you begin ear-hanging?  

61. How many scallops / ear-hanging line do you typically fit?  

62. Do you clean scallops before the process?  

63. Do you grade scallops before the process?  

64. What, if any, special equipment do you use to ear-hang?  

65. How far apart on the longline do you space ear-hanging lines?  

66. Do you weigh down the bottom of your ear-hanging lines?  

67. How often do you clean ear-hung scallops during the course of Y3?  

68. What is the expected total loss, percentage wise, at the end of Y3? 

69. Is there a seasonality to this loss? Are there processes specific to Y3 that cause mortality?  

a. If ear hanging in Y2:  

70. How often do you clean ear-hung scallops in Y3?  

71. What is the expected total loss, percentage wise, at the end of Y3?  

72. Is there a seasonality to this loss? Are there processes specific to Y3 that cause mortality? 

Operating expenses  

1. Please refer to table 3 for the following set of questions. Together, we will go through the 

tasks and try to record the total hours dedicated to each task annually. First, please specify the 

time unit with which you feel most comfortable describing each task. For example, minutes 

per net cleaning, days to grade an entire year class, etc. Next, please estimate the time 

required to complete the task using the units you specified. Finally, please make an annual 
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time requirement estimate for each task. This should represent the total number of hours, 

days, weeks, or months, dedicated to each task in total.  

2. Please refer to table 4. This table presents a list of operating expenses. We will now go 

through the list, identify the unit in which you would like to present these expenses (hours / 

week, total hours per month or year, etc.), estimate the cost per unit, and then estimate the total 

number of units per year, month, week, day, etc.  

Table A1. Capital expenditures and associated lifespans 

Item 
In use? 
(Y/N) 

Type 
(specify) Unit 

Cost / 
unit 

Lifespan 
(years) 

Rep. 
% 

% to 
scallops 

Anchors 
       

Horizontal Long 
Line 

       

Vertical Mooring 
Line 

       

Lease Marker Buoys 
       

Corner Tension 
Buoys 

       

Compensation 
Buoys 

       

Boom / Hauler         

Truck        

Star Wheel        

Spat Line Buoys        
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Table A1. Continued 

Item 
In use? 
(Y/N) 

Type 
(specify) Unit 

Cost / 
unit 

Lifespan 
(years) 

Rep. 
% 

% to 
scallops 

Spat Line Anchors 
       

Spat Bag Mooring 
Line 

       

Spat Bags 
       

Spat Bag Filling 
       

Lantern Nets 
       

Pearl Nets 
       

Bottom Cages 
       

Scallop Washer 
       

Scallop Grader 
       

Bost Customization 
       

Fish Tote 
       

Packaging Supplies 
       

Business computer 
       

Longline Weights        

Mooring Chain         

High Flyers        

Vessel        
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Table A2. Capital expenditures not included in table 1 and their associated unit costs / lifetimes 

Item 
In use? 
(Y/N) Type (specify) Unit 

Cost / 
unit Lifespan (years) Rep. % % to scallops 

        

        

        

        

        
 

Table A3. Production tasks and their associated time requirements and frequencies 

Task Unit Time / Unit Annual Time Requirement 

Spat Bag Deployment 
   

Spat Bag Retrieval 
   

Cleaning scallops 
   

Grading scallops 
   

Thinning scallops 
   

Stocking nets/cages 
   

Ear hanging 
   

Other 
   

Other 
   

Other 
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Table A4. Operating expenses and fixed costs 

Item Unit Price / Unit Count 

Full Time Labor 
   

Part Time Labor 
   

Volunteer Labor 
   

Boat Fuel 
   

Truck Fuel 
   

Boat Maintenance 
   

Truck Maintenance 
   

Equipment Maintenance 
   

Boat Insurance 
   

Truck Insurance 
   

Crop Insurance 
   

Business Liability Insurance 
   

Other 
   

Other 
   

Other 
   

Other 
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APPENDIX B: Bioeconomic model parameters 

Table A5. Production model parameters 

Production model parameters 

Spat bags per line 20 

Average spat per collector bag 1,500 

Initial juvenile culture stocking density (6mm nets) 200 tier -1 

Juvenile culture thinning density (12mm nets) 50 tier -1 

Initial grow out thinning density (12mm nets) 15 tier -1 

Final grow-out density (scenario 3 only) 5 tier-1 

Longline spacing 100ft 

Lease depth 60ft 

Annual mortality 12.5% 

Market size (mm) 75 

Time to market from 7mm spat (months) 19 - 31 

Harvest schedule Year round 
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Table A6. Economic model parameters 

Labor cost (USD/FTE including benefits, PTO, and 
payroll tax) $25.00 

Business and startup fees $1,883.00 

Owner debt:equity 50:50 

Discount rate 7.5% 

Loan characteristics 
10 year term, annual repayment schedule, 

7.5% interest 
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Table A7. Depreciable capital items 

Item Unit Unit Cost Lifespan (years) 

Lantern net: 6mm Each $21.67 8 

Lantern net: 12mm Each $21.67 8 

Lantern net dropper lines (11/32") Foot $0.07 10 

Longlines Lot $3,178.93 8 

Lease markers (highflyers) Each $79.99 15 

Vessel (includes hydraulics, jib crane, starwheel (pair), 
live well, hot tank, and customization for washer and 
grader) 

Lot $150,000.00 25 

Truck Lot $23,000.00 7 

Scallop washer (includes sump pump, generator, 24-volt 
battery, washer pump, fabrication and installation) 

Lot $36,123.00 15 

Scallop grader (includes shipping, converter, battery, 
fabrication, and installation) 

Lot $13,643.85 15 

Sorting racks Pair $75.00 7 

Business computer Single $800.00 7 

Spat line (11/32”) Foot $0.07 10 

Spat anchors Each $5.00 10 

Spat bag floats Each $20.00 10 
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Table A8. Longline components 

Item Unit 
Unit 
Cost Lifespan 

Quantity per 
line 

Total cost per 
line 

Anchor (2-ton granite blocks, includes 
ring and bridles) Each $199.00 8 2 $398.00 

Longline (1.25", 8 strand woven nylon) Foot $0.91 8 800 $728.00 

Mooring line (1.25", 8 strand woven 
nylon) Foot $0.91 8 360 $327.60 

Corner tension floats (75 lb., 16" 
diameter) Each $14.99 8 15 $224.85 

Compensation floats (75 lb., 16" 
diameter) Each $14.99 8 70 $1,049.30 

Negative buoyancy weights (cement 
buckets) Each $4.00 8 94 $376.00 

Compensation float and weight dropper 
lines (11/32") Foot $0.07 8 1074 $75.18 
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Table A9. Operating expenses 

Item Unit 
Unit 
Cost 

Boat Maintenance Monthly lot $100.00 

Truck Maintenance Monthly lot $75.00 

Misc. Equipment Maintenance (Pumps, grader, washer, 
hydraulics) Monthly lot $50.00 

Misc. Expendable Supplies (Fish totes, coolers, zip ties, tools, 
power washer, etc.): 1 lot per lantern net USD / net $0.10 

Boat Fuel USD / gallon $2.11 

Truck Fuel USD / gallon $2.85 

Harvesting and packaging supplies 
USD / 200 harvested 

individuals $0.12 

PPE replacement Lot $15.00 

Spat bags (annual cost) USD / bag $2.00 

Spat bag filling (annual cost) USD / sq foot $0.10 
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Table A10. Fixed costs 

Item 
Annual 
Cost Notes 

Boat insurance $9,000.00 6% of the vessel value 

Truck insurance $300.00 
 

Mooring and Dockage $2,000.00 
 

Biotoxin testing* $7,200.00 
Avg. 2 tests / month (4 tests/month in summer, 1 
test/month in winter) 

Business liability 
insurance $500.00 

 
Accounting fees $400.00 

 
Lease rent fees $100.00 $ / acre 
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Table A11. Labor tasks and associated rates 

Item Unit Time Individuals 
Full time 

equivalent 

August spat line/bag assembly Hours per line 1 2 2 

Fall spat bag deployment Hours per line 2 2 4 

Winter spat line maintenance Hours per line 1 2 2 

Spring spat bag collection Hours per line 2 2 4 

Spring seed sorting Minutes per spat bag 20 2 40 

Spring seed stocking: 6mm lantern nets Minutes per net 5 2 10 

Fall juvenile thinning/net swap: 12mm 
lantern nets Minutes per net 13 2 26 

Spring adult grading/cleaning/net 
swap: 12mm nets Minutes per net 20 2 40 

Fall adult thinning* Minutes per net 20 2 40 

Year round harvest 
Minutes per 250 
individuals 2 2 4 

Spring line installation Hours per line 6 2 12 
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