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Galaxy mergers are dynamic systems that offer us a glimpse into the evolution of the 

cosmos and the galaxies that constitute it. However, with the advent of large astronomical 

surveys, it is becoming increasingly difficult to rely on humans to classify the vast number of 

astronomical images collected every year and find the images that capture these systems. In 

recent years, researchers have increasingly relied on machine learning and computer vision 

classifiers, and while these techniques have proven useful for classifying broad galaxy 

morphologies, they have struggled to identify galaxy mergers. 

A random forest classifier was applied to a subset of galaxies from the Cosmic Assembly 

Near-infrared Extragalactic Legacy Survey (CANDELS) to classify merger and non-merger 

events. 283 merging and 283 non-merging galaxies were selected from the five CANDELS 

fields, totaling a combined 566 galaxies for training and validation. The classifier was trained on 

a set of parameters measured for each galaxy, including mass, star formation rate, galactic half-

light radius, as well as Concentration and Asymmetry measurements. The classifier performed 

with a mean accuracy of 92.31% and a precision of 0.9332 on the validation dataset. 



 

 

Additionally, a computer vision convolutional neural network was trained to analyze and 

classify images of merger and non-merger events in the same fields. Due to the small number of 

merger events present in the CANDELS fields, data augmentation was utilized to increase the 

dataset significantly and boost performance. The computer vision classifier performed with an 

accuracy of 87.87% and a precision of 0.8683 on validation data. The pre-trained convolutional 

neural network was then used to predicted classes for a dataset containing active galactic nuclei 

(AGN) hosting galaxies and a control sample, although no correlation was found between 

predicted classes and whether the galaxy hosts an AGN. 
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CHAPTER 1 INTRODUCTION 

1.1 Previous Work in Galaxy Classification 

In 2011 NASA began its Cosmic Origins (COR) Program, which aims to understand the 

history of our Universe. One of the COR Program’s primary missions is to discover how the 

astronomical systems we observe in the present epoch evolved through history.1 The COR 

Program is a unified effort between Hubble Space Telescope (HST) and the Spitzer Space 

Telescope (SST). In the future, the James Webb Space Telescope (JWST), the now-in-

development infrared successor to HST, will join the effort to discover our cosmic origins.40  

In order to study our cosmological past, it is necessary for astronomers to peer into the 

deepest reaches of the Universe. Because light travels at a finite speed, the galaxies we see today 

are the galaxies of yesteryear. For example, a galaxy that is located one million light years from 

Earth emits light that takes one million years to reach our planet. As a result, the image that the 

observer sees through a telescope is of the galaxy as it appeared one million years ago. 

Astronomers can create a “timeline” of the Universe by observing systems at further and further 

distances; observing more distant objects is equivalent to looking further back in time. However, 

it is also necessary to observe as many systems as possible at each distance so that the statistical 

analysis can take place for each epoch of the Universe’s history. By studying the shapes, sizes, 

and interactions between galaxies during each epoch, we can begin to see a broad picture of how 

these systems have changed and evolved over time. 

However, large extragalactic surveys performed by HST, such as the Cosmic Assembly 

Near-infrared Deep Extragalactic Legacy Survey (CANDELS), have imaged nearly half a 

million galaxies alone.30 Other surveys like the Sloan Digital Sky Survey (SDSS) have observed 

upwards of a million galaxies,1 and it is becoming increasingly impractical to spend the extreme 
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number of human-hours it would take astronomers to classify each of these galaxies manually. 

As a result, astronomers have begun turning to machine learning applications to aid in their 

classifications.10 

Machine learning involves designing a computer program to learn how to perform a task 

without the programmer specifically coding it to do so.56 By training a program to classify 

images of distant galaxies, astronomers no longer need to spend as many human-hours sifting 

through hundreds of thousands – or even millions – of images and classifying each one 

individually. Instead, one can classify a small subset of images on which to train the program. 

Once the program has been properly trained and validated on a testing dataset, it can move onto 

the remaining images for classification. 

Some large-scale crowdsources efforts, such as Galaxy Zoo Project,46 have been utilized to 

tackle the task of classifying galaxies in massive datasets. However, these efforts rely on citizen 

scientists to participate in them. Users can create a Galaxy Zoo account, complete a brief training 

and calibration session, and begin sifting through countless images of galaxies, classifying each 

one manually.67 Although this system has worked in the past to extract useful scientific 

data,18,31,49 even Galaxy Zoo is beginning to buckle under the enormity of these large surveys. To 

prepare for impending next-generation surveys from the Euclid Survey Telescope24 and Large 

Synoptic Survey Telescope (LSST),39 Galaxy Zoo is looking to apply machine learning 

techniques to help mitigate the workload of their citizen volunteers.1,5,14,45 

Researchers have already had success using machine learning to classify distant galaxies in 

the CANDELS fields.32,37 Some of these efforts have used random forest (RF) classifiers,37 a 

type of machine learning algorithm that reads input parameters and learns to classify the objects 

based on those parameters. These efforts have been successful for identifying broad morphology 



3 

 

types.37 However, RF classifiers have not been successful in identifying galaxy merger events.37 

This is in large part due to the lack of galaxy parameters that indicate merging galaxies. When 

dealing with image data, it is far better to use computer vision (CV) algorithms, a type of 

convolutional neural network that learns to identify features present within images. These 

learned features are then used to classify each image (i.e. “merger” or “non-merger”). 

Astronomers in the CANDELS collaboration have not yet had a chance to test CV algorithms in 

identifying galaxy merger systems. 

1.2 Galaxy Morphology 

In order to discuss the significance of galaxy merger events, it is important to understand the 

types of galaxies that partake in these complex interactions. In 1926, Edwin Hubble devised a 

scheme for classifying galaxy types based on their shapes and morphologies.35 Hubble developed 

this classification system by studying several thousand photographic images of galaxies (known 

as “extra-galactic nebulae” at the time) taken in 1923. This task took Hubble three years to 

complete,35 and astronomers still use his classification system today.9 In Hubble’s sequence, 

there are four main classes of galaxies: Elliptical (E), Spiral (S), Barred Spiral (SB), and 

Irregular (Irr) [Figure 1.2.1].35 

Elliptical Galaxies are defined by their ellipsoidal shape. Hubble’s E classification is further 

divided into En classes, where n is an integer representing the ellipticity of the galaxy and varies 

from 0 (spherical) to 7 (highly elongated). Elliptical galaxies tend to be more massive than spiral 

and irregular galaxies and contain more red stars than blue stars.20 Cool, red stars have much 

longer lifetimes than their hot, blue counterparts.54 The fact that ellipticals are dominated by red 

stars indicates that the blue stars have all died out, leaving only the longer-living red stars. In 

these galaxies, star formation is thought to have been shut down,42 otherwise the galaxy would 
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be able to replenish its supply of blue stars. The exact mechanics of the star formation shutdown 

process are still a topic of much debate in the astrophysics community.12,15,16,25,38,59 

 

Figure 1.2.1: Hubble Images. Example images of different galaxy morphology classes and 

subclasses – Elliptical (E0 – E7), Spiral (Sa, Sb, Sc), Barred Spiral (SBa, SBb, SBc), and 

Irregular (Irr – bottom left two images) – published by Edwin Hubble in 1926.35 

Spiral galaxies, on the other hand, are named for their dusty disks which orbit around a 

central bulge in the galactic nucleus. Again, Hubble’s S class is divided into subclasses: Sa, Sb, 

and Sc, where a, b, and c represent how closely the spiral arms are wound around the galactic 

nucleus. Sa galaxies have arms tightly wound around the nucleus, while Sc galaxies have widely 

spread spiral arms.35 Spiral galaxies tend to contain more blue stars, indicating that star 

formation is still ongoing. 

Barred Spirals have a dense, nuclear bulge with a bar running across it. Spiral arms emerge 

from the ends of the bar. Like the S class, SB is divided into SBa, SBb, and SBc subclasses, 
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where a, b, and c represent the prominence of the bar as well as the nuclear bulge and tightness 

of the winding arms. The Milky Way Galaxy is classified as an SB type galaxy. 

Finally, Irregular galaxies have no identifiable shape or structure.35 There are no spiral arms 

or bars present, and they do not take elliptical forms. Irr galaxies sometimes appear to have been 

galaxies of another class before unusual gravitational forces acted on then, misshaping them. 

1.3 Galaxy Mergers 

Galaxies do not exist alone in the Universe, however. They tend to group up, forming 

clusters of galaxies.6,44 Galaxy clusters also tend to group up themselves to create superclusters.44 

The Milky Way Galaxy is part of a cluster of ~30 galaxies called the Local Group.6 The Local 

Group in turn is part of the Virgo Supercluster, which consists o over one million galaxies and is 

centered on the Virgo Cluster.63 

Galaxies in the center of these large clusters are more tightly bound to one another resulting 

in a higher probability of strong gravitational interactions and merger events.22 As a result, many 

galaxies in the densest regions begin to have near collisions, tidal interactions, friction, and 

eventual merging. Galaxy mergers can occur in two basic forms: major and minor mergers. 

Minor mergers occur when a much larger galaxy “swallows up” a smaller, neighboring galaxy. 

In these instances, the smaller galaxy is absorbed into the larger one, while the larger galaxy 

largely remains unchanged and retains its previous structure. The Milky Way Galaxy is believed 

to have participated in several minor mergers throughout its lifetime, swallowing up nearby 

dwarf galaxies.23,48 The second flavor of galaxy mergers takes the form of major mergers. When 

a major merger occurs between two spiral galaxies, the tidal forces between them rip each galaxy 

apart, distorting them and destroying their spiral structures. Galaxies consist mostly of gas and 
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empty space, so they pass through each other, then re-merge. This process repeats until the 

system eventually relaxes, leaving a single, elliptical galaxy.22 

It has been observed that regions of higher galaxy density contain more elliptical galaxies in 

them [Figure 1.3.1].22 It is believed that one of the primary mechanisms for spiral galaxies to 

evolve into elliptical galaxies is through major mergers most often found in these dense 

regions.22 

 

Figure 1.3.1: Galactic Population Density. The fraction of galactic population of each class of 

galaxy as a function of total number density of galaxies, ρproj, in a cluster.22 
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Galaxy mergers also induce a massive increase in star formation rates for the galaxies 

participating in them, generating up to 1000 solar masses of new stars per year.57 This is a result 

of high-density regions of gas and dust contained in the galaxies merging, collapsing, and 

generating more stars due to tidal disruptions and shockwaves. These dramatic increases in star 

formation rates are called starbursts. 

1.4 Galactic Parameters in Relation to Morphology 

Edwin Hubble became the first astronomer to make reasonably accurate distance 

measurements to galaxies other than the Milky Way using Cepheid brightness and periodicity.36 

He did this by measuring the Doppler-like redshift due to the galaxies’ recession speeds – 

although we now know that this redshift is due to cosmological redshift. The distances Hubble 

calculated were nonetheless correct, and were calculated using 

𝐷 =  
𝑣

𝐻0
=  

𝑐𝑧

𝐻0
 [𝐸𝑞. 1.4.1] 

where D is the distance to the galaxy (measured in megaparsecs), v is the galaxy’s recession 

velocity, H0=69.8±1.9 (km/sec)/Mpc is the Hubble contant,36 c is the speed of light, and z<<1 is 

the cosmological redshift. Because c and H0 are both constant, the redshift of a galaxy is 

equivalent to a measurement of distance, with higher redshift equating to a further distance. 

Today, there is some debate over the true value of H0.
27,28,43 The measurements used in this study 

were calculated using a Hubble constant of H0=70 (km/sec)/Mpc.30 

Several measured parameters can be used as indications of galaxy morphology. One of the 

most important parameters was first measured by José Luis Sérsic, and it measures the light 

intensity of a galaxy as a function of distance from the galactic center. He called this 

measurement the Sérsic Profile: 
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ln 𝐼(𝑅) = ln 𝐼0 + 𝑘𝑅
1

𝑛⁄  [𝐸𝑞. 1.4.2]58 

where I is the intensity, R s the distance from the galactic center, I0 is the intensity at R=0, k is a 

scaling factor, and n is the Sérsic Index [Figure 1.4.1]. The Sérsic Profile is a generalization of 

de Vaucouleurs’ Law, which describes the light profile of elliptical galaxies.19 The Sérsic Index, 

n, is an indication of galaxy morphology. A Sérsic Index of n~4 indicates an elliptical shape, 

while a Sérsic Index of n~1 generally indicates a spiral shape. 

 

Figure 1.4.1: Sérsic Profile. The Sérsic Parofile for different values of n. Galaxies with a 

Sérsic Index of n~4 indicate an elliptical shape, while a Sérsic Index of n~1 indicates a spiral 

shape.65 

While the Sérsic Profile and de Vaucouleurs’ Law can be expressed in terms of galactic 

radius R, it is often difficult to determine the true radii of galaxies since they do not have clearly 

defined edges. At further distances from the galactic nucleus, a galaxy’s image becomes fainter 

and more ambiguous, making it difficult to define a true galactic radius. Instead, astronomers 
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often use a galaxy’s half-light radius to express a galaxy’s size. The “half-light” or “effective” 

radius is the radius which contains half of a galaxy’s total luminosity. 

Color Index (CI), a quantitative measurement of a galaxy’s color profile, can be used as 

another indication of galaxy morphology.60 As stated earlier, elliptical galaxies tend to have a red 

color, due to the shutdown of star formation, while spiral galaxies are bluer, since their star 

formation processes have not quiesced. CI is calculated by taking the difference between 

magnitudes of a galaxy through two different filters, i.e. 

𝐶𝐼 = 𝐵 − 𝑉 [𝐸𝑞. 1.4.3] 

Where, in this example, B and V are the magnitude through the Johnson B and V filters, 

respectively. CI follows a bimodal distribution for galaxy morphology [Figure 1.4.2].60 

 

Figure 1.4.2: Color Index. The color-color profile of galaxies in the SDSS field. Blue squares 

represent spiral galaxies, red triangles indicate elliptical galaxies, and dots represent stars. The 

dashed line represents the u*-r* = 2.22 separator, where u*, g*, and r* are the magnitudes 

measured through ~3500 Å, ~4800 Å, and ~6200 Å filters, respectively. Galaxies below the 

separator are spiral while galaxies above the separator are elliptical. The contours represent 

Gaussian standard deviation in steps of σ/4. 
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While parameters like Sérsic Index and Color Index have been important for identifying 

broad morphology types for galaxies,20,60 it has been difficult to use them for identifying galaxy 

mergers. 

A galaxy’s Asymmetry value (A), as described by Abraham et. al (1996)1, is generated by 

first separating an image of the galaxy from the background sky. Then, the galaxy image is 

rotated and subtracted from itself. A highly disturbed galaxy typically has a larger Asymmetry 

value. The opposite measurement is a galaxy’s Concentration (C). C is the intensity-weighted 

second order moment of the image: 

𝑀𝑖𝑗 = ∑ ∑ 𝑥𝑖𝑦𝑗𝐼(𝑥, 𝑦)

𝑦𝑥

 [𝐸𝑞. 1.4.5]. 

Finally, we have two non-parametric measurements of a galaxy’s structure: the Gini (G) and 

M20 (or M20) coefficients. G is historically used in economics as a measurement of the 

distribution of a population’s wealth. However, astronomers have adapted G to describe the 

distribution of light that we receive from a galaxy. For a discrete population (galaxy), G is 

defined as 

1

2�̅�𝑛(𝑛 − 1)
∑ ∑|𝑋𝑖 − 𝑋𝑗|

𝑛

𝑗=1

𝑛

𝑖=1

 [𝐸𝑞. 1.4.6] 

where n is the population (number of pixels) and X is the wealth per individual (pixel flux).47 

The second order total moment Mtot is the sum of a galaxy’s pixel fluxes multiplied by the 

squared distance from the galactic center: 

𝑀𝑡𝑜𝑡 = ∑ 𝑓𝑖[(𝑥𝑖 − 𝑥𝑐)2 + (𝑦𝑖 − 𝑦𝑐)2]

𝑛

𝑖

 [𝐸𝑞. 1.4.7] 
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where fi is the pixel flux for each pixel contained in the galaxy’s segmentation map, and (xc,yc) is 

the center pixel of the galaxy.47 

M20 is the normalized second order moment of the brightest 20% of a galaxy’s flux. To 

calculate M20, we rank-order the pixels by flux and sum the second order moments of each next-

brightest pixel until the sum of fluxes equals 20% of the total flux. We then normalize to Mtot 

and take the log: 

𝑀20 = log10(
∑ 𝑀𝑖𝑖

𝑀𝑡𝑜𝑡
) , 𝑤ℎ𝑖𝑙𝑒 ∑ 𝑓𝑖

𝑖

< 0.2𝑓𝑡𝑜𝑡  [𝐸𝑞. 1.4.8].47 

M20 has the benefit of relying on the square of the pixel distance to the galactic center (xc,yc), 

which is a now a free parameter. This differentiates it from C and allows for more sensitivity to 

multiple nuclei, which are commonly present in merger events.47 

1.5 CANDELS 

The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) is a 

combination wide- and deep-sky survey initiated in 2010. The survey was designed to observe 

the first third of galactic evolution by studying over 250,000 galaxies with 1.5 < z < 8 up to a 

limiting HST-measured magnitude of Hmag = 27.7. The survey studied five fields and is divided 

into two parts. The deep survey observed the Great Observatories Origins Deep Survey 

North/South (GOODS-N, GOODS-S), which covers a ~12.5 arcmin2 field. The wide survey 

studied GOODS-N and GOODS-S as well as the Cosmic Evolution Survey (COSMOS), the 

Extended Groth Strip (EGS), and the Ultra Deep Survey (UDS). The survey totals roughly 800 

arcmin2. The fields are summarized in [Table 1.5.1].30 
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Table 1.5.1: CANDELS Fields. Summary of the five CANDELS fields, including the wide 

and deep surveys in the two GOODS fields, where wide fields cover a larger field, and deep 

fields are imaged with more integration.30 

1.5.1 CANDELS Data 

The CANDELS images were taken using the Hubble Space Telescope (HST) Wide Field 

Camera 3 (WFC3) instrument. The images were taken across a broad range of wavelengths using 

WFC3’s two channels: ultraviolet/optical (UVIS) and near-infrared (IR). The UVIS channel is 

sensitive to 200-1000 nm wavelengths of light and has a field of view of 162x162 arcsec, while 

the IR channel can image ~800-1700 nm wavelengths and has a view of 136x123 arcsec. Each 

field in CANDELS is a mosaic taken over 902 orbits of HST, equating to roughly two months of 

observing time [Figure 1.5.1.1].30 

Using all 4 HST observation bands (F606W, F850LP, F125W, and F160W), CANDELS 

researchers created cutout images (“postage stamps”) of all galaxies observed in the GOODS-S 

field. After randomly selecting 100 galaxies and having five people classify them, it was 

discovered that fainter galaxies with Hmag > 24.5 were difficult to classify. As a result, a limit of 

Hmag < 24.5 was implemented for classification. No other cutoffs based on redshift, stellar mass, 

etc. were made. In the end, cutouts of 7634 galaxies were generated, as well as segmentation 

maps for them using Source Extractor (SExtractor), an program designed to identify objects 

present in an astronomical image.  
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Additionally, astronomers have already measured several galaxy properties from the 

CANDELS images including magnitude, mass, galactic half-light radius, Sersic index, and color 

magnitudes. Several morphological parameters have been measured as well, including Gini, M20, 

Asymmetry, and Concentration. 
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Figure 1.5.1.1: CANDELS Fields. HST mosaic grids of the five CANDELS fields.30 
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1.5.2 CANDELS Galaxy Morphologies 

Galaxies in GOODS-S with Hmag < 24.5 have been classified by CANDELS researchers 

using a proprietary classification scheme.41 There are five morphological classes used: Disk, 

Spheroid, Irregular/Peculiar, Compact/Unresolved, and Unclassifiable. Disk, Spheroid, and 

Irregular/Peculiar classes follow the Hubble Sequence described in Section 1.2. The 

Compact/Unresolved class is used for galaxies that are either point sources (i.e., stars) or are so 

small that no structure can be determined. Galaxies are Unclassifiable if they cannot be placed in 

any of the other classes. This may occur if there was an error in the image, if it is too small to 

determine structure, or if SExtractor incorrectly identified a star, star cluster, nebula, etc. as a 

galaxy. 

There are three interaction classes used to describe each galaxy: Merger, Interaction within 

SExtractor segmentation map, and Non-interacting companion. The “Merger” flag is used if the 

image contains a single galaxy that appears to have undergone a merger event. This could be 

evidenced from tidal features such as tidal arms or loops. “Interaction within SExtractor 

segmentation map” is used to describe an image that contains two galaxies that show interaction 

features. Finally, “non-interacting companion” describes an image of two galaxies that appear to 

be close together in the sky do not appear to be interacting with each other. All of the 

morphological and interaction classes are not mutually exclusive, and classifiers could use 

multiple classes to describe the same image, with exception to the Unclassifiable flag, which was 

only used if none of the other classes applied. 

Twelve structure classes were presented for human classifiers to select. Two of these are the 

Tidal Arms and Asymmetric classes. Tidal arms are stretched or elongated arms of a galaxy, 

which are formed when a nearby galaxy exerts gravitational “tidal” forces. Similarly, a galaxy 
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can become asymmetric when a nearby galaxy disturbs it through gravitational interactions. 

These two structural classes are good indications that a galaxy is undergoing or has undergone a 

merger event in the past [Figure 1.5.2.1]. 

  

Figure 1.5.2.1: Galactic Structural Classes. Example images of galactic structural classes. 

The Tadpole Galaxy (left) exhibits a prominent tidal arm52, while Messier 66 (right) is an 

asymmetric galaxy.8 

Researchers in the CANDELS group created a Graphical User Interface (GUI) for classifying 

galaxy postage stamps using Perl/Tk and SAOImageDS9 [Figure 1.5.2.2]. Users were each given 

a “chunk” of 200 images to classify. Once the chunk was completed, the user was assigned the 

next chunk. The GUI presents the user with postage stamps in each of the following HST bands: 

F606W, F850LP, F125W, and F160W; as well as the contour map of each galaxy. The user is 

then asked to fill out checkboxes for each of the morphological and interaction classes that apply 

to the image. A minimum of three users classified galaxies in the GOODS-S wide field. A 

minimum of five users classified galaxies in the GOODS-S deep field at each of the three image 

integration depths (2-, 4-, and 10-epoch depth), for a total of fifteen classifications for each 

galaxy. For calibration, each user was assigned a set of 25 galaxies to classify, which 

demonstrate the range of possible classes. Additionally, the first chunk assigned to each user was 

identical. In total, 65 classifiers worked on the GOODS-S images.41 
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Figure 1.5.2.2: CANDELS Classification GUI. The GUI designed by CANDELS researchers 

to classify galaxies in the CANDELS wide and deep fields. 

  



18 

 

CHAPTER 2 MACHINE LEARNING 

“[Machine learning is the] field of study that gives computers the ability to learn without 

being explicitly programmed.” – Arthur Samuel (1959)56 

One of the first wide-spread applications of machine learning was introduced to the public in 

the 1990’s as the spam email filter. Users who received spam emails would submit unwanted 

emails to a spam folder. A computer program would look through the folder and identify 

common traits that were found among the emails (i.e., words like “Congratulations!” or “Act 

now!”, as well as the email addresses from which they were sent). As more and more spam 

emails were analyzed by the program, it could effectively identify certain emails as spam, 

automatically dump them into a spam folder for the user and could even generate new rules for 

identifying unwanted emails. Since the 1990’s spam filters have become so robust that users 

rarely need to manually flag emails as spam anymore.29 

Machine learning techniques have advanced well beyond the capabilities of early spam 

filters. Today, machine learning techniques are being applied in countless ways. Pharmaceutical 

transport companies are using them to recommend shipping containers for drug companies. 

Facebook uses a neural network called Deepface for facial recognition when tagging users in 

uploaded images.11 Voice-command apps such as Apple Siri, Microsoft Cortana, and Amazon 

Alexa were all trained to comprehend human speech through machine learning. Among all these 

applications, there are several different “types” of machine learning algorithms. This project 

focuses on two machine learning techniques for galaxy classification: Random Forest and 

Computer Vision classifiers. 
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2.1 Supervised and Unsupervised Learning 

Machine learning classifiers come in two forms: Unsupervised and Supervised. An 

Unsupervised learning algorithm is provided raw data with no labels from the user. The 

program’s job is learning how to group or cluster data points together into classes. Unsupervised 

learning is useful if the user knows there are different classes but is unsure what the classes are. 

An Unsupervised learning algorithm can generate classes for the user. 

When using a Supervised learning method, the user provides all the data, as well as labels for 

each data point. For example, a user might pass a spam filter several emails. Each email also 

contains a label, labelling it either “spam” or “not spam.” As the program analyzes each email, it 

also looks at the label for each one. It learns traits that spam-labelled emails tend to have, versus 

traits that not-spam emails tend to have when creating classification rules. Supervised learning is 

an effective tool for classification tasks since the labels are already established. Because the 

CANDELS galaxies have already been classified by humans, this project uses a Supervised 

learning method. 

2.2 Decision Trees and Random Forest Classifiers 

Random forest (RF) classifiers are based on the idea of a decision tree [Figure 2.2.1]. A 

decision tree attempts to classify data based on different parameters (“features”) that each data 

point has. The tree uses features to split the data from the “root node” into separate groups called 

“internal nodes.” Each internal node is then branched into deeper “internal nodes” until all data 

has been successfully classified into distinct groups called “leaves.” 
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Figure 2.2.1: Decision Tree: The numbers (data) are first divided into two nodes based on 

color. Along the left branch, they are further classified based on whether they are underlined or 

not. 

Consider the training data S = {(x1
d, y1), … , (xn

d, yn)}, where xi
d is a feature vector of d 

dimensions, and yi is a label. The classifier’s goal is to split the dataset into nodes which each 

contain datapoints of a single label k: 

Sk = {(x, y) ∈ S | y = k} 

A binary classifier splits the dataset into subsets Sk by selecting a feature 𝑥𝑖
𝑗
 and threshold t 

such that any datapoints above the threshold belong to one class, and datapoints below the 

threshold belong to the other: 

𝑆1 = {(𝑥, 𝑦) ∈ 𝑆 |𝑥𝑖
𝑗

< 𝑡} 

𝑆2 = {(𝑥, 𝑦) ∈ 𝑆 | 𝑥𝑖
𝑗

> 𝑡} 

One way to measure the label distribution in a node is to calculate the node’s Impurity. There 

are several different impurity measurements, including Gini Impurity, Entropy, and 
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Misclassification. The Scikit-Learn packages used in this study use the Gini Impurity G(S) by 

default: 

G(S) = ∑ pk(1 − pk) [Eq. 2.2.1 ]

K

k=1

 

where pk is the probability of randomly selecting a datapoint in the set which has label k, and K 

is the total number of distinct labels. For a binary classifier, which contains datapoints of only 

two labels, G(S) can be reduced to 

G(S) = 2p1(1 − p1) [Eq. ][Figure 2.2.2] 

 

Figure 2.2.2: Gini Impurity for a Binary Classifier Decision Tree 

We can determine optimal split at a node by looking at the Information Gain. To calculate 

Information Gain, first the algorithm calculates the Impurity of the parent node G(parent). Once 

the split is made based on a feature and threshold, the weighted average Impurity of the children 

is taken: 

𝐺(𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = ∑ 𝑝𝑖𝐺𝑖

𝐾

𝑖=1

 [𝐸𝑞. 2.2.3 ] 
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where pi is the percentage of data which is split into each node 

𝑝𝑖 =
𝑆𝑖

𝑆
 [𝐸𝑞. 2.2.4 ]. 

By taking the weighted average, we can differentiate between small subsets with high 

Impurity and large subsets with low Impurity, which are preferred. The Information Gain H is 

the difference between the parent’s Impurity and the weighted average of the children’s 

Impurities: 

𝐻 = 𝐺(𝑝𝑎𝑟𝑒𝑛𝑡) − 𝐺(𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  [𝐸𝑞. 2.2.5 ] 

By maximizing Information Gain, the classifier learns which feature and threshold most 

effectively splits the dataset at each node. The algorithm measures the Information Gain for all 

features and thresholds. For n datapoints, each with j features, the number of threshold values 

that result in unique datapoint distributions is just n, so the number of possible splits at each node 

is n ∗ j. Although the algorithm must check all these features/thresholds at each node in the tree, 

modern computers can perform these calculations extremely cheaply, making decision tree 

classifiers a surprisingly fast algorithm even with large datasets. 

However, a single decision tree is prone to error. The decisions it makes along each branch of 

the tree may not generate nodes most effectively or efficiently. The parameters it uses may not 

accurately represent the classes into which data is meant to be placed. Because the algorithm 

continues to create nodes until all leaves are pure (or as pure as they can be), decision trees are 

very prone to overfitting, which occurs when the model performs well on training data but does 

not generalize. These problems make decision trees poor classifiers by themselves. To avoid 

these pitfalls, data scientists use what is known as a “random forest.”33,34 
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A random forest classifier uses an ensemble of decision trees to create a “forest” and uses the 

aggregate score to classify each data point. It is important to note that each decision tree must be 

independent (or nearly independent) of any other tree. The algorithm ensures independence in a 

few fundamental ways. 

The first method that random forest classifiers use to establish independence among trees is 

through a method known as “bagging.” Bagging involves subsampling the dataset S with 

replacement into m subsets. Each subset still contains n number of datapoints, but the datapoints 

are randomly selected from S and can be selected more than once. Each subset will randomly 

feature some points more than others. Each tree overfits in the end, but in theory their errors will 

cancel with each other. Another benefit that bagging provides is that we can get some sense of 

error. 

Another method of reaching independence is random feature selection. Normally, a decision 

tree has all d features available to it at each node and decides which feature and threshold most 

effectively divides the data into nodes. However, a random forest will randomly select k < d 

features available at each node. This ensures that each tree uses different parameters when 

selecting branches at each node. While k is a hyperparameter that can be set by the researcher, 

typically k = √d (rounded up) is the optimal value. 

Each decision tree produces a classifier hj(x). The random forest classifier H(x) is the average 

of each decision tree classifier: 

𝐻(𝑥) =
1

𝑚
∑ ℎ𝑗(𝑥)

𝑚

𝑗=1

 [𝐸𝑞. 2.2.6 ]. 
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Typically, a fraction of the dataset is not used for training the algorithm. This set is called the 

“validation set,” and typically consists of around 20% of the total dataset. After the classifier is 

trained, the validation set is given to it. While we know the classes yi of this set, the classifier 

itself will not be told what class each datapoint belongs to. In the case of a random forest, H(x) is 

used to predict the class of each datapoint in the validation set. Because each tree is independent, 

the “wisdom of the masses” is a much more stable and reliable classifier.64 

2.3 Neural Networks, Deep Learning, and Computer Vision 

Artificial Neural Networks (ANN’s) were first proposed in a rudimentary form by 

McCulloch & Pitts (1943) and were meant to simulate the human brain’s nervous system.50 

However, the computational power required to simulate – or even approximate – the human 

mind was beyond the technology of the time. It wasn’t until the computer graphics card boom of 

the 1990’s, driven largely by the advent of and consumer demand for 3D video games like id 

Software’s Quake, that machine learning scientists could revisit this idea and begin making 

effective use of it. Graphics processing units (GPUs) specialize in performing complex matrix 

operations, which are the same mathematical operations that neural networks are designed to 

perform. 

An ANN’s primary task is to take data xd and generate a function h(x) to generate meaningful 

output. While ANN’s have been utilized for speech recognition such as Apple’s Siri and 

Amazon’s Alexa, they are also robust tools used for image recognition and are sometimes 

referred to as “computer vision” algorithms when dealing with image data. 

In the case of images, input data xd takes the form of pixel values. Each pixel xi needs to first 

be mapped to a feature space Φ(xi), which takes the form 
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Φ(𝑥𝑖) = 𝜎(𝑈𝑥𝑖 + 𝑏) 

where 𝑈 ∈ ℝℎ×𝑑, 𝑏 ∈ ℝ1×𝑑, and σ(x) is called an activation function. Next, Φ(xi) is used as 

input for the classifier function: 

ℎ(𝑥) = 𝑤𝑇Φ(𝑥𝑖) + 𝐶 

where w is a weight, T indicates the transpose matrix operation, and C is a constant. In the end, 

h(x) is weighted sum of non-linear activation functions. The ANN learns to optimize Φ(xi) and w 

during training. It does this by minimizing the loss function during each training epoch: 

𝐿 = ∑ ℓ(ℎ(𝑥𝑖), 𝑦𝑖)

𝑛

𝑖=1

. 

For a binary classifier, the binary cross entropy loss function is used: 

𝐿 = −
1

𝑛
∑ 𝑦𝑖 log(ℎ(𝑥𝑖)) + (1 − 𝑦𝑖) log(1 − ℎ(𝑥𝑖))

𝑛

𝑖=1

 [𝐸𝑞. 2.3.1] 

Gradient descent is used to find the minimum of L. Using chain rule, the gradient of the loss 

function is calculated with respect to w and U: 

𝜕𝐿

𝜕𝑤
=

𝜕𝐿

𝜕ℎ
∙

𝜕𝐿

𝜕𝑤
= −

1

𝑛
∑ (

𝑦𝑖

ℎ(𝑥𝑖)
−

1 − 𝑦𝑖

1 − ℎ(𝑥𝑖)
) Φ(𝑥𝑖)

𝑛

𝑖=1

 

𝜕𝐿

𝜕𝑈
=

𝜕𝐿

𝜕ℎ
∙

𝜕ℎ

𝜕Φ
∙

𝜕Φ

𝜕𝜎
∙

𝜕𝜎

𝜕𝑎
∙

𝜕𝑎

𝜕𝑈
= −

1

𝑛
∑ (

𝑦𝑖

ℎ(𝑥𝑖)
−

1 − 𝑦𝑖

ℎ(𝑥𝑖)
) 𝑤𝑇Φ(𝑥𝑖)

𝜕𝜎

𝜕𝑎

𝑛

𝑖=1

 

Where 𝑎 = 𝑈Φ(𝑥𝑖) and 
𝜕𝜎

𝜕𝑎
 depends on which activation function is used. If a feature crosses 

a threshold t, the neuron “fires” and activates the function (1). Otherwise, the neuron does not 

activate the function (0). Because ANN’s were inspired by human anatomy, the sigmoid function 
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[Figure 2.3.1: Artificial Neural Network Activation Functions (Left)] was used as the activation function 

in early ANN’s: 

𝑆(𝑥) =
1

1 + 𝑒−𝑥
 [𝐸𝑞. 2.3.2] 

However, unlike our brains, ANN’s use gradient descent to minimize L. The sigmoid 

function asymptotically approaches a maximum of 1, so it has a zero gradient for larger values of 

x. Modern ANN’s use the Rectified Linear Unit (ReLU) function [Figure 2.3.1: Artificial Neural 

Network Activation Functions (Right)], a non-linear function that always has a non-zero gradient 

past the threshold t: 

𝑓(𝑥) = max(𝑡, 𝑥) [𝐸𝑞. 2.3.3]. 

 

Figure 2.3.1: Artificial Neural Network Activation Functions. (Left) Sigmoid. (Right) ReLU. 

Even in modern binary and multi-class classifiers the sigmoid function is still used right before 

the output layer, which returns the probability between 0 and 1 of a datapoint belonging to each 

class. 
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Gradient descent is then applied to update w and U during each training epoch: 

𝑤 → 𝑤 − 𝛼
𝜕𝐿

𝜕𝑤
 

𝑈 → 𝑈 − 𝛼
𝜕𝐿

𝜕𝑈
 

where α is a hyperparameter associated with the learning rate and determines the size of the step 

during each training epoch. The algorithm “steps” through the feature space along the largest 

(negative) gradient and iterates on w and U at each step, eventually settling into a good local 

minimum. Generally, the sum of all feature (pixel) gradients is used to update U and w during 

each training epoch. For example: 

𝜕𝐿

𝜕𝑈
= ∑

𝜕ℓ(ℎ(𝑥𝑖), 𝑦𝑖)

𝜕𝑈

𝑛

𝑖=1

 

However, ANN’s use stochastic gradient descent, where only a single, randomly selected feature 

is used to approximate the gradient: 

𝜕𝐿

𝜕𝑈
≈

𝜕ℓ(ℎ(𝑥), 𝑦)

𝜕𝑈
 

While this is a poor approximation in and of itself, ANN’s use it to effectively undergo a 

random walk toward the minimum of L. 

The feature space may have several local minima, and some will be better than others. For 

instance, there may be a sharp, narrow minimum. Even if it happens to be the global minimum, it 

will not generalize well to real data, effectively overfitting the network. Once this “pit” has been 

fallen into, a gradient descent algorithm would always be trapped in it, since the local gradient 

will never point away back out of the hole. However, the algorithm will never land on the true 
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global minimum, so stochastic gradient descent will give the algorithm a chance to randomly 

walk out of any narrow minima in the feature space. Only the wide, stable minima will truly trap 

the function so that it will not randomly “walk” out. By minimizing to these stable minima, the 

classifier function h(x) will generalize well to real data and will avoid overfitting. 

Additionally, modern ANN’s implement adaptive learning rates to optimize training. The 

learning rate α is initially large, and the network will take big steps through the feature space. 

Once it has settled into a wide, stable minimum from which is cannot escape, it will randomly 

bounce around the true local minimum. At this point, the learning rate is reduced so that the 

network takes smaller steps across the feature space. Although the network will never hit the true 

local minimum, by gradually reducing the learning rate it will get as close to it as possible 

without overfitting. 

The gradient descent algorithm will always follow the true gradient to find a minimum. 

However, it may stumble into a poor local minimum. Due to the random walk nature of 

stochastic gradient descent, the algorithm settles on a stable minimum faster than gradient 

descent. This makes ANN’s more effective and less computationally costly to train. 

The final function h(x) is a sum of individual activation functions. The complexity of h(x) 

can be increased by increasing the dimensionality of U. However, a more effective way of 

increasing the complexity is by implementing layers within the neural network: 

Φ(𝑥𝑖) = 𝜎(𝑈Φ′(𝑥𝑖) + 𝑏) 

Φ′(𝑥𝑖) = 𝜎(𝑈′Φ′′(𝑥𝑖) + 𝑏′) 

Φ′′(𝑥𝑖) = 𝜎(𝑈′′Φ′′′(𝑥𝑖) + 𝑏′′) 
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The more layers the neural network implements, the more complex functions can be 

generated during training. Using backpropagation, stochastic gradient descent can be 

implemented throughout the network’s layers to generate extremely complex classifier functions. 

The final form or h(x) after training is often unknown to the user. 

ANN’s described up to this point are called full-connected neural networks, since Φ(x) is 

applied to each data point at every layer. However, images are typically locally invariant; the 

objects present in the image should be able to undergo translation, reflection, and possibly 

rotation and still be recognizable. An array representation of and image will vary widely after 

undergoing these transformations. To make image classifiers more robust in their training, image 

convolution and pooling layers are introduced into the network. This type of ANN is known as a 

convolutional neural network (CNN). 

CNN’s alter Φ(x) at each layer to adjust for image classification. A small matrix, called a 

kernel, is propagated across the image to create a feature map. Each layer applies several 

different kernels to the input to create a multi-dimensional array and are designed to extract 

specific features commonly used in image classification. The best convolutions to apply for a 

given task are learned during training using backpropagation and learned weights. It is important 

to note that non-linear activation functions are still applied in these layers to “activate” Φ(x) and 

to eventually generate h(x). 

Once kerels have been applied to the input, a pooling layer is used to down-sample the data 

and reduce computational cost in deeper layers of the network. Max pooling and average pooling 

are the most common method of down-sampling because they effectively reduce the data size 

while still retaining enough information about the features that exist within an image. 
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Early layers of the CNN extract simple features: horizontal/vertical/diagonal lines, circles, 

etc. Deeper layers can extract more complex features using backpropagation and learned 

weights. For example, deeper layers of a facial recognition algorithm would learn to recognize a 

person’s eyes as a combination of horizontal/vertical lines and circles. More complex features 

can be recognized the deeper the CNN is. The final layers of a CNN are structured like fully 

connected neural networks as described earlier, where the input is the convolved/pooled feature 

maps extracted in earlier layers in array form. Input to the fully connected layers of a CNN can 

consist of millions of features mapped in the convolution and pooling layers.64 

2.4 Performance Measures 

When applying a machine learning algorithm, it is important to optimize it. One can begin 

optimization while preparing the training data set from which the system will learn. When 

designing the training data, it is important to use a balanced dataset. For example, only about 

10% of observable galaxies are undergoing merger events. Providing a dataset to a galaxy 

merger classifier where 90% of datapoints fall into one class, the classifier might learn that it is 

best to classify every datapoint as being a member of that class – the classifier will still be 

correct 90% of the time. Therefore, it might be wiser to provide a balanced training dataset, 

where half of the galaxies belong to each class. 

Another optimization that should be made to any training set is through “feature 

engineering.” Feature engineering is the practice of training a machine learning algorithm on 

relevant features.29 For example, in a random forest classifier, it is important to train a 

morphology classifier on parameters that are good indications of a galaxy’s Hubble class, such as 

Sersic Index or Color Index. The galaxies in the CANDELS fields have over 500 parameters 

measured for each, but most of these features are irrelevant to classifying their morphologies. 
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Therefore, it would be useless, as well as computationally and time consuming, to train an 

algorithm on non-applicable variables. 

It is important to avoid overfitting and underfitting a model on training data. Overfitting 

occurs when a model is trained to perform very well on training data but does not generalize 

well.29 This typically occurs when the classifier function h(x) is too complex (i.e., using a high-

degree polynomial function to fit linear data). Underfitting occurs when a model is too simple to 

detect patterns in the data. Underfitting and overfitting can both me mitigated by using feature 

engineering and hyper-parameter tuning to generate a model which generalizes well to validation 

and real-world data. 

Once the model and the training data are optimized, the program is tested on a validation 

dataset. A confusion matrix [Figure 2.4.1] can be used to visualize the accuracy. By using the 

values in the confusion matrix, one can calculate performance metrics for the model. 

 

Figure 2.4.1: Confusion Matrix. A confusion matrix for an algorithm that classifies MNIST 

digits as 5’s and not-5’s.29 

(TPR): this is the ratio of positive instances that are correctly detected by the classifier

(Equation 3-2).

Equation 3-2. Recall

recall =
TP

TP+ FN

FN is of course the number of false negatives.

If you are confused about the confusion matrix, Figure 3-2 may help.

Figure 3-2. An i llustrated confusion matrix

Precision and Recall
Scikit-Learn provides several functions to compute classifier metrics, including preci

sion and recall:

>>> from sklearn.metrics import precision_score, recall_score

>>> precision_score(y_train_5, y_train_pred) # == 4096 / (4096 + 1522)

0.7290850836596654

>>> recall_score(y_train_5, y_train_pred) # == 4096 / (4096 + 1325)

0.7555801512636044

Now your 5-detector does not look as shiny as it did when you looked at its accuracy.

When it claims an image represents a 5, it is correct only 72.9% of the time. More

over, it only detects 75.6% of the 5s.

It is often convenient to combine precision and recall into a single metric called the F1

score, in particular if you need a simple way to compare two classifiers. The F1 score is 

the harmonic mean of precision and recall (Equation 3-3). Whereas the regular mean

94 | Chapter 3: Classi cation
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The first performance metric is the most intuitive. Accuracy tells the user the percentage of 

correct classification predictions of the validation data points. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 [𝐸𝑞. 2.4.1] 

where TP, TN, FP, and FN are the number of true positive, true negative, false positive, and false 

negative predictions, respectively. 

The next performance measure, precision, indicates the accuracy of positive predictions: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 [𝐸𝑞. 2.4.2] 

Precision is often paired with another metric called recall, which is the ratio of correct 

positive identifications. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 [𝐸𝑞. 2.4.3] 

Recall is also known as the True Positive Rate (TPR). 

It is important to note that, in practice, precision and recall are a tradeoff. As a model has 

higher precision, the recall will suffer and vice-versa. When training a machine learning model, 

it is up to the designer to decide whether recall or precision is more important. In this study, 

recall was prioritized since the goal was to train a model that will correctly classify as many 

positive datapoints (mergers) as possible, even if some false positives (non-mergers) were 

captured by the classifier as well. 
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Precision and recall metrics are often combined into a single metric called the F1 Score. The 

F1 Score of a model is the harmonic mean of precision and recall: 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  2 ∙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
=

𝑇𝑃

𝑇𝑃 +
1
2

(𝐹𝑃 + 𝐹𝑁)
 [𝐸𝑞. 2.4.4] 

Because the F1 Score is the harmonic mean, its value can range from 0-1, and the only way a 

classifier can earn a high F1 Score is if both the precision and recall are high.29 

A visual way of representing the performance of a binary classifier is by utilizing a receiver 

operating characteristic (ROC) curve. Originally developed to measure the effectiveness of radar 

technicians during World War II, and ROC curve plots TPR against the false positive rate (FPR) 

as the classification threshold is increased, where FPR is calculated using 

𝐹𝑃𝑅 =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 [𝐸𝑞. 2.4.5] 

A random classifier will generate an ROC curve that is a linear line with slope 0.5 through 

the ROC space. This line is called the “line of no discrimination” and would be akin to flipping a 

coin and predicting the outcome. A perfect classifier, meanwhile, will have an TPR of 1 and a 

FPR of 0 at all thresholds, resulting in a single point in the upper left corner of the plot. 
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Real world classifiers, of course, lie somewhere between these two extremes. The better a 

classifier performs, the closer the line will approach the upper left quadrant of ROC space. On 

the other hand, a classifier that makes worse than random predictions will generate an ROC 

curve that approaches the lower right quadrant. However, one could invert the predictions of a 

worse-than-random classifier to make a good classifier. ROC curves are quantified by the area 

under the curve (AUC): 

𝐴𝑈𝐶 = ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅(𝑥))𝑑𝑥

1

0

= ∫ 𝑇𝑃𝑅(𝑇)𝐹𝑃𝑅(𝑇)𝑑𝑇

+∞

−∞

 [𝐸𝑞. 2.4.6] 

Because TPR and FPR are normalized, AUC ranges from 0 to 1, where better classifiers have a 

larger AUC.29 
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CHAPTER 3 METHOD 

3.1 Random Forest Data Preparation 

Because CANDELS researchers had already measured galaxy data and morphological 

parameters as described in Section 1.5, a random forest classifier was applied first to the datasets. 

The data, including all five CANDELS fields, consisted of 186,435 galaxies. Any galaxies with 

H > 24.5 were removed, and only galaxies with mass > 109 M☉ - estimated by measuring the 

galaxy’s luminosity - and 0.5 < z < 2.5 were retained since fainter, less massive – therefore 

fainter - and more distant galaxies led to unreliable human morphological and interaction 

classifications. Human classifications are a normalized percentage of the votes that the class 

received from human classifiers. VC_F_MERGER, VF_F_ASYM, and VC_F_TIDAL were the 

percentage of human classifiers who said each galaxy was undergoing a merger event, was 

asymmetrical, and/or exhibited tidal arms, respectively. However, because merging galaxies are 

complex, dynamic systems that can exhibit one or more these traits, a merger fraction 

(MERGE_FRAC) was developed as the average of the three human classification fractions: 

𝑀𝐸𝑅𝐺𝐸_𝐹𝑅𝐴𝐶 =
𝑉𝐶𝐹𝑀𝐸𝑅𝐺𝐸𝑅

+ 𝑉𝐶𝐹𝐴𝑆𝑌𝑀
+ 𝑉𝐶𝐹𝑇𝐼𝐷𝐴𝐿

3
 [𝐸𝑞. 3.1.1] 

In this study, the classifier was trained separately to identify galaxy mergers using each 

classification – VC_F_MERGER, VC_F_ASYM, and VC_F_TIDAL – as well as the 

MERGE_FRAC threshold. Different thresholds were used to determine positive classes for each 

individual trait based on the number of galaxies that exhibited each trait. The relatively small 

number of data points available for training and validation is the biggest limiting factor in this 

study, so thresholds were higher for traits that more galaxies exhibited and are outlined in Table 

3.1.1. Any galaxy that had a MERGE_FRAC score greater than or equal to 0.66 was classified as 
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a merger, and the remaining galaxies were considered non-mergers. This ensured that any 

merger-class galaxy would exhibit at least two of the traits. 

The features on which the classifier was trained are Gini, M20, concentration, asymmetry, 

mass, star formation rate (SFR), and galactic half-light radius (rkpc), so only galaxies where 

those parameters were measured and calculated were included in the dataset. Finally, the dataset 

was balanced so that an even number of merger and non-merger galaxies was retained. Since the 

number of non-mergers greatly outweighed mergers before this step, a number of non-merger 

galaxies equal to the number of mergers was randomly selected from the data pool to be included 

and were required to have a VC_F_MERGER, VC_F_ASYM, VC_F_TIDAL, or 

MERGE_FRAC of 0. 

Feature Positive Class 

Threshold 

Total 

Data 

Points 

Training 

Data 

Points 

Positive 

Class 

Training 

Points 

Negative 

Class 

Training 

Points 

Validation 

Data Points 

Positive 

Class 

Validation 

Points 

Negative 

Class 

Validation 

Points 

Merger 0.6 566 424 204 220 142 79 62 

Tidal Arms 0.6 1272 947 489 458 316 146 170 

Asymmetric 0.8 12682 9439 4757 4682 3146 1583 1563 

Merger 

fraction 

0.6 570 424 217 209 142 68 74 

Table 3.1.1: Random Forest Classifier Data Summary 

Data points were randomly distributed into a training set and a validation set, with 75% of 

the data points being used for training and the remaining 25% used for testing and validation. 

Because data was randomly distributed among the two subsets, they remained approximately 

balanced, although there were small variations in the class distribution. 

3.2 Random Forest Classifier Optimization and Implementation 

The Sci-kit Learn RandomForestClassifier() function, initialized to a random state, was used 

as the classification algorithm, and the RandomizedSearchCV() function was used to search for 

the optimum hyperparameters.26 The function randomly selects hyperparameter settings from 
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user-defined values and uses five-fold cross-validation of the training data to minimize Gini 

impurity. This process is repeated until the optimum hyperparameters are found. The optimized 

hyperparameters determined by the RandomizedSearchCV() function are summarized in Table 

3.2.1. The random forest classifier was then trained on the training data set with the optimized 

hyperparameters. 

Hyperparameter Description Value 

n_estimators Number of trees in the forest 140 

max_features 
Number of features considered 

at each tree node 
2 

max_depth 
Maximum level in each decision 

tree 
None 

min_samples_split 

Minimum number of datapoints 

considered at each node before 

the node is split 

2 

min_samples_leaf 
Minimum number of datapoints 

allowed in each leaf node 
4 

bootstrap 

Method for sampling (True = 

with replacement, False = 

without replacement) 

False 

Table 3.2.1: Random Forest Classifier Hyperparameters. Hyperparameters, descriptions, and 

optimized values used in the random forest classifier. 

3.3 Computer Vision Data Preparation 

Because the computer vision algorithms take image data as input, postage stamps of galaxies 

needed to be generated from the CANDELS field mosaics. The same cuts to Hubble magnitude, 

mass, and redshift were made to the full dataset. Additionally, the thresholds for positive and 

negative classifications were retained. However, galaxies where no SFR, rkpc, A, C, G, M20 
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measurements were made could still be included since only image data and human classifications 

were required, resulting in a slightly increased sample size. 

World Coordinate System (WCS) coordinates were also obtained from each CANDELS field 

mosaic using the WCS() function from Python’s Astropy library. Each galaxy’s right ascension 

(RA) and declination (Dec) were extracted from .FITS tables and converted to WCS coordinates 

using the wcs_world2pix() function. The WCS coordinates were then used to find each galaxy 

within its corresponding mosaic. Using the Cutout2D() function in Astropy, a 50x50 pixel image 

of each galaxy was extracted from the mosaic. Pixel value arrays were stacked along the fourth 

dimension to create one Numpy array for each positive and negative class. To ensure a balanced 

dataset, the positive and negative data arrays were generated alongside each other, and the 

number of negative-class images was not allowed to exceed the number of positive-class 

images.4 

3.3.1 Data Augmentation 

Due to the complexity of the features that a neural network is tasked to learn, CNN’s 

typically need thousands, if not millions, of images on which to train. The small number of 

viable merger images available in the CANDELS fields would be a limitation, so we use data 

augmentation to artificially increase the sample size. 

Data augmentation involves duplicating images while randomly applying transformations to 

them. While the transformations are subtle enough that the duplicated images still represent the 

objects contained within them, the pixel distributions of the duplicates will be altered enough 

that they can be considered different images during training and validation without overfitting. 
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As an additional form of augmentation, postage stamps of the same galaxy are cut out from 

multiple mosaics imaged using different WFC3 filters and treated as separate images. The light 

signal through separate filters is different enough that the feature maps extracted during 2D 

convolutions will be different. The filters used in this study are F105W, F125W, F140W, and 

F160W, which are used with the WFC3 IR channel [Table 3.3.1.1]. The mosaics which were 

created using these filters were chosen because together they cover a wide enough wavelength 

range to ensure that the galaxies included in the dataset – which have a redshift range of 0.5-2.5 

– would still appear visually in the image postage stamps. The more highly redshifted galaxies 

appeared clearer in the higher wavelength filters. Postage stamps that did not contain a visible 

image of the galaxy were manually removed from the dataset post-augmentation. 

Filter Name λ [nm] fwhm [nm] 

F105W 1045 310 

F125W 1250 300 

F140W 1400 400 

F160W 1545 290 

Table 3.3.1.1: WFC3 IR Channel Filters: WFC3 IR filters used for CANDELS mosaics. 

Separate postage stamps were generated for each galaxy in each of the filters and used for data 

augmentation.51 

Unfortunately, not all WFC3 filter mosaics covered the entirety of the CANDELS fields. As 

a result, some galaxies were in sections of the fields that were not imaged by all filters. These 

image cutouts appeared empty or cutoff [Figure 3.3.1.1]. These images were removed from the 

augmented dataset, except for the asymmetry classifier. Due to the size of the augmented 

asymmetry data set, it was not feasible to remove empty or corrupted images. 
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Figure 3.3.1.1: Corrupted Galaxy Images. Examples of galaxy postage stamps that are cutoff, 

empty, or blown out. Bad postage stamps were removed from training and validation datasets. 

In this study, eight-fold augmentation with rotation, vertical and horizontal mirroring, and 

brightness scaling is applied [Table 3.3.1.2]. The operations are each randomly applied to the 

duplicates, ensuring enough degrees of freedom to allow for eight-fold augmentation. While size 

scaling operations were available, they were not applied so that images would not become 

“stretched” in the x- or y-dimensions. Galaxies undergoing merger events tend to be elongated 

due to strong gravitational interactions, and learning could be affected if non-merger class galaxy 

images appeared asymmetrically stretched in their duplicates. The final dataset sizes for each 

classifier can be found in [Table 3.3.1.3]. 

Augmentation 

Operation 

Rotation Vertical Flip Horizontal Flip Brightness Scaling 

Boolean / Range [-180°, 180°] TRUE TRUE [80%, 120%] 

Table 3.3.1.2: Data Augmentation Parameters. Data augmentation transformations are 

randomly applied – or not applied – to each image. The number of transformations ensures 

enough degrees of freedom exist to augment the dataset eight-fold without overfitting or 

generating true duplicates of any image. 
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Feature Positive Class Threshold Total Data 

Points (Pre-

augmentation) 

Total Data 

Points (Post-

augmentation) 

Training 

Data 

Points 

Validation 

Data 

Points 

Merger VC_F_MERGER ≥ 0.6 2254 16784 12575 4209 

Tidal Arms VC_F_TIDAL ≥ 0.6 4614 31826 23853 7973 

Asymmetric VC_F_ASYM ≥ 0.8 34998 279885 211308 68577 

Merger 

fraction 

mergefrac ≥ 0.6 2284 16977 13068 3909 

Table 3.3.1.3: Computer Vision Classifier Dataset Sizes. Computer vision classifier dataset 

sized pre- and post- augmentation. Pre-augmentation numbers include images taken from the 

four WFC3 filter mosaics. 

3.3.2 Final Image Preparation 

After augmentation, the pixel data from each postage stamp is converted to a Numpy13 array 

and stacked in a 50x50xn array, where n is the number of images. As with the random forest 

classifier, 75% of the images are used for training, and the remaining 25% are used for 

validation. 

Augmented images are stored in separate directories depending on the class to which they 

belong and whether they are training and validation data (i.e., training merger images are stored 

in one directory, training non-merger images are stored in another, validation non-merger images 

are stored in yet another, etc.). 1D Numpy13 arrays are generated containing class labels, each 

with a number of elements equal to the number of augmented images for each class/dataset. The 

label elements for mergers all have a value of 1, and the label elements for non-mergers have a 

value of 0. 

After the augmented image and label arrays have been created, the dataset image arrays are 

appended to each other, as are their label arrays. The label array is then appended along the 

fourth dimension of the corresponding image array. The master training and validation data 

arrays are shuffled along the first dimension so that each image’s label is still paired with it 

correctly. The pixel data is then normalized, and labels are one-hot encoded [Table 3.3.2.1]. 

Finally, the data and label arrays are passed to the neural network for training and validation. 



42 

 

Class Name Class Label One-hot Encoded Class Label 

Non-merger 0 [0,1] 

Merger 1 [1,0] 

Table 3.3.2.1: One-hot Encoding. Example of one-hot encoding of binary classification 

labels. One-hot encoding is implemented for the merger, tidal arms, and asymmetry classifier 

labels. 

3.4 Convolutional Neural Network Architecture and Training 

The CNN architecture used in this work was adapted from Dieleman et. al (2015), which was 

originally developed to predict galaxy morphologies.21 The keras.models library was used to 

construct the model.55 The network takes 50x50 pixel images as input and first applies a 2D 

convolution layer. The first layer applies 32 filters to each image with a kernel size of 3x3 and a 

default step of 1. Following the first convolutional layer is a max pooling layer with a kernel size 

of 2x2. 

Alternating convolution and pooling layers follow until reaching the fully connected layers. 

Here, the features are “flattened” into one-dimensional arrays and passed through alternating 

sigmoid and ReLU layers. The final output layer employs the sigmoid function since the output 

is a one-hot encoded probability of the image belonging to each class. The classifier trains on a 

total of 6,834,818 features, and the full architecture is outlined in [Figure 3.4.1]. 

The number of training epochs was set arbitrarily high so that the model will continue 

training. The ModelCheckpoint() function was used so that the best-performing model would be 

saved as training continued.55 With ModelCheckpoint() the model will predict classes for the 

galaxies in the validation dataset after each training epoch. If the model performance on the 

validation set has improved from the previous epoch, the model will be saved as a .h5 file and 

will move on to the next training epoch. 



43 

 

Additionally, EarlyStopping() was used to monitor model improvement during training.55 

With EarlyStopping(), the model continues training until it no longer improves its performance 

on the validation set. As described in Section 2.3, the model may fall into narrow local minima 

during stochastic gradient descent. Functionally, this means the model may not improve its 

performance for a few training epochs while it is inside of these minima. However, given enough 

time it may step out of a narrow minimum, and performance will begin improving again until it 

finds a stable minimum. To avoid this problem, the user can define the number of epochs to 

continue training after performance stops improving before stopping training altogether. In this 

work, the model stops training only after it has not improved performance after 10 consecutive 

training epochs. Used together, ModelCheckpoint() and EarlyStopping() ensures the model has a 

chance to continue training until it can be verified that performance is not improving and can 

revert back to the best-performing model. 
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Figure 3.4.1: CNN Architecture. CNN architecture used in this project, adapted from 

Dieleman et. al (2015). Convolution layers alternate 2D convolutions and pooling layers. Fully 

connected layers alternate ReLU and sigmoid activation functions with a sigmoid output layer. 

The sigmoid activation function output layer is used in binary classifiers.  
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CHAPTER 4 RESULTS AND ANALYSIS 

4.1 Random Forest Classifier Results 

After training, the validation data was passed to the random forest classifier. The results from 

each classifier are found in [Table 4.1.1], and confusion matrices were generated [Figure 4.1.1]. 

Notably, the classifier that was trained on the merger fraction performed significantly better on 

the validation dataset. This is likely because the positive class for the merger fraction required 

that two out of three merger signifiers – tidal arms, asymmetry, and the merger flag – were 

selected by human classifiers. As a result, these galaxies are the most disturbed galaxies in the 

data sample. The distribution of feature values among each dataset are shown in [Figure 4.1.2]. 

An Anderson-Darling k-sample test was performed on each of the positive-class feature spaces.3 

The test is designed to determine whether discrete data sets are sampled from the same 

population. The results showed that the null hypothesis – that the data come from the same 

population – can be rejected at the 0.1% level, indicating that each of the samples come from 

significantly different populations. 

Additionally, the importance of each training feature that the model uses for classification 

was found. The significance of each feature is a normalized value where the sum of all features’ 

importance is 1. The importance of each training feature for each classifier can be found in 

[Table 4.1.2]. Correctly and incorrectly predicted test data points were plotted by the two most 

important features for each classifier [Figure 4.1.3], illustrating the clustering of classes in the 

space. As expected, most incorrectly classified datapoints in the testing dataset are in the overlap 

of clusters. 

Because the Merger Fraction classifier performed best, and because the performance of each 

classifier varied slightly with each training and validation session, the Merger Fraction classifier 
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was run 1000 times. All four performance metrics were plotted for 1000 runs and a normalized 

curve was fit [Figure 4.1.4]. However, perfect performance acts as an insurmountable “wall” for 

the classifier, so the performance distribution is skewed to lower values. Because of this, a 

skewed Gaussian curve was a better fit for each distribution: 

𝑓(𝑥) = 2𝐴 ∗ 𝑒𝑥𝑝 [
− (

𝑥 − 𝜇
𝜎 )

2

2
] ∗ [1 + 𝑒𝑟𝑓 (

𝛼 [
𝑥 − 𝜇

𝜎 ]

√2
)] [𝐸𝑞. 4.1.1] 

where A is the peak of the curve, μ is the mean, σ is the standard deviation, exp is the 

exponential function, and erf is the error function. For all four performance measures, the R2 

value for the skewed normal fit was slightly higher than the normal fit. 

Finally, ROC curves were also plotted for each classifier. The merger fraction classifier 

scored the highest AUC, 0.96, reflecting the relatively high precision, recall, and - by extension - 

F1 score. 
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Classifier Accuracy Precision Recall F1 Score 

Merger 84.48% 0.8823 0.7894 0.8333 

Tidal Arms 91.79% 0.7251 0.7600 0.7421 

Asymmetry 81.21% 0.8082 0.8170 0.8126 

Merger Fraction 92.31% 0.9332 0.9428 0.9253 

Table 4.1.1: Random Forest Classifier Performance Metrics. The results for the merger 

fraction classifier are averaged over 1000 sessions [Figure 4.1.4]. 

 

 

 

 

Figure 4.1.1: Random Forest Classifier Confusion Matrices: Merger classifier (upper-left), 

asymmetry classifier (upper-right), tidal arms classifier (bottom-left), merger fraction 

(mergefrac) classifier (bottom-right). Within each confusion matrix are the number of true 

positives (upper-left), false positives (upper-right), false negatives (bottom-left), and true 

negatives (bottom-right). 
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Figure 4.1.2: Random Forest Classifier Feature Distributions. Distributions of features for 

each random forest classifier. From top left: Asymmetry, M20, galactic half-light radius (rkpc), 

and star formation rate (SFR), Gini coefficient, and Mass. The distributions of Gini coefficients 

and masses between positive- and negative-class galaxies nearly entirely overlaps, making them 

poor features for decision making. 
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Merger Tidal Arms Asymmetric Merger Fraction 

Feature Importance Feature Importance Feature Importance Feature Importance 

Asym. 0.3217 Asym. 0.2394 rkpc 0.2353 Asym. 0.3771 

M20 0.2385 rkpc 0.1970 Asym. 0.2092 rkpc 0.2184 

SFR 0.1267 SFR 0.1466 M20 0.1879 M20 0.1729 

rkpc 0.1194 M20 0.1154 SFR 0.1319 SFR 0.0982 

Conc. 0.0826 Gini 0.1083 Mass 0.0832 Conc. 0.0557 

Mass 0.0593 Conc. 0.0979 Conc. 0.0815 Gini 0.0393 

Gini 0.0519 Mass 0.0953 Gini 0.0711 Mass 0.0385 

Table 4.1.2: Random Forest Classifier Feature Importance. Importance of each feature for 

each random forest classifier. Feature importances for each classifier sum to 1. 

 

Figure 4.1.3: Random Forest Classifier Predictions. Predictions for test data for each random 

forest classifier. Data points are plotted in the space of the two highest-ranking features from 

[Table 4.1.2].  
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Figure 4.1.4: Merger Fraction Random Forest Classifier Results for n=1000 Sessions. Both a 

normal and skewed normal curve was fit to each distribution. The skewed normal fit was the 

better fit for all performance metric, which is reflected in the R2 scores. 
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Figure 4.1.5: ROC Curves for Random Forest Classifiers. False positive rate is plotted along 

the x-axis, and true positive rate is plotted along the x-axis as the classification threshold is 

increased. AUC scores, which range from 0 (a perfectly wrong classifier) to 1 (a perfect 

classifier), are included, with the Merger Fraction (mergefrac) classifier scoring highest. 
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4.2 Convolutional Neural Network Results 

The convolutional neural network was trained using the data and architecture outlined in 

Section 3.3. As with the random forest classifier, the merger fraction classifier performed best. 

This is likely due to the fact that the galaxies selected for the positive class in the merger fraction 

dataset were the most disturbed, exhibiting at least two of the three merger indicators. The tidal 

arms, asymmetry, and merger flag classifiers also performed similarly to their random forest 

counterparts [Table 4.2.1 and Figure 4.2.1]. 

Because convolutional neural networks undergo several epochs of training, during which the 

model is constructed and improved, the training and validation accuracy and loss can be plotted 

for the entire training regimen [Figure 4.2.2 and Figure 4.2.3]. Using the Keras checkpoint 

function, the model was saved whenever the validation accuracy improved over previous epochs. 

Each model achieved a maximum accuracy during a different training epoch, with the merger 

classifier reaching peak validation accuracy last during the twentieth round of training. This is 

likely due to the complexity of the images and features present in the merger fraction dataset. 

The training set loss decreases throughout training as the model learns the features present in 

the training data. However, as it continues to train it begins recognizing more specific patterns in 

the training data that it uses to classify the images. In the testing set, this results in loss 

increasing; the classifier is beginning to overfit to the training set and is not generalizing well to 

the validation set. However, because the model has an early stopping call once loss begins 

increasing, training will end before the model can truly overfit. It is important to note that loss is 

not a normalized value and can exceed 1.0. The losses recorded in the final model represent 

reasonable loss for a binary classifier. This is also reflected in the training/validation accuracies 

[Figure 4.2.2]. The training accuracy continues increasing, while the validation accuracy does 
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not. If the model were allowed to keep training past this point, the validation accuracy would 

begin to decrease even as the training accuracy reached 100%, indicating an overfit model. 

As with the random forest classifiers in Section 4.1, ROC curves were plotted for each of the 

convolutional neural networks [Figure 4.2.4]. ROC curves for the CNNs appear “smoother” than 

those generated for the random forest classifiers. This is because there are millions of features 

the model uses to predict classifications, and so the classification threshold can be increased in 

smaller steps. As expected, the merger fraction classifier scored the highest AUC of all 

classifiers, with an AUC of 0.951. 

For each of the classifiers, a subset of validation image predictions is presented in [Figure 

4.2.5 - Figure 4.2.8]. The tidal arms classifier was expected to perform best, since tidal arms are 

a relatively easy feature for a human classifier to recognize in an image. However, it ended up 

performing with the lowest accuracy of the four classifiers. This may be due to the tidal arms 

only being prominent in some WFC3 filters and not visible in others. Across all classifiers, the 

misclassified galaxies did not include all – or even multiple – post-augmentation permutations of 

a single galaxy. This would indicate that only specific permutations of a galaxy, whether by filter 

or augmentation transformation, were misclassified. 

Classifier Accuracy Precision Recall F1 Score 

Merger 83.75% 0.8433 0.8289 0.8361 

Tidal Arms 71.79% 0.7519 0.6666 0.7067 

Asymmetry 81.59% 0.8226 0.8060 0.8142 

Merger Fraction 87.87% 0.8683 0.8923 0.8802 

Table 4.2.1: Computer Vision Classifier Performance Metrics. Accuracy, precision, recall, 

and F1 scores for the four computer vision classifiers. 
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Figure 4.2.1: Computer Vision Classifier Confusion Matrices: Merger classifier (upper-left), 

asymmetry classifier (upper-right), tidal arms classifier (bottom-left), merger fraction 

(mergefrac) classifier (bottom-right). Within each confusion matrix are the number of true 

positives (upper-left), false positives (upper-right), false negatives (bottom-left), and true 

negatives (bottom-right).  
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           Merger Classifier     Asymmetry Classifier 

 

 

         Tidal Arms Classifier               Merger Fraction Classifier 

 

Figure 4.2.2: Computer Vision Classifier Training Accuracy. The accuracy of the training 

and validation data throughout training epochs is plotted for each of the classifiers: merger 

classifier (upper-left), asymmetry classifier (upper-right), tidal arms classifier (bottom-left), and 

merger fraction classifier (bottom-right). The vertical dashed line represents the training epoch 

from which the final model was saved using early stopping and callback functions. The model 

with the highest validation accuracy was saved and training ended ten epochs after the minimum 

loss was achieved [Figure 4.2.3]. 
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         Merger Classifier     Asymmetry Classifier 

 

 

         Tidal Arms Classifier               Merger Fraction Classifier 

 

Figure 4.2.3: Computer Vision Classifier Loss. Loss of each computer vision classifier 

during training: merger (upper-right), asymmetry (upper-left), tidal arms (lower-left), and merger 

fraction (lower-right). The dashed vertical line represents the training epoch during which the 

final model was saved using early stopping and callback functions. Training was stopped ten 

epochs after the minimum loss was achieved and the model was saved when test data accuracy 

was at its peak [Figure 4.2.2]. 
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Figure 4.2.4: Computer Vision Classifier ROC Curves. ROC curves for the four computer 

vision classifiers. The entire ROC curve plots are shown on the left, and a zoomed-in plot of 

each is on the right. 
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Figure 4.2.5: Merger Classifier Image Predictions. Example image predictions from the 

validation dataset for the merger classifier. True positives (top), true negatives (middle), and 

misclassified images (bottom). 
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Figure 4.2.6: Asymmetry Classifier Image Predictions. Example image predictions from the 

validation set for the asymmetry classifier: true positives (top), true negatives (bottom), and 

misclassified images (bottom). 
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Figure 4.2.7: Tidal Arms Classifier Image Predictions. Example image predictions from the 

validation dataset for the tidal arms classifier: true positives (top), true negatives (middle), and 

misclassified images (bottom). 
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Figure 4.2.8: Merger Fraction Classifier Image Predictions. Example image predictions from 

the validation dataset for the merger fraction classifier: True positives (top), true negatives 

(middle), and misclassified images (bottom).  
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4.3 AGN and Super-massive Black Hole Identification 

Once the computer vision models were trained, a new dataset was generated containing 

images of galaxies in the CANDELS fields that contain x-ray selected active galactic nuclei 

(AGN). AGN are thought to play a prominent role in the way a galaxy evolves and develops 

through its lifetime.25,38,59 This dataset was passed through the pre-trained merger fraction 

computer vision classifier to predict which galaxies were mergers and which were non-mergers. 

The predicted classes were then cross-referenced with which galaxies in the set host AGN and 

which do not. 

The AGN dataset consisted of 972 AGN-hosting galaxies and 2909 control images. Postage 

stamps were created from the same filters used for the other classifier datasets: F105W, F125W, 

F140W, and F160W. Data augmentation was not applied to this dataset since the model was pre-

trained using the merger fraction dataset described in Section 3.3. After generating cutouts from 

the four WFC3 filters, the final dataset contained 3218 AGN-hosting galaxy images and 8548 

control galaxy images, for a total of 11766 images. 

The pre-trained merger fraction computer vision classifier then predicted the classes – 

“merger” or “non-merger” – for each galaxy in the new data sample. The class predictions were 

then cross-referenced with the list of galaxies that did or did not host AGN. Unfortunately, the 

results of this study showed that the predicted mergers and predicted non-mergers contained the 

same distribution of AGN-hosting and control galaxies [Figure 4.3.1]. This indicates that there is 

no trend between galaxies that host AGN and merger events. However, considering the 

limitations imposed on this study- namely the sample size used for training and the uncertainty 

of the human classifications – it would be worth investigating this hypothesis more thoroughly in 

the future. 
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Figure 4.3.1: AGN distribution among predicted mergers and non-mergers. 

  



64 

 

4.4 Final Analysis 

The random forest and computer vision classifiers performed at near parity. Among the 

classifiers, the two merger fraction classifiers attained the highest accuracies rate during testing, 

as well as the highest precisions, recalls, and F1 scores. This is likely due to the merger fraction 

datasets that these classifiers were trained on. By requiring that the positive class exhibited at 

least two of the three merger indicators – as classified by humans – they were the most disturbed 

systems and represented the “best examples” of merger events in the CANDELS fields. 

However, there are tradeoffs between using a random forest algorithm against a CNN and vice-

versa. 

4.4.1 Training Time 

The random forest classifier has the benefit of being the faster algorithm. The random forest 

classifiers used in this work could be trained and validated within a manner of seconds, due to 

the relatively simple calculations that the algorithm needs to complete. The initial training of the 

RF classifier was performed on a laptop without a GPU, meaning the learning was handled by 

the 2.3 GHz, 4-core Intel I5 processor. The CNN, on the other hand, took several minutes – or, in 

the case of the asymmetry classifier, hours - to train. The training time increased noticeably as 

the dataset size increased. The asymmetry classifier, whose post-augmentation training dataset 

included 200,000 images – was trained overnight. 

The time to train the network could be reduced by implementing higher quality GPUs. In this 

work, an Nvidia GeForce GTX 960 was used to train the CNN, but in the years since that line of 

GPUs was released, huge strides have been made to create much faster cards. While the GTX 

960 has 2 GB of onboard memory, the newest line of Nvidia GPU’s – the GeForce RTX 3080 

series - has 12 GB of onboard memory, making it much faster than the 900-series cards. Multiple 
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cards could also be implemented to reduce the training time even further, which is what large 

tech companies such as Google and Facebook use for their neural networks. 

The relative simplicity of calculations made in the random forest algorithm allow it to be run 

on machines that do not contain GPUs. As such, research using random forest classifiers do not 

rely on expensive computers or top-of-the-line GPUs. A random forest classifier would be useful 

for a researcher that does not have access to such a machine. 

4.4.2 Data Generation 

The data that each algorithm used for training and validation was vastly different. On one 

hand, the random forest classifier relied on measured parameters (“features”) of the galaxies it 

was learning to classify. Researchers were required to measure these features for each galaxy 

included in the dataset, requiring a great deal of overhead in generating the dataset. 

The computer vision classifier, on the other hand, only required images of the galaxies that 

are used for training and validation. Due to the nature of CNNs, the original data sample was not 

sufficient for training, and data augmentation needed to be used to artificially increase the 

sample size. However, the keras.preprocessing packages for Python make data augmentation a 

simple process to implement. 

Because the data for the random forest classifier only consists of values of measured features, 

very little hard drive memory is required to store the data. The image data used by the computer 

vision classifiers takes up significantly more storage space. However, modern computer hard 

drives have enough storage space that data storage was never an issue. 

The most significant issue with data generation in this study was the classification of each 

galaxy. The “true” classes were determined by humans, as discussed in Section 1.5.2. Because 
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humans are fallible, not all human-determined classes will be true classes. Part of the inspiration 

for implementing the merger fraction was so human error could be somewhat mitigated. The 

random forest and computer vision classifiers, then, cannot exceed human-level performance. It 

would be far better to use data where the classes were truly known, which will be discussed in 

more detail in Section 4.5. 

4.5 Future Work 

JWST is expected to launch in October 2021, and the first data is expected to return by 

Summer 2022. JWST will be capable of imaging galaxies in the infrared spectrum, allowing 

researchers to capture images of galaxies that are much fainter and much farther away from 

Earth. A random forest classifier or CNN like the ones trained in this study could be used to sift 

through the vast amount of data and predict which systems are mergers and which are non-

mergers. However, work - discussed below - could be done before the first data is returned. 

4.5.1 K-Nearest Neighbor Algorithm 

While the random forest classifier and CNN were effective in recognizing galaxy merger 

events, they only represent two machine learning techniques. Another simple algorithm that 

could be implemented in a similar study is the k-nearest neighbor (KNN) algorithm. In this 

algorithm, the galactic features used in the random forest classifier are plotted in n-dimensional 

space. To predict the class of a validation data point, the galaxy’s features are plotted in the same 

n-dimensional space as the training data. The algorithm then determines the k-nearest datapoints, 

where k is a user-defined integer and is often equal to the square root of the number of training 

datapoints. The validation datapoint is predicted to belong to the same class to which most of the 

k-nearest data points belong. The clustering that was seen in this random forest study [Figure 

4.1.3] indicate that a KNN study might be an effective classifier. 
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4.5.2 Simulations and Synthetic Data 

As mentioned in Section 4.4.2, the biggest challenge in this study was the fact that the true 

classes of each galaxy were determined by humans. It would be much better if the training and 

validation data passed to the classifiers had truly known classes. The most straightforward 

solution to this problem would be to use cosmological simulation data. Cosmological simulations 

like the Simulating Multiscale Astrophysics to Understand Galaxies (SMAUG) Project60 are 

designed to understand the earliest stages of our Universe and the galaxies that constitute it. 

SMAUG researchers will be able to identify individual galaxies, as well as flag merger events, 

and extract useful features from them (redshift, Hubble magnitude, galactic half-light radius, 

etc.). Additionally, the simulation will be able to produce HST-like images that will be 

comparable to WFC3 CANDELS images. Due to the nature of cosmological simulations, images 

of the same galaxy can be captured from different perspectives, effectively increasing the sample 

size even further. 

A more novel approach to generating synthetic data would be to implement a computer 

vision technique called a generative adversarial network (GAN). A GAN consists of two major 

components: a generator and a classifier. The generator’s job is to create synthetic images that 

can “trick” the classifier. The classifier is passed a dataset containing both real images and the 

synthetic images created by the generator and is tasked with determining which images are real 

and which are fake. The classifier results are sent back to the generator, which uses them to 

create new synthetic images that better reflect real data. This process goes back and forth 

between the generator and classifier until the generator has learned to create synthetic images 

that are indistinguishable from real ones. 
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Using a cosmological simulation or GAN, new synthetic images of mergers and non-mergers 

could be generated. It has been shown in the past that machine learning and computer vision 

algorithms can be trained on synthetic data and tested on real data with relatively high 

accuracy.53,61 A random forest classifier or CNN trained on representative synthetic data would 

be training on data where the true class is known, and could potentially outperform a human 

classifier. 
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APPENDIX A: RANDOM FOREST CLASSIFIER PYTHON CODE 

# Classifies whether a galaxy is a merger or non-merger 

# Import modules 

from astropy import units as u 

from astropy.io import fits 

from astropy.nddata import Cutout2D 

from astropy.table import Table 

from astropy.visualization import imshow_norm, SqrtStretch, LogStretch 

from astropy.wcs import WCS 

import csv 

from datetime import datetime 

from matplotlib import cm 

import matplotlib as mpl 

from matplotlib.colors import LogNorm 

import matplotlib.pyplot as plt 

from matplotlib.ticker import LinearLocator, FormatStrFormatter 

from mpl_toolkits import mplot3d 

import numpy as np 

import os 

import pandas as pd 

from pathlib import Path 

from pprint import pprint 

from sklearn.ensemble import RandomForestClassifier 

from sklearn.metrics import plot_confusion_matrix, plot_roc_curve 

from sklearn.model_selection import RandomizedSearchCV 

from sklearn.model_selection import train_test_split 

 

# Define Paths 

homepath = Path(str(os.path.normpath(os.getcwd() + os.sep + os.pardir))) 

mos_path = homepath / 'Mosaics' 

params_path = homepath / 'StructuralParameters' 

data_path = homepath / 'RF Classifiers' / 'Data' 

results_path = homepath / 'RF Classifiers' / 'Results' / 'Mergefrac' 

 

# Prepare Training and Testing Data 

# Read CANDELS .fits tables into Python 

gds = fits.open(params_path / 'CANDELS.GDS.1018.wCAS_VC.fits') 

uds = fits.open(params_path / 'CANDELS.UDS.1018.wCAS_VC.fits') 

gdn = fits.open(params_path / 'CANDELS.GDN.1018.wCAS_VC.fits') 

cos = fits.open(params_path / 'CANDELS.COS.1018.wCAS_VC.fits') 

egs = fits.open(params_path / 'CANDELS.EGS.1018.wCAS_VC.fits') 

 

# Extract data array from CANDELS .fits tables 

gds_data = Table(gds[1].data) 

uds_data = Table(uds[1].data) 
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gdn_data = Table(gdn[1].data) 

cos_data = Table(cos[1].data) 

egs_data = Table(egs[1].data) 

gds_data['Field'] = 1  # 1 = GOODS-S 

uds_data['Field'] = 2  # 2 = UDS 

gdn_data['Field'] = 3  # 3 = GOODS-N 

cos_data['Field'] = 4  # 4 = COSMOS 

egs_data['Field'] = 5  # 5 = EGS 

 

# Create numpy arrays of features to be trained on 

features_gds = np.array([gds_data['ID'], gds_data['HMAG'], gds_data['ZBEST'], 

gds_data['VC_F_MERGER'], gds_data['GINI'], 

                         gds_data['M20'], gds_data['CONC'], gds_data['ASYM'], gds_data['MASS'], 

gds_data['SFR'], 

                         gds_data['RKPC_GALFIT'], gds_data['RA'], gds_data['DEC'], 

gds_data['VC_F_ASYM'], 

                         gds_data['VC_F_TIDAL'], gds_data['X_IMAGE'], gds_data['Y_IMAGE'], 

gds_data['Field']]) 

features_uds = np.array([uds_data['ID'], uds_data['HMAG'], uds_data['ZBEST'], 

uds_data['VC_F_MERGER'], uds_data['GINI'], 

                         uds_data['M20'], uds_data['CONC'], uds_data['ASYM'], uds_data['MASS'], 

uds_data['SFR'], 

                         uds_data['RKPC_GALFIT'], uds_data['RA'], uds_data['DEC'], 

uds_data['VC_F_ASYM'], 

                         uds_data['VC_F_TIDAL'], uds_data['X_IMAGE'], uds_data['Y_IMAGE'], 

uds_data['Field']]) 

features_gdn = np.array([gdn_data['ID'], gdn_data['HMAG'], gdn_data['ZBEST'], 

gdn_data['VC_F_MERGER'], gdn_data['GINI'], 

                         gdn_data['M20'], gdn_data['CONC'], gdn_data['ASYM'], gdn_data['MASS'], 

gdn_data['SFR'], 

                         gdn_data['RKPC_GALFIT'], gdn_data['RA'], gdn_data['DEC'], 

gdn_data['VC_F_ASYM'], 

                         gdn_data['VC_F_TIDAL'], gdn_data['X_IMAGE'], gdn_data['Y_IMAGE'], 

gdn_data['Field']]) 

features_cos = np.array([cos_data['ID'], cos_data['HMAG'], cos_data['ZBEST'], 

cos_data['VC_F_MERGER'], cos_data['GINI'], 

                         cos_data['M20'], cos_data['CONC'], cos_data['ASYM'], cos_data['MASS'], 

cos_data['SFR'], 

                         cos_data['RKPC_GALFIT'], cos_data['RA'], cos_data['DEC'], 

cos_data['VC_F_ASYM'], 

                         cos_data['VC_F_TIDAL'], cos_data['X_IMAGE'], cos_data['Y_IMAGE'], 

cos_data['Field']]) 

features_egs = np.array([egs_data['ID'], egs_data['HMAG'], egs_data['ZBEST'], 

egs_data['VC_F_MERGER'], egs_data['GINI'], 

                         egs_data['M20'], egs_data['CONC'], egs_data['ASYM'], egs_data['MASS'], 

egs_data['SFR'], 
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                         egs_data['RKPC_GALFIT'], egs_data['RA'], egs_data['DEC'], 

egs_data['VC_F_ASYM'], 

                         egs_data['VC_F_TIDAL'], egs_data['X_IMAGE'], egs_data['Y_IMAGE'], 

egs_data['Field']]) 

 

# Concatenate to create one features array 

features = np.concatenate((features_gds, features_uds, features_cos, features_egs), axis=1) 

features = np.transpose(features) 

print('Total number of galaxies before cuts: ', len(features)) 

 

# Create pandas dataframe, labelling columns appropriately 

features = pd.DataFrame(features, columns = ['ID','HMAG', 'ZBEST', 'VC_F_MERGER', 'GINI', 

'M20', 'CONC', 'ASYM', 'MASS', 'SFR', 

                                             'rkpc', 'RA', 'Dec', 'VC_F_ASYM', 'VC_F_TIDAL', 'X_IMAGE', 

'Y_IMAGE', 'Field']) 

features['merge_frac'] = 

features['VC_F_MERGER']+features['VC_F_ASYM']+features['VC_F_TIDAL'] 

 

# Set upper/lower limits for Visual Magnitude (Hmag), Redshift (Z), Mass, Star Formation Rate 

(SFR), and Galactic Radius (rkpc) 

hmag_lower = 0 

hmag_upper = 24.5 

z_lower = 0.5 

z_upper = 2.5 

mass = 9 

sfr = 0 

rkpc = 0 

merger_limit = 2.0 

 

# Make data cuts to HMAG, Z, Mass, SFR, and rkpc 

mergers = features[features.merge_frac >= merger_limit] 

print('Number of mergers before cuts: ', len(mergers)) 

mergers = mergers[(mergers.HMAG <= hmag_upper) & (mergers.HMAG >= hmag_lower)] 

mergers = mergers[(mergers.ZBEST > z_lower) & (mergers.ZBEST <= z_upper)] 

mergers = mergers[mergers.MASS >= mass] 

mergers = mergers[mergers.SFR >= sfr] 

mergers = mergers[mergers.rkpc >= rkpc] 

 

# Remove rows with no values for Gini, M20, Concentration, and Asymmetry 

mergers = mergers[mergers.GINI != -99.00] 

mergers = mergers[mergers.M20 != -99.00] 

mergers = mergers[mergers.CONC != -99.00] 

mergers = mergers[mergers.ASYM != -99.00] 

mergers['Merger'] = 1 

n_mergers = len(mergers) 

print('Number of mergers after cuts: ', str(n_mergers)) 
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# Non-mergers 

n_nonmergers = n_mergers 

n_nonmergers = round(n_nonmergers) 

 

# Make feature cuts 

nonmergers = features[features.merge_frac == 0] 

print('Number of nonmergers before cuts: ', len(nonmergers)) 

nonmergers = nonmergers[(nonmergers.HMAG <= 24.5) & (nonmergers.HMAG >= 0)] 

nonmergers = nonmergers[(nonmergers.ZBEST >= 0.5) & (nonmergers.ZBEST <= 2.5)] 

nonmergers = nonmergers[nonmergers.MASS >= 9] 

nonmergers = nonmergers[nonmergers.SFR >= 0] 

nonmergers = nonmergers[nonmergers.rkpc >= 0] 

nonmergers = nonmergers[nonmergers.GINI != -99.00] 

nonmergers = nonmergers[nonmergers.M20 != -99.00] 

nonmergers = nonmergers[nonmergers.CONC != -99.00] 

nonmergers = nonmergers[nonmergers.ASYM != -99.00] 

nonmergers = nonmergers.sample(frac=1) 

nonmergers = nonmergers.iloc[:n_nonmergers] 

nonmergers['Merger'] = 0 

print('Number of nonmergers after cuts: ', len(nonmergers)) 

 

# Shuffle merger dataframe 

mergers = mergers.sample(frac=1) 

 

# Concatenate mergers and nonmergers darafraems 

data = pd.concat([mergers, nonmergers]) 

print('Number of data points: ', (n_mergers+n_nonmergers)) 

 

# Prepare training/testing data arrays 

# Shuffle the data randomly 

data = data.sample(frac=1)  

 

# Drop rows with NaN values from data 

data.dropna()  

 

# Number of training data points (75% of all data points are training points) 

n_training = len(data)*0.75 

# Number of training data points 

n_training = round(n_training) 

# Number of testing data points 

n_testing = len(data) - n_training  

# Create numpy array containing data features 

data_array = np.array(data, float)   

# Create training data array 

training_data = data.iloc[:n_training] 
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# Drop unused features from training data array 

training_data = training_data.drop(['HMAG', 'ZBEST', 'VC_F_MERGER'], axis=1) 

# Create testing data array 

testing_data = data.iloc[n_training:] 

# Drop unused features from testing data array 

testing_data = testing_data.drop(['HMAG', 'ZBEST', 'VC_F_MERGER'], axis=1)   

         

training_features = training_data.columns[1:8] 

print('Training on features: ', str(training_features)[7:-18]) 

# Create directory for Results 

X = str(datetime.now()) 

X = X.replace(' ', '_') 

X = X.replace(':','_') 

X = X[:-7] 

path = results_path / str(X) 

print(path) 

 

try: 

    os.mkdir(path) 

except OSError: 

    print('Creation of directory %s failed' % path) 

else: 

    print('Creation of directory %s successful!' % path) 

 

# Create .txt file containing data size, magnitude/redshift/etc cuts 

filename = path / 'Dataset.txt' 

file = open(filename, 'w') 

file.write('---- Data Set ----\n\n') 

file.write('Fields: GOODS-S, COSMOS, UDS, EGS\n') 

file.write('Total number of galaxies before cuts: '+str(len(features))+'\n') 

file.write('Number of mergers before cuts: '+str(len(mergers))+'\n') 

file.write('Number of nonmergers after cuts: '+str(len(nonmergers))+'\n\n') 

file.write('Total number of data points: '+str(len(mergers)+len(nonmergers))+'\n\n') 

file.write('Training data size: '+str(len(training_data))+'\n') 

file.write('Number of training nonmergers: '+str(len(training_data[training_data.Merger == 

0]))+'\n') 

file.write('Number of training mergers: '+str(len(training_data[training_data.Merger == 

1]))+'\n\n') 

file.write('Testing data size: '+str(len(testing_data))+'\n') 

file.write('Number of testing nonmergers: '+str(len(testing_data[testing_data.Merger == 0]))+'\n') 

file.write('Number of testing mergers: '+str(len(testing_data[testing_data.Merger == 1]))+'\n\n') 

file.write('---- Data Criteria ----\n\n') 

file.write('Mergers classified when merge_frac >= '+str(merger_limit)+'\n') 

file.write('Hmag: '+str(hmag_lower)+'< Hmag < '+str(hmag_upper)+'\n') 

file.write('Redshift: '+str(z_lower)+'< z < '+str(z_upper)+'\n') 

file.write('Mass: m > '+str(mass)+'\n') 
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file.write('Star Formation Rate: sfr > '+str(sfr)+'\n') 

file.write('Galactic half-light radius: rkpc > '+str(rkpc)+'\n') 

file.write('Gini, M20, Asymmetry, Concentration != -99 or NaN') 

file.close() 

 

# Prepare classifier for training and testing 

# Define General Random Forest Classifier 

clf = RandomForestClassifier(random_state=43) 

 

# Prepare grid of hyperparameters to train on 

# Number of trees in the forest 

n_estimators = [int(x) for x in np.linspace(start=100, stop=200, num=11)] 

# Maximum number of features considered at each tree node 

max_features = [2] 

# Maximum levels in each decision tree 

max_depth = [None] 

# Minimum number of data points considered at each node before node is split 

min_samples_split = [2] 

# Minimum number of data points allowed in each leaf node 

min_samples_leaf = [4] 

# Method for sampling (replacement or no replacement) 

bootstrap = [True, False] 

# Create and print parameter grid for randomized cross-validation 

random_grid = {'n_estimators': n_estimators, 

               'max_features': max_features, 

               'max_depth': max_depth, 

               'min_samples_split': min_samples_split, 

               'min_samples_leaf': min_samples_leaf, 

               'bootstrap': bootstrap} 

print('Hyperparameter candidates:') 

print() 

pprint(random_grid) 

print() 

# Define Randomized Search Cross-validation training function 

# using RF Classifier as estimator and random_grid 

# for parameters 

# Define number of folds for cross-validation 

cv = 5 

rf_random = RandomizedSearchCV(estimator=clf, param_distributions=random_grid, 

                               n_iter=11, cv=5, verbose=False, random_state=43) 

print('Training and Determining Optimal Hyperparameters...\n') 

rf_random.fit(training_data[training_features], training_data['Merger']) 

print('Training complete!\n') 

best_hyperparams = rf_random.best_params_ 

# Print optimal hyperparameters 

print('Optimal Hyperparameters:\n') 
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pprint(best_hyperparams) 

# Classifier testing data using optimal hyperparameters 

# Define classifier using optimal hyperparameters 

best_random = rf_random.best_estimator_ 

# Classify testing data 

preds = best_random.predict(testing_data[training_features]) 

# Create new column in testing data for Predicted Classes 

testing_data['Predicted Merger'] = preds 

# Analyze testing results 

# Create spreadsheet containing Training and Testing Data 

training_data.to_csv(path / 'TrainingData.csv') 

testing_data.to_csv(path / 'TestingData.csv') 

# Create a confusion matrix and define elements of the matrix 

confusion_matrix = pd.crosstab([testing_data['Merger']], preds, rownames=['Actual Merger'], 

colnames=['Predicted Merger']) 

TN = confusion_matrix.iloc[0,0] 

TP = confusion_matrix.iloc[1,1] 

FN = confusion_matrix.iloc[1,0] 

FP = confusion_matrix.iloc[0,1] 

# Print confusion matrix and number of TN, TP, FN, FP 

print('---- Confusion Matrix ----') 

print('') 

print('0 = Non-merger\n1 = Merger\n') 

print(confusion_matrix) 

print('') 

print('True Negatives: ', TN) 

print('True Positives: ', TP) 

print('False Negatives: ', FN) 

print('False Positives: ', FP) 

print('') 

print('--------------------------') 

print('') 

# Calculate and print Accuracy, Precision, and Recall 

Accuracy = ((TP+TN)/(TP+TN+FP+FN))*100 

Recall = TP/(TP+FN) 

Precision = TP/(TP+FP) 

F1 = 2*(Precision*Recall)/(Precision+Recall) 

print('Accuracy = ', str(Accuracy)[:7], '%') 

print('Recall = ', str(Recall)[:6]) 

print('Precision = ', str(Precision)[:6]) 

print('F1 Score = ', str(F1)[:6]) 

print('') 

print('--------------------------') 

print('') 

print('Successful Nonmergers Predictions: ', str(TN/(TN+FP))) 

print('Successful Mergers Predictions: ', str(TP/(FN+TP))) 
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# Feature Importance 

feature_importance = best_random.feature_importances_ 

print(feature_importance) 

# Write txt file containing confusion matrix and statistics 

filename = path / 'ConfusionMatrix.txt'  

file = open(filename, 'w') 

file.write('---- Confusion Matrix ----\n\n') 

file.write('0 = Non-merger\n1 = Merger\n\n') 

file.write(str(confusion_matrix)) 

file.write('\n\nTrue Negatives: '+str(TN)) 

file.write('\nTrue Positives: '+str(TP)) 

file.write('\nFalse Negatives: '+str(FN)) 

file.write('\nFalse Positives: '+str(FP)+'\n') 

file.write('\nAccuracy: '+str(Accuracy)[:7]+'%') 

file.write('\nRecall: '+str(Recall)[:6]) 

file.write('\nPrecision: '+str(Precision)[:6]+'\n') 

file.write('\nF1 Score: '+str(F1)[:6]+'\n') 

file.write('\nSuccessful Nonmerger Predictions: '+str(TN/(TN+FP))[:6]+'%') 

file.write('\nSuccessful Merger Predictions: '+str(TP/(FN+TP))+'%\n\n') 

file.write('---- Feature Importance ----\n\n') 

file.write('GINI: '+str(feature_importance[0])+'\n') 

file.write('M20: '+str(feature_importance[1])+'\n') 

file.write('Concentration: '+str(feature_importance[2])+'\n') 

file.write('Asymmetry: '+str(feature_importance[3])+'\n') 

file.write('Mass: '+str(feature_importance[4])+'\n') 

file.write('Star Formation Rate: '+str(feature_importance[5])+'\n') 

file.write('Galactic Half-light Radius: '+str(feature_importance[6])+'\n') 

file.close() 

# Plot a confusion matrix 

class_names = ['Non-merger\n(Mergefrac)', 'Merger\n(Mergefrac)'] 

disp = plot_confusion_matrix(best_random, testing_data[training_features], 

testing_data['Merger'], 

                             display_labels=class_names, 

                            cmap=plt.cm.Blues, 

                            normalize=None) 

disp.ax_.set_title('Random Forest Classifier Confusion Matrix') 

disp.plot(cmap=plt.cm.Blues) 

plt.title('Random Forest Classifier Confusion Matrix') 

plt.savefig(path / 'ConfusionMatrix.png') 

# Plot ROC Curve 

viz = plot_roc_curve(best_random, testing_data[training_features], testing_data['Merger']) 

viz.plot() 

plt.title('Merger Random Forest Classifier ROC Curve') 

plt.savefig(path / 'ROC_Curve.png') 

# Add Accuracy, Recall, and Precision to spreadsheet of run data 

from datetime import datetime 
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current_datetime = datetime.now() 

current_datetime = str(current_datetime) 

currentdate = current_datetime[:10] 

currenttime = current_datetime[11:19] 

currenttime = currenttime.replace('/', ':') 

print(current_datetime) 

print(currentdate) 

print(currenttime) 

merger_acc = TN/(TN+FP)*100 

nonmerger_acc = TP/(FN+TP)*100 

print(merger_acc) 

print(nonmerger_acc) 

test = np.array(testing_data) 

# Create empty array of color values for plotting 

color = np.zeros((len(preds)), dtype=str) 

predmerger = np.empty((0,18), float) 

prednonmerger = np.empty((0,18), float) 

for i in range(0,len(preds)): 

    # If predicted class of Galaxy i is "Merger," then its plot color is Red 

    if preds[i] == 1: 

        color[i] = 'reds' 

        # Add Galaxy i data to predmerger array 

        predmerger = np.append(predmerger, np.array([test[i]]), axis=0) 

    # If predicted class of Galaxy i is "Nonmerger," then its plot color is Blue 

    if preds[i] == 0: 

        color[i] = 'blue' 

        # Add Galaxy i data to prednonmerger array 

        prednonmerger = np.append(prednonmerger, np.array([test[i]]), axis=0) 

# Create data arrays for merger and non-merger parameters for plotting 

ID_merger, ID_nonmerger = np.array(predmerger[:,0]), np.array(prednonmerger[:,0]) 

gini_merger, gini_nonmerger = np.array(predmerger[:,1]), np.array(prednonmerger[:,1]) 

m20_merger, m20_nonmerger = np.array(predmerger[:,2]), np.array(prednonmerger[:,2]) 

asym_merger, asym_nonmerger = np.array(predmerger[:,3]), np.array(prednonmerger[:,3]) 

sersic_merger, sersic_nonmerger = np.array(predmerger[:,1]), np.array(prednonmerger[:,1]) 

mass_merger, mass_nonmerger = np.array(predmerger[:,1]), np.array(prednonmerger[:,1]) 

sfr_merger, sfr_nonmerger = np.array(predmerger[:,1]), np.array(prednonmerger[:,1]) 

rkpc_merger, rkpc_nonmerger = np.array(predmerger[:,1]), np.array(prednonmerger[:,1]) 

# Plot mergers and non-mergers M20 vs Gini 

plt.scatter(m20_merger, gini_merger,c='red', s=5) 

plt.scatter(m20_nonmerger, gini_nonmerger, c='blue', s=5) 

plt.title('Class Predictions for Test Data') 

plt.xlim 

plt.xlabel('M20') 

plt.ylabel('Gini') 

plt.legend(['Merger (Mergefrac)','Nonmerger (Mergefrac)']) 

plt.savefig(path / 'TestPreds', dpi=200) 
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# Create numpy array of training data 

train = np.array(training_data) 

# Create empty array of training data color values for plotting 

color = np.zeros((len(train)), dtype=str) 

# Create empty arrays for Merger and Nonmerger data points 

merger = np.empty((0,17), float) 

nonmerger = np.empty((0,17), float) 

for i in range(0,len(train)): 

    # If true class of Galaxy i in training data is "Merger," its plot color value is Red 

    if train[i,16] == 1: 

        color[i] = 'reds' 

        merger = np.append(merger, np.array([train[i]]), axis=0) 

    else: 

        # If true class of Galaxy i in training data is "Nonmerger," its plot color value is Blue 

        color[i] = 'blue' 

        nonmerger = np.append(nonmerger, np.array([train[i]]), axis=0) 

# Create data arrays for merger and non-merger parameters for plotting 

ID_merger, ID_nonmerger = np.array(merger[:,0]), np.array(nonmerger[:,0]) 

gini_merger, gini_nonmerger = np.array(merger[:,1]), np.array(nonmerger[:,1]) 

m20_merger, m20_nonmerger = np.array(merger[:,2]), np.array(nonmerger[:,2]) 

conc_merger, conc_nonmerger = np.array(merger[:,3]), np.array(nonmerger[:,3]) 

asym_merger, asym_nonmerger = np.array(merger[:,4]), np.array(nonmerger[:,4]) 

mass_merger, mass_nonmerger = np.array(merger[:,5]), np.array(nonmerger[:,5]) 

sfr_merger, sfr_nonmerger = np.array(merger[:,6]), np.array(nonmerger[:,6]) 

rkpc_merger, rkpc_nonmerger = np.array(merger[:,7]), np.array(nonmerger[:,7]) 

# Plot mergers and non-mergers M20 vs Gini 

# Mergers in red 

plt.scatter(m20_merger, gini_merger,c='red', s=5) 

# Nonmergers in blue 

plt.scatter(m20_nonmerger, gini_nonmerger, c='blue', s=5) 

plt.title('True Classes for Training Data') 

plt.xlabel('M20') 

plt.ylabel('Gini') 

plt.legend(['Merger (Mergefrac)','Nonmerger (Mergefrac)']) 

plt.savefig(path / 'TrainingClasses', dpi=200) 

# Mergers in red 

plt.scatter(m20_merger, rkpc_merger,c='red', s=5) 

# Nonmergers in blue 

plt.scatter(m20_nonmerger, rkpc_nonmerger, c='blue', s=5) 

plt.title('True Classes for Training Data') 

plt.xlabel('M20') 

plt.ylabel('rkpc') 

plt.legend(['Merger (Mergefrac)','Nonmerger (Mergefrac)']) 

plt.ylim((-0.5,10)) 

plt.savefig(path / 'TrainingClasses_M20_rkpc', dpi=200) 

# Generate a 3D Scatter Plot 
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ax = plt.axes(projection='3d') 

zdata = rkpc_merger 

xdata = m20_merger 

ydata = gini_merger 

ax.scatter3D(m20_merger, asym_merger, rkpc_merger, c='r', s=5, alpha=0.75) 

ax.scatter3D(m20_nonmerger, asym_nonmerger, rkpc_nonmerger, c='b', s=5, alpha=0.75) 

ax.set_xlabel('M20') 

ax.set_ylabel('Asymmetry') 

ax.set_zlabel('Galactic Radius* [kpc]') 

ax.set_ylim(-0.2,0.5) 

ax.set_zlim(0,10) 

plt.legend(['Merger (Mergefrac)','Nonmerger (Mergefrac)']) 

plt.savefig(path / 'TrainingClasses_3D', dpi=200) 

# Mergers in red 

plt.scatter(conc_merger, asym_merger,c='red', s=5) 

# Nonmergers in blue 

plt.scatter(conc_nonmerger, asym_nonmerger, c='blue', s=5) 

plt.title('True Classes for Training Data') 

plt.xlim(left=1.5) 

plt.ylim(bottom=-0.5) 

plt.xlabel('Concentration') 

plt.ylabel('Asymmetry') 

plt.legend(['Merger (Mergefrac)','Nonmerger (Mergefrac)']) 

plt.savefig(path / 'TrainingClasses_Conc_Asym', dpi=200) 

# Mergers in red 

plt.scatter(sfr_merger, rkpc_merger,c='red', s=5) 

# Nonmergers in blue 

plt.scatter(sfr_nonmerger, rkpc_nonmerger, c='blue', s=5) 

plt.title('True Classes for Training Data') 

plt.xlim(left=0) 

plt.ylim(bottom=0, top=10) 

plt.xlabel('Star Formation Rate') 

plt.ylabel('Galactic Half-light Radius [kpc]') 

plt.legend(['Merger (Mergefrac)','Nonmerger (Mergefrac)']) 

plt.xlim(0,50) 

plt.savefig(path / 'TrainingClasses_SFR_rkpc', dpi=200) 

TrueVals = np.array(testing_data['Merger']) 

Problematic_gals = np.empty((0,18), float) 

Correct_nonmerger = np.empty((0,18), float) 

Incorrect_nonmerger = np.empty((0,18), float) 

Correct_merger = np.empty((0,18), float) 

Incorrect_merger = np.empty((0,18), float) 

Correct_preds = np.empty((0,18), float) 

Incorrect_preds = np.empty((0,18), float) 

                              

for i in range(0,len(preds)): 
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    # If predicted nonmerger 

    if preds[i]==0: 

        # If predicted nonmerger is correct, its plot color is Green 

        if preds[i] == TrueVals[i]: 

            # Galaxy i added to list of correctly-predicted nonmergers 

            Correct_nonmerger = np.append(Correct_nonmerger, np.array([test[i]]), axis=0) 

            # Galaxy i is added to list of Correctly Predicted galaxy classes 

            Correct_preds = np.append(Correct_preds, np.array([test[i]]), axis=0)                                                                              

        else: 

            # Galaxy added to list of incorrectly-predicted nonmergers 

            Incorrect_nonmerger = np.append(Incorrect_nonmerger, np.array([test[i]]), axis=0) 

            # Galaxy added to list of incorrect-predicted galaxy classes 

            Incorrect_preds = np.append(Incorrect_preds, np.array([test[i]]), axis=0)                                                                              

    else: 

        if preds[i] == TrueVals[i]:  # If predicted merger is correct 

            Correct_merger = np.append(Correct_merger, np.array([test[i]]), axis=0) # Galaxy i 

added to list of 

#                                                                                     correctly-predicted mergers 

            Correct_preds = np.append(Correct_preds, np.array([test[i]]), axis=0) # Galaxy i is added 

to list of 

#                                                                                     Correctly Predicted galaxy classes 

        else:  # If predicted merger is incorrect 

            Incorrect_merger = np.append(Incorrect_nonmerger, np.array([test[i]]), axis=0) # Galaxy 

added to list of 

#                                                                                             incorrectly-predicted mergers 

            Incorrect_preds = np.append(Incorrect_preds, np.array([test[i]]), axis=0) # Galaxy added 

to list of 

#                                                                                         incorrect-predicted galaxy classes 

             

ID_correct_merger, ID_incorrect_merger = np.array(Correct_merger[:,0]), 

np.array(Incorrect_merger[:,0]) 

ID_correct_nonmerger, ID_incorrect_nonmerger = np.array(Correct_nonmerger[:,0]), 

np.array(Incorrect_nonmerger[:,0]) 

gini_correct_merger, gini_incorrect_merger = np.array(Correct_merger[:,1]), 

np.array(Incorrect_merger[:,1]) 

gini_correct_nonmerger, gini_incorrect_nonmerger = np.array(Correct_nonmerger[:,1]), 

np.array(Incorrect_nonmerger[:,1]) 

m20_correct_merger, m20_incorrect_merger = np.array(Correct_merger[:,2]), 

np.array(Incorrect_merger[:,2]) 

m20_correct_nonmerger, m20_incorrect_nonmerger = np.array(Correct_nonmerger[:,2]), 

np.array(Incorrect_nonmerger[:,2]) 

conc_correct_merger, conc_incorrect_merger = np.array(Correct_merger[:,3]), 

np.array(Incorrect_merger[:,3]) 

conc_correct_nonmerger, conc_incorrect_nonmerger = np.array(Correct_nonmerger[:,3]), 

np.array(Incorrect_nonmerger[:,3]) 
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asym_correct_merger, asym_incorrect_merger = np.array(Correct_merger[:,4]), 

np.array(Incorrect_merger[:,4]) 

asym_correct_nonmerger, asym_incorrect_nonmerger = np.array(Correct_nonmerger[:,4]), 

np.array(Incorrect_nonmerger[:,4]) 

mass_correct_merger, mass_incorrect_merger = np.array(Correct_merger[:,5]), 

np.array(Incorrect_merger[:,5]) 

mass_correct_nonmerger, mass_incorrect_nonmerger = np.array(Correct_nonmerger[:,5]), 

np.array(Incorrect_nonmerger[:,5]) 

sfr_correct_merger, sfr_incorrect_merger = np.array(Correct_merger[:,6]), 

np.array(Incorrect_merger[:,6]) 

sfr_correct_nonmerger, sfr_incorrect_nonmerger = np.array(Correct_nonmerger[:,6]), 

np.array(Incorrect_nonmerger[:,6]) 

rkpc_correct_merger, rkpc_incorrect_merger = np.array(Correct_merger[:,7]), 

np.array(Incorrect_merger[:,7]) 

rkpc_correct_nonmerger, rkpc_incorrect_nonmerger = np.array(Correct_nonmerger[:,7]), 

np.array(Incorrect_nonmerger[:,7]) 

# Plot correct and incorrect predictions for Test Data 

plt.scatter(m20_correct_merger, gini_correct_merger, c='blue', s=5) # Correct merger predictions 

are Blue 

plt.scatter(m20_correct_nonmerger, gini_correct_nonmerger, c='green', s=5) # Correct merger 

predictions are Green 

plt.scatter(m20_incorrect_merger, gini_incorrect_merger, c='orange', s=5) # Incorrect merger 

predictions are Orange 

plt.scatter(m20_incorrect_nonmerger, gini_incorrect_nonmerger, c='red', s=5) # Incorrect merger 

predictions are Red 

plt.title('Correct and Incorrect Predictions for Test Data') 

plt.xlabel('M20') 

plt.ylabel('Gini') 

plt.legend(['True Merger (Mergefrac)', 'True Nonmerger (Mergefrac)', 

            'False Merger (Mergefrac)', 'False Nonmerger (Mergefrac)']) 

plt.savefig(path / 'PredictedClasses_M20_Gini', dpi=200) 

# Plot correct and incorrect predictions for Test Data (Concentration vs Asymmetry) 

plt.scatter(conc_correct_merger, asym_correct_merger, c='blue', s=5) # Correct merger 

predictions are Blue 

plt.scatter(conc_correct_nonmerger, asym_correct_nonmerger, c='green', s=5) # Correct merger 

predictions are Green 

plt.scatter(conc_incorrect_merger, asym_incorrect_merger, c='orange', s=5) # Incorrect merger 

predictions are Orange 

plt.scatter(conc_incorrect_nonmerger, asym_incorrect_nonmerger, c='red', s=5) # Incorrect 

merger predictions are Red 

plt.title('Correct and Incorrect Predictions for Test Data') 

plt.xlabel('Concentration') 

plt.ylabel('Asymmetry') 

plt.ylim(-0.25,0.75) 

plt.legend(['True Merger (Mergefrac)', 'True Nonmerger (Mergefrac)', 

            'False Merger (Mergefrac)', 'False Nonmerger (Mergefrac)']) 
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plt.savefig(path / 'PredictedClasses_Conc_Asym', dpi=200) 

# Plot correct and incorrect predictions for Test Data (m20 vs m20) 

plt.scatter(asym_correct_merger, m20_correct_merger, c='blue', s=5) # Correct merger 

predictions are Blue 

plt.scatter(asym_correct_nonmerger, m20_correct_nonmerger, c='green', s=5) # Correct merger 

predictions are Green 

plt.scatter(asym_incorrect_merger, m20_incorrect_merger, c='orange', s=5) # Incorrect merger 

predictions are Orange 

plt.scatter(asym_incorrect_nonmerger, m20_incorrect_nonmerger, c='red', s=5) # Incorrect 

merger predictions are Red 

plt.title('Correct and Incorrect Predictions for Test Data') 

plt.xlabel('Asymmetry') 

plt.ylabel('M20') 

plt.legend(['True Merger (Mergefrac)', 'True Non-merger (Mergefrac)', 

            'False Merger (Mergefrac)', 'False Non-merger (Mergefrac)']) 

plt.savefig(path / 'PredictedClasses_Asym_m20', dpi=200) 

# Write text file containing Problematic/Misclassified galaxies 

filename = path / 'Problematic_galaxies.txt' 

print(filename) 

         

file = open(filename, 'w') 

file.write("Run was completed on "+currentdate+" at "+currenttime+"\n\nID, RA, Dec, X 

Position, Y Position\n\n") 

for i in range(len(Incorrect_preds)): 

    file.write( 

str(Incorrect_preds[i,0].astype(int))+','+str(Incorrect_preds[i,8])+','+str(Incorrect_preds[i,9])+','+

str(round(Incorrect_preds[i,12]))+','+str(round(Incorrect_preds[i,13]))+'\n' ) 

    if i == len(Incorrect_preds)-1: 

        print('File Saved!') 

        file.close() 

# Load CANDELS mosaics for galaxy cutouts 

gdn_file = mos_path / 'f160w' / 'goodsn.fits' 

gds_file = mos_path / 'f160w' / 'goodss.fits' 

uds_file = mos_path / 'f160w' / 'uds.fits' 

cos_file = mos_path / 'f160w' / 'cos.fits' 

egs_file = mos_path / 'f160w' / 'egs.fits' 

gdn_mos = fits.getdata(gdn_file, dtype='float64') 

gds_mos = fits.getdata(gds_file, dtype='float64') 

uds_mos = fits.getdata(uds_file, dtype='float64') 

cos_mos = fits.getdata(cos_file, dtype='float64') 

egs_mos = fits.getdata(egs_file, dtype='float64') 

# Convert Pixels to WCS 

w_gds = WCS(str(gds_file)) 

w_gdn = WCS(str(gds_file)) 

w_uds = WCS(str(uds_file)) 

w_cos = WCS(str(cos_file)) 
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w_egs = WCS(str(egs_file)) 

# Create thumbnail cutouts of incorrectly classified galaxies 

# First, we make a directory to save the thumbnail images to 

figpath = path+'\IncorrectPreds' 

try: 

    os.mkdir(figpath) 

except OSError: 

    print('Creation of directory %s failed' % figpath) 

else: 

    print('Creation of directory %s successful!' % figpath) 

for i in range (len(Incorrect_preds)): 

    RA = Incorrect_preds[i,8] 

    Dec = Incorrect_preds[i,9] 

    n_gal = str(Incorrect_preds[i,0]) 

    n_gal = n_gal[:-2] 

    size = (150,150) 

    if Incorrect_preds[i,14]==1: 

        field = 'GOODS-S' 

        mosaic = gds_mos 

        pos = w_gds.wcs_world2pix(RA, Dec, 0) 

    elif Incorrect_preds[i,14] == 2: 

        field = 'UDS' 

        mosaic = uds_mos 

        pos = w_uds.wcs_world2pix(RA, Dec, 0) 

    elif Incorrect_preds[i,14] == 3: 

        field = 'GOODS-N' 

        mosaic = gdn_mos 

        pos = w_gdn.wcs_world2pix(RA, Dec, 0) 

    elif Incorrect_preds[i,14] == 4: 

        field = 'COSMOS' 

        mosaic = cos_mos 

        pos = w_cos.wcs_world2pix(RA, Dec, 0) 

    else: 

        field = 'EGS' 

        mosaic = egs_mos 

        pos = w_egs.wcs_world2pix(RA, Dec, 0) 

    cutout = Cutout2D(mosaic, pos, size) 

    plt.figure() 

    im, norm = imshow_norm(cutout.data, cmap='gray', origin='lower', vmin=0.000001, 

vmax=10, stretch=LogStretch()) 

    plt.title('Galaxy '+n_gal) 

    if Incorrect_preds[i,16] == 0: 

        trueclass = 'Nonmerger (Mergefrac)' 

    else: 

        trueclass = 'Merger (Mergefrac)' 

    if Incorrect_preds[i,17] == 0: 
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        predictedclass = 'Nonmerger (Mergefrac)' 

    else: 

        predictedclass = 'Merger (Mergefrac)' 

    plt.figtext(0.8, 0.5, 'Field: '+field+'\nRA: '+str(RA)+'\nDec: '+str(Dec)+'\nTrue Class: 

'+trueclass+'\nPredicted Class: '+predictedclass) 

    plt.savefig(figpath+'/Galaxy'+n_gal+'.png', dpi=200, bbox_inches='tight') 

         

# Create thumbnail cutouts of Training Data 

# First, we make a directory to save the training nonmerger thumbnail images to 

trainingnonmergerpath = path+'\TrainingNonmergers' 

trainingmergerpath = path+'\TrainingMergers' 

try: 

    os.mkdir(trainingnonmergerpath) 

except OSError: 

    print('Creation of directory %s failed' % figpath) 

else: 

    print('Creation of directory %s successful!' % figpath) 

# Make a directory to save the training merger thumbnail images to 

try: 

    os.mkdir(trainingmergerpath) 

except OSError: 

    print('Creation of directory %s failed' % figpath) 

else: 

    print('Creation of directory %s successful!' % figpath) 

merger_count = 0 

nonmerger_count = 0 

for i in range(len(train)): 

    if merger_count + nonmerger_count == 40: 

        print('Merger Count = ', merger_count) 

        print('Nonmerger Count = ', nonmerger_count) 

        break 

    else: 

        RA = train[i,8] 

        Dec = train[i,9] 

        n_gal = str(train[i,0]) 

        n_gal = n_gal[:-2] 

        size = (150,150) 

        if train[i,14]==1: 

            field = 'GOODS-S' 

            mosaic = gds_mos 

            pos = w_gds.wcs_world2pix(RA, Dec, 0) 

        elif train[i,14] == 2: 

            field = 'UDS' 

            mosaic = uds_mos 

            pos = w_uds.wcs_world2pix(RA, Dec, 0) 

        elif train[i,14] == 3: 
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            field = 'GOODS-N' 

            mosaic = gdn_mos 

            pos = w_gdn.wcs_world2pix(RA, Dec, 0) 

        elif train[i,14] == 4: 

            field = 'COSMOS' 

            mosaic = cos_mos 

            pos = w_cos.wcs_world2pix(RA, Dec, 0) 

        else: 

            field = 'EGS' 

            mosaic = egs_mos 

            pos = w_egs.wcs_world2pix(RA, Dec, 0) 

        cutout = Cutout2D(mosaic, pos, size) 

        plt.figure() 

        im, norm = imshow_norm(cutout.data, cmap='gray', origin='lower', vmin=0.000001, 

vmax=10, stretch=LogStretch()) 

        plt.title('Galaxy '+n_gal) 

        if train[i,16] == 0: 

            if nonmerger_count == 20: 

                continue 

            else: 

                plt.figtext(0.8, 0.5, 'True Class: Non-merger (Mergefrac)\n'+'Merger Fraction = 

'+str(train[i,15])) 

                plt.savefig(trainingnonmergerpath+'/Galaxy'+n_gal+'.png', dpi=200, 

bbox_inches='tight') 

                nonmerger_count += 1 

        if train[i,16] == 1: 

            if merger_count == 20: 

                continue 

            else: 

                plt.figtext(0.8, 0.5, 'True Class: Merger (Mergefrac)\n'+'Merger Fraction = 

'+str(train[i,15])) 

                plt.savefig(trainingmergerpath+'/Galaxy'+n_gal+'.png', dpi=200, bbox_inches='tight') 

                merger_count += 1 

# Create thumbnail cutouts of Training Data 

# First, we make a directory to save the training nonmerger thumbnail images to 

testingnonmergerpath = path+'\TestingNonmergers' 

testingmergerpath = path+'\TestingMergers' 

try: 

    os.mkdir(testingnonmergerpath) 

except OSError: 

    print('Creation of directory %s failed' % figpath) 

else: 

    print('Creation of directory %s successful!' % figpath) 

# Make a directory to save the training merger thumbnail images to 

try: 

    os.mkdir(testingmergerpath) 
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except OSError: 

    print('Creation of directory %s failed' % figpath) 

else: 

    print('Creation of directory %s successful!' % figpath) 

merger_count = 0 

nonmerger_count = 0 

for i in range(len(test)): 

    if merger_count + nonmerger_count == 40: 

        print('Merger Count = ', merger_count) 

        print('Nonmerger Count = ', nonmerger_count) 

        break 

    else: 

        RA = test[i,8] 

        Dec = test[i,9] 

        n_gal = str(test[i,0]) 

        n_gal = n_gal[:-2] 

        size = (150,150) 

        if test[i,14]==1: 

            field = 'GOODS-S' 

            mosaic = gds_mos 

            pos = w_gds.wcs_world2pix(RA, Dec, 0) 

        elif test[i,14] == 2: 

            field = 'UDS' 

            mosaic = uds_mos 

            pos = w_uds.wcs_world2pix(RA, Dec, 0) 

        elif test[i,14] == 3: 

            field = 'GOODS-N' 

            mosaic = gdn_mos 

            pos = w_gdn.wcs_world2pix(RA, Dec, 0) 

        elif test[i,14] == 4: 

            field = 'COSMOS' 

            mosaic = cos_mos 

            pos = w_cos.wcs_world2pix(RA, Dec, 0) 

        else: 

            field = 'EGS' 

            mosaic = egs_mos 

            pos = w_egs.wcs_world2pix(RA, Dec, 0) 

        cutout = Cutout2D(mosaic, pos, size) 

        plt.figure() 

        im, norm = imshow_norm(cutout.data, cmap='gray', origin='lower', vmin=0.000001, 

vmax=10, stretch=LogStretch()) 

        plt.title('Galaxy '+n_gal) 

        if test[i,16] == 0: 

            if nonmerger_count == 20: 

                continue 

            else: 
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                plt.figtext(0.8, 0.5, 'True Class: Non-merger (Mergefrac)\n'+'Merger Fraction = 

'+str(test[i,15])) 

                plt.savefig(testingnonmergerpath+'/Galaxy'+n_gal+'.png', dpi=200, 

bbox_inches='tight') 

                nonmerger_count += 1 

        if test[i,16] == 1: 

            if merger_count == 20: 

                continue 

            else: 

                plt.figtext(0.8, 0.5, 'True Class: Merger (Mergefrac)\n'+'Merger Fraction = 

'+str(test[i,15])) 

                plt.savefig(testingmergerpath+'/Galaxy'+n_gal+'.png', dpi=200, bbox_inches='tight') 

                merger_count += 1 

plt.close('all') 

print('Finished!')
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APPENDIX B: COMPUTER VISION DATASET GENERATOR PYTHON CODE 

# This code will learn to classify images of galaxy mergers in the CANDELS fields 

# Import modules 

from astropy import units as u 

from astropy.io import fits 

from astropy.nddata import Cutout2D 

from astropy.table import Table 

from astropy.visualization import imshow_norm, SqrtStretch, LogStretch 

from astropy.wcs import WCS 

from datetime import datetime 

import glob 

import itertools 

from keras.callbacks import EarlyStopping, ModelCheckpoint 

from keras.layers import Conv2D, MaxPooling2D, Dense, Flatten 

from keras.models import Sequential, model_from_json, load_model 

from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, 

load_img 

from keras.utils import to_categorical 

import matplotlib as mpl 

from matplotlib.colors import LogNorm 

import matplotlib.image as mpimg 

import matplotlib.pyplot as plt 

from matplotlib.ticker import LinearLocator, FormatStrFormatter 

import numpy as np 

from numpy import asarray, concatenate 

import os 

import pandas as pd 

from pathlib import Path 

from PIL import Image 

from pprint import pprint 

from sklearn.metrics import confusion_matrix, roc_curve 

from sklearn.model_selection import train_test_split 

# Define Paths 

homepath = Path(str(os.path.normpath(os.getcwd() + os.sep + os.pardir))) 

mos_path = homepath / 'Mosaics' 

params_path = homepath / 'StructuralParameters' 

indfeats_path = homepath / 'CV_Data' / 'Merger' / 'Ind_feats' 

asymclass_path = indfeats_path / 'Asym' 

tidalclass_path = indfeats_path / 'Tidal' 

mergeclass_path = indfeats_path / 'Merge' 

mergefracclass_path = indfeats_path / 'Mergefrac' 

# First, we will generate training/validation data sets for Computer Vision classifier 

# Cutouts will be generated in five different HST WFC3 filters: F105W, F125W, F140W, and 

F160W  

# Import CANDELS data tables 
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# These tables include measured galaxy parameters such as redshift, mass, size, field, etc. 

# Read CANDELS .fits tables into Python 

gds = fits.open(params_path / 'CANDELS.GDS.1018.wCAS_VC.fits') 

uds = fits.open(params_path / 'CANDELS.UDS.1018.wCAS_VC.fits') 

gdn = fits.open(params_path / 'CANDELS.GDN.1018.wCAS_VC.fits') 

cos = fits.open(params_path / 'CANDELS.COS.1018.wCAS_VC.fits') 

egs = fits.open(params_path / 'CANDELS.EGS.1018.wCAS_VC.fits') 

# Extract data array from CANDELS .fits tables 

gds_data = Table(gds[1].data) 

uds_data = Table(uds[1].data) 

gdn_data = Table(gdn[1].data) 

cos_data = Table(cos[1].data) 

egs_data = Table(egs[1].data) 

# Remove unused variables 

del gds, uds, gdn, cos, egs 

# Assign numerical values for field 

gds_data['Field'] = 1  # 1 = GOODS-S 

uds_data['Field'] = 2  # 2 = UDS 

gdn_data['Field'] = 3  # 3 = GOODS-N 

cos_data['Field'] = 4  # 4 = COSMOS 

egs_data['Field'] = 5  # 5 = EGS 

# Create numpy arrays of features to be trained on 

features_gds = np.array([gds_data['ID'], gds_data['Field'], gds_data['HMAG'], 

gds_data['ZBEST'], gds_data['MASS'], gds_data['VC_F_MERGER'], gds_data['VC_F_ASYM'], 

gds_data['VC_F_TIDAL'], gds_data['RA'], gds_data['DEC'], gds_data['X_IMAGE'], 

gds_data['Y_IMAGE']]) 

features_uds = np.array([uds_data['ID'], uds_data['Field'], uds_data['HMAG'], 

uds_data['ZBEST'], uds_data['MASS'], uds_data['VC_F_MERGER'], uds_data['VC_F_ASYM'], 

uds_data['VC_F_TIDAL'], uds_data['RA'], uds_data['DEC'], uds_data['X_IMAGE'], 

uds_data['Y_IMAGE']]) 

features_gdn = np.array([gdn_data['ID'], gdn_data['Field'], gdn_data['HMAG'], 

gdn_data['ZBEST'], gdn_data['MASS'], gdn_data['VC_F_MERGER'], 

gdn_data['VC_F_ASYM'], gdn_data['VC_F_TIDAL'], gdn_data['RA'], gdn_data['DEC'], 

gdn_data['X_IMAGE'], gdn_data['Y_IMAGE']]) 

features_cos = np.array([cos_data['ID'], cos_data['Field'], cos_data['HMAG'], 

cos_data['ZBEST'], cos_data['MASS'], cos_data['VC_F_MERGER'], cos_data['VC_F_ASYM'], 

cos_data['VC_F_TIDAL'], cos_data['RA'], cos_data['DEC'], cos_data['X_IMAGE'], 

cos_data['Y_IMAGE']]) 

features_egs = np.array([egs_data['ID'], egs_data['Field'], egs_data['HMAG'], 

egs_data['ZBEST'], egs_data['MASS'], egs_data['VC_F_MERGER'], egs_data['VC_F_ASYM'], 

egs_data['VC_F_TIDAL'], egs_data['RA'], egs_data['DEC'], egs_data['X_IMAGE'], 

egs_data['Y_IMAGE']]) 

# Remove unused variables 

del gds_data, uds_data, gdn_data, cos_data, egs_data 

# Concatenate to create one features array 
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features = np.concatenate((features_gds, features_uds, features_cos, features_egs, features_gdn), 

axis=1) 

# Remove unused variables 

del features_gds, features_uds, features_gdn, features_cos, features_egs 

features = np.transpose(features) 

print('Total number of galaxies before cuts: ', len(features)) 

# Create pandas dataframe, labelling columns appropriately 

features = pd.DataFrame(features, columns = ['ID', 'Field', 'HMAG', 'ZBEST', 'MASS', 

'VC_F_MERGER', 'VC_F_ASYM', 'VC_F_TIDAL', 'RA', 'Dec',  'X_IMAGE', 'Y_IMAGE']) 

features['merge_frac'] = 

(features['VC_F_MERGER']+features['VC_F_ASYM']+features['VC_F_TIDAL'])/3 

mergers = features[features.VC_F_MERGER >= 0.6] 

# Define magnitude, redshift, and mass cutoffs for data points 

features = features[(features.HMAG <= 24.5) & (features.HMAG >= 0)]  # Magnitude cutoff of 

24.5 

features = features[(features.ZBEST > 0.5) & (features.ZBEST <= 2.5)]  # 0.5<z<2.5 

features = features[features.MASS >= 9] # Mass minimum of 10^9 solar mass 

# Create flags for Merge_frac, Asymmetry, Merger, and Tidal Arms 

features['merger_flag'] = np.where(features['VC_F_MERGER'] >= 0.6, True, False) 

features['asym_flag'] = np.where(features['VC_F_ASYM'] >= 0.8, True, False) 

features['tidal_flag'] = np.where(features['VC_F_TIDAL'] >= 0.6, True, False) 

features['mergefrac_flag'] = np.where(features['merge_frac'] >= 0.6, True, False) 

features = features.sample(frac=1)  # Shuffle the data randomly 

features = features.dropna()  # Drop rows with NaN values from data 

# Prepare training/testing data arrays 

n_training = len(features)*0.75  # Number of training data points (75% of all data points are 

training points) 

n_training = round(n_training)  # Number of training data points 

n_testing = len(features) - n_training  # Number of testing data points 

data_array = np.array(features, float)  # Create numpy array containing data features 

training_data = features.iloc[:n_training]  # Create training data array 

testing_data = features.iloc[n_training:]  # Create testing data array 

del features, data_array, mergers 

training_data = training_data.to_numpy() 

testing_data = testing_data.to_numpy() 

# Define number of training/testing mergers/nonmergers 

n_train_mergers = np.sum(training_data[:,13]) 

print('Number of training mergers: ', n_train_mergers) 

n_train_nonmergers = len(training_data)-n_train_mergers 

print('Number of training nonmergers: ', n_train_nonmergers) 

n_test_mergers = np.sum(testing_data[:,13]) 

print('Number of testing mergers: ', n_test_mergers) 

n_test_nonmergers = len(testing_data)-n_test_mergers 

print('Number of testing nonmergers: ', n_test_nonmergers) 

# Determine how many of each class in Training Data 

n_training = len(training_data) 
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n_train_asym = np.sum(training_data[:,14]) 

n_train_sym = n_training-n_train_asym 

n_train_tidal = np.sum(training_data[:,15]) 

n_train_atidal = n_training-n_train_tidal 

n_train_merger = np.sum(training_data[:,13]) 

n_train_nonmerger = n_training-n_train_merger 

n_train_mergefrac = np.sum(training_data[:,16]) 

n_train_nonmergefrac = n_training-n_train_mergefrac 

print("This is the makeup of the Training Data array") 

print("Total number of galaxies: ", n_training) 

print("Symmetric Galaxies: ", n_train_sym) 

print("Asymmetric Galaxies: ", n_train_asym) 

print("Galaxies with Tidal Arms: ", n_train_tidal) 

print("Galaxies without Tidal Arms: ", n_train_atidal) 

print("Mergers: ", n_train_merger) 

print("Nonmergers: ", n_train_nonmerger) 

print("Mergers (mergefrac): ", n_train_mergefrac) 

print("Nonmergers (mergefrac): ", n_train_nonmergefrac) 

# Determine how many of each class in Training Data 

n_testing = len(testing_data) 

n_test_asym = np.sum(testing_data[:,14]) 

n_test_sym = n_testing-n_test_asym 

n_test_tidal = np.sum(testing_data[:,15]) 

n_test_atidal = n_testing-n_test_tidal 

n_test_merger = np.sum(testing_data[:,13]) 

n_test_nonmerger = n_testing-n_test_merger 

n_test_mergefrac = np.sum(testing_data[:,16]) 

n_test_nonmergefrac = n_testing-n_test_mergefrac 

print("This is the makeup of the Testing Data array") 

print("Total number of galaxies: ", n_testing) 

print("Symmetric Galaxies: ", n_test_sym) 

print("Asymmetric Galaxies: ", n_test_asym) 

print("Galaxies with Tidal Arms: ", n_test_tidal) 

print("Galaxies without Tidal Arms: ", n_test_atidal) 

print("Mergers: ", n_test_merger) 

print("Nonmergers: ", n_test_nonmerger) 

print("Mergers (mergefrac): ", n_test_mergefrac) 

print("Nonmergers (mergefrac): ", n_test_nonmergefrac) 

filters = ['f105w', 'f125w', 'f140w', 'f160w'] 

# Create a function to generate cutout images of galaxies in each filter 

def gal_cutout(filters, feat, traintest): 

    j = 0  # Counter for asymmetric cutouts 

    k = 0  # Counter for nonasymmetric cutouts 

     

     

    if traintest == 'train': 



97 

 

        datatype = 'Training' 

        dataarray = training_data 

    elif traintest == 'test': 

        datatype = 'Testing' 

        dataarray = testing_data 

    X_pos = np.empty((50,50), dtype=float)  # Create empty array for positive class training data 

    X_neg = np.empty((50,50), dtype=float)  # Create empty array for negative class training data 

    for h in range (len(filters)): 

         

        currentfilter = filters[h]  # Define which filter the function is currently making cutouts for 

         

        if feat == 1: 

            feat_path = asymclass_path 

            posclass = 'Asymmetric' 

            negclass = 'Symmetric' 

            featcol = 6 

            featflagcol = 14 

        elif feat == 2: 

            feat_path = tidalclass_path 

            posclass = 'Tidal' 

            negclass = 'Nontidal' 

            featcol = 7 

            featflagcol = 15 

        elif feat == 3: 

            feat_path = mergeclass_path 

            posclass = 'Merger' 

            negclass = 'Nonmerger' 

            featcol = 5 

            featflagcol = 13 

        elif feat == 4: 

            feat_path = mergefracclass_path 

            posclass = 'Merger (mergefrac)' 

            negclass = 'Nonmerger (mergefrac)' 

            featcol = 12 

            featflagcol = 16 

         

        posplot_path = feat_path / 'Plots' / datatype / posclass / currentfilter 

        negplot_path = feat_path / 'Plots' / datatype / negclass / currentfilter 

         

        filetype = '*png' 

         

         

        # Define paths for CANDELS mosaics 

        cos_file = mos_path / currentfilter / 'cos.fits' 

        egs_file = mos_path / currentfilter / 'egs.fits' 

        gdn_file = mos_path / currentfilter / 'goodsn.fits' 
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        gds_file = mos_path / currentfilter / 'goodss.fits' 

        uds_file = mos_path / currentfilter / 'uds.fits' 

        # Load data for each mosaic 

        cos_mos = fits.getdata(cos_file, dtype='float64') 

        egs_mos = fits.getdata(egs_file, dtype='float64') 

        gdn_mos = fits.getdata(gdn_file, dtype='float64') 

        gds_mos = fits.getdata(gds_file, dtype='float64') 

        uds_mos = fits.getdata(uds_file, dtype='float64') 

        # Extract WCS coordinates for each image 

        w_cos = WCS(str(cos_file)) 

        w_egs = WCS(str(egs_file)) 

        w_gdn = WCS(str(gdn_file)) 

        w_gds = WCS(str(gds_file)) 

        w_uds = WCS(str(uds_file)) 

         

        # Remove previous images from Positive and Negative Class directories 

         

        for f in glob.glob(str(posplot_path / filetype)): 

            try: 

                os.remove(f) 

            except OSError as e: 

                print("Error: %s : %s" % (f, e.strerror)) 

         

        for f in glob.glob(str(negplot_path / filetype)): 

            try: 

                os.remove(f) 

            except OSError as e: 

                print("Error: %s : %s" % (f, e.strerror)) 

        for i in range (len(dataarray)): 

            if i%1000 == 0: 

                print('i = ',i) 

            if dataarray[i,featflagcol] == True or k <= j: 

                field = 'FIELD ERROR' 

                RA = dataarray[i,8]  # Determine RA for galaxy i 

                Dec = dataarray[i,9] # Determine Declination for galaxy i 

                z = dataarray[i,3] 

                n_gal = str(dataarray[i,0]) # Determine ID of galaxi i 

                n_gal = n_gal[:-2] 

                size = (50,50)  # Define image size: 50x50 pixels 

                if dataarray[i,1]==1:  # Determine Field of galaxy i 

                    field = 'GOODS-S' 

                    mosaic = gds_mos  # Determine which field mosaic to cutout from 

                    pos = w_gds.wcs_world2pix(RA, Dec, 0)  # Determine WCS coordinates of galaxy 

within the mosaic 

                elif dataarray[i,1] == 2:  # Repeat for other CANDELS fields 

                    field = 'UDS' 
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                    mosaic = uds_mos 

                    pos = w_uds.wcs_world2pix(RA, Dec, 0) 

                if dataarray[i,1] == 3: 

                    field = 'GOODS-N' 

                    mosaic = gdn_mos 

                    pos = w_gdn.wcs_world2pix(RA, Dec, 0) 

                elif dataarray[i,1] == 4: 

                    field = 'COSMOS' 

                    mosaic = cos_mos 

                    pos = w_cos.wcs_world2pix(RA, Dec, 0) 

                elif dataarray[i,1] == 5: 

                    field = 'EGS' 

                    mosaic = egs_mos 

                    pos = w_egs.wcs_world2pix(RA, Dec, 0) 

                cutout = Cutout2D(mosaic, pos, size)  # Generate cutout 

# Skip cutout if image is empty (this occurs due to filters not completely overlapping) 

                if np.max(cutout.data) == 0:   

                    print(field+' Galaxy '+str(dataarray[i,0])+' image is empty') 

                    continue 

                plt.figure()  # Plot cutout image for user 

# Plot a normalized representation (NOTE: data has NOT been normalized, just visually 

presented as such) 

                im, norm = imshow_norm(cutout.data, origin='lower', cmap='gray')   

                plt.title('Galaxy '+n_gal) 

                if dataarray[i,featcol] == 0:  # Determine whether galaxy i is negative (class 0) or 

positive (class 1) 

                    trueclass = negclass 

                    path = negplot_path 

                    label = 0 

                    k += 1 

                    print('k = '+ str(k)) 

                elif dataarray[i,featcol] >= 0.6: 

                    trueclass = posclass 

                    label = 1 

                    path = posplot_path 

                    j += 1 

                    print('j = '+ str(j)) 

                else: 

                    continue 

                plt.figtext(0.8, 0.5, 'Field: '+field+'\nFilter: '+currentfilter+'\nRA: '+str(RA)+'\nDec: 

'+str(Dec)+'\nTrue Class: '+trueclass+'\nRedshift: '+str(z))  # Add galaxy info to the plot 

                plt.subplots_adjust(right=0.8) 

                figname = 'Galaxy'+n_gal+'.png' 

                plt.savefig(path / figname, dpi=200)  # Save the figure as .png file 

                plt.show() 
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                plt.figure().clear()  # Clear plot from memory after it has been saved to prevent 

reaching memory limit 

                plt.close()  # Close plot after being cleared 

                cutout_data = cutout.data  # Create numpy array of cutout image data 

                if label == 0: 

                    X_neg = np.dstack((X_neg, cutout_data))  # Add cutout image data to trainX array 

                    print('Negative Class Array Shape: '+str(X_neg.shape)) 

                    if k == 1: 

                        np.delete(X_neg, 0, 2) 

                        print('Deleted empty image in Negative Class array') 

                elif label == 1: 

                    X_pos = np.dstack((X_pos, cutout_data))  # Add cutout image data to trainX array 

                    print('Positive Class Array Shape: '+str(X_pos.shape)) 

                    if j == 1: 

                        np.delete(X_pos, 0, 2) 

                        print('Deleted empty image in Positive Class array') 

                del field, RA, Dec, n_gal, size, mosaic, pos, cutout, im, norm, trueclass, path, label, 

cutout_data 

        del cos_mos, gdn_mos, gds_mos, egs_mos, uds_mos 

    print('Final X_pos shape: ', X_pos.shape) 

    print('Final X_neg shape: ', X_neg.shape) 

     

    # Save numpy arrays to respective folders 

    posfilename = datatype+posclass+'AllFilters_data.npy' 

    negfilename = datatype+negclass+'AllFilters_data.npy' 

    filepath = feat_path / 'Plots' / datatype / posclass / posfilename 

    with open(filepath, 'wb') as f: 

        np.save(filepath, X_pos) 

        print('Positive Class Array Saved!') 

    filepath = feat_path / 'Plots' / datatype / negclass / negfilename 

    with open(filepath, 'wb') as f: 

        np.save(filepath, X_neg) 

        print('Negative Class Array Saved!') 

         

# Define a function that will augment datasets based on feature, class and datatype (training vs 

testing) 

def im_augment(feat, traintest): 

    if feat == 1: 

        feat_path = asymclass_path 

        posclass = 'Asymmetric' 

        negclass = 'Symmetric' 

        if traintest == 'train': 

            n_class = n_train_asym 

        else: 

            n_class = n_test_asym 

    elif feat == 2: 
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        feat_path = tidalclass_path 

        posclass = 'Tidal' 

        negclass = 'Nontidal' 

        if traintest == 'train': 

            n_class = n_train_tidal 

        else: 

            n_class = n_test_tidal 

    elif feat == 3: 

        feat_path = mergeclass_path 

        posclass = 'Merger' 

        negclass = 'Nonmerger' 

        if traintest == 'train': 

            n_class = n_train_merger 

        else: 

            n_class = n_test_merger 

    elif feat == 4: 

        feat_path = mergefracclass_path 

        posclass = 'Merger (mergefrac)' 

        negclass = 'Nonmerger (mergefrac)' 

        if traintest == 'train': 

            n_class = n_train_mergefrac 

        else: 

            n_class = n_test_mergefrac 

    if traintest == 'train': 

        datatype = 'Training' 

    elif traintest == 'test': 

        datatype = 'Testing' 

     

    posfile_name = datatype+posclass+'AllFilters_data.npy' 

    negfile_name = datatype+negclass+'AllFilters_data.npy' 

     

    posdata_path = feat_path / 'Plots' / datatype / posclass / posfile_name 

    negdata_path = feat_path / 'Plots' / datatype / negclass / negfile_name 

    posim_path = feat_path / 'Images' / datatype / posclass 

    negim_path = feat_path / 'Images' / datatype / negclass 

     

    filetype = '*png' 

     

    # Delete old Positive and Negative Class images 

     

    for f in glob.glob(str(posim_path / filetype)): 

        try: 

            os.remove(f) 

        except OSError as e: 

            print("Error: %s : %s" % (f, e.strerror)) 

    for f in glob.glob(str(negim_path / filetype)): 
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        try: 

            os.remove(f) 

        except OSError as e: 

            print("Error: %s : %s" % (f, e.strerror))     

     

    # Define augmentation function 

     

    datagen = ImageDataGenerator( 

        rotation_range=180,  # Rotate up to 180 degrees in either direction 

        horizontal_flip=True,  # Randomly flip image horizontally 

        vertical_flip=True,  # Randomly flip image vertically 

        brightness_range=[0.8,1.2],  # Randomly adjust brightness by +/- 20% 

        fill_mode='constant',  # Fill negative image space with constant value 

        cval=0) 

         

    # Load positive class array and apply augmentation function 

     

    X_pos = np.load(posdata_path) 

    X_pos = np.moveaxis(X_pos, 2, 0)  # Rearrange axes for augmentation function 

 

# Reshape array for augmentation function 

    X_pos = X_pos.reshape(X_pos.shape[0],X_pos.shape[1],X_pos.shape[2],1,1)   

     

    i = 0 

    for batch in datagen.flow(X_pos[:,:,:,0], batch_size=1, 

                              save_to_dir=posim_path, save_prefix='1_Galaxy', save_format='png'): 

        i += 1 

        if i > len(X_pos)*8:  # Define how many images to generate 

            break  # otherwise the generator would loop indefinitely 

             

    # Load negative class array and apply augmentation function 

     

    X_neg = np.load(negdata_path) 

    X_neg = np.moveaxis(X_neg, 2, 0)  # Rearrange axes for augmentation function 

    X_neg = X_neg.reshape(X_neg.shape[0],X_neg.shape[1],X_neg.shape[2],1,1)  # Reshape 

array for augmentation function 

     

    i = 0 

    for batch in datagen.flow(X_neg[:,:,:,0], batch_size=1, 

                              save_to_dir=negim_path, save_prefix='1_Galaxy', save_format='png'): 

        i += 1 

        if i > len(X_neg)*8:  # Define how many images to generate 

            break  # otherwise the generator would loop indefinitely 

     

    # Validate testing images before converting to numpy array 

    while True: 
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        try: 

            confirmation = input('WAIT! Please confirm testing images are not corrupt. Press y when 

complete: ') 

            if confirmation == 'y': 

                break 

            print('Please confirm images and press Y') 

        except Exception as e: 

            print(e) 

    # Load positive class images and convert to numpy array 

    X_pos = np.empty((50,50,1,1), dtype=float)  # Create empty array for training data 

     

    i=0 

     

    imtype = '*png' 

    for filename in glob.glob(str(posim_path / imtype)): # For all .png files in the directory 

        im=Image.open(filename) 

        data = asarray(im) 

        data = data.reshape(data.shape[0], data.shape[1], 1, 1) 

        label = 0 

        X_pos = np.append(X_pos, data, axis=2)  # Add cutout image data to trainX array 

        i+=1 

        if i%1000 == 0: 

            print(i) 

    print('X_pos shape: '+str(X_pos.shape)) 

    # Rearrange trainX axes for training 

    X_pos = np.moveaxis(X_pos,2,0)  # Move index column to be the first column 

    X_pos = np.delete(X_pos, 0,0)  # Delete first "image," which is the empty image when the 

array was created 

    Y_pos = np.ones(len(X_pos)) 

    print('X_pos shape: '+str(X_pos.shape)) 

    print('X_pos shape: '+str(X_pos.shape)) 

    # Save validation merger image data array 

    X_neg = np.empty((50,50,1,1), dtype=float)  # Create empty array for training data 

    i=0 

    for filename in glob.glob(str(negim_path / imtype)): 

        im=Image.open(filename) 

        data = asarray(im) 

        data = data.reshape(data.shape[0], data.shape[1], 1, 1) 

        label = 0 

        X_neg = np.append(X_neg, data, axis=2)  # Add cutout image data to trainX array 

        i+=1 

        if i%1000 == 0: 

            print(i) 

    print('X_neg shape: '+str(X_neg.shape)) 

    # Rearrange trainX axes for training 

    X_neg = np.moveaxis(X_neg,2,0)  # Move index column to be the first column 
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    X_neg = np.delete(X_neg, 0,0)  # Delete first "image," which is the empty image when the 

array was created 

    Y_neg = np.zeros(len(X_neg)) 

    print('X_neg shape: '+str(X_neg.shape)) 

    print('X_neg shape: '+str(X_neg.shape)) 

     

    # We create "master" data arrays for data which include image data AND labels 

    # Establish trainX nonmerger and merger image and label arrays 

    # Append image and label arrays 

    f = np.append(X_neg,X_pos, axis=0) 

    g = np.append(Y_neg,Y_pos, axis=0) 

    print(f.shape) 

    # Add new dimension to data arrays to accomodate for label indice 

    h = np.expand_dims(f,4) 

    print(h.shape) 

    # Write in labels for each image 

    for i in range(len(g)): 

        h[i,0,0,0,0] = g[i] 

    np.random.shuffle(h)  # Shuffle data array randomly (this only shuffles the first axis, so pixel 

data and labels stay together) 

    masterfile_name = datatype+'_data_master.npy' 

    mastertestpath = feat_path / 'Images' / datatype 

    # Save positive class image data array 

    filename = mastertestpath / masterfile_name 

    with open(filename, 'wb') as f: 

        np.save(filename, h) 

     

    del X_pos, Y_pos, X_neg, Y_neg, f, g, h 

# Features 

# 1 = Asymmetry 

# 2 = Tidal Arms 

# 3 = Merger 

# 4 = Merge Fraction 

len(testing_data) 

gal_cutout(filters, 1, 'test') 

del testing_data 

gal_cutout(filters, 1, 'train') 

del training_data 

im_augment(1, 'test') 

im_augment(1, 'train') 

print('Finished!')
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APPENDIX C: COMPUTER VISION MERGER CLASSIFIER PYTHON CODE 

# Import packages 

import numpy as np 

import os.path 

from numpy import concatenate 

from sklearn.metrics import confusion_matrix 

import itertools 

import matplotlib.pyplot as plt 

import matplotlib.image as mpimg 

from PIL import Image 

from datetime import datetime 

from astropy.visualization import imshow_norm, SqrtStretch, LogStretch 

from keras.preprocessing.image import load_img 

from keras.preprocessing.image import img_to_array 

from keras.preprocessing.image import ImageDataGenerator 

from keras.utils import to_categorical 

from keras.models import Sequential 

from keras.layers import Conv2D 

from keras.layers import MaxPooling2D 

from keras.layers import Dense 

from keras.layers import Flatten 

from sklearn.metrics import roc_curve 

from keras.models import load_model 

from keras.callbacks import EarlyStopping, ModelCheckpoint 

# Load training and testing datasets 

trainX_master = np.load(r'C:\Users\Alex Koch\Documents\Python\Research\Machine 

Learning\CV_Data\Merger\Ind_feats\Tidal\Images\Training\Training_data_master.npy') 

trainX = trainX_master[:,:,:,0] # The first three dimensions of trainX_master contain image data 

trainY = trainX_master[:,0,0,0] # The final column on trainX_master contains labels 

print('trainX shape: '+str(trainX.shape)) 

print('trainY shape: '+str(trainY.shape)) 

testX_master = np.load(r'C:\Users\Alex Koch\Documents\Python\Research\Machine 

Learning\CV_Data\Merger\Ind_feats\Tidal\Images\Testing\Testing_data_master.npy') 

testX = testX_master[:,:,:,0] 

testY = testX_master[:,0,0,0] 

print('testX shape: '+str(testX.shape)) 

print('testY shape: '+str(testY.shape)) 

# Reshape training and testing image data to be 1 channel deep 

trainX = trainX.reshape((trainX.shape[0],50,50,1)) 

testX = testX.reshape((testX.shape[0],50,50,1)) 

# One hot encode target labels 

trainY = to_categorical(trainY) 

testY = to_categorical(testY) 

# Normalize training/testing image data (range 0-1) 

trainX = trainX - trainX.min() 
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trainX = trainX/trainX.max() 

testX = testX - testX.min() 

testX = testX/testX.max() 

# Define Model (Dieleman et al 2015) 

model = Sequential() 

model.add(Conv2D(32, (3,3), activation='relu', kernel_initializer='he_uniform', 

input_shape=(50,50,1))) 

model.add(MaxPooling2D((2,2))) 

model.add(Conv2D(64, (5,5), activation='relu')) 

model.add(MaxPooling2D(2,2)) 

model.add(Conv2D(128, (3,3), activation='relu')) 

model.add(Conv2D(128, (3,3), activation='relu')) 

model.add(MaxPooling2D((2,2))) 

model.add(Flatten()) 

model.add(Dense(2048, activation='sigmoid'))  # Sigmoid or Softmax 

model.add(Dense(2048, activation='relu')) 

model.add(Dense(2, activation='sigmoid'))  # Sigmoid or Softmax 

model.summary() 

model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) 

# Create directory for Results 

X = str(datetime.now()) 

X = X.replace(' ', '_') 

X = X.replace(':','_') 

X = X[:-7] 

path = r'C:\Users\Alex Koch\Documents\Python\Research\Machine 

Learning\CV_Data\Merger\Ind_feats\Merge\Results\^'+X 

path = path.replace('^','') 

print(path) 

try: 

    os.mkdir(path) 

except OSError: 

    print('Creation of directory %s failed' % path) 

else: 

    print('Creation of directory %s successful!' % path) 

esm = ('val_loss', 'min') 

cpm = ('val_accuracy', 'max') 

es = EarlyStopping(monitor=esm[0], mode=esm[1], verbose=1, patience=10) 

mc = ModelCheckpoint(path+'\\best_model.h5', monitor=cpm[0], mode=cpm[1], 

save_best_only=True, verbose=1) 

history = model.fit(trainX, trainY, validation_data=(testX,testY), epochs=4000, batch_size=32, 

verbose=1, callbacks=[es,mc]) 

# Reload the best model for evaluation 

saved_model = load_model(path+'\\best_model.h5') 

loss, acc = saved_model.evaluate(testX, testY, verbose=0) 

print('Loss: ',loss, '\nAccuracy: ', acc) 

pred_probs = saved_model.predict(testX) 
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# sklearn.metrics.roc_curve() does is not compatible with One Hot Encoded probabilities 

# We need to generate an array where each prediction is between 0 and 1 

# Values closer to 0 indicate nonmerger prediction, values closer to 1 indicate merger prediction 

preds = np.zeros(len(pred_probs)) 

for i in range(len(pred_probs)): 

    if pred_probs[i,0] > pred_probs[i,1]: 

        preds[i] = 1-pred_probs[i,0] 

    else: 

        preds[i] = pred_probs[i,1] 

# Calculate False Positive Rate (fpr), True Positive Rate (tpr), and threshodl 

fpr, tpr, thresholds = roc_curve(np.argmax(testY, axis=1), preds) 

from sklearn.metrics import auc 

auc = auc(fpr, tpr) 

# Plot a Receiver Operating Characteristic (ROC) curve 

plt.figure(1) 

plt.plot([0, 1], [0, 1], 'k--') 

plt.plot(fpr, tpr, label='Keras (area = {:.3f})'.format(auc)) 

plt.xlabel('False positive rate') 

plt.ylabel('True positive rate') 

plt.title('ROC curve') 

plt.legend(loc='best') 

plt.savefig(path+'\\roc.png', dpi=200, bbox_inches = "tight") 

plt.show() 

# Zoom in view of the upper left corner. 

plt.figure(2) 

plt.xlim(0, 0.3) 

plt.ylim(0.7, 1) 

plt.plot([0, 1], [0, 1], 'k--') 

plt.plot(fpr, tpr, label='Keras (area = {:.3f})'.format(auc)) 

plt.xlabel('False positive rate') 

plt.ylabel('True positive rate') 

plt.title('ROC curve (zoomed in at top left)') 

plt.legend(loc='best') 

plt.savefig(path+'\\roc_zoom.png', dpi=200, bbox_inches = "tight") 

plt.show() 

z = np.argmax(pred_probs, axis=-1) 

z.shape 

cm = confusion_matrix(y_true=np.argmax(testY, axis=-1), y_pred=np.argmax(pred_probs, 

axis=-1)) 

 

# Code adapted from https://deeplizard.com/learn/video/km7pxKy4UHU 

def plot_confusion_matrix(cm, classes, 

                        normalize=False, 

                        title='Confusion matrix', 

                        cmap=plt.cm.Blues): 

    """ 
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    This function prints and plots the confusion matrix. 

    Normalization can be applied by setting `normalize=True`. 

    """ 

    plt.imshow(cm, interpolation='nearest', cmap=cmap) 

    plt.title(title) 

    plt.colorbar() 

    tick_marks = np.arange(len(classes)) 

    plt.xticks(tick_marks, classes, rotation=45) 

    plt.yticks(tick_marks, classes) 

    if normalize: 

        cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] 

        print("Normalized confusion matrix") 

    else: 

        print('Confusion matrix, without normalization') 

    print(cm) 

    thresh = cm.max() / 2. 

    for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): 

        plt.text(j, i, cm[i, j], 

            horizontalalignment="center", 

            verticalalignment="center", 

            color="white" if cm[i, j] > thresh else "black") 

    plt.tight_layout() 

    plt.ylabel('True label') 

    plt.xlabel('Predicted label') 

cm_plot_labels = ['Nonmerger','Merger'] 

cm_plot = plot_confusion_matrix(cm=cm, classes=cm_plot_labels, title='Confusion Matrix') 

plt.savefig(path+'\\confusionmatrix.png', dpi=200, bbox_inches = "tight") 

 

plt.plot(history.history['loss'], label='train') 

plt.plot(history.history['val_loss'], label='test') 

plt.vlines(11,0,0.5, linestyles='dashed') 

plt.xlabel('Epoch') 

plt.ylabel('Loss') 

plt.legend() 

plt.savefig(path+'\\loss.png', dpi=200, bbox_inches = "tight") 

plt.show() 

 

plt.plot(history.history['accuracy'], label='train') 

plt.plot(history.history['val_accuracy'], label='test') 

plt.vlines(11,0,1,linestyles='dashed') 

plt.xlabel('Epoch') 

plt.ylabel('Accuracy') 

plt.legend() 

plt.savefig(path+'\\accuracy.png', dpi=200, bbox_inches = "tight") 

plt.show() 
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test_labels = np.argmax(testY, axis=-1) 

# Create directories in Results for correctly/incorrectly classified galaxy images 

misclasspath = path+'\\Misclassified' 

mergerpath = path+'\\Mergers' 

nonmergerpath = path+'\\Nonmergers' 

print('Misclassified Path: '+misclasspath) 

try: 

    os.mkdir(misclasspath) 

except OSError: 

    print('Creation of directory %s failed' % misclasspath) 

else: 

    print('Creation of directory %s successful!' % misclasspath) 

try: 

    os.mkdir(mergerpath) 

except OSError: 

    print('Creation of directory %s failed' % mergerpath) 

else: 

    print('Creation of directory %s successful!' % mergerpath) 

try: 

    os.mkdir(nonmergerpath) 

except OSError: 

    print('Creation of directory %s failed' % nonmergerpath) 

else: 

    print('Creation of directory %s successful!' % nonmergerpath) 

# Create .png images of correctly/incorrectly classified galaxies 

for i in range(len(test_labels)): 

    if test_labels[i] != np.argmax(pred_probs, axis=-1)[i]: 

        impath = misclasspath 

        if test_labels[i] == 0: 

            trueclass = 'Nonmerger' 

            predictedclass = 'Merger' 

        else: 

            trueclass = 'Merger' 

            predictedclass = 'Nonmerger' 

    else: 

        if test_labels[i] == 0: 

            impath = nonmergerpath 

            trueclass = 'Nonmerger' 

            predictedclass = 'Nonmerger' 

        else: 

            impath = mergerpath 

            trueclass = 'Merger' 

            predictedclass = 'Merger' 

    im, norm = imshow_norm(testX[i,:,:,0], origin='lower', cmap='gray') 

    plt.title('Galaxy '+str(i)) 

    plt.figtext(0.8, 0.5,'\nTrue Class: '+trueclass+'\nPredicted Class: '+predictedclass) 



110 

 

    plt.subplots_adjust(right=0.8) 

    plt.axis('off') 

    plt.savefig(impath+'\\'+str(i)+'.png', dpi=200, bbox_inches = "tight") 

    plt.show() 

print('Finished!')
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