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The amount of ice stored in Antarctica has the potential to raise sea level by almost 60 meters. 

Mass is primarily lost through glaciers draining the ice sheet and flowing into and ice shelves. Ice 

shelves float on the ocean and act as a resisting force to the flow of the glaciers, thereby modulating 

the flow of tributary glaciers, and consequently glacier contribution to global sea level rise. 

McMurdo Ice Shelf (MIS) buttresses four tributary glaciers, three of which will be discussed in 

this thesis, as well as the northwest corner of the faster flowing Ross Ice Shelf, which has tributary 

glaciers flowing from both East and West Antarctica. McMurdo Ice Shelf also serves as a runway 

for planes traveling to research bases on Ross Island. Therefore, if MIS were to thin, become 

unstable, or collapse, the results would not only impact the rate of sea level rise, but also Antarctic 

science logistics. This thesis quantifies changes in surface elevation and surface velocity to better 

understand the relationship between MIS and its tributary glaciers. I isolated the surface elevation 

change resulting from accumulation and ablation, and tracked ice shelf retreat across the study 

region. I differenced high resolution digital elevation models (DEMs, 2011 – 2015) in the Hut 

Point region of Ross Island, first correcting for errors introduced in DEM processing, and then 

removing the tidal and atmospheric pressures across the ice shelf region. These results revealed 

variable elevation change across the ice shelf (± 2 m) and across the ice on Hut Point Peninsula (± 

5 m) as well as ice shelf front retreat (up to 1 km). While both the ice shelf thinning and the frontal 



 

retreat contribute to the instability of MIS, the retreat is immediately concerning as it threatens to 

cut off Ross Island from the runways via Pegasus Road, thereby necessitating that a relocation of 

the road be considered. To further explore this system, I focused on evaluating velocity changes, 

and deriving strain rates across the glacier-ice shelf system on both seasonal and annual timescales 

by combining NASA velocity products with newly constructed geospatial velocity maps, utilizing 

Landsat imagery. These results revealed speeds as high as 225 m a-1 on the glaciers and 215 m a-1 

on the ice shelf, with higher speeds occurring during the summer months. Two relationships 

between MIS and its tributary glaciers emerge: (1) seasonal velocity fluctuation of both the ice 

shelf and the tributary glacier, and (2) fluctuation of only MIS velocity and consistent velocity on 

the adjacent glaciers between seasons. These two relationships suggest spatial variability in the 

system’s driving forces, and necessitate future work focusing on resolving these drivers. Results 

from this thesis are the first of their kind to use remote sensing to evaluate the relationship between 

tributary glaciers and MIS, and bridge a gap between in situ surveys and modeling projections. 
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CHAPTER ONE 

INTRODUCTION 

1.1. Motivation: Why study ice shelf - glacier interactions? 

As global average greenhouse gas concentrations continue to rise in the atmosphere, and consequently 

atmospheric temperatures, the scientific community expects to see continued sea level rise due to both 

thermal expansion and contribution from land-based ice. If all of the grounded ice on Earth melted, 

Antarctica would contribute 57.9 ± 0.9 m to sea level rise (Morlighem et al., 2020), Greenland would 

contribute 7.42 ± 0.05 m (Morlighem et al., 2017), and all other glaciers and ice caps would contribute 0.32 

± 0.08 m (Farinotti et al., 2019). Specific rates of sea level rise vary by source, and can range from 1.56 ± 

0.33 mm a-1 (Frederikse et al., 2020), to 3.07 ± 0.37 mm a-1 (Cazenave et al., 2018). While current rates of 

sea level rise are dominated by contributions from smaller mountain glaciers and ice caps, Antarctica has 

the potential to contribute far more to raise sea level rise over a prolonged period of time than any other 

region (e.g. Bulthuis et al., 2019; DeConto & Pollard, 2016; Edwards et al., 2019; Hanna et al., 2020; 

Levermann et al., 2014; Meier et al., 2007; Pattyn & Morlighem, 2020; Zemp et al., 2019). Therefore, I 

focus this thesis on the controls of Antarctic sea level contribution.  

The size of the Antarctic Ice Sheet is determined by its mass balance, which is calculated by subtracting 

the annual ablation from the annual accumulation (Rignot et al., 2008). The Transantarctic Mountains 

divide Antarctica. East Antarctic Ice Sheet (EAIS) has remained in a steady state, with some mass gain 

found around along the coast, while the discharge of the West Antarctic Ice Sheet (WAIS) has exceeded 

that of its surface accumulation (Rignot et al., 2019), resulting in a negative mass balance. The Ross Ice 

Shelf lies between WAIS and EAIS, and consequently drains ice from glaciers on both sides of the 

Transantarctic Mountains (Tinto et al., 2019). The location of Ross Ice Shelf makes it an essential 

component of the dynamics of this region. 
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Ice shelves form when glaciers flow off of their bedrock and float on the ocean, which must be cold enough 

so the ice does not immediately melt. Ice shelves play an essential role in reducing the amount of discharge 

from tributary glaciers by slowing their flow, thereby reducing the rate of mass transfer from land to sea. 

Following the retreat of ice shelves, glaciers can accelerate and drain mass rapidly. This relationship was 

observed following the collapse of the Larson A Ice Shelf, located on the northwest side of the Antarctic 

Peninsula, where its tributary glaciers underwent a 450% velocity increase over the following 8 months 

(Royston & Gudmundsson, 2016), thereby increasing the ice discharge rate and subsequent sea level rise. 

Ross Ice Shelf is the largest ice shelf in the world and drains much of WAIS, a marine-based ice sheet, 

meaning it rests on bedrock that sits below sea level (Horgan et al., 2011). As glaciers and ice shelves 

interact as a system, changes in one location can propagate, altering the behavior up-glacier or down-glacier 

onto the ice shelf, a process known as teleconnection (Reese et al., 2018). As most of WAIS is marine-

based, when water flows between the ice and the bed, the ice floats on the water, prying the ice apart from 

the bed, which consequently allows more water to flow farther under the ice and floating more of the glacier. 

This compounding process is known as a positive feedback loop, and the resulting reduced bed coupling 

enhances the effects of up-glacier teleconnections (Reese et al., 2018). Glaciers and ice shelves are highly 

responsive to small changes in their environment, such as increasing oceanic or atmospheric temperatures. 

Due to this sensitivity, quantifying the relationship between ice shelves and their tributary glaciers is vital 

in understanding future sea level rise. In this thesis, I explore the relationship between McMurdo Ice Shelf 

(MIS) and its tributary glaciers.  

1.2. Background: The ice shelf - glacier system 

As ocean and atmospheric temperatures continue to increase, the contribution of glaciers to the mass 

balance of ice shelves is of particular importance. While glacier contribution may help to thicken and 

stabilize ice shelves, once ice flows from tributary glaciers across the grounding line into the ice shelf, that 

mass contributes to sea level rise. Many external environmental factors can affect the interplay between ice 
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shelves and glaciers, and these operate on timescales ranging from daily to decadal. Drivers of short-term 

fluctuations include tides and atmospheric pressure, which can cause velocity and elevation shifts over a 

matter of hours or days. Annual-scale impacts include precipitation, surrounding sea ice concentrations, 

ocean current variability, and atmospheric and oceanic temperature changes. Decadal-scale, and longer, 

impacts on the behavior of glaciers and ice shelves include the Pacific decadal oscillations, which influence 

the ocean temperature at the ice-ocean interface (Rignot et al., 2019). These factors can contribute to 

changes to the glacier-ice shelf system on seasonal to annual timescales, and are highlighted in the 

remainder of section 1.2. 

1.2.1. Force balance in an ice shelf – glacier system 

The ice shelf helps to buttress its tributary glaciers by, together with the ocean, providing a resisting force 

against the driving force of the glacier, ultimately slowing the glacier’s velocity (Fig. 1.1). Therefor the 

thicker and larger the ice shelf, the more effective it will be at reducing mass transfer from land to ice shelf 

(Fig. 1.1 A). When ice shelves shrink due to mass loss, the resisting force that acts against the driving force 

of the glacier decreases, allowing the glacier velocity to increase (Fig. 1.1 B). Finally, when the ice shelf is 

absent, the ocean provides the only resisting force against the flow of the glacier, and the glacier velocity 

increases further (Fig. 1.1 C). Mechanisms of mass loss include the sub-ice shelf circulation of warm ocean 

water, as well as surface melt resulting from above-freezing atmospheric temperatures (Fig. 1.1 D). Even 

though changes in the size and dynamics of an ice shelf indicate future changes in the velocity and mass 

balance of the tributary glaciers, uncertainties exist surrounding how much ice shelf change is required to 

incite changes in the glaciers, and what facets of change are the most impactful. Therefore, this thesis 

focuses on quantifying changes across the McMurdo Ice Shelf (MIS) and its tributary glaciers using remote 

sensing techniques. 
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Figure 1.1. Driving versus resisting forces in a simple glacier-ice shelf system. Ice shelves act as a buttress 
to glaciers. Together the ice shelf and the ocean act as resisting forces (green arrows) against the driving 
force (brown arrows) of the glacier. As shown in the full ice shelf scenario (A), the velocity of the glacier 
is relatively slow due to the large ice shelf. In the partial ice shelf scenario (B), some of the ice shelf has 
disintegrated, reducing the resisting force and increasing the glacier velocity. When no ice shelf remains 
(C), the ocean provides the only resisting force, and the glacier velocity increases more. Also shown are 
mechanisms of ice shelf melt (D) including basal ice shelf melt due to warm water circulation, and high 
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summer surface melt due to intrusion of Antarctic Surface Water (AASW) and high quantities of surface 
sediment. 
 
 
1.2.2. Oceanic and atmospheric forcings 

Warming of both the ocean and the atmosphere is tied to glacier acceleration and retreat, as seen in the 

Antarctic Peninsula where glaciers in the southwest experience more retreat than those located in the 

northwest (Cook et al., 2016). This difference in glacier behavior results from the southernmost Antarctic 

Peninsula glaciers interacting with the warmer Circumpolar Deepwater (CDW), while those in the north 

experience the colder surface water circulation (Cook et al., 2016). Spence et al. (2017) attribute this 

warming to changes in wind patterns reducing circulation and trapping warm water along the coast. 

Additionally, not all glaciers along the Antarctic Peninsula have ice shelves, making those more vulnerable 

to change in response to oceanic conditions. 

1.2.3. Tidal influence 

Tides can impact the behavior of glaciers and ice streams from the terminus to over 80 km up glacier from 

the grounding line through dynamic coupling (Anandakrishnan et al., 2003; de Juan et al., 2010). 

Observations of glacier dynamics in relation to tides suggest that ice shelves and ice streams behave as a 

single system, where changes in the tidal height incite changes in the glacier velocity (Brunt et al., 2010; 

Doake et al., 2002). However, there is a lag between peak ice shelf velocity values and the maximum and 

minimum tidal heights. The ice shelf reaches its maximum velocity after the maximum tide height, as the 

tide is dropping, and the glacier reaches its minimum velocity after the minimum tide height, as the tide is 

rising. This delay is also observed as far as 80 km up glacier from the grounding line (Anandakrishnan et 

al., 2003). Additionally, higher strain rates measured near the front of the glacier, in comparison to those 

up glacier, indicate that the tidal effects become muted when moving farther from the terminus (Podolskiy 

et al., 2016). Conversely, on Greenland glaciers the maximum tidal velocity often occurs at low tide, instead 

of partway between falling and rising tide, suggesting this difference is associated with the presence of 
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large ice shelves in Antarctica that are absent in Greenland (Sugiyama et al., 2015). Overall, the ice shelves 

appear to buffer the tributary glaciers, acting as a barrier between the ocean and the glaciers, delaying the 

impact of the tides on the tributary glaciers.  

1.3 Present state 

While at present Antarctica is not the main contributor to sea level rise, the previously mentioned forcings 

do contribute both to its behavior and its mass balance. From 1993 – 2018, Antarctica contributed 0.25 mm 

a-1 to sea level rise out of 3.07 ± mm a-1 total annual sea level rise for this period (Cazenave et al., 2018), 

and from 2012 – 2016 Antarctica contributed 0.53 mm a-1 to sea level rise, 0.48 mm a-1 of which originated 

in West Antarctica (Bamber et al., 2018). As the Antarctic atmospheric temperature is almost always below 

freezing, surface melt comprises a very small portion of the mass loss from Antarctica, and most mass loss 

stems from mass transfer across the groundling line (Bamber et al., 2018). However, the small amount of 

surface melt that does occur can have other negative impacts on the glacier-ice shelf system. For instance, 

surface melt decreases the albedo, meaning more energy is absorbed by the surface and less is reflected 

back to the atmosphere than snow or ice. In East Antarctica, the lower albedo caused by surface melt makes 

it approximately three times easier for further melt to follow (Jakobs et al., 2019). Additionally, when the 

water refreezes, the snow has a lower albedo than the new snow (Jakobs et al., 2021). Surface meltwater 

can also incite hydrofracturing. As water is slightly denser than ice, if surface melt is sustained its pressure 

can propagate cracks to the glacier bed (van der Veen, 2007). Therefore, on ice shelves, hydrofracturing 

can accelerate calving (DeConto & Pollard, 2016), a process believed to have contributed to the breakup of 

Larson B Ice Shelf (Banwell et al., 2013; Scambos, 2004). Furthermore, the fastest Antarctic ice velocities 

are found along the coast on ice shelves (600 m a-1 – 1000 m a-1) and outlet glaciers (300 m a-1 – 600 m a-

1), while the slowest velocities are towards the center of the continent (near 0 m a-1). These high velocities 

result in rapid mass loss into the ocean, and increased surface melt would only amplify this process.  
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1.4. Thesis overview 

1.4.1. Study site  

For this thesis, I will focus on ice shelf-glacier interactions at McMurdo Ice Shelf, a critical and vulnerable 

location in Antarctica. The McMurdo Ice Shelf covers ~1,500 km2, borders the Transantarctic Mountains 

to its west (Banwell et al., 2017), and provides a buttress to four glaciers, Koettlitz, Terror, Aurora, and 

Skelton, as well as the northwest corner of the much larger Ross Ice Shelf (~500,809 km2) (Fig. 1.2; Rignot 

et al., 2013). In comparison to other ice shelves in Antarctica, MIS is relatively thin, varying greatly from 

approximately 6-200 m across the ice shelf (Arcone et al., 2016; Campbell et al., 2017; Glasser et al., 2006). 

MIS also experiences unusually high surface melt, reaching four times that seen on other Antarctic glaciers, 

but experiences little calving (Glasser et al., 2006). The upward direction of ice flow around Black Island 

transports basal sediment to the surface, which is then further exposed by ablation, leading this area to have 

the highest sedimentation rates across the ice shelf (Glasser et al., 2006).  During the summer season, 

approximately 25% of the surface becomes flooded with streams and ponds, mostly concentrated in this 

area (Glasser et al., 2006). The surface hydrology redistributes the debris across the ice shelf (Glasser et al., 

2006). Conversely, high accumulation rates, up to 1.5 m a-1, are found in Windless Bight, near the grounding 

lines of Terror Glacier and Aurora Glacier (Fig. 1.2; Heine, 1967). 
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Figure 1.2. Map showing study region and focus study sites with major geographic points noted. The MIS 
(inset, orange circle; turquoise shading) is bound by the Ross Ice Shelf, and McMurdo Sound. Noted are 
the locations of White Island (W), Black Island (B) and Brown Peninsula (BP). The red boxes define the 
focus study sites of Terror and Aurora Glaciers flowing into Windless Bight, Hut Point Peninsula, and 
Koettlitz Glacier and its adjacent ice shelf. Ice flow directions are denoted by dashed arrows (Campbell et 
al., 2017) with tributary glaciers (gl.) labeled. Background image from Sentinel-2, collected on 11 October 
2019.  

While MIS can be difficult to measure, the existing research concludes that MIS is particularly vulnerable 

to collapse, more so than any area of RIS (Rack et al., 2013; Stern et al., 2013; Tinto et al., 2019). If MIS 

collapses, a potential retreat of RIS could follow. This reliance on MIS by RIS for stability is particularly 

concerning because RIS buttresses both East and West Antarctic drainage basins. Furthermore, modeling 

found MIS to experience tele-buttressing, whereby ice shelf thinning induces immediate acceleration of 
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MacAyeal and Bindschadler Ice Streams over 900 km away, across the grounding line (Reese et al., 2018). 

Currently, the thickness, and therefore a component of the resistive force of MIS, is controlled by the 

balance of mass input from tributary glaciers and melt from oceanic and atmospheric forcings. However, 

recent studies have found inconsistent results concerning thinning rates of the MIS region collected using 

the same airborne radar program, suggesting challenges in data interpretation. Tinto et al. (2019) found that 

warm sub-ice shelf circulation results in summer melt rates of 10 m a-1 in the MIS region, while the 

neighboring RIS predominantly experiences summer melt rates of <2 m a-1. Das et al. (2020) isolated the 

basal melt rate, and calculated a loss of <2 m a-1 in the MIS region; however, they also calculated a negative 

strain rate around Ross Island and Minna Bluff, suggesting contraction, which is typically found in 

conjunction with ice shelf thickening. 

High submarine melt rates found on MIS result from the intrusion of warm AASW, which is found in the 

top of the water column and can flow under the thinner MIS, but not the thicker RIS (Tinto et al., 2019). If 

the MIS were to collapse, there would no longer be a buffer between the warm ocean intrusion and Ross 

Ice Shelf, therefore providing a more direct route to RIS, potentially threatening its stability. During the 

summer, warm surface water is pulled under the MIS from the east, causing ocean-induced basal melting 

(Heine, 1967). Melting also occurs in the upper part of the water column from wind and the tides pushing 

warm surface water against the ice shelf front (Stern et al., 2013). At mid-depths along the front of the ice 

shelf, CDW intrudes, which can be 4° C warmer than the melting point at the bottom of the water column 

(Stern et al., 2013). Melting at depth results from highly saline surface water forming as a result of brine 

rejection during sea ice formation (Stern et al., 2013). This warmer, dense water sinks into the colder, deeper 

water where it sits adjacent to the ice shelf, at its pressure melting point. During the winter, the opposite 

occurs. Surface water moves northward, away from the MIS, resulting in upwelling of supercooled basal 

water, which refreezes to the underside of the ice shelf (Rack et al., 2013). 
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McMurdo Ice Shelf is also logistically important for both the U.S. Antarctic Program and the New Zealand 

Antarctic Program, whose bases (McMurdo Station and Scott Base, respectively) lie adjacent to MIS on 

Ross Island. The ice runways on MIS are the primary access point for the two bases, with Pegasus Road 

connecting the runways to Ross Island. Due to the complex positioning, Pegasus Road crosses the 

boundaries between MIS, sea ice, and Ross Island. This region of Pegasus Road experiences folding and 

faulting, which forms as the ice shelf buttresses against the sea ice and rock. Thinning of MIS could lead 

to retreat and destabilization of MIS, ultimately threatening the logistics of these two field programs. 

1.4.2. Research questions 

The behavior of Koettlitz, Terror, and Aurora Glaciers is modulated by MIS, and therefore, their longevity 

is interconnected. However, few studies examine changes in glacier dynamics from a coupled glacier-ice 

shelf behavior perspective (Smith et al., 2020). In this thesis, I will address this gap by answering the 

question, what is the relationship between both surface elevation and surface velocity on the tributary 

glaciers and McMurdo Ice Shelf? To answer this question, I will address the following specific objectives:  

1. Quantify large-scale spatial elevation by calculating the change in elevation over time on MIS and 

Ross Island 

2. Quantify changes in the glacier-ice shelf relationship by establishing a time series of surface 

velocity and strain rate of MIS and tributary glaciers  

Each objective will be addressed in its own chapter of this thesis, as outlined in the following section. 

1.5. Thesis structure 

This thesis consists of an introduction chapter (Chapter one), two scientific papers (Chapters two and three), 

a summary and next steps chapter (Chapter Four), a complete list of references used throughout this thesis, 

and an appendix with the remainder of data not included in the scientific papers. The two scientific papers 
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are presented in their submitted (Chapter two) or in preparation (Chapter three) versions. The only 

modifications to the papers were those needed to comply with the University of Maine Graduate School 

thesis requirements: the references for each paper have been combined into one complete list of references 

for this thesis, and figure captions, chapter sections, and the in-text citation formatting is uniform 

throughout the thesis. Each of the two scientific chapters begins with an abstract, and follows the common 

journal format of an introduction, methods, results, discussion, conclusion, and acknowledgements. Below 

are the summaries for each scientific chapter.  

1.5.1. Chapter two  

 Chapter two, “Recent Stability of the McMurdo Ice Shelf and Hut Point Peninsula Glaciers in West 

Antarctica”, uses a combination of remote sensing imagery, in situ measurements, and modeling results to 

identify changes in the McMurdo Ice Shelf region, and how the stability could impact Hut Point Peninsula 

based logistics. This study used Digital Elevation Models (DEMs), from the Polar Geospatial Center for 

2011 and 2015, to quantify ice thickness changes across MIS and Hut Point Peninsula. Given that this 

region is critically important for the operation of the US and New Zealand Antarctic bases, and is a region 

in flux, additional in situ surveys were performed as reconnaissance for the potential rerouting of the current 

ice road. The in situ surveys and numerical models investigated the ice shelf stability at a structural level. 

The in situ surveys included Ground Penetrating Radar (GPR) profiles collected adjacent to the current ice 

road to measure ice structure, and GPS velocity surveys in the same region. Using these in situ 

measurements, a numerical model was established to evaluate the long-term stability and maintenance of 

this proposed new road region. Major findings of the project showed variable thinning of the ice shelf in 

this region, and substantial retreat of the ice shelf front adjacent to Hut Point Peninsula between 2011 and 

2015, ultimately threatening the longevity of the current Pegasus Road. 

This manuscript was submitted to the peer-reviewed journal Cold Regions Science and Technology on 23 

April 2021. My co-authors are Dr. Seth W. Campbell and Dr. Kristin M. Schild, both at the University of 
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Maine. This chapter includes information on the method I developed to difference DEMs across McMurdo 

Ice Shelf and Hut Point Peninsula. I was responsible for developing the differencing method, as well as 

differencing the DEMs, conducting error analysis, creating some of the figures, and writing the scientific 

portion of the manuscript. Dr. Campbell collected and processed the in situ measurements (GPR and GPS), 

created and ran the numerical model, and wrote the resulting CRREL technical report. Dr. Schild combined 

the technical report and the scientific portion into a cohesive manuscript, updated figures, and oversaw the 

DEM differencing method development. The manuscript is currently in review. 

1.5.2. Chapter three 

The third chapter, “Quantifying Temporal and Spatial Surface Velocity Changes Across the McMurdo Ice 

Shelf System”, further explores the relationship between ice shelves and their tributary glaciers through 

quantifying the surface velocities and strain rates of Terror, Aurora, and Koettlitz Glaciers and their adjacent 

ice shelf regions. McMurdo Ice Shelf helps buttress a region of the much larger Ross Ice Shelf, making it 

vital to understand the region’s flow regime through time. I calculated the surface velocity using Landsat 8 

imagery spanning 2013 – 2020 with the program COSI-Corr, and also used existing surface velocity 

datasets (GoLIVE and ITS_LIVE) to capture the surface velocity across the glacier-ice shelf transition. 

Additionally, I captured changes in glacier surface flow by calculating the strain rate in the study regions 

using the COSI-Corr surface velocity results. Together, these pieces of information provide insight into the 

stability of this system and how it is evolving over time. Main findings include higher velocity values in 

the Terror and Aurora region than the Koettlitz region, greater velocity values in the summer than the 

winter, and more annual variability in the velocity values calculated on the ice shelf than those calculated 

on the glaciers. This manuscript will be submitted to a peer-reviewed journal following additional edits. 
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CHAPTER TWO 

RECENT STABILITY OF THE MCMURDO ICE SHELF AND HUT POINT PENINSULA 

GLACIERS IN WEST ANTARCTICA 

2.1. Abstract 

McMurdo Ice Shelf (MIS) and associated land masses act as lateral margins and pinning points, 

respectively, to Ross Ice Shelf in West Antarctica.  Thinning or collapse of MIS could therefore have 

sizeable detrimental teleconnections across West Antarctica.  The collapse of MIS would also be 

catastrophic to Antarctic research logistics, as both the United States and New Zealand Antarctic Programs 

operate on MIS and the adjacent Hut Point Peninsula (HPP) of Ross Island.  Here, we assess the 

vulnerability of the MIS and HPP regions by calculating recent ice surface elevation change using 

Worldview-derived digital elevation models acquired between 2011-2015.  We also use ground-penetrating 

radar and GPS surveys in 2015-2016 to calculate glacier ice thickness and flow velocities of the glacierized 

HPP Transition Zone (TZ) hillside which is being considered as a new access road between MIS and HPP 

that both Antarctic programs would rely upon.  Results show ice thinning across the TZ Hillside southeast-

facing slope on HPP, and no change to moderate thickening on the TZ Hillside northwest-facing slope.  

Surface lowering also occurred on southern MIS near its terminus, whereas minimal change occurred on 

MIS near Ross Island.  We attribute the complicated elevation changes to spatial variability of surface melt 

and accumulation.  Broader surface velocity measurements and oceanographic observations are needed to 

rule out the influence of dynamic thinning, thickening, or basal melt. However, our preliminary results 

suggest moderate concern for long-term stability near the terminus of MIS. 
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2.2. Introduction 

Ice shelves, floating ice tongues extending from a grounded tidewater glacier, surround over 75% of 

Antarctica’s coastline (e.g., Rignot et al., 2013) and provide critical stability to the Antarctic Ice sheet 

primarily through tributary glacier buttressing.  Due to their flat, thick nature, ice shelves can also be a 

pivotal logistic resource, serving as a runway for large planes (e.g., Haehnel et al., 2019), a road for overland 

convoys (e.g., Lever & Thur, 2014), and a staging location for scientific operations (e.g., Millan et al., 

2013). McMurdo Ice Shelf (MIS) is one such location that is critical for both glacier stability and field 

logistics. Skelton, Terror, Aurora, and Koettlitz Glaciers are all buttressed by MIS, which also acts as a 

lateral shear margin to the adjacent Ross Ice Shelf (RIS), which drains both East (EAIS) and West Antarctic 

Ice Sheets (WAIS). The thinning or collapse of MIS could trigger a retreat of the RIS, inducing thinning 

and potential acceleration of ice streams over 900 km away (e.g., MacAyeal and Bindschadler Ice Streams; 

Reese et al., 2018). MIS also serves as the primary logistics hub for the United States (McMurdo Station) 

and New Zealand (Scott Base) Antarctic Programs (Fig. 2.1). Therefore, due to the prominent role of MIS 

in both ice sheet stability and Antarctic infrastructure, understanding the stability of MIS is critically 

important. 
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Figure 2.1. Map showing study region and focus study sites with major geographic points noted. The 
McMurdo Ice Shelf (MIS) and Hut Point Peninsula (HPP) study region (inset, orange circle), where MIS 
(turquoise shading) is bound by the Ross Ice Shelf, and McMurdo Sound. Noted are the locations of the 
NOAA AWS (purple circle), White Island (W), Black Island (B) and Brown Peninsula (BP). Ice flow 
directions are denoted by dashed arrows (Campbell et al., 2017) with tributary glaciers (gl.) labeled. 
Background image from Sentinel-2 on 11 October 2019.  

The stability of an ice shelf is directly related to its margins and its mass balance.  Lateral ice shelf margins 

resist ice flow either by friction against bedrock or via lower moving lateral ice  (e.g. MacGregor et al., 

2012).  Therefore, thinning or collapse of these margins decreases or removes a primary resistance to ice 

flow.  Ice shelves also resists tributary glacier flow by providing a buttressing force, therefore any reduction 

in ice shelf mass results in a decrease in buttressing force, and can enable up-glacier tributary glacier 
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speedup and dynamic thinning (e.g. Scambos et al., 2004; Hulbe et al., 2008). Ice shelf mass gain in 

Antarctica occurs through snowfall, tributary glacier discharge, and basal freeze-on of marine ice. 

Unfortunately, most ice shelves in Antarctica are losing more mass than they are gaining, primarily through 

a complex combination of calving icebergs, surface melting, and basal melting (e.g. Depoorter et al., 2013; 

Rignot et al., 2013; Bell et al., 2017; Kingslake et al., 2017; Smith et al., 2020).  While ice shelves can 

range in thickness from 2000 m at the grounding line to 100 m at the ice shelf terminus, the MIS is thinner 

than most, ranging between ~6–200 m thick (Glasser et al., 2006; Campbell et al., 2017). Additionally, the 

MIS is particularly susceptible to basal melting due to the routing of warm AASW directly under this region 

(Rack et al., 2013; Stern et al., 2013; Tinto et al., 2019). This AASW routing results in melt rates of MIS 

(~10 m a-1) being disproportionately high in comparison to the neighboring RIS (<2 m a-1 at RIS; Tinto et 

al., 2019). Additionally, MIS experiences unusually high surface melt, spatially ranging from 43–441 mm 

w.e. during a summer melt season, resulting in approximately 25% of the region around Black Island 

becoming flooded with streams and ponds during this time (Glasser et al., 2006).  Concerningly, a thinned 

ice shelf with abundant surface water may not require much tidal flexure to bypass a rapid disintegration 

threshold (Banwell et al., 2013; Banwell et al., 2019). As atmospheric and oceanic temperatures continue 

to warm, continued evaluation of MIS stability is essential for both scientific and logistic concerns.   

Several “single-point failures” in the MIS-HPP system would jeopardize the feasibility of using MIS and 

HPP for U.S. and New Zealand Antarctic logistics (Augustine et al., 2012). One such failure would be 

reduced access between HPP, where Scott Base and McMurdo Station are located, and MIS, where all 

runway and aircraft operations are located. Currently, the primary road connecting MIS to HPP is by the 

Pegasus Ice Road, which crosses the Transition Zone (TZ) (Fig. 2.2, blue arrows).  The TZ is a triaxial 

point of stress where MIS buttresses against HPP at the ice shelf–sea ice transition. This buttressing of ice 

leads to compression folds, severe fracturing, and complex ice dynamics (Campbell et al., 2017; Fig. 2.2). 

Meltwater runoff from the nearby hillside of HPP has caused severe ponding in the TZ. Although the 

ponding is partially alleviated by drain holes into the relatively porous fractured ice shelf (Shoop et al., 
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2014), the subsurface influence of meltwater on the ice, and complex dynamics in this area, are concerning 

for long-term stability and longevity of Pegasus Ice Road.  

In this study we analyze recent rates of ice elevation change across the TZ and surrounding region and 

explore a proposed new road location on the TZ Hillside which would link MIS with HPP and replace 

Pegasus Ice Road in the event the current route becomes unpassable (Fig. 2.2, white line).  To address 

changing conditions and determine if there is any evidence of instability, we difference satellite-derived 

digital elevation models (DEMs) collected several years apart to spatially measure elevation changes 

(inferring ice thickness changes) across HPP and MIS. To explore the proposed new road location on the 

TZ Hillside, we completed ground-penetrating radar (GPR) and GPS surveys to measure ice thicknesses 

and ice flow velocities, respectively.  We then used three-dimensional finite element numerical modeling 

to calculate ice flow flux on the TZ Hillside and estimate potential ice flow impacts to the proposed new 

road location.     
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Figure 2.2. Airborne image of Hut Point Peninsula (HPP), part of Ross Island. Noted are the locations of 
the transition zone (TZ), the McMurdo Ice Shelf (MIS) terminus (blue arrows), the grounding zone (black 
solid line), the Pegasus Ice Road (orange dotted line), which is the current road from MIS onto HPP, the 
proposed new road between MIS and HPP (white solid line), and the GPR and GPS field survey area on 
the TZ Hillside (green dotted area).  

2.3. Methods 

2.3.1. Ice thickness changes  

To quantify the change in ice thickness across HPP and MIS, we differenced two WorldView DEMs, 

collected on 6 February 2011 and 25 November 2015. In order to isolate variability in the TZ region due 

solely to changes in ice thicknesses, we removed confounding variables, including tidal phase and 

amplitude, atmospheric pressure, and shifts in the DEM during processing (e.g., Kulshrestha et al., 2020). 

To account for these contributing variables, we developed a processing method using remote sensing 
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imagery, numerical modeling, and in situ data, which is schematically depicted (Fig. 2.3) and described in 

the following sections (2.2.1.1. – 2.2.1.3.).  

 

Figure 2.3. Schematic diagram outlining the steps and data sets used in the developed method to correct 
each DEM prior to differencing. This method accounts for variability in DEM processing (orange), and 
differences in atmospheric pressure (blue) and tidal amplitude (yellow) between DEMs.   

2.3.1.1. Vertical DEM correction 

We used DEMs developed by the Polar Geospatial Center (Saint Paul, Minnesota, USA), where stereo 

methods were applied to commercially available WorldView-2 (2011 and 2015) and Worldview 3 (2015) 

satellite imagery.  During DEM processing, a vertical offset can be induced by a DEM shift (Nuth & Kääb, 

2011). To correct for this, we established a series of bedrock ground control points (GCPs) across the study 

area using ICESat-2 (ATL06) as our vertical datum reference frame (method as in Nuth & Kääb, 2011). 

We selected ICESat-2-derived GCPs in regions of exposed bedrock in low slope terrain (defined as a single 

pixel, and the surrounding eight pixels, all measuring slopes £ 5°), as steeper slopes are associated with 

vertical errors > 1 m (Harding et al., 1994). We used these GCPs (3–4 per DEM) to calculate the average 
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offset between the ICESat-2 elevation and DEM elevation (2011: 1.59 ± 0.1 m; 2015: 3.46 ± 0.1 m), then 

vertically adjusted the DEMs to more closely match the ICESat-2 vertical datum reference frame.  

2.3.1.2. Atmospheric pressure correction 

The freeboard of a freely floating ice shelf is impacted by changes in atmospheric pressure. To remove the 

impact of atmospheric pressure, we used the ice shelf correction established in Padman et al. (2003), where 

a pressure difference of 1 hPa between the measured value and standard atmospheric pressure (1013.25 

hPa) results in 0.82 cm adjustment in elevation. To determine atmospheric pressure, we used the National 

Oceanic and Atmospheric Administration’s (NOAA) National Centers for Environmental Information site 

(https://www.ncei.noaa.gov/products), located adjacent to McMurdo Station (Fig. 2.1, purple circle), at the 

closest measurement in time (± 24 min) to the average image collection date. We then adjusted the ice shelf 

in each DEM to standard atmospheric pressure. 

2.3.1.3. Tidal correction 

Ice shelf elevation is also impacted by the tidal signal; without correction, differences in tidal phase and 

amplitude between DEM collection periods would result in erroneous measurements of ice shelf thickness 

change. To remove the tidal signal from each DEM, we calculated the tidal height and phase using the Tidal 

Model Driver (TMD) (Erofeeva et al., 2020) CATS2008 model and then subtracted the tide from the ice 

shelf region of each DEM scene. As each DEM is a compilation of several individual scenes, and therefore 

several tidal heights and phases, we tested two methods to establish a single representative tidal correction 

for each DEM. In the first method, we calculated the tidal height and phase using the average collection 

time of the contributing images (6 contributing images for 2011; 30 contributing images for 2015), 

calculated the tidal height and phase for the average time, and then adjusted the DEM based upon the output 

tidal height. In the second method, we calculated the tidal height and phase for each contributing scene and 

then averaged the tidal corrections and applied the average correction to each DEM. In comparing the two 
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approaches, we found the tidal corrections to be nearly identical (± 0.00335 m), therefore we use the former 

method as it involves fewer steps and opportunities to propagate uncertainties. Additionally, due to the 

small degree of spatial variability in the tidal signal (≤	0.0055 m over 159 km2), we ran the tidal height 

model at a down-sampled (200 m) spatial resolution to expedite tide and atmosphere corrections. After the 

TMD model produced a tidal height for each ice shelf pixel, we then applied a nearest neighbor interpolation 

to acquire tidal height at a spatial resolution of 2 m, matching the spatial resolution of the original DEMs. 

We then applied the correction, thus removing the tidal signal from the ice shelf portion of the DEM. 

2.3.2. Subsurface ice structure 

To measure the subsurface structure of Pegasus Ice Road and evaluate the possibility of relocating the road 

to the TZ Hillside, we performed GPR surveys in both of these regions. We collected three 840 m parallel 

GPR transects (2.5 km total), spaced ~10 m apart, on Pegasus Ice Road in January 2016 using a 400MHz 

antenna, as well as four parallel and one cross-cutting transect on the TZ Hillside in November 2016 (5.5 

km of 100 MHz and 4.7 km of 400 MHz).  To perform these GPR surveys, we used a Geophysical Survey 

System Incorporated (GSSI) SIR-4000 control unit coupled with a GSSI model 3207AP 100 MHz antenna 

and GSSI model 50400 400 MHz antenna. We recorded scans for 1000–1400 ns, with a two-way travel 

time (TWTT) at 24 scans s-1, and 2048 samples per scan.  High and low pass finite impulse response filters 

were used during data collection; between 100–800 MHz for the 400 MHz antenna and between 25–300 

MHz for the 100 MHz antenna. The GPR was synced with a handheld Garmin GPSMap78, recording GPS 

position at 1 Hz.  The GPR antennas were hand-towed at approximately 0.25 m s-1 resulting in traces 

approximately every 1 cm and GPS positions every 0.25 m.  Estimated horizontal precision of GPR profiles 

from the handheld GPS was ±2 m.   

To convert TWTT to depth, we first calculated the velocity of the radio waves through the substrate, using 

the equation,	𝑉 = 	 !
√#̇

 ,  where 𝜀̇ is permittivity, V is the radio wave velocity in m ns-1, and c is the speed of 

light. For depth calibration of the Pegasus Ice Road and the TZ Hillside, we used different values for 
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permittivity (𝜀̇) as the surface types varied from snow and firn (Pegasus Ice Road) to solid ice (TZ Hillside).  

For the Pegasus Ice Road transects, we used a permittivity value of 2.8, based on depth-density results from 

a shallow core collected within the TZ region (Campbell et al., 2017), which shows that dense firn (𝜀~̇ 2.2) 

is overlying meteoric and marine ice (𝜀̇~3.1). For the TZ Hillside, we used the relative permittivity of ice 

(𝜀̇ = 3.1) for depth calculations, as the TZ Hillside was primarily composed of bare ice with only 20–50 cm 

of snow cover. Based on the TWTT and calculated wave velocity (0.169–0.179 m ns-1), we recorded ~60 

samples per m depth, which is more than sufficient for a smooth waveform given the frequencies used. The 

GPR profiles were processed using GSSI commercial software (RADAN v. 7.0), and processing included 

time-zero correction, horizontal filtering to remove ringing, and stacking to improve signal-to-noise ratios 

and visualization of englacial structure.   

2.3.3. TZ Hillside ice velocity 

2.3.3.1. In situ surveys 

To calculate regional ice velocity and rates of deformation at a potential site for a new road, we placed 22 

bamboo stakes (2 m in length) in a grid configuration on the TZ Hillside. Stakes were installed by hand 

drilling 1m holes using a Kovacs auger. We then performed a kinematic GPS survey using a roving Trimble 

NetR7 and Zephyr Geodetic Antenna unit, with an identical geodetic GPS base station established at 

McMurdo Station (2–2.6 km from survey grid). We first surveyed the stakes on 12–15 November 2016 and 

then resurveyed the stakes on 2 January 2017 (47–51 days between surveys). Using changes in position, 

we estimated ice flow velocities and rates of deformation for this TZ Hillside region.  Systematic position 

uncertainty from the processed baselines was 1.9 ± 0.01 cm in the horizontal and 4.7 ± 1.9 cm in the vertical.  

We also assumed 1 cm of bias uncertainty due to the stake hole size relative to the distance measured and 

leveling of the survey rod. Combining systematic and bias uncertainty, our total horizontal positional error 

is 2.1 cm at each measurement. 
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2.3.3.2. Numerical modeling 

To better resolve the rates of deformation on the TZ Hillside, and determine the region’s suitability for a 

new road, in situ GPS and GPR measurements were used to constrain a three-dimensional numerical model. 

We used surface elevation and ice thickness measurements from the GPS and GPR surveys, respectively, 

to develop raster layers, which we merged to constrain top and bottom surfaces of a finite element numerical 

model in COMSOL Multiphysics (v. 5.2a).  Model boundary conditions included a no-slip (frozen) bed, 

normal surface stress, and open boundaries at the inlet (top of the hillside) and outlet (bottom of the hillside 

near the grounding zone).  We set the model to have minimal snow and/or firn cover, which allowed for a 

constant density (𝜌) of ice, and used a cold-ice viscosity (𝜇) of ~1 × 10%&Pa s (Marshall, 2005). Given the 

prescribed boundary conditions and rheology, ice flow was driven by gravitational forcing and internal ice 

deformation.  Model results of surface velocity were compared to stake-derived surface velocities to analyze 

model accuracy and robustness; we found the model to be comparable within ±0.1 m a-1.  The model was 

then used to estimate ice volume flux across the TZ Hillside along the proposed new road location.     

2.4. Results 

2.4.1. Spatial variability of HPP region 

After correcting and differencing the 6 February 2011 and 25 November 2015 DEMs, we found general 

thinning along the ice shelf terminus, retreat of the ice shelf terminus, and variable elevation change across 

the MIS-HPP region. The elevation loss at MIS terminus ranges from ~0–4 m, and the region of thinning 

aligns with the area of ice shelf retreat (Fig. 2.4). The region of compression folds shows both increasing 

and decreasing elevation change, highlighting the troughs and peaks of the surface topography and 

suggesting a migration of the folds. The ice shelf region neighboring the TZ shows elevation increase (0–3 

m), with the exception of Pegasus Ice Road, where we observe thinning reaching 5 m a-1. In the northern-

central region of HPP, the elevation increased slightly (~0–1.5 m), while the northwest side experienced 
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greater elevation increase, surpassing 5 m in places. The southern portion of HPP displays the greatest range 

of values > ±5 m found in adjacent locations. This overall assessment across HPP and MIS aligns with 

previous findings using different methods (Campbell et al., 2018) suggesting that our study robustly 

captures surface elevation changes. 

 

Figure 2.4. Surface elevation change on McMurdo Ice Shelf (MIS) and Hut Point Peninsula (HPP) between 
6 February 2011 and 25 November 2015. This corrected DEM differencing shows thinning and retreat (light 
and dark purple dashed lines) along the ice shelf terminus, and variable elevation change across HPP.  



 25 

2.4.2. Ice structure 

2.4.2.1. Pegasus Ice Road structure 

The GPR profiles collected on the Pegasus Ice Road (Fig. 2.5) reveal structure to ~20 m depth and surface 

conformable stratigraphy in the top 3–5 m. Thicker conformable stratigraphy is visible within syncline folds 

crossing the road.  Below the surface conformable stratigraphy, heavily deformed, discontinuous, and 

dipping horizons are present. At 12–15 m depth, a series of stratified and discontinuous layers are prevalent. 

The near-surface stratigraphy is likely recent accumulation and firn reworked during yearly road 

construction over heavily deformed and fractured ice. The strong GPR horizons at 12–15 m depth likely 

represents discontinuous marine ice frozen onto the bottom of meteoric ice (e.g. Campbell et al., 2017). 

Vertical noise bands originate from specific horizons near 5 m depth. We interpret this noise to be caused 

by laterally continuous water tables within the firn. These horizons occur near the base of the surface-

conformable stratigraphy, which supports our interpretation that the conformable stratigraphy is composed 

of permeable firn and the discontinuous layers below are likely impermeable meteoric glacier ice. This 

geophysical response to water in glacier snow or firn is a well-documented phenomenon (e.g., Campbell et 

al., 2012; Forster et al., 2014). 

 

 

Figure 2.5. A 400 MHz GPR profile collected along the Pegasus Ice Road in January 2015. Profile shows 
near-surface conformable stratigraphy (SCS), complex syncline folds (SF), discontinuous stratified marine 
ice below, and vertical noise bands, which we interpret to be caused by water resting on the firn–ice 
transition. This GPR transect is displayed from Scott Base (SB) on left to MIS on right (location is shown 
in Fig. 2.7). 
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2.4.2.2. TZ Hillside ice structure 

The 400 MHz and 100MHz antennas were both used to survey the TZ Hillside and quantify subsurface 

stratigraphy. Both antennas successfully imaged bedrock to ~65 m depth on the TZ Hillside, with greater 

thicknesses near the top of the hill and shallower depths located near the bottom, just above Pegasus Ice 

Road (~40-50 m thick).  Profiles collected along the proposed new road on the TZ Hillside show relatively 

flat subglacial topography and ice thicknesses reaching 40 m depth.  At the top of the hill, a buried 

symmetrical bedrock feature rises to within 25 m of the surface (Fig. 2.6).  Substantial noise, high 

attenuation rates, and limited or no stratigraphy occurs within the radar data above the bedrock rise.  Similar 

complex stratigraphy and noise has been observed in GPR profiles from temperate glaciers where snow, 

firn, or ice has been thermally altered thereby destroying stratigraphic horizons via chemical diffusion 

(Campbell et al., 2012). Elsewhere across the TZ Hillside, conformable stratigraphy is visible to 20–25 m 

depth in both the 400 MHz (Fig. 2.6a) and 100 MHz (Fig. 2.6b) data.   



 27 

 

Figure 2.6.  One of the parallel GPR transects on the TZ Hillside (location noted in Fig. 2.7). The 400 MHz 
profile (a) and the 100 MHz profile (b) with the bedrock topography and potentially buried cinder cone 
(BCC) noted.  The complex stratigraphy above the cone is similar to noise imaged by GPR within temperate 
glaciers, suggesting that the ice has been thermally altered above the cone.  Therefore, we suggest that ice 
has been situated overtop of the cone since its initial formation or at least, since recent thermal activity.  

2.4.3. Ice velocity profiles 

2.4.3.1. In situ surveys 

Repeat kinematic GPS surveys of the 22 bamboo poles installed on the TZ Hillside revealed average ice-

flow velocities from 0.1–1.1 ± 0.167 m a−1 with the highest velocities located in the eastern corner of the 

grid and near the bergschrund above the TZ (Fig. 2.7). While velocities were measured over austral summer, 

we assume these average velocities are maintained during the winter as the bed is likely frozen, due to the 

average annual temperature being near −20.7°C (Monaghan et al., 2005) and ice thicknesses being < 75 m. 

The velocity gradients result in tensile stresses towards the east and south, which match locations of 
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observed crevassing. The velocity profiles along the proposed road range from 0.29 m a−1 near exposed 

bedrock towards the west to 0.88 m a−1 closer to the eastern boundary of the grid (Fig. 2.7).  

Figure 2.7. The field survey area (inside green dotted line) of the TZ Hillside. Noted are the locations of 
the January 2016 GPR transects and the 2015-2016 repeat GPS survey stake locations (green circles). 
Transect colors indicate measured ice thicknesses and arrows indicate ice-flow velocities (magnitude and 
direction) measured by kinematic GPS surveys in November 2015 and January 2016. Also notes are the 
buried cinder cone (BCC), Pegasus Ice Road (orange dotted line), the approximate proposed road location 
(white solid line), and specific GPR transects shown in Figs. 2.5 and 2.6. 
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2.4.3.2. Numerical modeling  

Three-dimensional numerical modeling was performed across the TZ Hillside, specifically focusing on ice 

velocities around the proposed new road location. Modeling results show ice-flow velocities between 0.1 

and 1.2 m a−1 across the hillside (Fig. 2.8). The average modeled ice velocity across the proposed road 

transect is 0.35 m a−1. Velocities are slowest near the western glacier margin where ice thicknesses approach 

0 m depth and over the buried cinder cone (BCC) near the top of the TZ Hillside where velocities are on 

the order of 0.1 m a−1. Model velocity result patterns align well with GPS-measured velocities (±0.1 m a-1), 

but are conservative in magnitude. We calculate the annual volume of ice crossing the road at the proposed 

road slice (Fig. 2.8) and find that over 204 ±24 m3 (164,000–205,000 kg) of ice would need to be quarried 

annually from ice flowing downhill to maintain a bedrock road. 

 

Figure 2.8. Temporal snapshot of the 3-D TZ Hillside finite element numerical model showing modeled ice 
flow velocities (m a−1) and a slice across the proposed road. McMurdo Station is to the left/west and 
McMurdo Ice Shelf (MIS) and Grounding Line / Transition Zone (TZ) to the right/south of the model. 
Model dimensions are based on GPR measured ice thickness and GPS measured elevation. Model velocities 
closely match observed velocities (±0.1 m a-1), including low velocities over the buried cinder cone (BCC). 
The proposed road slice was used to integrate annual ice volume crossing the proposed road region.   



 30 

2.5. Discussion 

The differencing of corrected DEMs highlights elevation change in the region, however, some variables 

could not be accounted for before differencing. The DEMs in 2011 and 2015 were constructed from imagery 

acquired during different seasons, which would contribute to some of the calculated elevation differences.  

The 2011 DEM was collected in the summer (January) at least halfway through the melt season, when 

winter snow would have already begun melting, whereas the 2015 DEM was collected in the early spring 

(November), when snow cover would be at its maximum.  Ideally, both DEMs would be collected at the 

same time of year (e.g. both DEM’s acquired in late summer during maximum melt); however, the limited 

availability of high-resolution satellite imagery precluded this option. Due to this imagery limitation, 

elevation differences presented here represent a conservative measurement of elevation change between 

2011 and 2015 and future investigations should include elevations captured at the end of multiple melt 

seasons, thereby reducing seasonal impacts.  Below, we consider the stability of both MIS (i.e. floating ice) 

and HPP (i.e. grounded ice) over our study period.  

2.5.1. McMurdo Ice Shelf stability 

In comparing DEM differences in MIS elevation between 2011 and 2015, we find that MIS does not reveal 

any clear signal of consistent elevation decrease, but instead variable change across the study area. The 

MIS terminus retreat occurring between 2011 – 2015 was accompanied by a predominant surface elevation 

decrease. Upstream from the MIS terminus, surface elevation change is more variable with areas gaining 

and losing ±1 m.  We attribute the pocket of elevation loss in the region near the 90° bend of Pegasus Ice 

Road to be from excavators quarrying snow in this area to maintain the road or shifting snow drifts.  The 

remainder of the flat MIS region exhibits very minor elevation gain (0-1.25 m). The most dramatic change 

in ice elevation occurs in the compression folds, aligning perpendicular to ice flow velocities (Fig. 2.4), 

suggesting that the pattern of alternating elevation gain and loss stems from shifting positions of peaks and 



 31 

troughs. As this is a highly dynamic region, influenced by controlling variables such as accumulation, 

ablation, and ice flow, movement of compression fold peaks over an ~4 year period is a likely conclusion.  

While we were able to resolve overall ice shelf elevation (freeboard) decreases in MIS between 2011 and 

2015, we were not able to resolve the nature of MIS thinning; specifically, if the freeboard change resulted 

in a change of the ice shelf composition (percent of marine ice, glacier ice, accumulation), which is critical 

to ice shelf stability.   Previous MIS studies suggest that marine ice reaches up to a third of the total MIS 

thickness, but the distribution of marine ice under MIS (and most other ice shelves) is currently unknown. 

This is, in part, due to the difficulties of measuring ice shelf composition using GPR, as conductive 

attenuation prevents GPR from penetrating the full ice shelf thickness (e.g. Arcone et al., 2016). Other 

studies suggest significant annual thinning of MIS via basal melt, which would counter significant marine 

ice freeze-on (e.g., Rack et al., 2013; Stern et al., 2013; Tinto et al., 2019).  This discrepancy between 

freeze-on/melt and a lack of marine ice thickness observations is perhaps one of the greatest unknowns to 

MIS stability.  To better resolve ice shelf stability, future marine ice thickness measurements are critical in 

order to contextualize changes in ice shelf elevation and associated freeboard.  

The distribution pattern of surface elevation change across MIS is predominantly positive, therefore MIS 

terminus retreat currently appears to be more of a threat than surface or basal melt.  Previous GPR surveys 

across MIS revealed higher accumulation rates near HPP on MIS than towards Black and White Islands 

(Campbell et al., 2017).  These high accumulation rates near HPP likely counter any summer surface or 

basal melting which suggests that the logistical use of MIS may continue safely as long as the MIS terminus 

does not retreat to the TZ. However, MIS-HPP logistical concerns still exist, as meltwater within the TZ is 

pooling at the firn-ice transition, which we expect to persist, and potentially increase, as melt on the TZ 

Hillside continues. Therefore, Pegasus Ice Road may eventually need to be moved depending on future 

meltwater flux, thinning, or retreat of the MIS terminus into the TZ. 
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2.5.2. Hut Point Peninsula stability 

While HPP is itself bedrock, roads leading from MIS to both Scott Base (New Zealand) and McMurdo 

Station (United States) cross onto HPP by way of crossing the TZ, a region experiencing a change in 

stability. Therefore, establishing potential alternative routes, which remove the TZ crossing, is critical to 

uninterrupted Antarctic science logistics. Surface elevation decreases on the south facing slope of HPP near 

the TZ is prominent, with an average elevation loss between 1–3 m.  We interpret this surface lowering to 

be largely due to surface melt, and propose that this surface lowering is the primary source of meltwater 

runoff pooling on the TZ, since the hillside is primarily composed of impermeable ice (e.g. Shoop et al., 

2014).  The south TZ Hillside also shows some regions of 5 m elevation decrease; we propose that this 

elevation change could result from a combination of either poor vertical datum alignment in this region of 

the DEM and/or collapsed cornices, which form annually on this steep hillside.  

The GPR profiles and GPS surveys collected across the TZ Hillside evaluated a potential alternative new 

road location. To install a road across the TZ Hillside, either blasting of ice to place the road on solid 

ground, or grooming an ice road over the current surface, would need to occur. Both options have major 

construction challenges, and each would require sizeable annual maintenance. The hillside is predominantly 

ice, therefore minimal firn is readily available to quarry for ice road maintenance. This does not account 

for the far greater volume of ice that would need to be excavated to create an initial bedrock-based road.  

The model results suggest that a bedrock-based road would be more problematic to initially build and 

maintain, if not impossible, due to the sizeable volume of annual ice removal that would be required, due 

to the dynamic hillside.  However, the steep slope of the TZ Hillside would also make for potentially 

treacherous ice road conditions.  These scenarios would need to be considered in design, building, and 

maintenance strategies prior to moving the current Pegasus Ice Road to the TZ Hillside.     
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2.6. Conclusion 

The MIS-HPP region serves as the primary logistics hub for both the United States and New Zealand 

Antarctic Programs.  The MIS also buttresses several tributary glaciers and is critical to the stability of RIS. 

Problematically, MIS is disproportionately susceptible to potential disintegration, due to high surface and 

basal melt rates, meltwater pooling, and tidal flexure. If MIS were to weaken or collapse, the United States 

and New Zealand Antarctic science programs would also incur sizeable logistics challenges. Here we 

focused on measuring the changes in ice elevation across MIS and HPP, and assessing a potential new 

access road between MIS and HPP.  Through differencing DEMs collected in February 2011 and November 

2015, we identified regions of large elevation change (± 5 m), as well as variability in the compression folds 

region, and MIS terminus retreat. The GPR surveys along Pegasus Ice Road found that the TZ crossing 

maintains pooled meltwater at the firn-ice transition, which can weaken the ice in this triaxial confluence 

of the HPP, MIS, and McMurdo sea ice. Additionally, GPR and GPS surveys on the TZ Hillside, as well 

as a resulting numerical model, explored the possibility of relocating the Pegasus Ice Road to bypass the 

TZ crossing. Results from the GPR, GPS, and numerical model showed that installation of a bedrock road 

or ice road would require either sizeable glacier ice excavation or complex engineering on steep glacier 

terrain, respectively, to bypass the current TZ crossing. Both scenarios would also require sizeable annual 

maintenance due to glacier ice creep and melt.  While changes in ice elevation across the MIS-HPP region 

indicate no immediate need for rerouting Pegasus Ice Road to avoid the TZ crossing, GPS, GPR and 

modeling results also did not suggest a straightforward immediate road rerouting solution. However, due 

to increasing ocean and atmospheric temperatures, combined with the vulnerability and importance of MIS 

to Antarctic logistics, continued remote sensing and in situ monitoring of this region is essential in order to 

continue searching for alternative MIS-HPP access points. More broadly, MIS has important 

teleconnections across both East and West Antarctica and these results suggest that elevation, velocity, and 

ice thickness (including basal marine ice thickness) should be quantified and monitored more extensively 

across this region to capture potential dynamical changes which could have far-reaching consequences.   
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CHAPTER THREE 

QUANTIFYING TEMPORAL AND SPATIAL SURFACE VELOCITY CHANGES ACROSS 

THE ICE SHELF-GLACIER INTERFACE 

3.1. Abstract 

The stability of McMurdo Ice Shelf (MIS) is especially important as it acts as a buttress to the much larger 

Ross Ice Shelf, into which mass from both East and West Antarctica flows. If MIS were to thin or collapse, 

its tributary glaciers and the abutting Ross Ice Shelf could also accelerate, thin, and potentially collapse, 

however this relationship between ice shelves and glaciers is not well quantified. Here I use surface velocity 

to quantify the interplay between the ice shelf and its tributary glaciers focusing on Terror, Aurora, and 

Koettlitz Glaciers, and the adjacent ice shelf areas from 2013 – 2020. With the exception of one date, the 

greatest surface speeds occur on the glaciers instead of the ice shelf (Terror Glacier: 201 m a-1; Aurora 

Glacier: 142 m a-1; Koettlitz Glacier: 94 m a-1). Analyzing the speed across these focus sites using three 

methods revealed two different relationships between the ice shelf and its tributary glaciers: one in which 

both the ice shelf and tributary glacier both speed up during the summertime, and the other where the ice 

shelf fluctuates with the seasons and the tributary glacier remains consistent, suggesting spatial variability 

of driving forces. These results support the importance of including the glacier-ice shelf relationship to 

accurately represent the contribution of Antarctica to future sea level rise. 

3.2. Introduction  

The mass balance of the Antarctic Ice Sheet is a dynamic interplay between the addition of mass through 

annual snow accumulation and mass loss through acceleration and calving (e.g. Rignot et al., 2008), 

surface melt, and basal melt. While the East Antarctic Ice Sheet (EAIS) remained in steady state, the 

West Antarctic Ice Sheet (WAIS) averaged a mass loss of 789±42 Gt a-1 from 2009-2017 (Rignot et al., 

2019), primarily through tributary glacier acceleration. Ice shelves play an essential role in reducing 



 36 

discharge from tributary glaciers by slowing glacier velocities through both their mass and resistance to 

flow at lateral margins. In the absence of ice shelves, glaciers can rapidly accelerate and retreat. For 

example, following the collapse of the Larson A Ice Shelf, its tributary glaciers underwent a 450% 

velocity increase over the following 8 months (Royston & Gudmundsson, 2016). Therefore, in order to 

accurately predict the future contribution of Antarctica to global sea level rise, I first must quantify and 

constrain the glacier-ice shelf relationship. 

Several glacier-ice shelf systems have the potential to greatly contribute to sea level rise, however, Ross 

Ice Shelf (RIS) is the largest ice shelf in the world (500,800 km2; Rignot et al., 2013), and lies between 

WAIS and EAIS, consequently draining portions of both ice sheets (e.g., Tinto et al., 2019). On the 

northwest lateral margin of RIS sits McMurdo Ice Shelf (MIS) (~1,500 km2; Banwell et al., 2017) with 

several tributary glaciers including Skelton Glacier flowing north around Minna Bluff, Koettlitz Glacier 

flowing north from the Dry Valleys, and Terror and Aurora Glaciers flowing south off of Ross Island 

(Fig. 3.1). In comparison to other ice shelves in Antarctica, MIS is relatively thin (~6 – 200 m; Arcone 

et al., 2016; Campbell et al., 2017; Glasser et al., 2006b), allowing warm surface water to flow directly 

underneath (MacGregor et al., 2013; Rack et al., 2013; Tinto et al., 2019). Recent studies found MIS 

exhibits extensive teleconnections, whereby its thinning could induce immediate acceleration of 

MacAyeal and Bindschadler Ice Streams over 900 km away (Reese et al., 2018), and acceleration could 

continue up to 80 km above the grounding line (Anandakrishnan et al., 2003). However, specific features 

in the physical environment of ice shelf-glacier systems can provide stabilization and slow the 

contribution to sea level rise. 

One of the dominant controls working to stabilize MSI and combat melt and thinning are topographic 

controls like pinning points, places where the ice shelf becomes grounded on bedrock, decreasing the 

velocity due to shearing of the ice against the bedrock. Pinning points on MIS include Ross Island, Minna 

Bluff, White Island, and Black Island, which impede the flow of ice, reducing its velocity and providing 

stabilization. On the contrary, RIS has few pinning points and ultimately a faster velocity, creating a 
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velocity gradient across the boundary between RIS and MIS, and producing a shear zone of extensively 

crevassed ice (Kaluzienski et al., 2019). This marginal friction provides internal resistance to flow, helping 

stabilize MIS (Kaluzienski et al., 2019; Khazendar et al., 2015; MacGregor et al., 2013).  

 
Figure 3.1. Map showing study region and focus study sites with major geographic points noted. McMurdo 
Ice Shelf (inset, orange circle; turquoise shading) is bound by RIS and McMurdo Sound. Noted are the 
locations of White Island (W), Black Island (B) and Brown Peninsula (BP). The red boxes define the focus 
study sites of Terror and Aurora Glaciers flowing into Windless Bight, and Koettlitz Glacier and its adjacent 
ice shelf area. Ice flow directions are denoted by dashed arrows (Campbell et al., 2017) with tributary 
glaciers (gl.) labeled. Background image collected from Sentinel-2 on 11 October 2019.  
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Surface velocity provides insight into the rate of mass transfer across the region, the system’s sensitivity to 

changes in external forcings, and changes in stability. Therefore, this is an ideal metric for evaluating the 

relationship between glaciers and ice shelves. Velocity is controlled by the proportion and magnitude of 

different driving forces, including the degree of ice grounding and associated basal friction (Mayer & 

Siegert, 2000; Tikku et al., 2005), ice size and mass, ice composition (meteoric and marine ice), ice 

thickness (MacGregor et al., 2012; Rignot et al., 2013), pinning points and geologic restrictions (Berger et 

al., 2016), surface melt and pooling (Glasser et al., 2006), atmospheric temperatures (Bartholomew et al., 

2010), and ocean temperatures and currents (Tinto et al., 2019). To evaluate the relationship between 

glaciers and ice shelves, I focus on MIS and its tributary glaciers, calculating velocity changes and deriving 

strain rates for both regions. I quantify glacier-ice shelf interactions on seasonal and annual time scales by 

analyzing the velocity results using three methods. While several current velocity products exist, not all are 

suitable for quantifying the seasonal and annual relationships between glaciers and ice shelves. MEaSUREs 

is a prominent velocity product comprised of multiple sources of remotely sensed imagery covering the 

polar regions. However,  only one dataset is available covering MIS, and it presents 20-year average annual 

velocity from 1996 – 2016 (Fig. 3.2; Mouginot et al., 2012; Rignot et al., 2011). Thus, it is unable to resolve 

sub-annual changes. GoLIVE (Scambos et al., 2016) and ITS_LIVE (Gardner et al., 2019) velocity products 

have a higher temporal resolution, but struggle in the ice shelf region. Therefore, in this study, I use a 

combination of velocity products and newly derived velocities to address the science goal of quantifying 

the velocity across MIS and its tributary glaciers on seasonal and annual timescales. 
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Figure 3.2. Map of annual average surface velocity in McMurdo Ice Shelf region from MEaSUREs. The 
white outline marks the boundary of Ross and McMurdo Ice Shelves. Values are very similar to those 
calculated using established methods and products detailed later in this thesis. 

3.3. Methods 

Glaciers and ice shelves often exhibit very different velocity regimes, making a single method of acquiring 

surface velocity values inadequate for glacier-ice shelf environments. To address this I separated glacier 

and ice shelf velocities (Fig. 3.3 A), calculated MIS surface velocities using COSI-Corr, a feature tracking 

extension used in ENVI, and used the Jet Propulsion Laboratory’s ITS_LIVE (Gardner et al., 2019) and 

NASA’s GoLIVE (Scambos et al., 2016) products for the velocity of the tributary glaciers. COSI-Corr 

successfully represents the velocity on the ice shelf (Fig. 3.3 B), but fails in regions of larger velocities (Fig. 

3.3 B orange circles; Heid & Kääb, 2012). ITS_LIVE and GoLIVE can resolve these fast velocities, but 
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perform more poorly on the slower flowing ice shelf (Fig. 3.3 C). Consequently, I used both datasets to 

most accurately capture the surface velocity across the study area (Table 1; Heid & Kääb 2012). 

 
 

 

Figure 3.3. Comparison of COSI-Corr to ITS_LIVE and GoLIVE datasets in the Terror and Aurora Glacier 
and Windless Bight region. Panel A depicts the region in a true-color Landsat 8 image, while panel B shows 
the surface velocity (m a-1) results from COSI-Corr, and panel C displays the GoLIVE velocity results (m 
a-1). The orange circles indicate points of narrowing near the terminus of each glacier. The red dashed line 
indicates the boundary of the ice shelf area of interest, and the black lines indicate the area of interest for 
Terror and Aurora Glaciers. 

3.3.1. Deriving velocities from feature tracking 

On Terror, Aurora, and Koettlitz Glaciers I derived velocity values using COSI-Corr, where I applied a 

Fourier-based feature tracking algorithm to the panchromatic band of Landsat 8 imagery spanning 2013 – 

2020. The feature tracking method relies on the identification of common surface features between the two 

images using a user-defined sliding window (generally twice the maximum expected surface velocity), 

providing spatial constraints when matching features between the two images. Consequently, this method 

will fail if too much movement places the features outside the bounds of the window, or if too little 

movement occurs and the displacement is within the uncertainty. I processed the COSI-Corr results using 

a combination of MATLAB and QGIS, removing values with a signal-to-noise ratio >0.9 (in both 
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directions; Ayoub et al., 2015), and outside two standard deviations of the mean. I calculated the error 

associated with the COSI-Corr method by looking at the velocity of a stationary region, the exposed bedrock 

adjacent to Koettlitz Glacier, and established an error range of 0.023 m a-1 – 11.25 m a-1. For the velocity 

on the glaciers, I used ITS_LIVE (Gardner et al., 2019) and GoLIVE (Scambos et al., 2016) (Table 3.1), 

which have uncertainties of 1 m a-1 and 0.02 m d-1 – 1 m d-1 respectively. 

Date Range Koettlitz Ice 
Shelf Velocity 

and Strain 
Rate 

Koettlitz 
Glacier 
Velocity 

Windless Bight 
Velocity, Velocity 

Anomaly, and Strain 
Rate 

Terror And Aurora 
Glaciers Velocity, 

and Velocity 
Anomaly 

27 Dec. 2013 - 27 Oct. 2014 COSI-Corr ITS_LIVE COSI-Corr ITS_LIVE 
27 Oct. 2014 - 12 Nov. 2014 COSI-Corr ITS_LIVE 

  

27 Oct. 2014 - 15 Oct. 2015 COSI-Corr ITS_LIVE COSI-Corr ITS_LIVE 
15 Oct. 2015 - 1 Dec. 2015 

  
COSI-Corr ITS_LIVE 

1 Dec. 2015 - 3 Dec. 2016 COSI-Corr ITS_LIVE COSI-Corr ITS_LIVE 
3 Dec. 2016 - 5 Feb. 2017 

  
COSI-Corr ITS_LIVE 

5 Feb. 2017 - 4 Nov. 2017 
  

COSI-Corr ITS_LIVE 
4 Nov. 2017 - 7 Jan. 2018 

  
COSI-Corr ITS_LIVE 

7 Jan. 2018 - 25 Oct. 2019 COSI-Corr 
 

COSI-Corr 
 

25 Oct. 2019 - 27 Oct. 2020 COSI-Corr GoLIVE COSI-Corr GoLIVE 
 
Table 3.1. Data source used for each date, region, and calculation. 

3.3.2. Quantifying glacier-ice shelf velocity behavior 

To analyze the glacier-ice shelf behavior, I first spliced together the COSI-Corr and ITS_LIVE/GoLIVE 

data at the grounding line to create a single dataset of ice shelf and glacier velocities. I did not include time 

periods of glacier and ice shelf velocities where the COSI-Corr and ITS_LIVE/GoLIVE data did not align, 

as it was unclear which velocity calculation of the two datasets was accurate (Table 3.1). To quantify 

velocity behavior, I used three methods, as there is no single metric to highlight the surface velocity across 

both the ice shelf and the tributary glaciers: (1) average velocities across the entire glacier-ice shelf system, 

(2) centerline transect velocity, and (3) velocity distribution curves. The average velocity calculation 

computes the average of all data points on each ice shelf area and each glacier. The centerline transects 
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extract the velocity along multiple parallel transects running down the general flowline of each glacier and 

onto the ice shelf. As the transects generally run longitudinally, I averaged by latitude to the central transect 

line, so as not to place too much value on a single pixel (Fig. 3.4), producing the average centerline velocity. 

In this calculation, the ice shelf and glacier velocity data were spliced together at the location along the 

transect where the datasets are equal. I calculated the distribution of the velocity values by binning velocity 

values of all glacier and ice shelf data points, and plotting the frequency of velocity values over time. 
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Figure 3.4. Location of transects over true-color image of focus regions, with ice shelf and glacier areas 
outlined discretely. Panels A and B show the Koettlitz Glacier focus site, with the black outline indicating 
the glacier extent and the red dashed line indicating the extent of the ice shelf area of interest. Panels C and 
D show the Terror and Aurora Glacier, and Windless Bight focus site. Panels A and C depict the transect 
lines along which the velocity data were extracted, and panels B and D depict the resulting area of the 
averaged transect lines for each focus site. 
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3.3.3. Anomalies 

To analyze velocity changes between years, I calculated velocity anomalies by first establishing a baseline 

velocity raster. The baseline velocity was calculated using a time-weighted geospatial average of the surface 

velocity data. Due to limited image availability in the Koettlitz region (n=5), I focused on the Terror and 

Aurora systems, which have a continuous record (Table 3.1). I then calculated the velocity anomaly by 

subtracting the baseline velocity from each individual velocity time period.  

3.3.4. Strain rates 

To gain further insight into the dynamics of the glacier-ice shelf system, I calculated both the volumetric 

and shear strain rates on the ice shelf in both focus study sites using the derived velocity rasters in Golden 

Software Surfer. Before calculating the strain rates, I cropped the two ice shelf areas 2-3 pixels (480 m – 

720 m) from the bedrock edge to eliminate translation at the ice-rock boundary. The volumetric strain rate 

describes the expansion and contraction of the ice due to normal strains, and is computed using the equation  

𝑉𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐	𝑆𝑡𝑟𝑎𝑖𝑛	𝑅𝑎𝑡𝑒 = 0.5 ;'()
')

− '(*
'*
=,                          Equation 1 

where 𝑉𝑥 is the velocity in the 𝑥-direction and 𝑉𝑦 is the velocity in the 𝑦-direction. 

The shear strain rate describes the change in shape resulting from shear stress, or forces being applied to 

the ice in opposite directions, and is calculated using the equation 

            𝑆ℎ𝑒𝑎𝑟	𝑆𝑡𝑟𝑎𝑖𝑛	𝑅𝑎𝑡𝑒 = 0.5 ;'()
'*

+ '(*
')
=.                         Equation 2 

In these calculations I set positive volumetric strain as expansion (when the y-component of the ice velocity 

increases in the positive y-direction) (Fig. 3.5 A), and negative volumetric strain as ice contraction (when 

the y-component of the ice velocity decreases in the positive y-direction) (Fig. 3.5 B). I set positive shear 
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strain as an increase in velocity when moving in the positive x-direction, and negative shear strain as a 

decrease in velocity when moving in the positive x-direction. Therefore, ice flowing through a confined 

channel creates positive shear strain along the left lateral margin, and negative shear strain along the right 

lateral margin, with the magnitude of shear strain decreasing towards the center (Fig. 3.5 C).  

 
Figure 3.5. Idealized models of strain rate. The arrows within the x-y plain represent velocity vectors in an 
overhead view of ice flowing in the positive y-direction. The panels represent (A) positive volumetric strain 
rate with directional forces '+

')
= 0; ',

')
= 0; ',

'*
= +; '+

'*
= 0, (B) negative volumetric strain rate with 

directional forces '+
')
= 0; ',

')
= 0; ',

'*
= −; '+

'*
= 0, (C) shear strain rate with directional forces on the right 

half '+
')
= 0; ',

')
= −; ',

'*
= 0; '+

'*
= 0, and on the left half '+

')
= 0; ',

')
= +; ',

'*
= 0; '+

'*
= 0.  

3.3.5. Identifying surface melt 

To quantify changes in surface melt on MIS, I used Landsat 8 surface reflectance band ratios. Band ratios 

have been used successfully to track the drainage of supraglacial lakes >0.125 km2 in Greenland with the 

Normalized Difference Lake Index (NDLI), 

𝑁𝐷𝐿𝐼 = -!.-"#!
-"#!/-!

               Equation 3 

where 𝑅0 is the surface reflectance in the red band, and 𝑅120 is the surface reflectance in the near-infrared 

band (Morriss et al., 2013; Schild et al., 2016). This ratio is used to identify the timing of melt onset, the 

length of the melt season, and the spatial extent of surface melt across MIS.  
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3.4. Results 

3.4.1. Geospatial velocity patterns 

All three study locations, Koettlitz, Terror, and Aurora, followed similar geospatial velocity patterns. The 

highest velocities were found along the centerline of the glaciers (Koettlitz: 100 m a-1; Terror: 210 m a-1; 

Aurora: 145 m a-1), and approached 0 m a-1 along the glacier margins (Fig. 3.6; Fig. 3.7). The maximum 

velocities for each ice shelf occurred near the glacier termini, but were smaller in magnitude than their 

glacier counterparts (Koettlitz: 75 m a-1; Windless Bight: 80 m a-1 – 120 m a-1; Fig. 3.6; Fig. 3.7). Seasonally, 

glacier velocities were fairly consistent, while MIS displayed larger velocities in the summer than in the 

winter (Fig.3.6; Fig. 3.7). In addition to the velocity magnitude, the velocity direction also exhibits spatial 

and temporal variability. Koettlitz Glacier flows north onto the ice shelf where it curves slightly west (Fig. 

3.6), and Terror and Aurora Glaciers flow south into Windless Bight before curving to the southwest, except 

during the summer when the flow is initially to the southeast across the grounding line before curving 

southeast (Fig. 3.7). Two scenes do not follow the behavior of the other time periods, 14 Oct. 2015 – 1 Dec. 

2015 at Windless Bight (Fig. 3.7 C), and 27 Oct. 2014 – 12 Nov. 2014 at Koettlitz (Fig. 3.6 B). In these 

scenes, velocity vectors maintain unrealistic and conflicting directions of flow (to the southwest at Windless 

Bight, to the east at Koettlitz), and likely result from minimal displacement between Landsat images. This 

is a known limitation of the feature tracking method, and will produce false results with these 

characteristics. The 14 Oct. 2015 – 1 Dec. 2015 data at Windless Bight (Fig. 3.7 C) will not be considered 

during analysis, as other summer-only data exist in this location and show results that align with that which 

is expected. 
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Figure 3.6. Surface velocity on Koettlitz Glacier and adjacent ice shelf. The surface velocity (m a-1) from 
ITS_LIVE/GoLIVE covers the glacier and is spliced with the COSI-Corr surface velocity data (m a-1) on 
the ice shelf. Black vector arrows overlay the velocity magnitude. Each panel (A-E) displays the surface 
velocity for the dates noted in each panel. The black box in panel A identifies the terminus region discussed 
in figure 3.20. The light red colored label identifies scenes that span only the summer months. Faster 
velocities occur towards the center of the ice shelf and glacier, while smaller velocities are found along the 
margins.  
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Figure 3.7. Surface velocity on Terror and Aurora Glaciers, and the ice shelf in the adjacent Windless Bight. 
The surface velocity (m a-1) from ITS_LIVE/GoLIVE covers the glaciers and is spliced with the COSI-Corr 
surface velocity (m a-1) data on the ice shelf. Black vector arrows overlay the velocity magnitude over the 
ice shelf. The dark red lines mark the approximate grounding line location. Each panel (A-E) displays the 
surface velocity for the dates noted in each panel. The black box in panel A identifies the terminus region 
discussed in figure 3.21. The light red colored label identifies scenes that span only the summer months. 
Larger velocities are found along the main glacier channels, and on the ice shelf near the glacier termini. 
The velocity decreases on the ice shelf with distance from the glaciers. 
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3.4.2. Average ice shelf and glacier surface speeds 

When averaging all velocity measurements within each ice shelf region and tributary glacier, I found 

average ice shelf velocities between 10 m a-1 – 180 m a-1 (Koettlitz: 10 m a-1 – 70 m a-1; Windless Bight: 

55 m a-1 – 180 m a-1; Fig. 3.8), and an average glacier speed between 16 m a-1 – 50 m a-1 (Koettlitz Glacier: 

16 m a-1 – 50 m a-1, Terror Glacier: 38 m a-1 – 48 m a-1, Aurora Glacier: 38 m a-1 – 44 m a-1; Fig. 3.8; Table 

3.2). Ice shelf summer speeds are 2-3 times greater than winter speeds in Windless Bight, and 3-5 times 

greater near Koettlitz Glacier. The smaller speeds in the Koettlitz region also span a smaller range of values, 

only 55 m a-1, in comparison to the speed values in Windless Bight, which have a range of 125 m a-1. When 

directly comparing the spatially-averaged speed on the tributary glaciers and the ice shelf, the ice shelf 

speed is 2% - 43% greater than Koettlitz Glacier, with the greatest differences measured in the summer 

season (Fig. 3.9), 16% - 70% greater than on Terror Glacier, and 23% - 73% greater than on Aurora Glacier 

(Fig. 3.10). With the exception of Dec. 3, 2016 – Feb. 5, 2017, where the values are almost equal, the speed 

on Terror Glacier is greater than on Aurora Glacier (Fig. 3.10). 
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Figure 3.8. Comparison of the average surface speed on ice shelf in two study regions through time. Panel 
A shows the average speed (m a-1) results from the ice shelf in front of Koettlitz Glacier. This is the area 
outlined by the red dashed line in Fig. 3.4 (A, B). Panel B shows the average speed (m a-1) results from the 
ice shelf in front of Terror and Aurora Glaciers, also noted by the red dashed line in Fig. 3.4 (C, D). The 
horizontal black line cutting across both panels indicates the time-weighted velocity average of the. The 
speed in the Koettlitz region is less than the velocity in the Terror and Aurora region, and the summer speed 
is greater than the winter. 
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Figure 3.9. Comparison of average speed on Koettlitz Glacier, and the adjacent ice shelf area. The horizontal 
axis shows the dates of each image between which the speed was calculated. Over short, seasonal 
timescales, these lines are not noticeable as they are no wider than the points themselves. 
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Figure 3.10. Comparison of average speed on Terror Glacier, Aurora Glacier, and the adjacent ice shelf 
area. The horizontal axis shows the dates of each image between which the speed was calculated. Over 
short, seasonal timescales, these lines are not noticeable as they are no wider than the points themselves. 
 

3.4.3. Surface speed along central transects 

The average centerline transects for Terror, Aurora, and Koettlitz all showed glacier velocities reaching 

their maximum speeds near their approximate grounding line. Those maximum average speeds ranged from 

43 m a-1 – 225 m a-1 (Terror: 160 m a-1 – 225 m a-1; Aurora: 105 – 200 m a-1; Koettlitz: 43 m a-1 – 94 m a-1; 

Fig. 3.11). The only deviation from this trend was during some of the summer-only averages, where speed 

continued to increase along the length of the transect.  
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Figure 3.11. Surface speed along transects on each of the three glacier sites and their adjacent ice shelf 
areas. Panel A shows the speed (m a-1) along the averaged transects on Terror Glacier and the ice shelf. 
Panels B and C displays data following the same methodology as that in A except on Aurora Glacier (B) 
and Koettlitz Glacier (C). The dashed lines indicate time periods that do not include winter months. The 
grey shaded regions denote the range of locations along the transects, which crosses from glacier to ice 
shelf, where and the COSI-Corr and ITS_LIVE/GoLIVE data were spliced together. 
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3.4.4. Surface speed frequency distribution 

To establish if variability exists in geospatial velocity distribution, I compiled pixel speeds across each 

glacier and ice shelf region. I found that all ice shelf regions have greater mode surface speed than their 

tributary glaciers, and the mode speeds on Windless Bight and its tributary glaciers are greater than those 

in the Koettlitz region (Fig. 3.12), with ice shelf mode values ranging from <5 m a-1 – 95 m a-1 (Koettlitz: 

<5 m a-1; Windless Bight: 55 m a-1 – 95 m a-1), and glacier mode values ranging from <5 m a-1 – 25 m a-1 

(Koettlitz: <5 m a-1; Terror: 10 m a-1 – 30 m a-1, Aurora: 15 m a-1 – 25 m a-1). Additionally, maximum speeds 

occur during the summer, as the summer-only surface speeds are more evenly distributed across the range 

of values than those that span an entire year. 
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Figure 3.12. Surface speed distribution across Terror, Aurora, and Koettlitz Glaciers, and their adjacent ice 
shelf areas. Each line represents the number of data points with a surface speed value between a predefined 
range of values (left vertical axis) and the probability of a surface speed data point being within a predefined 
range of values. The dashed lines indicate time periods that do not include winter months. The surface speed 
distribution (m a-1) is represented on Koettlitz Glacier (A), the ice shelf adjacent to Koettlitz Glacier (B), 
Terror Glacier (C), Aurora Glacier (D), and the in shelf in Windless Bight (E).  
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3.4.5. Surface speed anomalies 

To isolate changes in speed on seasonal and annual time scales, I calculated anomalies using the geospatial 

velocity data. The weighted average velocity of all geospatial velocity data, hereafter referred to as the base, 

ranges from 11 m a-1 – 206 m a-1 at Windless Bight (Fig. 3.13), and 3 m a-1 – 196 m a-1 at Terror and Aurora 

Glaciers (Fig. 3.14). At Windless Bight, time periods that span close to a year have smaller anomalies (-20 

m a-1 – 20 m a-1) (Fig. 3.13 B, C, E, I, J), while those that represent seasonal velocities span a much larger 

range (-50 m a-1 – 250 m a-1) (Fig. 3.13 F, G, H). Little spatial variability exists in the annual time periods, 

but the seasonal data display two spatial patterns. The summer data show a general trend of below average 

to above average anomaly when moving south from the grounding line (Fig. 3.13 F), while the time period 

that spans only the winter shows the opposite trend (Fig. 3.13 G). The values in the southwest corner of 

each scene show anomaly values up to 2.5x the magnitude of the values displayed in the rest of the scene, 

and have values far above and below the base that lie adjacent to each other, indicating the limits of the 

feature tracking method. The difference from the mean does not follow a distinguishable flow regime across 

the glacier, and there is little seasonal variability (±15 m a-1), with the exception of one summertime period 

(Dec. 3, 2016 – Feb. 5, 2017) exhibiting velocity much below average (-41 m a-1) (Fig. 3.14 F). 
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Figure 3.13. Ice shelf surface speed anomaly for region adjacent to Terror and Aurora Glaciers. The base 
image (A) shows the time-weighted average speed (m a-1) for the ice shelf area from 2013 – 2020. Panels 
B – J show the surface speed anomaly (m a-1) for the dates noted in each panel. The speed anomaly is 
consistent moving east-west, and forms a gradient moving north-south across the ice shelf. 
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Figure 3.14. Surface speed anomaly for Terror and Aurora Glaciers. The base image (A) shows the time-
weighted average speed (m a-1) for the glaciers from 2013 – 2020. Panels B – I show the surface speed 
anomaly (m a-1) for the dates noted in each panel. Most of the surface speed anomalies fall close to the base 
average with only one time period showing widely positive anomalies and only one time period showing 
widely negative anomalies. 
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3.4.6. Volumetric and shear strain rates 

I found minimal areas of expansion and contraction on the ice shelf in front of Koettlitz Glacier (-0.001 a-1 

– 0.001 a-1; Fig. 3.15); however, northeast-southwest contraction occurs in the southern corner, and north-

south expansion occurs in the western corner and along the northern edge (Fig. 3.15). The shear strain rate 

(Fig. 3.16) follows a similar distribution of equal magnitude values. Right-lateral shearing occurs in the 

southern corner and along the northern boundary of the study area, and left-lateral shearing occurs in the 

western corner (Fig. 3.16). Both volumetric and shear strain rate data show more pervasive higher 

magnitude values (10-100x above average), and higher signal to noise ratios in the earliest two time periods 

(Figs. 3.15 A, 3.16 A; Figs. 3.15 B, 3.16 B), than the four more recent time periods. These volumetric strain 

rate patterns suggest that the glacier accelerates across the grounding line, then decreases in speed when 

moving towards the front of the ice shelf, the direction of flow is dictated by the geometry of the sidewalls, 

and the speed is fastest towards the center and slowest along the margins. 
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Figure 3.15. Volumetric strain rate on the ice shelf adjacent to Koettlitz Glacier. Panels A-F show the 
volumetric strain rate calculated for five different time periods spanning 2013 – 2020. Higher magnitude 
volumetric strain rate values are more abundant along the margins of the study area, while lower magnitude 
values are concentrated towards the center of the study area.  
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Figure 3.16. Shear strain rate on the ice shelf adjacent to Koettlitz Glacier. Panels A-F show the shear strain 
rate calculated for five different time periods spanning 2013 – 2020. Larger magnitude shear strain rate 
values are found along the margins of the study area while smaller values occur nearer the center. 

In the Windless Bight region, most of the volumetric strain rate values range from -0.04 a-1 – 0.04 a-1 (Fig. 

3.17). The flow patterns from the glaciers are distinguishable near the grounding line, with north-south 

contraction at the grounding line, and decreasing magnitude with distance from the grounding line. North-

south expansion occurs at the margins of the faster outflow channels of Terror and Aurora Glaciers, and the 

slower flowing ice in between the two channels (Figs. 3.17). The shear strain rate values in Windless Bight 

fall within the same range as the volumetric strain rate values (Figs 3.18). The ice flowing from the main 

glacier channels experiences negative left lateral shearing, with magnitude decreasing with distance from 

the grounding line (Fig. 3.18), while the area between the outflow from Terror and Aurora Glaciers has a 

near-zero shear strain rate. The western margin with ice flowing off Aurora Glacier experiences negative 

left lateral shearing, while the eastern side adjacent to outflow from Terror Glacier undergoes positive right-
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lateral shearing. The strain rate patterns indicate that the velocity is highest along the outflow from Terror 

and Aurora Glaciers, and slowest in the region in between, supporting the convergence of ice seen in the 

velocity vectors. Also, the greatest velocity gradient occurs crossing the grounding line, and between the 

two glacier outflows and the more stagnant ice in between. 
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Figure 3.17. Volumetric strain rate on the ice shelf in the Windless Bight region. Panels A-F show the 
volumetric strain rate calculated for five different time periods spanning 2013 – 2020. The arrows and 
perpendicular lines in panel A indicate the direction of ice expansion.  
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Figure. 3.18. Shear strain rate on the ice shelf in the Windless Bight region. Panels A-F show the shear 
strain rate calculated for five different time periods spanning 2013 – 2020. The black arrows in panel A 
indicate the direction of shearing. 
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3.4.7. Identifying surface melt 

To quantify the change in surface melt across the study site, I applied the NDLI ratio to Landsat 8 imagery, 

also used for velocity calculations. While this ratio should exploit the differences in wavelength reflectance 

between the red and NIR bands on water, ice, and rock, the resulting NDLI imagery did not agree with the 

results of prior studies (e.g. Morriss et al., 2013; Schild et al., 2016). Specifically, in comparing what should 

have appeared dark (rock, red box; Fig. 3.19) to what should have appeared bright (water, purple box), both 

surfaces instead reflect very similar energy in both the infrared and red range, and consequently appear 

indistinguishable in the NDLI imagery. Additionally, sea ice should have a brightness between that of the 

surface water and the rocks, but instead appears comparable to the very bright rocks (sea ice, yellow box). 

The failure of this method to correctly identify surface water, and the misidentification of both bedrock and 

sea ice suggests that the atmospheric correction used in post-processing to obtain surface reflectance values 

is not well calibrated in this region. Thus, NDLI is not a viable method in this environment, and 

measurements of surface melt timing, duration, location, and area were not calculated. 

 
Figure 3.19. Example of poorly calibrated surface reflectance, resulting in false NDLI values on MIS. Panel 
A shows a true-color Landsat 8 image of the ice shelf edge on the north side of Koettlitz Glacier, and panel 
B shows the NDLI image. The red boxes identifying rock features in the landscape, the purple box identifies 
surface melt pooling, and the yellow box identifies sea ice. 
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3.5 Discussion 

3.5.1. Comparison to other data 

Surface velocity geospatial patterns presented in this chapter broadly agree with the 20-year annual average 

MEaSUREs results (Rignot et al., 2017). Both my and MEaSUREs’s results show an increase in velocity 

through the narrowest portions of Terror and Aurora Glacier. Due to limitations in data coverage, direct 

comparisons between velocity values could not be calculated, but overall MEaSUREs velocity broadly 

agrees with the baseline average values calculated here, to within 19%. 

3.5.2. Surface velocity patterns 

Each of the three methods of surface speed analysis (total average speed, transect speed, and speed 

distribution) reveal greater summer velocity magnitudes than annual velocity magnitudes, and much more 

seasonal variability on the ice shelf than the glaciers. However, in comparing the average speed of the 

tributary glaciers relative to the ice shelf, two relationships are distinguishable: one in which the ice shelf 

dampens the summer effects on the glaciers (Terror and Aurora), and the other in which the glacier and ice 

shelf respond in concert (Koettlitz). At Terror Glacier, the annual ice shelf speed is 16% - 43% more than 

the annual glacier speed, however, in the summer, the ice shelf speed increases to 70% more than the glacier 

speed (Fig. 3.20 A). At Aurora Glacier, a similar trend emerges where the annual ice shelf surface speed is 

23% - 47% larger than the annual glacier speed, and the summer average speed is 72% greater than the 

glacier (Fig. 3.20 B), suggesting the ice shelf may be dampening the summer changes. However, in the 

Koettlitz region, there are comparable seasonal velocity changes in both the glacier and the ice shelf speed, 

with the average annual ice shelf speed 27% - 43% greater than the average annual glacier speed, and the 

average summer ice shelf speed 27% greater than the glacier speed (Fig. 3.20 C), suggesting the glacier and 

ice shelf respond in tandem to seasonal variability in driving forces. When looking at centerline averages, 

which are less dependent upon user-defined study areas, the trends in glacier-ice shelf surface speeds are 
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very similar, except there is a greater difference between the summer ice shelf and glacier speeds in the 

Koettlitz region, and faster glacier speeds than ice shelf speeds on Terror and Aurora Glaciers (Fig. 3.21; 

Table 3.2). The differences in the relationship between the ice shelf and tributary glaciers between the 

methods likely stem from the inclusion of peripheral ice shelf data, which is not proportionally represented 

in the centerline transects.  

 

Figure 3.20. Comparing average surface speed on tributary glaciers to adjacent MIS area. Each colored 
point refers to a different time period. The circles represent time periods that include the winter, while the 
triangles represent those time periods that only span the summer season. The panels correspond to each of 
the three tributary glaciers, Terror (A), Aurora (B), and Koettlitz (C), and their adjacent ice shelf area. 
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Figure 3.21. Comparing average centerline transect surface speed on tributary glaciers to adjacent MIS area. 
Each colored point refers to a different time period. The circles represent time periods that include the 
winter, while the triangles represent those time periods that only span the summer season. The panels 
correspond to each of the three tributary glaciers, Terror (A), Aurora (B), and Koettlitz (C), and their 
adjacent ice shelf area. 

 

 

 

Table 3.2. Tributary glacier and ice shelf area averages, centerline transect averages, and glacier-ice shelf 
percent difference. The far-right column “Method” indicates whether the data stem from the area average 
(A) or the transect average (T). 
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The two different relationships observed between glaciers and ice shelves across our study site suggest that 

while each location may be experiencing similar environmental forcings, each system experiences different 

driving forces related to both environmental and physical variables. All of these variables likely contribute 

to the tendency of each of these glacier-ice shelf systems to preferentially align with one of these two 

regimes, however common physical features, such as grounded ice and ice composition, likely play a lesser 

role. I hypothesize that the difference in glacier-ice shelf behavior of the two regimes observed across the 

study site stems from three primary controls: (1) the proximity of bedrock features restricting ice shelf flow, 

(2) the number of tributary glaciers, and (3) spatial variability in ocean currents and consequently basal 

melting at the ice-ocean boundary. Windless Bight has two tributary glaciers flowing into it (Terror and 

Aurora), which are set farther back from the ice shelf front, and thus allows for more spatial variability or 

dispersion of warm ocean currents. Koettlitz is the only glacier that flows into its ice shelf area and is 

isolated from the rest of the ice shelf by Brown Peninsula, thereby decreasing the volume of ice supplying 

the ice shelf. Koettlitz is also located in a region of the ice shelf closer to the front and that is isolated from 

the rest of the ice shelf by Brown Peninsula, allowing for minimal spatial dispersion of ocean water.  

3.5.3. Future work 

Surface velocities on Koettlitz, Terror, and Aurora Glaciers, and their adjacent ice shelf areas revealed 

annual and seasonal patterns, and two relationships for glacier-ice shelf interactions. However, to resolve 

sub-seasonal changes, and test the scope of these two regimes across multiple seasons and locations, 

additional data are needed. To test my hypothesis concerning driving controls, in situ ocean temperature 

measurements beneath the ice shelf are needed, along with atmospheric data, additional study sites with 

variable ice shelf sizes, numbers of tributary glaciers, and distances from the ocean. To evaluate and refine 

the long-term behavior of the seasonal and annual glacier-ice shelf relationship, as well as quantify the 

impact of climate-driven changes on this relationship, data spanning both a longer time scale and at a finer 

temporal resolution is required. Additionally, increased calibration of coastal Antarctic remote sensing 
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imagery would enable analysis of surface melt, which could also be considered a driver of seasonal 

variability in surface velocity. 

3.6. Conclusion 

Ice shelves provide a buttressing force against the flow of glaciers, restricting the mass loss to the ocean, 

and consequently regulating the rate of Antarctica’s contribution to global sea level rise. Here I focused on 

the surface velocity of MIS and its tributary glaciers between 2013 – 2020. Using results from COSI-Corr, 

ITS_LIVE, and GoLIVE, I found greater surface speeds during the summer and smaller speeds during the 

winter and across annual time scales. The area average speed and the speed distribution both reveal larger 

magnitude ice shelf velocities than glacier velocities, while the centerline transects show larger glacier 

speeds, highlighting the method-dependency of these types of velocity studies, as well as the difficulties of 

classifying the surface velocity of this dynamic system. Comparison of glacier-ice shelf behavior reveals 

two ice shelf-glacier regimes: (1) seasonal fluctuation of both the ice shelf and the tributary glacier speeds, 

and (2) seasonal fluctuation of the ice shelf speed and consistent tributary glacier speeds, suggesting spatial 

variability in location-dependent driving forces. Future work should focus on combining remotely sensed 

data with in situ measurements to resolve sub-seasonal glacier-ice shelf behavior changes. These findings 

demonstrate the importance of the physical environment in controlling glacier-ice shelf behavior, and 

necessitates the inclusion of this relationship in predictive models. 
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CHAPTER FOUR 

CONCLUSION 

4.1. Summary 

This work provides insight into the dynamic relationship between McMurdo Ice Shelf (MIS) and its 

tributary glaciers. McMurdo Ice Shelf provides a buffer to both its tributary glaciers, as well as the 

northwest corner of Ross Ice Shelf, into which glaciers from both East and West Antarctica flow. It also 

serves as a runway for planes arriving at both the McMurdo Station (United States) and Scott Base (New 

Zealand), thus playing a critical role in the logistics of the scientific work conducted by these two countries. 

Concerningly, MIS is vulnerable to collapse due to its thinness and consequential susceptibility to 

subglacial melt, understanding the transfer of mass from grounded glaciers to floating ice shelf is essential 

in predicting its longevity. 

The results presented in chapter two identify a key logistics vulnerability in Pegasus Road, which connects 

the runways on MIS to the research bases on Ross Island. Further retreat of MIS to Hut Point Peninsula 

could impact the road segment connecting the ice shelf to Hut Point Peninsula, making McMurdo Station 

and Scott Base inaccessible. We suggest relocating the road to connect with Ross Island at a point farther 

northeast, bypassing this area of high vulnerability. Chapter three examines the relationship between surface 

velocity on MIS and its tributary glaciers using three methods (average surface velocity, velocity along 

central transects, and velocity frequency distribution), identifying seasonal and annual patterns. All three 

methods reveal greater overall surface speeds during the summer and slower speeds in the winter, with the 

greatest speeds located near the grounding line along the central flow line. In the Windless Bight region, 

the seasonal speed fluctuation is seen most strongly on the ice shelf, and to a lesser extent on the tributary 

glaciers whose velocities remain more consistent throughout the year, while in the Koettlitz region, the 

surface speed of both glacier and ice shelf fluctuates together. Therefore, the difference in seasonal behavior 
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between regions suggests that driving forces vary spatially across MIS, creating these two regimes. I 

hypothesize that the most prominent controls creating these two regimes include the degree of restriction 

by bedrock features, the number of tributary glaciers flowing into each ice shelf region, and differences in 

ocean circulation and temperature.  

4.2. Future work 

While this research provides a foundation to understanding the connection between MIS and its tributary 

glaciers, additional data would help further explore this relationship. For instance, a lack of agreement 

between several of the COSI-Corr and ITS_LIVE/GoLIVE datasets in the Koettlitz region made it 

challenging to determine which dataset is a more accurate representation of surface velocity. Therefore, 

time periods were not included, and less data was available to analyze the Koettlitz Glacier-ice shelf 

relationship. The availability of in situ GPS measurements spanning both the tributary glacier and the 

adjacent ice shelf could resolve this discrepancy and help to refine the feature tracking algorithms, and 

therefore ultimately increase our understanding of the potential long-term stability of this system. 

Gathering thickness measurements in the terminus region of each glacier would provide the information 

necessary to quantify the mass transfer from the glaciers to the ice shelf, linking these velocity and elevation 

change results to sea level contribution. Previous MIS thickness measurements have produced conflicting 

results, especially with regard to the mass lost to subglacial melt. Collecting in situ measurements could 

resolve some of these uncertainties; using seismic surveying, capable of penetrating the meteoric ice-marine 

ice interface and reaching the marine ice-ocean interface could provide the clarifying data. Repeat 

measurements of ice shelf thickness would allow quantification of basal melt rates and identification of 

specific regions especially susceptible to melt from warm water circulation. This thesis aimed to quantify 

surface changes on MIS by examining the relationship between MIS and its tributary glaciers through 

analyzing changes in ice surface elevation, and surface velocity between 2013 – 2020, and highlights the 
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vitality of understanding the glacier-ice shelf relationship in predicting the future contribution of ice shelf 

tributary glaciers to sea level rise. 
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APPENDIX 

 

 

Figure A.1. Surface elevation change on McMurdo Ice Shelf (MIS) adjacent to Koettlitz Glacier. Elevation 
change between three dates, 26 Dec. 2010 – 19 Dec. 2011, 19 Dec. 2011 – 5 Nov. 2016, 26 Dec. 2010 – 5 
Nov. 2016, calculated by differencing DEMs. The solid black line marks the boundary between the ice shelf 
and land, while the black and white dashed line indicates the approximate location of the Koettlitz Glacier 
grounding line. The banding visible on panels A and C results from poor calibration of sensors on the 
WorldView satellite, from which the DEMs were derived. Background image from Landsat 8 captured on 
27 Oct. 2020.  
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Figure A.2. Location of COSI-Corr and ITS_LIVE/GoLIVE data splicing along the Aurora Glacier transect. 
The blue line indicates the speed along a transect on COSI-Corr data, the yellow line indicates the speed 
along a transect on ITS_LIVE data, the green line indicates the speed along a transect on GoLIVE data, and 
the black vertical line indicates the distance along the transect at which the two datasets were spliced. Each 
panel (A-I) represents a different time period over which data was available, spanning 2013 – 2020. The 
time periods where the two datasets have no overlapping speed values were eliminated, as which dataset 
was more accurate was unknown. 
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Figure A.3. Location of COSI-Corr and ITS_LIVE/GoLIVE data splicing along the Terror Glacier transect. 
The blue line indicates the speed along a transect on COSI-Corr data, the yellow line indicates the speed 
along a transect on ITS_LIVE data, the green line indicates the speed along a transect on GoLIVE data, and 
the black vertical line indicates the distance along the transect at which the two datasets were spliced. Each 
panel (A-I) represents a different time period over which data was available, spanning 2013 – 2020. The 
time periods where the two datasets have no overlapping speed values were eliminated, as which dataset 
was more accurate was unknown. 
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Figure A.4. Location of COSI-Corr and ITS_LIVE/GoLIVE data splicing along the Koettlitz Glacier 
transect. The blue line indicates the speed along a transect on COSI-Corr data, the yellow line indicates the 
speed along a transect on ITS_LIVE data, the green line indicates the speed along a transect on GoLIVE 
data, and the black vertical line indicates the distance along the transect at which the two datasets were 
spliced. Each panel (A-I) represents a different time period over which data was available, spanning 2013 
– 2020. The time periods where the two datasets have no overlapping speed values were eliminated, as 
which dataset was more accurate was unknown. 
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Imagery File/Scene Name Figures Used In 

GoLIVE L8_053_116_368_2019_298_2020_301_T2T2_v1.1 
3.3; 3.6; 3.7; 3.8; 3.9; 3.10; 3.11; 
3.12; 3.14; 3.20; 3.21; A.2; A.3; 
A.4 

GoLIVE L8_053_116_032_2020_301_2020_333_T2T2_v1.1 A.2; A.3; A.4 

ITS_LIVE LC08_L1GT_053116_20141027_20170418_01_T2_X_LC08_L1GT_053116_20131227_ 
20170427_01_T2_G0240V01_P038 

3.6; 3.7; 3.8; 3.9; 3.10; 3.11; 
3.12; 3.14; 3.20; 3.21; A.2; A.3; 
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3.6; 3.8; 3.9; 3.11; 3.12; 3.20; 
3.21; A.4 
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3.6; 3.7; 3.8; 3.9; 3.10; 3.11; 
3.12; 3.14; 3.20; 3.21; A.2; A.3; 
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20170403_01_T2_G0240V01_P091 3.7; 3.8; 3.14; A.2; A.3; A,3 
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20170401_01_T2_G0240V01_P052 

3.6; 3.7; 3.8; 3.9; 3.10; 3.11; 
3.12; 3.14; 3.20; 3.21; A.2; A.3; 
A.4 

ITS_LIVE LC08_L1GT_053116_20170205_20170216_01_T2_X_LC08_L1GT_053116_20161203_ 
20170317_01_T2_G0240V01_P092 

3.7; 3.8; 3.10; 3.11; 3.12; 3.14; 
3.20; 3.21; A.2; A.3; A.4 

ITS_LIVE LC08_L1GT_053116_20171104_20171120_01_T2_X_LC08_L1GT_053116_20170205_ 
20170216_01_T2_G0240V01_P049 

3.7; 3.8; 3.10; 3.11; 3.12; 3.14; 
3.20; 3.21; A.2; A.3; A.4 

ITS_LIVE LC08_L1GT_053116_20180107_20180119_01_T2_X_LC08_L1GT_053116_20171104_ 
20171120_01_T2_G0240V01_P093 

3.7; 3.8; 3.10; 3.11; 3.12; 3.14; 
3.20; 3.21; A.2; A.3; A.4 

Landsat 8 LC08_L1GT_053116_20131227_20170427_01_T2 
3.6; 3.7; 3.8; 3.9; 3.10; 3.11; 
3.12; 3.13; 3.15; 3.16; 3.17; 3.18; 
3.20; 3.21; A.2; A.3; A.4 

Landsat 8 LC08_L1GT_053116_20141027_20170418_01_T2 
3.6; 3.7; 3.8; 3.9; 3.10; 3.11; 
3.12; 3.13; 3.15; 3.16; 3.17; 3.18; 
3.20; 3.21; A.2; A.3; A.4 

Landsat 8 LC08_L1GT_053116_20141112_20170417_01_T2 3.6; 3.8; 3.9; 3.11; 3.12; A.2; 
A.3; A.4 

Landsat 8 LC08_L1GT_053116_20151014_20170403_01_T2 
3.6; 3.7; 3.8; 3.9; 3.10; 3.11; 
3.12; 3.13; 3.15; 3.16; 3.17; 3.18; 
3.20; 3.21; A.2; A.3; A.4 

Landsat 8 LC08_L1GT_053116_20151201_20170401_01_T2 
3.6; 3.7; 3.8; 3.9; 3.10; 3.11; 
3.12; 3.13; 3.15; 3.16; 3.17; 3.18; 
3.20; 3.21; A.2; A.3; A.4 

Landsat 8 LC08_L1GT_053116_20161203_20170317_01_T2 
3.6; 3.7; 3.8; 3.9; 3.10; 3.11; 
3.12; 3.13; 3.15; 3.16; 3.17; 3.18; 
3.20; 3.21; A.2; A.3; A.4 

Landsat 8 LC08_L1GT_053116_20170205_20170216_01_T2 3.6; 3.11; 3.7; 3.8; 3.9; 3.10; 
3.16; 3.17; A.2; A.3; A.4 

Landsat 8 LC08_L1GT_053116_20171104_20171120_01_T2 3.6; 3.11; 3.7; 3.8; 3.9; 3.10; 
3.16; 3.17; A.2; A.3; A.4 

Landsat 8 LC08_L1GT_053116_20180107_20180119_01_T2 3.6; 3.11; 3.7; 3.8; 3.9; 3.10; 
3.16; 3.17; A.2; A.3; A.4 

Landsat 8 LC08_L1GT_053116_20191025_20191030_01_T2 
3.6; 3.7; 3.8; 3.9; 3.10; 3.11; 
3.12; 3.13; 3.15; 3.16; 3.17; 3.18; 
3.20; 3.21; A.2; A.3; A.4 

Landsat 8 LC08_L1GT_053116_20201027_20201106_01_T2 

3.2; 3.3; 3.4; 3.6; 3.7; 3.8; 3.9; 
3.10; 3.11; 3.12; 3.13; 3.14; 3.15; 
3.16; 3.17; 3.18; 3.19; 3.20; 3.21; 
A.1; A.2; A.3; A.4 

Landsat 8 LC08_L1GT_053116_20201128_20201211_01_T2 A.2; A.3; A.4 

MEaSUREs antarctica_ice_velocity_450m_v2 3.2 

Sentinel-2 2019-10-11-00/00_2019-10-11-23/59_Sentinel-2_L2A 1.2; 2.1; 3.1 

WorldView-1 WV01_20110206_1020010011B44200_10200100119AE500_2m 2.4 

WorldView-1 W1W1_20111219_1020010017965600_1020010018891300_seg1_2m_dem A.1 

WorldView-2 WV02_20101226_103001000842A200_1030010008338C00_seg1_2m_dem A.1 

WorldView-2 W2W2_20161105_1030010060790F00_1030010060C50A00_2m_lsf_seg1_dem A.1 

WorldView-3 WV03_20151125_1040010014396600_1040010015B86F00_2m 2.4 

Table A.1. Imagery used in thesis and specific figures. 
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