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 North American ash species (Fraxinus spp.) are under dire threat from the invasive pest, 

emerald ash borer (Agrilus planipennis, EAB). Black ash (F. nigra) has shown no resistance to 

EAB while its cultural and ecological importance render it irreplaceable. Traditional field 

forestry techniques are not suitable for the large-scale identification of individual black ash trees 

to facilitate conservation, thus necessitating the need for other identification and classification 

techniques. The objective of this research is to develop remote sensing techniques that can be 

used to identify ash trees, in particular black ash, at the individual tree level using both 

hyperspectral and multispectral data. Both general ash species identification and black ash tree 

identification in a low-density mixed forest using hyperspectral data have not been reported in 

the literature. Specifically, this study aims to use optical remote sensing data to: 1) create a pixel-

based classification model for ash tree identification, 2) develop an object-based classification 

model for ash tree identification, and 3) use the most accurate ash tree classification model as a 

basis for a black ash tree classification model.  

 Analysis of spectral differences between classes suggests that both ash in general and 

black ash specifically can be successfully separated from co-occurring species. Where 



 

 

classification models were significantly different, object-based methods performed better than 

pixel-based methods and Support Vector Machine (SVM) models generally outperformed 

Random Forest (RF). The highest accuracies were achieved using object-based methods and 

hyperspectral data, although multispectral data were able to successfully differentiate ash as well. 

Using object-based, SVM methods, black ash was successfully differentiated from co-occurring 

hardwood species using both hyperspectral and multispectral data, with hyperspectral data 

achieving 70% Producer’s and 70% User’s Accuracy for black ash and multispectral data 

achieving 57% and 50%, respectively. 

 Despite relatively low sample sizes, this research presents a viable path forward with 

respects to black ash mapping. As this study shows, black ash can be successfully differentiated 

from closely related species using remotely sensed optical data. While capturing hyperspectral 

data is likely cost prohibitive for large-scale mapping efforts, multispectral sensors are more 

viable and can achieve similar results. At a minimum, the techniques presented in this research 

can be used to assist and guide field conservation work to locate areas of high likelihood of black 

ash presence so that they can be identified and informed decisions made about their preservation. 
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CHAPTER 1 INTRODUCTION 

The increasingly interconnected nature of the global economy has led to a period of 

unprecedented movement of people and goods throughout the world. As has been the case 

throughout history, this intentional movement is accompanied by the unintentional movement of 

certain organisms linked to the goods. Of particular interest are invasive species that are able to 

separate from their mode of transport and colonize a new location. These species can create 

immense problems, as they typically have few (if any) predators in the new environment and can 

usually outcompete local species. In other situations, the invasive species may have co-evolved 

with a certain genus within its native range where it is harmless, but when presented with 

members of that genus in a new range, can cause mortality. Such is the case with emerald ash 

borer (Agrilus planipennis, EAB) and native ash tree species (Fraxinus spp.) in North America. 

1.1. Ash tree ecology and importance in Maine and North America 

In North America, there are sixteen native ash tree and shrub species, of which three are 

present in Maine, United States. These species – white ash (F. americana), green ash (F. 

pennsylvanica) and black ash (F. nigra) - make up vital components of much of the hardwood 

forests in Maine, United States. Overall, three ash species account for roughly 4% of Maine’s 

hardwood forests, and the estimated value of ash trees in Maine is approximately $320 million 

(Maine Forest Service 2018). Ash serves many uses, with white ash being used in goods such as 

baseball bats and boat oars, and green ash being a (formerly) commonly planted urban tree in 

many environments (Kennedy 1990). Black ash, while ecologically and culturally important, has 

few “lumber” uses besides flooring and is not hardy enough to plant in urban settings (Wright 

and Rauscher 1990).  
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Ash trees serve many important ecosystem functions. Green and white ash typically 

produce large amounts of seeds for a variety of birds, small mammals, and insects to feed on, 

while the browse and thermal cover are valuable for larger mammals such as deer and moose 

(Cappaert et al. 2005). White ash can be found over much of the eastern United States as far west 

as eastern Texas and Minnesota, as far south as the Florida panhandle, and north into Maine and 

Nova Scotia in Canada. While white ash almost never is the dominant species in a forest, it is a 

major component of the White Pine-Northern Red Oak-Red Maple forest type and a common 

component of 25 other different forest cover types. The range of green ash is even greater, 

extending to southeastern Alberta in Canada, southeastern Texas, northwestern Florida, and 

northeast to Cape Breton, Nova Scotia in Canada. Similar to white ash, green ash is an integral 

component of the Sugarberry-American Elm-Green Ash forest cover type and is an associated 

species of 22 other forest cover types (Burns and Honkala 1990). In addition to their traditional 

ecosystem roles, green and white ash have become some of the most commonly planted trees in 

urban and suburban settings, with researchers estimating that ash comprised over 20% of planted 

trees in many areas of the country (Kovacs et al. 2010). The range of black ash is restricted to the 

area surrounding the Great Lakes and east into New England and the Canadian Maritime 

provinces. It is an integral part of the black ash-American elm-red maple forest cover type, a 

common associate of one other forest type, and a minor associate of four (Burns and Honkala 

1990).  

From an economic perspective, ash is a critical resource for much of the eastern United 

States. As of 2003, ash made up roughly 7.5% of hardwood sawn timber, the undiscounted 

stumpage price of forest ash was estimated to be $25 billion, and the compensatory value was 

above $280 million (Federal Register 2003). Potentially more impactful, however, has been 
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various ash species’ use as ornamental trees in urban settings. Many ash trees were planted in the 

wake of Dutch elm disease (Ophiostoma spp.), with both green and white ash being planted 

extensively and some cities such as New York, Oakland, Boston, and Chicago having over 14% 

of leaf area in ash trees before the introduction of EAB (Federal Register 2003; Poland and 

McCullough 2006). Researchers in the Midwestern United States estimated that the loss of ash 

could cost communities as much as $395,000-$769,000 per 1,000 residents, for a total loss of 

between $13.4 and $26 billion (Sydnor et al. 2011). 

1.1.1. Black ash ecology and importance in Maine 

Black ash is a central part of several Native American teachings and is a vital component 

of many mixed forests in Maine. It has been used by members of Native American tribes in New 

York, New England, and southeastern Canada to make baskets for generations – whether the 

larger, sturdy baskets used for gathering or the smaller, intricate baskets designed to provide 

revenue – and forms a part of the Wabanaki creation story (Costanza et al. 2017). Furthermore, 

black ash inhabits a unique ecological niche – it can colonize extremely wet sites and yet is very 

drought tolerant (Burns and Honkala 1990). It is typically found well distributed in areas with 

soil wet enough to allow black ash to outcompete other vegetation but grows best in areas that 

are wet because of proximity to water (such as flood plains or river terraces) rather than due to 

poor soil drainage (Costanza et al. 2017). 

In Maine, black ash is typically found in wetlands and along rivers as part of the black-

ash-balsam fir-American elm forest type, although with the prevalence of Dutch elm disease, elm 

(Ulmus americana) is often replaced by red spruce (Picea rubens) or red maple (Acer rubrum) 

on drier sites (Burns and Honkala 1990) and black ash on wetter ones (Costanza 2015).  It is a 

dioecious tree, meaning that the tree reproduces sexually and cross-pollination is required for 
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successful germination. In addition, black ash rarely produces good seed years, with only 11 

“good” seed years occurring over a 35-year study (Erdmann et al. 1987). Further, while black ash 

can sprout prolifically from stumps, the density of black ash in a stand seems to decline as the 

trees mature and become more shade intolerant (Erdmann et al. 1987). Should the trees remain 

seedlings, however, they can persist for years with little to no growth (Klooster et al. 2018).  

The unique element of black ash ecology, at least amongst the ash species, is its effect on 

the hydrology of a site. Black ash is well suited to growing in extremely wet sites, with a number 

of key adaptations – including hypertrophied lenticels allowing for extremely high rates of 

evapotranspiration – that allow it to thrive where other species simply cannot. In certain areas, 

such as the western Lake States, this can lead to vast stretches of forested wetlands dominated by 

black ash (Kolka et al. 2018). In very wet areas such as these, the very presence of black ash 

actually controls the water table and allows other tree species to colonize the site (Slesak et al. 

2014). In small areas, loss of enough black ash has been linked to loss of forest cover itself, as 

the loss of transpiration causes the water table to rise high enough to eliminate trees from the site 

(Erdmann et al. 1987; Youngquist et al. 2017). Whether the loss of forest cover will translate to a 

landscape scale remains to be seen, however, as more recent studies have shown that the effect 

may be more muted than originally suggested and possibly nonexistent if less than 20% of the 

black ash basal area is removed (Slesak et al. 2014).   

1.1.2. Emerald ash borer (EAB) outbreak in North America and its impact in Maine 

EAB was first identified in North America in Ontario, Canada and Michigan, United 

States. in 2002 but is suspected to have been present for longer (Siegert et al. 2014). EAB 

damages trees by tunneling areas under the bark, producing girdling wounds that interfere with 

water and nutrient movement, which indirectly leads to canopy defoliation. Endemic to China, 
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EAB does not cause mortality in the ash trees of its native range as the trees have developed high 

levels of tannin in defense (Rebek et al. 2008), but when introduced to North American ash trees 

it has caused widespread mortality in native ash species – up to 99% over 5-10 years (Herms and 

McCullough 2014). Attacked trees will usually be dead within three years, although mortality 

within the first two years is possible when the EAB population level peaks (Haack et al. 2002). 

Colonization typically begins in the upper part of the canopy, allowing damage to escape early 

detection. EAB has been shown to colonize otherwise fully healthy ash trees anywhere from 4 

cm to over 1 m in diameter, even killing irrigated and fertilized ash trees in southeastern 

Michigan (Herms and McCullough 2014). There are four key life stages for EAB (Figure 1.1).  

 

Figure 1.1 EAB life stages. Clockwise from top: egg, larva + galleries, pupa, adult 

Eggs: David Cappaert, Bugwood.org 

Larva + galleries: Kenneth R. Law, USDA APHIS PPQ, Bugwood.org 

Pupa: Debbie Miller, USDA Forest Service, Bugwood.org 

Adult: David Cappaert, Bugwood.org 

 

Since its introduction in the early 1990’s, EAB has spread rapidly throughout the 

continental United States and Canada (Herms and McCullough 2014). Like many pests it relies 
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on mixed-dispersal methods, with the beetle able to cover short distances by flight and long 

distance dispersal occurring via human transport of infested materials (Mercader et al. 

2011).While Prasad et al. (2010) estimated that EAB has been spreading along a front at roughly 

20 km/year, much of that is dependent on human facilitated transport of infested materials. Flight 

mill experiments have suggested that EAB adults are capable of traveling nearly 10 km during 

their lifespan (Taylor et al. 2007), however such studies are difficult to relate to real-world 

abilities. Mercader et al. (2009) found roughly 90% of larvae were on trees within 100 m of the 

adult emergence site (with the overall pattern fitting a negative exponential function), suggesting 

a much more limited range of unassisted dispersal. 

As those areas initially infested by EAB have begun to see some regeneration, valuable 

information is being gleaned from the long-term effects of EAB on a landscape. With over 99% 

initial ash tree mortality, when EAB infects an area large gaps will begin to form in the canopy 

(Klooster et al. 2018) thereby greatly increasing the amount of light available on the ground, 

potentially leading to successional changes. This can be especially true in undisturbed black ash 

forests, where the continuous recruitment of ash allows for small gaps, but not large ones, to 

form. Furthermore, due to its ability to colonize extremely wet sites and the presence of 

hypertrophied lenticels allowing for extremely high rates of evapotranspiration (Tardif et al. 

1994), the removal of black ash from a site can cause drastic hydrologic effects. Slesak et al. 

(2014) found that once these forested wetlands had black ash removed from the site, they became 

marshes with little to no tree cover.  

 Unfortunately, even the decimation of a site’s ash population is not a remedy to 

eliminating EAB. As EAB kills the overstory trees, the ash seed bank also becomes depleted as 

trees are killed before they can reproduce. This leads to an “orphan cohort” of ash that are too 
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small to produce seeds or be infested by EAB. As these trees mature a certain number will 

become large enough to be infested by EAB, thereby allowing EAB to persist in the environment 

(Klooster et al. 2014). Therefore, once a stand has been infested it must be monitored for years to 

make sure that no further outbreaks occur. 

 There are multiple EAB monitoring efforts employed including trap trees, green and 

purple prism traps, and funnel traps (Francese et al. 2019; Maine Forest Service 2020; Poland et 

al. 2019). In Maine, active monitoring of most ash sites is difficult or impossible, as the 

dispersed nature of ash growth in the state makes finding significant populations of ash difficult 

and time consuming to begin with (Everett 2019). Furthermore, the sites on which black ash are 

most commonly found – that is, swamps and wet lowlands - can present additional logistical 

difficulties. Due to the high water table many sites are inaccessible for parts of the year and, even 

when accessible, traditional surveys would require trained crews covering large areas of difficult 

terrain looking for small trees (Burns and Honkala 1990) that can reach the canopy while being 

less than 10 cm in diameter (J. Furniss, Personal Observation). As such, many attempts to map 

ash at a large scale using traditional forestry techniques run into the issues of time and labor that 

present profound difficulties. Therefore, alternative methods such as remote sensing techniques 

must be considered.  

1.2. Remote Sensing of Forests 

 For a long time, both space- and air-borne remote sensing sensors have been used for 

various forestry applications from forest type and composition classification (Thapa et al. 2020; 

Wolter and Townsend 2011), forest disturbance (Cohen et al. 2017; Hall et al. 2016; 

Rahimzadeh-Bajgiran et al. 2018), and productivity estimation (Rahimzadeh-Bajgiran et al. 

2020). Landsat satellite program has over 45 years of image availability and Landsat data have 
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been used extensively for vegetation studies. As early as 1980, researchers and forest industry 

companies were partnering to develop forest type maps for northern Maine using Landsat 

(Bryant et al. 1980). While the coarse resolution of Landsat data (30 m) is suitable for landscape 

level forest type mapping, the increasing availability of very high spatial resolution data has 

shifted focus towards identifying individual trees at a species level (Fassnacht et al. 2016). 

Researchers have developed an increasingly large number of techniques and data sources to 

achieve individual tree species identification – from spectral bands and spectral vegetation 

indices (SVIs) to LiDAR (Light Detection and Ranging) based texture metrics (Fassnacht et al. 

2016; Marrs and Ni-Meister 2019).  

There are numerous satellite and aerial active and passive remote sensing sensors 

available. The passive sensors are classified into multispectral and hyperspectral sensors. In this 

study we intend to examine data from one multispectral high resolution space-borne 

(Worldview-2, WV-2) and one hyperspectral high resolution air-borne (Goddard’s LiDAR, 

Hyperspectral, and Thermal imager, G-LiHT) sensor –to assess their respective potential for ash 

tree identification. Each data set has its own benefits and limitations; for example, multispectral 

data are typically less expensive and easier to acquire (at least for the data sets examined in this 

study) compared to hyperspectral data. The limitation, therefore, is in the amount of spectral data 

acquired; multispectral imagery is only gathered in a limited number of spectral bands, as 

opposed to the hundreds captured in hyperspectral imagery. Furthermore, the finer spectral 

resolution with which hyperspectral data are gathered allows for the significantly increased 

ability to calculate different spectral indices, which may be useful in differentiating between 

plant species. However, pre-processing and analyzing hyperspectral data are more challenging. 

Thus, tradeoffs in spatial and spectral resolution must be made between the data sets.  
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WV-2 satellite sensor provides multispectral images in eight spectral bands (red (659 

nm), green (546 nm), blue (478 nm), coastal blue (427 nm), yellow (608 nm), red-edge (724 nm), 

near-infrared 1 (831 nm), and near-infrared 2 (908 nm)) at roughly 1.84 m spatial resolution and 

a panchromatic band at roughly 0.46 m resolution (DigitalGlobe 2009). Hu et al. (2018) found 

that red-edge bands from Worldview-3 (WV-3) and structural indices derived from the 

panchromatic band significantly improved ash tree identification. While WV-3 has slightly 

higher spatial resolution than WV-2 (0.31 m in the panchromatic band compared to 0.46 m, 

respectively), the WV-2 pixel sizes are significantly smaller than the average tree crown widths 

in Maine (Russell and Weiskittel 2011) and so should be sufficient to generate helpful structural 

data (Li et al. 2015). It should be noted that WV-3 imagery was not used in this study due to 

there being no available imagery of the study area during the late spring, summer, or early fall 

(June – September).  

G-LiHT data come from NASA Goddard’s LiDAR, Hyperspectral, and Thermal airborne 

system, capturing hyperspectral data at a 1.5 nm spectral and 0.6 m spatial resolution (Cook et al. 

2013) in up to 185 spectral bands with 400-1000 nm spectral range. This sensor package is 

highly flexible, as it can be mounted on several different types of small planes, and, while not 

directly addressed in this study, the addition of concurrently gathered LiDAR and thermal data 

allow for greatly increased data accuracy and analysis options. More relevant to this study, the 

hyperspectral data such as that gathered by the G-LiHT system have been shown to aid in the 

identification of ash trees (Liu 2017) and in predicting ash tree health (Pontius et al. 2008). 

1.2.1. Tree identification using optical hyperspectral and multispectral remote sensing data 

 As the available data sources and applications of remote sensing have multiplied, so have 

the approaches taken. In certain situations, examining the relationships and ratios between 
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spectral bands reflectances – in the form of calculated SVIs– can either be used to provide 

greater amounts of information and identification power (Bhattarai et al. 2021; Pontius et al. 

2017) or simply to reduce the amount of data being processed (Fassnacht et al. 2016). SVIs can 

range from simple ratios between two spectral bands to complex formulas involving multiple 

spectral wavelengths and constants with efforts made to account for multiple compounding 

variables, such as the effect of soil reflectance (Ishimura et al., 2011; Xue and Su 2017). In 

general, SVIs derived from multispectral data are less sensitive to small changes in biophysical 

parameters and vegetation structure but also less susceptible to external factors such as 

illumination and atmospheric conditions than comparable hyperspectral SVIs (Jones and 

Vaughan 2010).  

There are numerous techniques for identifying objects, in particular trees, in a remotely 

sensed image based on the optical properties of the image (Fassnacht et al. 2016). Specifically, 

the amount of radiation reflected at different wavelengths (and the ratios between those amounts) 

are indicative of plant chemical properties, leaf morphology, and canopy structure. For example, 

by examining how much the reflectance changes from pixel to pixel it is possible to determine 

whether the trees are broadleaved (deciduous) or needle-leaved (coniferous) (Ferreira et al. 

2019). Further, by utilizing the spectral data researchers are able to create signatures for 

individual tree species. Much like a human fingerprint, each tree species will have a specific 

reflectance based on leaf pigment content and canopy structure that, in theory, makes it possible 

to identify (Dalponte et al. 2014). There is, however, significant overlap in spectral signatures 

even between trees of unrelated species, such as that between sycamore maple (Acer 

pseudoplatanus) and European common ash (Fraxinus excelsior) (Lisein et al. 2015), that make 

identification using purely spectral means difficult. However, as the spatial resolution of 
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remotely sensed data is increased, pixel sizes have decreased to the point where one canopy 

likely covers numerous pixels. As such, examining each individual pixel may not produce the 

best classification results because the variability within the tree crown will be significantly less 

than the variation between the crown and surrounding pixels (Immitzer et al. 2012). Such small 

pixel sizes allow for the calculation of inter- and intra-crown texture metrics (such as 

homogeneity or variance), which researchers have included along with spectral data to increase 

accuracy of models (Franklin et al. 2000). To facilitate accurate comparisons of tree species, 

researchers have developed techniques to group pixels into crowns for easier identification (Ma 

et al. 2017).  

Researchers have developed many techniques for the delineation of individual tree 

crowns (ITC) which generally fall into two categories, object-based or pixel-based (Myint et al. 

2011). Pixel-based delineation systems commonly work by identifying the most likely identity of 

each pixel, while object-based delineation systems use different methods to group pixels into 

“objects,” which are then classified. Object-based systems have been shown to improve 

recognition of landscape level features (Blaschke and Hay 2001) as well as trees (Myint et al. 

2011). While there are numerous methods for automatically delineating ITCs including valley-

following (Gougeon and Leckie 2006) and region growing (Bunting and Lucas 2006), multiband 

watershed segmentation techniques have been shown to have more success in mixed species 

forests than either other method (Yang et al. 2014a). Traditional watershed segmentation 

techniques use a single spectral band or grayscale image to effectively create a topographic relief 

of the area, which is then divided into a series of catchment zones (Beucher 1982). As such 

approaches are based on a single spectral band, however, they fail to take advantage of the 

majority of data derived from sensors. Recent studies have found that, by using the spectral angle 



12 

 

[a common metric to describe the difference between the spectra for two pixels, (Sohn and 

Rebello 2002)] for watershed segmentation rather than an individual spectral band, accuracy can 

be greatly improved (Yang et al. 2014a).  

Once the classification objects are obtained (whether individual pixels or segmented 

objects), researchers use a variety of classification algorithms to assign a class to each object. 

Similar to ITC delineation, classification algorithms fall into two broad categories – parametric 

and non-parametric. Parametric algorithms, like maximum likelihood classification and linear 

discriminant analysis, assume a normal distribution of data and rely on parameters derived from 

training data, however they can result in noisy results in a complicated environment (Lu and 

Weng 2007). Non-parametric algorithms, such as Support Vector Machine (SVM) and Random 

Forests (RF), do not make any assumptions about the data, and may produce better results in a 

complex landscape (Foody 2002). Many studies have used either the SVM method (Marrs and 

Ni-Meister 2019; Nitze et al. 2012; Thanh Noi and Kappas 2018) or the RF classifier algorithm 

(Bhattarai et al. 2021; Immitzer et al. 2012; Lisein et al. 2015; Murfitt et al. 2016) or - we intend 

to compare the two to determine optimum classification ability.  

1.2.2. Remote sensing identification of ash using hyperspectral and multispectral data 

Due to the dispersed growing pattern of ash in Maine and the predominance of other tree 

species, the majority of current research focuses on detecting ash at the genus level and has 

mostly used high resolution single-date multispectral satellite (Murfitt et al. 2016; Sapkota and 

Liang 2020) or multi-temporal aerial imagery to identify ash (Lisein et al. 2015). Murfitt et al. 

(2016) used WV-2 multispectral satellite imagery (8 bands, ~0.5 m resolution) to achieve an 

overall accuracy of roughly 63%, while Sapkota and Liang (2020) used WV-3 imagery (5 bands, 

~0.3 m resolution) and achieved an overall accuracy of 82%. Further, Lisein et al. (2015) 
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reported an out-of-bag error rate of 17% using single-date drone captured multispectral data (4 

bands, ~0.2 m resolution), but decreased their error to 13% when multiple dates were used. 

Single-date high resolution hyperspectral imagery has been found to be promising in identifying 

ash trees in an urban environment, with Pontius et al. (2017) achieving 81% accuracy.  

While the majority of studies have continued to focus on mapping ash at the genus level, 

there has been recent interest in mapping black ash at the landscape level, specifically in the 

Lake States (Michigan, Minnesota, and Ohio, among others). These studies have had success in 

mapping black ash dominated stands using medium resolution multispectral satellite imagery 

with Engelstad et al. (2019) achieving 14.5% error (85.5% accuracy) using single-date Landsat-

derived SVIs combined with LiDAR-derived topography (30 m resolution) and Host et al. (2020) 

achieving 72% accuracy using Landsat and Sentinel-2 (10 m resolution) time-series to map black 

ash. In parallel, the US Forest Service has developed Individual Tree Species Parameter Maps 

with the aim of predicting the density of a given tree species in order to determine insect or 

disease risk (USDA Forest Service 2018). Similar to the previous studies, these maps are based 

on Landsat 30 m resolution data and incorporate climate, terrain, and soil data in addition to 

ground truth data. The ground truth data, however, is obtained through the Forest Inventory and 

Analysis program, which utilizes a method of sampling known to underestimate black ash 

abundance (Everett 2019). As such, while these methods can prove to be a helpful starting point 

(the Individual Tree Species Parameter Maps, in particular, as they cover the entire United 

States) in mapping black ash, the underlying data are unsuitable for mapping black ash at the 

individual tree level.  

While other studies – namely Pontius et al. (2017) – used spectral unmixing methods 

such as mixture tuned matched filtration, such methods present a challenge in Maine. These 
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techniques rely on identifying pure pixels of the target sample, otherwise known as pure 

endmembers, and then classifying pixels based on how closely they match the endmembers. 

With the scattered nature of ash tree distribution and a complex understory, it is hard to find a 

pure ash pixel, thereby greatly limiting spectral unmixing’s applicability in Maine. 

Demonstrating the technique’s reliance on pure pixels, Pontius et al. (2017) found that only the 

most vigorous crowns (providing the purest ash crown pixels) were accurately categorized (62%) 

with all other classes produced under 25% accuracy. A more recent study by Sapkota and Liang 

(2020) utilized object-based methods to achieve 82% accuracy in mixed hardwood stands more 

similar to Maine’s mixed forests than the urban environment studied in Pontius et al. (2017), 

suggesting that spectral unmixing is not required.  

In this study we aim to use high resolution multispectral and hyperspectral data to 

identify ash trees in a non-urban setting with a focus on black ash, for the first time 

differentiating black from other ash species at the individual tree level. 

1.3. Research problem 

Somewhat contrary to early predictions, there has been emerging evidence for EAB 

resistance in both white (Steiner et al. 2019) and green (Klooster et al. 2018) ash. Unfortunately, 

there have been no such findings for black ash (Klooster et al. 2014), suggesting that it remains 

vulnerable. However, the majority of studies concerning EAB-caused ash mortality have 

occurred in the Lake States where black ash grows very differently than in Maine. In the Lake 

States, black ash tends to form pure stands on very wet sites with few (if any) other canopy 

species, while white and green ash tend to be more dispersed throughout the forest (Klooster et 

al. 2014). While Maine does not have the same level of black ash dominance, there is a region of 

Maine known as the “Ash Belt,” roughly running from Waterville through Bangor and Lincoln 
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to Houlton, where there are larger concentrations of ash (Tyler Everett, Pers. Comm.). The 

region around Lincoln, Millinocket, and Houlton has high levels of black ash in particular, along 

with the co-occurring species of red maple and northern-white cedar (Thuja occidentalis). 

Throughout the rest of Maine, however, black ash tends to grow in a more dispersed pattern that 

has been shown to convey a modest amount of protection from EAB (Knight et al. 2013), 

however the lack of any evidence for black ash survival remains extremely concerning.  

Due to their spatially dispersed growing pattern, damage to black ash trees can be 

difficult to identify via remote sensing techniques. Furthermore, the particular life cycle of EAB 

makes mapping current infestations problematic. By the time noticeable defoliation occurs the 

larvae are typically in the second year of their life cycle and about to emerge as adults (Herms 

and McCullough 2014). At this point it is unlikely that the tree can be saved, as the population of 

EAB will have grown significantly - females can lay 50-90 eggs during their lifetime (Poland 

and McCullough 2006) – and the tree can serve as a new source of infestation. 

Most current methods have focused on using remote sensing techniques to identify ash at 

the genus level with a focus on tree decline and mortality, either with multispectral data in 

hardwood dominant forests (Engelstad et al. 2019; Murfitt et al. 2016; Waser et al. 2014) or with 

hyperspectral data in urban environments (Pontius et al. 2017; Pontius et al. 2008). Finally, even 

when studies aim to directly map black ash densities, they are at far higher densities (over 50% 

stand basal area in black ash) and spatial scales (30 m resolution) that are not applicable to the 

situation in Maine (Engelstad et al. 2019; Host et al. 2020), or rely on data unsuitable for 

individual tree identification (USDA Forest Service 2018). As EAB has not currently been 

detected in central Maine, we hope to identify pre-infestation ash populations for monitoring and 

conservation purposes. Finally, while researchers are examining different tree species for their 
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ability to replicate the effect of black ash on wetlands, there is no true possible replacement for 

black ash’s cultural significance (Costanza et al. 2017; D’Amato et al. 2018). 

1.4. Research objectives 

Goal: To identify ash trees in Maine from remote sensing data. 

● Objective 1: Create and evaluate pixel-based classification models for tree species 

identification using multispectral and hyperspectral remote sensing variables in Maine.  

o Hypothesis 1: Certain spectral band or wavelength combinations (SVIs) will 

result in higher classification accuracy than others 

o Hypothesis 2: Hyperspectral data result in higher classification accuracy 

compared to multispectral data  

● Objective 2: Create and evaluate object-based classification models for tree species 

identification using multispectral and hyperspectral remote sensing variables in Maine.  

o Hypothesis 1: Object-based classification methods yield higher classification 

accuracy compared to pixel-based classification methods 

o Hypothesis 2: Hyperspectral data result in higher classification accuracy 

compared to multispectral data  

● Objective 3: Identify the set of other variables that results in the optimum differentiation 

of black ash from green and white ash species using single-date imagery 

o Hypothesis: Using a set of derived variables (such as SVIs) will result in higher 

classification accuracy than using multispectral or hyperspectral single bands 

alone 
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1.5. Thesis structure and overview of each chapter 

 This thesis is broken up into four chapters. This chapter (Chapter 1) provides background 

on the importance of ash and its vulnerability to EAB, as well as introductory information on the 

history of remote sensing and its application to the identification of single trees within a forest. 

In addition, Chapter 1 outlines the research need, thesis objectives, and originality of research. 

The information presented in this chapter forms the foundational background for the research 

methods presented in Chapters 2 and 3. 

Chapter 2 focuses on using hyperspectral imagery to classify ash and associated species, 

utilizing both pixel- and object-based classification methods. Chapter 3, likewise, focuses on 

using multispectral data with both pixel- and object-based classification methods. In both cases, 

accuracy assessments of all models are presented and the most accurate classification methods 

are then used to map black ash trees. Finally, Chapter 4 integrates the previous chapters, 

providing recommendations on the most accurate classification achieved, possible avenues for 

future research, and discussion of the real-world applications of this research. 
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CHAPTER 2 MAPPING ASH SPECIES ACROSS A MIXED FOREST USING 

HYPERSPECTRAL IMAGERY 

2.1. Introduction 

One essential component in active monitoring of EAB infestations is mapping ash tree 

distribution. Due to the dispersed growing pattern of ash and the predominance of other tree 

species, high spatial resolution remote sensing data are needed to identify ash trees at the genus 

level (Lisein et al. 2015; Murfitt et al. 2016; Sapkota and Liang 2020). Hyperspectral data have 

been used to identify tree species in numerous settings (Amini et al. 2018; Dalponte et al. 2014; 

Garzon-Lopez and Lasso 2020), and have been used to identify ash trees in urban settings in the 

United States (Pontius et al. 2017) and in forested areas in Europe (Maschler et al. 2018).  

In this study we intend to examine data from G-LiHT to assess their potential for ash tree 

identification. G-LiHT captures hyperspectral data at a 1.5 nm spectral and 0.6 m spatial 

resolution (Cook et al. 2013) in up to 185 spectral bands with 400-1000 nm spectral range. The 

fine spectral resolution with which hyperspectral data are gathered allows for the significantly 

increased ability to calculate different SVIs, which may be useful in differentiating between plant 

species. More relevant to this study, the hyperspectral data such as that gathered by the G-LiHT 

system have been shown to aid in the identification of ash trees (Liu 2017) and in predicting ash 

tree health (Pontius et al. 2008). 

While this is not the first attempt to use hyperspectral imagery to identify ash at the 

individual tree level (Maschler et al. 2018; Pontius et al. 2017; Zhang et al. 2012), this is the first 

attempt to differentiate ash species (black, green, and white) from one another in a mixed-forest 

environment. Previous studies such as Pontius et al. (2017) focus on ash in urban settings, while 

others such as Liu (2017) and Zhang et al. (2012) are focused on predicting ash health. One 

study, Maschler et al. (2018), used similar hyperspectral data to identify ash and co-occurring 
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species in Austria. Critically, however, they employed only object-based techniques and utilized 

a LiDAR-derived canopy height model, whereas this study will rely on optically-sensed data. 

Finally, to our knowledge the attempt to use G-LiHT hyperspectral data to differentiate ash 

species at the individual tree level presented in this study is novel and represents an original 

approach. The main goal of this Chapter is to map forest composition at tree level in a forested 

area in Maine having ash trees at different densities and to separate black ash from other ash 

species using G-LiHT hyperspectral imagery. The specific objectives are: 1) create and evaluate 

both pixel-based and object-based classification models for tree species identification with the 

focus on ash tree identification and 2) evaluate different non-parametric algorithms for tree 

identification.  
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2.2. Materials and methods 

2.2.1. Field work

 

Figure 2.1 Map of Penobscot Experimental Forest, Bradley, Maine, United States, with study sites 

   The Penobscot Experimental Forest (PEF) (44°85’20”N, 68°62’00”W; (Figure 2.1), is 

part of the Northern Research Station of the US Forest Service and located in Bradley, Maine, 

United States. It has been identified as an area that has measurable populations of ash, as well as 

readily (and freely) available field inventory and remote sensing data (such as G-LiHT and 

National Agriculture Inventory Program [NAIP] imagery). We identified Management Unit 2 

(hereafter referred to as Site 1), along with another area in the southern part of the PEF (Site 2), 

Maine 

k 
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as being sites potentially higher in ash and, in particular, black ash density.1 These sites also had 

high rates of typically co-occurring species with black ash, such as balsam fir (Abies balsamea), 

paper (Betula papyrifera) and yellow birch (B. alleghaniensis), northern white cedar, and red 

maple, making the presence of ash more likely.  

In Site 1 (22.5 ha), a preliminary survey was conducted by setting out four transects 

spaced 75 m apart running lengthwise (approximately 700 m) through the site. A visual scan of 

each side of the transect was conducted to identify all canopy dominant or co-dominant ash trees 

(Figure 2.2.b) – pairs of researchers would walk one on each side of the transect approximately 

10-15 m apart and only be responsible for their side of the transect. Scanning distance was 

limited by visibility (Figure 2.2.a) and no defined distance limit was placed. Species spot checks 

within pairs of researchers served as a check against misidentification.  

 

Figure 2.2 Selected photos from field. Clockwise from top left a) example section of study site b) black 

ash in canopy, c) black ash, diameter at breast height 12.7 cm (5 in), and d) GPS located black ash trees 

                                                 
1
 A third potential site was identified in the northern portion of the PEF but was eventually dropped due to difficulty 

of access and lack of observable black ash. 
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     Based on preliminary surveys of Site 1, transects were clustered into the areas of higher 

ash density so as to minimize the amount of time spent in areas without ash. Once an ash tree 

was identified, the tree was tagged with orange flagging tape (Figure 2.2 c, d). Species, diameter 

at breast height (DBH), and crown class (dominant, co-dominant, intermediate, or overtopped) 

were recorded for each tree. Finally, GPS locations were recorded with a Trimble GEOxplorer 

6000 and Zephyr external antenna (Sunnyvale, CA) to under 1-meter accuracy (approximately 

100 GPS point fixes). GPS units increase accuracy by logging a number of position fixes at each 

point –sub meter accuracy can be achieved with as little as one point with a Trimble GPS 

(Bolstad et al. 2005), but in practice researchers will preferably log over 100 fixes per point 

(David Sandilands, Pers. Comm). GPS points were post corrected using Trimble Pathfinder 

Office software (Trimble, Germany). 

A variable radius plot was established at each ash tree using a prism with a basal area 

factor of 15 ft2/ac to determine co-occurring species, resulting in plots with radii between 3.5 m 

and 27 m (dependent on the DBH of the target tree). For all “in” trees that reached the canopy, 

we recorded tree species, DBH, crown class, and GPS point logged. Site 2 (13.5 ha) was sampled 

in an identical method, with preliminary surveys laying the groundwork for targeted sampling.  

In addition, a subset of trees of all species were selected to have their crown area 

estimated by measuring the distance from the tree bole to the edge of the crown in each of the 

cardinal directions (N, E, S, W) and utilizing the quadratic mean crown width (MCW) equation: 

MCW=2*√((𝑟1
2 + 𝑟2

2 + 𝑟3
2 + 𝑟4

2)/4)           (1) 

where r1 through r4 represent the crown radii, to provide an unbiased estimate of crown 

area (Russell and Weiskittel 2011).  
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Field data were summarized by tree species and total number of trees per species 

sampled, as well as classes used for further analysis (Table 2.1). Due to the small and often 

overlapping crowns, delineation presented significant difficulties and every effort was made to 

only delineate positively identified trees, leading to smaller than expected sample sizes and 

necessitating the grouping of species into classes. Species were grouped into classes by spectral 

similarity, thus sample size and class totals reflect those trees that were successfully identified 

and delineated.    

Table 2.1 Field data summarizing tree species collected for training and model validation (left) and 

aggregated classes and number of samples used for classification (right) for G-LiHT data 

Species Species Class 
Species 

Totals 
 Class Sample Totals 

Quaking 

aspen 

Quaking 

Aspen 
25  Ash (AS) 40 

Balsam fir Softwood 60  Quaking aspen (QA) 25 

Black ash Ash 83  Other Hardwood (HW) 25 

Green ash Ash 25  Red maple (RM) 38 

Eastern 

hemlock 
Softwood 24  Softwood (SW) 35 

Northern 

white cedar 
Softwood 42    

Oak spp. 
Other 

Hardwood 
4    

Other 

Hardwoods 

Other 

Hardwood 
6    

Paper birch Hardwood 12    

Red maple Red Maple 76    

Red spruce Softwood 17    

White ash Ash 21    

White pine Softwood 10    

Yellow birch 
Other 

Hardwood 
18    

Total  420    

2.2.2. Remote sensing data and data pre-processing 

We first present the overall workflow of this chapter (Figure 2.3). In this study we 

utilized hyperspectral data from NASA’s G-LiHT airborne system collected in August 2017 with 
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1.5 nm spectral and 0.6 m spatial resolutions (Cook et al. 2013) in up to 185 spectral bands with 

400-1000 nm spectral range, along with RGB orthomosaic data at 0.04 m spatial resolution. 

 

 

Figure 2.3 Workflow for development of ash tree species maps using G-LiHT hyperspectral data 

G-LiHT data were orthorectified and atmospherically corrected using Fast Line-of-site 

Atmospheric Analysis of Spectral Hypercubes (FLAASH) (Cooley et al. 2002). All pre-

processing was completed using ENVI version 5.5.2. First, the individual study sites were 
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clipped from the larger rasters before the spectral bands were inspected for noise. Bands that 

were visually identified as noisy were removed (22 bands), leaving 163 bands total. Based on the 

resulting hyperspectral data, a suite of SVIs and texture metrics were calculated (Table 2.2, 

Table 2.3). SVIs were selected based on previous research by Maschler et al. (2018); Pontius et 

al. (2017); Rahimzadeh-Bajgiran et al. (2018) to include a range of structural and physiological 

properties. Inter- and intra-crown texture metrics (such as homogeneity or variance), were also 

included, which other researchers have used along with spectral data to increase accuracy of 

models (Franklin et al. 2000). Kim et al. (2009) found that the ability to distinguish forest types 

was significantly increased when they incorporated grey-level co-occurrence metrics (a type of 

texture analysis) into their model. The resultant texture metrics, spectral indices, and spectral 

bands were combined, resulting in a 222 band data stack. This stacked image underwent 

Minimum Noise Fraction (MNF) transformation, which reprojects hyperspectral data onto 

orthogonal vectors that account for decreasing amounts of spectral variability before segregating 

noise from data, thereby reducing both the dimensionality and noise present in the data 

(Boardman and Kruse 2011; Pontius et al. 2017). By including SVIs and texture metrics in the 

data set to be reduced, of the resultant MNF bands, the top 40 most important bands were 

selected with a goal of preserving 15% of bands in the final analysis. The 40 MNF bands were 

visually inspected for noise and 2 bands were removed, leaving 38 (17%) of the 222 band data 

stack for classification and analysis. 
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Table 2.2 SVIs derived from G-LiHT hyperspectral data 

Name Equation Reference 

2-EVIS 2.5 ∗ (
𝐵867 − 𝐵648

𝐵867 + (2.4 ∗ 𝐵648)
) Jiang et al. 

(2008) 

ARI1P (
1

𝐵550
) − (

1

𝐵700
) Gitelson et al. 

(2001) 

ARI2P 𝐵800 ∗ [(
1

𝐵550
) − (

1

𝐵700
)] Gitelson et al. 

(2001) 

ARVIP 
𝐵800 − (𝐵650 − 𝛾(𝐵450 − 𝐵680))

𝐵800 + (𝐵650 − 𝛾(𝐵450 − 𝐵680))
  Kaufman and 

Tanre (1992) 

BRS (
𝐵663

𝐵481
) ∗ (

𝐵547

𝐵481
) ∗ (

𝐵722

𝐵481
) ∗ (

𝐵831

𝐵481
) 

Maschler et al. 

(2018); Waser 

et al. (2014) 

CRI1P (
1

𝐵510
) − (

1

𝐵550
) Merzlyak et al. 

(2003) 

CRI2P (
1

𝐵510
) − (

1

𝐵700
) Merzlyak et al. 

(2003) 

DDVIP (2 ∗ 𝐵947 − 𝐵750) − (𝐵648 − 𝐵546) Maschler et al. 

(2018) 

DIP (𝐵722.84 − 𝐵663.54) Tucker (1979) 

EVIS 2.5 ∗ (
𝐵867 − 𝐵648

𝐵867 + (6 ∗ 𝐵648) − (7.5 ∗ 𝐵466) + 1
) Liu and Huete 

(1995) 

GARVIP 
𝐵750 − (𝐵546 − (𝐵466 − 𝐵670))

𝐵750 + (𝐵546 − (𝐵466 − 𝐵670))
 Gitelson et al. 

(1996a) 

GNDVIP 
𝐵750 − 𝐵546

𝐵750 + 𝐵546
 

Gitelson and 

Merzlyak 

(1998) 

GRS 
𝐵546

𝐵663
 

Maschler et al. 

(2018); Waser 

et al. (2014) 

GRDIP 
𝐵561 − 𝐵663

𝐵561 + 𝐵663
 Tucker (1979) 

GRRP 
𝐵546

𝐵663
 Gitelson et al. 

(1996b) 

IPVIP 
𝐵801.99

𝐵801 + 𝐵678
 Crippen 

(1990) 
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Table 2.2 Continued 

MCARIP ((𝐵700 − 𝐵670) − 0.2(𝐵700 − 𝐵550)) ∗ (
𝐵700

𝐵670
) Daughtry et al. 

(2000) 

MCARIIP 

1.5(2.5(𝐵800 − 𝐵670) − 2.5(𝐵670 − 𝐵550))

√(2𝐵800 + 1)2 − (6𝐵800 − 5√𝐵670 − 0.5

 Haboudane et 

al. (2004) 

MNDIP 
𝐵750 − 𝐵707

𝐵750 + 𝐵707 − (2 ∗ 𝐵444)
 Sims and 

Gamon (2002) 

mRENDVIP 
𝐵750 − 𝐵705

𝐵750 + 𝐵705 − (2 ∗ 𝐵445)
 Sims and 

Gamon (2002) 

mRESRP (B750-B445)/(B705-B445) 
Sims and 

Gamon (2002) 

mSRP 
𝐵750 − 𝐵444

𝐵707 − 𝐵444
 Sims and 

Gamon (2002) 

mTVIS 1.2 ∗ (1.2 ∗ (𝐵800 − 𝐵550) − 2.5 ∗ (𝐵670 − 𝐵550)) Haboudane et 

al. (2004) 

mTVIIS 

1.5(1.2(𝐵800 − 𝐵550) − 2.5(𝐵670 − 𝐵550))

√(2𝐵800 + 1)2 − (6𝐵800 − 5√𝐵670 − 0.5

 Haboudane et 

al. (2004) 

NDVIS 
𝐵801 − 𝐵678

𝐵801 + 𝐵678
 Rouse et al. 

(1974) 

NDREIP 
𝐵787 − 𝐵721

𝐵787 + 𝐵721
 Barnes et al. 

(2000) 

OSAVIS 
(1 + 0.16)(𝐵800 − 𝐵670)

𝐵800 + 𝐵670 + 0.16
 

Rondeaux et 

al. (1996); Wu 

et al. (2008) 

PRIP 
𝐵531 − 𝐵570

𝐵531 + 𝐵570
 

Gamon et al. 

(1997) 

Penuelas et al. 

(1995) 

PSRIP 
𝐵678 − 𝐵503

𝐵750
 Merzlyak et al. 

(1999) 

RVIS 
𝐵802

𝐵678
 Jordan (1969) 
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Table 2.2 Continued 

RENDVIP 
𝐵750 − 𝐵707

𝐵750 + 𝐵707
 

Gitelson and 

Merzlyak 

(1994); Sims 

and Gamon 

(2002)  

RRS (
𝐵831

𝐵663
) ∗ (

𝐵546

𝐵663
) ∗ (

𝐵831

𝐵721
) 

Maschler et al. 

(2018); Waser 

et al. (2014) 

SIPIP 
𝐵800 − 𝐵445

𝐵800 − 𝐵680
 Penuelas et al. 

(1995) 

TVIS 
[120 ∗ (𝐵750 − 𝐵550) − 200 ∗ (𝐵670 − 𝐵650)]

2
 

Broge and 

Leblanc 

(2001) 

VARIP 
𝐵561 − 𝐵663

𝐵561 + 𝐵663 − 𝐵488
 Gitelson et al. 

(2002) 

VREI1P 
𝐵740

𝐵720
 Vogelmann et 

al. (1993) 

2-EVI: 2-band Enhanced Vegetation Index, ARI1: Anthocyanin Reflectance Index 1, ARI2: Anthocyanin Reflectance 

Index 2, ARVI: Atmospherically Resistant Vegetation Index, BR: Blue Ratio, CRI1: Carotenoid Reflectance Index 1, 

CRI2: Carotenoid Reflectance Index 2, DDVI: Difference Difference Vegetation Index, DI: Difference Index, EVI: 

Enhanced Vegetation Index, GARVI: Green Atmospherically Resistant Vegetation Index, GNDVI: Green 

Normalized Difference Vegetation Index, GR: Green Ratio, GRDI: Green-Red Difference Index, GRR: Green-Red 

Ratio, IPVI: Infrared Percentage Vegetation Index, mCARI: Modified Chlorophyll Absorption Ratio Index, mCARII: 

Modified Chlorophyll Absorption Ratio Index – Improved, mNDI: Modified Normalized Difference Index, 

mRENDVI: Modified Red Edge Normalized Difference Vegetation Index, mRESR: Modified Red-Edge Simple Ratio, 

mSR: Modified Simple Ratio, mTVI: Modified Triangular Vegetation Index. mTVII: Modified Triangular Vegetation 

Index – Improved, NDVI: Normalized Difference Vegetation Index, NDREI: Normalized Difference Red-Edge Index, 

OSAVI: Optimized Soil Adjusted Vegetation Index, PRI: Photochemical Reflectance Index, PSRI:  Plant Senescence 

Reflectance Index, RVI: Ratio Vegetation Index, RENDVI: Red-Edge Normalized Difference Vegetation Index, RR: 

Red Ratio, SIPI:  Structure Insensitive Pigment Index, TVI: Triangular Vegetation Index, VARI: Visible 

Atmospherically Resistant Index, VREI1: Vogelmann Red-Edge Index 1.  
P The index measures physiological traits such as pigment or chlorophyll concentrations.  
S The index measures structural/physical traits such as leaf area index (LAI).  
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Table 2.3 Texture metrics used for tree genera classification 

Texture Metric Equation Reference 

   

1st Order Data Range  

(700 nm & 847 nm) 

𝑀𝑎𝑥 − 𝑚𝑖𝑛 Anys et al. (1994) 

1st Order Mean  

(700 nm & 847 nm) ∑ 𝑖𝑃(𝑖)

𝑁𝑔−1

𝑖=0

 

Anys et al. (1994) 

1st Order Variance  

(700 nm & 847 nm) ∑ (𝑖 − 𝑀)2𝑃(𝑖)

𝑁𝑔−1

𝑖=0

 

Anys et al. (1994) 

1st Order Entropy  

(700 nm & 847 nm) ∑ 𝑃(𝑖) ∗ 𝑙𝑛𝑃(𝑖)

𝑁𝑔−1

𝑖=0

 

Anys et al. (1994) 

2nd Order Mean  

(700 nm & 847 nm) ∑ ∑ 𝑖 ∗ 𝑃(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

Haralick et al. (1973) 

2nd Order Variance  

(700 nm & 847 nm) ∑ ∑(𝑖 − 𝜇)2𝑃(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

Haralick et al. (1973) 

2nd Order Homogeneity  

(700 nm & 847 nm) ∑ ∑
1

1 + (𝑖 − 𝑗)2
𝑃(𝑖

𝑁𝑔

𝑗=1

, 𝑗)

𝑁𝑔

𝑖=1

 

Haralick et al. (1973) 

2nd Order Contrast  

(700 nm & 847 nm) ∑ ∑ 𝑃(𝑖, 𝑗)(𝑖 − 𝑗)2

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

Haralick et al. (1973) 

2nd Order Dissimilarity  

(700 nm & 847 nm) ∑ ∑ 𝑃(𝑖, 𝑗)|𝑖 − 𝑗|

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

Haralick et al. (1973) 

2nd Order Entropy  

(700 nm & 847 nm) ∑ ∑ 𝑃(𝑖, 𝑗) log(𝑃(𝑖, 𝑗))

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

Haralick et al. (1973) 

2nd Order Second Moment  

(700 nm & 847 nm) ∑ ∑{𝑃(𝑖, 𝑗)}2

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

Haralick et al. (1973) 

2nd Order Correlation  

(700 nm & 847 nm) 
∑ ∑ (𝑖𝑗)𝑃(𝑖, 𝑗) − 𝜇𝑥𝜇𝑦

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

𝜎𝑥𝜎𝑦
 

Haralick et al. (1973) 

where P(i) = probability of each pixel value; Ng = number of distinct grey levels in the quantized image; i and j = 

the row and column numbers in the spatial matrix; p(i,j) = the value of cell i,j in the matrix; µ = the mean; and σ = 

the standard deviation. 
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2.2.3. Pixel-based classification methods 

Individual tree crowns were identified with the help of the GPS points collected in the 

field using ENVI 5.5.2. Due to the condensed and overlapping nature of many of the tree 

canopies in the study area, only trees in the Dominant, Co-Dominant, or Intermediate crown 

classes were considered and extreme care was taken to ensure accurate attribution. Trees were 

classed into groups (see Table 2.1), with the ash species grouped together only for the initial 

classification. Individual tree crowns were identified and delineated using the true-color 

hyperspectral image. These crowns were used to create spectral signatures for each target species 

group and to extract mean values from the MNF-reduced hyperspectral data for classification 

purposes. 

2.2.4. Object-based classification methods 

In object-based analysis, algorithms are applied to a stack of input variables to group 

pixels into objects based on similarities in the input variables, which then serve as the basis for 

classification. In this case, the 38 bands resulting from the MNF transformation were used as the 

input for segmentation. Segmentation was performed using L3Harris GeoSpatial’s ENVI 5.5.2 

Feature Extraction module and the Edge segmentation method. ENVI-Edge utilizes a patented 

method invented by Jin (2012) that computes a gradient map from an image, computes a 

modified gradient image via scale level, and then uses a Sobel edge detection method to identify 

boundaries between objects. If the results are satisfactory, then a watershed transformation based 

on the modified gradient map is applied to the whole image, resulting in segmentation objects.  

ENVI provides two main methods for adjusting the output of the segmentation – scale 

and merge parameters. In the Edge segmentation method, the scale parameter eliminates the 

stated percentage of lowest intensity gradients while the merge parameter will combine adjacent 



31 

 

segments (based on spectral and spatial information) with a merging cost less than the defined 

parameter (Jin 2012). Watershed segmentations often result in over-segmentation of the desired 

tree crowns (Yang et al. 2015; Yang et al. 2014b), so finding a suitable merge parameter is 

highly advantageous. The determination of such parameters is largely done experimentally 

(Amini et al. 2018; Garzon-Lopez and Lasso 2020; Pontius et al. 2017) and the same was 

attempted in this study. Scale 10 was determined to adequately segment crowns and other 

objects, however a suitable merge factor was unable to be found, likely due to the large 

differences in the sizes of tree crowns of target species in the study area. As such, no merge was 

performed.  

Training data were selected for each species class utilizing the GPS points collected in 

the field (Table 2.1) and the delineated tree crowns identified previously. 

2.2.5. Classification modeling 

 Once all input variables were prepared for pixel-based and object-based approaches, we 

implemented classification (Blaschke and Hay 2001) using RF and SVM in RStudio (Team 

2015), an open-source UI for the R Statistical Programming Language (Shruthi et al. 2014)R 

version 4.0.3 (R Core Team 2020). 

SVM is a non-parametric supervised machine learning algorithm that uses training data to 

construct hyperplanes in a multidimensional feature space that maximizes differences within the 

data classes, corresponding to a kernel function (Ferreira et al. 2019; Noble 2006; Zoleikani et al. 

2017). While some researchers have found that the radial kernel function provides better 

classification results (Amini et al. 2018), the polynomial kernel function produced better results 

in initial classifications and, as such, was used in this study.  
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RF is also a non-parametric method based on a combination of decision tree predictors 

(Breiman 2001) that has been used for numerous applications such as defoliation detection 

(Bhattarai et al. 2020), tree identification (Sapkota and Liang 2020), and land cover mapping 

(Wang et al. 2018). This algorithm is well suited to hyperspectral imagery because of its ability 

to handle a large number of variables (Amini et al. 2018; Immitzer et al. 2012). 

Each classification data set was split randomly into 60% training data and 40% testing 

data and each model was trained using 10-fold repeated cross validation.  

 A set of statistical measures were calculated for each algorithm, namely mean kappa, 

mean accuracy, out-of-bag error (for RF), and confusion matrices. Based on these statistics the 

most accurate classification method was selected and utilized in black ash identification. 

2.2.6. Black ash classification 

Once we derived a suitably accurate model for species level identification, we moved to 

differentiating black ash within the ash genus. In order to separate out black ash, we first created 

a mask of only those pixels representing broadleaf tree crowns, as determined by the initial round 

of classification (AS, QA, RM, HW). After determining that SVM object-based methods created 

the most realistic ash genus classification map, training data for each ash species were selected. 

Due to sample size constraints and spectral similarity, green and white ash were grouped 

together (Table 2.4). Classification proceeded in a nearly identical fashion to the first round 

(Section 2.2.4) with broadleaf and ash classes. Due to spectral similarity and concerns about 

class size, we combined the green and white ash, RM, and HW classes, with 30% of each species 

randomly selected to balance both internal class species distribution and the total with other (BA 
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and QA) classes. In addition, 50% of the data was reserved for testing purposes (as opposed to 

40% in the initial round) due to concern about having adequate external validation samples. 

Table 2.4 Black ash classification classes and total number of samples  

Class Sample Totals 

Black ash (BA) 21 

Quaking aspen (QA) 25 

Red maple, green and white ash, and other hardwood (HW) 25 

 

2.3. Results 

2.3.1. Evaluation of spectral bands for ash classification 

Spectral signatures for all classes were calculated (Figure 2.4) using the de-noised G-

LiHT hyperspectral data, using the same training data used for the pixel-based classification.  

 

Figure 2.4 Mean spectral signatures of ash and co-occurring genera and species, derived from G-LiHT 

hyperspectral data. Shaded area equates to Mean +/- Standard Deviation. AS = ash, HW = other 

hardwood, QA = quaking aspen, RM = red maple, SW = softwood 
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The statistical significance of each wavelength between pairs of classes was calculated 

(Figure 2.5). Ash (AS) shows significant separation from softwood (SW) and quaking aspen 

(QA) over most of the visible spectrum (400-750 nm), but is not significantly different from 

either red maple (RM) or the mixed hardwood classes. Given the similarity over the optical 

spectrum, different sources of data (such as texture metrics) needed to be included to achieve 

suitable differentiation.  

 

Figure 2.5 Significance of spectral signature difference between ash and co-occurring genera. Solid 

black lines indicate statistically significant differences between class pairs (P<0.05). AS = ash, HW = 

other hardwood, QA = quaking aspen, RM = red maple, SW = softwood. Note - no statistically different 

wavelength pairs for AS, HW, and RM classes were observed. 
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2.3.2. Segmentation results 

Multiple segmentation scales were utilized to determine the best scale for individual tree 

delineation. Scale 5 (Figure 2.6a) shows over-segmentation even on small crowns, while scale 20 

(Figure 2.6c) shows significant under-segmentation. Scale 10 (Figure 2.6b) did over-segment 

large crowns, however this was expected (Yang et al. 2015) and scale 10 showed the greatest 

ability to identify individual crowns while not producing an overwhelming amount of over-

segmentation.  

 

Figure 2.6 Comparison of segmentation scale factors, red = ash tree crown, black = gap in canopy 
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 2.3.3. Ash species classification 

With all areas that were identified as belonging to the SW class removed from the image, 

spectral signatures for each broadleaf class were calculated (Figure 2.7) using the de-noised G-

LiHT hyperspectral data, using the same training data polygons as for the pixel-based 

classification. For this round of classification, green and white ash were separated into a distinct 

class (AS) from black ash (BA) and the SW class was excluded. There is clear differentiation 

between BA and AS in the 800-900nm range and in the 970-1000nm range. 

 
Figure 2.7 Mean spectral signatures of different species of ash and co-occurring species groups derived 

from G-LiHT hyperspectral data. Shaded area equates to Mean +/- Standard Deviation. AS = green and 

white ash, BA = black ash, HW = other hardwood, QA = quaking aspen 

 

 

 



37 

 

Statistical analysis of the spectral band pairs reveals key significant differences between 

species (Figure 2.8). While the ash (AS), red maple (RM), and hardwood (HW) classes were 

found to not be significantly different from each other, black ash (BA) was able to be 

differentiated. In particular, the red-edge and near infrared portions of the spectrum (730-

1000nm) provide for significant differences between black ash (BA) and all co-occuring species. 

Quaking aspen (QA) was found to be significantly different from all other classes. 

 
Figure 2.8 Significance of spectral signature difference between different species of ash and co-occurring 

species groups. Solid black lines indicate statistically significant differences between class pairs 

(P<0.05). Note – no significant spectral bands for AS_HW 

 

2.3.4. Genera classification results, model evaluation and map production 

Confusion matrices and accuracy metrics of pixel-based classification were developed 

(Table 2.5). The overall accuracy and kappa coefficient of the pixel-based RF model were 64.1 

% and 0.54, respectively. While the AS class was slightly confused with the RM and HW 

classes, generally it was separated from other classes.   

 The overall accuracy and kappa coefficient of the pixel-based SVM model were 67.2 % 

and 0.58, respectively. Similar to RF, the AS class was slightly confused with the RM and HW 

classes but generally was separable. The mean and standard deviation of the pixel-based method 

were also calculated (Table 2.6). 
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Confusion matrices and accuracy metrics of object-based classification methods were 

developed (Table 2.7). The overall accuracy and kappa coefficient of the object-based RF and 

object-based SVM models were 64.1% and 0.54 and 64.19 % and 0.654 respectively. Using 

object-based classification the AS class was again slightly confused with the RM and HW 

classes. The object-based classification method generally outperformed the pixel-based method. 

Between classification algorithms, SVM outperformed RF where SVM yielded overall 

accuracies over 70% regardless of classification method. The mean and standard deviation of the 

object-based method were also calculated (Table 2.8). 

Table 2.5 Confusion matrices and accuracy metrics of G-LiHT pixel-based classification methods for ash 

genus classification. PA = Producer’s Accuracy, UA = User’s Accuracy 

Model Species AS HW QA RM SW UA (%) 

Pixel + 

RF 

 

AS 9 2 0 5 1 52.9 

HW 0 3 0 1 0 75.0 

QA 0 0 9 0 1 90.9 

RM 3 3 0 9 1 56.2 

SW 3 2 1 0 11 64.7 

Total 15 10 10 15 14   

PA (%) 60.0 30.0 90.0 60.0 78.6   

Overall accuracy 64.1% and kappa coefficient 0.54  

Pixel + 

SVM  

AS 11 3 0 4 0 61.1 

HW 2 1 0 2 0 20.0 

QA 0 0 9 0 0 100 

RM 2 2 0 9 1 64.3 

SW 0 4 1 0 13 72.2 

Total 15 10 10 15 14   

PA (%) 73.3 10.0 90.0 60.0 92.9   

Overall accuracy 67.2% and kappa coefficient 0.58 

 

Table 2.6 Internally-derived accuracy metrics (Mean ± Standard Deviation) of G-LiHT pixel-based 

methods for ash genus classification. 

Model Accuracy (%)  kappa  Out-of-bag error (%) 

Pixel + RF 72.1 ± 13.8 0.64 ± 0.17 28.6 

Pixel + SVM 72.4 ± 13.7 0.65 ± 0.17  
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Table 2.7 Confusion matrices and accuracy metrics of G-LiHT object-based classification methods for 

ash genus classification. PA = Producer’s Accuracy, UA = User’s Accuracy 

Model Species AS HW QA RM SW UA (%) 

Object + 

RF 

 

AS 9 2 0 8 0 47.4 

HW 1 2 0 0 0 66.7 

QA 0 1 10 0 0 90.9 

RM 5 3 0 6 0 42.9 

SW 0 2 0 1 14 82.4 

Total 15 10 10 15 14   

PA (%) 60.0 20.0 100.0 40.0 100.0   

Overall accuracy 64.1% and kappa coefficient 0.54 

Object + 

SVM 

  

  

AS 10 4 0 8 0 45.5 

HW 0 1 0 0 0 100.0 

QA 0 1 10 0 0 90.9 

RM 5 2 0 6 0 46.2 

SW 0 2 0 1 14 82.4 

Total 15 10 10 15 14   

PA (%) 66.7 10.0 100.0 40.0 100.0   

Overall accuracy 64.1% and kappa coefficient 0.54 

 

 

Table 2.8 Internally-derived accuracy metrics (Mean ± Standard Deviation) of G-LiHT object-based 

methods for ash genus classification 

Model Accuracy (%) kappa  Out-of-bag error (%) 

Object + RF 73.7 ± 11.5 0.66 ± 0.15 25.5 

Object + SVM 79.5 ± 13.9  0.74 ± 0.18 N/A 

 

The distribution of internal accuracies derived from each model and the statistical 

significance of those accuracies were calculated (Figure 2.9). The object-based SVM 

classification had the highest overall accuracy and, while the pixel-based SVM model was not 

significantly better than the pixel-based RF model, the pixel-based SVM model was chosen for 

consistency. The classification maps of the best object-based and pixel-based methods (SVM) 

with subsets comparing RF- and SVM-derived maps were then developed (Figure 2.10 and 

2.11). 
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Figure 2.9 Distribution of G-LiHT based model accuracies derived from internal 10-fold cross-

validation. Letter pairs indicate statistical similarity based on p<0.05. 

 

In terms of internal validation, both pixel-based methods achieved nearly identical overall 

accuracies and kappa values (Table 2.5). In addition, the object-based RF model, while achieving 

a slightly higher overall accuracy than the pixel-based methods, produced a statistically similar 

overall accuracy. The object-based SVM model, however, produced a statistically higher mean 

accuracy than the other models (Figure 2.9). While the object-based SVM model does not 

produce the highest Producer’s or User’s Accuracy of ash (pixel-based SVM model is the highest 

in both), it does produce the highest Overall Accuracy by a statistically significant margin. 

 Ash and co-occurring genera were successfully identified in both study sites using all 

four classification approaches (Figure 2.10 and Figure 2.11). Each model presents a similar 

pattern - there is some disagreement between hardwood classes (AS, RM, HW), but general 
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consistency in the softwood (SW) class. Confidence in the models are increased by the relative 

abundances of QA and SW in Sites 1 and 2, respectively – Site 1 had significant amounts of 

aspen but fewer softwood species, while Site 2 had significant amounts of softwood species but 

little to no aspen. In addition, AS is consistently predicted in areas that align with ash’s 

ecological needs, such as along stream beds, roads, and in wetlands, further increasing 

confidence in the overall classification approach. This is particularly evident in Site 2, where 

both the object- and pixel-based SVM models predict relatively lower amounts of RM in the 

northern portion of the stand that is slightly drier and more conducive to other hardwood species, 

but as one moves south in the site (and the site becomes wetter) higher levels of RM and AS 

(compared to HW) are predicted. 



42 

 

 

Figure 2.10 Classification map of Site 1 using G-LiHT hyperspectral data and varied classification methods. Top = pixel-based SVM, Bottom = 

object-based SVM. AS = ash, HW = hardwood, QA = quaking aspen, RM = red maple, SW = softwood.  Focus areas were chosen to highlight 

different aspects of model:  

a) Consistency in SW but inconsistency in AS/RM/HW classes b) swampy area dominated by RM, some mixed classification with AS c) over-

prediction of AS in SVM-based approaches and confusion between RM and HW d) ridge with high levels of broadleaf trees, but high degree of 

instability in AS, HW, and RM classes  



43 

 

 
 Figure 2.11 Classification map of Site 2 using G-LiHT hyperspectral data and varied classification methods. Top = pixel-based SVM, Bottom = 

object-based SVM. AS = ash, HW = hardwood, QA = quaking aspen, RM = red maple, SW = softwood.  Focus areas were chosen to highlight 

different aspects of mode:  

a) HW, RM, AS/SW classification mostly consistent, but SVM predicting higher levels of HW; b) SW area consistent, pixel-based methods 

identifying increased variation; c) consistency between pixel- and object- based models, with increased variation in pixel-based classification; and 

d) transition to upland SW dominated area in south, model picking up increased SW presence.
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2.3.5. Black ash classification 

Both the overall accuracy and kappa coefficient (Table 2.9 and 2.10) suggest that the 

model is having some success separating black ash from other hardwoods. There are some 

expected misclassifications between the BA and the HW classes, but nonetheless BA is classified 

with a Producer’s and User’s Accuracy of 70%. Generally speaking the model is over predicting 

black ash, especially in Site 1 along the northeastern border, but is highlighting concentrations of 

black ash successfully in the southwestern portion of Site 1 (Figure 2.12.a) and in the interior of 

Site 2 (Figure 2.12.b). With the exception of the northeastern ridge in Site 1, the model has 

predicted each ash species in its generally best habitat: black ash in wetlands and swamps, and 

green and white ash along streams and roadways and in well drained, moist soil along ridges and 

streams. This ecological consistency further suggests that the model is aligned with physical 

realities.  

Table 2.9 Confusion matrix and accuracy metrics of black ash hyperspectral identification.  PA = 

Producer’s Accuracy, UA = User’s Accuracy  
Model Species BA HW QA UA (%) 

Object + 

SVM 
BA 7 2 1 70.0 

HW 3 10 0 76.9 

QA 0 0 11 100 

Total 10 12 12  

PA (%) 70.0 83.3 91.7  

Overall accuracy 82.4% and kappa coefficient 0.73  

 

Table 2.10 Internally-derived accuracy metrics (Mean ± Standard Deviation) of black ash identification 

Model Accuracy (%) kappa  

Object + SVM 77.1 ± 19.8  0.65 ± 0.29 
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Figure 2.12 Black ash classification maps utilizing object-based, SVM algorithm of (a) Site 1 and (b) Site 2. (a) Note over prediction of black ash 

in ridge along northeastern border. 
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2.4. Discussion 

2.4.1. Comparison of pixel- and object-based classifiers 

 Pixel- and object-based classification methods produced very similar results from a 

statistical point of view and the kappa values suggest the accuracy measures are not due to 

random chance. However, there are clear differences in classification maps, mostly centered on 

red maple, ash, and other hardwoods. As these discrepancies are not adequately captured via 

statistics a broader view must be taken into consideration. The HW class is dominated by white 

and paper birch, while the SW is mostly red spruce and balsam fir. Confusion between broadleaf 

classes – ash, maple, and mixed hardwood/birch – is similar to what other researchers have 

experienced (Lisein et al. 2015; Maschler et al. 2018). In our pixel-based methods there is some 

confusion between AS and SW, which primarily consists of white pine, eastern hemlock, red 

spruce, and balsam fir. While these species are not spectrally similar to ash, they co-occur with 

high frequency and with high density (Costanza 2015; Erdmann et al. 1987) and overtopped trees 

could have contributed to contamination of the hardwood (AS, RM, HW) classes.   

 Taking a step back to broadly assess the classification patterns, the pixel-based 

approaches generally result in over-classification of ash, especially in Site 1. With a few 

exceptions, ash trees in Maine tend to grow in a dispersed pattern, and in some instances ash will 

become established along a stream bank which can then be traced back to a single seed source. 

These patterns are apparent in both the object- and pixel-based classification approaches, 

however, pixel-based approaches tend to overestimate the overall abundance of ash, particularly 

in Site 1. It is possible this class confusion is due to the complex, overlapping nature of the tree 

canopy – the majority of areas with the highest class differences are also those areas that had the 

smallest average tree crown (J. Furniss, personal observation). In these areas even those trees 
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that reached the canopy would maintain very small crowns, many times overlapping other trees 

or presenting oddly shaped crowns. It is entirely possible that the suite of metrics calculated 

through the object segmentation process is better able to differentiate these small, overlapping 

crowns than pixel-based methods are able to. 

 Even in the face of class disagreements, the models produce useable results. All models 

were able to highlight potential areas of ash growth.. As the focus of this study is to identify 

individual ash trees, however, object-based methods seem to present the most viable path 

forward. Based on typical ash dispersal patterns in Maine, and researchers’ own experience on 

the sites, it seems as though pixel-based approaches are identifying the possible range of ash 

within a given area while the object-based approaches are better at identifying individual crowns 

and accurately classifying them. As the goal is to find as much ash as possible to facilitate 

preservation, erring on the side of over-prediction may be preferred, but the ability to identify 

individual trees is paramount. 

2.4.2 RF vs. SVM classification 

 Statistically, the RF and SVM pixel-based and RF object-based classification models 

performed similarly, while the SVM object-based model performed significantly better. While 

RF is versatile and can be applied to a wide variety of settings and data types, SVM has been 

shown to maintain high accuracy despite changes to sample size (Thanh Noi and Kappas 2018) 

and to outperform RF in a variety of settings, such as crop type classification (Nitze et al. 2012) 

and land cover classification (Thanh Noi and Kappas 2018). RF is a relatively straightforward 

decision tree approach (Breiman 2001), while SVM constructs hyperplanes to compare pairwise 

data points (Noble 2006), potentially allowing for SVM to capture a higher degree of 

differentiation between similar classes - as can be seen in the increased class variation of the 
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SVM-classified maps. Accordingly, however, SVM is significantly more computationally 

intensive and could present difficulties for large scale classification. 

2.4.3. Comparisons to other work 

 These findings largely align with what other researchers have found. Maschler et al. 

(2018), for example, achieved nearly 92% overall accuracy, but only 72.7% Producer’s Accuracy 

for ash - which compares well with the 66.7% (using object-based SVM method) achieved in this 

study. Critically, however, the models developed in this study are over predicting ash as 

evidenced by our 45.5% User’s Accuracy, compared to 88.7% achieved by Maschler et al. 

(2018). This difference is likely in large part due to differences in sample size between the two 

studies, as Maschler et al. (2018) included 699 individual delineated crowns compared to 163 in 

this study. Pontius et al. (2017) achieved an overall accuracy of 81% in an urban environment, 

with an ash Producer’s Accuracy of 45% and a User’s Accuracy of 94% using 290 total samples. 

The increase in accuracy concurrent with sample size is expected and promising, given the 

limited sample size of this study. The scattered nature of ash, its non-dominance, and small 

crown sizes in our study sites might have also contributed to the lower accuracy of our models.  

2.4.4. Black ash classification 

 Utilizing object-based methods and SVM, black ash was successfully differentiated from 

white and green ash. Ash species are known to hybridize with each other when present at the 

same location, with DNA sequencing sometimes the only way to tell one species from another 

(Wallander 2008). As such, it is not surprising that there was some mixing between the black ash 

and hardwood-maple-ash class. Generally speaking, the classification results correspond to the 

physical characteristics of the landscape, with black ash in lower lying, swampy areas, such as 
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the southern portion of Site 2 (Figure 2.12.b) and the western and eastern portions of Site 1 

(Figure 2.12.a). Critically for the identification of ash in Maine, this method detected not only 

larger areas of ash, like along a stream in the central portion of Site 1 (Figure 2.12, a) or the large 

green ash along the western border of Site 2 (Figure 2.12, b), but also smaller black ash crowns 

intermixed with other species as seen especially in the southern portion of Site 2 (Figure 2.12, b). 

The northeastern ridge in Site 1, however, remains a concern due to the over prediction of black 

ash and a reason for further refinement of the model.  

2.5. Conclusions 

 We were able to differentiate ash from other co-occurring genera, and then differentiate 

black ash from other ash and hardwood species using G-LiHT data. Despite smaller than desired 

sample sizes we were able to achieve comparable accuracies to similar studies in a novel 

environment and show that object-based classification methods using hyperspectral data are a 

viable method for mapping ash species distribution moving forward. With additional samples 

and the possible inclusion of time series imagery or site variables, accuracies can be increased 

even further to provide for precision mapping of individual black ash trees.  
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CHAPTER 3 MAPPING ASH SPECIES ACROSS A MIXED FOREST USING 

MULTISPECTRAL IMAGERY 

3.1. Introduction 

As described in Chapter 2, because of dispersed growing pattern of ash and the 

predominance of other tree species, high spatial resolution remote sensing data are needed to 

identify ash trees at the genus level (Lisein et al. 2015; Murfitt et al. 2016; Sapkota and Liang 

2020). Remotely sensed multispectral imagery has a strong history of being used to classify 

individual tree species in various settings (Franklin et al. 2000; Immitzer et al. 2012; Yang et al. 

2014a). Multispectral data are typically less costly and easier to acquire compared to 

hyperspectral data and their processing is less computationally expensive and therefore if ash 

trees can be identified using these types of data, classification can be made easier and 

economically more affordable. Multispectral data have been used to identify individual ash trees 

in Arkansas, United States (Sapkota and Liang 2020) and in Europe (Waser et al. 2014), in 

addition to assessing ash tree health (Murfitt et al. 2016; Pontius 2014).  

WV-2 provides multispectral images in eight spectral bands (red (659 nm), green (546 

nm), blue (478 nm), coastal blue (427 nm), yellow (608 nm), red-edge (724 nm), near-infrared 1 

(831 nm), and near-infrared 2 (908 nm)) at roughly 1.84 m resolution and a panchromatic band at 

roughly 0.46 m resolution (DigitalGlobe 2009). While WV-3 has slightly higher spatial 

resolution than WV-2 (0.31m in the panchromatic band compared to 0.46m respectively), the 

resolutions are significantly smaller than the average tree crown widths in Maine (Russell and 

Weiskittel 2011) and so should be sufficient to generate helpful structural data (Li et al. 2015).   

While this is not the first attempt to use multispectral imagery to identify ash at the 

individual tree level (Sapkota and Liang 2020), nor to specifically identify black ash (Engelstad 

et al. 2019; Host et al. 2020), to our knowledge this is the first attempt to use multispectral 
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imagery to identify and classify black ash at the individual tree level. Sapkota and Liang (2020) 

used similar data (WV-3) and identified individual ash trees, but did not attempt to differentiate 

the individual ash species from one another. Likewise, both Engelstad et al. (2019) and Host et 

al. (2020) did identify black ash, but did so using 30 m resolution Landsat data in a relatively 

homogenous environment. Similar studies seeking to identify black ash habitat in Maine have 

utilized geographical information system (GIS) based techniques, such as incorporating depth to 

water table or similar metrics (Costanza 2015). As such, we believe that this is the first study to 

identify ash species and black ash in particular using WV-2 imagery. The specific objectives are: 

1) create and evaluate both pixel-based and object-based classification models for tree species 

identification with the focus on ash trees and 2) evaluate different non-parametric algorithms for 

tree identification.  

3.2. Materials and methods 

3.2.1. Field work 

The study sites and field dataset are the same as described in Chapter 2 Section 2.2.1.  

Due to the presence of clouds in the northern parts of the imagery taken over Site 1, numerous 

GPS tagged trees in that Site had to be discarded, resulting in a smaller number of samples 

utilized (Table 3.1). Classes and class totals reflect those trees that could be successfully 

identified and delineated, grouped together with respect to sample size and spectral similarity for 

classification purposes.  
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Table 3.1 Field data tree species collected for training and model validation (left) and aggregated classes 

and number of samples used for classification (right) for WV-2 data 

Species Species Class Species Totals  Class 
Sample 

Totals 

Quaking aspen 
Quaking 

aspen 
22  Ash (AS) 35 

Balsam fir Softwood 35  Quaking aspen (QA) 22 

Black ash Ash 63  Other Hardwood (HW) 21 

Green ash Ash 25  Red maple (RM) 33 

Eastern 

hemlock 
Softwood 25  Softwood (SW) 41 

Northern white  

cedar 
Softwood 44    

Oak spp. 
Other 

Hardwood 
4    

Paper birch 
Other 

Hardwood 
7    

Red maple Red maple 50    

Red spruce Softwood 8    

White ash Ash 21    

White pine Softwood 6    

Yellow birch 
Other 

Hardwood 
15    

Total  316    

 

3.2.2. Remote sensing data and data pre-processing 

 In this study we utilized multispectral data from the WV-2 satellite imaging system, 

collected June 25, 2015. The workflow for this Chapter is diagrammed for improved 

understanding (Figure 3.1). The data were received from DigitalGlobe atmospherically corrected 

and orthorectified, so no further correction was needed. The image was provided in multispectral 

and panchromatic rasters. 
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Figure 3.1 Workflow for development of ash tree species maps using WV-2 multispectral data 

The rest of the pre-processing was completed using ENVI version 5.5.2. First, the 

individual study sites were clipped from the larger rasters, and the Gram-Schmidt pan sharpening 

technique was used to fuse the multispectral and panchromatic images together, resulting in a 

~0.6 m spatial resolution multispectral image that retains the spectral information present in the 

original image while matching the spatial resolution to the panchromatic band (Aiazzi et al. 

2009). Then a suite of SVIs and texture metrics were calculated (Table 3.2 and Table 3.3). The 

SVIs, texture metrics, and spectral bands were stacked, creating a 58 layer data cube. The choice 

of the indices and texture metrics was based on their performance in previous research. Sapkota 
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and Liang (2020) showed that the inclusion of texture metrics such as those described in Table 

3.3 significantly increased the accuracy of ash classification. 

Table 3.2 Spectral vegetation indices calculated using WV-2 imagery 

Name Equation Reference 

NDVIS 
𝑁𝐼𝑅1 − 𝑅

𝑁𝐼𝑅1 + 𝑅
 Rouse et al. (1974) 

GNDVIS 
𝑁𝐼𝑅1 − 𝐺

𝑁𝐼𝑅1 + 𝐺
 

Gitelson and Merzlyak 

(1994) 

EVIS 2.5 ∗ (
𝑁𝐼𝑅1 − 𝑅

𝑁𝐼𝑅1 + 𝑅 ∗ 6.0 − 7.5 ∗ 𝐵
) Huete et al. (1994) 

IPVIP 
𝑁𝐼𝑅1

𝑁𝐼𝑅1 + 𝑅
 Crippen (1990) 

GRRS 𝐺

𝑅
 Waser et al. (2014) 

RRS (
𝑁𝐼𝑅1

𝑅
) ∗ (

𝐺

𝑅
) ∗ (

𝑁𝐼𝑅1

𝑅𝐸
) Waser et al. (2014) 

PSRIP 𝑅 − 𝐵

𝑅𝐸
 Merzlyak et al. (1999) 

RENDVIS 
𝑁𝐼𝑅1 − 𝑅𝐸

𝑁𝐼𝑅1 + 𝑅𝐸
 

Gitelson and Merzlyak 

(1994) 

RVIS 𝑁𝐼𝑅1

𝑅
 Jordan (1969) 

REVIS 
𝑁𝐼𝑅1 − 𝑅

√(𝑁𝐼𝑅1 + 𝑅)
 Roujean and Breon (1995) 

ARVIP 
𝑁𝐼𝑅1 − (𝑅(𝐵 − 𝑅))

𝑁𝐼𝑅1 + (𝑅 − (𝐵 − 𝑅))
 

Kaufman and Tanre 

(1992)  

REYRS 𝑅𝐸 − 𝑌

𝑅𝐸 + 𝑌
 Gwata (2012) 

DDVIP (2 ∗ 𝑁𝐼𝑅1 − 𝑅) − (𝐺 − 𝐵) Le Maire et al. (2004) 

WIVIS 
𝑁𝐼𝑅2 − 𝑅𝑒𝑑

𝑁𝐼𝑅1 + 𝑅𝑒𝑑
 Wolf (2012) 

NDVI = Normalized Difference Vegetation Index, GNDVI = Green Normalized Difference Vegetation Index, EVI = 

Enhanced Vegetation Index, IPVI =  Infrared Percentage Vegetation Index, GRR = Green-Red ratio, Red ratio = 

Red Ratio, PSRI = Plant Senescence Reflectance Index, RENDVI = Red-Edge Normalized Difference Vegetation 

Index, RVI = Ratio Vegetation Index, REVI = Renormalized Vegetation Index, ARVI =  Atmospherically Resistant 

Vegetation Index, REYR = Red-Edge-Yellow ratio, DDVI = Difference Difference Vegetation Index, WIVI = 

Worldview Improved Vegetative Index.  
P The index measures physiological traits such as pigment or chlorophyll concentrations. 

 S The index measures physical traits such as leaf area index (LAI).  
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Table 3.3 Texture metrics for classification using WV-2 imagery 

Texture Metric Equation Reference 

   

1st Order Data Range  

(Red, Red Edge, NIR1) 

𝑀𝑎𝑥 − 𝑚𝑖𝑛 Anys et al. (1994) 

1st Order Mean  

(Red, Red Edge, NIR1) ∑ 𝑖𝑃(𝑖)

𝑁𝑔−1

𝑖=0

 

Anys et al. (1994) 

1st Order Variance  

(Red, Red Edge, NIR1) ∑ (𝑖 − 𝑀)2𝑃(𝑖)

𝑁𝑔−1

𝑖=0

 

Anys et al. (1994) 

1st Order Entropy  

(Red, Red Edge, NIR1) 

 Anys et al. (1994) 

2nd Order Mean  

(Red, Red Edge, NIR1) ∑ ∑ 𝑖 ∗ 𝑃(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

Haralick et al. (1973) 

2nd Order Variance  

(Red, Red Edge, NIR1) ∑ ∑(𝑖 − 𝜇)2𝑃(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

Haralick et al. (1973) 

2nd Order Homogeneity  

(Red, Red Edge, NIR1) ∑ ∑
1

1 + (𝑖 − 𝑗)2
𝑃(𝑖, 𝑗)

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

Haralick et al. (1973) 

2nd Order Contrast  

(Red, Red Edge, NIR1) ∑ ∑ 𝑃(𝑖, 𝑗)(𝑖 − 𝑗)2

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

Haralick et al. (1973) 

2nd Order Dissimilarity  

(Red, Red Edge, NIR1) ∑ ∑ 𝑃(𝑖, 𝑗)|𝑖 − 𝑗|

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

Haralick et al. (1973) 

2nd Order Entropy  

(Red, Red Edge, NIR1) ∑ ∑ 𝑃(𝑖, 𝑗) log(𝑃(𝑖, 𝑗))

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

Haralick et al. (1973) 

2nd Order Second Moment  

(Red, Red Edge, NIR1) ∑ ∑{𝑃(𝑖, 𝑗)}2

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

 

Haralick et al. (1973) 

2nd Order Correlation  

(Red, Red Edge, NIR1) 
∑ ∑ (𝑖𝑗)𝑃(𝑖, 𝑗) − 𝜇𝑥𝜇𝑦

𝑁𝑔

𝑗=1

𝑁𝑔

𝑖=1

𝜎𝑥𝜎𝑦
 

Haralick et al. (1973) 

Where P(i) = probability of each pixel value; Ng = number of distinct grey levels in the quantized image; i and j = 

the row and column numbers in the spatial matrix; p(i,j) = the value of cell i,j in the matrix; µ = the mean; and σ = 

the standard deviation. 
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3.2.3. Pixel-based classification methods 

Individual tree crowns were identified with the help of the GPS points collected in the 

field using ENVI 5.5.2. Due to the condensed and overlapping nature of many of the tree 

canopies in the study area, only trees in the Dominant or Co-Dominant crown classes were 

considered and extreme care was taken to ensure accurate attribution. Trees were classed into 

groups (Table 3.1), with the ash species grouped together only for the initial classification. 

Individual tree crowns were identified and delineated using the true-color red-green-blue image. 

These crowns were used to create mean spectral signatures for each target class and to extract 

pixel data from the multispectral data stack for classification purposes. 

3.2.4. Object-based classification methods 

 For a detailed explanation of L3Harris GeoSpatial’s ENVI 5.5 Feature Extraction 

module, please refer to Chapter 2 Section 2.2.4. For this analysis, the entire 58-layer 

multispectral, spectral index, and texture metric stack was used as input for segmentation. 

Segmentation was again performed at scale 10 with no merge. Training data were extracted 

using the delineated tree crowns previously identified. 

3.2.5. Classification modeling 

 Once all input variables were prepared for pixel-based and object-based approaches, we 

implemented classification (Blaschke and Hay 2001) using RF and SVM as described in Chapter 

2 Section X.X. Each classification data set was randomly split into 60% training data and 40% 

testing data and each model was trained using 10-fold repeated cross validation.  
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 A set of statistical measures were calculated for each algorithm, namely mean kappa, 

mean accuracy, out-of-bag error (for RF), and confusion matrices. Based on these statistics the 

most accurate classification method was selected and utilized in black ash identification. 

3.2.6. Black ash classification 

In order to differentiate black ash, we first created a mask of only those pixels 

representing broadleaf tree crowns, as determined by the initial round of classification using the 

most accurate model. After determining that object-based methods created the most realistic ash 

genus classification map, training data for each ash species were selected. Due to spectral 

similarity and class size concerns, we combined green and white ash, red maple, and the other 

hardwood classes into a single class, with 30% of each species being randomly selected to 

achieve a balanced class, both in terms of internal species composition and compared to the other 

(BA and QA) classes (Table 3.4). In addition, 50% (rather than 40%) of the data were reserved 

for validation purposes due to concerns about having adequate validation data. Classification 

proceeded in an otherwise identical fashion to the first round with broadleaf and ash species.  

Table 3.4 Classification species groups for black ash species identification, and total number of samples 

Class Sample Totals 

Black ash (BA) 15 

Quaking aspen (QA) 22 

Red maple, green and white ash, and other hardwood (HW) 24 
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3.3. Results 

3.3.1. Evaluation of WV-2 spectral bands for ash genus classification 

Spectral signatures for all classes were calculated (Figure 3.2) using eight pan-sharpened 

WV-2 spectral bands and the same training data used for pixel-based classification. As expected, 

most of the genera (AS, HW, RM, and QA) are largely aligned throughout the optical spectrum 

but differentiation is observed from 500-600nm and 730 – 900nm, especially between the SW 

and other classes. 

 

Figure 3.2 Mean spectral signatures of ash and co-occurring genera, derived from WV-2 multispectral 

data. Shaded area equates to Mean +/- Standard Deviation. 

 

Statistical analysis was performed on each class pair, and significant differences in band pairings 

were calculated (Figure 3.3). Hardwood (AS, RM, HW) classes show significant differences with 

both QA and SW, and SW and QA are significantly different from each other (Figure 3.3). 
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Among the hardwood classes (AS, RM, HW), AS and RM are significantly different from each 

other, as are HW and RM, in a number of bands. This suggests that spectral information will be 

key in separating out at least a number of classes. However, no significantly different bands were 

identified between the AS and HW classes over the spectrum.   

 

Figure 3.3 Significance of spectral signature difference between ash and co-occurring genera. Points 

indicate statistically significant differences between class pairs (P<0.05). No statistically different band 

pairs were found for AS_HW. 

NIR1 = Near Infrared 1, NIR2 = Near Infrared 2. 

AS = ash, HW = hardwood, QA = quaking aspen, RM = red maple, SW = softwood 
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The top 25 variables as determined by their importance to the RF classification were 

graphed according to their mean accuracy (Figure 3.4). Multiple texture metrics, spectral indices, 

and spectral bands are present, suggesting each set of data is critical in achieving model success.  

 

Figure 3.4 Top 25 multispectral variables, derived from RF pixel-based classification. Top 25 variables 

shown for visual purposes – models using only the top 25 variables did not result in statistically different 

classification accuracies. 
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 3.3.2. Segmentation results 

Multiple segmentation scales were utilized to determine the best scale for individual tree 

delineation. Scale 5 (Figure 3.5a) shows over-segmentation even on small crowns and scale 20 

(Figure 3.5c) shows significant (and unacceptable) under-segmentation. While scale 10 (Figure 

3.5b) did over-segment large crowns, this was expected (Yang et al. 2015) and scale 10 showed 

the greatest ability to identify individual crowns while not producing an overwhelming amount 

of over-segmentation.  

 

Figure 3.5 Comparison of segmentation scale factors, red = ash tree crown, black = gap in canopy. 
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3.3.3. Ash species classification 

After all areas identified as SW were removed from the image, the tree crown polygons 

were used to extract spectral signatures for each broadleaf species using the pan-sharpened WV-

2 multispectral data (Figure 3.6). Green and white ash were separated into a distinct class (AS) 

from black ash (BA), and the SW class was excluded from this portion of the analysis. 

 

Figure 3.6 Mean spectral signatures of different ash species and other co-occurring species derived from 

WV-2 multispectral data. Shaded area equates to Mean +/- Standard Deviation. AS = green and white 

ash, BA = black ash, HW = other hardwood, RM = red maple, and QA = quaking aspen. 
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Statistical analysis of the band pairs was performed and the results were graphed (Figure 

3.7).  BA shows significant separation from RM and QA, and all classes show significant 

differences from QA in at least one band (Figure 3.7). However, the AS, RM, and HW classes 

were found to be similar over the entire spectrum. 

 

Figure 3.7 Significance of spectral signature difference between black ash, other ash species, and other 

co-occurring species. Points indicate statistically significant differences between class pairs (P<0.05). 

No statistically different wavelength pairs were found for AS_HW, AS_RM, BA_AS, BA_HW, and 

HW_RM.  AS = green and white ash, BA = black ash, RM = red maple, QA = quaking aspen, and HW = 

other hardwood. 
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3.3.4. Genera classification 

 Externally derived accuracy metrics and confusion matrices of the pixel-based 

classification methods were calculated (Table 3.5), along with internally derived mean 

accuracies and kappa values (Table 3.6). The RF pixel-based model produced an overall 

accuracy and kappa coefficient of 63% and 0.53, respectively. The AS, HW, and RM classes 

experienced some confusion, with AS and RM confusion being the most common error.  

 The SVM pixel-based model produced similar results, achieving an overall accuracy of 

62.4% and a kappa value of 0.52. SVM experienced significant difficulties classifying the HW 

class and both methods had trouble separating RM from AS.  

 The externally derived confusion matrices and accuracy metrics of the object-based 

classification methods were also calculated (Table 3.7), along with the internally-derived mean 

accuracies and kappa values (Table 3.8). Again the models performed similarly, with RF 

achieving an accuracy and kappa of 61.2% and 0.50, respectively and SVM achieving 61.9% and 

0.52, respectively. Object-based methods still confused the AS, RM, and HW classes, but to a 

lesser extent than pixel-based methods.  

 To demonstrate the distribution of internally-derived accuracies each value was graphed, 

with letters indicating groups of statistically similar classifiers (Figure 3.8). All models produced 

closely aligned results, as evidenced by the statistical similarity. Classification maps of the most 

accurate pixel- and object-based classification methods (SVM), with subsets comparing RF- and 

SVM- derived maps, were produced (Figure 3.9 and 3.10). Despite the lack of clear statistical 

evidence, SVM was deemed the most accurate model due to both the RF models producing large 

areas of homogenous species that were inconsistent with any areas encountered during the course 

of fieldwork. In addition, the pixel-based SVM model produced large areas of ash that were 
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similarly not encountered in the field. The object-based SVM model, however, produces a 

classification more closely aligned to researcher’s understanding and experience of the site.  

Table 3.5 Confusion matrices and accuracy metrics of WV-2 pixel-based classification methods for ash 

genus classification based on external validation. PA = Producer’s Accuracy, UA = User’s Accuracy 

Model Species AS HW QA RM SW UA (%) 

Pixel + 

RF 

 

AS 6 3 0 5 0 42.9 

HW 3 3 0 3 1 30.0 

QA 0 0 8 0 0 100 

RM 5 0 0 4 0 44.4 

SW 1 3 1 2 17 70.8 

Total 15 9 9 14 18   

PA (%) 40.0 33.3 88.9 28.6 94.4   

Overall accuracy 58.5%, and kappa coefficient 0.47  

Pixel + 

SVM  

AS 6 5 0 7 0 33.3 

HW 0 0 0 0 0 0 

QA 0 0 7 0 0 100 

RM 8 2 0 5 0 33.3 

SW 1 2 2 2 18 72 

Total 15 9 9 14 18  

PA (%) 40.0 0.0 77.8 35.7 100  

Overall accuracy 55.4% and kappa coefficient 0.42 

 

 
Table 3.6 Internally-derived accuracy metrics (Mean ± Standard Deviation) for WV-2 pixel-based ash 

species classification methods 

Model Accuracy (%) kappa  Out-of-bag error (%) 

Pixel + RF 63.0 ± 13.4 0.53 ± 0.17 36.7 

Pixel + SVM 62.4 ± 12.7 0.52 ± 0.16  

 

 

.  
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Table 3.7 Confusion matrices and accuracy metrics of WV-2 object-based classification for ash genus 

classification methods. PA = Producer’s Accuracy, UA = User’s Accuracy 

Model Species AS HW QA RM SW UA (%) 

Object 

+ RF 

 

AS 8 2 0 4 1 53.3 

HW 1 4 0 0 0 80.0 

QA 0 1 8 0 1 80.0 

RM 4 0 0 6 0 60.0 

SW 1 1 0 3 14 73.7 

Total 14 8 8 13 16  

PA (%) 50.0 50.0 100 46.2 87.5  

Overall accuracy 67.8% and kappa coefficient 0.59  

Object 

+ SVM 

  

  

AS 7 2 0 3 1 53.8 

HW 3 4 0 4 1 33.3 

QA 0 1 8 0 1 80.0 

RM 4 1 0 3 3 27.3 

SW 0 0 0 3 10 76.9 

Total 14 8 8 13 16  

PA (%) 50.0 50.0 100 23.1 62.5  

Overall accuracy 54.2% and kappa coefficient 0.43 

 

 

 
Table 3.8 Internally-derived accuracy metrics (Mean ± Standard Deviation) for WV-2 pixel-based ash 

species classification methods 

Model Accuracy (%) kappa  Out-of-bag error (%) 

Object + RF 61.2 ± 13.7 0.50 ± 0.18 37.6% 

Object + SVM 61.9 ± 12.6 0.52 ± 0.16  

Pixel-based approaches slightly outperformed object-based approaches in terms of 

overall accuracy, however not to a statistically significant extent (Figure 3.10). The QA and SW 

classes were clearly differentiated from the other hardwood classes (AS, RM, HW) and each 

other by all methods, while the other hardwood classes experienced class mixing. While the 

object-based RF method did produce the highest external accuracy, the resultant classification 

map showed far less class sensitivity compared to the object-based SVM method. As such, 

object-based SVM was chosen to move forward with black ash classification (and the pixel-
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based SVM model is shown for comparison). Despite the range in external validation statistics 

between models (Table 3.6 and 3.8), none of the models produce statistically different internal 

accuracy metrics (Figure 3.8). 

 

  

Figure 3.8 Distribution of WV-2 based model accuracies derived from internal 10-fold validation. Letters 

indicate statistically similar models. 

Ash and co-occurring genera were successfully classified using multiple methodologies 

(Figures 3.9 and 3.10). While there is some visible class switching between the hardwood classes 

(RM, AS, and HW), the classifications are generally stable. Confidence in the models are 

supported by the species differentiation between sites, as Site 1 has significantly more QA 

compared to Site 2 and Site 2 is dominated by SW and AS. 
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Figure 3.9 Classification map of Site 1 using WV-2 multispectral data and varied classification methods. Top center = pixel-based SVM, bottom 

center = object-based SVM. Focus areas were chosen to highlight different aspects of model: 

a) Consistency in softwood but inconsistency in hardwood classes; b) Small riparian area, consistent hardwood classification but confusion 

between classes; c) Aspen and softwood classes are highly consistent; and d) Object-based approaches losing variation in species patterns being 

detected by pixel-based classifiers. 
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Figure 3.10 Classification map of Site 2 using WV-2 multispectral data and varied classification methods. Top center = pixel-based SVM, bottom 

center = object-based SVM.  Focus areas were chosen to highlight different aspects of model (clockwise from top left): 

a) Overall consistency of classification, with pixel-based and SVM approaches detecting additional variation; b) Confusion between ash, maple, 

and hardwood classes; c) Some class switching between hardwoods, RF-pixel based detecting some aspen; and d) Confusion between ash, maple, 

and hardwood classes.
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3.3.5. Black ash classification 

Utilizing an object-based SVM classifier, BA was classified with 57.1% Producer’s 

Accuracy and an overall accuracy of 75.9% (Table 3.9). There is still some confusion between 

the BA and HW class, as was seen in the initial round of classification and likely exacerbated by 

the inclusion of green and white ash into the HW class. Classification maps show the dominance 

of BA in Site 2, compared to the relative dominance of QA and HW in Site 1 which lends 

additional credence to the model (Figure 3.11). Site 2 contained relatively more black ash (as 

compared to white and green) and virtually no quaking aspen and Site 1 contained large amounts 

of quaking aspen and a higher proportion of green and white ash compared to Site 2.  

 

Table 3.9 Confusion matrix and accuracy metrics of black ash classification based on WV-2 data 

Model Species BA HW QA UA (%) 

Object + 

SVM 
BA 4 4 0 50.0 

HW 3 7 0 70.0 

QA 0 0 11 100.0 

Total 7 11 11  

PA (%) 57.1 63.6 100.0  

Overall accuracy 75.9% and kappa coefficient 0.64 

 
Table 3.10 Internally-derived accuracy metrics (Mean ± Standard Deviation) for black ash identification 

using WV-2 data 

Model Accuracy (%) kappa  

Object + SVM 66.0 ± 26.7 0.47 ± 0.40 
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Figure 3.11 Black ash classification maps utilizing WV-2 object-based, SVM algorithm of a) Site 1 and b) Site 2 
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3.4. Discussion 

3.4.1. Object- vs. pixel-based classification 

In achieving overall accuracies of approximately 61 and 62% (Table 3.8) utilizing object- 

and pixel-based classification approaches, we have shown that classifying individual trees at a 

species level is possible with WV-2 data. When using object-based methods we achieved similar 

overall accuracy results compared to other studies utilizing WV-2 (63%, Murfitt et al. (2016)) 

and lower accuracy results than studies using WV-3 (82%, Sapkota and Liang (2020)) data. 

Pixel-based classification approaches, although slightly higher in mean accuracy, did not 

perform significantly better. It is possible this improvement in accuracy is due to the 

segmentation step in object-based methods having difficulty in segmenting and merging very 

large and very small objects within the same scene. Both study sites had a large range in crown 

sizes of target trees – from black ash with only a few square meters of canopy to large white 

pines or hemlock with 10 m canopy radii – and, critically, many overlapping canopies. It is 

possible that pixel-based methods were able to slightly better handle the complexity of the mixed 

forest than object-based methods. 

However, both of the aforementioned studies - Murfitt et al. (2016) and Sapkota and 

Liang (2020) - had larger sample sizes than the current study which likely played a role in the 

higher accuracy values achieved by those researchers. Murfitt et al. (2016) used 131 ash trees 

while Sapkota and Liang (2020) used 230, compared to 35 ash trees in this study (some of the 

initially collected data was not used due to the inability to positively delineate and attribute 

specific tree crowns to GPS points, and other data had to be discarded due to cloud cover in the 

WV-2 imagery). It is worth noting that when Sapkota and Liang (2020) limited their sample size 
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to 50 ash trees they achieved 50% overall accuracy, whereas this study achieves roughly 61% 

overall accuracy with a similar, but smaller, sample size.  

3.4.2. RF vs. SVM classification 

 Neither RF nor SVM methods produced statistically different results, yet the maps 

produced show clear differences in classification. SVM classification produces far more 

variation in classes compared to RF both in pixel- and object- based methods. RF is a versatile, 

decision tree based model that is able to handle lots of data in a variety of settings and formats 

(Breiman 2001), but may not be able to capture subtle class variation in the same way that SVM 

does. SVM is more computationally intensive but can achieve higher accuracy at lower sample 

sizes and handle unbalanced classes better compared to RF (Nitze et al. 2012; Thanh Noi and 

Kappas 2018).  

3.4.3. Ash genus identification 

 This study shows that WV-2 multispectral data can be used to classify ash and co-

occurring tree genera. We observed some class disagreement in some of the hardwood (ash, 

maple, mixed hardwood) classes. As the mixed hardwood class is dominated by paper and 

yellow birch, seeing these classes mix is expected due to spectral similarities between the 

Fraxinus and Betula genera (Maschler et al. 2018), but still undesirable. The model stability in 

terms of hardwood/softwood classification is strong, however, suggesting that, at minimum, the 

model could be used to accurately map areas where there is a high likelihood of ash being 

present.  
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3.4.4. Black ash identification 

This study suggests that multispectral imagery can be used to map ash species 

composition with moderate success. Accuracy metrics show that black ash is being separated 

from other hardwoods with some success despite confusion between the HW and BA classes. 

That being said, the resultant classification map largely aligns with the environmental factors 

from each site. There is little black ash found in Site 1 (Figure 3.11a), except for a swampy 

portion in the eastern part of the site but white and green ash are present on the site (along with 

other hardwoods). Conversely, there are significant amounts of black ash found in Site 2 (Figure 

3.11b), especially in the south-central portion of the site. The classification product largely aligns 

with these environmental factors, with relatively more BA classified in Site 2 and relatively more 

QA and HW in Site 1. The model does seem to be over-predicting QA in Site 1, however, so 

further refinement is needed. 

3.5. Conclusions 

 Despite the small sample size, we mapped the ash genera and black ash species with 

relative accuracy using single-date WV-2 imagery, similar to other researchers but in a novel 

environment. By establishing a working methodology with a clear path forward and known 

methods to increase the accuracy of the classification, we have shown that using object-based 

methods and WV-2 multispectral data can provide a viable method of mapping black ash.   
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CHAPTER 4 CONCLUSIONS AND FUTURE WORK 

4.1. Pixel vs. object based classification 

 Overall, object-based approaches achieved higher accuracy metrics than pixel-based 

methods while producing maps that more closely align to the landscape realities on the ground 

using both multispectral and hyperspectral data. While there was significant disagreement 

between three of the hardwood classes (AS, RM, and HW), this was expected as other 

researchers have encountered similar results (Lisein et al. 2015; Maschler et al. 2018). All 

methods over-predict ash to varying extents but, as the goal is to identify as much ash as possible 

for conservation efforts, that outcome is more desirable than the under-prediction of ash. These 

classification methods, especially the object-based ones, could serve as a valuable tool to direct 

field workers and foresters to areas of previously unknown ash, even if those areas have less ash 

than what the model predicts.  

4.2. Hyper- vs. multi- spectral classification 

 Hyperspectral imagery achieved significantly higher accuracy results than multispectral 

in both pixel- and object-based classification methods. Given the spectral similarity shown 

between ash and its co-occurring hardwood species it is unsurprising that hyperspectral imagery 

outperformed multispectral imagery. Interestingly, black ash showed a significant difference 

from co-occurring hardwood species that green and white ash did not. As discussed further 

below, obtaining data in as wide a spectrum as possible would be highly advantageous for the 

identification of black ash.  

4.3. RF vs. SVM 

 With the exception of hyperspectral object-based SVM classification, there was not a 

statistically significant difference between the classification algorithms of RF and SVM. That 
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being said, even when statistically similar, SVM captured more variation in classes than did RF 

and seemed to be more ecologically realistic based on experiences in the field. With the 

multispectral data in particular RF classified large contiguous areas of quaking aspen (in Site 1) 

and softwood (in Site 2) that were not encountered in the field. However, the differences in 

classification ability were largely not statistically significant, raising the possibility that with 

additional or different data, RF could provide as accurate a classification as SVM. 

4.4. Drawbacks 

 One of the most critical aspects of this work to be lacking is the sample size. Accuracy 

increases proportionally with sample size (Sapkota and Liang 2020), with many studies 

involving a minimum of 50 samples per class (Murfitt et al. 2016; Waser et al. 2014). Field work 

for this study was completed during the summer of 2020 with the impact of COVID-19 

quarantines and social distancing in place and, as such, only one person could be in the field at a 

time and time in the field was limited. Despite these limitations, 420 canopy trees (as defined by 

dominant, co-dominant, or intermediate crown class status) were identified and GPS tagged. The 

translation of field samples to identified and delineated tree crown polygons, however, proved to 

be significantly difficult. 

The greatest hindrance to the positive identification of individual tree crowns was the 

density and complexity of the forests being studied. In many cases crowns will overlap or, in 

particularly dense areas, be displaced significantly from the main body of the tree. Black ash 

trees in particular are able to achieve canopy status while being very small – the average 

dominant or co-dominant black ash tree tagged in this study was 13.2 cm (5.2 in) DBH, while the 

average dominant or co-dominant red maple was roughly 24.3 cm (9.6 in) DBH - and is 

generally known to have a narrow crown (Erdmann et al. 1987; Everett 2019).  
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Geospatial differences between the remotely sensed and field collected data added a 

further layer of complication to identifying individual trees. WV-2 imagery has a horizontal 

accuracy of <3.5m CE90 (DigitalGlobe 2009), meaning that 90% of the imagery will be located 

within 3.5m of the actual ground location. While this level of accuracy is sufficient for many 

applications, when dealing with very small tree crowns any additional amount of error can make 

identification difficult. Finally, tangential scale distortion was observed in the G-LiHT 

hyperspectral data that made delineation more difficult and frustrated attempts at automation. 

These differences, while small, impacted the ability to discern trees and highlights the need to 

have highly precise and co-registered remote sensing and field data. 

In addition, this study relied on fine spatial resolution imagery. As the final resolution of 

both the hyperspectral and multispectral data was very similar (0.6 m vs 0.61 m, respectively), it 

is unlikely that this impacted the difference in classification accuracies. That being said, the 

hyperspectral G-LiHT imagery was captured alongside a 0.04 m red-green-blue orthomosaic, 

which served as a highly valuable reference for the identification of individual tree crowns. 

Given the highly complex nature of the areas in which black ash tends to grow, obtaining the 

highest spatial resolution imagery possible would provide the best opportunity for ash 

classification.  

4.5. Areas of further research 

Utilizing a time series of images would allow for further refinement of the model, as both 

ash trees as a genus and black ash in particular show significant seasonal variation. Time series 

of images have been used in identifying ash previously (Lisein et al. 2015), with the highest 

accuracies achieved with spring, early summer, and fall images. Ash trees tend to have a shorter 

foliage season than co-occurring deciduous trees, allowing for early or late season imagery to 



78 

 

easily differentiate ash. Further, black and green ash show a distinct difference in color from 

white ash in the fall (with black and green turning yellow, while white ash turns purple), adding 

another possible differentiation point. However, the extra cost associated with such high spatial, 

spectral, and temporal resolution data can be economically prohibitive on the landscape scale.  

In addition, other sensor packages should be considered. Black ash is uniquely (among 

closely related ash species) able to uptake and release water (Kolka et al. 2018; Slesak et al. 

2014), so imagery in the shortwave infrared portions of the electromagnetic spectrum (those 

more related to water content) would be beneficial. It would be most beneficial, however, to 

capture imagery during peak water drawdown (and thus peak evapotranspiration). Therefore, it is 

likely that a time series of imagery captured over a growing season, from bud-break to 

senescence, and captured from the optical to shortwave infrared range, would have the highest 

ability to identify black ash. 

When aiming to expand this study beyond the study area, the ability of multispectral 

imagery to identify ash will be key. Given the cost and impracticality of acquiring high 

resolution hyperspectral imagery over the entire state of Maine, acquiring multispectral imagery 

is more feasible. Sensors such as WV-3 are able to collect high resolution imagery in both the 

optical and shortwave infrared regions, making them an ideal candidate for large scale ash 

mapping. Cost remains an issue, however, and freely available imagery such as that from NAIP 

should be considered. NAIP imagery, while only providing a single date in four bands (red, 

green, blue, and near-infrared), has similar spatial resolution (0.6 m) to the imagery used in this 

study and provides coverage for the entire state.  

While not directly addressed in this study, it is possible that the inclusion of certain site 

variables could increase the accuracy of classification models. Host et al. (2020) and Engelstad et 
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al. (2019) successfully utilized site variables such as the Compound Topographic Index in 

classifying ash and black ash dominance, respectively, albeit at a larger scale (30 m spatial 

resolution) than the current study. It remains to be determined whether the inclusion of such 

indices will benefit classifications in Maine, however, as the source topographic data may not be 

captured at a fine enough resolution to capture the subtle variations in terrain that will influence 

the presence (or lack thereof) of black ash.  

 To sum up, remotely sensed imagery presents a promising avenue of research for the 

identification of tree species for conservation purposes. The techniques presented in this study 

have shown that the identification of ash is possible, if with some confusion between hardwood 

classes. Furthermore, this research shows that it is possible to identify black ash at the individual 

tree level. There are a number of paths this research could take to refine the accuracy and 

broaden the applicability of the models, but it presents a viable workflow and hopeful path 

forward for ash conservation. With the threat of EAB infestation increasing daily the broad 

application of this research to Maine would be pivotal to the state’s conservation efforts.  
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