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Every object above zero kelvin emits electromagnetic radiation with the dominant

wavelength determined using the Wien’s law (10 microns at room temperature). These

waves can transfer energy and hence are the foundation of radiative heat transfer (RHT).

RHT consists of two regimes: far-field and near-field. If the distance between the heat

exchanging media is more than the dominant wavelength, the regime is far-field and is

limited to the ideal Planck’s blackbody, and only propagating waves contribute to heat

transfer. On the other hand, when the distance is less than the dominant wavelength, the

regime is called the near-field. In near-field radiative heat transfer (NFRHT), the

contribution of evanescent waves becomes more significant than the propagating ones, and

this causes a spike in the spectral RHT that exceeds Planck’s blackbody limit by several

orders of magnitude. If the thermal emitter supports surface modes, NFRHT can become

monochromatic.

These surface modes can be surface phonon polaritons (SPhP) and surface plasmon

polaritons (SPP). Materials such as silicon carbide support SPhP and graphene is an

example of a material that support SPPs. These surface modes cause the

quasi-monochromatic behavior that can be exploited for applications such as



thermophotovoltaic devices and thermal rectifiers. Graphene is one of the few materials

that support surface modes in the infrared where these modes can be thermally excited.

Another characteristic of graphene SPPs is their tunability using gate voltage or chemical

doping which has transformed graphene into a revolutionary material for NFRHT

applications in mid-to far-infrared regions.

Graphene has been studied both theoretically and experimentally. However, in most

NFRHT studies, graphene has been investigated theoretically for its application in

NFRHT. NFRHT for graphene is calculated using its electrical conductivity. The studies

in NFRHT have utilized a local method for graphene’s electrical conductivity called the

Kubo formula. However, graphene is a non-local material that has non-local conductivity

and dielectric response, hence it is not clear whether a local model such as the Kubo

formula can capture the non-local behavior of graphene. In this thesis, a non-local model

called the Lindhard formula is used to calculate graphene’s conductivity, and the radiative

conductance between two graphene sheets. The Lindhard predictions are compared with

the results obtained from the Kubo formula. It is found that at low chemical potential

both methods agree, while by increasing the chemical potential of graphene, the Kubo

formula overestimates the radiative conductance between two graphene sheets by several

orders of magnitude. Increasing the gap size and reducing temperature would increase the

difference. It is concluded that the observed differences are due to the simplification

involved when deriving the Kubo formula, and therefore it is recommended to use the

Lindhard formula in NFRHT studies.
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CHAPTER 1

INTRODUCTION

1.1 Background

Every material with a temperature above zero Kelvin or absolute zero emits

electromagnetic waves with a maximum intensity at wavelength of λmax. According to

Wien’s law [1], λmax is equal to 10 microns at room temperature. The emission of these

electromagnetic waves can transfer energy from an object to another, and this process is

called the radiative heat transfer (RHT) [2]. The RHT is divided into two distinct regimes

called the near-field and far-field regimes. If the distance between the heat exchanging

media is more than the dominant wavelength λmax, the heat transfer regime is called the

far-field regime. The far-field regime is described by Planck’s theory [3] and RHT in this

regime is limited to that for blackbodies. As proposed in Max Planck’s theory of RHT, the

blackbody limit is a great tool for quantifying the rate of RHT because it represents the

maximum possible RHT between objects in the far-field. In a far-field regime, only

propagating modes contribute to RHT (refer to Fig.1.1). Far-field radiative heat transfer

(FFRHT) is modeled using the radiative transfer equation and geometric optic.

The other regime of RHT is called the near-field radiative heat transfer (NFRHT). In

this regime, the distance between the objects is less than the dominant wavelength (refer to

Fig.1.1). At such small gaps, the contribution of frustrated evanescent modes and surface

evanescent modes becomes the dominant RHT method [4, 5, 6, 7, 8]. As shown in Fig.1.1,

frustrated evanescent modes are propagative in the emitting medium but they are

evanescent in the free space. Surface evanescent modes such as surface phonon polaritons

(SPhP) [9, 10] and surface plasmon polaritons (SPP) [11, 12] are evanescent in both the

1



emitting medium and the free space. SPhPs and SPPs result from the strong coupling

between EM waves and phonons or plasmons, respectively [13].

NFRHT is described using the theory of fluctuational electrodynamics [14]. In this

theory, the thermally agitation of the charged particles within the emitting medium (which

is the source of thermal emission) is modeled using the stochastic current density which is

added to Maxwell’s equations.

Figure 1.1. FFRHT is dominated by propagating modes while NFRHT includes the
contribution of frustrated evanescent modes and surface evanescent modes.

Polder and Van Hove [15] used the formulation in Rytov’s work [16] to study the effect

of evanescent waves on radiative heat transfer and, upon doing so, paved the way for the

emergence of the famous NFRHT. It was theoretically predicted that radiation between

closely spaced surfaces could exceed that of blackbody [15, 17, 18, 19, 20], and it was

attributed to constructive interference of propagating waves or tunneling of evanescent

waves [4]. Evanescent waves can enhance near field radiative heat transfer by several orders

of magnitude [4, 5]. The tunneling of evanescent waves decays exponentially with

increasing the distance between the heat exchanging media (refer to Fig.1.1); hence their

contribution vanishes if the separation gap is larger than the dominant thermal wavelength

(λmax = 10µm at room temperature) [21].

The enhanced RHT in near-field has many applications and this concept is being

employed in a variety of technologies such as thermal diodes [22, 23], thermophotovoltaics

2



[24, 25, 26], contactless cooling [27, 28, 29] and thermal rectification [30]. Near-field

thermophotovoltaic devices have been experimentally demonstrated recently and are

proven to enhance power output by 40-fold compared to the far-field ones [26]. The

enhancement of RHT in the near-field regime has also been capitalized on for photonic

cooling and solid-state refrigeration [29]. It has also been shown that the surface modes in

near-field can achieve a very high thermal rectification ratio of up to 23.7 [30].

Many of these near-field applications rely on spectrally-selective thermal emission that

is made possible because of the narrow-band surface polaritons [31]. When most of NFRHT

occurs in a very narrow frequency band, RHT is called monochromatic. If the medium

supports SPPs or SPhPs, then the NFRHT can be quasi-monochromatic [31, 32, 33].

Polaritonc materials that support SPhPs and SPPs in the near to mid-infrared region

are of utmost value since these modes can be thermally excited [26, 29, 30, 31]. The limited

number if materials that support SPhPs and SPPs in the near to mid-infrared is the main

limitation in taking advantage of the surface evanescent modes in the NFRHT applications.

To overcome such deficiency, various metamaterials [34, 35, 36, 37] have been proposed.

However, utilizing metamaterials for tuning the spectrum of NFRHT involves significant

computational and fabrication costs for design and nanofabrication of these man-made

materials.

One of the few materials supporting SPPs in the near and mid-infrared region is

graphene [38, 39, 40]. Graphene is an one-atom-thick and two-dimensional allotrope of

carbon arranged in a honeycomb lattice. It was discovered in 2004 [41] and has been

studied extensively for potential applications in optics, plasmonics, and energy conversion

due to its unique thermal, and optical properties [42, 43, 44, 45, 46, 47]. Graphene has

proven to be a revolutionary material with massless charge carriers [48, 49] that equips it

with surface plasmons in the near and mid-infrared region that can be actively tuned using

electric gate voltage and chemical doping [41, 42, 50]. Due to supporting SPPs, graphene

3



NFRHT can be quasi-monochromatic. Optical and thermal radiation properties of

graphene are determined from its electrical conductivity. Two well-known formulas for

predicting the electrical conductivity of graphene are Kubo formula and Lindhard formula.

The Kubo formula for graphene’s conductivity is a local model that is a function of

chemical potential, temperature and frequency [51, 52, 53, 54, 55, 56, 57, 58, 59]. The

Kubo model neglects the wavevector dependency of graphene’s electrical conductivity.

Another model for calculating the electrical conductivity of graphene is the Lindhard

formula which is determined using the framework of Random Phase Approximation (RPA)

formula [48, 60, 61, 62]. This model is not only a function of chemical potential, frequency,

and temperature, but also considers the wavevector dependency of electrical conductivity

and hence provides a great tool to quantify the nonlocal effect of graphene’s electrical

conductivity. It is worth saying that the Kubo formula is often referred to as the local-RPA

as well.

In the next section, a literature review on graphene in the context of NFRHT is

provided.

1.2 Literature Review

1.2.1 Theoretical studies

The highly tunable surface plasmons in graphene has a variety of applications in

NFRHT. Due to the thinness of graphene sheet, it can be easily placed on dissimilar

dielectric materials to enhance their RHT. The surface plasmons in graphene can not only

enhance RHT but also can suppress it. This RHT modulation is evident in the work of

Joulain et al.[6], and Ilic et al.[56] who reported that a mismatch between SPP frequencies

in two media can result in reduced RHT between the two media. For this reason, graphene
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has been extensively proposed for modulating NFRHT. Based on modulation

characteristics of graphene SPPs, it has been proposed as thermal switch

[58, 59, 63, 64, 65, 66] and fast non-contact cooling devices [67]. The versatility of graphene

application in NFRHT has been evaluated by calculating the NFRHT between graphene

and different material with different dielectric constant such as MoS2, SiO2, anisotropic

magneto-dielectric hyperbolic metamaterials (AMDHM), black phosphorene and

amorphous SiO2 [68, 69, 70, 71, 72, 73, 74].

Graphene supports SPPs in the infrared region. An SPP resonance frequency in the

infrared is of high interest for nano-gap thermophotovoltaic devices, as these frequencies

can be thermally excited [46, 53, 75]. Numerical investigation of this phenomenon has

shown that applying graphene sheet on a nano-gap TPV cell can enhance energy output

significantly [46, 53, 75].

The electrical conductivity of graphene can be tuned in these ways: By changing the

chemical potential of graphene that is done by applying gate voltage or chemical doping

[35, 76, 77], by applying magnetic field [78] and by applying stress to graphene sheets [79].

Graphene was also studied as a component of metamaterials. One of the drawbacks of

metamaterials for NFRHT application is their lack of tunability. Using graphene in

metamaterial has been proposed in recent studies and it is shown that the coupling of

graphene plasmons with surface modes of other metamaterial components can serve as a

mechanism for active tuning of radiative properties of metamaterials [80, 81, 82, 83, 84, 85].

The same mechanism of tuning exists for graphene covered gratings [86].

Graphene/vacuum multi-layers have also been studied in the context of NFRHT, and it

has been reported that they demonstrate different characteristic than graphene sheets and

metamaterials that include graphene [87, 88]. Increasing the number of sheets can not only

blueshift the peak frequency of NFRHT, but it also can increase it as well. Another
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observation is that increasing the distance between the sheets can smoothen the

temperature gradient between them. This change of temperature gradient can be explained

by ultrafast heat transfer between graphene sheets in the near-field regime.

1.2.2 Experimental studies

So far, there are only four experimental studies on NFRHT between graphene sheets or

graphene-covered substrates. Experimental work in graphene has proven the findings of

existing theoretical investigation. Zwol et al. [89] experimentally demonstrated that when

surface plasmons are thermally excited in a system comprising of doped silicon and

graphene on SiC, NFRHT is increased by almost 25% at distance smaller than 200 nm.

Another experimental work successfully observes the super-Planck heat transfer in the

presence of graphene. The graphene sheets were deposited on silicon substrates in TPV

cells and proven to enhance the efficiency of the TPV cell by almost two orders of

magnitude at temperature differences above 300 [90].

Recently, another experimental investigation [91] has studied the feasibility of a thermal

switch using graphene by applying gate voltage as a mechanism for changing the chemical

potential. They separated optical flat coated with graphene and a graphene-coated silicon

wafer by 560 nm and imposed two 0 and 35 V gate voltages and shown that the heat flux

when bias is imposed is modulated by about 3 to 5%. Another aspect of the proposed

device, is that this device is operable in a wide range of temperatures and no moving

element exists in that structure. Applying higher gate voltage can also change the behavior

of the proposed system. The change of reflectance, transmittance and electrical

conductivity of graphene in a wide range of gate voltage is experimentally studied by Li et

al. [92]. They observed as gate voltage is increased, the amplitude of change in the

electrical conductivity of graphene also increases.

6



Finally, it is worth noting that due to the Lindhard formula’s complexity, most

researchers opt for a simplified model called Kubo formula

[51, 52, 53, 54, 55, 56, 57, 58, 59, 60].

1.3 Approach and Contributions

As it is discussed in Section 1.2, graphene is a very promissing materials for

applications such as heat transfer enhancement, active control and modulation of heat

transfer, thermal switches, nano-gap thermophotovoltaic devices, as well as ultra fast

cooling. However, many of these application are being proposed theoretically using a local

formula for electrical conductivity of graphene (i.e., the Kubo formula). It is not clear how

non-local electrical conductivity of graphene can modify its NFRHT magnitude and SPP

resonance frequency. To answer this question, we model near-field radiative conductance of

two graphene sheets separated by a vacuum gap using the Kubo formula as well as the

Lindhard formula, which is a non-local model. we compared the radiative conductance of

graphene sheets obtained using the two formula to understand the non-local effects on

NFRHT between graphene sheets.

The results of this study, provides insight into the differences between the two local and

non-local modeling approaches. The differences observed between the Kubo and Lindhard

formulas results suggest that the non-local effects on NFRHT are significant in most cases.

1.4 Thesis Outline

This thesis is organized as follows. The theoretical background on graphene

conductivity formulas is provided in chapter 2. The radiative conductance and dispersion

relation expressions are also discussed in this chapter. The research method and the results
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of the present study are presented in chapter 3. Conclusion and recommendations are

discussed in the fourth chapter.
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CHAPTER 2

THEORETICAL BACKGROUND

In this chapter, the fluctuational electrodynamics framework, which is used for modeling

near-field radiative heat transfer is discussed. the NFRHT between two graphene covered

media is then formulated by applying the fluctuating electrodynamics theory. Next, the

surface plasmon polariton modes and their existence in graphene have been discussed.

we discuss how the thermal fluctuations are incorporated into Maxwell’s equations. The

thermal radiation is then formulated by applying the fluctuating electrodynamics theory,

and the NFRHT equations are achieved. The geometry under study is then introduced,

and the constituents of the NFRHT equation for the problem under consideration, Fresnel

coefficients, are set forth.

2.1 Fluctuational Electrodynamics for Describing Thermal Radiation

Energy flux due to thermal emission of electromagnetic wave, can be found using

Poynting vector. The average of Poynting vector over time is expressed as [93]:

〈S(r, ω)〉 = 4× 1

2
Re {E×H∗} (2.1)

The E and H in Eq. 2.1 are the thermally emitted electric and the magnetic fields,

respectively. Superscript * denotes complex conjugate and ω is the frequency in rad/s. The

factor 4 is included in Eq. 2.1 to account for the fact that only the positive frequencies are

considered in the Fourier decomposition of the electromagnetic fields [94, 95]. E and H are

obtained from Maxwell’s equations when augmented by the source of thermal emission [93].

The source of thermal emission is the random motion of charge particles in the matter

caused by thermal agitation. From a macroscopic paint of view, this random motion can be
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modelled using an stochastic current density, Jr, which is added to Maxwell equations. The

resulting Maxwell’s equations are referred to as the stochastic Maxwell’s equations, This

framework for modelling thermal radiation is called fluctuational electrodynamics.

∇× E(r, ω) = iωµ0H(r, ω) (Faraday’s law)

∇×H(r, ω) = −iωεE(r, ω) + Jr(r, ω) (Ampere’s law)

∇ · E(r, ω) = 0 (Gauss’s law)

∇ ·H(r, ω) = 0 (Gauss’s law)

(2.2)

where µ0 = 1.257× 10−6 H/m is the permeability of vacuum, ε is the complex permittivity

of the materials, r is the position vectors, and Jr is the stochastic current density due to

thermally fluctuation of charged particles. The thermally emitted electric and magnetic

fields can be written in terms of dyadic Green’s function and the fluctuating current as:

E(r, ω) = iωµ0

∫
V
dV ′G

E
(r, r′, ω) · Jr (r′, ω) = iωµ0

∫
V
dV ′GE

inJ
r
n

H(r, ω) =
∫
V
dV ′G

H
(r, r′, ω) · Jr (r′, ω) = iωµ0

∫
V
dV ′GH

inJ
r
n

(2.3)

In Eq. 2.3, G
E

(r, r′, ω) and G
H

(r, r′, ω) are the DGF for electric and magnetic field,

respectively and n is the state polarization of the fields observed at r. The DGF can be

viewed as a transfer function relating the electric field at point r to the fluctuating current

at point r′ (refer to Fig. 2.1). The electric and magnetic DGFs are obtained by solving the

Maxwell equations for a point source located at location r′.

Using the relations established between the stochastic current density and the magnetic

and electric fields, the energy flux can be obtained by inserting Eq. 2.3 into Eq. 2.1, as:

〈S(r, ω)〉

= 4× 1
2

Re {E(r, ω)×H∗(r, ω)}

= 2ωµ0 Re
{
i
∫
V
dV ′

∫
V
dV ′′GE

nα (r, r′, ω)GH∗

nβ (r, r′′, ω′)
〈
Jrα (r′, ω) Jr

∗

β (r′′, ω′)
〉} (2.4)
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Figure 2.1. DGF can be viewed as a transfer function relating the thermally fluctuating
current at location r’ to the electric field at location r.

Since the thermal fluctuations of charged particles cause the stochastic current density

Jr, the ensemble average of the correlation function of the fluctuating current, i.e., the

term
〈
Jrα (r′, ω) Jr

∗

β (r′′, ω′)
〉
, that is the source of thermal radiation should be related to the

temperature of the emitter. This relation is established by the fluctuation-dissipation

theorem [96]. Under the same assumptions as of the Maxwell equations and assuming that

the material is in thermal equilibrium, the ensemble average of the correlation function of

the fluctuating current is given by:

〈
Jrα (r′, ω) Jr

∗

β (r′′, ω′)
〉

=
ωε0ε

′′

π
Θ(ω, T )δ(r′ − r′′)δ(ω − ω′) (2.5)

where Θ(ω, T ) = ~ω/ (exp (~ω/kBT )− 1) is the mean energy of a Planck oscillator

[82, 84, 97], ε′′ is the imaginary part of the dielectric function of the material,

ε0 = 8.854× 10−12 F/m is the permittivity of the vacuum, ~ = h/2π = 1.0546× 10−3J.s is

the reduced Planck constant and kB = 1.381× 10−23J/K is the Boltzmann constant.

Therefore, by applying the fluctuation-dissipation theorem to Eq. 2.4 and using ergodic

hypothesis, the radiative heat flux is found as:

〈S(r, ω)〉 =

2k20Θ(ω,T )

π
Re
{
iε′′r(ω)

∫
V
dV ′GE

nβ (r, r′, ω)GH∗
nα (r, r′′, ω′)

} (2.6)
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In Eq. 2.6, k0 = ω/c0 is the wavevector in the vacuum, where c0 =
√
ε0µ0 is the speed

of light in vacuum.

2.2 Near-Field Radiative Heat Transfer Between Two Graphene Covered

Semi-Infinite Media

In this section, NFRHT between two graphene-covered planar bodies is derived. The

schematic of the problem under consideration is shown in Fig. 2.2 where two semi-infinite

media are covered with graphene sheets. It is realistically assumed that graphene sheets’

temperature is equal to the medium’s temperature on which they are placed. The emitter

and the receiver are kept at the constant temperatures of T1 and T3, respectively, and a

vacuum gap of length D separates the two media.

Figure 2.2. Schematic of the problem under consideration. Two graphene-covered media
(media 1 and 3), with permittivities ε1 and ε3 are kept at temperatures T1 and T3,
respectively, and they are separated by a vacuum gap (medium 2) of size D, ε2 = 1.

The NFRHT flux from medium 1 to medium 3 is calculated using Eq. 2.6 in which the

only unknowns are Green’s functions GE
13 (r, r′, ω) and GH

13 (r, r′, ω). For the
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one-dimensional geometry shown in Fig. 2.2, the DGFs in the free space (Eq. 2.3) are the

solution of the following equation [97]:

∇×∇×G
E

(r, r′, ω)− k2G
E

(r, r′, ω) = Iδ (r− r′) (2.7)

In Eq. 2.7, I is the identity matrix. The solution for the magnetic DGF can be obtained

using the solution of the electric DGF as G
H

(r, r′, ω) = ∇×G
E

(r, r′, ω). Since the

geometry under consideration has azimuthal symmetry, the polar coordinate will be

utilized instead of the Cartesian coordinate. The solution of Eq. 2.7 is provided in Ref.

[98]. After using this solution for GE
13 (r, r′, ω) and GH

13 (r, r′, ω), the integral term in Eq.

2.6 can be written as [99]:

∫
V1
dV ′GE

13iα (r, r′, ω)GH∗
13jα (r, r′, ω) =∫∞

−∞
dkρ

(2π)2

∫
z
dz′gE13iα (kρ,z, z

′, ω) gH
∗

13jα (kρ,z, z
′, ω)

(2.8)

where gE13iα and gH13jα are the Weyl components of DGF [98, 99], kρ is the parallel

component of the wavevector (refer to Fig. 2.3) and z and z′ are the z components of the

location vectors r and r′ (See Fig. 2.1). The complex wavevectors in medium 1 and 3 are

k1 and k3, respectively with k2
1 = ε1k

2
0 and k2

3 = ε3k
2
0. The normal component of the

wavevector in medium j is calculated as kzj =
√
k2
j − k2

ρ. The parallel component of the

wavevector which has components along x and y directions can be written as

kρ = kxx̂ + kyŷ. By expressing kρ in the polar coordinate system and considering

azimuthal symmetry,
∫∞
−∞ dkρ can be written as [93]:

∫ ∞
−∞

dkρ =

∫ ∞
−∞

∫ ∞
−∞

dkxdky =

∫ ∞
kρ=0

∫ 2π

φ=0

kρdkρdφ = 2π

∫ ∞
kρ=0

kρdkρ (2.9)
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Figure 2.3. The complex wavevector in medium 1 and 3 has a component parallel to the
surface of the medium (kρ) and a normal component (kz).

Substituting Eq. 2.8 and 2.9 into Eq. 2.6, the near-field radiative heat flux from

medium 1 to medium 3 is equal to [100]:

q′′ω,13 =
k20Θ(ω,T1)

π2

×Re

iε′′1 ∫∞kρ=0
kρdkρ

∫
z
dz′

 gE13ρα (kρ, z, z
′, ω) gH

∗

13θα (kρ, z, z
′, ω)

−gE13θα (kρ, z, z
′, ω) gH

∗
13ρα (kρ, z, z

′, ω)




(2.10)

The integral over kρ from 0 to ∞ (i.e.,
∫∞
kρ=0

) in Eq. 2.10 can be divided into two parts:

an integral from 0 to k0 (
∫ k0
kρ=0

) and an integral from k0 to ∞ (
∫∞
kρ=k0

). The first integral is

over EM wares with kρ < k0. Therefore, these wave are propagative in the Vacuum gap.

The flux of heat transferred by these propagating wares is referred to as q′′prop

ω in this thesis.

The second integral is over waves with kρ > k0. Hence, these waves are evanescent in

separation gap.

These modes, which evanescently decay perpendicular to the surface in a distance

approximately equal to the dominant wavelength of thermal radiation λ, can contribute to

heat transfer if the separation gap is less than λ (i.e., when D 6 λ). The flux of heat

transfer from medium 1 to medium 3 due to the evanescent waves is shown by q′′evanω in this
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thesis [101, 102, 99]. Hence the spectral flux of NFRHT from medium 1 to medium 3 can

be written as:

q′′ω,13 = q′′
prop

ω,13 + q′′
evan

ω,13 (2.11)

When the appropriate form of Weyl components of DGF [98, 99, 103] are substituted

into Eq. 2.10, q′′ω,13 can be written as:

q′′
prop

ω,13 = Θ(ω,T1)
4π2

∫ k0
0

∑
γ=TE,TM kρZ

prop
13 dkρ

q′′
evan

ω,13 = Θ(ω,T1)
π2

∫∞
k0

∑
γ=TE,TM kρZ

evan
13 dkρ

(2.12)

where

Zprop
13 =

(
1−|rγ21|2

)(
1−|rγ23|2

)
∣∣∣1−rγ21rγ23e2ik′222d∣∣∣2

Zevan
13 =

Im(rγ21) Im(rγ23)∣∣∣1−rγ21rγ23e−2k′′z2d
∣∣∣2

(2.13)

The heat flux transferred from medium 3 to medium 1 (q′′ω,31) can be found similarly as:

q′′
prop

ω,31 = Θ(ω,T3)
4π2

∫ k0
0

∑
γ=TE,TM kρZ

prop
31 dkρ

q′′
evan

ω,31 = Θ(ω,T3)
π2

∫∞
k0

∑
γ=TE,TM kρZ

evan
31 dkρ

(2.14)

The net heat flux from medium 1 to medium 3, q′′ω, can then be obtained as:

q′′ω = q′′ω,13 − q′′ω,31 (2.15)

Substituting q′′ω,13 and q′′ω,31 from Eqs. 2.12 and 2.14, q′′ω is found as:

q′′
prop

ω = Θ(ω,T1)−Θ(ω,T3)
4π2

∫ k0
0

∑
γ=TE,TM kρZ

prop
13 dkρ

q′′
evan

ω = Θ(ω,T1)−Θ(ω,T3)
π2

∫∞
k0

∑
γ=TE,TM kρZ

evan
13 dkρ

(2.16)
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where Θ is the mean energy of a Planck oscillator, D is the distance between the two

media, k′′z2 is the imaginary part of the z-component of the wavevector in medium 2, γ

shows the polarization of waves (TE for the transverse electric and TM for transverse

magnetic polarization) and rij is the Fresnel reflection coefficient at the interface of media i

and j (refer to Fig. 2.4). The Fresnel reflection coefficients for the TE and TM

polarizations can be expressed as [104, 105]:

rTEij =
kzi − kzj − µ0σ (ω, kρ, T )ω

kzi + kzj + µ0σ (ω, kρ, T )ω

rTMij =
εjkzi − εikzj +

σ(ω,kρ,T )kzikzj
ε0ω

εjkzi + εikzj +
σ(ω,kρ,T )kzikzj

ε0ω

(2.17)

In Eq. 2.17, εi and εj are the dielectric functions of media i and j, respectively, and σ is

the electrical conductivity of graphene.

Equation 2.16 is obtained by assuming that media 1 and 3 are optically thick. In other

words, it is assumed that thermal radiation incident on these media cannot escape the

backside of these media as they are thick enough such that they will absorb thermal

radiation before it exits from the other end. In the case of suspended graphene sheets (with

no substrate), thermal radiation can be transmitted through the graphene. In this case, the

Weyl component of the DGFs also include Fresnel transmission coefficient. In this case:

Zprop
13 =

(
1−|rγ21|2−|tγ21|2

)(
1−|rγ23|2−|tγ23|2

)
|1−rγ21rγ23e2ikz2D|2

Zevan
13 =

Im(rγ21) Im(rγ23)
|1−rγ21rγ23e2ikz2D|2

(2.18)
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Figure 2.4. The Fresnel reflection (rij) and transmission coefficients (tij) describe the
reflection or transmission of EM waves incident on the interface between medium i and
j.

In Eq. 2.18, tγij is the Fresnel transmission coefficient (refer to Fig. 2.4). The

transmission coefficient is given by [104, 105]:

tTE
ij =

2kzi
kzi + kzj + µ0σ (kρ, ω, T )ω

tTM
ij =

√
εi
εj

Re

[
kzj
kzi

]
2εjkzi

εjkzi + εikzj +
σ(kρ,ω,T )kzikzj

ε0ω

(2.19)

The radiative conductance between media 1 and 3 is defined as :

Gω = lim
δT→0

q′′ω
δT

(2.20)

where q′′ω is the heat flux between the two media and δT is their temperature difference.

Substituting for q′′ω from Eq. 2.16, the radiative conductance is found as:

Gprop
ω = 1

4π2
∂Θ
∂T

∫ k0
0

∑
γ=TE,TM Zprop

13 kρdkρ

Gevan
ω = 1

4π2
∂Θ
∂T

∫∞
k0

∑
γ=TE,TM Zevan

13 kρdkρ

(2.21)

In Eq. 2.21, Gprop
ω and Gevan

ω are the propagating and evanescent part of the radiative

conductance.
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2.3 Graphene Electrical Conductivity Models

As seen from Eqs. 2.17 and 2.19, the reflection and transmission coefficients and thus

radiative heat flux strongly depend on the graphene electrical conductivity. So far, NFRHT

in graphene-based media is calculated using the Kubo formula for the electrical

conductivity. The Kubo formula is obtained by assuming that kρ = 0. Since this expression

does not account for the variation of σ with kρ, it is referred to as a local model. As

discussed previously, radiative heat transfer can be mediated by all electromagnetic waves

having a kρ between 0 and infinity. Therefore, using the Kubo formula for near-field

radiative heat transfer calculations can be questionable.

There is another model for electrical conductivity of graphene, referred to as the

Lindhard formula [106, 61], which accounts for the variation of σ with kρ as well. These

two formulas for the electrical conductivity of graphene are discussed in the following

subsections.

2.3.1 Kubo Formula

Ignoring the impact of magnetic field, the Kubo formulation is [39, 107, 50, 104, 108]:

σ(ω, µc, T ) = − ie2(ω+iγ)
π~2 ( 1

(ω+iγ)2

∫∞
0
E
(
∂f(E)
∂E
− ∂f(−E)

∂E

)
dE

−
∫∞

0
f(−E)−f(E)

(ω+iγ)2−4(E/~)2
dE)

(2.22)

where f(E) = {1 + exp [(E − µc)/kBT ]}−1 is the Fermi distribution function, e is the

elementary charge, γ = τ−1 is the electron scattering rate, τ = µmµc/eν
2
F is the electron

relaxation time in graphene where µm is the carrier mobility, νF = 9.5× 105m/s is the

Fermi velocity, and µc is the chemical potential of graphene in Joules (J). The first and

second terms in Eq. 2.22 correspond to the intraband and interband electron transitions,
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respectively [109]. When the integrations in Eq. 2.22 are performed, the Kubo electrical

conductivity can be written as:

σ = σintra + σinter (2.23)

In Eq. 2.23, σintra and σinter refer to electrical conductivity due to intraband and

interband transitions, respectively, and they are given by:

σintra(ω, µc, T ) = σ0
π

4
~γ−i~ω

[
µc + 2kBT ln

(
1 + e−µc/kBT

)]
σinter (ω, µc, T ) = σ0

[
G(~ω/2) + i4~ω

π

∫∞
0

G(E)−G(~ω/2)
(~ω)2−4E2 dE

] (2.24)

where

G(x) =
sinh

(
x

kBT

)
cosh

(
µc
kBT

)
+ cosh

(
x

kBT

) (2.25)

and σ0 = e2/(4~). It is shown that the intraband contribution is dominant in the THz and

far-infrared regions, while the interband plays a significant role in the near-infrared and

visible regions [110]. contribution from both interband ad intraband transitions are

accounted for in this study.

2.3.2 Lindhard Formula

The Lindhard formula provides a wavevector-dependent conductivity for graphene as

[111]:

σ (kρ, ω, µcT ) = ie2 ω

k2
ρ

χ (kρ, ω, µc, T ) (2.26)
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where χ (kρ, ω, µc, T ) is the susceptibility of graphene. The susceptibility of graphene is a

complex number and is expressed as:

χ (kρ, ω, µc, T ) = Re [χ (kρ, ω, µc, T )] + i Im [χ (kρ, ω, µc, T )] (2.27)

The real and imaginary parts in Eq. 2.27 are given using the Lindhard formula as [61]:

Re [χ (kρ, ω, µc, T )] =
1

π

∑
α=±

(
−2kBT ln

(
1 + eαµc/kBT

)
(~vF )2 +H(~ω − ~vFkρ)

× k2
ρf (~ω, ~vFkρ)

[
G

(α)
− (kρ, ω, T )−G(α)

+ (kρ, ω, T )
]

+H(~vFkρ − ~ω)

× k2
ρf (~vFkρ, ~ω)

[
−π

2
δα,− +D

(α)
− (kρ, ω, T )

]
)

(2.28)

Im [χ (kρ, ω, µc, T )] =
1

π

∑
α=±

(H (~vFkρ − ~ω) k2
ρf (~vFkρ, ~ω)

×
[
G

(α)
+ (kρ, ω, µc, T )−G(α)

− (kρ, ω, T )
]

+H (~ω − ~vFkρ) k2
ρf (~ω, ~vFkρ)

×
[
−π

2
δα,− +D

(α)
+ (kρ, ω, T )

]
)

(2.29)

In Eqs. 2.28 and 2.29, H(x) is the Heaviside step function, and,

f(x, y) = 1

2
√
x2−y2

G
(α)
± (kρ, ω, µc, T ) =

∫∞
1

√
u2−1

exp

(
|~νF kρu±~ω|−2αµc

2kBT

)
+1
du

D
(α)
± (kρ, ω, µc, T ) =

∫ 1

−1

√
1−u2

exp

(
|~νF kρu±~ω|−2αµc

2kBT

)
+1
du

(2.30)

The electrical conductivity calculated using Eq. 2.26 through 2.30 is referred to as the

Lindhard formula for graphene’s electrical conductivity. The Lindhard formula has not

been used in NFRHT calculations. Hence, the effect of wavevector dependency on NFRHT

problems involving graphene has not been investigated yet.
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Figure 2.5. The SPPs appear in the interface of metal and dielectric with permittivities of
ε1 and ε2, respectively and decay exponentially away from the surface.

2.4 Surface Plasmon Polaritons

When the real part of the dielectric function changes sign at the interface of two

materials, the coherent oscillations of delocalized electrons result in thermal emission of a

type of surface modes called surface plasmon polaritons. The existence of these modes,

which usually have a significant amount of energy, causes a peak in NFRHT. The existence

of this peak is highly demanded for NFRHT applications such as nano-gap

thermophotovoltaic devices.

The field generated by surface plasmons is confined near the surface and its amplitude

decays exponentially by moving away from the interface [9, 112, 113, 114] (refer to Fig.

2.5). SPPs are non-propagating surface waves because the wavevector is larger than the

vacuum wavevector. These surface waves also do not couple to propagating electromagnetic

waves in a vacuum [115]. The magnitude of the wavevector of the SPPs excited at a

metal-dielectric interface (semi-infinite metallic and dielectric media) is expressed as:

|ksp| = k0

√
ε1ε2

ε1 + ε2

(2.31)

where ε1 and ε2 are the dielectric functions of the metallic and dielectric media (refer to

Fig. 2.5).
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SPPs in metals are not tunable and have high energy loss [116, 117]. They also get

excited in the visible range. Thermal excitation of metal SPPs requires high temperatures,

which limits their application in NFRHT [118]. The search for a material with better SPP

characteristics has unveiled graphene as a potential candidate.

2.5 Graphene Surface Plasmons

In this section, the dispersion relation of graphene plasmons, which relate the

wavevector and the frequency of these modes, is derived.

As mentioned before, the frequency of graphene SPPs, unlike metal SPPs, can be tuned

by controlling graphene’s charge densities via electrical gating or chemical doping

[107, 119, 120, 121]. Graphene SPPs get excited in near-infrared to terahertz regions

[121, 122] depending on the chemical potential of graphene which is highly demanded for

NFRHT applications.

Here, we consider the structure shown in Fig. 2.6, where two graphene covered

dielectric media with permittivity ε1 and ε2 are separated by a vacuum gap of size D. We

derive the dispersion relation for the bottom graphene sheet. The electric and magnetic

fields propagate along the z-direction. Graphene supports both TE and TM modes, but

TE SPPs in graphene are not appropriately confined, and hence are not of interest for

high-confinement applications such as NFRHT [123].

For TM-polarized SPPs with the parallel wavevector of kρ, the magnetic field can be

written as:

Hy = Ae−κ3xeikρz x > 0

Hy = Beκ1xeikρz x < 0
(2.32)
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Figure 2.6. The graphene sheet structure which can support SPP modes sandwiched between
two surrounding media.

where A and B are undetermined coefficients and κj =
√
k2
ρ − εjk2

0. The electric field

component in the z direction for 0 < x < D can be found from Maxwell’s equations as:

Ez = −i 1

ωε0ε2

∂Hy

∂x
(2.33)

The boundary conditions at x = 0 and x = D are:

Ex1(0) = Ex2(0) and Hy1(0)−Hy2(0) = σ1Ex1(0) at z = 0

Ex2(d) = Ex3(d) and Hy2(d)−Hy3(d) = σ2Ex2(d) at z = d
(2.34)

where the numeric subscripts show the region of interest (refer to Fig. 2.6). By solving

Eqs. 2.32 and 2.33 and imposing the boundary conditions in Eq. 2.34, the following

expressions for the dispersion relation of graphene’s SPPs can be obtained.

ε2
κ2

tanh (κ2D/2) + ε1
κ1

+ i σ
ωε0

= 0

ε2
κ2

coth (κ2D/2) + ε1
κ1

+ i σ
ωε0

= 0
(2.35)
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CHAPTER 3

RESEARCH METHOD AND RESULTS

In this chapter, we discuss the implementation of the Kubo and Lindhard models for

electrical conductivity of graphene in MATLAB in Section 3.1. In Section 3.2 the Kubo,

Lindhard, and the NFRHT codes are verified against data available in literature. Finally,

in Section 3.3 a thorough comparison of the radiative conductance between two graphene

sheets as obtained using the Kubo and Lindhard models is conducted. Since the the

Lindhard model captures the wavevector-dependence of the electrical conductivity of

graphene, the effect of the temperature and gap size on the radiative conductance of the

problem under consideration is studied using this model. Copies of the developed codes are

provided in the appendix.

3.1 Research Method

In this thesis, the Kubo (Eq. 2.22) and Lindhard (Eqs. 2.28 and 2.29) models for

electrical conductivity of graphene, the model for near-field radiative conductance between

graphene sheets (Eq, 2.21), as well as the dispersion relation of graphene (Eq. 2.35) are

implemented in MATLAB. A diagram for the developed code structures is shown in Fig.

3.1 and 3.2.
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Figure 3.1. The structure of the codes developed for calculation of NFRHT and near-field

radiative conductance.

The radiative conductance (G) and the NFRHT are implemented using the code

structure in Fig. 3.1 (refer to Eq. 2.16 and 2.21). Z_P and Z_E are the propagating and

evanescent exchange functions shown in Eq. 2.18. The calculation of the Fresnel reflection

and transmission coefficients requires the calculation of the electrical conductivity of

graphene (refer to Eqs. 2.17 and 2.19). Hence the Z_P and Z_E functions call the Kubo

and Lindhard functions in which graphene’s electrical conductivity is implemented. The

Kubo formula (Eq. 2.24) has an integral part, and the integral in σinter is calculated using

the I function in the code. On the other hand, the Lindhard formula (refer to Eqs. 2.28

and 2.29) involves H, G, and D functions (refer to Eq. 2.30) that are implemented in

functions with the same name (Fig. 3.1).
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Figure 3.2. The structure of the codes developed for calculation of the dispersion relation.

The structure of the codes developed for the dispersion relation is a function of the

graphene’s electrical conductivity, wavevector, gap size, frequency, and the permittivity of

the surrounding media (refer to Eq. 2.35). Therefore, the only functions needed for

dispersion relation are the Kubo and the Lindhard functions. To solve Eq. 2.35, which is as

implicit function, an optimization technique of MATLAB named fminbnd is used. fminbnd

is a one-dimensional minimization technique that minimizes the function in a specified

range. The functions are minimized with respect to the parallel component of wavevector.

3.2 Verification

In this section, the developed codes for calculating the Kubo and Lindhard formulas for

the electrical conductivity of graphene as well as the code developed for NFRHT are

verified against the data available in the literature.
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3.2.1 Kubo Formula

For verification of the developed Kubo code, a graphene sheet was assumed at

T = 300K, µc = 0.3eV and scattering rate (γ) = 5.62× 1012s−1. The electrical

conductivity of graphene has been computed using the developed MATLAB code for the

Kubo formula (refer to appendix A). The result of the MATLAB code for the electrical

conductivity using the Kubo formula is compared with the electrical conductivity of

graphene reported in Ref. [124] for the same T and µc in Fig. 3.3. The conductivity is

normalized by σ0 (refer to Eq. 2.24). As it is seen from Fig. 3.3, the result of the Kubo

code in the present study is in great agreement with the data in Ref. [124].

Figure 3.3. Verification of the Kubo code against the data available in Ref. [68] for µc = 0.3
eV, T = 300 K and γ = 5.62× 1012s−1.
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3.2.2 Lindhard Formula

For verification of the developed Lindhard code, a free-standing graphene sheet at

T = 0 K and ω = 0 rad/s was considered. Graphene’s susceptibility is computed using the

developed MATLAB code for the Lindhard formula (refer to appendix A), which can then

be converted to electrical conductivity by Eq. 2.26.

The result of the MATLAB code for the susceptibility using the Lindhard formula is

compared with the susceptibility of graphene reported in Ref. [61] for the same T and ω in

Fig. 3.4. The susceptibility is normalized by ν(Ef ) = 2Ef/πnu
2
F , where Ef is the Fermi

energy. The x-axis is normalized using the Fermi wave number, (kF =
√
nπ) with n being

the electron density. The electron density is related to the chemical potential (for more

information refer to Ref. [61]). Fig. 3.4 shows a great agreement between the data in Ref

.[61] and the result obtained using the Lindhard code developed in the present study.

3.2.3 NFRHT

In order to ensure that the exchange functions Z_E.m and Z_P.m (refer to Fig. 3.1)

and the NFRHT codes are implemented correctly, another verification is necessary. The

results obtained using these two functions are compared with the data presented in

Messina et al. [65] to ensure the accuracy of these MATLAB functions. The data presented

in Messina et al. [65] is concerned with the total near-field heat flux between a zinc sulfide

(ZnS) slab, kept at a temperature of 290 K, and a gallium arsenide (GaAs) slab that is

kept at a temperature of 310 K (refer to Fig.3.5). A 10 nanometers vacuum gap separates

the two slabs. Heat transfer in this system is studied for two cases. In the first case the

GaAs slab is not covered with a graphene sheet while in the second case it is covered with

a graphene sheet. In the study by Messina et al., the calculated electrical conductivity of

graphene is modeled using the Kubo formulation.
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Figure 3.4. Verification of the Lindhard code against the data presented in Ref. [70] for
T = 0 K and ω = 0 rad/s.

To determine the frequency range in which thermal radiation is non-negligible, first the

total heat flux is computed in the frequency range of 1.88× 1012rad/s to 1.88× 1017 rad/s.

Then we reduced the upper limit to 1.88× 1016 rad/s and increased the lower limit to

1.88× 1014 rad/s until no change in the radiative heat flux was observed. The total

(spectrally integrated) heat transfer is integrated numerically over the frequency. To ensure

the convergence of the numerical integral, the number of frequencies used for discretizing a

given frequency range was increased until no change in the total heat flux is observed. The

convergence analysis data are summarized in Table 3.1.
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Figure 3.5. Near-field radiative heat transfer between a GaAs slab at 310 K and a ZnS slab
at 290 K. The GaAs slab is covered with a graphene sheet

Table 3.1. Frequency range and frequency count dependency analysis on near-field heat flux
between graphene covered GaAs at T = 310K and ZnS at T = 290K.

ωmax [rad/s] ωmin [rad/s] Frequency count q′′total[W/m
2]

1.88× 1016 1.88× 1015 500 3.95× 103

1.88× 1016 1.88× 1015 1000 3.95× 103

1.88× 1016 1.88× 1015 2000 3.95× 103

1.88× 1016 1.88× 1014 500 4.39× 103

1.88× 1016 1.88× 1014 1000 4.27× 103

1.88× 1016 1.88× 1014 4000 4.24× 103

1.88× 1016 1.88× 1014 10000 4.24× 103

1.88× 1016 1.88× 1013 1000 4.56× 103

1.88× 1016 1.88× 1013 10000 4.27× 103

1.88× 1016 1.88× 1013 20000 4.25× 103

1.88× 1017 1.88× 1012 1000 6.25× 102

1.88× 1017 1.88× 1012 10000 6.09× 103

1.88× 1017 1.88× 1012 100000 4.27× 103

It is seen from Table 3.1 that radiative heat transfer between the slabs is only

non-negligible in the frequency range of 1.88× 1014rad/s to 1.88× 1016rad/s. Additionally,

Table 3.1 shows that dividing the frequency range into 4000 sub-intervals is sufficient. The

total heat transfer versus the chemical potential is presented in Messina et al. [65] is shown

in Fig. 3.6.

As it is seen from Fig. 3.6, the results obtained using the implemented codes match the

ones presented in Messina et al. [65]. Therefore, developed codes are verified. Now the

focus shall be shifted toward presenting the results.
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Figure 3.6. Total radiative heat flux between graphene covered GaAs-ZnS and bare
GaAs-ZnS separated by a 10 nm vacuum gap, as a function of chemical potential using
Kubo formula separated.

3.3 Results

In this section, the electrical conductivity of graphene is calculated using both the

Kubo and Lindhard formulas, and the Kubo and Lindhard electrical conductivities are

compared. Then the radiative conductance obtained by these models are compared for

various conditions and finally, the effect of gap size and temperature on radiative

conductance is discussed.
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3.3.1 Comparison of Kubo and Lindhard methods: Electrical Conductivity

The conductivity of graphene is calculated using the Kubo (Eq. 2.24) and Lindhard

(Eqs. 2.28 and 2.29) formulas. In order to compare the two methods, the conductivity of a

single graphene sheet at T = 300 K is calculated using both methods in the frequency

range of 5× 1011 rad/s to 5× 1014 rad/s. The frequency and wavevector dependant

colorplots of graphene’s conductivity at µc = 0.1 eV and 0.3 eV are shown in Fig. 3.7 and

3.8, respectively. In Fig. 3.7 and 3.8, panels (a) and (c) are calculated using the Lindhard

formula, while panels (b) and (d) are found by using the Kubo formula. Panels (a) and (b)

show the imaginary part of the electrical conductivity of graphene, while panels (c) and (d)

show the real part of it.

Figures 3.7 and 3.8 show that graphene’s conductivity obtained using the Lindhard

formula is a function of wavevector (kρ), while the Kubo electrical conductivity doesn’t

depend on the wavevector. As the wavevector increases, the imaginary part of Lindhard

electrical conductivity at higher frequencies increases. However, this variation is not

captured by the Kubo formula. Similar trend is observed from the comparison of the

imaginary part of graphene’s Kubo and Lindhard conductivities at T = 300 K and µc = 0.3

eV (refer to Fig. 3.8.a and 3.8.b).
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Figure 3.7. Graphene’s electrical conductivity at µc = 0.1 eV in frequency range 5 × 1011

rad/s to 5×1014 rad/s at T = 300 K. Panels (c), (a), (d) and (b) show the real and imaginary

parts of the Kubo electrical conductivity and the real and imaginary parts of the Lindhard

electrical conductivity, respectively.
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Comparison of the real part of the Kubo and Lindhard electrical conductivity at

T = 300 K and µc = 0.1 eV (refer to Fig. 3.7.c and 3.7.d) presented in Figs. 3.7.c and 3.7.d

also show that graphene’s conductivity by the Lindhard formula is a function of wavevector

whereas the Kubo one is not. Another observation from these figures is that graphene’s

electrical conductivity calculated using the Kubo formula at small frequencies

(ω < 6× 1013 rad/s) is almost 6 folds that calculated by the Lindhard formula. Similar

observation are made from Fig. 3.8.c and 3.8.d for µc = 0.3 eV at T = 300 K, where at

ω < 4× 1013 rad/s there is almost an order of magnitude difference in the electrical

conductivity calculated using the Kubo and Lindhard formulas. Both methods agree at

zero to small wavevectors for ω < 6× 1013 rad/s.
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Figure 3.8. Graphene’s electrical conductivity at µc = 0.3 eV in frequency range 5 × 1011

rad/s to 5×1014 rad/s at T = 300 K. Panels (c), (a), (d) and (b) show the real and imaginary

parts of the Kubo electrical conductivity and the real and imaginary parts of the Lindhard

electrical conductivity, respectively.
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3.3.2 Comparison of Kubo and Lindhard methods: Radiative conductance

In this section, the radiative conductance (refer to Eq. 2.21) between two free-standing

graphene sheets at T = 300 K separated by a vacuum gap of size D = 50 nm is calculated

using both the Kubo and Lindhard formulas. The schematic of the problem is shown in

Fig. 3.9. The radiative conductance per unit frequency and wavevector is plotted versus ω

and kρ/k0 in Fig. 3.10 for various chemical potential values (µc). The spatial dispersion of

graphene plasmons are also shown in this figure as well. In Fig. 3.10, panels (a), (b), (c)

and (d) are found using the Lindhard function while panels (e), (f), (g) and (h) are found

using the Kubo formula. Fig. 3.10.a and e are for µc = 0.05 eV, Fig. 3.10.b and f are for

µc = 0.1 eV, Fig. 3.10.c and g are for µc = 0.3 eV and Fig. 3.10.d and h are for µc = 0.5 eV.

Figure 3.9. Schematic of the problem under study. Two graphene sheets at T = 300 K are

separated by a 50 nm vacuum gap.
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Figure 3.10. Radiative conductance versus ω and kρ/k0 at T = 300 K and D = 50 nm.

Panels a (µc = 0.05 eV), b (0.1 eV), c (0.3 eV) and d (0.5 eV) are calculated using Lindhard

formula while panels e (µc = 0.05 eV), f (0.1 eV), g (0.3 )eV and h (0.5 eV) are found using

the Kubo formula.

It can be seen from Fig. 3.10 that there is non-negligible differences between the

radiative conductance and dispersion relation as obtained using the Kubo and Lindhard

electrical conductivities. The difference between the Kubo and Lindhard radiative

Conductance is particularly significant around the dispersion relation of graphene’s surface

plasmons.

The difference between radiative conductance obtained using the Lindhard formula and

the one found using the Kubo formula is smaller at smaller values of chemical potential. As

the chemical potential increases, the bright bands (corresponds to higher radiative

conductance) obtained using the Lindhard formula fade. At the same time, the Kubo
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formula still exhibits sharp detectable bright bands at µc = 0.3 eV and 0.5 eV. The

quantity of interest in NFRHT is the spectral radiative conductance that is found by

integrating the radiative conductance over kρ. The spectral radiative conductance between

two graphene sheets at T = 300 K separated by a gap of size D = 50 nm is plotted in Fig.

3.11. Figure 3.11.a is obtained by using the Kubo formula, and Fig. 3.11.b is obtained by

using the Lindhard formula. It can be seen that as the chemical potential increases, the

peak frequency, which corresponds to thermal excitation of graphene’s SPPs shifts toward

higher frequencies.

Figure 3.11. Spectral radiative conductance between two graphene sheets at T = 300 K

separated by a gap of D = 50 nm for different chemical potentials calculated using (a) Kubo

formula and (b) Lindhard formula.
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The spectral radiative conductance ontained using the Kubo and Lindhard formula are

compared in Fig. 3.12 for T = 300 K, D = 50 nm and at different chemical potentials. Fig.

3.12.a is for µc = 0.05 eV, Fig. 3.12.b is for µc = 0.1 eV, Fig. 3.12.c is for µc = 0.3 eV and

Fig. 3.12.d is for µc = 0.5 eV.

Figure 3.12. Spectral radiative conductance between two graphene sheets at T = 300 K

separated by a gap size of D = 50 nm for different chemical potentials of (a) µc = 0.05, (b)

0.1, (c) 0.3 and (d) 0.5 eV.

It can be seen from Fig. 3.12 that the peak of radiative conductance experiences a

blueshift as the chemical potential of the graphene increases. The radiative conductance

calculated using the Kubo and Lindhard methods shows great agreement at µc = 0.05 eV

and 0.1 eV for high frequencies (for µc = 0.05 eV the agreement region is ω > 1014 rad/s

and it is ω > 1.5× 1014 rad/s for µc = 0.1 eV). Another observation is that at chemical
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potentials of 0.3 eV and 0.5 eV, the Kubo formula estimates a broadband radiative

conductance while there is a well-defined plasmon resonance in the conductance curve using

the Lindhard formula. It is also seen that at large values of graphene’s chemical potential,

the Kubo formula overestimates the radiative conductance. This shows that the non-local

effects of electrical conductivity cannot be ignored for large values of chemical potential.

A quantitative comparison between the total radiative heat flux using the Kubo and

Lindhard formulas for two graphene sheets at T1 = 300 K and T2 = 290 K, separated by a

50 nm vacuum gap, is provided in Fig. 3.13.

Figure 3.13. Total radiative heat flux between graphene sheets at T1 = 300 K and T2 = 290

K separated by a vacuum gap of D = 50 nm as a function of chemical potential.

The total heat flux presented in Fig. 3.13 shows the effects of chemical potential on the

agreement of Kubo formula and Lindhard formulas. It can be seen that both methods

agree for chemical potentials less than 0.05 eV. For µc = 0.1 eV, there is a 25% difference,

and the difference grows to an order of magnitude for µc = 0.5 eV. Fig. 3.13 shows that at

large chemical potentials, the Kubo formula overestimates NFRHT significantly.
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Figure 3.14. Peak frequency of radiative conductance between two graphene sheets at T =

300 K, separated by a gap of D = 50 nm versus µc.

The effect of changing chemical potential of graphene sheets on peak frequency of

radiative conductance in the problem shown in Fig. 3.9 is studied in Fig. 3.14. Fig. 3.14

shows that at chemical potential smaller than 0.15 eV, the difference is less than 15%. This

difference increases by increasing the chemical potential up to µc = 0.42 eV, where the

difference is two orders of magnitude. Fig. 3.14 shows a reduction in the difference of the

peak frequency of radiative conductance found using the Kubo and Lindhard formulas

above µc = 0.42 eV. It can be concluded that the Kubo formula can be used for predicting

the peak frequency for chemical potentials up to µc = 0.15 eV under the studied conditions,

and the Kubo results above µc = 0.15 eV deviate too much from the Lindhard ones.

3.3.3 Effect of temperature and gap size on radiative conductance and peak

frequency

In this subsection, the effect of temperature and gap size on radiative conductance and

the peak or resonant frequency of the radiative conductance are studied. First the effect of

gap size on the radiative conductance is studied for µc = 0.2 eV and T = 300 K. Figure

3.15.a shows the radiative conductance for the Kubo formula while Fig. 3.15.b shows the

same for the Lindhard formula. It can be seen that both methods predict that by

41



increasing the gap size, the spectral radiative conductance decreases and the peak

frequency of the spectral radiative conductance shifts toward smaller frequencies.

Figure 3.15. Spectral radiative conductance between two graphene sheets at T = 300 K

and µc = 0.2 eV at different gap sizes as calculated using (a) the Kubo formula and (b) the

Lindhard formula.

In order to understand the effect of gap size on the agreement of the Kubo and

Lindhard formulas for predicting the resonant frequency of radiative conductance, the

resonant frequency of radiative conductance versus gap size is plotted in Fig. 3.16. It is

shown in Fig. 3.16 that at D < 10−8 m, the resonant frequency obtained using both Kubo

and Lindhard are very close (less than 3% difference), and by increasing the gap size, the

resonant frequency estimated by Kubo and Lindhard formulas diverge to a point that at

D = 10−6 m and D = 4.6× 10−7 m, the relative difference is about 49% and 42%,

respectively. Hence increasing the gap size deteriorates Kubo formula’s ability to predict

the resonant frequency correctly. Another observation from Fig. 3.16 is that by increasing

the gap size, both methods predict that the resonant frequency shifts to lower frequencies.
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Figure 3.16. Resonant frequency of the radiative conductance of two graphene sheets at T

= 300 K and µc = 0.2 eV versus gap size, D.

Total radiative conductance between graphene sheets at T = 300 K and µc = 0.2 eV is

plotted versus gap size, D, in Fig. 3.17. Figure 3.17 shows that there is a 90% difference in

the total radiative conductance calculated using the Kubo and Lindhard formulas at gap

sizes (D > 10−7 m), and this difference reduces to 60% as the gap size reduces to D = 10−8

m and about 30% for D = 10−9. This shows that the overestimation of total radiative

conductance using the Kubo formula increases as the gap size increase.

Figure 3.17. Total radiative conductance between two graphene sheets at T = 300 K and

µc = 0.2 eV versus gap size, D.
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The effect of temperature on radiative conductance between two graphene sheets with

µc = 0.2 eV that are placed 50 nm apart is studied using the Kubo formula in Fig. 3.18.a

and the Lindhard formula in Fig. 3.18.b. It can be seen that increasing the temperature

from 100 K to 1000 K shifts the resonant frequency of radiative conductance to lower

frequencies and increases the radiative conductance significantly.

Figure 3.18. Spectral radiative conductance between two graphene sheets at D = 50 nm

and µc = 0.2 eV at different temperatures as calculated (a) using the Kubo formula and (b)

Lindhard formula.

The resonant frequency of the radiative conductance versus temperature is plotted in

Fig. 3.19. It can be seen that the resonant frequency obtained using the Kubo formula is

4.1× 1013 rad/s for T = 100 K, and it increases to 2.43× 1014 rad/s for T = 380 K. As the

temperature increases further, the resonant frequency slightly decrease, such that it is equal

to 2.22× 1014 rad/s at T = 1000 K. On the other hand, the Lindhard formula predicts a

decrease in the resonant frequency as temperature increases from 100 K to 1000 K.
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Figure 3.19. Resonant frequency of radiative conductance of two graphene sheets at µc = 0.2

eV separated by a vacuum gap of size D = 50 nm versus temperature, T.

The total radiative conductance between graphene sheets versus the temperature is

plotted in Fig. 3.20. Figure 3.20 shows that when T < 200 K, there is two orders of

magnitude difference between the results obtained using the Kubo and Lindhard formulas.

This difference reduces to almost 20% when 600 K < T < 800 K and finally reaches 6% at

T = 1000 K. Hence, Fig. 3.20 shows that as the temperature of graphene sheets grows, the

result of the Kubo and Lindhard formulas converge. Figure 3.20 and 3.19 show that the

Kubo formula does not provide a suitable representation for graphene sheets in NFRHT

applications at temperatures less than 400 K.
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Figure 3.20. Total radiative conductance between two graphene sheets at µc = 0.2 eV

separated by a vacuum gap of size D = 50 nm versus temperature, T.

The results presented in this chapter shows that graphene is a non-local material whose

properties can be tuned significantly by changing its chemical potential. The Kubo

formula, which is a local model for graphene’s electrical conductivity, cannot capture the

non-local behavior of graphene at low temperatures and high chemical potentials, and

applying the Kubo formula under these conditions causes significant errors. To avoid this

error, the Lindhard formula should be used for modeling graphene’s electrical conductivity

in NFRHT calculations.
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CHAPTER 4

CONCLUSIONS, FUTURE WORK AND RECOMMENDATIONS

4.1 Conclusions

This thesis investigates the non-locality of graphene’s electrical conductivity and the

non-local effects of electrical conductivity on near-field radiative heat transfer (NFRHT).

In NFRHT studies found in literature, graphene electrical conductivity has been modeled

using a local model (Kubo formula). To study the effect of non-local electrical conductivity

of graphene on NFRHT, the near-field radiative conductance between two suspended

graphene sheets separated by a vacuum gap has been modeled using the Kubo formula and

a non-local model, namely, the Lindhard formula. For this system of two graphene sheets,

the electrical conductivity of graphene for various wavevectors and frequencies, the

wavevector dependent spectral radiative conductance, spectral and total radiative

conductance, resonant frequency as well as dispersion relation have been studied. The

effect of temperature and gap size on applicability of the local model of graphene’s

electrical conductivity has also been studied.

Comparing the spectral radiative conductance (Fig. 3.11 and 3.12) and total heat flux

versus chemical potential (Fig. 3.13) as obtained using the Kubo and Lindhard formulas

showed that as the chemical potential (µc) of graphene increases, the disagreement of the

two models increases. It was shown that for µc < 0.1 eV, there is less than 25% difference

in the total heat flux of the two models. the difference grows to an order of magnitude as

chemical potential increases to µc = 0.5 eV. The same observation was made for the

resonant frequency versus chemical potential (Fig. 3.14), where it was found that at

µc < 0.15 eV, the resonant frequency predicted by the local and non-local models is only

15% and the difference increases significantly by increasing the chemical potential of the

graphene sheets. These findings show that the non-local effects of graphene’s electrical
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conductivity play a significant role when µc > 0.1 eV, and hence using the Kubo formula

can result in non-negligible errors.

The difference between the resonant frequency and the total radiative conductance of

the two graphene sheets was also been studied for various gap sizes (Fig. 3.16 and

refgtotgap). It was seen that as the gap size grows, the Kubo formula fails more to predict

a resonant frequency of radiative conductance which is reasonably close to the one obtained

by using the Lindhard formula. For example, at D < 10−8 m, the difference is only 3%.

However, the difference increases to 49% at D = 10−6 m. It was also shown that decreasing

the gap size from 10−7 m to 10−9 m, at µc = 0.2 eV and T = 300 K, reduces the difference

of the total radiative conductance obtained using the two methods. The difference between

the two models is 60% at D = 10−8. Therefore, the Kubo formula is invalid at large

separation gaps.

Comparison of resonant frequency (Fig. 3.19) and the total radiative conductance (Fig.

3.20) for various temperatures showed that as the temperature increases, the difference

between the two models decreases. It was seen that when T > 400 K, the resonant

frequency obtained using both models are less than 7% apart. The difference between the

total radiative conductance for T < 200 K is about two orders of magnitude different, and

this difference reduces to 20% for T > 600 K. Therefore, the Kubo model cannot fully

capture the non-local behavior of graphene’s electrical conductivity at low temperatures

and hence the Kubo formula is not suggested for NFRHT applications in this temperature

range.

Based on the fact that the Kubo formula is not applicable at large values of chemical

potential and separations gaps as well as at low temperatures, it is recommended that the

non-local behavior of graphene’s electrical conductivity be considered in NFRHT

application. The Lindhard formula can capture the non-local effects on the electrical
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conductivity of graphene. It should be mentioned that the computational cost of the

Lindhard formula is only slightly higher than the Kubo formula.

4.2 Future Work and Recommendations

Graphene is a very promising material for NFRHT applications as if support tunable

surface plasmon polaritons in the infrared. In this thesis we showed that the effect of

non-local electrical conductivity on graphene’s NFRHT is non-negligible and should be

taken into account. Some recommendations for future work are presented hereafter.

1. Experimentally demonstrate that non-local effects affect NFRHT in graphene-based

materials. Total heat transfer can be measured and compared with the theoretical

predictions using the Kubo and Lindhard formulas.

2. It is shown that if graphene substrate supports surface phonon polaritons (such as

SiO2 and SiC), the graphene SPPs can be coupled to the SPhPs of the substrate. This

coupling can result in enhancement and tunability of NFRHT. It is recommended to study

if such coupling, enhancement and tuning are observed when non-local effects of the

electrical conductivity are considered.

3. Graphene has been proposed as a base material for designing metamaterials such as

hyperbolic metamaterials and magneto-dielectric metamaterials. It is recommended to

study how the non-local electrical conductivity of graphene can affect thermal radiation of

the proposed metamaterial.

5. It is recommended that the effect of non-local electrical conductivity on NFRHT in

other two-dimensional materials, such as black phosphorene, that have been proposed for

near-field applications be analyzed.
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APPENDIX A

MATLAB CODES

A.1 MATLAB code for NFRHT

1 c l e a r a l l

2 c l c

3

4 g l oba l eps1 eps2 eps3 w D iw T1 T3 muc Sigma1 Sigma3

5

6 %Constants

7 hbar = 1.05457173 e−34;

8 Kb = 1.3806488 e−23;

9 ev = 1.60217646 e−19;

10

11

12 %Problem geometry

13

14 D = 10e−9; % equal to dc which i s the gap between media 1 and 3

15 T1 = 300 ;

16 T3 = 290 ;

17 muc = 0.5∗ ev ; %chemical p o t e n t i a l o f graphene in eV

18

19 ww = l i n s pa c e (5 e11 , 5 e14 , 200 ) ;

20 Nw = length (ww) ;

21

22 QP = 0 ;

23 QE = 0 ;
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24 Q(1 :Nw) = 0 ;

25

26

27 f o r iw = 1 :Nw

28 iw

29 w = ww( iw ) ;

30

31 Sigma1 = Kubo( muc ,T1 ) ;

32 Sigma3 = Kubo( muc ,T3 ) ;

33

34 eps1 = 1 . 0 ;

35 eps2 = 1 . 0 ;

36 eps3 = 1 . 0 ;

37

38 %Theta

39 theta1 = hbar∗w/( exp ( ( hbar∗w) /(Kb∗T1) )−1) ;

40 theta3 = hbar∗w/( exp ( ( hbar∗w) /(Kb∗T3) )−1) ;

41 theta = theta1−theta3 ;

42

43 %Wavevectors

44 k2 = w/2.998 e8 ; %kv

45

46 %Integra ton o f the propagat ing waves

47 Integ = quadgk (@Z_P_v2, 0 , k2−1e−6) ;

48 QP = theta /(4∗ pi ^2)∗ Integ ;

49

50 %de f i n i n g a waypoint
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51 cc = logspace (8 , 15 ,10 ) ;

52 co = cc .∗ k2 ;

53

54 %Integra ton o f the evaneent waves

55 Integ = quadgk (@Z_E_v2, k2+1e−4, in f , ’ waypoint ’ , co , ’ RelTol ’ ,1 e−6) ;

56 QE = theta /(4∗ pi ^2)∗ Integ ;

57

58 Q( iw ) = QP+QE;

59 end

60

61 Q_total = trapz (ww,Q) ;

A.2 MATLAB code for radiative conductance

1 c l e a r a l l

2 c l c

3

4 g l oba l eps1 eps2 eps3 w D iw T muc Sigma

5

6 %Constants

7 hbar = 1.05457173 e−34;

8 Kb = 1.3806488 e−23;

9 ev = 1.60217646 e−19;

10

11

12 %Problem geometry

13

14 D = 50e−9; % equal to dc which i s the gap between media 1 and 3
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15

16 T = 800 ;

17 muc = 0.2∗ ev ;

18 ww = l i n s pa c e (5 e11 , 5 e14 , 200 ) ;

19

20 Nw = length (ww) ;

21 eps1 = 1 . 0 ;

22 eps2 = 1 . 0 ;

23 eps3 = eps1 ;

24

25 QP = 0 ;

26 QE = 0 ;

27

28

29 f o r iw = 1 :Nw

30 iw

31

32 w = ww( iw ) ;

33

34 Sigma = Kubo( muc ,T ) ;

35

36 %D i f f e r e n t i a t i o n o f Theta

37 theta = hbar∗w/( exp ( ( hbar∗w) /(Kb∗T) )−1) ;

38 theta = theta .^2 .∗ exp ( hbar∗w./Kb. /T) . / (Kb∗T^2) ;

39

40 %Wavevectors

41 k2 = w/2.998 e8 ; %kv
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42

43 %Integra ton o f the propagat ing waves

44 Integ = quadgk (@Z_P_v2, 0 , k2−1e−6) ;

45 QP = theta /(4∗ pi ^2)∗ Integ ;

46

47 %Def in ing a waypoint

48 cc = logspace (1 , 10 ,10 ) ;

49 co = cc .∗ k2 ;

50

51 %Integra ton o f the evaneent waves

52 Integ = quadgk (@Z_E_v2, k2+1e−4, in f , ’ waypoint ’ , co , ’ RelTol ’ ,1 e−6) ;

53 QE = theta /(4∗ pi ^2)∗ Integ ;

54

55 Q( iw ) = QP+QE;

56

57 end

A.3 MATLAB code for Dispersion Relation

1 c l e a r a l l

2 c l c

3

4 g l oba l w D iw T1 muc k0 eps1 eps3 S3

5

6 %Constants

7 hbar = 1.05457173 e−34;

8 Kb = 1.3806488 e−23;

9 ev = 1.60217646 e−19;
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10 e0 = 8.8542 e−12; % Vacuum pe rm i t t i v i t y

11 eps1 = 1 ;

12 eps3 = 1 ;

13

14 %Problem geometry

15

16 D = 50e−9; % equal to dc which i s the gap between media 1 and 3

17 T1 = 300 ; %temperatue

18 c0 = 299792458; %Speed o f l i g h t in vacuum (m/ s )

19 muc = 0.0∗ ev ; %chemical p o t e n t i a l o f graphene in eV

20 nuf =c0 /300 ; %Fermi v e l o c i t y

21

22 ww = l i n s pa c e (5 e11 , 5 e14 , 2 0 ) ;

23 Nw = length (ww) ;

24

25 f o r iw = 1 :Nw

26 iw

27 w = ww( iw ) ;

28 k0 = w/2.998 e8 ; %kv

29 k00 ( iw )=k0 ;

30

31 S3 = Kubo( muc ,T1 ) ;

32

33 %f i r s t s o l u t i o n

34 f 1 = @(x ) func (x ) ;

35 %second s o l u t i o n

36 f 2 = @(x ) func2 (x ) ;
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37 % So lut i on from the gene ra l formula

38 f = @(x ) func3 (x ) ;

39

40 x1 = fminbnd ( f1 ,0 ,400∗ k0 ) ;

41 x2 = fminbnd ( f2 ,0 ,400∗ k0 ) ;

42 x3 = fminbnd ( f , 0 , 400∗ k0 ) ;

43

44 answer1 ( iw ) = x1/k0 ;

45 answer2 ( iw ) = x2/k0 ;

46 answer3 ( iw ) = x3/k0 ;

47 end

A.4 MATLAB code for propagating exchange function

1 f unc t i on [ ZP ] = Z_P_v2( krho )

2 g l oba l w D T muc Sigma1

3

4 e0 = 8.8542 e−12; % Vacuum pe rm i t t i v i t y

5 m0 = 1.25663706143592D−06; % Vacuum permeab i l i t y

6

7 Sigma1 = RPA( muc , krho ,T ) ;

8

9 %Wavevectors

10 k2 = w/2.998 e8 ;

11

12 %Calcu l a t ing kzs

13 kz2 = sq r t ( k2^2−krho .^2) ;

14
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15 %Fresne l r e f l e c t i o n c o e f f i c i e n t s

16 % In TE po l a r i z a t i o n

17 r21TE = −(2∗kz2 . / ( Sigma1 .∗m0.∗w)+1) .^(−1) ;

18 t21TE = (1+m0.∗w.∗ Sigma1 . / 2 . / kz2 ) .^(−1) ;

19

20 % IN TM po l a r i z a t i o n

21 r21TM = (2∗ e0∗w. / ( Sigma1 .∗ kz2 )+1) .^(−1) ;

22 t21TM = (1+Sigma1 .∗ kz2 . /w. / 2 . / e0 ) .^(−1) ;

23

24 %Exchange f a c t o r s

25 ZP_TE = (1−abs ( r21TE) .^2−abs ( t21TE) .^2) .^2 . /

26 ( abs(1−r21TE .^2 .∗ exp (2 i .∗ kz2∗D) ) .^2) ;

27 ZP_TM = (1−abs (r21TM) .^2−abs (t21TM) .^2) .^2 . /

28 ( abs(1−r21TM.^2 .∗ exp (2 i .∗ kz2∗D) ) .^2) ;

29 ZP=(ZP_TE+ZP_TM) .∗ krho ;

30

31 end

A.5 MATLAB code for evanescent exchange function

1 f unc t i on [ ZE ] = Z_E_v2( krho )

2 g l oba l w D T muc Sigma1

3

4 e0 = 8.8542 e−12; % Vacuum pe rm i t t i v i t y

5 m0 = 1.25663706143592D−06; % Vacuum permeab i l i t y

6

7 Sigma1 = RPA( muc , krho ,T ) ;

8
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9 %Wavevectors

10 k2 = w/2.998 e8 ;

11 %Calcu la t ing kzs

12 kz2 = sq r t ( k2.^2−krho .^2) ;

13

14

15 %Fresne l r e f l e c t i o n c o e f f i c i e n t s

16 % In TE po l a r i z a t i o n

17 r21TE = −(2∗kz2 . / ( Sigma1 .∗m0.∗w)+1) .^(−1) ;

18

19 % IN TM po l a r i z a t i o n

20 r21TM = (2∗ e0∗w. / ( Sigma1 .∗ kz2 )+1) .^(−1) ;

21

22 %Exchange f a c t o r s

23 ZE_TE = 4.∗ imag ( r21TE) .^2 .∗ exp (−2.∗ imag ( kz2 ) ∗D) . /

24 ( abs(1−r21TE .^2 .∗ exp (−2.∗ imag ( kz2 ) ∗D) ) .^2) ;

25 ZE_TM = 4.∗ imag (r21TM) .^2 .∗ exp (−2.∗ imag ( kz2 ) ∗D) . /

26 ( abs(1−r21TM.^2 .∗ exp (−2.∗ imag ( kz2 ) ∗D) ) .^2) ;

27 ZE=(ZE_TE+ZE_TM) .∗ krho ;

28 end

A.6 MATLAB code for RPA

1 f unc t i on [ Sigma_RPA ] = RPA( muc , krho ,T )

2

3 g l oba l w

4

5 % constant
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6 hbar = 1.054571817 e−34; % Planck ’ s constant in J . s

7 KB = 1.380649 e−23; % Boltzmann constant ( J/K)

8 c0 = 299792458; % Speed o f l i g h t in vacuum (m/ s )

9 e_charge = 1.602176634 e−19; % e l e c t r on charge (C)

10

11 nuf = c0 /300 ; %Fermi v e l o c i t y (m/ s ) from "An Int roduc t i on

12 %to graphene plasmonics " , Page 32

13 alpha = [1 , −1 ] ; % Alpha

14

15 [ Chi_re , Chi_im]=dea l ( 0 , 0 ) ;

16

17 f o r i = 1 : l ength ( alpha )

18

19 C1 = heav i s i d e ( hbar .∗ nuf .∗ krho−hbar .∗w) .∗ krho .^2 . /

20 (2∗ hbar∗ s q r t ( ( nuf .∗ krho ) .^2−(w) .^2) ) ;

21 C2 = heav i s i d e ( hbar .∗w−hbar .∗ nuf .∗ krho ) .∗ krho .^2 . /

22 (2∗ hbar∗ s q r t ( (w) .^2−( nuf .∗ krho ) .^2) ) ;

23 i f (T == 0 )

24 i f ( alpha ( i ) == 1)

25 C3 = −2.∗ alpha (2 ) .∗muc . / ( hbar .∗ nuf ) . ^ 2 ;

26 e l s e

27 C3 = 0 ;

28 end

29 e l s e

30 C3 = −2.∗KB.∗T.∗ l og (1+exp ( alpha ( i ) .∗muc . /KB./T) )

31 . / ( hbar .∗ nuf ) . ^ 2 ;

32 end
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33

34 de l t a = ( abs ( alpha ( i ) )−alpha ( i ) ) . / 2 ;

35

36 GP_func =@(x ) G( alpha ( i ) , krho , x , 1 ,w,T,muc , nuf ) ;

37 GM_func =@(x ) G( alpha ( i ) , krho , x ,−1 ,w,T,muc , nuf ) ;

38 HP_func =@(x ) D( alpha ( i ) , krho , x , 1 ,w,T,muc , nuf ) ;

39 HM_func =@(x ) D( alpha ( i ) , krho , x ,−1 ,w,T,muc , nuf ) ;

40

41 Chi_im = Chi_im +(C1 . ∗ ( i n t e g r a l (GP_func , 1 , i n f , ’ ArrayValued ’ , t rue )

42 − i n t e g r a l (GM_func , 1 , i n f , ’ ArrayValued ’ , t rue ) )

43 +C2.∗(− pi . / 2 . ∗ de l t a +i n t e g r a l (HP_func ,−1 ,1 , ’ ArrayValued ’ , t rue ) ) ) . / p i ;

44

45 Chi_re = Chi_re +(C2 . ∗ ( i n t e g r a l (GM_func , 1 , i n f , ’ ArrayValued ’ , t rue )

46 − i n t e g r a l (GP_func , 1 , i n f , ’ ArrayValued ’ , t rue ) )

47 +C1.∗(− pi . / 2 . ∗ de l t a +i n t e g r a l (HM_func,−1 ,1 , ’ ArrayValued ’ , t rue ) ) ) . / p i ;

48 Chi_re = Chi_re + (C3 . / p i ) ;

49 end

50 Sigma_RPA = 1 i ∗e_charge^2∗w∗

51 ( Chi_re + 1 i .∗Chi_im) . / krho .^2 ;

52 end

A.7 MATLAB code for functions used in RPA

1 f unc t i on [ f ] = H( alpha , x , krho , f s i gn ,w,T,muc)

2

3 hbar = 1.054571817 e−34; % plancks contant in J . s

4 KB = 1.380649 e−23; % Boltzmann constant ( J/K)

5 nuf = 1e6 ; % fermi v e l o c i t y (m/ s )
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6

7 f = sq r t (1 − x .^2) . / ( exp ( ( hbar∗abs ( nuf .∗ krho .∗ x+f s i g n .∗w)

8 −2.∗ alpha .∗muc) . / 2 . /KB./T)+1) ;

9 end

1 f unc t i on [ f ] = G( alpha , krho , x , f s i gn ,w,T,muc , nuf )

2

3 hbar = 1.054571817 e−34; % plancks contant in J . s

4 KB = 1.380649 e−23; % Boltzmann constant ( J/K)

5

6 f = sq r t ( x .^2 −1) . / ( exp ( ( abs ( hbar .∗ nuf .∗ krho .∗ x+f s i g n .∗ hbar .∗w)

7 −2.∗ alpha .∗muc) . / ( 2∗KB∗T) )+1) ;

8 end

1 f unc t i on [ f ] = D( alpha , krho , x , f s i gn ,w,T,muc , nuf )

2

3 hbar = 1.054571817 e−34; % plancks contant in J . s

4 KB = 1.380649 e−23; % Boltzmann constant ( J/K)

5

6 f = sq r t (1 − x .^2) . / ( exp ( ( abs ( hbar .∗ nuf .∗ krho .∗ x+f s i g n .∗ hbar .∗w)

7 −2.∗ alpha .∗muc) . / ( 2∗KB∗T) )+1) ;

8 end

A.8 MATLAB code for Kubo

1 f unc t i on [ Sigma_Kubo ] = Kubo( EF,T )

2

3 g l oba l w

4
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5 % constant

6 hbar = 1.054571817 e−34; % plancks contant in J . s

7 KB = 1.380649 e−23; % Boltzmann constant J/K

8 eV = 1.60218 e−19; % eV to J , and e l e c t r on charge in C

9 tau = 1e−13; % Add r e f e r e n c e

10

11 gamma = 1/ tau ; % 3 .7 e−3∗eV/hbar ;

12 sigma_0 = eV^2/(4∗hbar ) ;

13

14 i n t r a = 4/( p i ∗( hbar∗gamma−1 i ∗hbar∗w) ) ∗

15 (EF+2∗KB∗T∗ l og (1+exp(−EF/(KB∗T) ) ) ) ;

16 func =@(x ) (G2(x ,T,EF)−G2( hbar .∗w./2 ,T,EF) ) . /

17 ( ( hbar .∗w) .^2 − 4 .∗ x .^2) ;

18 i n t e r 1 = G2( hbar .∗w./2 ,T,EF) ;

19 i n t e g = i n t e g r a l ( func , 0 , In f , ’ RelTol ’ ,1 e−6, ’ ArrayValued ’ , t rue ) ;

20 i n t e r 2 = 4 i .∗ hbar .∗w./ p i .∗ i n t e g ;

21 i n t e r = i n t e r 1+in t e r 2 ;

22

23 Sigma_Kubo = sigma_0 ∗( i n t r a + i n t e r ) ;

24 end

A.9 MATLAB code for function used in Kubo

1 f unc t i on [ f ] = G2(x ,T,muc)

2 KB = 1.380649 e−23; % Boltzmann constant ( J/K)

3

4 f = 1 . / ( cosh (muc . /KB./T) . / s inh (x . /KB./T)+coth (x . /KB./T) ) ;

5 end
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A.10 MATLAB code for functions used in Dispersion Relation

1 f unc t i on f1 = func ( krho )

2

3 g l oba l w D T1 muc S1 k0 eps1 eps3

4

5 e0 = 8.8542 e−12; % Vacuum pe rm i t t i v i t y

6 S1 = RPA( muc , krho ,T1 ) ;

7 kz = sq r t ( krho .^2−k0^2) ;

8

9 f 1 = abs ( eps3 . / kz .∗ coth ( kz∗D./2 )+eps1 . / kz+1 i .∗ S1 . /w. / e0 ) ;

10 end

1 f unc t i on f2 = func2 ( krho )

2

3 g l oba l w D T1 muc S1 k0 eps1 eps3

4

5 e0 = 8.8542 e−12; % Vacuum pe rm i t t i v i t y

6 S1 = RPA( muc , krho ,T1 ) ;

7 kz = sq r t ( krho .^2−k0^2) ;

8

9 f 2 = abs ( eps3 . / kz .∗ tanh ( kz∗D./2 )+eps1 . / kz+1 i .∗ S1 . /w. / e0 ) ;

10 end

1 f unc t i on f1 = func3 ( krho )

2

3 g l oba l w D S3 k0 eps1 eps3

4 e0 = 8.8542 e−12; % Vacuum pe rm i t t i v i t y

5 kz = sq r t ( krho .^2−k0^2) ;
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6 f 1 = abs ( eps3 . / kz .∗ coth ( kz∗D./2 )+eps1 . / kz+1 i .∗ S3 . /w. / e0 ) ;

7 end

74



BIOGRAPHY OF THE AUTHOR

Born in Gilan Province of Iran. At early age, diagnosed with X-Linked Retinoschisis and

meningioma which caused lost most of eyesight and many other problems. In 2008,

attended the Gilan University as a BSc mechanical engineering student majoring in heat

and fluids while working as a programmer and web developer to find the money for brain

surgery. In spite of all these, managed to get my MSc in mechanical engineering from

University of Zanjan. By overcoming these hardships, found a much more explicit purpose

for life: to pull as many people alike out of the misery I, myself was stuck in.

Behrad Zeinali Tajani is a candidate for the Master of Science degree in Mechanical

Engineering from the University of Maine in August 2021.

75


	The Effect of Non-Local Electrical Conductivity on Near-Field Radiative Heat Transfer Between Graphene Sheets
	Recommended Citation

	Acknowledgements
	List of Tables
	List of Figures
	 Introduction
	Background
	Literature Review
	Theoretical studies
	Experimental studies

	Approach and Contributions
	Thesis Outline

	 Theoretical Background
	Fluctuational Electrodynamics for Describing Thermal Radiation
	Near-Field Radiative Heat Transfer Between Two Graphene Covered Semi-Infinite Media
	Graphene Electrical Conductivity Models
	Kubo Formula
	Lindhard Formula

	Surface Plasmon Polaritons
	Graphene Surface Plasmons

	 Research Method and Results
	Research Method
	Verification
	Kubo Formula
	Lindhard Formula
	NFRHT

	Results
	Comparison of Kubo and Lindhard methods: Electrical Conductivity
	Comparison of Kubo and Lindhard methods: Radiative conductance
	Effect of temperature and gap size on radiative conductance and peak frequency


	 Conclusions, Future Work and Recommendations
	Conclusions
	Future Work and Recommendations

	References
	MATLAB codes
	MATLAB code for NFRHT
	MATLAB code for radiative conductance
	MATLAB code for Dispersion Relation
	MATLAB code for propagating exchange function
	MATLAB code for evanescent exchange function
	MATLAB code for RPA
	MATLAB code for functions used in RPA
	MATLAB code for Kubo
	MATLAB code for function used in Kubo
	MATLAB code for functions used in Dispersion Relation

	Biography of the Author

