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Lake Auburn, Maine, USA, is a historically unproductive lake that has experienced 

multiple algal blooms since 2011. The lake is the water supply source for a population of 

~60,000. We modeled past temperature, and concentrations of dissolved oxygen (DO) 

and phosphorus (P) in Lake Auburn by considering the watershed and internal 

contributions of P as well as atmospheric factors, and predicted the change in lake water 

quality in response to future climate and land-use changes. A stream hydrology and P-

loading model (SimplyP) was used to generate input from two major tributaries into a 

lake model (MyLake) to simulate physical mixing, chemical dynamics, and sediment 

geochemistry in Lake Auburn from 2013 to 2017. Simulations of future lake water 

quality were conducted using meteorological boundary conditions derived from recent 

historical data and climate model projections for high greenhouse-gas emission cases. 

The effect of future land development on lake water quality for the 2046 to 2055 time 

period under different land-use and climate change scenarios were also simulated. Our 

results indicate that lake P enrichment is more responsive to extreme storm events than 

increasing air temperatures, mean precipitation, or windstorms; loss of fish habitat is 



 

 

driven by windstorms, and to a lesser extent an increasing water temperature; and 

watershed development further leads to water quality decline. All simulations also show 

that the lake is susceptible to both internal and external P loadings. Simulation of 

temperature, DO, and P proved to be an effective means for predicting the loss of water 

quality under changing land-use and climate scenarios.
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CHAPTER 1 

INTRODUCTION 

Phosphorus (P), the primary limiting nutrient of freshwater systems, is the leading 

cause of eutrophication and loss of water quality in lakes (Wetzel, 2001). Increased algal 

productivity leads to abnormal color and odor, growth of toxic species of cyanobacteria, 

increased turbidity, and anoxia in the water body. A prolonged anoxic zone in the 

hypolimnion of a stratified lake can lead to the die off of larger organisms.  

Nutrient loading to lakes can be from external and internal sources. External loads 

originate from the watershed and precipitation, more so during precipitation events. 

Particulate P associated with iron (Fe) and aluminum (Al) hydroxides increases in stream 

water during high flow events. Upon entering the lake, metal hydroxides with adsorbed 

deposit as lake sediments (Kopáček et al., 2007). 

External lake nutrient loading is highly influenced by land use and land cover. 

The future trophic states of some lakes can be as or more responsive to land-use change 

than to climate change (Chang et al., 1992). High percentages of impermeable surfaces 

due to urbanization and poor agricultural practices, such as overgrazing or excessive 

fertilization, reduce infiltration of water, increase surface runoff, and increase the nutrient 

flux (Fletcher et al., 2013). Higher runoff rates can cause significant stream bank erosion, 

consequently increasing export of suspended solids and other pollutants from the 

watershed (Aulenbach et al., 2017).  

Internal loading, where anoxic lake sediment releases P into the water column, 

can also be a leading cause of eutrophication (Nurnberg et al., 1986; Christophoridis and 

Fytianos, 2006; Matisoff et al., 2017; Orihel et al., 2017). The exchange of P across the 

sediment-water interface is regulated by DO and other electron acceptor-dependent redox 
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reactions (Wetzel, 2001; Katsev, 2016). Hypolimnetic anoxia causes the reductive 

dissolution of Fe (III) hydroxides, releasing adsorbed P (Loh et al., 2013). As such, P and 

DO have an inverse relationship in the hypolimnia of many temperate lakes (Nurnberg, 

1998; Petticrew and Arocena, 2000).  

Future climate change may significantly impact lake water quality in temperate 

regions (Meis et al., 2009; Foley et al., 2011; North et al., 2013; Ockenden et al., 2017). 

Numerical climate models predict higher temperatures, and more frequent and more 

intense storms in northeastern USA as the global climate continues to warm (Spierre and 

Wake, 2010; Madsen and Wilcox, 2012; Fernandez et al., 2015 Increased temperature 

and runoff lead to lake P enrichment that can lead to an increase in cyanobacteria 

population and a decrease in phytoplankton biodiversity (Przytulska et al., 2017). Further, 

an increased number of high wind events can alter lake thermal stability (Effler et al., 

2004). Tropical storms, such as Hurricane Irene that impacted northeast USA in 2011, 

were shown to have a significant impact on lake physical and biological activities (Klug 

et al., 2012); lake thermal stability was reduced significantly in nine temperate lakes in 

the northeast after Hurricane Irene. Wind-induced mixing of the water column resuspends 

sediment, and mixes dissolved nutrients that can increase algal productivity and impact 

phytoplankton species composition (Carrick et al., 1993; Huisman et al., 2004). 

Temperature and DO are the two most important water quality parameters 

pertaining to the health of fish in lakes (Fry, 1971). A warming climate is expected to 

reduce the habitat of cold water fish due to warming of the water column and decreased 

DO in the hypolimnion of lakes during late summer stratification (Schindler et al., 1996).  
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Linking process-based models that simulate lake and stream physical and 

biogeochemical processes can provide an effective means of both understanding past 

events and forecasting future scenarios. A mathematical model is an idealized 

formulation simulating the response of a system to given conditions (Chapra, 2008). 

Applied to water quality, such models can be calibrated for individual lakes, and 

subsequently used to predict pollutant loading under a changing environment in that lake. 

Catchment models have been established for simulating terrestrial and in-stream 

processes to model P loading from watersheds (e.g., Wade et al., 2002; Jackson-Blake et 

al., 2017). Lake models have also been thoroughly validated to simulate lake thermal 

stratification (Imberger and Patterson, 1981; Goudsmit et al., 2002; Tanentzap et al., 

2007; Perroud et al., 2009; Thiery et al., 2014) and biological processes (Saloranta and 

Andersen, 2007; Hipsey et al., 2013; Hu et al., 2016). In parallel, recent developments in 

sediment diagenetic modeling (Katsev et al., 2006; Couture et al., 2010; McCulloch et al., 

2013; Katsev and Dittrich, 2013; Torres et al., 2015; Gudimov et al., 2016; Couture et al., 

2016; Doan et al., 2018) have enabled the use of such models in a better understanding of 

lake nutrient cycling processes. Here, we rely on the recent coupling by Markelov et al. 

(in press) of a lake model (MyLake; Saloranta and Andersen, 2007) with a diagenetic 

model (Couture et al., 2016; Akbarzadeh et al., 2018) aimed at internal P load 

predictions.  

Several studies have linked a combination of catchment models, lake water 

quality models, and land-use and climate change models (Kaste et al., 2006; Weinberger 

and Vetter, 2012; Bayer et al., 2013; Couture et al., 2014; Couture et al., 2018; Yalew et 

al., 2018; Crossman and Elliott, 2018; Mueller et al., 2019). Sediment diagenetic (e.g., 
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Doan et al., 2018) and lake water quality models (Bruce et al., 2018; Kiuru et al., 2018) 

have also been developed and their coupling explored (Smits and van Beek, 2013; 

Couture et al., 2015; Markelov et al., in press). Building on those approaches, we present 

a model chain that fully links physical and biogeochemical dynamics in the aquatic 

environment, lake sediment geochemistry, surface runoff from the terrestrial ecosystem, 

meteorological shifts in the atmosphere, and anthropogenic changes to land cover, and 

thus considers the roles of both external and internal nutrient inputs into a lake. This is 

critical for the management of lakes that receive significant contributions from both 

sources. 

In this study, SimplyP (Jackson-Blake et al., 2017) - a catchment model for P 

dynamics, and MyLake-Sediment (Markelov et al., in press) - a one-dimensional lake 

model with a sediment diagenetic sub-module, were applied to Lake Auburn, Maine, USA. 

Lake Auburn has been an object of interest since 2011 due to its importance as a drinking 

water source for two cities in the area and its notable decline in water quality over the last 

decade (Doolittle et al., 2018; Norton et al., in press). It was necessary to first simulate the 

watershed hydrology as well as the nutrient loading using a catchment model. MyLake 

then used inputs from SimplyP, as well as feedback from its sediment diagenesis module, 

to hindcast in-lake processes relating to DO consumption and P dynamics in the lake for 

model calibration. Further, several climate change and land-use scenarios were used to 

project lake water quality for the 2046-55 period.
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CHAPTER 2 

METHODS 

2.1 Study Site 

Lake Auburn is located in southern Maine and serves as the water supply for ~60,000 

people in the cities of Auburn and Lewiston. Lake and watershed physical characteristics 

are summarized in Table 2.1. Lake bathymetry is shown in Fig. A1. Detailed land cover 

information is in Table A1.  

The two major inlets to Lake Auburn are Basin Brook and Townsend Brook, 

located in the northwest and northeast corners, respectively (Fig. 2.1). The land cover 

information for the two tributaries is in Tables A2 and A3. Watersheds for Lake Auburn, 

Basin Brook, and Townsend Brook were delineated, and the land use was determined 

using Model My Watershed (Tarboton et al., 2018). Basin and Townsend brooks have 

catchment areas of ~23 and 7 km2, respectively. Basin Brook flows through a network of 

two ponds and a wetland (Fig. 2.1). Townsend Brook is largely fed from a sand and 

gravel aquifer (Doolittle et al., 2018). The single outlet of Lake Auburn is located on the 

eastern shore, and the intake to the water treatment plant is located near the southeastern 

corner. There are no known point sources in the sub-catchments of the two major inlets. 
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Table 2.1. Physical characteristics of Lake Auburn and its 

watershed. 

Lake Area 8.98 km2 

Perimeter 19.6 km 

Maximum depth 36 m 

Mean depth 11 m 

Latitude (deepest point) 44.14° 

Longitude (deepest point) -70.25° 

Watershed area 41.37 km2 

Watershed area:Lake area ratio 4.61 

Forested land cover of watershed 73% 

Agricultural land cover of watershed 9% 

Developed land cover of watershed 9% 

Wetland land cover of watershed 7% 

Open water of watershed 2% 

 

 
Figure 2.1. Lake Auburn location map (inset) and watershed map (modified from 

Wikipedia, 2019; Tarboton et al., 2018). 

 

Lake Auburn is a historically unproductive lake that has seen multiple algal 

blooms since 2011. Epilimnetic total phosphorus (TP) concentrations have ranged from 6 

to 16 μg L-1 and epilimnetic chlorophyll-a (Chl a) concentrations have ranged from 1 to 

17 μg L-1 since 2000 (CDM Smith, 2013). This range of TP concentrations classifies 

Basin 

Broo

k 

inlet 

Townsen

d Brook 

inlet 
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Lake Auburn as oligotrophic- to mesotrophic (Wetzel, 2001). Monthly mean Secchi disk 

measurements range from 6 to 8 m. The lake has experienced algal blooms in 2011, 2012, 

and 2018. In 2011, the lake experienced an unusually long period of anoxia in the 

hypolimnion, leading to internal P release, and was struck by Hurricane Irene nearly one 

month before the algal bloom. In 2012, the lake experienced a 15 cm 24 hr rainstorm, 

leading to watershed and shoreline erosion that possibly contributed to the algal bloom 

that year (CDM Smith, 2013). Hypolimnetic anoxia led to a large kill-off of lake trout in 

2012 (Fleming, 2013). The 2018 bloom was preceded by intense rain events, but no 

hypolimnetic anoxia, suggesting an external input of nutrients into the lake. 

2.2 Lake, Watershed, and Climate Data 

Flow rate and TP concentrations from Basin Brook and Townsend Brook were 

provided by the Auburn Water District (AWD). Neither stream has ever been 

continuously gauged for Q or chemical species. Samples and measurements were taken 

directly at the inlets of the two streams to Lake Auburn (Fig. 2.1). 

Temperature, DO, and TP profiles from Lake Auburn were also provided by 

AWD. Temperature and DO profiles at 1-meter intervals were taken nearly weekly 

during ice-free periods. P samples were taken monthly at a minimum during the ice-free 

season. Samples typically consisted of one core from the epilimnion and one sample grab 

from the hypolimnion, 1 m above the bottom at the deepest point, and some sampling 

dates included other depths. 

Meteorological data were obtained from the nearest NOAA station at the 

Auburn/Lewiston Municipal Airport weather station, located ~9 km south of Lake 
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Auburn at 44.05°, -70.29° (NOAA, 2018). The data included daily air temperature, 

relative humidity, air pressure, wind speed, cloud cover, and precipitation.  

The inflow temperature was estimated using an empirical relationship by Stefan 

and Preud’homme (1993). Inflow DO was assumed to be at saturation, a reasonable 

assumption in cold streams (Demars et al., 2011). Limited data on total organic carbon 

(TOC) concentrations from Basin Brook and Townsend Brook were available from 

Doolittle et al. (2018), enabling model estimation of particulate organic carbon (POC) 

and dissolved organic carbon (DOC).  

2.3 Catchment and Lake Models 

SimplyP, a catchment-scale nutrient model for the simulation of hydrology and P 

export, was used to simulate Q and TP in the tributary streams (Jackson-Blake et al., 

2017). SimplyP is a process-based, spatially semi-distributed water quality model where 

catchments can be subdivided into subcatchments and land classes. The model considers 

three flowpaths for runoff: quick flow, soil water flow, and groundwater flow, 

representing overland flow that does not infiltrate, water that infiltrates the soil but does 

not reach the water table, and water that infiltrates to the water table, respectively. The 

model considers snow accumulation and melt, in-stream hydrology, land-phase and in-

stream P transport, and transformation processes for Q and TP estimations. P is 

represented as dissolved P in soil water, labile soil P, inactive soil P, and particulate P in 

the stream bed. SimplyP uses air temperature, precipitation, and potential 

evapotranspiration as input data, and has parameters to define land use and catchment 

slope. 
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MyLake (Multi-year Lake simulation model) is a one-dimensional, process-based 

model for the simulation of vertical temperature distributions, ice cover, and P-

phytoplankton dynamics (Saloranta and Andersen, 2007). One-dimensional lake models 

assume a mixed epilimnion and vertical gradients of temperature and concentrations in 

the hypolimnion (Perroud et al., 2009). These models work best for lakes with a uniform 

bowl-like bathymetry rather than lakes with multiple basins that creates horizontal 

gradients. Continuous, process-based models are superior to empirical models in lake 

modeling because many in-lake processes are dependent on daily weather-related events 

(Fang and Stefan, 2009). Two-and three-dimensional models have been applied to larger 

lakes but are computationally expensive (Zhang et al., 2008). 

 In this study, MyLake-Sediment was used to simulate temperature, DO, and TP 

at a 1-m vertical resolution and a daily time step. The model is available as an open-

source MATLAB code. The model considers the lake at 1 m thick layers, from the 

surface to 36 m. Vertical diffusion and heat fluxes are evaluated at the layer interfaces, 

and diffusion coefficients and concentrations are assumed to be constant throughout each 

layer. Ice formation is triggered when the input air temperature for a day is below 

freezing; the model considers changing ice thickness and snow cover on the ice based on 

the weather data. Ice cover is an important process to model because it influences 

exchanges between the atmosphere and surface water and light penetration in the water 

column, both of which are important in predicting oxygen dynamics (Couture et al., 

2015). The model considers the following biogeochemical processes related to P 

transformation and phytoplankton growth in the water column: mineralization of 

dissolved organic P (DOP) and particulate organic P (POP) to orthophosphate (ortho-P); 
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removal of ortho-P through phytoplankton growth or through adsorption onto suspended 

solids; and resuspension of Chl a and particulate inorganic P (PIP; Couture et al., 2014). 

The model takes meteorological data (air temperature, precipitation, cloud cover, wind 

speed, air pressure, and relative humidity) as well as inflow data as inputs. 

In addition to processes in the water column and heat flux from the sediment, 

MyLake-Sediment uses a sediment diagenesis module. It also considers DOC 

degradation in the water column as a DO sink, and the DOC effect on light attenuation in 

the lake (Kiuru et al., 2018). However, Lake Auburn is not a humic lake (DOC ranges 

from 1.0 to 3.3 mg L-1) and normally has low turbidity (~0.6 NTU; CDM Smith, 2013). 

Lake Auburn is known to be susceptible to significant internal P release due to sediment 

Fe(OH)3 reduction (Doolittle et al., 2018). Therefore, MyLake-Sediment was used 

because its sediment diagenesis module simulates the coupled process of P release and 

Fe(OH)3 reduction, and considers release of P from degradation of phytoplankton 

(Markelov et al., in press). 

2.4 Future Meteorological Inputs 

Lake simulations for the years 2046 to 2055 were produced using meteorological 

inputs from (1) recent historical data that can be used to establish analog climate, and (2) 

output from two different projective climate models.  

Historical analog scenarios, where past climate experiences are used to simulate 

future responses to climate change, have been widely used in climate research (Lorenz, 

1969; Zorita and von Storch, 1999; Ford et al., 2010; Veloz et al., 2012). Under one of 

the projective climate models, daily simulations of weather for this time span were 

extracted from projections of the climate model GFDL ESM2M under scenario RCP8.5 
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as part of the Coupled Model Intercomparison Project Phase 5 (CMIP5; NOAA, 2012; 

Dunne et al., 2012). The ESM2M model simulates air temperature, precipitation, cloud 

cover, air pressure, relative humidity, and wind speed, which are needed for MyLake. For 

simplicity, we refer to this climate forcing as RCP8.5. Under the other projective climate 

model, a range of projected increases in air temperature and precipitation by the year 

2050 was generated using emissions scenario A2, computed by version 3 of the NCAR 

Community Climate System Model (CCSM3) as part of the CMIP Phase 3 (CMIP3; 

Collins et al., 2006; Solomon et al., 2007; Fernandez et al., 2015). 

2.4.1 Modern Analog 

Using observed data from the local NOAA weather station (NOAA, 2018), the 

recent warmest years in Maine (2006, 2010, 2012, and 2016) were selected and the 

simulated weather for the 2046-2055 period was cycled through these years in the Analog 

Warm scenario. An Analog Wet scenario was similarly produced using the recent wettest 

years in Maine (2005, 2008, 2009, 2010, and 2014). A scenario Analog Warm/Wet was 

also simulated, where the climate data for future years repeatedly looped through the year 

2010 that was both one of the wettest and warmest in this time frame.  

2.4.2 Projective Climate Models 

The RCP8.5 scenario represents a target radiative forcing of 8.5 W m-2 in 2100, 

very high greenhouse gas emissions, and the non-implementation of climate change 

policies (Riahi et al., 2011). Scenario A2 simulates Earth with a continuously increasing 

population, and slower economic and technological development than other scenarios 

simulated in the CMIP3 (Solomon et al., 2007), and atmospheric concentrations of CO2 

reaching 850 ppm by 2100 (Lehodey et al., 2010). Compared to the newer CCSM4 
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model, CCSM3 performed better in reanalysis for the modern control period in the 

northeastern USA (Fernandez et al., 2015). Thus, we chose to utilize output from CCSM3 

for two scenarios, A2-lb and A2-ub. The A2-lb scenario applied an increase of 1.4 °C and 

5% precipitation as a lower bound and the A2-ub scenario applied an increase of 1.7 °C 

and 6% precipitation as an upper bound to the weather data from 2006 to 2015 to 

simulate the years 2046-2055 (Fernandez et al., 2015). 

2.4.3 Future Land-Use Changes 

To simulate the effects of climate change on Lake Auburn, the forecasted 

meteorological inputs under each scenario were separately used as inputs to SimplyP and 

MyLake models. This method captures the impacts of climate change on the catchment, 

of altered external loads on the lake, and of climate change on internal processes in the 

lake. Increase in development in the watershed was simulated in SimplyP by increasing 

the impervious area by 50% at the expense of forested area. Every climate change 

scenario was also executed under a coupled climate change and development scenario.  

The reduction in lake P loading was simulated by (a) eliminating external P loads 

from the tributaries to the lake (an analog for implementing best management practices; 

BMPs), and (b) inhibiting sediment P release via, for example, alum (Al2(SO4)3) addition 

(Cooke et al., 1982; Huser et al., 2011). 

2.5 Model Sensitivity and Calibration 

SimplyP was calibrated manually for Basin Brook and Townsend Brook. Manual 

calibration of catchment models can better capture peak P events when calibrated against 

observations taken at lower frequency (Jackson-Blake and Starrfelt, 2015). Each 
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parameter was varied individually to minimize RMSE between simulations and 

observations from 2014 to 2017. 

Sensitivity analysis tests the impact of change in a parameter on the model 

outcome. A sensitivity analysis was first performed manually for all parameters in 

MyLake-Sediment before calibration. All parameters were individually varied from their 

original value (doubled or halved, depending on what physically made sense) and the 

changes in RMSE for temperature, DO, and TP were observed. Parameters with the 

greatest impact were used in calibration. 

MyLake was calibrated using the MATLAB built-in Genetic Algorithm. Genetic 

Algorithms are a guided random process, in contrast to a strictly random process such as 

the Monte Carlo methods (Kramer, 2017). This optimization method has been applied to 

calibration of MyLake in a previous study (Couture et al., 2018). The Algorithm was 

executed by optimizing the model’s fit for temperature, DO, and TP against observations 

from 2013 to 2017. The model was first calibrated with respect to lake temperature, 

because establishing values for parameters relevant to the physical mixing of the lake are 

essential for simulating DO and TP.  

A goal of the calibration was to simplify the sediment diagenesis model such that 

only the most relevant diagenetic processes were considered. To eliminate the minimally 

influential secondary redox processes, such as sulfate and nitrate reduction, the 

concentrations of these constituents were set to zero. Concentrations of sulfate, nitrate, 

and sediment Al(OH)3 are low in Lake Auburn (Doolittle et al., 2018). Only parameters 

pertinent to reductive dissolution of Fe(OH)3 were calibrated, and they were the most 

influential parameters under these assumed conditions. 
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Numerical climate models, while internally consistent, tend to have solution 

biases that necessitate the application of factors to correct for biases at a more localized 

spatial resolution. Bias correction is a statistical downscaling method used in climate 

change modeling for applying global climate models to regional scales (von Storch et al., 

1993; Themeßl et al., 2012; Manzanas et al., 2018). Global climate models can be 

validated and calibrated through climate reanalysis (Auger et al., 2018). The RCP8.5 

model projects future meteorological values at a coarse horizontal grid cell resolution (2° 

 2.5°). It was therefore necessary to calibrate the extracted model output to a more 

localized area. RCP8.5 model simulations from 2006 to 2015 were compared to the 

observed data from this time period, and the model parameters were adjusted by applying 

appropriate correction factors to correct for the bias.  
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CHAPTER 3 

RESULTS AND DISCUSSION 

3.1 Stream Simulations 

SimplyP provided simulations of flow (Q) and TP for Basin Brook and Townsend 

Brook (Figs. 3.1 and 3.2). The calibrated parameters and the corresponding best fits used 

in SimplyP are summarized in Table A4. 

  

 

Figure 3.1. SimplyP simulations of (a) stream flow (Q), and (b) total phosphorus 

(TP) for Basin Brook. Points are observed values and lines are simulated values. 
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Figure 3.2. SimplyP simulations of (a) stream flow (Q), and (b) total phosphorus (TP) 

for Townsend Brook. Points are observed values and lines are simulated values. 

 

Table 3.1 summarizes the performance statistics for Q in both streams. The Nash-

Sutcliffe model efficiency (NSE) coefficients for both simulations were positive, 

indicating that the model predictions were more accurate than using the mean of the 

observed data (Jain and Sudheer, 2008).  
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Table 3.1. Summary of performance statistics for SimplyP and ice-out phenology in 

MyLake. The number of observations (n), root-mean-square-error (RMSE), 

coefficient of determination (R2), and the Nash-Sutcliffe model efficiency (NSE; for 

Q) coefficient are shown. 

SimplyP n RMSE R2 NSE 

Q Basin Brook 38 1.15 m3 s-1 0.33 0.30 

Q Townsend Brook 38 0.29 m3 s-1 0.31 0.30 

TP Basin Brook 77 3.77 μg L-1 0.00  

TP Townsend Brook 77 20.20 μg L-1 0.25  

     

MyLake     

Ice-out date 12 7.63 d 0.85  

 

Table 3.1 also summarizes the performance statistics for TP in both streams. 

Basin Brook’s modeling was complicated by the fact that the observed TP concentrations 

(average ~10 μg L-1, standard deviation ~2 μg L-1) did not correlate positively with Q, as 

expected in a small, mostly wooded watershed. The extensive Basin Brook wetland 

immediately upstream of the lake is a likely significant source of particulate P uptake 

(Knox et al., 2008; Doolittle et al., 2018), leading to a relatively constant TP 

concentration for export to the lake. More frequent sampling of stream water chemistry, 

even for just a short time period, can greatly increase performance of catchment models 

(Jackson-Blake and Starrfelt, 2015). Townsend Brook’s Q and TP show a more positive 

correlation in peak events. Much of the runoff in Townsend Brook is transported 

vertically to groundwater flow, damping Q and removing P as adsorbed P in the porous 

and permeable soil (Doolittle et al., 2018). 

MyLake takes, as external inputs, a single value for TP each day. The TP 

simulations from Townsend Brook typically had a smaller effect on TP flux to the lake 

because of its lower average flow rate than that of Basin Brook. 
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Base flow index, base flow recession constant, and groundwater total dissolved P 

(TDP) concentration were critical parameters for establishing the base flow conditions. 

Groundwater TDP concentration is set as a constant in SimplyP, and TP in the stream is 

set equal to groundwater TDP concentration under base flow conditions. The proportion 

of flow routed to quick flow (fquick; Table A4) is influential for correctly simulating peak 

flow events; capturing these events was a goal of the calibration process. A compromise 

between strong overall statistical performance and capturing peak events was navigated. 

3.2 Lake Simulations 

Correctly simulating ice cover is critical due to the key role ice cover plays in lake 

DO dynamics (Terzhevik et al., 2010). In this study, MyLake simulated ice-out 

phenology for 2006 to 2018 period well (Fig. 3.3; Table 3.1). Performance statistics are 

within the range reported for other ice phenology modeling studies (Table 3.1; Gebre et 

al., 2014; Couture et al., 2015; Bueche et al., 2017), except for 2012 and 2016 where 

large discrepancies between observed and simulated ice-out dates were obtained. Those 

discrepancies did not appear to affect temperature simulations (Fig. 3.4a). 
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Figure 3.3. Ice-out phenology, observed (circles) and simulated (line), from 2007 to 

2018. 

The observed data and model simulations of temperature, DO, and TP for the 

2013-2017 period are shown in Fig. 3.4. The calibrated parameters and the resulting 

values in MyLake-Sediment are summarized in Table A5. The plots for temperature, DO, 

and TP show three depths representing the epilimnion, metalimnion, and hypolimnion. A 

more detailed statistical analysis showing model performance for each depth range is in 

Table 3.2. Using the ratio of RMSE to standard deviation of observations (RSR), and 

percent bias (PBIAS), variables at every depth were simulated as “satisfactory”, at a 

minimum, and mostly as “very good” (Table 3.2; Moriasi et al., 2007). Although R2 is 

commonly used as a metric for model evaluation, this statistic is sensitive to outliers and 

insensitive to systematic differences between simulations and observations, allowing for 

strong bias under high values of R2 (Legates and McCabe, 1999). 
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Table 3.2. Model performance evaluation for MyLake. Statistics shown are number of 

observations (n), root-mean-square-error (RMSE), coefficient of determination (R2), 

RSR, and PBIAS. Criteria for qualitative parameter classification (Moriasi et al., 2007) 

are listed at the bottom. 
 

n RMSE R2 RSR PBIAS 

Temp. 0 m 157 1.50 0.95 0.25: Very good 1.66: Very good 

Temp. 9 m 157 1.58 0.86 0.38: Very good 4.43: Very good 

Temp. 33 m 155 0.94 0.40 0.66: Satisfactory 26.98: Good 

DO 0 m 151 0.57 0.66 0.42: Very good 3.37: Very good 

DO 9 m 150 0.70 0.43 0.35: Very good 4.06: Very good 

DO 33 m 148 1.24 0.62 0.36: Very good 13.12: Very good 

TP 0-8 m 87 2.22 0.00 0.48: Very good 21.22: Very good 

TP 9-16 m 40 2.36 0.27 0.64: Satisfactory -8.91: Very good 

TP 32-34 m 64 4.09 0.34 0.25: Very good 4.74: Very good 

      

Parameter Very 

Good Good Satisfactory Poor  

RSR 0-0.5 0.5-0.6 0.6-0.7 >0.7  

PBIAS 0-25 25-40 40-70 >70  
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Figure 3.4. Simulation of Lake Auburn temperature (a), DO (b), and TP (c) for the 2013-2017 period. Observed data are points. 

Simulations are lines. Tick marks on the x-axis indicate January 1 of the corresponding year.

a) b) 

c) 
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The goodness of fits for temperature decreased with depth, which is expected of 

one-dimensional lake models that rely on surface-atmosphere interactions (Thiery et al., 

2014), and is consistent with a previous application of this model (Markelov et al., in 

press). The goodness of fits for DO is consistent with model performance in previous 

applications of MyLake (Couture et al., 2015; Markelov et al., in press), although in this 

application the simulation commonly underestimated the hypolimnetic DO depletion rate. 

Features of the lake bathymetry may explain this discrepancy (see section 3.6). Winters 

in which DO was depleted (2013 and 2015) correspond to winters with a low Q. Lake 

water under ice cover behaves as a closed system with respect to DO, and depletion 

occurs more quickly in the absence of surface inflow as an oxygen source (Fang and 

Stefan, 2000). Finally, the model’s predictive power for simulating P increased with 

depth, capturing the increasing trend in hypolimnetic P by late summer each year (Fig. 

3.4). Previous applications of MyLake and MyLake-Sediment did not analyze model 

performance for hypolimnetic P.  

Simulating DO and P for 2013 in the metalimnion and hypolimnion was 

particularly challenging, possibly as a consequence of the relatively high sedimentation 

rate in Lake Auburn. Typical boreal lakes in the northeastern USA have a sedimentation 

rate of ≤1-2 mm yr-1 (Davis et al., 1986). A recent study estimated the sedimentation rate 

of Lake Auburn at ≥6 mm yr-1 at the deepest point of the lake using 210Pb isotope 

possibly due to substantial shoreline erosion (Norton et al., in press). Algal blooms in one 

year provide excess POC at the sediment-water interface (SWI) that enhances 

hypolimnetic anoxia and fuels lake P enrichment through its degradation for succeeding 

years; however, a large input of un-weathered shoreline material could bury the POC 
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layer at the SWI preventing sediment P release. In 2013, the lake experienced especially 

extensive anoxia and high internal P release that should have added excess POC and POP 

to the sediment. But the high sedimentation rate may have buried this excess POC and 

reduced the P release rate in 2014. This could account for the abrupt shift in observed DO 

depletion and TP from 2013 to 2014 that is not captured in model simulations. 

The parameters presented in Table A5 were the most sensitive parameters during 

model calibration. Open water diffusion parameter and wind sheltering coefficient, a 

parameter that is a function of lake surface area and is used in the calculation of total 

kinetic energy available for wind-induced mixing (Saloranta and Andersen, 2007), are 

influential for temperature distribution as they control lake physical mixing (Hondzo and 

Stefan, 1993). Other influential parameters for simulating the temperature distribution 

relate to the growth of phytoplankton. Decreasing water clarity from algal growth 

decreases light penetration, enhancing warming and cooling of the hypolimnion. DO and 

TP simulations were both affected by the parameters related to the reaction rates 

involving the consumption of POC and P, and reduction of DO and Fe(OH)3 (Table A5). 

Therefore, DO and TP were calibrated simultaneously. The effective depth parameter, 

representing the depth below which the sediment may release species into the water 

column, is an influential and adjustable parameter for correctly simulating effluxes from 

the sediment, as it approximates the area of sediment that is effectively exchanging with 

the bottom water (Markelov et al., in press). 

3.3 Land-Use Changes and Climate Change Scenarios 

Figures A2-A4 compare the observed mean air temperature, precipitation, and 

wind speed from 2006 to 2015 to each of the climate change scenarios for the 2046-2055 
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period. Results from the RCP8.5 model indicate a projected increase of ~2 °C in mean air 

temperature, the greatest increase among all models. Analog Wet produced the lowest 

mean air temperature as a result of the selection of the wettest years including years with 

heavy snowfall, thus including years with long, cold winters. Analog Warm/Wet had the 

highest overall mean precipitation. Fig. A4 excludes the A2 scenarios because their mean 

annual wind speeds are identical to those observed in the 2006-2015 period. 

The extracted data from the RCP8.5 model demonstrated a consistent increase in 

both air temperature and precipitation but did not produce peak storm events that have 

been observed in the past (Table 3.3). An extreme precipitation event was defined as one 

in which ≥50 mm of precipitation falls in a 24-hour period (Fernandez et al., 2015). The 

RCP8.5 forcing affords a modest decrease in the number of extreme events, but not a 

single hyper-extreme event, which we define as an event in which ≥100 mm of 

precipitation falls in a 24-hour period. Even though these events are defined within a 24-

hour period, the analysis in Table 3.3 includes 24-hour days because the model operates 

at, and the weather is input at, a daily time step. 

Table 3.3. Average number of days of extreme and hyper-extreme precipitation events 

per year. Climate change scenarios are for the 2046–2055 period. 

 Observed 

2005-15 

RCP8.5 A2-lb A2-ub Analog 

Warm 

Analog 

Wet 

Analog 

Warm/Wet 

Days/yr 

≥ 50 mm 

10.3 8.0 11.9 12.0 15.3 6.4 14.0 

Days/yr 

≥ 100 

mm 

7.4 0.0 8.1 8.1 10.4 2.8 3.0 
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3.4 Impacts of Land-Use and Climate Change on Streams 

Mean Q increased across every climate change scenario (Fig. S3.5a). Most 

scenarios also simulated an increase in maximum Q. Every climate change-development 

scenario simulated an increase in mean and maximum Q from its corresponding climate 

change scenario, indicating that an increase in impervious area in the catchment increases 

both total and peak runoff events from the watershed. 

Increases in stream TP correspond to increases in Q due to surface runoff and 

erosion from overland flow, the stream bed, and embankments (Likens et al., 2013). This 

is reflected in the correspondence between Figs. S3.5a and S3.5b. There was a greater 

difference between changes in maximum TP in corresponding climate change and land-

use scenarios than between changes in mean P, indicating that development of the 

watershed had a greater influence on the maximum compared to the mean nutrient 

loading.
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Figure 3.5. Maximum and mean absolute and percent change in Q and TP in stream 

flow from past simulations (2010 to 2015) to future scenarios (2050 to 2055)
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3.5 Impacts of Land-Use and Climate Change on Lake 

The simulated mean ice-out dates for 2047-2055 for the historical analog, 

RCP8.5, and A2 experiments were earlier than that observed 2007-2015 for every year 

except 2010 (Fig. 3.6). March ice-outs occurred three times from 2007 to 2018 (Fig. 3.3), 

while four out of six climate change scenarios simulated more than two March ice-outs 

for all years from 2047 to 2055. The RCP8.5 scenario simulated a record ice-out in the 

year 2054. Early ice-out dates impact the timing and increase the magnitude of certain 

plankton groups (Adrian et al., 1999) and decrease DO availability during the late 

summer (Couture et al., 2015), although this is also driven by changes in DOC (see 

section 3.6). Early ice-out in Lake Auburn has statewide implications because synchrony 

in the past earliest ice-out years among Maine lakes indicates a coherence in ice-out dates 

(Beyene and Jain, 2015). 
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Figure 3.6. Ice-out phenology under climate change scenarios (2047-2055). The 

RCP8.5 model simulated ice-out for February 1, 2054 is not shown. 

The optimum habitat for lake trout, a game fish in Lake Auburn, are temperatures 

<10° C and DO concentrations >6 mg L-1 (MacLean et al., 1990). Most climate change 

scenarios simulated a reduction in the numbers of days of optimum trout habitat (Table 

5), suggesting a potential for the increase of trout kill-offs. Lake Auburn has experienced 

a recent increase in the populations of warm water fish species (largemouth bass and 

chain pickerel), and the changing conditions in the lake could have an impact on the 

competition between warm water and cold water fish species. Depletion of hypolimnetic 

DO and warming of the water column have been linked to decline in habitat in other cold 

water species (Hansen et al., 2019). 
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Table 3.4. Percent change in number of days of optimum habitat for lake trout from past 

(2010 to 2015) to future scenarios (2050 to 2055). 

RCP8.5 A2-lb A2-ub Analog Warm Analog Wet Analog 

Warm/Wet 

0.69% -0.59% -0.98% -7.85% -0.29% -2.06% 

 

 Most scenarios simulated an increase in epilimnetic temperature (Fig. 7). The 

Analog Wet scenario simulated a small decrease because the selection of the wettest 

years included years with high snowfall, thus including harsh winters with colder 

temperatures. 

 

Figure 3.7. Maximum and mean absolute and percent change in epilimnetic 

temperature (0-8 m) from past simulations (2010-2015) to climate change scenarios 

(2050-2055). 
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All scenarios, except the RCP8.5, predicted increases in the epilimnetic and 

hypolimnetic P concentrations (Figs. 3.8). The epilimnetic P increased in both mean and 

magnitude of the outlier events (Fig. 3.8a). The Analog Warm/Wet was the worst-case 

scenario for the lake, as repeated cycling through one of the warmest and wettest years 

the lake has seen in recent history resulted in a mean increase of ~81% in epilimnetic P 

and a mean increase of ~7% in epilimnetic temperature. The Analog Warm scenario 

projected a greater increase in epilimnetic P than hypolimnetic P because the water 

column fully mixed in multiple years, bringing P released from the sediment to the 

surface. The greatest change in the hypolimnetic P was projected in the Analog 

Warm/Wet scenario (Fig. 3.8b).  

The RCP8.5 scenario was the only scenario that did not project an P increase in 

the water column, despite projecting a climate with the highest mean air temperature and 

a relatively high number of extreme events. The RCP8.5 was also the only scenario that 

did not project a single hyper-extreme event in the 2050-2055 period. Together, this 

suggests that P enrichment of Lake Auburn is more responsive to hyper-extreme events 

than an increase in air temperature, mean precipitation, or windstorms. 

Every land development scenario projected a greater increase in the epilimnetic P 

than its corresponding climate change scenario (Fig. 3.8a). Increase in the impervious 

area in the catchment led to increases in overall and peak concentrations of P in the 

runoff. This resulted in greater mean and peak epilimnetic P concentrations. The future 

trophic state of Lake Auburn will depend, in part, on human activities and changes made 

to the land cover of the watershed.
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Figure 3.8. Box plot comparing distributions of mean daily (a) epilimnetic TP (0-8 m) and (b) hypolimnetic TP (32-34 m) from 

2050 to 2055 for all future scenarios. Outlier events are indicated with dashed red lines.

a) 

b) 
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Differences in the hypolimnetic TP between different climate change scenarios 

and their corresponding development scenarios are minimal (Fig. 3.8b). This indicates 

that hypolimnetic P is not strongly affected by changes in peak runoff but is responsive to 

increases in overall internal plus external loading. Inactivation of sediment P release, and 

P elimination in the runoff from the watershed are simulated in Fig. 3.9. Even with 

external loads set to zero, the internal loading was simulated as a significant source of P 

for the water column, but internal loading gradually decreased after five years (Fig. 3.9). 

This suggests that internal recycling of legacy P in sediment can maintain P enrichment 

of the water column long after exports from the watershed are reduced. 

 

Figure 3.9. Modeled daily total P (solid) and its internal and external sources for 2010-

2015. Dashed line simulates internal P only and dotted line simulates external P only 

(sediment inactivation). 

An investigation on the effects of P sources revealed that the lake is susceptible to 

both internal and external loading (Fig. 3.9-3.10). In 2010, one of the warmest and 
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wettest years on record for Lake Auburn, external loading accounted for ~65% of P in the 

water column. After a few years of moderate weather, external loading accounted for 

~43% of P in the water column in 2013 but was the dominant P source again in 2016. 

Therefore, to maintain water quality in Lake Auburn, the roles of both the watershed and 

lake sediment should be considered in any effort to minimize P loading in the lake.  

 

 

Figure 3.10. Percentage of internal and external mean loading as sources of P in the 

lake 2010-15. Mean daily mass of total P in the lake is at the top of each year (kg). 

3.6 Sources of Uncertainty 

One-dimensional lake models are best-suited for lakes with a bowl-like 

bathymetry because they assume horizontal homogeneity within layers. Bathymetric data 

indicates that most of Lake Auburn is no deeper than 27 m. However, the deepest point, 

where all of the sampling data were collected, has a maximum depth of 36 m, creating an 

isolated area that can at times be separated from the dynamics of the rest of the lake 

(CDM Smith, 2013). The effect of the isolated deepest point may account for the 

challenges in our simulations. 
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MyLake utilizes a simplified approach to algal dynamics that contributes to 

uncertainty in simulating P. The model assumptions include phytoplankton species 

homogeneity, absence of zooplankton grazing, and a simplification that all algal cells 

follow the Redfield ratio. Lake Auburn has diverse cyanobacteria species, including 

Gloeotrichia echinulata (CDM Smith, 2013). This organism occurs in remote, 

oligotrophic lakes, including several low nutrient lakes in the northeastern USA (Carey et 

al., 2012). Colony growth is controlled by light and temperature in shallow sediments 

(Karlsson-Elfgren et al., 2004). The unresponsiveness of this particular algal species to 

nutrient loading is not captured by the model, and as such, the contribution of this species 

to the POC and POP are not represented.  

The DOC concentration has increased in many temperate and boreal lakes in the 

northeastern USA in response to declines in acid deposition since the implementation of 

Clean Air Act legislation of 1970 and 1990 (Evans et al., 2005; Monteith et al., 2007). 

Studies suggest that increases in DOC leads to faster DO consumption in boreal lakes 

(Couture et al., 2015). An increase in DOC for Lake Auburn was not simulated due to (a) 

its relatively low concentration and (b) a lack of long-term DOC monitoring data. 

However, any potential increase in the DOC would lead to faster depletion of DO (Knoll 

et al., 2018) and thus a greater potential for an increase in internal P release. Additionally, 

long-term decreases in acid deposition results in increased P export from wooded 

watersheds to lakes (Kopáček et al., 2015) due to P mobilization promoted by increased 

pH, and potential association with DOC via cation bridging (Saunders, 1965; Borie and 

Zunino, 1983; Guppy et al., 2005). The role of decreasing acid deposition on increasing P 

exports was also not captured by the models. 
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Limitations in climate change models include the spatial and temporal resolutions. 

Many modern, third generation climate models perform computation at a 1° × 1° 

resolution (Auger et al., 2018), that covers an area of ~9325 km2 at Lake Auburn’s 

latitude. Bias correction through reanalysis helps account for more localized weather 

(Themeßl et al., 2012). MyLake operates at a daily time step and consequently requires 

future climate simulations at the same frequency. Given the natural climate variability, 

daily simulations of weather 30 years in the future are subject to a great deal of 

uncertainty (Fernandez et al., 2015).  

MyLake does not have a mechanism to account for groundwater input into the 

lake. Flow and P contributions from groundwater can be approximated by modifying 

inflow and P scaling factors; however, this would also affect the contributions from the 

overland runoff. The water budget for groundwater in Lake Auburn has been crudely 

estimated as minimal compared to stream flow (Dudley, 2004). 
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CHAPTER 4 

CONCLUSIONS 

The goal of this research was to demonstrate the application of a system of 

models to assessing the vulnerability of a temperate mesotrophic lake to future climate 

and land-use scenarios. The application of various future climate change scenarios to the 

catchment and lake models predicts an increase in lake epilimnetic warming and P 

enrichment, conditions favoring eutrophication, and a loss of habitat for cold water fish. 

Simulations of future land development worsened the lake water quality.  

Where internal loading is a significant source of P to the lake, watershed BMP’s 

alone are insufficient lake restoration methods, especially if external loads originate from 

nonpoint sources (Welch and Jacoby, 2009). Instead, sediment P release inactivation, as 

simulated in this study, can be achieved through addition of Al-containing salts, such as 

alum, or hypolimnetic oxygenation. Lake sediment with significantly higher 

concentrations of Al(OH)3 than Fe(OH) effectively sequester P, even under anoxic 

conditions, and prevent internal loading (Kopáček et al., 2005; Lake et al., 2007; Wilson 

et al., 2010). Excess Al(OH)3 from alum treatment will be slowly covered by P-rich 

sediment from external loads if high external P input to the lake continues, and the 

effectiveness of the treatment will be lost with time (Rydin et al., 2000). Treatment 

longevity is highly variable for Al salt addition and adequate monitoring of the lake is 

still needed to evaluate the effectiveness of a treatment dose for possible future 

treatments (Huser et al., 2015).  

Even minor improvements in the quality of water source tend to lead to modest 

savings in treatment costs (Price and Herberling, 2018). In light of the threat of 

eutrophication, costly upgrades will have to be implemented by the water treatment plant 
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to maintain Lake Auburn as a sustainable drinking water source (Fleming, 2013). In this 

lake, P as the limiting nutrient can originate from either internal or external loads. The 

importance of each can vary depending on the weather. Accordingly, any lake restoration 

plans should include both watershed management and in-lake remediation schemes. This 

framework of models can be applied to other lakes appropriately fitting the necessary 

assumptions of the models for similar vulnerability analysis. 
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APPENDIX: SUPPLEMENTARY DATA 

Table A.1. Land cover information for Lake Auburn. 

Type Area (km²) Coverage (%) 

Open Water 1.20 0.03% 

Perennial Ice/Snow 0.00 0.00% 

Developed, Open 

Space 
2.35 

5.70% 

Developed, Low 

Intensity 
0.92 

2.20% 

Developed, Medium 

Intensity 
0.42 

1.00% 

Developed, High 

Intensity 
0.07 

0.20% 

Barren Land 

(Rock/Sand/Clay) 
0.92 

2.20% 

Deciduous Forest 8.69 21.00% 

Evergreen Forest 4.48 10.80% 

Mixed Forest 14.37 34.70% 

Shrub/Scrub 1.28 3.10% 

Grassland/Herbaceous 0.37 0.90% 

Pasture/Hay 3.23 7.80% 

Cultivated Crops 0.33 0.80% 

Woody Wetlands 2.34 5.70% 

Emergent Herbaceous 

Wetlands 
0.39 

0.90% 

Sum 41.37  
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Table A.2. Land cover information for Basin Brook watershed. 

Type Area (km²) Coverage (%) 

Open Water 0.86 3.7 

Perennial Ice/Snow 0 0 

Developed, Open 

Space 

1.02 4.4 

Developed, Low 

Intensity 

0.23 1 

Developed, Medium 

Intensity 

0.04 0.2 

Developed, High 

Intensity 

0 0 

Barren Land 

(Rock/Sand/Clay) 

0 0 

Deciduous Forest 4.5 19.5 

Evergreen Forest 2.25 9.8 

Mixed Forest 9.38 40.7 

Shrub/Scrub 0.72 3.1 

Grassland/Herbaceous 0.23 1 

Pasture/Hay 1.52 6.6 

Cultivated Crops 0.14 0.6 

Woody Wetlands 1.87 8.1 

Emergent Herbaceous 

Wetlands 

0.26 1.1 

Sum 23.02  
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Table A.3. Land cover information for Townsend Brook. 

Type Area (km²) Coverage (%) 

Open Water 0.08 1.1 

Perennial Ice/Snow 0 0 

Developed, Open 

Space 0.4 5.5 

Developed, Low 

Intensity 0.33 4.6 

Developed, Medium 

Intensity 0.17 2.4 

Developed, High 

Intensity 0.03 0.4 

Barren Land 

(Rock/Sand/Clay) 0.37 5.1 

Deciduous Forest 2 27.6 

Evergreen Forest 0.78 10.8 

Mixed Forest 1.78 24.5 

Shrub/Scrub 0.32 4.5 

Grassland/Herbaceous 0.02 0.2 

Pasture/Hay 0.69 9.6 

Cultivated Crops 0 0 

Woody Wetlands 0.22 3.1 

Emergent Herbaceous 

Wetlands 0.05 0.7 

Sum 7.24  
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Table A.4. Parameters calibrated in SimplyP model for Basin Brook and Townsend 

Brook. The last column is the range of accepted values from Jackson-Blake et al. (2017). 

Basin Brook    

Parameter Units Description Value Range 

Ts d Soil water time constant Arable 

land 

Semi-Natural  

7.0 7.5 0–30 

fquick N/A Proportion of precipitation 

routed to quick flow 

0.200 0-0.2 

FC mm Soil field capacity 100 100-400 

beta N/A Base flow index 0.15 0-1 

Tg d Base flow recession 

constant 

25 0-100 

PsoilConc mg kg-1 Initial Soil P concentration 1500 873 0-3000 

Pnetinput kg ha-1 

yr-1 

Net annual P input to the 

soil 

10.0 -30-30 

EPCo,init mg L-1 Initial soil water TDP 

concentration on 

agricultural land 

0.08 0-2 

Msoil,m2 kg m-2 Soil areal mass 500 0-800 

TDPg mg L-1 Groundwater TDP 

concentration 

0.009 0-2 

Townsend Brook    

Parameter Units Description Value  

Ts d Soil water time constant Arable 

land 

Semi-Natural  

   3.0 8.0 0-30 

fquick N/A Proportion of precipitation 

routed to quick flow 

0.080 0-0.2 

FC mm Soil field capacity 100 100-400 

beta N/A Base flow index 0.10 0-1 

Tg d Base flow recession 

constant 

25 0-100 

PsoilConc mg kg-1 Initial Soil P concentration 250 150 0-3000 

Pnetinput kg ha-1 

yr-1 

Net annual P input to the 

soil 

1.0 -30-30 

EPCo,init mg L-1 Initial soil water TDP 

concentration on 

agricultural land 

0.010 0-2 

Msoil,m2 kg m-2 Soil areal mass 500 0-800 

TDPg mg L-1 Groundwater TDP 

concentration 

0.010 0-2 



53 

 

Table A.5. Parameters calibrated in MyLake for DO and TP. The range of accepted 

values are from Markelov et al. (in press). 

Parameter Unit Description Value Range 

Kz_K1 m2 d-1 open water diffusion 

parameter 

0.012 - 

C_shelter N/A Wind shelter parameter 0.887 - 

I_scV N/A Scaling factor for inflow 

volume 

1.991 - 

I_scT N/A Adjusting delta for inflow 

temperature 

3.624 - 

Swa_b0 m-1 Non-PAR light attenuation 

coefficient 

0.299 - 

Swa_b1 m-1 PAR light attenuation 

coefficient for water 

1.167 0.8-1.3 

wc_factor N/A scaling factor for rates in 

WC 

10-4 - 

k_POP y-1 first order reaction rate for 

particulate organic 

phosphorus 

2.30×10-2 1×10-2-4×101 

k_POC y-1 first order reaction rate for 

particulate organic carbon 

4.19×10-2 2×10-3-1.5×10-1 

km_O2 mM Michaelis-Menten constant 

for O2 

8.00×10-4 8×10-4-2×101 

k_Feox mM-1 y-

1 

first order reaction rate for 

iron oxides 

6.78×105 3.5×102-1.6×107 

k_pdesorb_a mM-1 y-

1 

first order reaction rate for 

phosphorus adsorption to 

iron hydroxides 

3.09×102 - 

effective 

depth 

m depth of lake to which 

water column is affected by 

sediment 

-1 -1 to max. depth 
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Figure A.1. Bathymetry for Lake Auburn. 
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Figure A.2. Time series of mean annual daily air temperature for 2006-15 and future 

(2046-2055) climate scenarios.
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Figure A.3. Time series of mean annual daily precipitation for 2006-15 and future 

(2046-2055) climate scenarios.
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Figure A.4. Time series of mean annual daily wind speed for 2006-15 and future 

(2046-2055) climate scenarios.
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