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00:03 
okay 
00:03 
um welcome to the humane artificial 
00:07 
intelligence webinar 
00:08 
on ai for manufacturing my name is ali 
00:12 
abedi i'm associate vice president for 
00:13 
research at university of maine and i'm 
00:16 
excited to introduce our panel of expert 
00:19 
speakers from academia 
00:22 
industry and government agencies to talk 
00:24 
about 
00:25 
what's happening on artificial 
00:27 
intelligence use and manufacturing and 
00:29 
materials 



00:30 
so from wherever you're joining us 
00:32 
either from 
00:33 
the west coast or east coast of the 
00:35 
united states or from 
00:38 
europe in ieee india or i typically 
00:42 
china colleagues i welcome everybody 
00:44 
here 
00:44 
good morning good afternoon and good 
00:46 
night depending on 
00:47 
where in the world you're tuning in um 
00:50 
we are going to have 
00:52 
hsp here talk for almost 10 minutes 
00:54 
about 
00:56 
the topic of ai for manufacturing uh 
00:59 
feel free to 
01:00 
post your questions in the q a as they 
01:03 
come to your mind 
01:04 
and after all the first speakers are 
01:06 
talking uh talks are over then i will 
01:09 
um pose the questions and then we can go 
01:12 
over the question and 
01:13 
uh answer period toward the end of the 
01:16 
program so this is a one hour webinar it 
01:18 
will be recorded and 



01:20 
um we'll post it basically later on 
01:23 
so without further ado let me 
01:27 
start the panel by introducing our first 
01:30 
speaker dr tony schmitz is a professor 
01:35 
in mechanical aerospace and biomedical 
01:37 
engineering department at university of 
01:39 
tennessee in knoxville 
01:40 
with a joint faculty appointment at oak 
01:43 
ridge national laboratory he's a very 
01:45 
distinguished and accomplished 
01:48 
researchers if i want to read his bio 
01:50 
it will take the entire hour so let's 
01:52 
skipped that but i will just highlight 
01:55 
that 
01:55 
he is one of the experts in the country 
01:57 
in terms of uh manufacturing 
01:59 
and also uh he has received a number of 
02:02 
awards and recognitions like young 
02:04 
investigator award and 
02:06 
nsf career award has lots of patents and 
02:09 
publications so we are very 
02:11 
honored and excited to listen to dr 
02:14 
schmitz today so tony take it away 
02:20 
thank you like i can only go down from 



02:22 
there so let me let me try to do my best 
02:25 
um so my interest is in 
02:29 
trying to understand how we can leverage 
02:32 
advances in machine learning 
02:34 
for machining so machine learning for 
02:37 
machining 
02:37 
and in particular milling operations is 
02:40 
what i'm interested in 
02:41 
um so how can we kind of bridge this gap 
02:44 
between 
02:46 
the great work that's been done in 
02:47 
machine learning and the manufacturing 
02:49 
shop 
02:50 
floor so i'm going to describe today one 
02:52 
particular 
02:54 
implementation of machine learning and 
02:57 
i'm going to use 
02:58 
models that we've developed in the past 
03:01 
for machining 
03:02 
as a way to guide that machine learning 
03:06 
process 
03:06 
so this physics guided machine learning 
03:08 
approach says 
03:10 
i have some physics-based models i can 



03:13 
use those as a low-cost way to generate 
03:16 
a lot of data to initially train my 
03:19 
machine learning model 
03:20 
but because i have uncertainties 
03:22 
associated with that physics-based model 
03:25 
i can improve my machine learning model 
03:27 
now by collecting new data 
03:29 
and adding that to the original data set 
03:32 
that was provided by my physics-based 
03:34 
models 
03:35 
so i'm going to show that application 
03:37 
with relation to 
03:39 
milling so first i'll talk just a bit 
03:42 
about machine learning 
03:44 
and then the models that we apply the 
03:45 
physics-based models 
03:47 
and then i'll demonstrate briefly a case 
03:49 
study that we completed to demonstrate 
03:51 
this approach 
03:53 
so machine learning as we know is a 
03:55 
data-driven approach 
03:57 
we have machine learning and statistical 
04:00 
techniques which can both be applied 
04:02 
where i want to learn from my either 



04:04 
continuous sensor data or 
04:06 
discrete measurement results during or 
04:08 
after the manufacturing process 
04:11 
so this is this is a great advantage 
04:14 
when i don't have a great 
04:16 
an understanding of the relationship 
04:18 
between the inputs 
04:20 
and outputs for my manufacturing process 
04:23 
in that in that way i can develop those 
04:26 
correlations 
04:27 
simply from the data that i collect 
04:29 
during the process 
04:30 
the challenge is that those correlations 
04:32 
don't know about my physical laws and 
04:34 
sometimes they can lead me to 
04:36 
a place i didn't want to go because 
04:39 
either inadequate data or 
04:40 
uncertainty in my data and so on and it 
04:43 
may be difficult to generalize beyond 
04:45 
that training data set 
04:47 
so in this work we're leveraging machine 
04:50 
learning 
04:50 
in particular classification which is a 
04:53 
supervised learning approach 



04:55 
where i'm trying to collect data and 
04:56 
then make decisions based on that data 
04:59 
by classifying the outcomes for example 
05:02 
if i showed you a face image 
05:06 
you could tell me probably whether that 
05:07 
was a male or a female 
05:11 
in the same way what i want to do here 
05:13 
is i want to introduce 
05:15 
them you to a spindle speed and 
05:18 
with combination for my machining 
05:20 
parameters and then have you tell me 
05:22 
is that going to be stable or unstable 
05:24 
in other words am i going to get good 
05:26 
machining performance or poor machining 
05:28 
performance from that combination 
05:30 
there's lots of choices and we've 
05:32 
applied some of those the one i'll show 
05:34 
you today is a k-nearest neighbor 
05:36 
very simple approach okay so i said 
05:38 
we're going to have physics-based models 
05:40 
that we're going to use to train our 
05:41 
algorithm 
05:42 
so one of the things i need to know is 
05:45 
the vibration behavior 



05:47 
of this tool holder spindle machine 
05:49 
combination that i selected for this 
05:52 
machining activity 
05:53 
so we're going to use an approach where 
05:55 
we take models 
05:57 
of the holder and tool and then we 
05:59 
couple them 
06:00 
in the frequency domain to a measurement 
06:02 
of the spindle and 
06:03 
machine in order to predict those 
06:06 
assembly dynamics or what's the 
06:07 
vibration response 
06:09 
at the at the end of my cutting tool 
06:12 
where i'm going to be performing the 
06:13 
machining test 
06:15 
so there's lots of equations here but 
06:17 
essentially what this is saying 
06:19 
is if i can describe the dynamics of my 
06:22 
components of my individual pieces 
06:25 
then there's a there's an analytical way 
06:27 
to put those dynamics together 
06:29 
to predict the assembly dynamics and so 
06:33 
ultimately by following 
06:36 
um the the modeling of the individual 



06:39 
pieces 
06:41 
compatibility conditions at the boundary 
06:43 
and then equilibrium conditions where 
06:44 
i'm 
06:45 
connecting things i end up with an 
06:47 
equation which says i can predict the 
06:49 
assembly dynamics 
06:51 
from the component dynamics so that's 
06:54 
one of the models 
06:58 
so have you shown there that's a milling 
07:00 
cut for those of you who haven't spent a 
07:02 
lot of time around milling machines 
07:04 
so what you saw was a rotating tool 
07:06 
removing material 
07:07 
and flinging these chips away as it as 
07:10 
it cut away that material 
07:12 
so one of the things we need to 
07:14 
understand is that the tool is not 
07:16 
rigid and there's forces applied to that 
07:18 
tool 
07:19 
dynamic forces in order to fling away 
07:21 
those chips 
07:23 
and so that leads to a situation where i 
07:25 
have vibrations during my cutting 



07:27 
process 
07:28 
and those vibrations can be good we call 
07:30 
forced vibrations or there can be bad 
07:32 
what we call chatter or self-excited 
07:34 
vibrations 
07:36 
um so in terms of that modeling i have a 
07:38 
mechanistic approach to describe 
07:40 
those vibrations which includes cutting 
07:42 
force 
07:43 
that cutting force we estimated using 
07:46 
finite element 
07:47 
simulation to determine these 
07:49 
coefficients that relates the force to 
07:51 
the chip that i'm removing 
07:54 
okay so if i have my structural dynamics 
07:56 
that i predicted in my cutting force 
07:58 
model that i predicted i can bring those 
08:00 
together 
08:01 
into a frequency domain solution that 
08:04 
separates the bad vibrations 
08:06 
chatter from the good vibrations the 
08:08 
stable or forced vibrations and so the 
08:10 
gray 
08:11 
region in that plot is the is the bad 



08:14 
vibrations 
08:15 
and the white region is where we have um 
08:18 
good machining behavior okay so the big 
08:21 
thing that i 
08:22 
face when modeling mechanistically when 
08:25 
i use physics-based models to describe 
08:27 
this approach is 
08:29 
if i make a prediction and then perform 
08:31 
an experiment 
08:32 
and that experiment doesn't agree with 
08:34 
my prediction 
08:35 
i do not have a backwards solution i 
08:38 
only have the forwards 
08:39 
solution so that's what was very 
08:41 
intriguing to me about machine 
08:43 
learning is to enable me to connect 
08:46 
my experimental result to the inputs 
08:50 
in a way that wasn't available to me 
08:52 
before so here's a case study that we 
08:54 
ran 
08:54 
i said fine i'm going to start with the 
08:57 
models but i'm going to interject 
08:59 
errors into those models so they're 
09:01 
going to be not quite right 



09:03 
and then i'm going to compare the the 
09:06 
initially trained 
09:07 
model the machine learning model 
09:10 
to the true the true 
09:13 
behavior by adding points so i'll add 
09:17 
points to the original data set 
09:19 
one at a time until i converge 
09:23 
on that true solution okay so 
09:26 
using this k nearest neighbor approach i 
09:29 
trained it 
09:30 
from the original data that had errors 
09:32 
in it 
09:34 
and then now i have a mapping between 
09:37 
stable and unstable behavior in my model 
09:40 
so that's the gray zone there 
09:42 
the the blue curve is just saying that's 
09:44 
the true the true response that i don't 
09:46 
know yet 
09:48 
okay so now we start performing 
09:50 
experiments where 
09:51 
i update the points by tests 
09:54 
in this case at a five millimeter axial 
09:57 
depth of cut for the machining operation 
09:59 
so i update 



10:01 
in a smart way if i get a result i say 
10:04 
okay everything below that result 
10:06 
is stable if i get a positive or a 
10:09 
stable result 
10:10 
if i get an unstable result i say okay 
10:13 
everything above that result is unstable 
10:15 
so not only am i updating at the point 
10:17 
that i tested 
10:18 
but also surrounding points based on 
10:20 
what i know 
10:21 
as a machining dynamics person so then i 
10:25 
did it at different 
10:26 
axial depths and the k nearest neighbor 
10:30 
improves as i add these data points and 
10:33 
so you can see us walking through that 
10:35 
procedure and indeed 
10:37 
converging on the true behavior and so 
10:40 
this convergence criteria 
10:41 
i showed there's the number of correct 
10:43 
points relative to the number 
10:45 
of total points and so you can see that 
10:47 
that ratio improves 
10:49 
as we as we proceed with the testing 
10:53 
okay so i know that was quick but i just 



10:55 
wanted to give you a flavor 
10:57 
for how we can use models for 
11:00 
manufacturing 
11:01 
processes to see the machine learning 
11:03 
algorithm 
11:04 
and then update that algorithm with new 
11:06 
data so thank you and i'd welcome any 
11:09 
questions 
11:11 
thank you very much dr schmitz for the 
11:14 
great presentation 
11:16 
so now that we heard about the academic 
11:18 
side of 
11:19 
um manufacturing especially 
11:22 
talking about the physics based modeling 
11:24 
now we are going to the industry side 
11:26 
and our next next speaker um dr andrew 
11:29 
henderson will 
11:31 
um talk about the industry experience so 
11:34 
it's my great pleasure to 
11:36 
welcome dr andrew henderson to the 
11:38 
podium he's the cto 
11:40 
for primo incorporation he has over 15 
11:43 
years 
11:44 
of experience in advanced technology 



11:46 
data acquisition 
11:48 
data analysis and process and system 
11:50 
modeling and same as before 
11:52 
if i want to go over his accomplishments 
11:55 
he won't have his 10 minutes to talk 
11:57 
so i will stop here and welcome andrew 
11:59 
to the podium 
12:01 
thank you i i um i 
12:04 
should be sharing my screen now um let 
12:07 
me make it full screen 
12:09 
um so uh again thanks for thanks for 
12:12 
having me i 
12:13 
i i'm happy glad to be here i thought 
12:16 
maybe it'd be worthwhile to take just a 
12:19 
moment a brief moment in the beginning 
12:20 
to talk about who promo is 
12:22 
primo is a we have a product called 
12:25 
razer 
12:25 
that's uh an advanced analytics engine 
12:29 
that takes data from industrial 
12:31 
operations 
12:32 
and uh analyzes it to create these 
12:35 
notifications these things we call 
12:36 
insights 



12:37 
and those insights are are bits of 
12:40 
information that 
12:42 
operations people can go use to improve 
12:44 
productivity 
12:45 
and uh it accomplishes razer 
12:47 
accomplishes what it does 
12:49 
because we we leverage uh a bunch of 
12:52 
different techniques from the field of 
12:54 
artificial intelligence 
12:55 
and this of industry for industry is a 
12:58 
reflection of the fact that 
13:00 
uh all of our leaders come from industry 
13:03 
in some form manufacturing mining 
13:05 
and so we bring our experience to how 
13:08 
we develop razer and apply it in the 
13:12 
in industry and so i 
13:15 
i what i have is a few different 
13:17 
examples of how 
13:19 
uh andrew sorry to interrupt i think we 
13:21 
can't see your screen 
13:22 
so maybe you share it again please oh 
13:25 
did i 
13:26 
sorry i didn't do the final click i 
13:29 
apologize 



13:31 
can you see now yes perfect thank you so 
13:35 
um so so i have a few examples here 
13:39 
of of how uh various 
13:43 
uh assets or aspects of artificial 
13:45 
intelligence are applied 
13:47 
are applied to solve problems in 
13:48 
manufacturing 
13:50 
and uh there's an arc to the 
13:52 
presentation where i start out 
13:53 
i talk about consumer ai uh and then i 
13:56 
end up 
13:57 
talking about you know some of the 
13:59 
challenges that real world 
14:00 
in manufacturing faces and how we might 
14:03 
deal with them 
14:04 
so the first example here this is around 
14:06 
product quality this is 
14:08 
as as dr schmitz mentioned a moment ago 
14:12 
taking images and recognizing cats or 
14:15 
features or faces in the images being 
14:18 
able to classify 
14:19 
what's in them and so we can take those 
14:21 
exact same 
14:23 
approaches and from consumer ai 



14:27 
and more or less directly apply them to 
14:30 
manufacturing where 
14:31 
if you have an inspection station that's 
14:34 
that with a 
14:34 
with a camera that's taking images of a 
14:36 
product then you can feed those images 
14:39 
uh you can train a neural network to 
14:41 
recognize 
14:42 
whether the product is is has a defect 
14:45 
or not and may and the class of defect 
14:48 
and so what this requires is 
14:51 
a large data set of images and it 
14:54 
requires them to all be classified 
14:57 
uh in order to train that neural network 
14:59 
uh 
15:00 
and typically that that requires a 
15:03 
person in the loop to do that labeling 
15:05 
of those images 
15:06 
so that you can train it and then the 
15:08 
neural network is a is a black box we 
15:10 
don't often 
15:11 
know what's going on inside of the 
15:13 
neural network how what it does to make 
15:15 
it 



15:15 
what it's using to make its decision and 
15:18 
we'll 
15:18 
we'll talk about each of these as we go 
15:20 
along but this is this is 
15:22 
this is good though because what the 
15:25 
image classification 
15:26 
can do is it can offload some of that 
15:28 
work that a human might be doing 
15:30 
so that the human can go uh uh take care 
15:34 
of other 
15:35 
uh use their skills in other ways inside 
15:37 
of manufacturing or 
15:42 
so so they can use their skills in other 
15:43 
ways inside of manufacturing and then 
15:45 
um but this is at the end of the process 
15:48 
so this is after 
15:49 
something has been made and there's a 
15:51 
lag between when the product is made and 
15:53 
when the inspection occurs and so 
15:55 
oftentimes one of the first questions 
15:57 
that comes up 
15:57 
is well can you tell me sooner i'd like 
16:00 
to know because i don't 
16:01 
want to wait until uh 



16:04 
i've potentially made 5 10 20 more 
16:07 
products before i get the feedback from 
16:09 
inspection 
16:10 
and so we can take uh an almost 
16:13 
identical approach 
16:15 
and apply it to sensor data coming from 
16:18 
the the machine that's doing that's 
16:20 
conducting the operation so in this case 
16:22 
a stamping press we might be collecting 
16:24 
pressure temperature vibration etc 
16:27 
it and again because this is a 
16:30 
neural network approach we have to train 
16:32 
it we need to have 
16:34 
uh e event data from the machine 
16:38 
and we have to be able to have it 
16:40 
classified to say 
16:42 
whether that was that led to a defect or 
16:44 
not 
16:45 
and then the neural network can learn uh 
16:48 
to to recognize patterns in that data 
16:52 
that 
16:53 
will lead to a defect and so we've moved 
16:56 
that further up the process we we still 
16:59 
haven't 



16:59 
necessarily prevented a defect from 
17:01 
occurring but we 
17:03 
we will have uh note identified 
17:07 
as soon as the first one occurs that 
17:09 
there that that there has been a 
17:12 
an issue in the process so that's so 
17:14 
that you can stop then 
17:15 
and not not make not continue to make 
17:19 
more 
17:20 
and there are ways to to further 
17:23 
analyze the the signal in order to 
17:26 
save more time to be able to perhaps 
17:29 
stop a long-running process before uh 
17:33 
you've wasted before you've spent eight 
17:36 
nine hours perhaps making product that 
17:38 
you can't use 
17:40 
and there's also ways of looking at how 
17:42 
the how the signals are trending 
17:44 
over time and being able to be more 
17:46 
predictive but those are that's a 
17:48 
that's you know another conversation 
17:52 
so one of the as i mentioned a neural 
17:54 
network is a black box it doesn't really 
17:56 
tell us what's going on inside of it how 



17:58 
it's making its decisions 
17:59 
so that's always a question that people 
18:02 
want is 
18:02 
okay so you tell me that there's a 
18:04 
problem can you tell me why there's a 
18:05 
problem 
18:06 
uh there are ways of doing this one of 
18:09 
which that's 
18:10 
uh that's fairly common and robust is 
18:13 
using a uh 
18:14 
decision trees or more broadly a random 
18:17 
forest 
18:18 
and similar training right so you still 
18:22 
have to have 
18:23 
that that curated data set that's all 
18:26 
been 
18:26 
labeled so that you can put it in and 
18:28 
train so that you can train your random 
18:30 
forest 
18:31 
to uh be able to recognize those defects 
18:35 
but the random forest is a little 
18:38 
different in how it's structured and 
18:40 
built 
18:40 
and that each node there's a decision 



18:42 
point at each node 
18:44 
and it takes it takes uh a feature of a 
18:47 
signal 
18:48 
and depending on the level of that 
18:51 
feature 
18:52 
it decides which path to go down the 
18:53 
tree in order to make its decision 
18:55 
and because of that we can come back and 
18:58 
uh 
18:58 
take a look at what it's doing during 
19:01 
that decision making process to come to 
19:04 
the conclusion at the end 
19:05 
so this can help us understand what are 
19:08 
the most important factors leading to 
19:11 
the decision for a particular defect 
19:14 
and so that helps understand the root 
19:17 
cause of where it's coming from 
19:19 
and uh that can drive decisions that 
19:21 
people make around how to go 
19:22 
correct it so all of what i've talked 
19:26 
about so far has been supervised 
19:27 
learning you have that data set you have 
19:29 
the labels that you use 
19:31 
um to to train the model 



19:34 
oftentimes we don't have those labels we 
19:37 
just we have data 
19:38 
and um so then we have to look at 
19:41 
applying 
19:42 
unsupervised techniques so uh 
19:45 
things like what um the the clustering 
19:48 
the k 
19:48 
nearest neighbors clustering approach 
19:50 
would be uh 
19:52 
considered an unsupervised technique um 
19:56 
as as dr schmitz was talking about a 
19:57 
moment ago and so 
19:59 
what we what this example is showing is 
20:01 
there's a 
20:02 
there's a a piston that's pumping of 
20:05 
pumping fluid 
20:06 
at a station on a line in a 
20:08 
manufacturing process 
20:10 
and there's an accelerometer that's been 
20:13 
mounted on 
20:14 
that that device and the 
20:17 
the spikes in vibration represent events 
20:20 
and so we use signal processing 
20:22 
techniques in order to be able to 



20:24 
uh divide this long continuous data 
20:27 
stream 
20:27 
into those different events and then we 
20:30 
can apply clustering just like dr smith 
20:32 
was saying 
20:33 
to be able to group those different 
20:35 
events 
20:36 
into categories so that we can better 
20:38 
understand 
20:40 
uh what's what the content of our signal 
20:42 
is so there's 
20:44 
what comes out of it is that there's uh 
20:46 
this 
20:47 
this curve that uh we don't really know 
20:50 
what it is we don't 
20:52 
at this point we don't really care why 
20:53 
or we don't really care what it is 
20:55 
we just label it generically event a it 
20:58 
happens a bunch of times 
20:59 
there's another thing called call it 
21:01 
event b it happens a bunch of times in 
21:03 
the data set and then there's this thing 
21:05 
that at first glance it gets grouped 
21:08 
together we call it 



21:09 
and it's event c but then we can run 
21:11 
that same clustering 
21:12 
again on each of these groups to see if 
21:15 
there are subgroups and what we find is 
21:17 
that there's actually two 
21:18 
subgroups of of uh event c 
21:21 
and so with this we can start to make we 
21:24 
can start to look for weird behavior in 
21:26 
the system so 
21:27 
so um in that event c 
21:30 
we can build an expectation based off of 
21:33 
what's the most commonly occurring 
21:35 
wave form for that particular event and 
21:37 
we'll 
21:38 
we'll call that our expectation and then 
21:40 
anything that doesn't 
21:42 
match to a degree with that expectation 
21:45 
we'll say that's 
21:46 
that's an anomaly that's something 
21:47 
different and 
21:49 
by tracking and and the the net result 
21:52 
of all this is that by tracking 
21:53 
those odd ones those those those 
21:57 
unexpected events and looking at how 



22:00 
frequently they're occurring and what's 
22:01 
the percentage that they're occurring 
22:02 
within a window of time 
22:04 
we can see this is this is showing that 
22:06 
so the the percentage 
22:08 
of those anomalous events uh within the 
22:12 
the subset we can see a a rise 
22:15 
uh at a point in time and 
22:19 
this this drop represents a period in 
22:22 
time in which the 
22:23 
the process stopped so uh and 
22:27 
we the reason we say this is 
22:29 
semi-supervised is because what happens 
22:31 
next we get the feedback that says 
22:34 
yeah that the line stops because there 
22:36 
is a 
22:37 
the the an incorrect fluid was put into 
22:39 
the system 
22:41 
and it happened roughly 24 hours before 
22:45 
the the line stops so we can see that 
22:47 
just by 
22:48 
taking this sort of naive approach of 
22:50 
identifying the anomalies 
22:52 
within those within that cluster of 



22:54 
signals uh 
22:55 
we can see a rise that gives us an 
22:57 
indication that something 
22:59 
is different about how that operation is 
23:01 
running and so then we can create an 
23:03 
alert 
23:03 
the alert doesn't necessarily say what 
23:06 
the problem is 
23:08 
and why but it does say hey there's 
23:10 
something uniquely different here that 
23:11 
people should be paying attention 
23:13 
perhaps even go take a look and we can 
23:15 
extend this 
23:16 
this semi-supervised approach even 
23:19 
further 
23:19 
to apply some more human knowledge about 
23:22 
the system to say 
23:24 
the the different features of these 
23:26 
curves represent different 
23:27 
aspects of the process and we can even 
23:30 
say 
23:30 
that you know the perhaps what's driving 
23:34 
the anomaly 
23:35 
condition is that this this piston 



23:38 
retracting the vibration is low during 
23:40 
that and that could 
23:41 
could uh indicate to the maintenance 
23:44 
people 
23:45 
what to go look at and it gives them a 
23:47 
better idea of what might be the problem 
23:49 
and what to fix 
23:51 
and so the the key takeaways of all of 
23:53 
this is to say 
23:54 
this these examples that i'm showing 
23:56 
we're only scratching the surface 
23:57 
there's so many different ways that we 
23:59 
can continue going and exploring and 
24:01 
extracting value 
24:02 
out of by using artificial intelligence 
24:05 
to analyze the data 
24:06 
and also there's no need to wait to get 
24:09 
started meaning 
24:10 
meaning each one of these came from data 
24:13 
sets that people 
24:14 
had within their operations and so you 
24:17 
can you can use those data sets and 
24:19 
and begin to get value so 
24:22 
that is that is it for me 



24:25 
thank you all for your time thank you 
24:27 
very much uh andrew for 
24:29 
the presentation um so now we are moving 
24:32 
on to the 
24:34 
next talk uh by kurt goodwin um kurt 
24:37 
is a humane mechanical engineering alum 
24:39 
and 
24:40 
he has over 40 years engineering 
24:42 
experience in 
24:43 
introducing and also developing new 
24:46 
technologies for jet engines gas and 
24:49 
wind turbines he has served as general 
24:51 
manager for advanced manufacturing and 
24:54 
now 
24:54 
although he is semi-retired but he's 
24:56 
still consulting with new manufacturing 
24:58 
and startups like beehive 
25:00 
3d so carrot take it away 
25:04 
okay and i think i'm sharing hopefully 
25:07 
you guys see some big engine blocks on a 
25:11 
yes perfect so i was about a far from uh 
25:15 
an artificial intelligence expert as 
25:17 
there is 
25:18 
a mechanical engineer i spent most of my 



25:21 
just as 
25:22 
as ali just said uh spent most of my 
25:24 
career 
25:25 
uh trying to help with the adoption of 
25:26 
new technology um 
25:28 
so i'm going to address sort of a people 
25:31 
aspect a little bit of 
25:33 
of how that does and and some ideas that 
25:36 
hopefully will help 
25:38 
help those of you that have something to 
25:40 
offer to to work with the 
25:42 
people more successfully a big piece of 
25:44 
my job has been 
25:47 
trying to help not just ai but different 
25:51 
digital 
25:52 
folks to understand manufacturing shops 
25:55 
and what drives them 
25:57 
early on we noticed that you know the 
25:59 
most successful groups in this area 
26:02 
had grown out of manufacturing 
26:04 
backgrounds or at least the teams 
26:06 
included large 
26:07 
numbers of people that had manufacturing 
26:09 
experience 



26:11 
because they understood their customers 
26:14 
um 
26:14 
and what their needs and the language 
26:16 
and drivers in a way that 
26:18 
you know somebody who's mostly done 
26:21 
software might not 
26:24 
i think it's interesting you notice both 
26:25 
tony and andy have that 
26:27 
experience themselves most factories if 
26:31 
you don't know this 
26:32 
are driven by fulfillment first 
26:35 
and second and to some extent uh 
26:38 
driven by cost it's a very tough 
26:41 
environment they're basically driven to 
26:43 
deliver 
26:44 
a product whether it's cars or medical 
26:47 
devices 
26:48 
or turbines or engines or whatever 
26:51 
every they're measured every week every 
26:53 
month every quarter 
26:54 
it's it's it's it's a tough 
26:58 
it's a tough uh business to be in 
27:01 
tech companies um come in and they might 
27:05 
be selling machine 



27:06 
monitoring parts flow better controllers 
27:09 
people who come in they do the 
27:12 
installations and then they fly home 
27:13 
friday morning sometimes 
27:16 
almost inevitably something goes wrong 
27:19 
the engineers and the workers in the 
27:21 
cell try and fix it 
27:23 
and if the tech company is there or 
27:26 
representative 
27:27 
things go well if if they're not there 
27:29 
they start trying to figure out how to 
27:31 
work around the glitch 
27:33 
um sometimes the outside helpers don't 
27:36 
even make it back the next week 
27:38 
and that's that that's the end of 
27:40 
cooperation 
27:42 
at the point where you're not able to 
27:45 
make product 
27:46 
and the people that are trying to help 
27:48 
you aren't there to help you 
27:50 
you've lost them forever that they're 
27:52 
not going to want to 
27:53 
work with you again 
27:56 
those companies that are successful 



27:59 
they know how to become part of the team 
28:01 
they understand that there are time 
28:03 
pressures 
28:04 
value being there when it's needed to 
28:06 
preserve shipment they've been stuck 
28:08 
doing 100 hour weeks themselves 
28:11 
um and so they they understand their 
28:14 
customers somewhat 
28:16 
the thing that you see over and over 
28:18 
from the most 
28:20 
successful people at doing this 
28:22 
regardless of the background 
28:24 
is they start out by talking to the guys 
28:26 
on the floor 
28:28 
and and working a shift with them they 
28:30 
don't try and hook everything up at once 
28:32 
if something does go wrong they ride 
28:34 
through it with them 
28:36 
um and basically 
28:39 
they they become they do everything they 
28:42 
can to put themselves in the 
28:44 
in the shoes of the people that are 
28:47 
working in the factory 
28:49 
so now whenever we work with startup 



28:51 
manufacturers like 
28:53 
beehive 3 additive that is mentioned 
28:56 
here 
28:56 
we try and start with a mix of people 
29:00 
that have those different backgrounds 
29:02 
manufacturing people that that have had 
29:06 
a lot of technology and and 
29:10 
digital experience and digital and tech 
29:13 
people that have worked on 
29:14 
on the factory doesn't have to be 
29:16 
anybody but if you can't 
29:18 
communicate between yourselves you can't 
29:21 
appreciate what's uh what's being 
29:23 
offered 
29:24 
it sounds simple right it doesn't sound 
29:27 
like this is any particular 
29:29 
revelation um but i've seen this 
29:32 
absolutely make and break a tech startup 
29:35 
or 
29:36 
a digital offering or a company that's 
29:39 
that's trying to get out there 
29:41 
um so what else um 
29:45 
if you can get past that startup 
29:47 
challenge if you can get the 



29:48 
relationship started 
29:50 
i think the next thing that's very 
29:51 
helpful is to try and 
29:53 
learn to think how to think about ai 
29:57 
um ginny rowdy who used to run ibm 
30:01 
had a comment that ai should stand for 
30:03 
augmented intelligence 
30:05 
the idea should not be that you're just 
30:08 
handing control over to an autopilot 
30:10 
which is kind of the way 
30:12 
some people describe some of this stuff 
30:15 
but rather that you have another set of 
30:17 
eyes and brains 
30:19 
on the floor to try and help you 
30:20 
understand what's going on 
30:22 
you know i think i think andy's point 
30:25 
is very similar to this 
30:30 
you don't necessarily know what you're 
30:32 
looking for to begin with 
30:34 
you try and collect the data that you 
30:36 
can 
30:37 
and and then think of it as more getting 
30:40 
help 
30:41 
noticing clues that might get missed 



30:43 
otherwise 
30:44 
so in in my experience many projects 
30:47 
start out with a very specific set of 
30:50 
instructions or goals to attack a very 
30:53 
specific perceived problem 
30:55 
you know one example is we're trying to 
30:57 
catch machine downtime 
30:59 
so we can get more throughput and up up 
31:02 
front there's an assumption or an 
31:04 
accepted idea that productivity is lost 
31:07 
because the machines are down 
31:09 
uh being fixed too much i had a great 
31:12 
example of this once we had a shop that 
31:15 
had 
31:15 
had to handle a big opportunity for 
31:17 
growth 
31:18 
in sales if they could only ship more 
31:20 
engines um 
31:22 
you put monitoring on a lot of machines 
31:24 
the data collections on times and starts 
31:27 
watch for 
31:28 
vibrations and events and oil 
31:31 
temperatures and so forth the first 
31:33 
the first breakthrough that came was 



31:37 
once we started mapping everything and 
31:40 
started understanding it 
31:42 
we discovered that a number of the basic 
31:44 
assumptions were 
31:45 
wrong you know so for example there was 
31:48 
a piece of equipment that gated 
31:49 
production 
31:50 
with very large engine block washer long 
31:53 
operation every 
31:56 
it had to go through a single machine 
31:57 
and every product had to go through it 
32:00 
on the good side of it um it didn't 
32:04 
break down very often 
32:07 
so you know the things like oil 
32:09 
temperatures and vibrations that we were 
32:10 
working 
32:11 
watching for didn't didn't turn to be 
32:14 
immediately useful but collecting the 
32:18 
information 
32:19 
um mapping times and and 
32:22 
flow through the shop um 
32:26 
you it still didn't deliver as much as 
32:29 
we 
32:30 
wanted from it so the data analysis 



32:33 
that that flagged that specific machine 
32:36 
it it one of the things that it was 
32:38 
noted was 
32:39 
that the it was often late starting 
32:42 
specifically during time periods around 
32:45 
the end of the morning or early 
32:47 
afternoon 
32:48 
so not not that it was breaking or 
32:50 
running right but for 
32:52 
some reason it would not be running 
32:55 
and consistently a certain set of times 
32:59 
it turned out to be a very simple 
33:01 
non-technical thing 
33:03 
that basically when the daily parts 
33:05 
delivery 
33:06 
truck came from the main factory the 
33:09 
operator 
33:10 
for that big machine that was needed 
33:12 
would 
33:13 
try and be a good guy and jump in and 
33:14 
help the crew unload it 
33:16 
so if the machine was already running it 
33:18 
was great it was no problem everything 
33:20 
kept 



33:20 
going we got flow beautifully 
33:24 
if not the start had to wait until the 
33:26 
operator finished unloading the truck 
33:28 
came back and got things started 
33:30 
the corrective action was about as 
33:32 
simple as it gets it was basically 
33:34 
hey george make sure the washer is 
33:36 
running before you do anything 
33:38 
or leave your station now you can argue 
33:42 
do you need ai to find that it's kind of 
33:46 
an irrelevant argument to me 
33:49 
because maybe you don't need it 
33:52 
but it had gone unnoticed before and the 
33:55 
data call 
33:57 
called attention to a specific time and 
33:59 
period and machine to investigate 
34:01 
and that's where i get the extra set of 
34:04 
eyes 
34:04 
helps speed up their the realization of 
34:07 
what you're looking at it 
34:09 
the other key thing to that is that's a 
34:12 
win 
34:13 
you need to celebrate it the first 
34:15 
reaction 



34:16 
when we found that basically we were 
34:18 
losing time because somebody was 
34:20 
unloading a truck 
34:22 
everybody wants to chastise somebody 
34:24 
else you know 
34:25 
you know the cell leader you shouldn't 
34:27 
have known this was a problem 
34:29 
the shop leader gets very defensive that 
34:32 
you know it seems like his uh 
34:34 
um his shop is out of control the 
34:37 
operators why did you let this happen 
34:39 
you should have needed a problem you 
34:41 
have to not let that 
34:42 
happen because if you don't recognize 
34:47 
that you've found an opportunity to make 
34:49 
things better 
34:50 
and encourage people to to 
34:53 
fix it work through it um 
34:56 
you know then you're you're not going to 
34:58 
get the feedback you need and people 
35:00 
will 
35:02 
actually not fudge the data but they 
35:04 
will 
35:05 
they will try and interfere with the 



35:06 
collection of data to be successful 
35:10 
so you know i think 
35:13 
if you can find the right ways to 
35:15 
encourage those kind of learnings and 
35:17 
applications 
35:18 
and and for everybody to be flexible 
35:23 
don't look at aei as a competitor or 
35:25 
something that's trying to take my job 
35:27 
but it's somebody else on the floor to 
35:29 
help me understand what's going on 
35:31 
and every time we get an improvement 
35:34 
it's a win 
35:35 
all that stuff will help 
35:38 
anybody on either side be more 
35:40 
successful 
35:42 
which is always the goal so that's it 
35:45 
thank you thank you very much kurt um 
35:48 
so now that you heard about academic 
35:51 
side and industry side 
35:54 
our last presentation is updating you on 
35:57 
what's going on in 
35:58 
national labs so it's my great pleasure 
36:00 
to introduce dr vincent parker a senior 
36:02 
research scientist in 



36:04 
electrical and electronic system 
36:06 
research division at oak ridge national 
36:08 
lab 
36:09 
uh his research is focused on computer 
36:12 
vision and 
36:12 
image processing with the periodic 
36:15 
election for 
36:16 
high performance image processing 
36:18 
algorithm development so 
36:21 
dr vincent please thank you thank you 
36:24 
very much so in the in this presentation 
36:26 
i'm going to cover a lot of the work we 
36:27 
do at the manufacturing demonstration 
36:29 
facility 
36:30 
i'm going to discuss the data we are 
36:33 
collecting 
36:33 
in the within the facility and the use 
36:36 
of ai 
36:37 
to process such data in order to answer 
36:39 
some of the scientific problems that 
36:40 
that we have in 
36:41 
in front of you of us so uh just uh on 
36:44 
my first slide 
36:45 
uh i will highlight the the link at the 



36:47 
bottom i don't know how i'm gonna be 
36:48 
able to share that with 
36:49 
with you all but there is a possibility 
36:52 
to have a virtual tour of the facility 
36:53 
where you'll be able to see 
36:55 
over a hundred thousand square feet uh 
36:57 
building 
36:58 
about 200 type of system that we that we 
37:01 
are working with 
37:02 
so for me as a data scientist this is a 
37:04 
fantastic playground because i get to 
37:06 
use to 
37:07 
play with machines of different types 
37:10 
and sizes and see how data-driven 
37:13 
methodologies can be used 
37:15 
in order to improve the systems or 
37:18 
assess the quality of the component 
37:20 
coming out of those 
37:22 
of the systems so that was 
37:25 
slide is not going to the next okay here 
37:26 
we go um so when when you work with this 
37:29 
type of of machine in the facility 
37:31 
you have example on the left-hand side 
37:33 
of the great thing that you can produce 



37:35 
with them 
37:36 
uh they look great this component this 
37:38 
car looks great 
37:40 
the the chevy cover looks great but at 
37:41 
the end of the day it's not necessarily 
37:43 
functional 
37:44 
and the problem with that is uh when 
37:46 
you're looking at critical components 
37:49 
you don't necessarily have a way right 
37:51 
now 
37:52 
to tell what's coming out of the machine 
37:54 
is actually of great quality without 
37:56 
doing 
37:57 
any kind of non-destructive evaluation 
37:59 
of really expensive 
38:01 
testing in order to validate the 
38:03 
component which 
38:04 
in the at the end of the day uh kills 
38:06 
the business case for 
38:08 
for additive altogether and and so our 
38:11 
interest here is to see 
38:13 
if there is any mechanism using data 
38:16 
to get a better understanding of the 
38:18 
process so we can develop 



38:20 
certification methodologies for those 
38:22 
components but ultimately come up with a 
38:24 
way to accelerate production of those 
38:26 
components and improve the manufacturing 
38:28 
technologies all together 
38:29 
so we are taking a a traditional smart 
38:32 
manufacturing approach where you try to 
38:33 
understand the process optimize it 
38:35 
eventually implement feedback loop 
38:37 
control mechanism if you can correct 
38:38 
your process on the fly 
38:39 
and ultimately that will lead to a 
38:41 
scenario where you'll know so much about 
38:43 
your process and you control your 
38:45 
process 
38:46 
so well that you will be able to tell 
38:48 
this component coming out of my machine 
38:50 
i don't need to test it because i know 
38:52 
so much about it that i can say 
38:53 
it's it's actually a good component so 
38:56 
in order to do that 
38:58 
you need to uh have a lot of data and 
39:00 
and that's really where 
39:02 
our our wheel hours here uh is so we 



39:05 
want to make sure that we can collect 
39:07 
information at any given step of the 
39:09 
manufacturing process 
39:10 
this slide is going to get extremely 
39:11 
busy in a second i don't want you to 
39:14 
try to dissect everything but just 
39:17 
it's here to give you an idea of the 
39:19 
type of information we are interested in 
39:21 
collecting so if you have a goal for 
39:22 
example to produce an n95 mass which is 
39:25 
something that we did 
39:27 
you're going to be looking at a 
39:29 
different type of design 
39:33 
excuse me modeling and simulation for 
39:35 
past planning 
39:37 
before you send this to the printer as 
39:39 
with the same time as the as the 
39:40 
feedstock 
39:41 
and every time you're going through this 
39:43 
this chain you're going to be collecting 
39:44 
information about the the printer itself 
39:47 
instrumenting the printer to look at 
39:48 
what's happening inside it doing data 
39:50 
registration and anomaly detection 



39:52 
in order to analyze this data and then 
39:55 
you have your 
39:56 
first component printed you're going to 
39:57 
chop it into pieces 
39:59 
and go through subsequent steps of 
40:00 
post-processing 
40:02 
testing and so on in order to create 
40:04 
what we call a digital clone of the 
40:06 
physical component 
40:07 
so you're going to have at this point 
40:08 
the entire history of your component 
40:10 
contained in a data package 
40:12 
and you will be able to use this data 
40:14 
package for visualization purposes or to 
40:16 
feed a larger database 
40:18 
that as it grows will help you 
40:20 
understand better what's going on 
40:21 
in in your manufacturing process when 
40:23 
you do inter builder intra build uh 
40:26 
machine learning you're gonna be able to 
40:28 
then go back 
40:29 
and say okay now i can i can start 
40:32 
predicting the performance of my 
40:33 
component because i've learned so much 



40:34 
about my process 
40:36 
but also act on the design itself and 
40:39 
help uh some of the the the cad software 
40:42 
to produce 
40:43 
uh design that are also optimized for um 
40:46 
with material science knowledge in mind 
40:49 
so 
40:51 
in order to get there you don't want to 
40:53 
reproduce this for every single system 
40:55 
so you need to come up with a unified 
40:57 
data architecture that will help you 
40:58 
collect such information 
41:00 
and the way we see this is to look at a 
41:02 
component 
41:03 
as a massive building block set and what 
41:05 
you're doing really with the machine 
41:07 
is to tell the the system grab this 
41:10 
block and 
41:11 
of this particular color and put it at 
41:13 
this particular location in space 
41:15 
when you do this you have data that 
41:17 
tells the machine 
41:18 
or you have you have processes that tell 
41:20 
the machine how to do this 



41:21 
but you can also collect the data on the 
41:23 
system to know how the machine actually 
41:25 
perform 
41:25 
and so that's coming from the different 
41:27 
data producers let me get a laser 
41:29 
pointer here 
41:32 
for some reason i can't that's 
41:35 
interesting 
41:37 
looks like they've changed the system i 
41:39 
don't know um so 
41:41 
um you you're going to have different uh 
41:43 
uh data producer you're going to be 
41:44 
collecting this data and each 
41:46 
uh each data producer will provide you 
41:48 
one value or multiple values that can 
41:50 
then store for each xyz location 
41:52 
so now you have a feature vector of 
41:54 
information that describes each element 
41:55 
in space 
41:56 
which is a fantastic scenario for any 
41:59 
kind of machine learning type of 
42:01 
of applications so when you have all 
42:03 
these data packaged together 
42:05 
you can do anything that's listed on the 



42:06 
right-hand side of this line 
42:08 
and so with that i'm going to go through 
42:10 
some of the examples on how you can use 
42:12 
this data 
42:13 
so first and that was touched on by uh 
42:16 
dr anderson 
42:17 
um uh you can uh observe what's 
42:20 
happening inside your powderbed system 
42:22 
so if you have for example 
42:23 
an image like this you're gonna be able 
42:25 
to see what's what's 
42:26 
uh what's happening you can see certain 
42:28 
type of features and what you want to do 
42:30 
is classify those voxels 
42:32 
or pixels in this particular case 
42:35 
for to identify the type of of classes 
42:39 
they belong to 
42:39 
so that's kind of the first phrase that 
42:41 
we had we moved on to 
42:42 
something a lot more advanced where we 
42:45 
train a unit in this particular case 
42:47 
to take a stack of of of images of from 
42:51 
multiple modalities train the model and 
42:54 
then the model spits out a 



42:56 
map of all the the the defects 
42:59 
that you are defects or features that 
43:01 
you are interested in detecting 
43:02 
so when you scale that up to the size of 
43:04 
the component you can render in 
43:06 
in 3d an entire map of all the features 
43:09 
that are present in 
43:10 
in this particular component and you can 
43:13 
then help 
43:14 
operators of the machine uh see things 
43:17 
that are 
43:18 
happening when they are printing their 
43:20 
their parts and see if they can 
43:22 
modify the process in order to get 
43:24 
better results 
43:26 
the thing that's interesting with this 
43:27 
and that goes along the the comment that 
43:28 
we 
43:29 
made before uh this gentleman in front 
43:32 
of the computer here is 
43:33 
he's an operator of a machine he has no 
43:35 
computer science background 
43:37 
but you can provide them too that they 
43:39 
can help them 



43:42 
become better operator of the system 
43:43 
it's not again 
43:45 
to replace the operator of the system 
43:46 
it's having a computer helping you 
43:49 
being better at you at your job and so 
43:51 
he's training his own models with the 
43:53 
platform we put in place so that's a 
43:54 
that's a nice way to 
43:56 
use ai in this in this particular case 
43:59 
a direct example or a direct use oops 
44:02 
two slides a direct use of this 
44:04 
particular 
44:06 
type of of models is you can start 
44:09 
looking at 
44:10 
automating correction on the machine so 
44:12 
for example on the binder jet system 
44:13 
like this one 
44:14 
we use exactly the same techniques 
44:16 
putting cameras to 
44:17 
get different modalities of the sensor 
44:20 
of the 
44:20 
of the process uh classified the data to 
44:23 
get 
44:23 
in green the part and in in purple it's 



44:26 
incomplete spreading 
44:27 
that's a defect that's fairly easy to 
44:29 
engineer uh on the on the machine 
44:31 
so in this particular example here what 
44:34 
you have is 
44:34 
in the x-axis the number of the layer 
44:37 
number 
44:38 
you're going up as you're going from 
44:41 
left to right 
44:41 
and here you have the percentage of 
44:43 
pixels that we are uh 
44:44 
of a given color so in this particular 
44:47 
case what we did we we forced the 
44:48 
printer to create an 
44:50 
incomplete spreading so you have a 
44:52 
percentage of of pixel that increases 
44:55 
roughly from two percent at the 
44:56 
beginning to a quarter of the image was 
44:58 
covered with 
44:59 
with purple pixels at this point we turn 
45:01 
on the 
45:02 
switch and say okay now it's ends off 
45:04 
and we're going to let the ai takes over 
45:06 
and change the process parameters in 



45:08 
order to go down 
45:09 
and remove this particular defect and 
45:11 
and you can see the curve is going down 
45:13 
to a level that is actually lower than 
45:15 
where it started so you can use ai 
45:18 
for some of those uh particular defects 
45:21 
and make sure that you don't have an 
45:22 
operator in front of the machine 
45:24 
at all time in order to correct for for 
45:26 
some of the 
45:27 
of those problems that are actually 
45:29 
fairly straightforward and easy to 
45:32 
uh to correct if you cannot implement ai 
45:34 
for this type of correction you can 
45:36 
however send messages to operator of the 
45:39 
system make sure that they 
45:40 
they see this another place where we use 
45:43 
ai is on ct reconstruction 
45:45 
so the advantage of of additive is that 
45:48 
you know 
45:49 
the the the overall shape of your 
45:51 
component and you can use that at your 
45:53 
advantage in order to help with ctrl 
45:55 
construction of these samples 



45:57 
so if you use a traditional ctr 
45:59 
construction algorithm this is an 
46:01 
example of what you're going to get 
46:03 
but we've developed a technique that's 
46:05 
that's mixing 
46:06 
prior knowledge or design knowledge of 
46:09 
the component 
46:10 
and some data that we've collected 
46:14 
across multiple builds in order to train 
46:16 
a model that will uh 
46:18 
just give you a overall better 
46:20 
reconstruction of your component with 
46:22 
less noise air and more defined 
46:24 
uh defects detected within the the 
46:27 
geometries 
46:28 
those are actual two exact uh um 
46:32 
reconstruction example this is a 
46:34 
traditional reconstruction and this is 
46:36 
what we're getting out of our of our 
46:39 
models um one of the thing that we are 
46:43 
also interested in doing is 
46:45 
is pushing the machine to do things that 
46:46 
are not supposed to do 
46:49 
so if you look at a design like this and 



46:51 
you print it in a particular 
46:53 
system in this particular case it's an 
46:55 
electron beam machine from arkham 
46:57 
if you print pencil bar at the bottom 
46:58 
and at the top and you use the black box 
47:00 
of the machine that's provided by the 
47:02 
manufacturer 
47:03 
it will print but it's not going to 
47:04 
produce the same component they're going 
47:06 
to look the same 
47:07 
they are not going to perform the same 
47:08 
if you take micrographs out of those 
47:11 
cylinders they are circled with the same 
47:13 
color here you see two different type of 
47:15 
texture which is well known 
47:17 
is directly uh uh gonna be correlated to 
47:20 
the type of mechanical test you're gonna 
47:21 
get so you're you're seeing two 
47:23 
different type of clusters 
47:24 
not same results however you've 
47:26 
collected enough data to 
47:28 
learn different type of patterns that 
47:30 
will lead to the production of certain 
47:32 
type of microstructure growth or other 



47:33 
type of microstructure groups 
47:35 
and so you can use this in order to 
47:37 
fine-tune the 
47:39 
process parameters and apply a 
47:41 
particular type of 
47:42 
a manufacturing process depending on the 
47:45 
cross-section of your geometry that you 
47:46 
are 
47:47 
so that's something that that oops sorry 
47:50 
i'm going to come back okay so that's 
47:53 
something that that we did here 
47:54 
and those examples here is printing 
47:57 
again the same geometry we pulled again 
47:59 
micrographs from from tensorboard the 
48:01 
bottom and the top 
48:02 
and you can see the microstructure are a 
48:04 
lot more similar 
48:05 
and the uh mechanical tests are 
48:08 
actually clustered together so this 
48:11 
um this is how you take control of your 
48:14 
manufacturing process so now it's not 
48:16 
random anymore 
48:17 
it's not you're not at the mercy of the 
48:19 
decision of the engineer of the 



48:21 
that that put together the machine or 
48:23 
the programmer that put together a 
48:25 
software that runs the machine 
48:26 
you're already in control of what you 
48:27 
want to get out of the system 
48:29 
and when you have this level of 
48:31 
understanding you i don't even need to 
48:33 
to test those samples anymore because i 
48:34 
know what i'm going to get 
48:36 
direct application of this we've used 
48:39 
this type of approach and it's been 
48:41 
accepted 
48:42 
by by industry as ai has been accepted 
48:45 
by industry in this particular case 
48:47 
to validate some of the components that 
48:49 
were produced so we have two examples 
48:50 
here one with solar turbines 
48:52 
where we printed over 200 uh turbine 
48:55 
blades 
48:56 
and use the the the the tools that i've 
49:00 
highlighted before 
49:01 
in order to identify which blades were 
49:03 
of the highest quality 
49:05 
80 of them went to a stress test and 



49:08 
then on the hot fire tests 
49:09 
on august 25th and they perform as as 
49:13 
expected as well as traditionally uh 
49:15 
manufacturing of component 
49:16 
another case is something related to a 
49:19 
large program that we have at the 
49:21 
at the lab which is the transformational 
49:24 
challenge reactor where we are working 
49:25 
on 
49:29 
we are working on on printing uh 
49:31 
components 
49:32 
uh for nuclear type of applications we 
49:35 
had 
49:35 
uh as part of this program a 
49:37 
collaboration with 
49:38 
framatum and the tennessee valley 
49:41 
authority 
49:42 
to print component that will go into a 
49:44 
commercial reactor and you have a 
49:45 
picture of them 
49:47 
and they were they went through the same 
49:49 
type of of 
49:51 
tests i or evaluation i mentioned uh 
49:53 
before 



49:54 
they went to however traditional um 
49:58 
nd testing in order to make sure that 
50:00 
what we said was actually correct 
50:02 
and they were approved and they went 
50:03 
into the the 
50:05 
the commercial reactor at the end of 
50:07 
last year 
50:09 
so what's next for a manufacturing data 
50:12 
science and probably 
50:13 
more in particular for uh in terms of of 
50:16 
ai 
50:16 
they i mean kind of mentioned that uh 
50:19 
earlier 
50:20 
on on the material inform generative 
50:23 
design so 
50:24 
we we do have generative design type of 
50:27 
algorithm right now 
50:28 
that are great to simplify or change the 
50:31 
way we we design uh components 
50:33 
but they are not necessarily including 
50:35 
enough of the material information that 
50:36 
we can we can collect 
50:38 
and so that's something that we're 
50:39 
interested in in pushing the augmented 



50:41 
intelligence portion again uh the 
50:44 
the next generation of the of 
50:46 
manufacturing uh 
50:48 
uh operators uh will leave with a 
50:51 
computer 
50:52 
alongside them and so we need to have a 
50:55 
system that can help them do 
50:57 
uh what they what they do best i'm not 
50:59 
going to go in detail through all of 
51:01 
this the one i will 
51:02 
highlight that is more related to the 
51:05 
control of a microstructure 
51:07 
is the full optimization of what you are 
51:09 
actually doing 
51:10 
and making sure that you you engineer 
51:13 
your manufacturing material properties 
51:15 
in space and not solely manufacturing 
51:17 
components 
51:17 
and with that i'm at the end of my 
51:19 
presentation and i will welcome 
51:21 
questions thank you very much 
51:25 
vincent um so i would like to thank all 
51:27 
the speakers again 
51:28 
for the great presentations and now we 



51:31 
are 
51:32 
moving into the question and answer 
51:34 
period so um 
51:36 
thank you everybody for posting the 
51:38 
questions uh there so i will start with 
51:40 
the first question 
51:42 
for tony so what is the biggest 
51:44 
challenge that you see for implementing 
51:47 
ai into manufacturing domain 
51:50 
well if we are using a classification 
51:53 
approach 
51:54 
you'd like to have an automated 
51:56 
technique 
51:57 
for classifying that data right 
51:59 
otherwise you've sort of defeated the 
52:00 
purpose if i have to look at every 
52:02 
signal 
52:03 
and decide what happened so i think 
52:06 
that would be a an obstacle 
52:11 
for widespread implementation and that 
52:14 
you know 
52:15 
i tell you what's interesting is that 
52:16 
you bring in the domain 
52:18 
experts with the machine learning 



52:20 
experts and i think that collaboration 
52:22 
is essential 
52:23 
great thank you very much and next 
52:26 
question 
52:27 
is um for vincent 
52:30 
um what would be a possible approach 
52:33 
when the system 
52:34 
don't have a well-defined physics-based 
52:37 
model so if there is too many unknowns 
52:39 
for example in the case of 3d printing 
52:42 
we've seen in the in in the past that a 
52:45 
lot of the 
52:46 
physics based model for some of the the 
52:48 
technologies are not 
52:50 
um are overly complex and not 
52:53 
necessarily correct 
52:54 
uh at the end of the day and so the way 
52:56 
we approach this so for example for the 
52:58 
microstructure control i mentioned 
53:00 
we we've used high physics based models 
53:03 
uh to get there but really realized that 
53:07 
it was better to go 
53:08 
through a in-situ monitoring approach to 
53:12 
better understand what was happening for 



53:14 
a variety of combinations 
53:17 
of the um of the 
53:20 
of the manufacturing process and work 
53:22 
with lower order models in order to 
53:25 
get a an answer 
53:29 
they are like a lot of those models 
53:32 
that that seem to be right uh but 
53:36 
when you apply them at large scale first 
53:39 
sometimes you can't 
53:40 
because you can you cannot compute uh uh 
53:43 
the the the result for for a large 
53:45 
component 
53:46 
uh and and sometimes they are overly 
53:48 
complex it's not necessary 
53:50 
so good do finding a good balance 
53:53 
between 
53:55 
what sensor will provide you and what 
53:57 
models 
53:59 
rightly uh selected and applied to 
54:02 
sub region within your within your 
54:04 
geometry is probably a better approach 
54:07 
for for most systems thank you very much 
54:11 
and next question i'm going to ask 
54:13 
andrew um 



54:15 
so we talked about neural network you 
54:17 
know and different approaches so 
54:19 
in terms of like being in industry what 
54:22 
kind of ai or machine learning tools 
54:25 
um is mostly used in industry and how do 
54:28 
you decide which one of those 
54:30 
is appropriate for your application so 
54:32 
the uh 
54:34 
in terms of what's most common i mean i 
54:36 
i i'd probably have people arguing with 
54:38 
me about linear regression being an ai 
54:40 
tool but i 
54:41 
i would uh it's a way of of defining a 
54:44 
model of something so 
54:45 
i i mean that one's been there for a 
54:47 
long time uh but in terms of like what 
54:49 
we consider 
54:50 
advanced ai i think we're seeing a lot 
54:52 
more neural networks come up there are a 
54:54 
lot of people 
54:55 
asking for that use case at the very 
54:57 
beginning where i've got images of 
54:58 
products i want to classify if they're 
55:00 
defects or not 



55:01 
um beyond that i mean 
55:05 
they they all have their different um 
55:08 
their different 
55:09 
use cases unsupervised techniques 
55:11 
because you often 
55:12 
don't know what you don't know so let's 
55:15 
go 
55:16 
do some signal processing and then let's 
55:19 
group them together 
55:20 
and then review those results and though 
55:23 
then you have aha moments where you say 
55:25 
oh well i yeah of course that makes 
55:27 
sense to me that 
55:28 
that those things would be grouped 
55:30 
together or 
55:31 
um or the there's a 
55:34 
there's some press they're using like a 
55:37 
markov chain or some sort of thing you 
55:39 
might be able to determine precedence of 
55:41 
events or 
55:42 
the the sequence of events and says of 
55:43 
course now it all makes sense that that 
55:46 
those things happen 
55:47 
in that order so i don't i don't know 



55:49 
that that's a 
55:50 
great answer to what's the most 
55:51 
prevalent but it's to say that there's a 
55:54 
lot 
55:54 
of different techniques that people are 
55:56 
applying 
55:57 
that's great thank you very much andy 
55:59 
and the next question i'm going to ask 
56:01 
kurt um 
56:02 
you mentioned about um the other way of 
56:05 
looking at ai 
56:06 
as instead of saying artificial 
56:08 
intelligence we talked about it as 
56:10 
augmented intelligence right 
56:12 
and i got a comment from one of our 
56:14 
attendees dr terry you 
56:16 
mentioning that in 1994 acm 
56:19 
and newell award acceptance speech 
56:21 
frederick brooks also mentioned 
56:23 
something very similar 
56:24 
and called ai as ia or 
56:27 
intelligence amplification so 
56:30 
the question is that since you have a 
56:32 
lot of experience in industry 



56:35 
where do you think the industry will 
56:37 
benefit most from incorporating ai 
56:41 
and not just from technological point of 
56:42 
view from the acceptance point of view 
56:45 
from the engineers who are on the floor 
56:47 
so they don't feel 
56:48 
they're losing their jaws but right they 
56:50 
see that there's somebody helping them 
56:52 
right i think that's one of the reasons 
56:54 
that i like 
56:56 
the augmented uh um intelligence idea i 
57:00 
saw that comma i thought that was great 
57:02 
i 
57:02 
i stole it for another day um i 
57:05 
i think anything 
57:09 
that overcomes the initial 
57:12 
doubt is helpful there's there's a 
57:15 
and and i think it's been unfortunately 
57:20 
provoked to some extent by a lot of 
57:22 
discussion in the in print and in the 
57:23 
media 
57:24 
where people seem to want to get people 
57:28 
afraid of robots 
57:29 
i i think once people 



57:32 
[Music] 
57:33 
working in any shop run into a success 
57:37 
and start to see the opportunities for 
57:41 
it 
57:43 
as being help and not competition 
57:48 
it that that overcomes any 
57:51 
doubt or sales pitch better than than 
57:55 
you know anything you can say so we 
57:58 
you know i have a colleague who likes to 
57:59 
talk about getting base hits 
58:01 
um you don't have to solve world hunger 
58:04 
the first time out the first time 
58:06 
you uh you know they work with somebody 
58:08 
like tony and he helps them 
58:10 
not break tools off anymore because 
58:12 
they're driving the machine too hard 
58:15 
or uh i know andy's had some great use 
58:19 
cases on 
58:20 
on recognizing unrecognized limits 
58:24 
those breakthroughs do more to win 
58:27 
people over 
58:28 
than all the talk you can imagine 
58:31 
um but i think starting out by even the 
58:34 
best way to start out is to just 



58:37 
just to say well look these are not here 
58:39 
to replace you 
58:41 
these are here to help us find problems 
58:44 
and fix them 
58:45 
and get through it and then look for 
58:48 
that chance to show everybody 
58:50 
that's the best thing i know thank you 
58:53 
very much kurt um 
58:54 
we are at time so i just want to mention 
58:56 
that um i would like to thank again all 
58:58 
the speakers all of you attend this for 
59:00 
attending this event if you liked 
59:02 
this event ai for manufacturing you can 
59:05 
join us 
59:06 
on the first thursday of every month in 
59:08 
april we have ai for agriculture 
59:10 
in may we have ai for health care and in 
59:13 
june we are going to present multiple 
59:15 
projects which are funded by the umen 
59:17 
aic grant 
59:18 
i also want to thank our sponsor office 
59:20 
of vice president for research 
59:22 
sponsoring university of maine ai 
59:24 
initiative 



59:25 
and also my colleagues at the ais 
59:28 
student committee 
59:28 
doctors susan mckay terry you roy turner 
59:32 
sharmila mohapadi charlene jen saul 
59:34 
allen and jason sharland 
59:36 
and also in the background i would like 
59:39 
to thank 
59:40 
office of research help that we got 
59:44 
melinda pelletier who is actually 
59:46 
running the background zoom here for us 
59:49 
um i know we have a few more questions 
59:51 
but we are out of time so we will 
59:53 
answer those offline and again don't 
59:57 
forget to 
59:59 
respond to the survey requests we'll 
60:01 
send out later so 
60:02 
hopefully we'll make these events better 
60:04 
so thanks again all the speakers and 
60:06 
attendees and enjoy the rest of your day 
60:08 
have a great day 
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